INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a compiete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48108-1346 USA
800-521-0600

UMI

Concordia Online Shopping Assistant:

An Intelligent User Interface
For
Distributed Database Computing

Guang YuLi

A Major Report
In

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

May 1999

©Guang Yu Li, 1999

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Oftawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your fie Votre réfdrence
Our i@ Notre réldrence
The author has granted a non- L’auteur a accordé¢ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la proprnété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprnimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-43666-7

Canada

Abstract

Concordia Online Shopping Assistant:
An Intelligent User Interface for Distributed Database Computing

Guang Yu Li

This project demonstrates a prototype for an intelligent user interface for an Online
Shopping Assistant coded using Visual Basic 6, Oracle, and MS SAPI SDK on Windows
NT environment. The purpose of this project is to explore state of the art technology to
build a simple, functionally elegant, intelligent user interface to make software easy to
use. This project has some unique features which differentiate it from other online
shopping tools. The speech enabled GUI can response to user action accordingly and can
give comments and recommendations to the user about a particular product. It has three
language versions, English, French, and Chinese. Speech is only in English because the
Microsoft speech engine has only an English version. It supports heterogeneous databases
and has hyperlink features to link the image catalogue to a particular web site. The goal
of this project is make the catalogue style online shopping enjoyable and retain the

attention of potential consumers.

This report presents the architectural design of the COSA system, the design and
implementation of client part GUI and server part databases. The success of most
software is determined by its GUI, COSA system is no exemption. When designing and
implementing COSA, a great deal of effort is focused on its usability and usability

testing. Finally, future work related to COSA is presented.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr.
Desai, for his kind agreement with my initial motivation and proposal. Subsequently his
enthusiastic support and valuable guidance gave me an excellent chance to explore state
of the art technology for this project. Without his kind support I could not finish it in

time.

Second I would like to express my sincere thanks to my roommate, Sebastien Senechal

for his help in French for this project.

Finally, I would like to dedicate this project to my wife, Ying Luo, for her full support,
great patience, and encouragement. Without her financial support, I could not continue

my graduate studies at Concordia University. This project is my great gift for her!

Subset of this project report entitled “Electronic Shopping Assistant” has been accepted
by International Symposium on Electronic Commerce & Second International Workshop
on Technological Challenges of Electronic Commerce sponsored by IBM, and to be

presented on May 20th, 1999 in Beijing, People’s Republic of China

iv

Contents

1. Introduction 1
1.1 Overview of Electronic Commerce 1
1.2 Point and Click, Buy and Sell 2
1.3 COSA System 2

1.3.1 Introduction 2
1.3.2 Hypermedia/Multimedia 3
1.3.3 COSA: The Project 3
1.4 Organization of the Report 4

2. System Architecture of the COSA System 6

2.1 Intelligent Graphical User Interface 6
2.1.1 Task Analysis versus Requirement Specification 6
2.1.2 General Descriptions of Requirement Specification 6
2.1.3. Overview of Microsoft Visual Basic 7

2.1.3.1 What is Visual Basic? 7
2.1.3.2 Visual Basic vs. Object—oriented (OO) programming --------—-- -8
2.1.4 Introducing Microsoft Speech Engine 9
2.1.4.1 Introduction 9
2.1.4.2 What is SAPI? 11

2.2 System Design 11
2.2.1 Client/Server Computing 11
2.4.2 System architecture 13

1) Input/Query Subsystem 14
2) Image/Agent Subsystem 15
3) Decision Subsystem 15
4) Order/Validation Subsystem 16
5) Database Subsystem 17

3. Input/Query Subsystem 18

4. Image/Agent Subsystem 22

4.1 Microsoft Data Access Model 22
4.2 Making Data Source Accessible 24

4.3 COM (Component Object Model) 25

4.4 ADO vs. DAO 26

4.5 Using ADO 28

4.6 Using DAO 28

4.7 Image/Agent Windows in COSA 29

5. Decision Subsystem 32
6. Order/Validation Subsystem 35
6.1 Placing an order 35

6.2 Secure Payment 37

6.2.1 What is ActiveX Component? 38

6.2.2 Implementing In-Process and Out-Of-Process Servers ---------—-— 39

6.2.3 Encrypt/Decrypt Process 40

6.2.4 Developing the Crypto Class 40

7 Database Subsystem -45
7.1 Database design 45

7.2 Customer Order Form 47

8. Usability Testing 48
8.1 What is Usability? 48

8.2 Usability Testing 48

8.3 Empirical Testing 49

8.4 Modification of GUI based on usability testing 52

9. Summary and Future Work 54
9.1 Summary 54

55

9.2 Future Work
Bibliography 57
Appendix
User Manual 58
A. Server side Oracle database setup 58
B. Client Machine configuration 62
C. Run this program 65
D. Business Data Input Form 65
E. Software needed to run COSA system 67
F. Information about source files 67
‘F1. Oracle folder 67
F2. Client folder 68
70

F3. Crypto folder

vii

List of Figures

TTS run-time syzthesis

Systems Architecture of COSA

Decision Subsystem Flowchart

Main Window of COSA

Warning Dialogue

Welcome Window

Input Window
Different Data Access Model in VB 6

0 0 N U h N~

DAO Object Hierarchy

10. DAO Object Hierarchy

11. Image Window

12. Agent Window

13. Total Window

14. Change Window

15. Byebye Window

16. Order Window

17. Thanks Window

18. Encrypt/Decrypt Process
19. Reference to Crypto.dll component

20. Oracle SQL *Plus window shows the encrypted card number

21. Customer Order Form

22. Empirical Usability Testing instructions

23. Previous Change Window

24. Client-server configuration

1. Introduction

1.1 Overview of Electronic Commerce

The Internet is a gold mine of dynamic information. People are using it to quickly and
easily research topics, including finance, travel and entertainment. With technological
advances in security, the Web has also become a viable channel to buy and sell products
and services. Internet companies such as Amazon, Yahoo, and Excite as well as
telecommunication and cable companies recognize the huge number of customers and

their buying power.

Netscape and AOL merged in a US$4.2 billion deal in November 1998, bringing together
Netscape’s browser and electronic commerce (e-commerce) software business. In
January, Excite and @Home (a high-speed Internet provider with reported 200,000
customers) struck a US$6.7 billion agreement. Most recently, Yahoo bought GeoCities

for US$3.56 billion.

According to the latest forecasts from Forrester Research Inc. and International Data
Corp. (IDC), e-commerce is expected to continue its rapid growth over the next few
years. Forrester predicts that business-to-business e-commerce will grow from US$43
billion in 1998 to US$1.3 trillion in 2003—an increase of more than 3,000 percent. It also
forecasts that business-to-consumer e-commerce will grow from US$4.8 billion in 1998
to US17.4 billion in 2001—an increase of more than 360 percent. Alternatively, IDC
predicts business-to-consumer e-commerce will grow from US$10 billion in 1998 to

US$39 billion in 2001—a 390 percent increase. [Com99]

1.2 Point and click, buy and sell
E-commerce means doing financial transactions on the Internet, at an online store or over

A secure business-to-business extranet.

E-commerce is online shopping, both wholesale and retail. Every day, more people gain
access to the Web, and every day, more of them are shopping online. It provides a level
of convenience they want, need and will soon demand. E-commerce is a unique
opportunity for businesses of any size. And for those who automate their supply chain,

the opportunity for business-to-business e-commerce is even greater

The items most frequently purchased online were computer software, computers and
peripherals, and books. Other popular items were music, financial products, travel, tickets

for events and clothing. [Com99]

Currently it seems that electronic commerce has outgrown a single definition. It is now so
far-reaching in scope, capability and purpose that it is part of every sector of the
commercial world—from manufacturing to banking to distribution to retail operations. It

is the future—and it is arriving fast. In this work, we focus on online shopping.

