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ABSTRACT

Simulation of 3-D Viscous Compressible Flow in Multistage
Turbomachinery by Finite Element Methods

Mohamad Sleiman, Ph.D.
Concordia University, 1999

The flow in a multistage turbomachinery blade row is compressible, viscous, and
unsteady. Complex flow features such as boundary layers, wake migration from
upstream blade rows, shocks, tip leakage jets, and vortices interact together as
the flow convects through the stages. These interactions contribute significantly
to the aerodynamic losses of the system and degrade the performance of the
machine. The unsteadiness also leads to blade vibration and a shortening of its
life. It is therefore difficult to optimize the design of a blade row, whether
aerodynamically or structurally, in isolation, without accounting for the effects of
the upstream and downstream rows. The effects of axial spacing, blade count,
clocking (relative position of follow-up rotors with respect to wakes shed by
upstream ones), and levels of unsteadiness may have a significance on

performance and durability.

In this Thesis, finite element formulations for the simulation of multistage
turbomachinery are presented in terms of the Reynolds-averaged Navier-Stokes
equations for three-dimensional steady or unsteady, viscous, compressible,

turbulent flows. Three methodologies are presented and compared.



First, a steady multistage analysis using a mixing-plane model has been
implemented and has been validated against engine data. For axial machines, it
has been found that the mixing plane simulation methods match very well the
experimental data. However, the results for a centrifugal stage, consisting of an
impeller followed by a vane diffuser of equal pitch, show flagrant inconsistency
with engine performance data, indicating that the mixing plane method has been

found to be inappropriate for centrifugal machines.

Following these findings, a more complete unsteady multistage model has been
devised for a configuration with equal number of rotor and stator blades (equal
pitches). Non-matching grids are used at the rotor-stator interface and an implicit
interpolation procedure devised to ensure continuity of fluxes across. This
permits the rotor and stator equations to be solved in a fully-coupled manner,
allowing larger time steps in attaining a time-periodic solution. This equal pitch

approach has been validated on the complex geometry of a centrifugal stage.

Finally, for a stage configuration with unequal pitches, the time-inclined method,
developed by Giles (1991) for 2-D viscous compressible flow, has been extended
to 3-D and formulated in terms of the physical solution vector U, rather than Q, a
non-physical one. The method has been evaluated for unsteady flow through a

rotor blade passage of the power turbine of a turboprop.
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1. Introduction

The flow fields of compressors and turbines in gas turbine engines are quite
complex and can only be fully described by unsteady, viscous, and turbulent
models. Complex flow features such as boundary layers, wake migration from
upstream blade rows, shocks, tip leakage jets, and vortices interact together as
the flow convects through the stages. These interactions contribute significantly
to the aerodynamic losses of the system and degrade the performance of the
machine. It is therefore difficult to optimize the design of a blade row in
isolation, without accounting for the effects of the upstream and downstream

blade rows.

Aircraft gas turbine engines are designed with two conflicting objectives: low
weight and compact size, and high performance and durability. In view of such
design objectives, the unsteady nature of the flow field and multistage effects
become important considerations in the design process, especially if small,
incremental gains in aerodynamic performance are to be attained. Over the past
two decades, research efforts by gas turbine engine manufacturers have
concentrated on the use of experimental testing as well as computational fluid
dynamics to study the flow phenomena within a blade row passage embedded in

a multistage environment.

In the following sections, various methods for the computation of steady and

unsteady flow in a multistage configuration are described.



1.1 Sources of Unsteadiness in Turbomachinery
The unsteady nature of turbomachinery flow stems from various sources. An
understanding of these sources of unsteadiness brings an appreciation of the

major difficulties encountered in resolving such complex flows.

