INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell iInformation and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

ONLINE BANKING -
A CASE STUDY FOR DYNAMIC DATABASE-DRIVEN

CLIENT/SERVER SYSTEM

HONG WANG

A MAJOR REPORT
IN

THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

JANUARY 2000

© HONG WANG, 2000

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ontawa ON K1A ON4

Your fie Votre réference

Qur fie Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-61247856-4

Canada

Abstract

Online Banking -
A Case Study for Dynamic Database-driven Client/Server System

Hong Wang

With the arrival of the age of the Internet, the financial service community is provided
with tremendous opportunities and chalienges. Today's providers must consider the
Internet and on-line services besides their traditional non-online services. In this report,
the analysis, design and implementation details of an on-line banking application have
been described. Many state-of-the-art technologies were used to build the dynamic
database-driven client/server system. These techniques include scripting languages,
cascading style sheets, dynamic HTML, active server pages, active data objects, active
server framework, design-time controls, ODBC and others. The implementation requires
the creation of web site, web pages and links to the database. The database-driven web
application was coded using VBScript, JavaScript, Oracle and Microsoft Visual InterDev

6.0. The system functions well and can perform most of day-to-day banking activities.

Acknowledgements

I would like to thank my supervisor, Dr. Lixin Tao, for his great advice and help through
the process of doing this project. I would like to express my gratitude to Dr. B.C. Desai
for many comments and suggestions on my major report. My family provided support

that ensured the completion of this project.

iv

Contents

1 INtrOdUCLION ceecereceecreecsssssscoseossoscssassssssssssssesssssssse 1

1.1 Problem DesCription.....c.cocceeeeerrimniremrrirriitinsnieserneeennerasssseesstecascsennnnssessnness 2
1.2 TOOIS USEd.....ueeeereeeeeeceneerreccnenesaaeesascsasanmessrssasasssessssssnmessassssssnsnasoasesssansososssssssns 3

2 Technology OVervieW.......cccccrsecsccrsereasseecccsonaaces S

2.1 Why is Visual InterDev needed?cccooammiinmmeeeeeeeeecee i S
2.2 TeChROIOZIES. ..coeeeermeeeceeereeereeeretintcsstssscearesseeneecsn e s e nssassnace e e s st ra s n s anes 6
2.2.1 Client Script reesessmssessestessaseressmarartanteraneesnesaaeeesataneseaeee bt s s s R et s an e R e tneneassenssnesies 6
2.2.2 S@IVEE SCTUPL....c.eeeeueevreeeeesesesessirsessesssssssensassessassassassassessssstsstssmessnssstostnes e s aenrass sanasessenses 7
2.2.3 Active Server Framework...................c.eeereee.. reeeerrsmeesssesssesisesssasesiesissnranaraaanaranas 7
2.24 Scripting Languages eeeesesesssssesesessssssssemssiessessnseensessnnnsasas 8

3 Systems Requirements and Analysisc.c.ccceee 9

3.1 USEr CharacCleriStiCS «.eeeerereeeareererasassessrmmresmeenrmeeererssessecsnmrmnnsssnssnssseomsesosecmosemsosnsses 9
3.2 System Access Privilege CONtrol..........cooeeomiireieeceetccc et 10
3.3 Functional Requirement Definitioncocoumenmieeiimieeeeiie e 10
3.3.1 Database Requirements. teesreesiesssssesmemcieeteessssssesesesesesssstetesvestetnitseseeasasasesassotons 10
3.3.2 Service REQUITEMERLS............eoueorereeeeereerenreesasaemiasetenesaceneten s s ne s s s s st s at e cansanee 12
3.4 Non-Functional REQUITEMENLS........covereeereemeiieriieeneieecere st ne e easene 13
3.4.1 Product non-functional TEQUITEMEILSceeeeeemerererenesueeerssnmrsstassnranssanstataes e nsasss 14
3.4.2 External non-functional reQUITEMENLS...............c..eeemereeerereerecssncassrsssmsssnsesnionessnmnissaesasassase 15

4 Systems DesSiZncccccereccsrsscscsssacssensescsnsassasasse 17

4.1 Design Rationale......ccoooieeeiiieiieiiienieireneseseseeeesccres e st e 17
4.2 Implementation Of ASSOCIAtIONSeemiveeeeesuereiesneiscrecrseir et e 18
4.2.1 ASSOCIQLION DEIWEER SUDSYSIEMIS.c..uconeeicreirnneinsinsrreerersessnserasessosssssnnsmsnesatnsesstasasssesans 19
4.2.2 Association within Subsystems. teueeasteesseessaatsessreeessrarsaasstanteeisasbas st e serataean baness sanantans 20
4.3 ATCRILECIUTEcooneeeeeeeerrrnneeranneeneaeeieraseeasssosssssssssssnssnnsssnnsssssesssssstesmmsssrannsmannane 22
4.4 SySIem TOPOIOZY ..eeercreeereeacerverniinisrissisuerssessessnsssassrsstsestassssssnssssesssasssasssesssancans 24

4.5 Module DeSCrIPtON. ...cccoccirmimiiiriiiinieiieeicettessessssrerersessrreeesesssnas s s s ens s asennsaenanns 25

4.5.1 Module in User Interface Subsystem..................o.euueceveaeecrnennee 25
4.5.2 Modules in AppliCAIION SUDSYSIEML.........o....uoccenereceececisirsnessinsnecesacsssen snssnnmesessmnsnsessees 26
4.5.3 Database SUDSYSIEML............ccoueecreereeeeeeseaniaeaacaeecsetsossssssissessisssssssosssnnassssasasassesassessnans 29

5 Implementationccccceccccccccccasssccsssssessoeceecaseses 34

5.1 PrOJECE SEUUP......c..ueeeeeeeeereeeecooraeeecceeasceessnteeeacneessesssessnsssssrsssssssssssn sarsasenssassnansens 34
5.2 Site DIAGIAM........ooiiieeieieeececeeeeeeeetrassencnnseoseecrasnssasesssenteseses aasnessesanansnnans 34
5.3 Pages SPeCUfiCAtiONS.....ccccceereererrienrccveieceareeererneesescrereerererensssrerere e ssecncsasssnsesasns 36
5.3.1 Home Page..................... teereeerrmsesteessseeteesesasasannnanensseasieasaantaesasanasnbarberrresresssarrrsnane 36
5.3.2 Main Menu for CUITENS CUSTOMETS............ueeeeeeeeemeeeecaresssssmsssiosssssmesssssssnmsnssssassasnsassrasas 37
5.3.3 Open an Account for Current CUSIOMETScouveverenenrnnns rereteeseeeeseoteessteseatsensesraas 40
5.3.4 Pay BIll . eeetersesteseesstessemeessseesesatessentasessset rsre et resaresnannaras 42
5.3.5 CReck Balnce.............oeeeeerecemereeacaaireaerreressesaasnaaesesonssssmssassssesssssssnssss sensassmmaneesaasessanes 44
5.3.6 Transaction History eeeeseresssmeesssesssmesesesessesscessesnsEtiiesstesistsesosen taesntsrraretanrarns 45
5.3.7 CRANGE AATESS..........oeeeeeeeeeoraaacseinsecassaavrossuseassnacssssemmssrmsmssnniessssessssnssnateasasssnssressonsmsese 47
5.3.8 Change Password ... eeeesteesessssesstesseesssessseesesareesnnssennmtateantaaaceaeotasnne st ereesnnraresssnasasae 48
5.309 LOQ OUlc..naeeeeeeereeeeaernseeraseasssesasensiatesnsensasasassesbessasstssasssestastassessrnn nmssssasssssssssatane 50
5.3.10 Open ACCOUNE fOT NEW CUSIOMETSoceeeeeeeeeeeaercssseenssrnmmsasessssrsssssasssasasssssseesossososessns 50
5.4 [Install procedure for financial iNSHEULONS.......cccemmemimmmmemieiieeeeeeececeees 52
5.4.1 Create ODBC System Dat@ SOUTCE..................occuvceecrrerrarsurerssoaesresirnranscoaesessrasasssssssssanse 52
5.4.2 Run siart file bank.sql under Oracle SQL*PLUS environmen...................cccoeeeeecnennas eeeee 53

5.4.3 Copy all files for the online banking system under the home directory of the Web server... 53

6 CONCIUSION.....ccceeeeteererstnieicsscssscsensasssssosssocsasesseee DD
BibliOBraphyccccereeneenresicccesssoscsccsaccsssssseessasaasase O 7
Appendix A User Manual........ccccceereceeeceaneececcce S8
Appendix B SQL Start Fileccccceecercercccenceceecee §9

Appendix C Source Codecccccersercrreneecascaseeses 65

List of Figures

Figure 1: The processing of an ASP by ASF ... e, 8
Figure 2: Subsystems with Event and Information Flow.................ccoccoiiiiiiiiiniiniinnnnnnnan. 22
Figure 3: System TOPOIOZYcouiieereumreeeceeccteeetictineeeiteteee e te et eeee e seesesessee s s s srsnsnnas 24
Figure 4: Modular Structure of Event Handler Subsystem...........c.ccccooceeiiiii. 27
Figure 5: Modular Structure of security module............ccccoieiiiiinies 27
Figure 6: Customer Service Module..........ooe et eerecceeeeeceenterecr e 29
Figure 7: E-R MoOdelo.eeoi ettt ece e s 30
Figure 8: Site DIagIam.......cccunneniiiiiieieeeeet et te ettt tee st et ee s e aecamenssnnnsaseseee srnas 35
Figure 9: Home Page for Online Bankingcccccooiiiiiiiiiiiiiiiinieee e 37
Figure 10: Main Menu for Current CUStOMETSc..cccoeiiiiereiiiteieeacinceneeencteesereneeeeenne 39
Figure 11: Open an Account for Current CUSTOMETSccoeceeeeeeieeieeemnneenneeennnncerereenas 41
Figure 12: Pay Bills ...ttt ettt s e et e mae e e e nesenes 43
Figure 13: Check Balanceooiiiiieeeeeeet e e aeeneaee e 45
Figure 14: Transaction HISIOTYcoiiieiiieeeiiieieiiiciitie e et reeee e e e e eeeee e e e e seesaneeeene 46
Figure 15: Change AdAress..........ooooooeieieeeeeiteeeeeereteeee et e e e e e eeeeeeeenenas 48
Figure 16: Change Passwordcooooiiiieiriiiiiiiie et 49
Figure 17: Open an Account for New CUStOMETS........cccccivrririrainneciereeenninerininenneenens 52

vit

Chapter 1

1 Introduction

Electronic Commerce (e-commerce) is the buying and selling of goods and services or
the transferring money over the Internet or an Intranet. It is the integration of
communications, data management, and security capabilities to allow business
applications to automatically exchange information related to the sale of goods and
services. This can involve stores or banking activities. Communications services
support the transfer of information from the originator to the recipient. Data management
services define the exchange format of the information. Security mechanisms
authenticate the source of information, guarantee the integrity of the information
received, prevent disclosure of the information to inappropriate users, and document that
the information was received by the intended users. Standards have been established to
make the process easier and more secure.

E-commerce differs from traditional commerce in the way information is exchanged
and processed. Traditionally, information has been exchanged through direct, person-to-
person contact or through the use of the telephone or mail sysiems. In e-commerce,
information is conveyed via a communication network or some other electronic media.
In addition, the information accompanying a typical traditional business transaction is
usually acted upon by individuals involved in fulfilling the transaction; on the other hand,
with e-commerce, much of the transaction processing is automated. In this way, on-line
banking and e-commerce can provide the transacting parties with immediate, convenient

and secure means by which to transfer financial value.

With the arrival of the age of the Internet, few would argue that e-commerce is simply
the most efficient distribution channel from the standpoint of both access and cost. E-
commerce will be the backbone of the new global economy in the next century, a
marketplace that can be entered from anywhere, which can give access to an
unimaginably diverse range of products and services. For the lucky few financial
institutions who have mastered e-banking, it will enable much more refined, real-time
tailoring of products and services to their customers. It will give them a better ability to
develop and price products, and to track market success. The Internet is becoming a
familiar, trusted mass medium; and anytime, anywhere electronic banking is a perfect fit
for today’s and tomorrow’s time-pressured lifestyles. Any bank that is not planning to
link its customer’s accounts to its Web site is gambling with its own survival. Online
banking will play a greater part for the consumers of the next generation. As such, online
security will have to match the risk of more people using open networks for bank
transactions. Internet banking is taking off. The purpose of this project is to explore state
of the art technology to develop a dynamic database-driven Web application package of

e-banking system.

1.1 Problem Description

This online banking system is designed for financial institutions to deal with their basic
banking services. The system allows customers to open accounts, view account balances
and statement details, transfer funds between accounts, pay bills and change personal
information and passwords. Any customer is able to scan interest details, along with
frequently requested information for checking, savings, and certificate of deposit

accounts quickly and easily without interacting with bank clerks. The system is

accessible to the potential and current clients with different privilege levels. In addition,
multiple users can access it at the same time, rather than personally standing in lines for
ATM or banking clerks. The online banking system provides access 24 hours a day to
customers' accounts information. Therefore customers can enjoys the convenience of
financial controls of their accounts through Internet. The customers can also pay the bills
for merchants without writing checks and buying postal stamps. In addition, the
customers can move funds between bank accounts in a cost-free way.

According to standard of software industry, the system described above belongs to
dynamic Web application. This application is very data-centric. Multiple databases are
critical to the operation of the online banking. These databases contain all of the
information about account types and details for each account type, and maintain customer
records, their account information and account transactions. This enormous amount of
information changes very frequently.

Customers can access this information they need via a set of Web pages. The ability
to obtain current information via a Web browser is a competitive advantage for on-line
banking system. Customers will appreciate the personalized and interactive interfaces
that they use to make contact with an online banking. This differentiates online banking

from its non-online competitors.

1.2 Tools Used

The online banking system will be developed in Windows NT/98 environment. The

following tools will be used for its development:

e Microsoft Visual InterDev 6.0, VBScript and JavaScript: Used for building the web
applications.

e Oracle 7.3 or higher: Used as database management to handle data storage,
retrieval, management and recovery of all persistent data.

e HTML 4.0: Used for designing web pages.

e ODBC: Serves as the connectivity between the Web server and the database.

e Microsoft Internet Explorer 4.0 or higher: Serves as a web browser to support user
interface that drives the display and handles all graphic layouts.

e Microsoft Image Composer 1.5 and Paint Shop Pro 3.12: Used to produce images.