1.3 The COSA System

1.3.1 Introduction

When one looks at “virtual shopping mall” on the Internet such as the online pioneers

Amazon.com, one finds that the interface in these sites is very primitive due to the

limitations of web browsers. One also notices that it has no true multimedia features. To

clarify we give following definitions for hypermedia and multimedia.

1.3.2 Hypermedia/Multimedia

Hypertext is a text that contains links to other texts. The term was invented by Ted

Nelson around 1965. [SK95] Hypertext is therefore usually non-linear.

HyperMedia is not constrained to be text-based. It can include other media, e.g., graphics,
images, and especially the continuous media -- sound and video. Apparently, Ted Nelson

was also the first to use this term. The World Wide Web (WWW) is the best example of

hypermedia applications.

Multimedia means that computer information can be represented through audio, video,
and animation in addition to traditional media (i.e., text, graphics drawings, images).

Hypermedia can be considered as one of the multimedia applications.

1.3.3 COSA: The Project

The motivation of Concordia Online Shopping Assistant project is that the “catalogue
style” shopping should be more enjoyable and should get the attention—also termed
“mind share”—of the demographically attractive online consumer. But how can we

achieve this goal? The answer comes from the smart and elegant GUI (Graphical User

Interface). This project involves client/server computing. Therefore, the client side user

interface should be easy to use and should have muitimedia and intelligence features to

let the user have fun. These features are enhanced by state of the art technology from

Microsoft, namely Visual Basic 6, speech engine, and third-party components running on

Windows 95/98 and Windows NT.

COSA has the following unique features:

Speech Enabled GUI (text-to-speech) the GUI can communicate with the user in
English using speech as well as text.

Shopping Advisor can give comments and recommendations to the user about a
particular product.

Multiple Language Versions the GUI supports three languages, English, French,
and Chinese (GB).

Heterogeneous Databases the GUI can access any ODBC data source (without
modification) such as Oracle, DB2, MS SQL Server, Sybase, ISAM databases
(dBase, FoxPro, Paradox, etc.)

Hyperlink user can click on catalogue images leading to a particular web site, e.g.,

the producer of the product.

1.4 Organization of the Report

This report describes the architecture of the COSA system, and the design and

implementation of the front-end GUI systems, and the back-end Oracle database systems.

Section 2 details the system design, the powerful Visual Basic programming language,
Oracle, and Microsoft Speech Engine. The COSA system consists of five subsystems,

which are described below:

The Input/Query Subsystem is presented in Section 3. In this section, five data access
models available in Visual Basic 6 are described. Image/Agent Subsystem is described in
section 4. Decision Subsystem is given in section 5. Order/Validation Subsystem is
described in section 6. Database Subsystem is given in section 7. Usability testing is
described in section 8. Finally a brief summary and future work are given in section 9.

The detailed User Manual is also given in the appendix.

2. System Architecture of the COSA System

2.1 Intelligent Graphical User Interface

2.1.1 Task Analysis versus Requirement Specification

Task analysis in developing requirement specification encourages designers to choose
from a range of options to optimize the design features for a novel interface. It is a
prerequisite for GUI design. While task analysis is a useful tool for identifying the
requirements of an interface, it does not in itself provide the design options that might

best meet these requirements.

I follow the real world metaphor to design a GUI for COSA. For example, when a
shopper comes to the store, he picks up a shopping cart, then browses the potential items
he wants to buy, selects one or more items and puts them into the shopping cart. If he
changes his mind, he can take out some items from his shopping cart, etc. The scenario is
the same as the one used in the COSA. If user has experienced shopping, then he should

have no problem to use COSA.

2.1.2 General Descriptions of Requirement Specification/Implementation

The COSA software (Driver Software, or DS) helps a user in online shopping an item
quickly and easily. The DS will ask the user to do some queries, and show the catalogue
image of the item on an Image Window. The user can browse the images one by one

while an Agent Window pops up automatically and gives comments on each item shown

in the Image Window. The user can also make the Agent Window appear or disappear.

The user can order one or more items, which will be charged to his/her credit card.

I take full advantage of Visual Basic 6.0’s powerful features (e.g., MS Masked Edit
Control 5.0, MS FlexGrid Control 5.0, MS Internet Control, etc.) and third party
components (ActiveX controls such as Sheridan 3D, ActiveX32) to implement the
interface. For example, MS Masked Edit Control can validate user input, i.e., only allow
user to enter numbers not letters to improve the user’s productivity, while MS Intemnet
Control can easily link catalogue images to a particular web site. I also developed my
own AcitveX component for the security issues. Particularly I use MS SAPI (Speech
Application Programming Interface) Speech SDK 4.0 Suite to make the interface more

attractive.

2.1.3. Overview of Microsoft Visual Basic

2.1.3.1 What is Visual Basic?

VISUAL BASIC 6 is THE NEWEST version of Microsoft's rapid application-
development tool. Visual Basic is the fastest and easiest way to develop Windows
applications. So what is Visual Basic? The '"Visual" part refers to the method used to
create the graphical user interface (GUI). Rather than writing numerous lines of code to
describe the appearance and location of interface elements, you simply add pre-built
objects into place on screen. Visual Basic provides an intuitive screen painter used to

paint windows with a variety of controls (entry fields, check boxes, list boxes, push

buttons, and so on). Each control has properties (characteristics such as background color

and caption, etc.)

Visual Basic also provides access to dynamic link library (DLL) functions written in such
languages such as C, C++, and COBOL as well as access to object linking and

embedding (OLE) calls to enhance Visual Basic applications.

Since the introduction of version 2, Visual Basic has provided database support. In
version 6, Visual Basic has taken database connectivity and support to a new level. In the

following sections, we will examine a few data access models used in this project.

Finally, Visual Basic is an event-driven programming language. It processes code not
only in a simple serial fashion as do traditional programs but also as triggering events
occur. Depending on the program’s design, the program can immediately suspend normal
execution and launch the code that is currently associated with a mouse click. Following

this interruption, normal execution can resume.

2.1.3.2 Visual Basic vs. Object-Oriented (OO) Programming

Over the past decade object orientation and GUI have become the trend in the software
development universe. As it turns out, windows (GUI) application development is best
addressed using languages that refer to graphical objects rather than mere fields and
records in a control block. Windows macros and controls exist in class libraries (another

OO construct) and use messaging to communicate with one another and with the end

user. Many of the terms and concepts of GUI programming have their roots in OO
technology, e.g., properties, methods, etc. Thus, a natural synergy exists between OO and
GUL Visual Basic has built in the capability to include a large degree of object
orientation into the application development environment. In this project I built one
Crypto class based on object orientation. Often in Visual Basic, an object is called a

component.

In Visual Basic, a component can be a control, which is an externally supplied extension
of the language (usually known as a VBX, OCX, or DLL), or it can be another

application connected through OLE automation.

As we know, Java is a modern object-oriented language. Most things in Java are classes,
which are inherited from the root class Object; the primitive numeric, character, and
boolean types are the only exceptions. Without inheritance, you can not even build Java
program. So now you can see the difference between component-oriented vs. object-
oriented programming. In this point we can easily figure out VB is not object-oriented

programming language, but it does support it.

2.1.4 Introducing Microsoft Speech Engine

2.1.4.1 Introduction

Speech in this project is limited to English because current version of the Microsoft
speech engine only supports English. Traditionally, Text-to-Speech (TTS) systems

convert input text into voice by using a set of manually derived rules for prosody

generation and/or voice synthesis. While these systems can achieve a high level of
intelligibility, they typically sound unnatural. The process of deriving these rules is not
only labor intensive but also difficult to generalize to a new language, a new voice, or a

new speech style.