The first source of unsteadiness to be considered is due to the interaction of
potential fields [1,2]. This inviscid effect is based on the relative motion of blade
rows with different fields of lift force. These fields interact in time and primarily
affect the flow pattern in the gap region. As shown in figure 1.1, the potential
field interaction generated by the stator is felt as an unsteady flow by the
downstream rotor and, conversely, the potential field interaction generated by a
rotor is felt as an unsteady flow by the upstream stator. These fluctuating forces
on blades and vanes are arguably the most obvious unsteady effects in multi-row
turbomachines, and they are clearly of great importance from an aeroelastic

viewpoint.

Viscous boundary layers, wakes and secondary flows, which all propagate in
time across the downstream airfoils, comprise another leading source of
unsteadiness. Flow around airfoils creates a total pressure wake which is
persistent in time. As the wake leaves the airfoils, it typically compromises a
zone of about 1/20th the width of a blade passage, having zero velocity at its

center.

Unsteadiness also causes the forced vibration/flutter phenomenon in which a
small oscillation of the blade/fan produces an unsteady force and moment on the

blade.



Finally, other major sources of unsteadiness are due to the inlet flow variations in

time, occurring mainly during takeoff, rotating stall and surge.

1.2 Steady Rotor-Stator Interaction

1.2.1 Through-Flow Method

The Through-Flow method assumes that the flow is steady and represents an
interaction between separate 3-D solution domains for individual blade rows and
an axisymmetric 2-D (through-flow) plane covering the whole turbomachine.
The 3-D effect of the flow is introduced by circumferential averaging of the 3-D
equations [3,4]. Although the flow in every blade row is supposed to be linked to
an axisymmetric average model, the axisymmetric model for one turbomachine
should be unique. For a multi-row machine, the through-flow solution is used to
obtain the necessary boundary conditions for individual blade row 3-D solutions
while the 3D solutions are used to incorporate loss modeling and blockage effects
into the through-flow. Although the scheme has moderate computer
requirements, it smears the transport of flow features between blade rows and
lacks the complete effect of multistage environment representation while solving

for one blade row.

1.2.2 Mixing Plane Method

The Mixing Plane method is seen as an improvement to the through-flow
approach, although it retains the steady flow assumption. This method couples
the 3-D solutions of adjacent blade rows by averaging, at an inter-row mixing
plane, the quantities necessary for conservation laws and then passing them
axisymmetrically to the adjacent blade row [5]. The averaging procedure is
applied to the exit-plane of the upstream blade row and to the inlet plane of the

downstream blade row to extract the so-called "mixed out" flow properties from



the numerical solution [6]. In this approach, the proper interface boundary
conditions are specified. Circumferentially-averaged radial profiles of absolute
total temperature, density, radial velocity, absolute tangential velocity and axial
velocity, obtained from the solution of the upstream blade row, are specified at
the inlet plane of the downstream blade row. The circumferentially "mixed out"
static pressure, obtained from the solution of the downstream blade row, is then
specified at the exit plane of the upstream blade row. The above procedure is
repeated at every Newton iteration until the equations are appropriately
converged, and the mass flow rate and the circumferentially-averaged radial
profiles, obtained from the upstream and downstream blade rows, are matched
within a user-specified tolerance [7]. The advantages of this method include its
ability to represent a multistage environment, while solving for an individual
blade row at a time and the iterative determination, rather than sequential

imposition, of inter-row boundary conditions.

1.2.3 Average-Passage Flow Method

The Average-Passage Flow approach considers a time-averaged flow field, over a
time interval which ensures temporal periodicity, as seen by an observer whose
frame of reference is fixed with respect to a given blade row [8-9]. Relative to an
individual blade row’s frame of reference, a 3-D solution is defined which
represents the domain of the whole turbomachine. The effect of unsteadiness due
to other blade rows is accounted for using time and space averaging. Since Euler
or Navier-Stokes equations are nonlinear, the time-averaging will include a
correlation between time varying flow variables. This correlation represents the
effect of unsteadiness on the time-averaged solution and constitutes, with body
forces, energy sources and the space-averaging correlation, the closure

requirements for the average-passage equations. The average-passage model is



derived by applying three averaging operators to the governing equations:
ensemble-averaging, time-averaging and “passage-to-passage” averaging.
Ensemble-averaging the Navier-Stokes equations yields the familiar Reynolds-
Averaged Navier-Stokes equations. After time-averaging, the periodic
unsteadiness in the flow field is filtered out. Finally, "passage-to-passage"”
averaging is applied to account for the spatially aperiodic components of the
flow field [8]. As a result of these averaging procedures, the so-called
“deterministic stresses” term appears in the passage-average Navier-Stokes

equations.