This report is organized as follows: Chapter 2 describes the technology used in the
system. Chapter 3 focuses on system requirements and analysis. System designs are
documented in Chapter 4. Chapter 5 provides the implementation details, and

conclusions are given in Chapter 6.

Chapter 2

2 Technology Overview

2.1 Why is Visual InterDev needed?

The World Wide Web was originally designed to transfer and publish static contents. A
user obtained a page by first specifying its Uniform Resource Locator (URL) to a
browser, then a Hypertext Transfer Protocol (HTTP) request was sent to the appropriate
server. The HTTP response was received containing the Hypertext Markup Language
(HTML) source code for that page. Finally the browser interpreted and displayed the
information.

The development of new software technologies soon made it possible to provide more
interactive experiences for users. An HTML file can refer to a Java applet or an ActiveX
control. A client can download and execute the software objects dynamically on the
machine. It also became possible to initiate execution of a program on a server when a
Web page was requested. The Common Gateway Interface (CGI) was one of the
techniques used for this purpose. A CGI program can dynamically generate an HTML
response for the browser.

However, a variety of problems had arisen from CGI and other approaches. First, for
each HTTP request, a new process had to be initiated, which degraded server
performance. Second, it was very complicated to program Web applications by such
approaches. This is partly because HTTP is a "state-less” protocol. A connection is not

maintained between a client and the server and so each request is independent. Another

issue was that there was no standard way to perform the tasks that were frequently
necessary for Web applications, such as dynamic generation of content from server
databases.

These problems fostered the need for an integrated development environment.
Microsoft Visual InterDev 6.0, a development environment, is designed to solve these
problems. It belongs to a member of the Microsoft Visual Studio family of tools and is
used to create and manage dynamic Web applications quickly. Multiple tools are
included which enable the rapid design, development, testing, deployment, and
maintenance of dynamic Web applications. The major features of Visual InterDev
include site and page design, database integration, database design and management,
debugging, site management, and team development. It is powerful and can be used to
create database-driven Web applications, design the structure and appearance of a site,
build Web pages, debug client and server scripts, maintain the integrity of a site, and

operate in a team environment.

2.2 Technologies

Now we examine the technologies that are necessary to build the dynamic Web

application --- online banking system.

2.2.1 Client Script

A client script is a program that is embedded in a Web page. The code is interpreted by a

browser, which provides interactive experience for an end user. Client scripts can be

[2.5.6,10]

written in scripting languages such as VBScript, JavaScript or JScript. Each

element on a Web page is represented by an object that may have properties, events, and

methods. This is known as the Dynamic HTML Object Model. Client script can process

events generated by these elements.

2.2.2 Server Script

A server script is a program embedded in a Web page that is located in the server side.
The code is interpreted by server software and it plays a key role in a dynamic Web
application. The Web page containing server script is called an Active Server Page
(ASP) file. Server script is never sent to a client machine directly; instead, it dynamically
generates HTML and client script that are sent back to a browser. The Active Server
Framework (ASF) technology is used to process server script (see Figure 1). Server

scripts can be written in scripting languages such as VBScript, JavaScript or JScript.

2.2.3 Active Server Framework

The Active Server Framework (ASF), a key technology to build dynamic Web
applications, is a software executed in conjunction with a Web server. Its primary role is
to process Active Server Pages (ASP). The framework is available in a web server such
as Microsoft Internet Information Server (IIS)M or Personal Web Server (PWS)M. IIS or
PWS is software that is used to process HTTP requests.

Figure 1 depicts the processing of an ASP. The sequence begins when a browser
requests a .asp file. That file is read and processed by the Web server. The scripting
engine of the ASF processes any server-side script commands. The response to the
browser is HTML and client-side script. When a server-side script is processed, it may
dynamically construct HTML and/or client-side script and direct the ASF to write this to

a browser.

Web server

Request .asp file

Active Server
P
Web Browser ASF €4——1 Page (.asp)

‘ . . .
HTML and Scripting Engine

Client-side script

Figure 1: The processing of an ASP by ASF

In the online banking application, some other software technologies are also used,
including Cascading Style Sheets (CSS)!'"'2, Dynamic HTML (DHTML)!'?, Open
Database Connectivity (ODBC)Y! Structured Query Language (SQL)"!, Active Data

Objects (ADO)*! and Design-Time Controls (DTC)**!.

2.2.4 Scripting Languages

Client scripts and server scripts can be written in scripting languages such as VBScript,
JavaScript or JScript. VBScript is a scripting language that was developed by Microsoft
Corp. At this time, only Internet Explorer can interpret VBScript client code. Netscape
browsers do not support this language. Only Internet Information Server can interpret
VBScript server code. JavaScript is a scripting language that was developed by
Netscape. Both Internet Explorer and Netscape Communicator support this language.

Jscript is a Microsoft's version of JavaScript.

Chapter 3

3 Systems Requirements and Analysis

3.1 User Characteristics

There are two kinds of users for the online banking system: Potential Customers and
Current Customers. They may be people or companies. They have different needs and
privilege levels to access the system.

e Potential Customers: The Potential Customers do not have any accounts at
the online banking. A Potential Customer can open an account, which is
his/her/its first account at the online banking. After opening the first account,
the potential customer became a current customer.

e Current Customers: The Current Customers have at least an account at the

online banking. They can:

v" Open additional accounts.
v" Check balances.

v" Query transaction history.
v

Pay bills.

<

Transfer funds between accounts.

AN

Check or update personal information.

v" Change password.

3.2 System Access Privilege Control

The potential customers have the lowest access privilege level. They can only look at
some services information and open an account. The current customers have a relatively
higher access privilege level. A user ID and password are needed whenever a current
customer enters the existing accounts and opens new accounts. Once logged in, a current

customer can change some information, such as password, address and phone number.

3.3 Functional Requirement Definition

3.3.1 Database Requirements

In order for on-line banking to work, the following files/databases are needed:

Customer File

The customer file contains all relevant information about customers: SIN, name, date of
birth, gender, address, phone number, user ID and password. For an individual, SIN,
name, date of birth and gender can not be changed once submitted by the customer when
opening the first account. For a company, SIN means its registration numbers; date of
birth means its creation date; the gender is N/A. This file is used to check or update
personal information and change password. It is appended after a potential customer
opened the first account and updated after a current customer modified the personal

information and changed password.

10

Account Type File

The account type file contains a list of all account types that the online banking provides,
including account type, account description, and interest rate. The online banking
provides the following account types: checking, savings, investment, deposit, GIC and

students. No customer can modify this file.

Customer Account Information File

The customer account information file has a complete list of accounts already opened by
current customers, including account number, open date, balance, SIN and account type
for each account. This file is appended after a potential customer or a current customer
opened a new account. It is used to check balances and get all account numbers and

types held by a customer.

Payment File

The payment file contains all information about customers’ transactions, including
paying account number, receiving account number, bill number, pay date, due date and
paid amount. If account numbers of both paying and receiving accounts belong to the
same customer, it means the customer is transferring fund. Otherwise, it means the
customer is paying bills. For either transferring fund or paying bills, paying account must
belong to the customer. This file is used when customers transfer funds and check

balance, view transaction history, transfer funds and pay bills.

11

3.3.2 Service Requirements

The services include most of day-to-day banking activities by ATM and banking clerks,
except withdrawing cash. The services are described as follows:

Open an account: Both potential customers and current customers can open a new
account. But there is some difference. Potential customers need to fill out forms for
opening an account by providing personal information and account information. Current
customers just fill out forms with account information. Their personal information has
already been stored in the database, and there is no need to provide personal information
again. Before submitting a form, a customer can modify, reset for refilling, and cancel it.
Once a customer submits application for an account, the customer will be informed
whether the account has been opened successfully. The current customers can update

some personal information, such as password, address and phone number.

Pay bills: Customers can select one of their accounts they want to use for bill payment.
This is paying account. Customers can input amount they want to pay for each bill. The
current date will be displayed in the columns of pay date and due date automatically. The
customer do not need to input the pay date since it is set as the current date and the
customer can not modify it. For due date, the current date illustrates the input format of
due date. It is also convenient for the customer to modify since it is likely that the
customer just changes day rather than year and month. A customer can input amount to
be paid, whom a bill should be paid for and bill number. The balance will be reduced
from the paying account. Meanwhile, the balance will be increased for the receiving

account.

12

Transfer funds: A customer can transfer money between his/her/its accounts. Before
submitting transfer requests, the customer needs to select where funds are transferred
from and to, and transfer amount. The transfer date is automatically displayed as the
current date. The balance will be reduced from the transfer-from account. Meanwhile,

the balance will be increased for the transfer-to account.

Account summary: A customer can get an account summary for his/her/its all accounts,
including account number, account type and balance. The accounts' changes can be

reflected immediately.

Transaction history: A customer can get transaction history for his/her/its all accounts.
This reflects all transactions performed during some last period, for example, last week,
half of month, one month. Transaction history includes transaction date, account number
of transaction-from, account number of transaction-to and transferring amount.

His/her/its accounts' changes can be reflected immediately.

Service for changing information: Customers can modify some information, such as
address, phone number and password. For password change, the old password should be

provided by the customer.

3.4 Non-Functional Requirements

13

Non-functional requirements define the system properties such as its reliability and

constraints. For online banking system, the non-functional requirements can be classified

into two categories: product non-functional requirements and external non-functional

requirements.

3.4.1

34.1.1

Product non-functional requirements

Computer Hardware and Software Requirements

The online banking system should perform all its functionality efficiently on the

following hardware and software environments:

< Server side:

1.
2.
3.

Minimum hard disk space: 1 GB

Minimum RAM: 64 MB

An IBM compatible Personal Computer (PC) with CPU of Intel Pentium
200 or higher

Operating System: Microsoft Windows NT 4.0 or higher, Microsoft
Windows 95/98

Database Management System (DBMS): Oracle 7.3 or higher

< Client side:

l.
2.
3.

34.1.2

Minimum hard disk space: 500 MB

Minimum RAM: 16 MB

Any IBM compatible Personal Computer (PC) with CPU of Intel Pentium
200 or higher CPU can run the required software efficiently

Operating System: Windows 95/98, Windows NT 4.0 or higher

Minimum modem connection rate: 14400 bps (bits/per second)

Internet Browser: Microsoft Internet Explorer 4.0 or higher

Performance Requirement

14

The online banking system should be a multi-user system, which means multiple
different users can access the system concurrently and the system can still work correctly

and efficiently.

3.4.1.3 Efficiency Requirement

In general, the average response time of the system should be less than thirty seconds.
However, in the case of a very complicated query that demands a lot of calculations and

joining tables, the maximum respond time is set to five minutes.

3.4.1.4 Usability Requirement

The interfaces of the system should be designed to be clear, simple and east to use and
understand. To increase the user friendliness, on-line help should be built into the

system.

3.4.1.5 Robustness Requirement

In any natural disasters such as a sudden loss of electricity, the system should not lose
any information or data. The system should maintain the integrity of the database all the
time.

3.4.1.6 Reliability Requirement

The system should be reliable to the users and its failure rate should be less than 0.05%.

3.4.2 External non-functional requirements

3.4.2.1 Safety Requirement

To insure the safety of the system, identification facilities must be implemented in order
to have different levels of privileges to access the system. In this way, unauthorized

access to the system can be prevented.

15

3.4.2.2 Privacy Requirement

The private information of each individual stored in the system should be secured. Only
the owner of data is allowed to access the information. User ID and password are
designed to achieve this goal.

16

Chapter 4

4 Systems Design

4.1 Design Rationale

The following key issues are considered in the design of Online Banking System:

e Choice of Architecture

The online banking system has to respond to asynchronous events from the customers
and the database. The customers are allowed to open accounts, check balance, view
transaction history, pay bills, transfer funds, change address and password thus to interact
with the system. The dynamic nature of the various objects such as account, payment,
transaction and balance contribute the system’s dynamic characteristics. A combination
of interactive and dynamic architecture best addresses these requirements.

e Scalability

One of the key issues for any online system is its ability to scale up. The online banking
system should be capable of handling increasing number of users with minimum effect
on the response time. By maintaining a set of active objects on the client machine, the
response time is vastly improved as most of the user requests are served locally. At the
same time the online banking system could handle more number of connections in a
given time. The overheads involved in such client side processing are negligible
compared to the features it provides.

e Concurrency

17

The online banking system receives asynchronous events that need to be addressed
simultaneously. The system is divided into suitable independent sub-systems to handle
such concurrent events.

¢ Dynamic Update of Data

Data displayed on the client machine has to be continuously updated as new events are
recorded on the database. The Event Manager that receives the “pushed” event from the
database in turn interacts with the Account Controller to incrementally refresh the
displayed information on the User Interface.

¢ Consistency of data

One of the key issues in the design is th¢ need to maintain consistency of data between
the Client, Server and the Database. The Account Controller and Event Manager co-
ordinate to maintain consistency of data across the system.

¢ Persistence

In an effort to provide fault tolerance to the online banking system all active transactions
are stored and continuously updated in the database. In case of a server crash, the

transaction objects with their latest balance could be retrieved.

4.2 Implementation of Associations

We identified five sub-systems for the online banking system: User Interface subsystem,
Event Handler subsystem, Client Banking subsystem, Server Banking subsystem,

Database subsystem. In this section, we will discuss their associations.

18

4.2.1 Association between Subsystems

Two-way association between the User Interface subsystem and the Event handler
subsystem: Icon has a pointer to the User Input handler. And the Display Handler
has pointer references to all views in the User Interface subsystem.

Two-way association between the Event handler subsystem and the Client
Banking subsystem: It is implemented by providing pointer references in the Account
Handler, Payment Handler and Customer Handler to the Account Controller. The
Account Controller, in turn, has a pointer reference to the Display Handler.

Two-way association between the Client Banking subsystem and the Server
Banking subsystem: This is implemented by providing a pointer reference in the
Client Object Manager to the Server Object Manager. And also the Event Manager

has a pointer reference to the Account Controller.

The above associations support the design rationale of supporting concurrency. For

examples, when the Client Object Manager is requesting new objects from the Server

Object Manager, the Event Manager could be pushing new events to the Account

Controller.

Two-way association between the Server Banking subsystem and the Database
subsystem: this is implemented by providing pointer references in the Account
Manager, Payment Manager, Customer Manager and Server Object Manager to the
database. The Manager Classes are provided with a pointer reference to the database

to store and to restore information to/from the database. The Database employs

19

“push” type of event notification to enable instant update of information and
maintain perfect data consistency between the client, server and the database at all

times. The Database has a pointer reference to the Event Manager to support this.