For speech generation, there are two main methods used: formant synthesis and
concatenative synthesis. In recent years, data-driven approaches such as concatenative
synthesis have achieved a higher degree of naturalness. Nevertheless, these speech units
are still tediously extracted by human experts. As there are thousands of possible
articulation contextual variations, the process of creating a good quality TTS system
often takes years. Formant synthesizers may sound smoother than concatenative
synthesizers because they do not suffer from the distortion encountered at the

concatenation point.

Another data-driven approach used to minimize the number of concatenation points is to
select large units, such as syllables or words. While this approach allows for excellent
voice quality, it results in a large non-scaleable system, and it does not generalize well to

new acoustic contexts.
The Microsoft Text-to-Speech engine is a concatenative synthesis engine, which means

the audio output generated by the engine is generated from files, which contain

information derived from recordings of real people. The output may be generated to

10

target use with a telephone or speakers attached to a computer. This TTS system is called
Whistler, Whisper Highly Intelligent Stochastic TaLkER. [XAJH96] It is trainable,
scaleable and natural. The naturalness of the speech is demonstrated in my project. The

run-time text-to-speech synthesis diagram is given below. (see Figure 1)

Speech
Input text Output
Text Analysis Prosody Unit
’ ’ Generation ’ Concatenation | ’
Figure 1 TTS run-time synthesis
2.1.4.2 What is SAPI?

SAPI stands for Speech Application Programming Interface’ It provides an API
abstraction layer between applications & speech technology engines (both text-to-speech
& speech recognition). This allows multiple applications to share speech resources on a
computer and avoid the need for writing specialized application code for a specific
speech technology engine. SAPI is the most widely supported speech API in use today.

In this project, I use the SAPI 4.0a SDK (Software Development Kits) just released on

February 23, 1999 to develop speech enabled (text-to-speech) COSA system.

2.2 System Design

COSA is a two-tiered client/server application. Programs run on both the client and
server computers.
2.2.1 Client/Server Computing

Client/Server computing is the logical extension of modular programming. Modular-

based programming assumes that the separation of a large piece of software into its

11

constituent parts, or modules, creates easier development and better maintainability.
Client/Server computing takes modular-based programming a step further by recognizing
that the modules do not all need to be executed within the same memory space. With this
architecture, the calling module becomes the client, and the called module becomes the

Sserver.

The basic characteristics of client server architectures are the following:

e Combination of a client that interacts with the user and server that interacts with the
shared resource. The client process contains solution-specific logic and provides the
interface between the user and the rest of the application system. The server process
acts as a software engine that manages shared resources, such as databases, printers,

modems, or high-powered processors.

e The front-end task and back-end task have fundamentally different requirements for
computing resources, such as processor speeds, memory, disk speeds and capacities,

and input/output devices.

e The environment is typically heterogeneous and multivendor. The hardware platform
and operating system of client and server are not usually the same. Client and server
processes communicate through a well-defined set of standard application program

interface (APIs).

12

In a distributed clientserver database environment, the server is responsible for
intelligently servicing a client’s request for data. The workstation does not request data at
a file or table level, but sends a request to the server to execute a query and return

specific records. This is a vast improvement over the file-server approach.

Client/Server also allows us to add new processing power without recoding the
application. Client/server applications should not be aware of the location of their data.
As a result, if data has to be moved from one server to another, the application itself

should not have to be modified to reflect the location change.

This translates into increased productivity. If the mainframe goes down, all processing
stops. In a client/server environment, if one server goes down, only the users of that
server are effected. And the effect is temporary since processing can be quickly moved to

another machine. As we approach the age of 24-hour data access, this will become more

and more important.

Clienvserver computing allows for the use of new 4GL technology to develop
applications faster and better. Graphical design products, object-oriented products and

others are the key to increased future productivity and are primarily available on a PC.

2.4.2 System Architecture
Based on the above client/server descriptions and user task analysis, I designed the

architecture as follows (see Figure 2)

13

As shown here, the GUI system has five subsystems, Input/Query Subsystem,
Image/Agent Subsystem, Decision Subsystem, Order/Validation Subsystem and Database
Subsystem. Each of the first four subsystems has one or more interactive or responsive

windows leading to a particular intention.

o
§ I
o
e E +
of 1]]
s | |
R
1
; I
l
Figure 2 System Architecture of COSA
1) Input/Query Subsystem

Input Subsystem has three interactive windows: Main Window, Welcome Window, and

Input Window. User can choose category catalogue information in Main Window, this

14

leads to the Welcome Window which prompts user to choose a preferred language,
English, French, or Chinese. Next comes the Input Window, user can check particular

boxes in order to browse the online catalogue.

2) Image/Agent Subsystem

This subsystem has two windows: Image Window and Agent Window. In the Image
Window, the user can browse the images of products back and forth, and put (select) one
or more items into his/her “shopping cart”. Here I follow the real world shopping
metaphor to design the interface. Meanwhile, the Agent window pops up automatically
and shows comments and suggestions accordingly. Users can make the Agent Window
appear or disappear from the Image Window. The user can also go back to the Input
Subsystem for another query as he/she wishes. Or, the user can go to the Decision

Subsystem.

3) Decision Subsystem

This system has three windows: Total Window, Change Window and Dialogue
Window. After the user has selected one or more items from Image Window, he/she
enters the Total Window. Because this system is the core of Shopping Assistant, it is
necessary to show the interaction between Total Window and the other two windows:

(See Figure 3)

From the Total Window, the user has a number of choices, i.e. if the user changes his
mind or the total amount is out of budget, he/she can go to the Change Window to

cancel some or all the items in his/her shopping cart. When user confirms all the items

15

he/she selected or cancelled, he comes to the Dialogue Window. From this point, he/she
can either go to Order/Validation Subsystem to pay by the credit card, or Input/Query

Subsystem to make another purchase, or just quit COSA system.

4) Order/Validation Subsystem

-
I |
| |
| |
: Total Window:]
1 You have selected :
i following items: i
f Car S10.05 > H Image/Agent
I —Pp{ Truck $21.05 (Subsystem
: At Jeast one Tax_$4.70 :
: toy to order Toul $35.80 |
] (Coumt#0) :
: |

I
: Change Window: 1

i
: Did you change your :
[mind? Please select i
I the item(s) you want |
i to cancel: |
| Car |
| Truck |
I |
| |
| |
! |
| |
| all items are 1
I canceled l
: (Count=0) :
i NO A Count # 0l
[L Order
: l /Validation
I : Subsystem
| o :
i Count =0 I
| |
| S R |

Thanks Window Input /Query
Subsystem

Figure 3 Decision Subsystem Flowchart

16

This subsystem has two windows: Order Window and Thanks Window. User uses his
credit card to make a payment. Order Window promotes user to enter his card number. If
the number is approved, the system goes to the Thanks Window. If number is not
approved, a validation message box pops up. The validation message box informs the
user of an invalid card number and prompts the user to reenter the card number. If the
credit card has expired, the validation box informs the user about that. Here the credit

card number is encrypted before being sent to the server database.

5) Database Subsystem

Because Oracle 8 supports a large number of user connections simultaneously, the
current version of the database system is implemented using Oracle 8. It has
MY_CUSTOMER, TOY, and MY_ORDER table in the database. There are three
windows in this subsystem, Customer Order Window, this server-side window gives
detailed information about the order requests from online shoppers. The credit card
number is decrypted from the MY_ORDER table and is shown in this window. The
Catalogue Data Input Window lets business update and browse catalogue information.

Customer Data Input Window lets business input and browse customer information.