In contrast to the mixing plane approach, in which the exit plane of the upstream
blade row and the inlet plane of the downstream blade row are located at the
same axial position, the passage averaging approach uses an overlap between the
grids of the upstream and the downstream blade rows to account for body forces

and deterministic stresses [8].

The advantage of the average-passage scheme is that temporally and spatially
averaged equations are solved on a steady basis and the solution is intended to
represent the total effect of all other blade rows. The disadvantages of this
method include the complexity and rising cost for multistage cases, as well as the

uncertainty concerning the correlation models.

1.3 Fully Unsteady Rotor-Stator Interaction
The simulation of the unsteady flow phenomena present in turbomachinery
stages requires fine grids to resolve flow features with very small time scales and

to accurately capture turbulence. Such computations are characterized by their



high demand of computer memory and solution time. To reduce their cost, the

state of the art description of the flowfield is currently as follows:

e unsteady phenomena occurring at high time frequencies are unresolved
e unsteady interactions between wakes and laminar-turbulent boundary layers
are not accounted for in the turbulence modeling

e computations are carried out with the minimum number of rotor and stator

passages

In the fully unsteady approach, the time-dependent Reynolds-Averaged Navier-
Stokes equations are solved throughout the computational domain, comprising
all rotors and stators, with no averaging of flow properties at any interface
planes shared by rotor and stator rows. The time-accurate flow properties are
communicated via an interpolation procedure which is applied at such interfaces.
Although the advantage of the approach lies in the fact that no closure
requirements are involved, it is expensive in terms of computing time and
memory [10]. This, however, is the most realistic approach and its drawbacks

will quickly disappear with the advent of powerful computers.

1.3.1 Flow Periodicity in the Gap Region

The flow field in the gap region, between successive rotor and stator rows, can be
described as a function of its spatial and temporal periodicity. To investigate the
various time frequencies present in complex single stage configurations, one
should consider first the simplified case of inviscid flows, which neglect the

unsteady interactions caused by viscous phenomena.



For equal pitches, the flow solution vector U on the upper periodic boundary is

identical to that on the lower periodic boundary at the same time, that is,

U(r,0,z,t) = U(r,0 + %c,z, t) (1.1)

However, a lagged periodic boundary condition is required for unequal pitches.
This can be easily understood by viewing figure 1.2, which depicts the stator-
rotor configuration at two different instances in time, t=0 and t=AT. The
relative position of stator2/rotor2 at time t=AT is identical to the relative
position of statorl/rotorl at a previous time t=0. A similar relationship to (1.1)
can then be defined, using the time periodicity based on the absolute difference
between pitch distances. Thus, the flow solution on the upper periodic boundary
at time t = AT is identical to that on the lower periodic boundary at time t=0, that

is,
2r
U(r,0,z,t) =U(,0 + _I\T ,Z,t +AT) (1.2)

0, — 6
Q

AT=T, -T, = (1.3)

where AT is the time lag,
T, and T; are the blade-passing periods,

8; and B are the pitch angles,

Q is the angular speed of the rotor.

This description of periodicity in a single stage configuration has been based only

on geometric and constant parameters such as blade count and angular speed.



Therefore, it can only describe the periodicity associated with inviscid or
potential unsteady interaction. Viscous flow phenomena, however, interact in
time and drastically affect the flow field in the gap region. A mathematical
description of the unsteady viscous interactions and their corresponding time

frequencies is quite difficult to formulate and achieve [6].