The above association enables support to the design rationale of dynamic update of

data, object persistence and partly to system scalability.

4.2.2 Association within Subsystems

4.2.2.1 Event Handler Subsystem

All associations in this subsystem are one-way associations. They are:

e Between User Input Handler and the Account Handler: implemented providing a
pointer reference in the User Input Handler to the Account Handler.

e Between User Input Handler and the Payment Handler: implemented providing a
pointer reference in the User Input Handler to the Payment Handler.

e Between User Input Handler and the Customer Handler: implemented providing a
pointer reference in the User Input Handler to the Customer Handler.

e Between User Input Handler and the Display Handler: implemented providing a

pointer reference in the User Input Handler to the Display Handler.

4.2.2.2 Client Banking Subsystem

All associations in this subsystem are one-way associations. They are:
e Between the Account Controller and the Client Object Manager: by providing a

pointer reference in the Account Controller to the Client Object Manager.

20

Between the Account Controller and the Active objects: by providing pointer

reference in the Game Controller to the Active objects.

4.2.2.3 Server Banking Subsystem

All associations in this subsystem are one-way relationships. They are implemented:

Between Server Object Manager and Account/Payment/Customer Manager: by
providing pointer reference in the Server Object Manager to the Account Manager,
Payment Manager and Customer Manger.

Between the Event Manager and the Customer Manager: by providing pointer
reference in the Event Manager to the Customer Manager.

Between the Account Manager and the Account: by providing a pointer reference
in the Account Manager to the List of Accounts.

Between the Payment Manager and Payment: by providing a pointer reference in
the Payment Manager to the List of Payments.

Between the Customer Manager: by providing a pointer reference in the Customer

Manager to a List of Customers.

21

4.3 Architecture

Figure 2 illustrates the major components of the online banking system architecture. The
key tasks of the online banking system is to handle concurrent events from external users
and maintain consistency between data resident on the client, server, database and the
data displayed to the end user. Note that Open Account View 1 is for the current

customers and Open Account View 2 is for the potential customers.

User Inerface BEvert Hnde Qiert Brking subsystan Server Barking suibsystemn Database
Subsystem subsystemn subsysem
Icon - —s_
] C E
B User Inpue L R
Hindler ! v
M " E Rt .} £
Login N R
View | =~ Rpex | T
— o -
Cpen O lacrars Paymert 8] | ramot
an.l’l\ B 1 m% Payee
View | Acoourg. é Cmarer g
— Honder A c T
Accourt C T
Summary C M)
View (o] M A
u - N
N
UW Trarsactior N A e D
! Paymere T G E — i A
st || Hsoy & > Py ¢ Leis Accart T
E Ve C R] -M“’g’—% = A
R —
o o [(::} B
Pry B N r% A
ﬁ”_]\ T E S
R E
|~ Gstomer \'
Hander o E
Tr L N
View E U
R M (:mru_a. Qstarer
Updwe Display A e
X 1) Hardier N
Vi A
ol ‘lll'*lll: Pd}ﬂﬂt G
[}
— Display 4
— QOpen < :: g
Acoourt] :I.I..lll.:
View2 ;
—J Widdaal Drpost Baimxe -
-

Figure 2: Subsystems with Event and Information Flow

22

The Online Banking System is a web-based client/server software application system.
which will be applied on a distributed computing environment. The technique of layered
architecture can provide one basis for geographic distribution. From function and
performance viewpoints, specification of functions within distinct layers allows us to
keep similar functions closely aligned. Layering design can improve simplicity,
understandability and maintainability of the system. We identified the following various
sub-systems of the online banking system:

. User Interface subsystem

° Event Handler subsystem

° Client Banking subsystem

. Server Banking subsystem

° Database subsystem
User Interface subsystem provides a user friendly graphical user interface for the
customer to provide and retrieve information.
Event Handler subsystem isolates the User Interface subsystem from the Client Banking
subsystem. It separates the physical events from the logical events. This enables much
easier debugging during implementation and also during upgrading the system when new
features are added.
Client Banking subsystem interacts with the Server Banking subsystem to fetch various
objects based on user requests. It is also responsible to continuously update the objects
resident on the client machine based on the events received from the Event Manager

which is located in the Server Banking subsystem.

23

Server Banking subsystem serves various clients’ requests by fetching objects from the
database. It receives “pushed” events from the Database and updates the objects
resident on the Client Banking subsystem and Server Banking subsystem. For the client
side update, the Event manager communicates with the Client Banking subsystem. And,
ihe Event Manager is responsible for the server side update. The Event Manager plays a
key role in maintaining consistency of data between the Client, the Server and the
Database.

Database subsystem serves objects requested by the server. It also “pushes” events to

the Event Manager as new events are recorded on the database.

4.4 System Topology

User Interface Event Handler Cliert Banking subsystem
subsystem subsystem

Server Banking subsystem

Database

Figure 3: System Topology

Figure 3 displays the layers and partitions of the architecture. The Client / Supplier is
denoted by the Client being above the Supplier, while a peer-to-peer relationship is

denoted by the subsystems being side-by-side.

24

The Event Handler subsystem serves the User Interface subsystem by notifying the
Account Controller to fetch requested objects. The Event Handler subsystem uses the
User Interface subsystem to display information to the customers. The two sub-systems
serve each other to form a peer-to-peer relationship.

The Event Handler subsystem and Client Banking subsystem have a peer-to-peer
relationship. The User Interface subsystem is isolated from the Client Banking subsystem
by the Event Handler subsystem.

The Database subsystem serves the requests made by the Server Banking subsystem,

and pushes events as they are recorded on the database. They have Client / Supplier

relationship.

4.5 Module Description

This section contains the description of each module in subsystems. It explains the

overall function and purpose of that module.

4.5.1 Module in User Interface Subsystem

There is only one module in this subsystem: user interface module.

4.5.3.2 User Interface Module

The User Interface module is composed of all levels of user interfaces on the client site,
which are the first and the only means for the user and the Online Banking system to
communicate with each other. Inside this module, not only can all interfaces be
developed using the same set of tools and be supported by the same interface
applications, but also are all interfaces tightly and dynamically inter-related with each

other. Any particular sequential combination of a set of user interfaces actually

25

represents the sequence of user inputs and system responses. Outside this module, from a
bird’s view of the system, this user interface module as a whole performs the sole
function of accepting user input on one side and passing the user message to every

module in Event Handler subsystem on the other side or vice versa.

4.5.2 Modules in Application Subsystem

In the online banking system, we can call Event Handler subsystem, Client Banking
subsystem and Server Banking subsystem as Application subsystem. Through user
interface, user triggers an event by clicking mouse or typing input on keyboard and
different modules in Event Handler subsystem, Client Banking subsystem and Server
Banking subsystem can handle and response the different fired events.

The Application subsystem contains two major modules as depicted in Figure 4:

1) The Security Module: This module performs the security check for user access
to the system information and services. It verifies the user input, and passes the
checked result to the User Interface subsystem by displaying the different pages
according to the different checking result. This module is the bridge between user

interface module and other modules.

2) The Customer Service Module: This module provides services including
opening accounts, checking balances, paying bills, transferring funds, view
transaction history, change addresses and passwords. This module provides
services for current customers of Online Banking system with user IDs and

passwords.

26

Application

Subsystem
Customer Security
Service Service
Module Module

Figure 4: Modular Structure of Event Handler Subsystem

The following sections introduce the internal component organization of these

modules in the Application subsystem.

4.5.2.1 Security Module

Security module
| 1
Format Validation
checking checking
component component

Figure §: Modular Structure of security module

27

The Security Module is shown in Figure 5. It is to check user whether has the right to get
the services requested. If the services a user asks for need security check, the user
interface will show a security check interface, ask user to input user identified ID and
password. The user interface passes the message to Security module. There are two
phases. In phase I, the format of ID and password are checked without involving
database. ID should consist of seven digits and password should consisted of string less
than eight characters. If input format is correct, further check involved data stored
database is implemented in phase II. If the user passes through the security check
correctly, the security module passes the control to other module corresponding to the
service user requested. Otherwise, the security module will pass a message to user

interface, and inform that the user has no right to get the services.

4.53.4 Customer Service Module
The internal architecture of the customer service module is shown in Figure 6. This
module is composed of two components:

1. The customer information component. This component processes user requests of

changing telephone number, address and password.

N

The customer banking component. This component is further composed of four sub-
components:

e Open accounts

e Pay bills

e Check balances

e Transaction history

28

Customer

Service
Module
Customer Banking
information component
component
Q ¢
Change Change Open Check Pay Tra[lll.saction
Address Password Accounts Balances Bills Istory

Figure 6: Customer Service Module

4.5.3 Database Subsystem

The database subsystem stores all the data that the system can provide to its users and the
inter-relationship between these data as shown in ER diagram in Figure 7. Upon user
requests, the Event Handler subsystem may accordingly search database for information,
update data, or save new data into the database through Client Banking subsystem and
Server Banking subsystem. The Database subsystem is connected to Server Banking
subsystem by ODBC as middle ware. Through the query it can get data from or save data
to database. The query is attached with each component if that component need to access

database.

29

4.5.3.1

Entity-Relationship Model

The E-R diagram for the database is showed in Figure 7. We can have a relatively clear

view of the entire entity sets and the relationships among them. There are four tables all

together.

relationship table connects the three basic tables.

CustPasswd

< UserID

< CustGender
< CustBirthDate

CustPhone

CustAddr

< CustSIN CustName

e ——

Customers

453.2 Assumptions

Three basic tables store the general information of the bank and one

AccountType

._< AcctTvpe

m

< AccDesp

< Interest Rate

< CustAcctNo

Cuszcct

——< OpenDate

PayingAcctNo

(PayDate

< BiliNo

< PaidAmount

P

Payment/
Transaction

< DueDate

Figure 7: E-R Model

The database schema is designed under the following assumptions:

30

< Balance

ReceivingAcctNo

® A customer is identified by a SIN. Every customer must supply his/her/its name,
date of birth, gender, address, and phone number. Once a customer supplied
his/her/its SIN, name and date of birth and gender, the customer can not change
this information himself/herself/itself.

e Each customer can have several different kinds of bank accounts. For each kind
of account types, a customer can not have more than one account number.

¢ Each account is held by one individual. There is no joint account.

¢ No monthly charge for any service.

4.5.3.3 Database Schema
The notations for the database schema are:
¢ Primary Keys: in bold and underline.
< Foreign Keys: in bold, italic and underline.
Entity Tables:
1 Customers (CustSIN, CustName, CustBirthDate, CustGender, CustAddr,
CustPhone, UserID, CustPasswd)
A customer can not change CustSIN, CustName, CustBirthDate and CustGender.
2 CustAcct (CustAcctNo, OpenDate, Balance, CustSIN, AcctT ype)

Where Primary key (CustAcctNo),

Foreign key (CustSIN) references Customers (CustSIN),

Foreign key (AcctType) references AccountType (AcctType).

3 AccountType (AcctType, AccDesp, InterestRate)

31

Relationship Table:

4 Payment (PayingAcctNo, ReceivingAcctNo, BillNo, PayDate, DueDate.
PaidAmount)
Where Primary key (PayingAcctNo, ReceivingAcctNo, PavDate
Foreign key (PayingAcctNo) references CustAcct(CustAcctNo),

Foreign key (ReceivingAcctNo) references CustAcct(CustAcctNo),

Check (PayingAcctNo < ReceivingAcctNo).

4534 Integrity Constraints

The referential integrity constrains are taken into account in the following cases:

¢ When an attribute is added, modified or deleted from an entity, all the associated

relations should be updated if necessary. For example, if a new customer is

approved to open an account, once his/her/its personal information is recorded in

the Customers table, this information and all account information must be added

in the CustAcct table.

¢ Ifarelation R refers to a relation S via a set of attributes which forms the primary

key of S and the foreign key of R. Then, for a record in R, the value of the

foreign key must be equal to the primary key of a record in S. For example,

relation CustAcct refers to Customers via the attribute CuszSIN that is the

primary key of Customers and a foreign key of CustAcct. Then the value of

CustSIN in CustAcct must be equal to the value of CustSIN in Customers.

¢ In Payment table, PayingAcctNo can not be equal to ReceivingAcctNo. That

means that transferring funds at the same account is not permitted.

32

Note:

Represents an entity

<> Represents a relationship
m <> no Represents a m-n relationship

The attributes in italic are the primary key.

The word in bold represents an entity.

33

Chapter 5

S Implementation

5.1 Project Setup

First, create a Web project for this online banking application. The project name is
OraScottPro. Then, add a data connection ConnectOraScott for the data source named
OraScottDSN to the project. The data connection is located in the DataEnvironment of

global.asa of the project OraScottPro.

5.2 Site Diagram

A site diagram provides valuable information about the structure of a Web application. It
defines the navigation relationships among a set of pages and specifies the pages that

appear on the global navigation bar. Figure 8 illustrates the site diagram containing the

pages for the online banking application.

34

New Customer

Default.asp

Current Customer

OpenAccount/ Login:
OpenAccountNew.asp User Name and
Password
MainMenuHome.asp
MainMenuHome.asp
Left Frame Right Frame
FrameLeft.htm MainMenu.asp
OpenAccount/ CheckBalance/ TranHistory/ PassWord/
OpenAccount.asp CheckBalance.asp TranHistory.asp Password.htm
Response.asp
1
ChangeAddr/ PayBill/ Password.asp
ChangeAddr.asp PayBill.asp Response.asp
Response2.asp

Figure 8: Site Diagram

35

5.3 Pages Specifications

5.3.1 Home Page

File Name: Default.asp

Function;

Welcomes users and lets users browse the home page of the online banking application.
Description:

Once a user connects to the online banking through the Internet, the home page will
appear on the screen as shown in Figure 9. There are two options, "Open an account” and
"Login" for a new customer and a current customer, respectively. A potential customer
can use the mouse to click on "Open an account”. A current customer can use the mouse
to click on "Login" after inputting User ID and Password. Then, the system checks if
information given by the user is correct. Before login, the user can “Clear” to input again
or exit. After a correct login, the system will permit the user to use authorized options.
Otherwise, a re-login is required.

Input:

The user uses the mouse to click on one of the possible options on the user’s screen. For
current customers, they need to provide their user IDs and passwords.

QOutput:

The system will pop up another window on the screen to show the user one
corresponding Web page. For a new customer, it links the user to the hyperlink Figure
17. For a current customer, it links the user to the hyperlink Figure 10. Or error

messages are given for incorrect login.