17

3. Input/Query Subsystem

When COSA system starts to run, the first window shows up.

@Welcome
. Concordia Online Shop
. Toys and Gifts = me an den

ety

RS A AR
B

Figure 4 Main Window of COSA

From here, the user has many options, such as “Toys and Gifts”, “Electronics”, etc. He
can select his preferred category. In our case, select “Toys and Gifts”. Other categories
haven’t been implemented, but the scenario is the same. Because of this project’s
distributed features, these categories or catalogue databases could be located anywhere on

the Internet.

The user can also notice that there are two images in this window. If the user place;s the
mouse pointer over these two images, the mouse pointer icon is changed indicating that
the images are clickable objects. In this project, if the user places mouse pointer over the
clickable controls in the window, the mouse pointer icon will be changed. This is an

important feature in GUI design called “quick feedback”. For example, if the user clicks

18

on the image, then Microsoft Intemnet Explorer will open the corresponding author’s
homepage. If the user points to these images or other command button for one second, a
tooltip pops up providing brief further information. Another good GUI design principle is
forgive user’s wrong action. For example, if the user clicks on the Exit button or on the
“close icon” located at the upper right corner on this window, COSA system will open a
dialogue box to ask the user to confirm that action, to avoid accidental termination of this
program. (see Figure 5) Throughout this project these are the fundamental design rules in

my GUI implementation.

. W arning!

_ e you sure you wank o end the program?

| Figure 5 Warning Dialogue
Next if the user clicks on the “Toys and Gifts” button, this leads to the “Virtual Toy
Store”. Then the welcome window shows up, in the meantime, the Main window is

closed. (See Figure 6)

@Welcome Window [X| |

;‘ldo PR C ‘ Ll " I ,", e

Pl et

— Figilre 6 Welcomé Window

19

When this window starts up, the message “Please select a language:” moves in from the
right hand side. This animation is controlied by the Timer control in VB, it is hidden from
the user. You can also see the date and time on this window. In this window, the user can
select preferred language service, English, French, or Chinese (GB). The Chinese version
doesn’t support Big 5 character which is widely used in Hong Kong. User can also click
on “Back” button to go back to Main Window to select other categories. This give users

more flexibility! Of course, the user can also terminate the program at this point.

In Visual Basic, localizing software to a particular language is easy. First construct a
resource file (.res file), which consists of strings and string IDs (similar to the hash table
containing key/value pair in other programming language such as Perl and Java). Then
use LoadResString(index) VB built-in function to load a string on the form. Here index
is an integer specifying the identifier (ID) of the data in the resource file. For example, in

my project, I assign English ID as 10, Chinese as 100, and French as 300.

Using LoadResString is very useful for localizing a Visual Basic application because the
resources that need to be translated are isolated in one resource file and there is no need

to access the source code or recompile the application.

After the user chooses one language, the Input Window opens (See Figure 7). The user

can ask about some toys suited for the checked age range. In this window there are some

check boxes grouped by age range and special offer.

20

Notice that when the user clicks on “Continue” button, the client part interface tries to
connect to backend Oracle database server through the network, and it will take some
time depending on the network speed. The ProgressBar control shows up on the bottom
of this window to provide feedback and inform user that “please wait, I am trying to
connect to the database”. If user has no indication that an operation is taking place, he/she
may assume that the application has stopped responding. Also, when users get feedback,
they feel that application is taking less time than it actually is. The ProgressBar is a great

tool to use for that reason.

™ Input Window [X]

R TR N s

) i""igui'e 7~ Inpuf “\Xn/indow

2 S ey

If user did not choose the Age Range or Special Offer and attempts to click on Continue

button, then a message box shows up (see following figure).

21

4. Image/Agent Subsystem

4.1 Data Access Model

The Image/Agent Subsystem uses database connections through Microsoft data access

technology. There are several data access models available, as described below.

These models simplify the development of client/server data-enabled applications. Visual
Basic 6 provides support for several data access models. Each model represents a

different state of the art in the evolving data access technology.

Data Access Object (DAOs), which communicates with Microsoft Access and other
ODBC-compliant data sources through the JET database engine. DAO is a native access

model for Access.
Open Database Connectivity (ODBC), which is an API call interface to the Open

Database Connectivity libraries and drivers to provide data access to Microsoft SQL

Server and other databases that provide an ODBC driver.

Remote Data Objects (RDOs), which provide a framework for using code to create and

manipulate components of a remote ODBC database system.

ODBCDirect, which access ODBC data sources through the RDO with DAO objects,

bypassing the JET database engine.

22

ActiveX Data Objects (ADOs), which eliminate the need to choose DAO and RDO and
any other data access method, and is designed to provide a common bridge among

different databases, file systems, and e-mail servers. This is the latest data access model

from Microsoft.

OLE DB

Visual Basic 6 provides full support for the OLE DB and ADO data access
methodologies, but what are ADO and OLE DB all about? Microsoft introduced ODBC
with the promise of creating a single common access methodology for databases. The
earliest versions of ODBC suffered from inconsistent support and performance. In fact,
ODBC was supported by very few database products, and those that did support ODBC
also provided their own database drivers, which often were more reliable and faster.
ODBC has come a long way from those early days. In its current form, two versions of
ODBC are available-Version 2.0, which supports 16-bit applications, and, with the
release of Windows 95, Version 3.0, which supports 32-bit applications. Today, almost
every major database supports ODBC drivers, and third-party developers provide
optimized driver versions. In fact, ODBC drivers have become as ubiquitous as video
drivers and other Windows device drivers. Also many data processing applications (such
as Excel, Access, Lotus 1-2-3, and so forth) support ODBC data access. ODBC has

become the omnipresent methodology for providing access to database sources.

The primary focus of ODBC is to provide a consistent interface to database data sources.

OLE DB is designed with an even broader goal in mind: to provide a methodology to

access data, regardless of the data source. OLE DB becomes the data access bridge for

documents, e-mail systems, file systems, spread sheets, COM components, and other

database sources that utilize ODBC drivers.

Figure 8 summarizes these access models.

DAO ADO

v

ODBCDirect

Jet Database I
engine

RDO

l »

ODBC Driver OLE DB

.

SQL Server Oracle

Figure 8 Different Data Access Model in VB 6

4.2 Making Data Sources Accessible

OLE DB
datasource
or
ODBC data
source

The key feature of OLE DB is that it lowers the requirements for implementing a data

provider interface. Previously, to provide an ODBC interface, an application was required

to implement a database engine that was capable of interpreting and executing SQL

queries. With OLE DB, a data provider is not required to support a command interface. In

24

conjunction with a query processor, OLE DB provides a unified way to access enterprise

data.

How is OLE DB different from ODBC connectivity? OLE DB extends the capabilities of
ODBC, by providing the capability for less-sophisticated data applications to become
data providers. This doesnt mean that ODBC interface will be abandoned, however. The
ODBC Provider allows ADO to connect to any ODBC data source. ODBC will still be
used to support database data sources, but instead of relying on the ODBC interface,

applications will utilize the OLE DB interface to access these data sources.

4.3 Component Object Model (COM)

The idea of component-based software is a hot topic in the last two years. Microsoft has
been working on developing this component-based model of application development for
a long time. First came OLE (Object Linking and Embedding), which facilitated
interapplication communication by enabling application objects to be embedded in other
applications. For example, a spreadsheet object could be placed in a word processing
document, and a user was allowed to edit that object in place. Visual Basic Controls
(VBXs) were introduced with Visual Basic applications. These controls could be
Windows interface elements, such as list boxes and buttons. VBXs could also provide
specialized processing routines, such as specialized parsing and sorting routines. OLE
and VBXs were Microsoft’s first steps toward developing object-oriented application
components. OLE and VBX were later merged into OLE Controls (OCXs, which are

OLE-based custom controls). After OCX, the technology evolved into ActiveX, the key

difference of which is that ActiveX controls are designed to function cross-platform.
Microsoft has ported AcitveX to the Machintosh environment, and Sun has licensed
ActiveX with an eye toward porting it to its architecture.