1.3.2 Single-Stage Configuration with Equal Pitches

The special case of a single stage configuration with equal blade count, shown in
figure 1.3, has been resolved by Gundy-Burlet [11]. However, such a simple
configuration, common for hydraulic compressors, blowers, turbines or fans,
seldom occur in aircraft applications. Due to the spatial periodicity of the flow
solution, the computational domain may encompass only a single blade-to-blade
passage. Along the periodic boundaries, a rotation periodic boundary condition
may be imposed, as in references [12,13]. The flow solution vector U along line
(ab) is identical to the flow solution along line (cd) or vice-versa. The solution is

then interpolated and interchangeably used across the interface.

1.3.3 Single-Stage Configuration with Unequal Pitches

In a single stage configuration with unequal pitches, the flow solution vector U
does not possess a single blade-to-blade passage periodicity (fig. 1.4). At the
expense of extremely large memory requirement and solution time, a complete
numerical description of the flow field can be obtained by solving for the entire
stage geometry (360° or full annulus). To circumvent this problem, various
numerical techniques have been developed to recover the spatial periodicity on a
truncated computational domain, using corrected boundary conditions along the

periodic boundaries and the sliding interface.



The truncated computational domain contains K; blade passages for both rotor
and stator rows. Using equation (1.2), the boundary conditions along the periodic

surfaces can then be defined as

ZEKi Z,t+AT)) (1.3)

U,(r,0,z,t) =U,(r,0 +

The next section describes the boundary condition requirements for a "reduced"

or truncated computational domain.

1.3.4 Boundary Conditions
For a single-stage configuration, the following boundary conditions may be
imposed to uniquely define the unsteady flow on a truncated computational

domain:

» At inlet boundary, the flow is assumed to be steady and the total pressure,
total temperature and flow angles are specified

» Along the airfoil surface, the no-penetration and no-slip conditions are
imposed

e At the exit boundary, the flow may be described by using the radial
equilibrium equation, imposing a constant exit static pressure, or imposing a
constant mass flow

e The use of a truncated computational domain requires that special treatment
of boundary conditions along the sliding interface and the free or "spatially

periodic” boundaries, as shown in figure 1.1.



The next section describes the various methods used for the computation of the

flow field through a single turbomachinery stage with unequal pitches.

1.3.5 Domain Scaling Method
The time periodicity term of the flow solution vector U is present only for cases
with unequal pitches (N, #N,). The approach taken in the domain scaling

method eliminates this time periodicity term by using multiple blade passages
with integers K and K, such that % =£I\<I—2— . In doing so, equation (1.3) becomes

1 2
identical to equation (1.1). A case with blade counts N, =12 and N, =4 would

require the computational domain to have K, =3 and K, =1 blade passages.

When the blade count of the first row is not a multiple of the blade count of the

second, integers are then chosen such that g—‘ is very close to %, and K, and

1 2

K, are kept small compared to N, and N, so as to reduce memory and solution

time. Spatial periodicity of the flow is recovered by scaling the geometry of each
blade row by -E—'— . The pitch-to-chord ratio is kept identical in order to maintain

same blade loading. The scaling procedure results in equal circumferential

distances on each side of the interface.

The domain scaling method is applied to a stator-rotor configuration in figure

1.4. Figure (1.4a) shows the truncated computational domain consisting of one
blade passage on the stator side K, =1 and two blade passages on the rotor side

K, =2. The scaled rotor geometry is presented in figure (1.4b) and the distance
covered by two rotor pitches is now identical to that of one stator pitch. At each

time step t, the required boundary conditions become:
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e The flow solution vector U along the periodic segment (ab) is identical to that
along the periodic segment (ef).

e Segment (cd) is shared by rotors 1 and 2 and, hence, has identical boundary
conditions

e The conservation of flow variables U should be imposed across the interface,

which connects surfaces forming a non-conforming domain.