Constraints:

36

Among two options, the potential customers can access "Open an account” option. The

current customers, who have user IDs and passwords, can login to access more options.

e udt Gop Maao ot b

o
o

5 -
3 i
¥ k.

P ¢ 3
LIPS S5 NN T N N

RS

7
>

i

2

7

Figure 9: Home Page for Online Banking

53.2 Main Menu for Current Customers

File Names;: MainMenuHome.asp, FrameLeft.htm, MainMenu.asp.

Fun n;

Lets current customers browse the main menu and selects options for them.

37

Description;

After a current customer logs in from the home page, the main menu will appear on the
screen as shown in Figure 10. There are eight options: Home, Open Account, Pay Bills,
Check Balance, Transaction History, Change Address, Change Password, Log Out.

A current customer can use the mouse to click on one of options. There are dynamic
advertising banners for commercial purposes.

Input:

The user uses the mouse to click on one of the possible options on the user’s screen at the

right and left sides of the screen.

Output:

The system will pop up another window on the screen to show the corresponding Web
page. The following are some examples of these cases:

Home option: Links the user to this main menu.

Open Account option: Links the user to the hyperlink Figure 11. A form appears for
opening an account.

Pay Bill option: Links the user to the hyperlink Figure 12. The user can pay bills and
transfer funds. If both paying account and receiving account belong to the same
customer, the transfer means transferring money from one account to another account for
this customer. Otherwise, the transfer means paying bills and transferring money to other
customers' accounts.

Check Balance option: Links the user to the hyperlink Figure 13. A list of available
balances for all accounts owned by the user appears, including three columns: account

type, account number, current balance.

38

Transaction History option: Links the user to the hyperlink Figure 14. A list of
transactions appears, including date, description, from, to, transferring amount for the
selected account in some last statement period.

Change Address option: Links the user to the hyperlink Figure 15. This part permits

the user to update address and phone number.

Change Password option: Links the user to the hyperlink Figure 16. This part

permits the user to change password.

Log Out option: Links the user to the hyperlink Figure 9. This option lets the user to

logout from the main menu and go back to home page.

Click herg for 3 free month
of MEN" Premter from FMdicrosnft.

Figure 10: Main Menu for Current Customers

39

5.3.3 Open an Account for Current Customers

File Name: OpenAccount/OpenAccount.asp.
Function:
Open an account for current customers.
Description:
This Web page gives a form to be filled out by the user as shown in Figure 11. The user
can submit the form after filling. During filling the form, they can reset the form, or
cancel the application before submission. Before the application can be submitted, the
online banking must check if the user fills all necessary information. After submitting
the application, confirmation information will be shown.
Input:
The user fills the form and submits it by clicking on “Submit” button. For some
information, the user can use the mouse to select one from the list boxes, such as account
type. Current customers do not need to input personal information again when they open
a new account, since all personal information has already been recorded in the database.
Output;
If all information has been properly filled out, the system will display acknowledge
information to the user. Otherwise, error messages will appear on the screen and
indicates that more information is needed before submission.
Constraints:

e When an existing customer opens an account, the system checks if the SIN input

by the customer is the same as his/her/its SIN stored in the table Customers. First,

check if the SIN input by the customer exists; if yes, then check if the user ID and

40

password input by the customer while logging in are corresponding to that with
the same SIN in the table Customers.

¢ A current customer can not open more than one account for the same type. If the
user selects the same account type as that he/she/it has already had, the system
will prompt the user to re-select account type.

¢ The minimum deposit required to open account is $50.00.

RN

e

Figure 11: Open an Account for Current Customers

41

534 PayBill

File Name; PayBill/PayBill.asp.

Function:

Current customers use it to pay bills or transfer money from an account to another
account.

Description:

This Web page can give two options “Pay” and “Reset”. There is a list box for the user
to select a paying account which is owned by the user. Below the list box, there is a form
to be filled by the user as shown in Figure 12. For “Pay” option, the user can use it to
pay pending bills after filling out the form, including receiving account number, bill
number, pay date, due date and amount. He/She/It can reset paying bills by clicking
“Reset” button. He/She/It can cancel paying bills by clicking "Back”. This Web page
also provides the user to transfer money between two accounts. The user needs to select
transfer funds from which account and transfer funds to which account and inputs the
amount he/she/it wants to transfer. For transferring funds, both the paying account and
the receiving account are owned by the same user. The user can submit the transfer after
selecting and inputting all information. He/She/It also can cancel the transfer before
submission. Before the application can be submitted, the system checks if the user fills
all needed information. After submitting the transfer, confirmation information is given.
Input:

The user needs to select a paying account and input receiving account number, due date,
bill number and amount. The pay date is displayed as the current date automatically.

Then, press “Pay” button to pay, “Reset” button to reset or "Back™” to cancel.

42

Output:
If all information has been properly selected and filled out, the system will display

acknowledge information to the user. Otherwise, error messages will appear on the
screen and indicates that more information is needed before submission.
C nts:
e When a customer pays bill, the system checks if current balance in the chosen
paying account is larger than the paid amount for the bill.

e When a customer pays bills, the customer must pay them one by one.

R Online Bunking Mucio.oft Int et o don s

i

Figure 12: Pay Bills

43

5.3.5 Check Balance

Eile Name; CheckBalance/CheckBalance.asp

Function;

Current customers use it to check the current balances of all accounts and generate an
account summary.

Description;

This Web page can give a list of available balances for all accounts owned by the user as
shown in Figure 13.

Input;

No input is needed.

Qutput:

The system displays Figure 13.

) Ontine Bankirg Moo ol bt

1o
L
SN

%

Figure 13: Check Balance

5.3.6 Transaction History

File Name: TranHistory/TranHistory.asp.

Function:

Current customers use it to view transactions for all their accounts for a last period.
Description:

This Web page can give a list of transactions after the user selects an account from a list
box of accounts and a statement period, if there is any transaction in the period for the
selected account. Otherwise, a message prompts the user that there is no transaction for

the period for this account.

45

Input:

The user press “Submit” button after selecting an account from a list box and a statement
period. Before submission, the user can cancel his request by pressing “Cancel” button.
Output:

A list of transactions appears as shown in the Figure 14, including date, description, from,
to, amount, if there is any transaction in the period for the selected account. Otherwise,
there is a prompt to indicate that there is no transaction for the given account in the

selected period.

Onlme Banking MacioLoft Teve et by dones

Figure 14: Transaction History

46

5.3.7 Change Address

File Name; ChangeAddr/Change Addr.asp.

Function:

Current customers change their addresses and phone numbers.

Description:

This Web page gives the user to modify his/her/its address and phone number. When the
current customers press "Change Address” at the main menu, his/her/its personal
information has been displayed in this page as shown in the Figure 15. Based on the
login information (User ID and password), the system automatically searches the
personal information from the table Customers the given customer. After the user
modified the address and phone number, he/she/it presses “Modify” button to change the
old address and phone number. Other personal information, including SIN, name, gender
and date of birth, is also displayed on this page, but can not be changed. He/She/It also
can cancel his/her/its modification before submission by click on "Back". After
submitting the modification, confirmation information is provided.

Input;

The user needs to input information to be modified, either address or phone number or
both. After input all the information, the user submits by clicking on “Modify” button.
Outpyt:

Confirmation information will be given. Otherwise, an error message will appear on the

screen and indicates that more information is needed before modification.

47

)()nl e Bonking Mare Gt Lo et g b

5554

Figure 15: Change Address

5.3.8 Change Password

File Names; PassWord/Password.htm, Password.asp, Response.asp and Response2.asp.
Function:

Current customers change their passwords.

This Web page provides the user to change his/her/its password. The user inputs the
current password and a new password. The new password needs to be re-entered for
confirmation. After the user modified the password, he/she/it presses “Change” button

to finish the change. He/She/It also can reset the modification by clicking on "Clear”

48

button and cancel the modification before submission by click on "Back”. After
submitting the modification, confirmation information is provided.

Input;

The user needs to input information to be modified, including current password and new
password. After input all the information, the user submits by clicking on “Change”
button.

Qutput;

Confirmation information will be given. Otherwise, an error message will appear on the

screen and indicates that more information is needed before modification.

Line Banbirg Mo oft et oo

Figure 16: Change Password

49

5.3.9 Log out
File Name: OraScottPro/Default.asp.

Function:

The current customer uses it to log out and go back to home page of the online banking
system.

D iption:

When the current customers finished all options they wanted to use, they use "Log Out"
to close their files. After they press “Log Out”, the system will close the user’s account
information and go back to home page described in Figure 9.

Input;

No input is needed.

Output:

Home page Figure 9 appears.
5.3.10 Open Account for New Customers

File Name: OpenAccount/OpenAccountNew.asp.

Function;

A potential customer uses it to open an account.

D iption:

This Web page gives two forms to be filled out by the user as shown in Figure 17,

including personal information and account information. The user can submit the forms

50

after filling. During filling the forms, the user can reset the forms. He/She/It also can
cancel the application before submission. Before the application can be submitted, the
online banking must check if the user has filled all necessary information. After
submitting the application, confirmation information will be shown to the user.

Input:

The user fills two forms and submits it by clicking on “Submit” button. For some
information, the user can use the mouse to select one from the list boxes, (such as
including day and month of date of birth (DOB), gender and account type. Before
submitting the application, a customer can modify, reset for refilling, and cancel it.
Output:

If all information has been properly filled out, the system will display acknowledge
information to the user. Otherwise, error messages will appear on the screen and indicate
that more information is needed before submission.

Constraints:

e When a new customer opens an account, the system checks if the re-entered
password is the same as the password. If yes, the re-entered password is stored;
otherwise, the system requires the customer to input password and re-entered
password again.

e When a new customer opens an account, he/she/it is required to choose a User ID
for later login. After the customer chooses the User ID, the system checks if there
exists the same User ID in the table Customers. Thus, each User ID uniquely

corresponds to one customer to increase security.

51

Fhep 77127 00 1/00a% 00 0 o tAC e anty U A untMew a o Mo 1o ot b et Boagrdos
T .

Figure 17: Open an Account for New Customers

5.4 Install procedure for financial institutions

5.4.1 Create ODBC System Data Source

ODBC Data Source Name: OraScottDSN.

Creation Procedure:
1. On the desktop, double click My Computer.
2. Double click Control Panel.

3. Doubile click ODBC.

52

4. In ODBC Data Source Administrator window, select System DSN and then click
Add 10 create a System Date Source.

5. In Create New Data Source window, select the driver Microsoft ODBC for
Oracle to set up a data source, and then click Finish.

6. After 5, in Microsoft ODBC for Oracle Setup window, input Data Source Name
as O DSN and then click OK.

7. Exit ODBC Data Source Administrator window to go back to desktop.

5.4.2 Run start file bank.sql under Oracle SQL*PLUS
environment

Reference to Appendix C for the file bank.sql. Run the start file bank.sql to set up
database by creating tables and views. The user name and password to enter Oracle
SQL*PLUS is scott and tiger, respectively. Execute the command under Oracle
SQL*PLUS environment:

SQL>start bank.sql

543 Copy all files for the online banking system under the home
directory of the Web server

In order to copy all files for the online banking system under the home directory of the
Web server, we need two steps:
1. Create a sub-directory for the online banking system under the home directory of

the web server. Under Windows 95/98 environment, the web server is Personal

53

Web Server (PWS). Under Windows NT 4.0, the web server is Internet
Information Server (IIS). For example, under Windows 95/98, the home directory
is C:\Inetpub\wwwroot. Create the sub-directory QraScottPro under the
directory wwwroot.

. Copy OraScottPro.zip to the directory QraScottPro. This .zip file includes all

the files for the online banking system. Then, unzip OraScottPro.zip to the

directory OraScottPro.

54

Chapter 6

6 Conclusion

We have designed and implemented an on-line banking web application, which is
database-driven web-based client/server system. This report documented in details the
technology and software used in the system, system requirements and analysis, system
design and implementations. User manual and source codes were also provided. The
system has been designed to exploit advanced software and modern technology,
including the use of standard browsers, Visual InterDev, JavaScript, VBScript, web
technology and secure database techniques, which enabled the robustness and security.
The whole system functioned well and performed all the designed tasks of banking
activities during the demonstration. Further extension and upgrade are possible, which
may make the system offer the full range of home banking activities through Internet,
including reordering checks and stopping payments, loan service and credit card service,
etc.

The Internet explosion and the possibility of direct digital interaction with large
numbers of home consumers presents tremendous opportunity and challenges to most
financial institutions to serve the bank's convenience-driven markets for banking services
and to reduce the business costs. With the speed with which the Internet is so widely
accepted, on-line banking will be a driving force for bank's business. It gives the user the
opportunity to bank at home, at the office, or anywhere from a computer. As we

approached the 21st century, on-line banking is getting more popular everyday.

55

There are two major developments regarding the Internet that will have a major
impact on the future of online banking services. The first is high speed, broadband
access, and the second is the subsequent convergence of the personal computer and
television set. Finally, wireless cable and digital satellite delivery complement these new
media which will revolutionize online services. The bottom line of high speed, broad
bandwidth delivery is that the banks now have full multimedia capabilities providing for
video, telephony, and sound on the web sites, and the convergence of computers and
television presents another major opportunity in the online delivery of financial services.

Home banking is truly the ultimate in convenience for the consumers.

56

Bibliography

[1] Thomas A. Powell, HTML: The Complete Reference, McGraw-Hill, 1999.

[2] Steven Holzner, JavaScript Complete, McGraw-Hill, 1998.

[3] George Koch and Kevin Loney, Oracle 8: The Complete Reference, McGraw-Hill,
1997.

(4] Alex Homer, Dave Sussman and Brian Francis, Professional Active Server Pages 3.0,
Wrox press, 1999.

[5] Vivian Neou, HTML 3.2 CD with JavaScript for Windows95, Prentice Hall PTR,
1997.

[6] Murray, William H., JavaScript and HTML 4.0 User's Resource, Upper Saddle River,
1999.

[7] Jan L. Harrington, SQL Clearly Explained, AP Professional, 1998.

[8] Don Benage, Using Microsoft Visual Studio, Que Corporation, 1998.

[9] Gary Comell, Learn Microsoft Visual Basic scripting edition now, Microsoft Press.
1998.

[10] Eric Ladd, Using HTML 4.0, Java 1.1, and JavaScript 1.2, Que Corporation, 1998.

[11] William G. Page, Using Oracle 8, Que Corporation, 1998.