COM is specification for developing application components that can dynamically
exchange data and that can be interchanged to support new functionality. COM employs
object-oriented programming techniques to build encapsulated application components.
These components provide an interface to an object. This interface is used to manipulate
the object’s state, and can be determined dynamically at run time. The COM architecture
makes the development process an independent task by enabling components to work
together, even if they have been developed with different programming languages and by
different people. COM also provides the capability for components to work together in a

distributed environment. [JD99]

4.4 ADO vs. DAO
ADO is an API for developing applications that can access OLE DB data providers. ADO

is supported in various different programming languages, including Visual C++,
VBScript, Visual J++, and Visual Basic, as well as in Active Server Pages. While using
OLE DB directly provides a very low-level approach to accessing OLE DB providers,
ADO provides a higher-level and easier-to-understand mechanism. ADO is a
combination of the best aspects of DAO and RDO and doesnt rely as heavily on the
object hierarchy as DAO and RDO. This means that manipulating and creating ADO

objects is much easier, because they can be created and managed directly.

26

To see how different the DAO and ADO class hierarchy are, let’s look at the following

figures first.
DBEngine \
Workspace Error
Database
TableDef QueryDef RecordSet Container Relation User Group
I Field]I Tndex][Field J [Field 1 [Dornment I [Field J Group I__l;:r—l
[Field J l Pammelﬂ
Figure 9 DAO Object Hierarchy
Connection
Command Command
(Optional) (Optional)
Execute)
Execute Source
Connection ” Recordset Field
. Connection
* Connection
Error
(Optional)
Figure 10 ADO Object Hierarchy

From the DAO object hierarchy diagram, we know that we have to create a set of objects

such as DBEngine, Workspace, Database, Recordset, etc. to establish connection and get

data from database. While for ADO, we can use only one object such as Recordset to

27

establish connection and get the data we want. The following code example from this

project illustrates how to use these models to access a back end Oracle database.

4.5 Using ADO
Using ADO to connect to an ODBC data source is much easier than using DAOQ, the
earliest data access model in Visual Basic. Following is the example for how to connect

to an Oracle database using a Recordset object.

Dim rs As ADODB.Recordset
Set rs = New ADODB.Recordset
rs.Open "MY_ORDER", "DSN=myoracleS8; UID=g_li;PWD=g_licindi;"

On Error Resume Next

4.2.4 Using DAO

Using DAO to connect to database needs a little bit more effort. You have to follow the
DAO class hierarchy to establish the connection. You can not omit any object (two
objects in this program, db and rs.) Following is the DAO code to connect to Oracle

database.

Public db As Database ’ the database object

Public rs As Recordset

Set db = DBEngine.OpenDatabase("myoracle8",False, False,
"ODBC;DSN=mylocation8;UID=g_l1i;PWD=g_licindi;")

Set rs = db.OpenRecordset (“MY_ORDER”, dbOpenDynaset)

On Error Resume Next

28

4.7 Image/Agent window in COSA

The are two windows in this Image/Agent subsystem, i.e., Image Window (See Figure
11) and Agent Window (see Figure 12). After the user issues the query in the Input/Query

oftoysmabhmg your qy‘éﬁé'sl :.‘

Pkt S o =

Figure 11 Image Window

Agent Window

‘[Thistem is betterfor [.-
ungedult T .-

- - L

- anurel 2 Agent Window
subsystem and the database connection is successful, these two windows show up
simultaneously. The Image Window is located at left hand side on the screen, the Agent
Window on the right. If you place the mouse pointer over the some controls such as the

image and command button, the mouse icon is changed. For example, the user can click

29

on the image, then Microsoft Internet Explorer will open a particular web site, say the
producer of this product. This is also indicated by the tool tip if user place the mouse over
the image one second. On the upper part there is a label message indicating how many
items match the user’s query. The user can browse the selected items back and forth
using Previous and Next button, while the Agent Window shows comments and

suggestions accordingly. If user reaches the first or the last item, a message box pops up

the following figure.
’ Press (JK to continue E3|
: Qi deﬁnm ’ ver "~“!. | @ E"dd”"m }_ien;slj.'

W

= | =\

The user can set quantity very easily by using scroll bar just below the image. The user
can close the Agent Window by clicking on the button labeled “Close Agent Window”,
the button label is changed to “Open Agent Window” while the Agent Window is closed.
Or alternatively, the user can click on the “Close” button on the Agent Window. If the
user puts some items in his shopping cart by clicking “Put into Shopping Cart” button, a

message box will confirm this action, see the following figure:

1 Piess K to continue [X]

30

If user did not put anything into his shopping cart and tries to go to next step, i.e., click

on the “Go” button, then another message box shows up:

In the Image Window, the user can also click “Back” button to go back to Input Window
to do another query. If the user is satisfied with his selection, then he can click “Go”

button, which comes to the Total Window in Decision Subsystem.

31

S. Decision Subsystem

There are two major windows in this subsystem, Total Window and Change Window. In
Total Window (see figure 14) a detailed summary is presented to the user, i.c., Toy

Name, Unit Price, Quantity, Subtotal, GST/PST, and Total amount. So, the user can have

an idea if he can afford these items.

—Inyourshoppmg catt.you have — ey
ToyName - lUmPnceJQum&y -|Subtotal |GST/PST___ -
Bke $7983 1 :$7993 -$1245
Camera ?ms 'S5 181745 :$27.15
Flower 1$5.99 12 '¢11.88 1118
Realearth .$7.99 16 is12784 1989
Pat the Bunny 1$9.99 11 '$109.83 i$17.

Forever) 819939 '8 1$159.92 '¢$24.88
Lamaze Soft Stacking Rings _ $1000. 10 .$10000. ' $1556.
: ; Totsk ' $12392.67

ﬁj Po you wantto orderwhatyou have selected?

vow

Figure 13 Total Window

Change Window I

Figure '14 Change Wmdow

32

If the user thinks that is too expensive or due to some other reasons, he can cancel these
items by clicking on the “No” button. The Change Window shows up. See Figure 14. In
the Change Window, the user can browse the items in his shopping cart. He can set the
number of items to be taken out by using the scroll bar. Notice that the user can not set
the number greater than the current corresponding number of item in the shopping cart.

This greatly improved the user’s productivity while online shopping.

After user set the number to be taken out, he clicks on the “Taken Out” button, a

confirmation message will be presented as the following:

You have taken out 1 Stacking Rings

If no particular item left in the shopping cart, and user attempts to continue to take out,

another message box shows up:

If nothing left in the shopping cart, and user click on the “Go” button, COSA gives the

following message:

If user click “No™, this will terminate program. COSA presents ByeBye Window. See

Figure 15. If click on “Yes”, user will go back to Input Window to do another query.

i

Figure 15 Byebye Window

From the Total Window, if the user clicks on “Yes” button, the dialogue window shows

up, see the following window:

Query Window

w«ldyouhlobrmmoﬁumbefaemwada?

-_ﬂo_l

If the user clicks on “Yes” button, this will lead the user back to the Input Window (see
Figure 7) to do another catalogue browsing. This give the user another chance before
placing final order. If the user clicks on “No” button, he enters the Order/Validation

subsystem, which is given in the next section.

34

6. Order/Validation Subsystem

6.1 Placing an Order

If the user is satisfied with what he has put into his shopping cart, he wants to place an
order on them. Subsequently he enters the Order/Validation Subsystem. There is one

major window in this subsystem. See Figure 16.