This methodology has been used by Rai [14,15], who studied a turbine stage with
N, =22 stator blades and N, =28 rotor blades (gL=O.79 ). He assumed that

2

only 22 rotor airfoils were present in the stage geometry. Thus, he scaled the

rotor geometry by a factor N, .28 and solved for only one blade passage on
2

either side of the interface. The accuracy of the flow solution obviously depends
on the difference between the two ratios. At the expense of larger solution time
and memory requirements, Rai and Madavan [16] and Sharma [17] both
improved the accuracy of the flow solution obtained earlier by Rai., using a

computational domain with K, =3 stator and K, =4 rotor blades Ly =0.75.
2

The Domain Scaling method has been used primarily for two-dimensional flow
problems. Its extension to three-dimensions is not trivial, as the variation of
radius along hub and shroud boundaries makes the geometry scaling difficult to
achieve. Other applications of the methodology have been carried out by Dawes
[18], Kelecy [19], Micklow [20], McConnaughey and Griffin [21], Rangwalla [22],
and Gundy-Burlet [11].

11



1.3.6 Gradient Scaling Method

In contrast to the domain scaling method, in which the scaling is applied to the
geometry of the computational domain, the approach undertaken in the gradient
scaling method applies the scaling to the azimutal gradients of the flow solution
vector U. Fourmaux [23], Lemeur [24], Paulon [25] and Billonnet [26] have all
used the gradient scaling method, with multiple blade channels K, and K,.

The application of gradient scaling methodology is shown in figure 1.5, using the
computational domain presented earlier in figure 1.4. The proper flow
information is exchanged across the interface, line (ag) of stator row and line (ae)
of rotor row, using a surface interpolation algorithm. The gradient of the primary
aerodynamic quantities, along a constant radius at the interface, remains
tangentially proportional to the angular sector of the domain under

consideration.

The key features of the gradient scaling method may be summarized as follows:

e The gradients of the flow variables are scaled at the interface

. . N, . N,
e The solution accuracy is improved when —' is close to —*
[ 2

e Interpolation of flow quantities is required for the exchange of flow
information across the interface; and simple rotation periodicity is imposed
along the periodic segments

e This technique may be easily extended to multiple rows.

1.3.7 Direct Storage Method
The direct storage technique assumes explicitly that the flow solution vector U is
both periodic in time and space in order to define the proper boundary -

conditions to be applied to the truncated computational domain. As indicated in

12



figure 1.6, the flow solution, at any particular passage at an instant in time t, is

related to the flow solution in another passage at an earlier time.

Erdos [27] and Koya and Kotake [28] used this numerical technique in which the
flow solution in the dummy cells of a given periodic boundary is interpolated
from the flow solution of the first inner cells of the connected periodic boundary,
with a flow solution that was stored at a previous time. In order to resolve only
one blade passage for either the stator or rotor sides, the interface boundary is
treated in a manner similar to the periodic boundaries. Dummy cells, which
overlap the interface surface in the axial direction, are used and the flow solution
is saved on either side of the boundary for at least one blade passing period of
the row containing the maximum number of blades. The treatment of a two-

dimensional interface boundary by the direct storage method is described in [28].

This method requires large data storage for three-dimensional flow applications.
The use of boundary data from an earlier time on the opposite periodic surface
may also delay the convergence to the unsteady flow solution [29]. In fact, the
direct storage method directly imposes that the flow is periodic in time, with a
period based uniquely on the blade passing frequency. This treatment of periodic
boundary conditions may not be appropriate for viscous flows where unsteady

phenomena may occur, at various time frequencies, simultaneously.

1.3.8 Chorochronic Periodicity Method
The chorochronic periodicity method was first proposed by He [30,31] and, He
and Denton [32], as having reduced memory requirements compared to the

direct storage method.
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Along each side of the interface, the flow solution vector is expanded in a double
Fourier series for time and spatial periodicity. Since most of the Fourier
coefficients are zero, with the space-time periodicity condition, the double
summations can be performed with reduced computing time. Momentum and
flow conservation at the interface are expressed in terms of Fourier coefficients.
In contrast to the direct storage method, at each time increment the Fourier
coefficients are stored instead of the flow solution vector U, thus reducing the

demands on memory.