[12] J. Cranford Teague, DHTML for the World Wide Web, Peachpit Press, 1998.

57

Appendix A User Manual

To start the online banking, a user can access the following web site by Microsoft
Internet Explorer browser version 4.0 or higher:

http://Web Server IP Address/OraScottPro/Default.asp, here Web Server IP Address is
dynamic depending on a specific financial institution's Web Server IP Address.

After visiting the above web site, customers can use the online banking services as

follows:

1. For the current customers, they need to input their User IDs and Passwords to
login.

2. For the new customers, they do not have User IDs and Passwords before they
open their first accounts on the online banking. They can click Open an Account
on the home page to open an account.

3. For the current customers, after login, they can access their accounts. They can:

< open accounts by clicking on "Open Account"”;

<+ pay bills or transfer funds by clicking on "Pay Bill";

< check balances and get account summary by clicking on "Check Balance”;

< view transactions happened in the past statement period by clicking on
"Transaction History";

¢ change addresses and phone numbers by clicking on "Change Address™;

¢ change passwords by clicking on "Change Password";

¢ go back to home page by clicking on "Log Out".

58

Appendix B SQL Start File

This appendix lists the SQL start file for the online banking system. The start file
bank.sql is used for quick and simple reporting on all of the tables and views in the
database. Its purpose is to illustrate all column definitions for each table and view in the
database, including attribute name, type, size, etc. Before creating tables and views, we
drop them first and then create new ones each time when the system is setup. The start
file also includes some initial data in each table for illustration purpose.
Start file name: bank.sql;
Contents are listed as follows:

rem file name: bank.sql

drop table Payment;

drop table CustAcct;

drop table AccountType;

drop table Customers;

J*

rem ¥¥k¥k*kx*k ghla CUS[OITIC['S 3l sk sk e dke e e 2k ke e ok e ke ke ke

*/

create table Customers (

CustSIN number(9),

CustName varchar2(24),

CustGender char(4),

CustBirthDate date,

CustAddr varchar2(60),

59

CustPhone varchar2(12),
UserID varchar2(12),
CustPasswd varchar2(12),

primary key (CustSIN));

insert into Customers values

(100000001, 'Jone Smith’, 'M', To_date('12-May-1946’, ' DD-MON-YYYY"),
'123 High Steet West', '514-3443981",'Jones','er2");

insert into Customers values

(100000002, 'Bart Sarjeant','M', To_date('22-May-1966', DD-MON-YYYY"),
'345 Guy Steet West', '514-3556982', 'bsar’,'pe94");

insert into Customers values

(100000003, 'Elbert Talbot', 'M’, To_date('12-Aug-1966', DD-MON-YYYY",
2432 Young Steet East', '416-5674211", 'djke3','dfe6");

insert into Customers values

(100000004, Print Canada’, 'AN", To_date('12-Aug-1966', DD-MON-YYYY"),
321 Young Steet West', '416-5674211', 'sprint’,'dkr’);

insert into Customers values

(100000005, Bill Canada', 'AN’, To_date('12-Aug-1966', DD-MON-YYYY"),
'321 Gay West', '514-3344211', 'ball','de34");

insert into Customers values

(100000006, Hydro Quebec’, ‘AN', To_date('12-Aug-1966', DD-MON-YYYY",

'321 St. Catherin’, '514-5674211', 'Hydro','’kd4");

/%
rem ****xkkrk tahle AccountType ***++sistskbskkiss
*/

create table AccountType(

AcctType varchar2(16),

AccDesp varchar2(50),

InterestRate number(4,2),

primary key (AcctType));

insert into AccountType values

("Checking’, ‘Checking is a transacton account.’, 0.12);
insert into AccountType values

(‘Savings', 'Savings is for accumulating savings.', 2.15);
insert into AccountType values

('GIC', 'GIC is Guaranteed Investment Certificates.’, 4.11);
insert into AccountType values

(‘Students', 'Students account is for students.', 0.15);
insert into AccountType values

(‘Deposit’, Deposit makes money grow.’, 2.10);

insert into AccountType values

('Investment’, Investment is for the maximum return.', 4.19);

61

/*
rem *k%dkkkkki table CUS(ACC{ e 2k ok 2 3fe e e ke 3k e Ak 3k e e A e e
*/

create table CustAcct(

CustAcctNo number(10),

CustSIN number(9),

AcctType varchar2(16),

OpenDate date,

Balance number(10,2),

primary key (CustAcctNo),

foreign key (CustSIN) references Customers,

foreign key (AcctType) references AccountType);

insert into CustAcct values

(100001, 100000001, 'Checking', To_date('02-May-1950', 'DD-MON-YYYY"),
3200.32);

insert into CustAcct values

(100002, 100000002, 'Checking', To_date('24-Sep-1990', 'DD-MON-
YYYY"),4567.83);

insert into CustAcct values

(100003, 100000004, ‘Savings', To_date('16-Aug-1949', 'DD-MON-
YYYY"),100.00);

insert into CustAcct values

62

(100004, 100000005, 'Savings’, To_date('09-Dec-1951", ‘DD-MON-
YYYY",200.00);

insert into CustAcct values

(100005, 100000006, 'Savings’, To_date('17-Jun-1961", 'DD-MON-

YYYY?",300.00);

J*
rem **kkkkkrks (aple Payment **+EEEkrkkkkkkkkkk

*/

create table Payment(

BillNo varchar2(10),

PayingAcctNo number(10),

Receiving AcctNo number(10),

PayDate date,

DueDate date,

Paid Amount number(10,2),

primary key (PayingAcctNo, ReceivingAcctNo, PayDate),

foreign key (Paying AcctNo) references CustAcct(CustAcctNo),
foreign key (Receiving AcctNo) references CustAcct(CustAcctNo),

check (PayingAcctNo < Receiving AcctNo));

insert into Payment values

63

(10234, 100001, 100003, To_date('12-May-1999",
To_date('12-May-1999', DD-MON-YYYY"),150.65);
insert into Payment values

(13434, 100001, 100004, To_date('16-Dec-1999",
To_date('18-Dec-1999', DD-MON-YYYY"),250.85);
insert into Payment values

(13224, 100002, 100005, To_date('16-Dec-1999',

To_date('18-Dec-1999', DD-MON-YYYY"),350.85);

/*

rem View from here======

*/

/*

rem e e 3¢ e 3k 3 ok A dks e de e SonedAcc[Type***t************
*/

create or replace view SortedAcctType as

select AcctType from AccountType group by AcctType;

select * from SortedAcctType;

‘DD-MON-YYYY),

DD-MON-YYYY"),

DD-MON-YYYY?),

Appendix C Source Code

Some selected source code for the application is presented in this part.

File Name: Default.asp

<html>
<head>
<script language="JavaScript">
function TodayDate() {
now = new Date();
monthString = new Object();
monthString[0]="January";
monthString[1]="February";
monthString[2]}="March";
monthString[3]="April";
monthString[4]="May";
monthString{5]="June";
monthString[6]="July";
monthString[7]="August";
monthString[8]="September";
monthString[9]="October";
monthString[10]="November";
monthString[11]="December";
document. writeln(monthString[now.getMonth()] + " " + now.getDate() + ", " +
now.getYear())
}
</script>
<link rel="stylesheet" type="text/javascript" href="OnLineBank.js">
<link rel="stylesheet" type="text/css" href="OnLineBank.css">
</head>

<body>
<center>

65

</center>
<p align="center">
<form action="MainMenuHome.asp" method="post" id="form1" name="form1">
<div align="center">
<table border="0" cellPadding="1" cellSpacing="5" width="55%">
<tr><td align="right">
<font FACE="Verdana, Arial, Helvetica" SIZE="3"
color="crimson">New Customer?
</td>
<td>
<font FACE="Verdana, Arial, Helvetica" SIZE="3"

color="mediumblue"><U>Open an Account

</U>
</td>
</tr>
<tr><td> </td></tr>
<tr>

<td align="right">

Customer Login:
</td>
</tr>
<tr>
<td align="right">

User ID:</td>
<td>
<input id="text1" name="Username"></td></tr>
<tr>

66

<td align="right"><font FACE="Verdana, Arial, Helvetica" SIZE="2"
color="mediumblue"> Password: </td>
<td> <input id="password1" name="password" type="password"></td></tr>

</table>
</div>
<div align="center">

<table border="0" cellPadding="1" cellSpacing="1" height="36" style="HEIGHT:
36px; WIDTH: 190px" width="29.5%">
<>
<td><input id="submit1" name="submitl" style="HEIGHT: 28px;
WIDTH: 75px" type="submit" value="Login"></td>
<td><input id="reset1" name="reset1" style="HEIGHT: 28px;
WIDTH: 75px" type="reset" value="Clear"></td>
</tr>

</table>
</div>
</form>
<center>
<script language="JavaScript">

TodayDate();

</script>

</center>
<center>
 </center>
</body>
</html>

67

File Name: MainMenuHome.asp

<%
"validate the input data
UserID = Trim(Request.Form("Username"))

Passwd = Trim(Request.Form("password"))

If UserID=""" or Passwd=""" then
str = server.URLEncode("'Please input your User ID and Password.")
Response.Redirect(""Response.asp?message=" & str)

End if

Set connection = server.CreateObject("ADODB.connection")

connection.Open "OraScottDSN","scott","tiger"

3

sql
sql="SELECT * " & _
"FROM Customers " & _
"WHERE UserID = “&UserID&'" and " & _
"CustPasswd =""&Passwd&" "'

Set recordset = connection.Execute(sql)

"check if the input sid exists

if recordset.EOF then
str = server.URLEncode("Your User ID or/and Password are incorrect! Try it

again.")
Response.Redirect(''Response.asp?message="' & str)

end if

Session(""UserID'") = recordset("UserID"")

68

Session(""Passwd'") = recordset(""CustPasswd")

Y%0>

<HTMIL>
<HEAD>
<TITLE> OnLine Banking </TITLE>
</HEAD>
<FRAMESET COLS="136,*"" BORDER="0" FRAMESPACING="0"
FRAMEBORDER="0">
<FRAME SRC="FrameLeft.htm" NAME="LeftFrame" NORESIZE
SCROLLING="no" MARGINWIDTH="0" MARGINHEIGHT="0">
<FRAME SRC="MainMenu.asp" NAME="MainFrame" NORESIZE
SCROLLING="auto" MARGINWIDTH="0">
</FRAMESET>
</HTML>

File Name: FrameL eft.htm

<htmli>

<head>

<title> OnLine Banking </title>

<meta NAME="generator" CONTENT="OnLine Banking'>

<script language=">JavaScript'>
function TodayDate() {

now = new Date();

monthString = new Object();
monthString[0]="January";
monthString[|]="February'";

69

monthString[2]="March;
monthString[3]="April";

monthString[4]="May";

monthString[5]="June";

monthString[6]="July";

monthString[7]="August";
monthString[8]="September";
monthString[9]="October";

monthString[10]="November";

monthString[| 1]="December";
document.writeln(monthString{now.getMonth()] + " "' + now.getDate() + ", " +

now.getYear())

b

var sid="mundania';

function dynamic_image_on(imgName) {
if (version == "3") {
Activelmage = eval(imgName + "_active.src");

document [imgName].src = Activelmage;

y

function dynamic_image_off(imgName) {
if (version == "3") {
DefaultImage = eval(imgName + "_default.src");

document [imgName].src = DefaultImage;

}
s

while(sid!="mundania'"){};

70

whichbrowser = navigator.appName; //identify browser

Ver = parselnt(navigator.app Version);

if (whichbrowser == "Netscape' && Ver >= 3 [I whichbrowser == "Microsoft
Internet Explorer' && Ver > 3) version = ''3";

else version = '"2'";

if (version == "3") {// if 3.0, load images

//image to show when not highlighted

img_1_default = new Image();
img__I _default.src = "ImagessfHOME.gif";
img_2_default = new Image();
img_2_default.src = "images/OPEN.gif"";
img_3_default = new Image();
img_3_default.src = "images/Pay.gif"";
img_4_default = new Image();
img_4_default.src = "images/Check.gif™;
img_5_default = new Image();
img_5_default.src = "images/Tran|.gif";
img_6_default = new Image();
img_6_default.src = "images/Addr.gif™;
img_7_default = new Image();
img_7_default.src = "images/Pass.gif";
img_8_default = new Image();

img_8_default.src = "images/ChanUser.gif";
//image to show when highlighted
img_1_active = new Image();

img_| _active.src = "images/HomeON.gif™;

img_2_active = new Image();

71

img_2_active.src = "images/OpenOn.gif",
img_3_active = new Image();
img_3_active.src = "images/PayOn.gif';
img_4_active = new Image();
img_4_active.src = "images/CheckOn.gif™,
img_5_active = new Image();
img_5_active.src = "images/TranOn.gif"";
img_6_active = new Image();
img_6_active.src = "images/AddrOn.gif™;
img_7_active = new Image();
img_7_active.src = "images/PassOn.gif"";
img_8_active = new Image();

img_8_active.src = "images/ChanUserOn.gif";

}
/! done hiding-->

function mouseHover(state)

{
var row = window.event.srcElement;
var colorChange = ((state == "over') ? "#ffffo0" : """;
row.style.backgroundColor = 'red";

b

</script>

<script language="javascript" RUNAT="Server'>

/786 % 30 3k e s o ook s e e e e e s 3 e o ok Sk e e o ok o ok o ofe e ok o o 3 ok ok ol A ok ok ok e sk e ok ke ok ok ke ok sk ok

* mouseOver()

***/

72

/* mouseOver is called when the mouse move over the catalog
table. The row that the mouse is over gets highlighted.
*/

function mouseOver() {

var element = window.event.srcElement;

while (element.tagName !=""TR'")

element = element.parentElement;

element.style.backgroundColor = "yellow";

[3 sk sk ke s s ok sk sk K e 3 3k sk ok sk e e e ok o ke ke 16 ke e ke St sk e i oK ok e e Ak ok ok sk ok e o 3k ok ok ok ok ok Kk ke

* mouseQOut()

***/

/* mouseOver is called when the mouse move off a row in the catalog
table. The hilighted row retured to normal.