= Order Window I X] l

" Your Shipping Address -
i Name: r S
(Apt.NO' o
.] Sweet™ —
s S Es<l<
' | Province: - “Enter Your.Card Number-)
| ZpCode:. - e
. : PhoneNo: [.
Hosst B

Figure 16 Order Window
If the user leaves everything empty in this window and click on “Go” button, the system

will respond with the following message:

Please iy agamn ’

35

In the shipping address Phone No. input box, user can only input numbers. If try to input
other characters, these characters will not show up in this box. Nothing appears! This also

improves user’s validation.

If the user filled up all the address boxes, then immediately click on the “Go” button, then

system presents a message:

If the user selected a credit card, but didn’t input card number and click on the “Go”

button, then system gives another message:

If the user inputs an invalid card number, the message will be presented to the user:

Invahd {{ard Number E3

[TR

L

If the user’s credit card has expired, then the system will present the message:

36

If the user inputs the correct card number and the card has not expired, then system gives

following message:

Vahd Casd

If user click on OK on this message window, then Thanks Window will shows up.

* Thanks Wlndow | X]

*'Your order has been approved and will be dellvered toyou
- within & busmess daysl

= lfyou have any quesﬁons
2, please call 1—800—9899006 ;

Flgure 17 Thanks Wmdow

6.2 Secure Payment

In order to make online shopper feel secure and safe, we have to address the secure

payment issues. In this project, I designed and implemented an ActiveX code component

to solve this problem.

37

6.2.1 What is ActiveX component?

An ActiveX component can be any of the following:

¢ A code component

e An ActiveX control

e An ActiveX document

Code components are server applications that expose their functionality through an
interface consisting of properties, methods, and events. The difference between ActiveX
controls and code components is that ActiveX controls have a visible interface and are
integrated into the Visual Basic IDE. Code components are classes that can be accessed

through properly declared object variables with the CreateObject() function.

ActiveX documents are applications that can be hosted in containers such as Intemmet
Explorer and the Office Binder. At this time, there aren’t many ActiveX documents on

the Internet, and it seems it will be a while to catch up.

ActiveX code components provide a functionality similar to that of ActiveX controls, but
they are not as integrated with the development environment (for example, you can’t drop
a code component on a Form as you can a control), and they don’t have a visible
interface. Instead, they must be accessed in the same way that built-in objets are accessed
with the object variables. ActiveX components are implemented as classes. They are
prototypes that can be used to create objects. Classes exhibit the two most important

benefits of object-oriented programming: Abstraction and Reusability .

38

6.2.2. Implementing In-Process and Out-of-Process Servers

A class module is a server—an application that provides its services to the client
application. When you create an object variable to access the properties and methods of a
class, you are actually invoking an executable file (DLL or EXE) that runs in the
background and waits to be contacted. Every time you set or read a property value or call
a method, this executable is activated, it performs some action, and, optionally, retums

some result to your application.

You can implement servers as ActiveX DLL or ActiveX EXE components. The
difference between the two is how the server is executed. An ActiveX DLL is an in-
process server. The DLL is loaded in the same address space as the executable that calls
the server, and it runs on the same thread as the client. At any given moment, however,
either the client application or the DLL is running. The benefit of DLLs is that they are

faster, because, in effect, they become part of the application that uses them.

An out-of-process server runs as a separate process. When a client application creates an
object provided by an EXE server for the first time, the server starts running as a separate
process. If another client application creates the same object, this object is provided by
the running EXE server. In other words, a single EXE server can service multiple clients.
Out-of-process servers seems to be more efficient in terms of resource allocation, but
exchanging information between servers is a slow process. Therefore, in terms of
execution speed, in-process servers are faster. In this project, I developed an ActiveX

DLL component.

39

6.2.3 Encrypt/Decrypt Process

Once a message has been encrypted, it can be stored on nonsecure media or transmitted
over a nonsecure network and still remain secret. Later, the message can be decrypted

into its original form. This process is shown in the following illustration.

Message Encryption | 'I i":g‘::g 'I Decryption _’:e":s'g:'e
(plaintext) Algorithm : (ciphertex) : Algorithm (laintex
f | ' t
Encryption : : Decryption
Key " i Key

Figure 18 Encrypt/Decrypt Process

Data encryption and decryption is a simple process. When a message is encrypted, an
encryption key is used. This is comparable to a key that is used to lock a padlock. To
decrypt the message, a decryption key must be used. The encryption and decryption keys

are often, but not always, the same key.

It is very important to keep the keys safe and transmit them securely to other users.
However, the challenge is to properly restrict access to the decryption key, because
anyone who possesses it will be able to decrypt all messages that were encrypted with the

corresponding encryption key.

6.2.4 Developing the Crypto Class
The cryptography engine used by the Cryto class is fairly simple, yet it will prevent most
occasional intruders. The encryption technique is based on the XOR operator, which has

the following unique property: If you XOR a character with another character, you will

get an encrypted version of the original character. If you XOR this character with the
same key character once again, you will get the original one. The Crypto class source

code is the following:

"Option Explicit

"local variable(s) to hold property value(s)
Private mvarText As String

Private mvarKey As String

Private mvarEncryptedText As String

Public Function Encypttext() As Integer
Dim textChar As String * 1

Dim keyChar As String * 1

Dim encryptedChar As Integer

If mvarText = "" Then
Err.Raise vbObjectError + 100, "Crypto.CryptoClass",_

"Can’t encrypt null text"
Encrypt = 0
Exit Function

End If

If mvarKey = "" Then
Err.Raise vbObjectError + 101, "Crypto.CryptoClass",_

"Encryption key not specified”
Encrypt = 0
Exit Function
End If

mvarEncryptedText =

For i = 1 To Len(mvarText)
textChar = Mid(mvarText, i, 1)
keyChar = Mid(mvarKey, (i Mod Len(mvarKey)) + 1)
encryptedChar = Asc(textChar) Xor Asc(keyChar)
mvarEncryptedText = mvarEncryptedText &

Chr (encryptedChar)
Next
Encrypt = 1
End Function

Public Property Get EncryptedText() As String
EncryptedText = mvarEncryptedText
End Property

Public Property Let Key(ByvVal vData As String)
mvarKey = vData
End Property

41

Public Property Get Key() As String
Key = mvarKey

End Property

Public Property Let Text(ByVal vData As String)
mvarText = vData

End Property

Public Property Get Text() As String

Text = mvarText
End Property

We can make a Crypto.dll file from the VB environment and put this file into Windows
NT or 95/98 system directory, then we register this component by issuing this command
under dos command line (two files in the same directory): regsvr32.exe Crypto.dll

Then we can refer this component in the project. See Figure 19.

References - Shoppinglienter vbp

* Avaiable References: - ,

] visual Basic For Applications

@] Visual Basic runtime objects and procedures

¥l visual Basic objects and procedures

vl OLE Automation

V] Microsoft DAO 3.51 Object Library

‘¥ Microsoft Direct Speech Synthesis

] Microsoft Direct Speech Recognition

] Microsoft Direct Speech Synthesis

@] Microsoft ActiveX Data Objects 2.0 Library

: % Microsoft Internet Controls

- [

] Active Setup Control Library

v | ActiveMovie control type library
: ‘_1 heServIet 1, 0 Tvoe Lbrarv

2 e S T

Flgure 19 Reference to Crypto.dll component

After we make a reference to this component, we can use it the same way as any other

component. For example, we can create an object called CryptoObj as the following:

42

Private CryptoObj As New CryptoClass

Private secretText As String

"encrypt the credit card number contained in mskBox.Text
CryptoObj.Key = "cindig928"

CryptoObj.Text = mskBox.Text

Call CryptoObj.Encypttext

secretText = CryptoObj.EncryptedText

If the card number is 123456789001 then the encrypted string stored in the Oracle

database will look something like the following figure:

2 Diacle SUL "Plus [1038 x|

fie Edt Search (ptions Help - ..
SQL=Plus: Release 8.8.5.8.8 - Production on Sun Apr 25 17:36:28 1999

T A TR e e R IR TR e e S Y

(c) Copyright 1997 Oracle Corporation. ARll rights reserved.