*/

function mouseOut() {

var element = window.event.srcElement;

while (element.tagName !="TR")

element = element.parentElement;

element.style.backgroundColor = "white";}
</script>
<link rel="stylesheet" type="text/css" href="FrameLeft.css'>
</head>
<body>

73

<center>

</center>

<table ALIGN="left" BORDER="0" WIDTH="50%" cellspacing="0" cellpadding="0">

<tr><td height=45 align="center" bgcolor="lightgreen"><font size=5
color="darkred"> Services

</td>
</tr>

<tr><td><a href="./OraScottPro/MainMenu.asp"
onmouseout="dynamic_image_off(img_1)"
onmouseover="dynamic_image_on(img_1)" target="MainFrame'>

<img alt="Home" border="0"" name="img_1" src="images/HOME.gif"
WIDTH="137" HEIGHT="32">

</td></tr>

<tr><td><a href="../OraScottPro/OpenAccount/OpenAccount.asp"
onmouseout="dynamic_image_off(img_2")"
onmouseover="dynamic_image_on(img_2)" target="MainFrame'>

<img alt="Open Account" border="0" name="img_2" src="images/OPEN.gif"
WIDTH="137" HEIGHT="32">

</td></tr>
<tr><td><a href="../OraScottPro/PayBill/PayBill.asp"
onmouseout="dynamic_image_off(img_3")"
onmouseover="dynamic_image_on(img_3)" target="MainFrame'>

<img alt="Pay Bill" border="0" name="img_3" src="images/Pay.gif"
WIDTH="137" HEIGHT="32">

</td></tr>

74

<tr><td><a href<"../OraScottPro/CheckBalance/CheckBalance.asp"
onmouseout="dynamic_image_off(img_4)"
onmouseover="dynamic_image_on(img_4)" target=""MainFrame'>

<img alt="Check balance" border="0" name="img_4" src="images/Check.gif"
WIDTH="137" HEIGHT="32">

</td></tr>
<tr><td><a href="../OraScottPro/TranHistory/TranHistory.asp"
onmouseout="dynamic_image_off(img_5)"
onmouseover="dynamic_image_on(img_5"" target="MainFrame'>

<img alt="Transaction History" border="0" name="img_5"
src="images/Tranl.gif" WIDTH="137" HEIGHT="32">

</td></tr>
<tr><td><a href="../OraScottPro/ChangeAddr/Change Addr.asp"
onmouseout="dynamic_image_off(img_6""
onmouseover="dynamic_image_on(img_6)" target="MainFrame'>

<img alt="Change Address" border="0" name="img_6" src="images/Addr.gif"
WIDTH="137" HEIGHT="32">

</td></tr>
<tr><td><a hret="../OraScottPro/PassW ord/Password.htm"
onmouseout="dynamic_image_off(img_7")"
onmouseover="dynamic_image_on(img_7")" target="MainFrame'>

<img alt="Change Password" border="0" name="img_7" src="images/Pass.gif"
WIDTH="137" HEIGHT="32">

</td></tr>
<tr><td><a href="../OraScottPro/Default.asp"
onmouseout="dynamic_image_off(img_8""
onmouseover="dynamic_image_on(img_8"" target="_top'">

<img alt="Log Out" border="0" name="img_8" src="images/ChanUser.gif"
WIDTH="137" HEIGHT="32">

</td></tr>

75

<tr><td height=35 align="center" bgcolor="lightgreen"><font size=3
color="darkred">
<script language="JavaScript'>
TodayDate();
</script>
</td></tr>
</table>
</body>
</html>

File Name: MainMenu.asp

<htmi>

<head>

<title>OnLine banking</title>

<link rel="stylesheet" type="text/css' href=""OnLineBank.css">
</head>

<body>

<center>

<%Set ad = Server.CreateObject("MSWC.AdRotator")%>
<%= ad.GetAdvertisement(''RandomAd.txt") %>

Refresh AD

</center>

<center>

</center>

76

<p align="center"><font FACE="Verdana, Arial, Helvetica" SIZE="4"
color="mediumblue">
Select One Service:

</p>

<p align=""center">
<table align="center" WIDTH="75%" BORDER="0" CELLSPACING="1"
CELLPADDING="5">
<tr>
<td><a href<"./OraScottPro/MainMenu.asp" target="MainFrame'>
<img SRC="images/H_Home.gif" border="0" WIDTH="45"
HEIGHT="44"></td>
<td><a href="./OraScottPro/MainMenu.asp"
target=""MainFrame''>Home

Go back main
menu
</td>
<td><a href="../OraScottPro/OpenAccount/OpenAccount.asp"
target="MainFrame'>
<img SRC="images/H_furniture.gif" border="0" WIDTH="45"
HEIGHT="44"></td>
<td><a href="../OraScottPro/OpenAccount/OpenAccount.asp"
target=""MainFrame'>Open Account

Open a new account for the customer
</td>
</tr>

<tr>
<td>

77

<img SRC="images/H_hardware.gif" border="0"" WIDTH="45"
HEIGHT="44"></td>
<td>
Pay Bill

Pay bill using your
own accounts</td>
<td><a href="./OraScottPro/Check Balance/CheckBalance.asp"
target=""MainFrame">
<img SRC="images/H_motion.gif" border="0" WIDTH="45"
HEIGHT="44"></td>
<td><a href="../OraScottPro/CheckBalance/CheckBalance.asp"
target=""MainFrame'> Check Balance

Check all your accounts balance, account types and
numbers</td>
</tr>
<tr>
<td><a href="../OraScottPro/TranHistory/TranHistory.asp"
target="MainFrame'>
<img SRC="images/H_textbooks.gif" border="0" WIDTH="45"
HEIGHT="44"></td>
<td><a href="../OraScottPro/TranHistory/TranHistory.asp"
target="MainFrame">Transaction History

Look at your transaction history up to | month
</td>
<td><a href="../OraScottPro/Change Addr/Change Addr.asp"
target="MainFrame'>
<img SRC="images/H_tutors.gif" border="0"" WIDTH="45"
HEIGHT="44"></1d>

78

<td><a href="./OraScottPro/ChangeAddr/ChangeAddr.asp"
target="MainFrame'">Change Address

Change your address, telephone number by yourself
</td></tr>
<tr>
<td><a href="../OraScottPro/PassWord/Password.htm"
target=""MainFrame'>
<img SRC="images/H_vehicles.gif" border="0" WIDTH="45"
HEIGHT="44"> </td>
<td><a href="../OraScottPro/Pass Word/Password.htm"
target="MainFrame'>Change PassWord

Change your login password for security
</td>
<td>
<img SRC="images/H_parties.gif" border="0" WIDTH="45"
HEIGHT="44"></td>
<td>

Log Out

Log out and back to home page
</td>

</tr>

</table>
</p>

</body>
</html>

79

File Name: OpenAccount.asp

<%@ Language=VBScript %>

<% ’ VI 6.0 Scripting Object Model Enabled %>
<!--#include file="../_ScriptLibrary/pm.asp"-->

<% if StartPageProcessing() Then Response.End() %>
<FORM name=thisForm METHOD=post>

<htmlI>

<head>
<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<SCRIPT ID=serverEventHandlersVBS LANGUAGE=vbscript RUNAT=Server>

Sub bntSave_onclick()

UserID =Session(**UserID"")

Passwd =Session('"Passwd'")

Accttype = Trim(IstAcctType.getValue(IstAcctType.selectedIndex))
OpenDate = Trim(txtOpenDate.value)

Balance = Trim(txtBalance.value)

Balan = CDbl(Balance)

Custsin= FindCustsin(UserID, Passwd)

accno=txtAcctNo.value

If Balance ="'"" then
txtMsg.value="The open balance is required."
exit sub

Elseif Balan<50 then

txtMsg.value=""Your minimum deposit is less than $50."

exit sub

80

Elseif CheckAcctType(Custsin, Accttype)<>"" then
txtMsg.value=""You have had "&AcctType&' account, please select another

type.”
exit sub

End if

after checking the balance is not empty and then change it to be Double Precision.
Set connection=Server.CreateObject("ADODB.Connection")

connection.Open "OraScottDSN","scott","tiger"

sqiNewAccount = "INSERT INTO CustAcct (CustAcctNo, CustSIN, AcctType,

OpenDate, Balance) " & _
"VALUES ("&accno&'", "&Custsin&", "&Accttype&', " & _

"To_date("'&OpenDate&'’, MM/DD/YYYY), "&Balan&')"

Set rstOpenAccount=connection.Execute(sqINewAccount)

connection.close
txtMsg.value=""Your new account has been opened successfully."

End Sub

</SCRIPT>
</head>

<script language="VBScript"' RUNAT=Server>

‘get CustSIN of the existing customer from the table Customers.

Function FindCustsin(ByVal userid, passwd)

Set connectionC=Server.CreateObject("ADODB.Connection")
connectionC.Open "OraScottDSN", "Scott", ''Tiger"

81

sql_CSIN="SELECT CustSIN FROM Customers " & _
" WHERE UserID ="&userid&" and " &_
" CustPasswd =""&passwd&'"™

Set recordsetC=connectionC.Execute(sql_CSIN)

FindCustsin=CLng(Trim(recordsetC("CustSIN™)))
connectionC.close

End function

check if this customer has had this kind of account types
function CheckAcctType(Custsin, Accttype)
Set connection=Server.CreateObject(""ADODB.Connection™)

connection.Open "OraScottDSN","scott","tiger"

accttypesql=""select AcctType from CustAcct " & _
"where (CustSIN="&Custsin&" and AcctType=""& Accttype&")"

Set recaccttype=connection.Execute(accttypesql)

if recaccttype.EOF then
CheckAcctType="""
else
CheckAcctType=recaccttype(''AcctType')
end if
connection.close

end function

Function CreateAccNo()
create a CustAccNo
Set connection=Server.CreateObject('""ADODB.Connection')

connection.Open "OraScottDSN","scott","tiger"

82

accnosql="select CustAcctNo from CustAcct where CustAcctNo>=all("&_
“select A.CustAcctNo from CustAcct A)"
Set maxaccno = connection.Execute(accnosql)

CreateAccNo=cIng(trim(maxaccno(""CustAcctNo")))+1

connection.close

End Function

Sub ChangeDate_onclick()
orgdate=Date()
dd=CStr(DatePart("d" orgdate))
mm=CStr(DatePart(''m",orgdate))
yy=CStr(DatePart("yyyy", orgdate))
dd 1 =ClInt(dd)

mm ! =CInt(mm)

ifdd! >0 And dd1 <=9 then
dd="0"+dd

elseif mm! >0 And mm1 <=9 then
mm="0"+mm

end if

chdate=mm-+"/"+dd+'/"+yy

txtOpenDate.value=chdate

End Sub

Sub thisPage_onshow()

Call ChangeDate_onclick()

83

accno=CreateAccNo()
txtAcctNo.value=accno

txtBalance.value="50.00"

End Sub

</script>

<body bgColor=linen>

<center>

</center>

<p>

<table Align="center' width="75%">
<tr><td>Notes:

</td></tr>
<tr><td>1. You can not open the account

types you have had.

</td></tr>
<tr><td>2. The minimum deposit

required to open account is $50.00. <
</td></tr>
</table>

<p align="center">
<table border="1" cellPadding="1" cellSpacing="1" width="75%" bgColor=#eeaOab
borderColor=white borderColorDark=slategray borderColorLight=white>
<TR>
<TD bgColor=wheat>

84

<P align=center><FONT color=mediumslateblue
face="">Account No.</P></TD>
<TD style="WIDTH: 15px" width=15></TD>
<TD bgColor=wheat><P align=center>Account ype</P></TD>

<TD style="WIDTH: 15px" width=15></TD></TR>

<tr><td bgColor=wheat>
<P align=center><FONT color=mediumslateblue
face="">Open <FONT color=mediumslateblue
face="">Date </P>
<td style="WIDTH: 15px" width=15> </td>
<td bgColor=wheat>
<div align="center'><FONT color=mediumslateblue
face="">Open Deposit</div>
<td style="WIDTH: 15px" width=15>
</td></tr>
</table></p>

<p align=center>

Back
</p>

<script language="javascript" RUNAT = "Server'>

[e i e e ke ok st e ke o s ok st ke o ke Sk e e 3k e ke e 3K ok K ok ok o e ok ok s o ok s ok sk o ok ok e ok ok ke ke sk ke ek ok

* mouseOver()

***/

/* mouseQver is called when the mouse move over the catalog

85

table. The row that the mouse is over gets highlighted.
*/

function mouseOver() {

var element = window.event.srcElement;

while (element.tagName !=""TR")

element = element.parentElement;

element.style.backgroundColor = "yellow'",

3% 3% 3 3k sk o o o ok o 3t sk ook e e e o sk ok o ok 3K ok ok o o sk e ok ok ok ok o ok ok sk ok o ke e ok o ok ok o ke ok e o ko

* mouseOut()

e e S LS I T T T

/* mouseQver is called when the mouse move off a row in the catalog
table. The hilighted row retured to normal.

*/

function mouseQut() {

var element = window.event.srcElement;

while (element.tagName != "TR")
element = element.parentElement;

element.style.backgroundColor = "white";

</script>

86

</body>

<% ' VI 6.0 Scripting Object Model Enabled %>
<% EndPageProcessing() %>

</FORM>

</html>

File Name: OgenAccountNew.asp

<%@ Language=VBScript %>

<% ’ V1 6.0 Scripting Object Model Enabled %>
<!--#include file="../_ScriptLibrary/pm.asp"-->

<% if StartPageProcessing() Then Response.End() %>
<FORM name=thisForm METHOD=post>

<htmi>

<head>
<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0'">

<SCRIPT ID=serverEventHandlersVBS LANGUAGE-=vbscript RUNAT=Server>

Sub bntSave_onclick()

Accttype = Trim(IstAcctType.getValue(IstAcctType.selectedIndex))
OpenDate = Trim(txtOpenDate.value)

Bal = Trim(txtBalance.value)

name=Trim(txtName.value)
gender=Trim(IstGender.getValue(IstGender.selectedIndex))
bday=Trim(Istbday.getValue(Istbday.selectedIndex))
bmonth=Trim(Istbmonth.getValue(selectedIndex))

byear=Trim(txtbyear.value)

87

dob=bday&"-""&bmonth&"19"&byear
custsin = Trim(txtCustSIN.value)
address=Trim(txtAddr.value)

phone | =Trim(txtCode.value)
phone2=Trim(txtTelCodel.value)
phone3=Trim(txtTelCode2.value)
phone="("&phonel &'")"&phone2&phone3
useID=Trim(txtUserID.value)
passwd=Trim(txtPasswd.value)
repasswd=Trim(txtRePasswd.value)
accno=txtAcctNo.value

Balan = CDbl(Bal)

[f name = "" then
txtMsg.value='"Your name is required, please input it."
exit sub
Elseif len(byear)<>2 then
txtMsg.value=""Please input your last two-digit year of birth."
exit sub
Elseif len(custsin) <>9 then
txtMsg.value="'Please input your 9-digit SIN."
exit sub
Elseif address ='" then
txtMsg.value=""Your address is required, please input it."
exit sub
Elseif len(phonel) <>3 then
txtMsg.value='"Please input 3-digit area code."
exit sub
Elseif len(phone2) <>3 then

txtMsg.value="Please input first 3 digits of your phone no."

88

exit sub
Elseif len(phone3) <>4 then
txtMsg.value="Please input last 4 digits of your phone no."
exit sub
Elseif uselD = """ then
txtMsg.value="Please select your user ID."
exit sub

Elseif FindUserID(uselD) then
txtMsg.value="This UserID has been chosen by somebody else, please

select another one."

exit sub

Elseif passwd ="'"""then
txtMsg.value=""Your password is required."
exit sub

Elseif repasswd = ‘"' then
txtMsg.value="Please re-enter your password."
exit sub

Elseif passwd<>repasswd then
txtMsg.value=""Two passwords are not same. Please re-enter your

password."

txtPasswd.value="""
txtRePasswd.value=""'
exit sub
Elseif Bal = """ then
txtMsg.value="The open balance is required."
exit sub
Elseif Balan<50 then

txtMsg.value="The minimum deposit to open account is $50."

exit sub
Elseif CheckAcctType(custsin, Accttype)<>'" then

89

txtMsg.value=""You have had "&AcctType&" account, please select another

typc.”
exit sub

End if

after checking the balance is not empty and then change it to be Double Precision.

custsin=CLng(custsin)

Set connection=Server.CreateObject("ADODB.Connection')

connection.Open "OraScottDSN","scott", "tiger"

append a record in the Customers table
custsql= "INSERT INTO Customers(CustSIN, CustName,CustGender, "& _
"CustBirthDate, CustAddr,CustPhone,UserID, CustPasswd) VALUES(" &

custsin & ", & name & """ & _
""'& gender &', To_date(™'& dob &', DD-MON-YYYY"), " & address & " ',

& phone & ', "& _
" "&uselD&'',"'& repasswd &')"

Set newcustrecord = connection.Execute(custsql)

'Add a new record to CustAcct
sqlNewAccount = "INSERT INTO CustAcct (CustAcctNo, CustSIN, AcctType,

OpenDate, Balance) " & _
"VALUES ("&accno&", "&custsin&", “'&Accttype&', " & _
"To_date("'&OpenDate&'”, MM/DD/YYYY), "&Balan&')"

Set rstOpenAccount=connection.Execute(sq!NewAccount)

connection.close
txtMsg.value="Your new account has been opened successfully."

End Sub

</SCRIPT>
</head>

<script language=""VBScript" RUNAT=Server>

‘Check if userid chosen by the new customer has already been selected by searching
the table customers.

Function FindUserID(ByVal userid)

Set connectionC=Server.CreateObject("'ADODB.Connection")
connectionC.Open "OraScottDSN", "Scott", "Tiger"
sql_UserID="SELECT UserID FROM Customers " & _

" WHERE UserID = "&userid&"™

Set recordsetC=connectionC.Execute(sql_UserID)
if not recordsetC.EOF then

FindUserID=TRUE
else

FindUserID=FALSE
end if

connectionC.close

End function

check if this customer has had this kind of account types

function CheckAcctType(Custsin, Accttype)

91

Set connection=Server.CreateObject("ADODB.Connection")

connection.Open "OraScottDSN","'scott","tiger"'

accttypesql="select AcctType from CustAcct " & _
"'where (CustSIN="&Custsin&" and AcctType=""&Accttype&')"

Set recaccttype=connection.Execute(accttypesql)

if recaccttype.EOF then
CheckAcctType=""
else
CheckAcctType=recaccttype("AcctType')
end if

connection.close

cnd function

Function CreateAccNo()

create a CustAccNo
Set connection=Server.CreateObject("ADODB.Connection')

connection.Open "OraScottDSN","scott", "tiger"'

accnosql="select CustAcctNo from CustAcct where CustAcctNo>=all("&_
"select A.CustAcctNo from CustAcct A)"
Set maxaccno = connection.Execute(accnosql)

CreateAccNo=clng(trim(maxaccno("CustAcctNo")))+1

connection.close

92

End Function

Sub ChangeDate()

orgdate=Date()
dd=CStr(DatePart("d",orgdate))
mm=CStr(DatePart("'m",orgdate))
yy=CStr(DatePart("yyyy", orgdate))
dd 1=ClInt(dd)

mm | =CInt(mm)

ifddl >0 And dd1 <=9 then
dd="0"+dd

elseit mml >0 And mm! <=9 then
mm="0"+mm

end if

chdate=mm+'/"+dd+'"/"+yy

txtOpenDate.value=chdate

End Sub

Sub thisPage_onshow()

Call ChangeDate()

txtAcctNo.value=Create AccNo()

txtBalance.value="50.00"

End Sub

93

</script>

<body bgColor=linen>

<center>

</center>

<TABLE align=center background="" bgColor=blanchedalmond border=1
cellPadding=1 cellSpacing=1 width=85%>
<P align=center>Personal
Information </P>
<TBODY>
<TR>
<TD width=20% bgColor=wheat style="BACKGROUND-COLOR: peachpuff;
COLOR: mediumslateblue'">Name</TD>
<TD width=45% style="BACKGROUND-COLOR: #eea0ad"></TD>
<TD style="BACKGROUND-COLOR: peachpuff'>SIN
<TD style="BACKGROUND-COLOR: #eeaQad'>
<STRONG style="BACKGROUND-COLOR: #eea0ad'">
<TR>
<TD style="BACKGROUND-COLOR: peachpuff"><FONT
color=mediumslateblue face="" style="BACKGROUND-COLOR:
#f5deb3"><STRONG style="BACKGROUND-COLOR: peachpuff"
>Address</TD>
<TD colSpan=3 height=6 style="BACKGROUND-COLOR: #eea0ad; HEIGHT:
6px"></TD></TR>
<TR>
<TD style="BACKGROUND-COLOR: peachpuff"><FONT

94

color=mediumslateblue face='"
style="BACKGROUND-COLOR: #f5deb3"><STRONG
style="BACKGROUND-COLOR: peachpuff™"
>Phone
<TD height=6 style="BACKGROUND-COLOR: #eea0ad; HEIGHT: 6px'>
<TD style="BACKGROUND-COLOR: peachpuff">User ID
<TD style="BACKGROUND-COLOR: #eea0ad'>
<TR>
<TD style="BACKGROUND-COLOR: peachpuff"><FONT
color=mediumslateblue face="" style="BACKGROUND-COLOR:
peachpuff'>Password</TD>
<TD height=6 style="BACKGROUND-COLOR: #eea0ad; HEIGHT: 6px'>
</TD>
<TD style="BACKGROUND-COLOR: peachpuff><FONT size=2
style="BACKGROUND-COLOR: peachpuff">Re-enter
Password
<TD style="BACKGROUND-COLOR: #eea0ad'>
</TD>
</TR><TBODY></TABLE>

<P align=center style="BACKGROUND-COLOR: linen"> <FONT color=maroon
face=Arial size=3

style="BACKGROUND-COLOR: #ffdab9"><STRONG style="BACKGROUND-
COLOR: linen">Account Information

<P align=center style="BACKGROUND-COLOR: linen'">

<table align="center" border="1" cellPadding="1" cellSpacing="1" width="70%"
bgColor=feealab borderColor=white borderColorDark=slategray
borderColorLight=white>

95

<TR>
<TD bgColor=wheat width=30%
style="BACKGROUND-COLOR: peachpuff™>
<P align=center><FONT color=mediumslateblue
face=""> Account Type</P></TD>
<td width=30%> </td>
<td bgColor=wheat style="BACKGROUND-COLOR: peachpuff'>
<div align="center''><FONT color=mediumslateblue
face="">Open
Deposit</div>
<td style="WIDTH: |5px" width=15></td>
</tr></table></P>

<INPUT name=reset style="HEIGHT: 25px; WIDTH: 60px" type=reset value=Reset>

</center>

<p align=center>Back
</p>

<script language="javascript" RUNAT = "Server'>

[3% sk st s o ke ok st s o e ok sk ok sk o s ok 3K e ok B o ok o o s e s ok e e sk ok e s ke e e o e sk ok sk o o 6 e ok sk ok

* mouseOver()

ook oo Rk R o o SRR KR R R Sk ks R R Rk R Ak K

/* mouseOver is called when the mouse move over the catalog
table. The row that the mouse is over gets highlighted.
*/

function mouseOver() {

96

var element = window.event.srcElement;

while (element.tagName != "TR")

element = element.parentElement;

element.style.backgroundColor = "yellow";

/3% ok st o i e sk e ok ske o sk s sk e i ok ok o o sk ok e e ook ok s ok ok o e sk ke ok e e ok ke ke ok ke ook ok ek ke ok ke sk ok

* mouseOut()

***/

/* mouseOver is called when the mouse move off a row in the catalog
table. The hilighted row retured to normal.

*/

function mouseQOut() {

var element = window.event.srcElement;

while (element.tagName !'="TR')

element = element.parentElement;

element.style.backgroundColor = "white";

</script>

<% ' V1 6.0 Scripting Object Model Enabled %>
<% EndPageProcessing() %>

</FORM>

</htm!>

97

File Name:PayBill.asp

<%@ Language=VBScript%>

<% ' V1 6.0 Scripting Object Mode!l Enabled %>
<!--#include file="../_ScriptLibrary/pm.asp'-->

<% if StartPageProcessing() Then Response.End() %>
<FORM name=thisForm METHOD=post>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML//EN">
<HTML>

<HEAD>

<META content="text/html; charset=unicode" http-equiv=Content-Type>

<%
Sub bntPay_onclick()

Accts = Trim(IstAccts.getValue(lstAccts.selectedIndex))
ReAcct = Trim(txtReAcctNo.value)
BillNo=Trim(txtBilINo.value)

PayDate = Trim(txtPayDate.value)

DueDate = Trim(txtDueDate.value)

Amount=Trim(txtAmount.value)

"validate the input data

If ReAcct =""then

txtMsg.value="The receiving account number is required."
exit sub

Elseif Amount ='"" then
txtMsg.value=""Amount is required, please input it."

exit sub

98

End if

after checking the balance is not empty and then change it to be Double Precision.

Amt = CDbl(Amount)
ReAcctNo=CLng(ReAcct)

Set conne=Server.CreateObject(""ADODB.Connection'?)

conne.Open "OraScottDSN","scott", "tiger"
look up custacctno corresponding to accts
sqlcustacctno=""select custacctno from custacct A, customers C " & _
" where (UserID =""&Session(*UserID"& " and "' &__
" CustPasswd ="&Session('"Passwd')&""'&_
" and C.CustSIN=A.CustSIN and AcctType=""&Accts&'")"
Set rstacctno= conne.Execute(sqlcustacctno)

acctno=CLng(trim(rstacctno("'custacctno')))

check if balance is enough for PaidAmount in table CustAcct
checkbalancesql="select balance from custacct "' & _

"where custacctno=""&acctno&""

Set rstcheckbai=conne.Execute(checkbalancesql)

bal=CDbl(Trim(rstcheckbal(''balance')))

If bal<cAmt Then

txtMsg.value=""Your balance is "&bal&", not enough for "&Amt&"."

Exit Sub

99

Else

append a record in the Payment table
paysql= "INSERT INTO Payment(BilINo,PayingAcctNo,

ReceivingAcctNo, " & _
"PayDate, DueDate, PaidAmount) VALUES("&BillNo&'"’, "&acctno&","

& _

"'& ReAcctNo &", To_date(™'& PayDate &', MM/DD/YYYY")," &_

“To_date("&DueDate&'", MM/DD/YYYY), "&Amt&')"

Set paybillrecord = conne.Execute(paysql)

update paying account balance

updpayingbal="UPDATE CustAcct Set Balance=Balance-"& Amt&" "
&_

"Where CustAcctNo="" & acctno & "

Set rstupdpaybal=conne.Execute(updpayingbal)

update receiving account balance

updreceivingbal= "UPDATE CustAcct Set Balance=Balance+"& Amt&""
&

"Where CustAcctNo="& ReAcctNo &'

Set rstupdrebal=conne.Execute(updreceivingbal)

txtMsg.value="paid successfully"
End if

conne.close

100

End Sub

Sub ChangeDate()

orgdate=Date()
dd=CStr(DatePart(''d",orgdate))
mm=CStr(DatePart("'m",orgdate))
yy=CStr(DatePart("yyyy", orgdate))
dd 1=CInt(dd)

mm I=CInt(mm)

ifddl > 0 And dd1 <=9 then
dd="0"+dd

elseif mm! > 0 And mm1 <=9 then

mm=""0"+mm

end if
chdate=mm+'/"+dd+"/"+yy
txtPayDate.value=chdate
txtDueDate.value=chdate
End Sub
Sub thisPage_onshow()
Call ChangeDate()

End Sub

%>

</head>

101

<BODY bgColor=linen>
<center>

</center>

<p align=center>

<FONT color=navy face=""
size=4>Paying Accounts

</p>

<p>
<TABLE align=center border=1 cellPadding=1 cellSpacing=1 width=75%
bgColor=#a0d1f8 borderColor=#800000 borderColorDark=#800000
borderColorLight=#808080 style="BACKGROUND-COLOR: #a0d!f8">
<TR>
<TD align=left colSpan=2 style="BACKGROUND-COLOR: peachpuff, TEXT-
ALIGN: [eft; width=50%><P>Receiving
Account
No.
</TD>
<TD colSpan=2 width=50% style="BACKGROUND-COLOR: #eea0ad'>
</TD>
<TR>
<TD style="BACKGROUND-COLOR: peachpuff">Due Date</TD>
<TD style=""BACKGROUND-COLOR: #eea0Oad'>
</TD>
</TR></TABLE>

102

<INPUT id=reset]l name=reset| type=reset value=Reset> :;
</p>
<p align=center>

Back
</p>
</BODY>
<% " VI 6.0 Scripting Object Model Enabled %>
<% EndPageProcessing() %>
</FORM>
</HTML>

File Name: CheckBalance.asp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML/EN">

<HTML>
<HEAD>
<META content="text/html; charset=unicode" http-equiv=Content-Type>

<%
"validate the input data
UserID=Session("UserID"")

Passwd=Session(''Passwd'")

Set connection = server.CreateObject("ADODB.connection")

connection.Open "OraScottDSN","'scott"”,"tiger"

103

“sql
sqlCheckIn="SELECT * " & _
"FROM Customers " & _
"WHERE UserID = ""&UserID&'"’and " & _
"CustPasswd =""&Passwd &' "

Set rstCheckIn = connection.Execute(sqlCheckIn)

"check if the input sid exists
If rstCheckIn.EOF Then
str = server.URLEncode("UserID or/and PassWord are incorrect! Try it again.')