Connected to:

Oraclef Enterprise Edition Release 8.8.5.0.8 - Production
With the Partitioning and Objects options

PL/SQL Release 8.8.5.0.8 - Production

SQL> select cusname, city,toyname, quantity , credit, type from sy_order;

CUSNAME CITY TOYMNAME QUANTITY CREDIT

Suangyu Li Montreal Pat the Bunny 2 X\W]BEEB[P"TX)

Desai Monreal Bike 1 X\W]BE8[P"TX ..

sqL> | o
v

o | . e e e e e o

Figure 20 Oracie SQL Plus windoW showé the éncrypted card number

To decrypt the card number, we have the following code (the decryption window will be

presented in Section 7 Database Subsystem):

‘decryption

CryptoObj.Key = “cindi928”

CryptoObj.Text = rs.Fields (“CREDIT”)

Call CryptoObj.Encypttext

txtCreditNumber.Text = CryptoObj.EncryptedText

The encryption engine I implemented for the Crypto class isn’t terribly secure. The
problem with this scheme is that it uses a fixed-length key. If the original text contains a

pattern of asterisks, dashes, or other special characters, the length of the key will become

43

evident. One simple trick to make this encryption scheme more secure is to blend the key
with the text as you move along. When you run out of characters in the key, you wrap the
key and start with its first character again. But you can replace it with a new key, based
on the text characters you’ve encrypted already. For example, instead of using the first
character of the key for a second time, you can XOR its first character with the first
character of the text and use the result of the operation as the first character of the key.
This process is reversible, because when you run out of characters in the encryption key,

the first few characters of the original text will be available.

7. Database Subsystem

7.1 Database Design

There are three tables in this project database, MY_CUSTOMER, TOY, and

MY_ORDER. Each of them is described below.

MY_CUSTOMER has following fields:

CREATE TABLE MY_CUSTOMER

CUTID

CUTNAME

CDTYPE
CDNO

EXDATE

CUTID
CUTNAME
CDTYPE
CDNO
EXDATE

customer id;
customer name;

credit card type;

(

VARCHAR2
VARCHAR2
NUMBER
VARCHAR2
DATE

credit card number;

credit card expire date.

TOY table has following fields:

CREATE TABLE TOY (

TOYID
TOYNAME
AGERANGE
UNITPRICE
SPECIAL
TOYIMAGEPATH
CHINESE
FRENCH

NOTES

URL

45

(
(
(
(

3, 0)

NOT NULL.,
NULL,
NULL,
NULL,

NULL

10)
20)
NOT
NOT
NOT

20)

NUMBER (
VARCHAR2
NUMBER

NUMBER

VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2
VARCHAR2

PN NN NN NN NN

11, 0)
50)

3, 0)
12, 2)
50)
50)
255)
255)
255)
255)

NOT
NOT
NOT
NOT

NOT

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL

TOYID toy id;

TOYNAME toy name;
AGERANGE this toy is suitable for which age range;
UNITPRICE unit price;
SPECIAL whether this toy is special offer or not;

TOYIMAGEPATH image directory in the hard disk

CHINESE Chinese comments/suggestions
FRENCH French comments/suggestions
NOTES English comments/suggestions
URL producer web site address

MY_ORDER has following fields:

CREATE TABLE MY_ORDER (

CUSNAME VARCHAR2 (
APTNUMBER VARCHAR2 (
STREET VARCHAR2 (
CITY VARCHAR2 (
PROVINCE VARCHAR2 (
ZIPCODE VARCHAR2 (
PHONE VARCHAR2 (
TOYNAME VARCHAR2 (
ORDERDATE DATE,
QUANTITY Number NOT
CREDIT VARCHAR2 (
TYPE VARCHAR2 (
EXPIRYDATE DATE

):

CUSNAME customer name;

APTNUMBER apartment number;

STREET street name;

CITY city name;

PROVINCE geographical province;

20)
10)
20)
20)
20)
15)
20)
20)

NULL,
20)
5)

NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

NOT NULL,

ZIPCODE postal code;

PHONE telephone number;
TOYNAME ordered toy name;
ORDERDATE the date of order;
QUANTITY number of ordered toy;
CREDIT credit card number;
TYPE credit card type.
EXPIRYDATE expiry date of credit card.

7.2 Customer Order Form

This is the server side GUI to provide a convenient way to check the order placed by a

customer for product delivery. See Figure 21.

[~ Cotome Do
+ ~Customer Order Info—— RN
~|'Name " [GuangyuLi
< fapm#ct [1805
| 'steet . [Mackay

&
i

Quebec

de . JH2G1IHY
% [5149839006
|PottheBunny

L]

O i LA A R I D ID TR
ST T

[123456783001

@ericanExp_rejs §

Fxgure 21 Custon;;:f Orcicr Foim V

Note that the Credit Card number has been decrypted. See Figure 20 to compare.

47

8. Usability Testing

8.1 What is Usability?

Usability is clearly defined as “...convenient and capable for use...” [Rhi71]. The term
usability to describe effectiveness of human performance was first used by Bennett
(1979). In the following years a more formal definition was proposed by Shackel (1981)
and modified by Bennett (1984). Finally Shackel (1991) simply defined usability as “the

capability to be used by humans easily and effectively”, where

easily = to a specified level of

subjective assessment

effectively = to a specified level of

human performance [Wog97]

Usability is not a consideration but can be crucial to acceptance and success of a product
in the marketplace. In recent years the technical areas of human factors engineering and
ergonomics have focused a great deal of attention on the usability and ease of use of

machines and systems by people to enhance human productivity. [Rhs85]

8.2 Usability Testing
Usability testing is a generic name for a set of methods based on having evaluators

inspect or examine usability-related aspects of a user interface. The set of methods can be

Heuristic evaluation, Guideline reviews, Consistency inspections, Cognitive
walkthroughs, etc. [RJ95] Usability inspectors can be usability specialists, end users with
content or task knowledge, or other types of professionals. In this case, I use empirical

evaluation for the usability testing.

The main goal of testing is to improve the COSA system user interface. It is concerned
with making the systems easy to use and easy to learn. I focus a great deal on the

following issues:

e The relevance of the system, how well it serves the users’ needs

e The efficiency, how efficiently users can carry out their tasks using the system

e The users’ attitude to the system, their subjective feelings

e The leamnability of the system, how easy the system is to learn for initial use and
how well the users remember how to use the system

e The safety of the system, giving the users the right to “undo” actions and not
allowing the system to act in a destructive way, e.g., to cancel a shopping item

without confirmation of the user.

8.3 Empirical Test

There are total of 5 different users who performed the testing. The testers were computer
science students aged from 26 to 34 who had never seen the application before and were,
therefore, total beginners. The users were given written instructions (see Figure 22) on

paper and an opportunity to ask any questions they liked before the test started. When

49

the test had started, questions were not answered directly, instead they were answered
with a question. For example, if the user asked “What do I do now?” the answer would
be of a general type like “What do you think you could do?” No further help was given

during the test.

Electronic Shopping Assistant (ESA)

ESA is a tool where you can get information about toys and make order for
your own or others.