Response.Redirect("../CheckBalance/Response.asp?message=" & str)

End if

Set connection = server.CreateObject("ADODB.connection')

connection.Open "OraScottDSN","'scott","tiger"

"sql checking if the user exists

sqlBalance="select A.CustAcctNo, A.AcctType, A.Balance " & _
"FROM CustAcct A , Customers C " & _
"WHERE UserID = “"&UserID&'"" AND " & _
"CustPasswd = “"&Passwd&'"" AND " & _
"C.CustSIN=A.CustSIN "

Set rstBalance = connection.Execute(sqlBalance)

If rstBalance.EOF then

str = server.URLEncode(*'You have not had an account yet.")
Response.Redirect(''Response.asp?message=" & str)

else

104

%>
<BODY bgColor=linen>
<center>

</center>
<p><center><table border="1" bgColor=#efaQac align=center>
<TBODY style="BACKGROUND-COLOR: #eeaOad">
<tr Align="middle'>
<td width="30%" style="BACKGROUND-COLOR: peachpuff; WIDTH:
30%"><P>Account No.
</P></td>
<td width="30%" style="BACKGROUND-COLOR: peachpuff; WIDTH: 30%'>Account
Type</td>
<td width="30%"" style="BACKGROUND-COLOR: peachpuff; WIDTH:
30%"><FONT color=mediumslateblue face="Times New Roman"
size=3>Balance</td>

</tr>

<%

Do Until rstBalance.EOF

%>

<tr>

<td Align="middle'>
<%= rstBalance(""CustAcctNo") %>

<td Align="left">

105

<%= rstBalance("'AcctType'") %>

<td Align="left">
<%= rstBalance(''Balance") %>
<%

rstBalance.MoveNext

Loop

connection.close
End If
0>
</td>
</tr></TBODY>

</table></center>

<p align=center>

Back
</p>
</BODY>
</HTML>

File Name: TranHistory.asp

<%@ Language=VBScript%>

<% ' VI 6.0 Scripting Object Model Enabled %>
<!--#include file="../_ScriptLibrary/pm.asp"-->

<% if StartPageProcessing() Then Response.End() %>
<FORM name=thisForm METHOD=post>

106

<HTML>

<HEAD bgColor=linen>

<META content="text’html; charset=unicode" http-equiv=Content-Type>
</head>

<BODY bgColor=linen>

<center>

</center>

<p align=center>Statement
Period

</p>

<p align=center><FONT color=mediumslateblue face=""

size=4>A ccount

<p>

<%
Sub bntGo_onclick()

Accts = Trim(IstAccts.getValue(IstAccts.selectedIndex))
Period= CLng(Trim(IstPeriod.get Value(IstPeriod.selectedIndex)))

Select Case Period
Case 6
NewDate=DateAdd("'d", -6, Date())
Case 14
NewDate=DateAdd("'d", -14, Date())
Case 29
NewDate=DateAdd("d", -29, Date())
End Select

107

Set conne=Server.CreateObject("ADODB.Connection')

conne.Open "OraScottDSN","scott","tiger"'

look up custacctno corresponding to accts
sqlcustacctno=""select custacctno from custacct A, customers C " & _
" where (UserID ="&Trim(Session("UserID"))&"" and " &_
" CustPasswd =""&Trim(Session('"Passwd'"))&'""'&_
" and C.CustSIN=A.CustSIN and AcctType=""& Accts&'")"

Set rstacctno= conne.Execute(sqlcustacctno)

acctno=CLng(trim(rstacctno("'custacctno')))

‘get corresponding records from the Payment table
transql="SELECT PayingAcctNo,ReceivingAcctNo,PayDate, BiliNo," & _
"Paid Amount trom Payment " & _
"Where (PayingAcctNo="& acctno &" or " & _
"ReceivingAcctNo="& acctno &' and
PayDate>To_date("&NewDate&'”, MM/DD/YY)"

Set tranrecord = conne.Execute(transql)

If tranrecord. EOF Then
%%o>

<p>
<table border="1" bgColor=#efa0ac align=center borderColorDark=lightslategray

borderColorLight=white>
<TBODY style="BACKGROUND-COLOR: #eea0ad">

<tr>

108

<td align="middle" style="BACKGROUND-COLOR:
peachpuff''><FONT color=mediumslateblue face=""'
style="BACKGROUND-COLOR: peachpuff'>No
transaction during the period.
</td>
<%
conne.close
Exit Sub
ELSE
%>
<p>
<table border="1" bgColor=#efaOac align=center borderColorDark=lightslategray
borderColorLight=white>
<TBODY style="BACKGROUND-COLOR: #ecea0ad">
<tr Align="middle">
<td width="50" style="BACKGROUND-COLOR:
peachpuff'>Date
</td>
<td width="70" style="BACKGROUND-COLOR:
peachpuff'><FONT color=mediumslateblue face=""
style="BACKGROUND-COLOR:
peachpuff''>Description</td>
<td width="70" style="BACKGROUND-COLOR:
peachpuff'><FONT color=mediumslateblue face=""'
style="BACKGROUND-COLOR: peachpuff>From
</td>
<td width=""70" style="BACKGROUND-COLOR:
peachpuff'><FONT color=mediumslateblue face=""
style="BACKGROUND-COLOR: peachpuff*>To </td>

109

<td width="50" bgColor=#eealad style="BACKGROUND-COLOR:
peachpuff"><FONT color=#7b68ee style="BACKGROUND-COLOR:
peachpuff'>Amount</td>

</tr>

<%

Do Until tranrecord. EOF
fpayingno=tranrecord.Fields("PayingAcctNo'")
freceivingno=tranrecord.Fields("ReceivingAcctNo')
fdate=tranrecord.Fields("PayDate")
fdesc=tranrecord.Fields("BilINo")
famount=tranrecord.Fields("Paid Amount")

P>
<tr><td>

<%= tranrecord('"PayDate'") %>
</fonb</td>
<td Align="middle'>

<%= tranrecord("BillNo") %>
</td>
<td Align="middle" bgColor=#eealOad>

<% =tranrecord(''PayingAcctNo')%>
</td>
<td Align="middle'">

<%=tranrecord(''ReceivingAcctNo'")%>
</td>
<td Align="middle">

110

<%=tranrecord(''Paid Amount') %>
</td>
<%
tranrecord.MoveNext
Loop
End If
conne.close
End Sub

%>

</tr></TBODY ></table>

<p align=center>
Back
</p>

</BODY>

<% "V16.0 Scripting Object Model Enabled %>
<% EndPageProcessing() %>

</FORM>

</HTML>

File Name: ChangeAddr.asp

<%@ Language=VBScript %>

<% ’ VI 6.0 Scripting Object Model Enabled %>
<!--#include file="./_ScriptLibrary/pm.asp"-->

<% if StartPageProcessing() Then Response.End() %>

111

<FORM name=thisForm METHOD=post>
<html>
<head>
<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0'>
<script [ID="serverEventHandlersVBS" LANGUAGE="vbscript" RUNAT="Server'>
Sub thisPage_onshow()
Call Btn_Query_onclick()
End Sub

Sub Btn_Query_onclick()

ThelD=Session("UserID'")

Pass =Session("Passwd'")
sqlCustomer = "Select * From Customers " & _
"Where UserID = "&ThelD&" AND " & _

"CustPasswd = ""&Pass&'""

rstCustomer.setSQLText(sqlCustomer)

rstCustomer.open

End Sub

Sub Btn_Moaodify_onclick()

addr= Trim(txtAddress.value)

112

phon= Trim(txtPhone.value)

TheID=Session(''UserID")

Pass =Session('"Passwd'")

IF addr = """ then
txtMessage.value="The address is required"
exit sub

ElselF phon = """ then
txtMessage.value="The phone no. is required"
exit sub

end if

txtMessage.value=""

Set connection=Server.CreateObject('"ADODB.Connection')

connection.Open "OraScottDSN","scott", "tiger"

sql_Modify="UPDATE Customers SET " & _

" CustAddr="' &addr& ", " & _

" CustPhone=""' &phon& " " & _

" WHERE UserID= "&ThelD&" AND " & _

" CustPasswd = “'&Pass&' "'

Set rstChange Addr=connection.Execute(sql_Modify)
txtMessage.value=""Your address and/or phone no. updated"

End Sub

</script>

</head>

113

<body bgColor="linen'>

<p align=""center'>

<p>
<table border="1" cellPadding="1" cellSpacing="1" height="123" style="HEIGHT:
147px; WIDTH: 372px" width="65.74%" align="center" bgColor=#a0d {8
borderColor=#800000 borderColorDark=#808080
borderColorLight=#800000><TBODY style="BACKGROUND-COLOR: peachpuff'>
<tr>
<td align=""right"
style="BACKGROUND-COLOR: peachpuff; COLOR: mediumslateblue'>
<DIV align=left>SIN</DIV></td>
<td style="BACKGROUND-COLOR: #eea0ad'>
</td></tr>
<tr>
<td align="right" style="BACKGROUND-COLOR: peachpuff'><DIV
align=1eft><FONT color=mediumslateblue
face="Times New Roman" size=3
style="BACKGROUND-COLOR:
peachpuff'>Name</DIV></td>
<td style="BACKGROUND-COLOR: #eea0ad'>
</td></tr>
<TR>
<TD align=right style="BACKGROUND-COLOR: peachpuff'><DIV
align=left><FONT color=mediumslatebluc face=""
style="BACKGROUND-COLOR:
peachpuff">Gender</ FONT></DIV></TD>

114

<TD style="BACKGROUND-COLOR: #eea0ad'></TD></TR>
<TR>
<TD align=right style="BACKGROUND-COLOR: peachpuff'><DIV
align=1eft><FONT color=mediumslateblue
face=""">Date of Birth</DIV></TD>
<TD style="BACKGROUND-COLOR: #eea0ad"></TD></TR>
<tr>
<td align="right" style="BACKGROUND-COLOR: peachpuff'><DIV
align=left><FONT color=mediumslateblue
face=""">Address</DIV></td>
<td style="BACKGROUND-COLOR: #eeaOad'>
</td></tr>
<tr>
<td align="right" style="BACKGROUND-COLOR: peachpuff'><DIV
align=left><FONT color=mediumslateblue
face="">Phone No.</DIV>
<td style="BACKGROUND-COLOR: #eeaOad"></td>
<Jtr></TBODY></table></p>

<p align=center>

Back
</p>

</body>

<% ’ V1 6.0 Scripting Object Model Enabled %>
<% EndPageProcessing() %>

</FORM>

</html>

115

File Name: Password.htm

<htmi>

<head>

<meta NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<title></title>

</head>

<body bgColor=linen>
<p>
<center>

</center>

<form action="Password.asp" method="post" id="form! " name="form1">
<div>
<blockquote>

<p align="left"><FONT

face=Arial>

 </p>

<p align="left"><FONT

face=Arial
color=darkblue> Please
fill the below fields to change your password.

</p>

<blockquote>

<blockquote>
<table border="0" cellPadding="1" cellSpacing=""1" width="75%">
<tr>
<td>Current

Password:</td>

116

<td>
<input id="password | ' name="0OldPass" type="password"></td></tr>
<tr>
<td><font color="navy"
face="Arial"> New
Password: </td>
<td>
<input id="password2" name="NewPass 1" type="password'></td></tr>
<tr>
<td>Confirm
Password:</td>
<td>
<input id="password3" name=""NewPass2"
type="password"></td></tr></table></blockquote>
<blockquote> </blockquote>
<blockquote>
<table border="0" cellPadding="1" cellSpacing="1"" height="36"
style="HEIGHT: 36px; WIDTH: 190px" width=""29.5%" align=center>
<tr>
<td><input id="submit!" name="submit1" style="HEIGHT: 28px; WIDTH:
75px" type="submit'" value="Change'></td>
<td>
<input id="reset1" name="reset1" style="HEIGHT: 28px; WIDTH: 75px" type="reset"
value=" Clear "></td></tr></table></blockquote>
<p align=center>

Back
</p>

17

</form></BLOCKQUOTE></BLOCKQUOTE></DIV>
</body>
</html>

File Name: Password.asp

<%

OldPass = Trim(Request.Form("OldPass'))
NewPass | = Trim(Request.Form(''"NewPass 1))
NewPass2= Trim(Request.Form("NewPass2'))

ThelD=Session("UserID')

Pass =Session('"Passwd'")
[f (OldPass=""' or NewPass1=""" or NewPass2=""") then

str = server.URLEncode("Either current or new password is NULL!")

Response.Redirect("../PassWord/Response.asp?message=" & str)

ELSEIF OldPass <> Pass then

str = server.URLEncode("Incorrect old password, try again.')

Response.Redirect("../Password/Response.asp?message="' & str)

ELSEIf NewPass1<>NewPass2 Then

str = server.URLEncode(""You dontt confirm your new password!")

Response.Redirect("../Password/Response.asp?message=" & str)

118

end if

Response.Write(*'Student Id:"& TheID&"'
"")
Response.Write("OldPass:"&OldPass&"'
"")
Response.Write(""NewPass1:"& NewPassl & "
")
Response.Write("NewPass2:"& NewPass2 & ""
")

Set connection = server.CreateObject("ADODB.connection")

connection.Open "OraScottDSN", "scott", "tiger"
sql_UpdatePasswd="UPDATE Customers SET " & _

" CustPasswd= "&NewPass1&""" & _

" WHERE UserID= ""&ThelD&'" AND " & _

" CustPasswd = "&Pass&' "
Set rstPasswd=connection.Execute(sql_UpdatePasswd)

Session("Passwd'") = NewPass1

str = server.URLEncode('"Your password have been changed!")

Response.Redirect("../PassWord/Response2.asp?message=" & str)

To0>

File Name: Response.asp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML/EN">
<HTML>

119

<HEAD>

<META content="text/html; charset=unicode" http-equiv=Content-Type>
<%= Request.QueryString("'message'") %><BODY
bgColor=navajowhite><p><center>

</center>

<P><U>Back</U></P>
<P> </P>

</BODY>

</HTML>

120