Please try to reach the four following goals:

1) You want to buy some toys for different people, one for a young adult,
two for your friend’s baby, three for yourself and five for your friends.

2) After you know the total price is out of your budget, you decide to buy
only two toys for your friend’s baby.

3) You changed your idea again after you know you can afford more than
two toys, so you decide to select another two toys for yourself.

4) You make an order for the above four toys using your American Express
credit card. Your card number is 123456789001.

Figure 22 Empirical Usability Testing instructions

The test consisted of four goals the user had to reach which were chosen in such a way to

force the user to examine different features of the system.

To get the subjective feeling of the users about their experience with the use of the

system, we produced a short questionnaire. The answers to it are also shown below.

a. Did you have any problems during the test?

e Did not get any feedback when moving the mouse

50

b. Which part was the most difficult (if any), or the most irritating?

¢ Didn’t get enough information about the contents in the shopping cart in order to take
out some particular toys.

c. Would you use this software (an improved version) in the future? Why, or why not?

® Yes, probably, it is useful because it make shopping much easier and more enjoyable.

An advantage of performing a user test is that you actually see the user using the
application which can give you additional information about how to improve the user

interface. The aim was also to see which task the user performed and the errors he made.

I observed the users during the tests of the system, what they did and what they said, and
what problems they seemed to have. Based on this data, i.e., observations of the users
during their use of the system, I tried to draw some conclusions as to how the user
interface should be changed and improved. These empirical conclusions are based on the
answers to the questions above and on the background knowledge of user interface
evaluation. During the test I didn’t give any time constraint to the users and the users did

not receive any help from the observers.

The most important observations were:

After users put many toys into their shopping cart, and want to cancel some of them, they
forgot which one should be taken out of their cart. The reason is in the “Change
Window”, I show the contents of the shopping cart in a “List Box™ without corresponding

images. The users could not remember all of them.

51

8.4 Modification of GUI based on usability testing
Therefore, an improved version of the system should include improvements on these

issues. I decided to change the user interface as follows:

e Provide some feedback when moving the mouse over “clickable” objects

e Change some labels and messages, providing useful and helpful information

e Add toy images in the “Change Window” to visualize corresponding toys in the
shopping cart, also add the scroll bar to speed up user’s action of cancellation.

e Make the font bigger.

This information did not change the user interface drastically. That is, I did not perform
major changes, such as changing the structure of the program. Instead I made smaller
changes that users will notice when they actually use the application. The most visible
changes were made in the Change Window part (see Figure 14) compared with the
previous one (See Figure 23). The changes can be seen in the image area and the
removal of the “List Box”. I also place the image area on the right side of the Change
Window because I know the controlling object should be put on the left hand side, the

controlled object on the right side of the window.

User task analysis plays a key role in Ul requirement specification. User-centered system
design enhances software product usability. I conform the interface design to the

Microsoft Windows 95 standard, so make it consistent with other MS Windows

52

applications. I also noticed that developing a good GUI system requires people good at

design, writing, test and evaluation, and coding.

w. Change Window =] E3
Ll

List Box

Company
logo

g ey 0 T

Figure 23 Previous Change Window

53

9. Summary and Future Work

9.1 Summary

The rapid development of the Intemnet is changing the way commerce is conducted, and is
leading to economic globalization. Electronic commerce is becoming a major channel for
conducting business, with more and more organizations developing, deploying and

installing electronic commerce products, applications and solutions.

Concordia Online Shopping Assistant (COSA) is motivated by the idea that online
shopping should be more enjoyable and get more attention of potential consumers.
Without current state of the art technology available we could not achieve that goal.
COSA takes advantage of the latest technology available from Microsoft Visual Basic 6,
MS Speech SAPI 4.0a SDK (released in February 1999), and Oracle 8 Universal

Database Systems.

The current version of COSA has some unique features, namely multimedia and
intelligence. It can response to the user’s action quickly and intelligently. It has three
language versions, English, French and Chinese to serve majority in the world. This is
especially useful for the multicultural environment in the Internet community. COSA also
supports heterogeneous data sources such as ISAM data sources, ODBC data sources
(Oracle, DB2, Sybase, MS SQL Server, etc.) to meet the diversity of available data on the
Internet. It also has the distributed features such that the databases could be located

anywhere on the Internet.

54

9.2 Future Work

The secure payment has been addressed for a long time in the E-commerce world and a
dedicated web site has been set up at hup://www.semper.org/sirene/outsideworld/security.hemi#crytool
The current version of COSA system has not addressed this issue considerably.
Advanced encryption algorithm should be considered for use. PGP, Pretty Good Privacy,
is a high security RSA public-key encryption application for MS-DOS, Unix,
VAX/VMS, and other computers. PGP encrypts data using the Intermational Data
Encrypt-ion Algorithm with a random session key, and uses the RSA algorithm to encrypt
the session key. So it is more secure than the algorithm used in COSA project. There is a
real world example NetMarket (http://www.netmarket.com/) based on PGP and

Mosaic/Netscape. Future work could focus on using PGP to make COSA more secure on

payment.

COSA is a two-tiered client/server application. The current version has not been tested on
physically separated client and server machines. The two-tiered client/server
configuration diagram is given below (see Figure 24). Oracle’s SQL*Net allow database
clients to access a database remotely. SOL*Net is a multiprotocol proxy which forwards
database requests from the current host to the host that has the data. This proxy
component can be thought of as middle tier, sitting between the application and the

databases the application uses.

The detailed information of configuration of both client and server machine is given in

the user manual. Future work also can be done to test COSA on separate machines. The

55

networked NT machines (except the one in LB-928 on which I worked) in the
Department of Computer Science at Concordia University has not been installed the
necessary Oracle network software at this writing. So whenever you configure the client

machine through the ODBC applet, you will get the following message:

Miciosoft DDBU Daiver tor (hiad e

Q I

[: N | [: -j L : N |
i i i
Vi " W Microsoft Jet
Database Database Database 83?53
Engine Engine Engine
N N
l |
I I
! i
i !
! I
| i
I i
| J
[
|
L Network
Server
————— Engine Requesting data from database

—————— Engine passing query results of server
Database server returning rows to local
database engine

Figure 24 Client-server configuration

56

Bibliography

[AF98]

[Com99]

[ID99]

[Jos95]

[Rhi71]

[Rhs85]

[RJ9S]

[SK95]

[Wog97]

[XATHI6]

Andreas Lecerof, Fabio Paterno, Automatic Support for Usability Evaluation,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, Vol. 24, No.10,
October, 1998.

Computer Paper, www.tcp.ca, Eastern(Montreal Area) Edition, May 1999,

Volume 12, No.5

John W. Fronckowiak, David J. Helda, Visual Basic 6: Database Programming,

IDG Books Worldwide, Inc., pp9, 1999
Joseph B. Greene, Oracle DBA Survival Guide, Sams publishing, 1995.
The Random House Dictionary of the English Language, Random House Inc.
pp-1573, 1971.
Richard H. Spencer, Computer Usability Testing and Evaluation, Prentice -
Hall, Inc., pp.10, 1985.
Robert L. Mack, Jakob Nielsen, Usability Inspection Methods: Executive
Summary, Readings in Human-Computer Interaction: Toward the Year 2000,
Morgan Kaufmann Publishers, Inc., pp.172, pp.176-179, 1995.
R. Steinmetz and K. Nahrstedt, "Multimedia: computing, communications &
applications", Prentice Hall PTR, 1995.
Wilbert O. Galitz, The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques, John Wiley & Sons
Inc., pp.87, 1997.
Xuedong Huang, Alex Acero, Jim Adcock, Hsiao-Wuen Hon, Intemational

Conference of Spoken Language Processing, Philadepphia, 1996.

57