The chorochronic periodicity method was generalized for the treatment of the
interface boundary by Gerolymos [33], who investigated a test case with 25

Fourier coefficients on each side of the interface.

1.3.9 Time-Inclined Method (TIM)
The time-inclined methodology (fig. 1.7) has been defined by Giles [34] and
implemented for rotor-stator flow simulations by Giles and Haimes [35], Jung

[36,37] and Stetter [38].

The following reversible time-space variable transformation, shown below,

r'=r
8'=0 1.4)
z'=z
t'=t-2A0
AT
_é_ stator (1 5)
—_ S .
h= A
— rotor
0
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is applied to each side of the interface. It should be remarked that equation (1.1)
is satisfied since the space and time periodicity are expressed directly in the
transformation of equation (1.4). The governing flow equations must also be

transformed using equation (1.4), yielding for inviscid flows the following

expressions:
0 19 19 d D
~ 2 (A)+——=(B C)+—=0
ot’ Q-+ r’ or’ )+ r’ 89'( » 8r’( W r’ (1.6)
o=u-‘g (1.7)

r
For inviscid flow computations, the vector of conservative flow variables U can
be obtained from Q in closed form [39]. However, for viscous flow
computations, the vector Ucannot be computed from Q since it now includes
viscous stress terms. These viscous stress terms are simply neglected in the work
of all authors of this method and are comparable in magnitude to those usually
neglected in the thin shear-layer Navier-Stokes equations under the high

Reynolds number condition.

The time-inclined method can be easily programmed but may only be applied in
cases of a single stage. The solution of equations (1.6-1.7) is subject to the

following constraint:

M, (1.8)

[ —— s9—5s1+
0, 1+ M,

where M, is the wheel Mach number,

M, is the circumferential Mach number
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Therefore, stator-rotor configurations with a large difference in their pitch
distances cannot be simulated using a single blade passage on either side of the

interface.

At the interface boundary, Giles [34], Giles and Haimes [35] and Eulitz [40]
considered separate grids for both the rotor and stator parts, and connected them
by a one-cell layer. At each time step, each stator grid node along the interface is
connected to the nearest grid node from the rotor side boundary, thus forming a
cell layer between the two grids. On each grid, the flow solution is computed
using local grid-relative variables. Along the interface cell layer, however, all
flow variables are converted back to the stator frame of reference, and their basic
Lax-Wendroff scheme is modified to consider the shearing of the computational
cells. This shearing may, however, produce inaccurate flow solutions. In Jung
[36,37] and Stetter [38], a sliding surface is considered with two layers of dummy

cells along the axial direction.

1.4 Literature Review

Considerable effort has been devoted to the calculation of unsteady flows in
turbomachines. The first significant piece of work was conducted by Erdos in
1977 [27]. In his paper, Erdos presented a calculation of unsteady flow in a fan
stage in which he used an algorithm to treat unequal pitches. Unfortunately, this
method has some limitations for the assumption of periodicity in time. The
method also requires a considerable amount of storage. In 1985, Koya extended
Erdos” work to three dimensions [28]. In 1984, Hodson modified a program
written by Denton, and then applied Erdos’ technique, to calculate wake/rotor
interactions in a low speed turbine [41]. The incoming wakes were specified as

unsteady boundary conditions. The results reveal that the wake segments, cut by
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the turbine rotors, roll up into two counter-rotating passage vortices, and the
wake fluid migrates to the suction surface. In 1987, Rai presented a paper on
using a Navier-Stokes algorithm to compute the stator/rotor interaction [14].
This paper generated considerable interest and research activity in this field. In
1989, Rai extended his techniques to three-dimensional, viscous calculations [15].
However, Rai, as well as other researchers, assumed a stator/rotor pitch ratio of
1:1 or other simple ratios such as 2:3 or 3:4. Such assumptions allow them to
perform calculations with simple periodic boundary conditions, but require that
modifications be made to the geometry when applied to actual turbomachinery

stages.

There have been much work in this area of research: Fourmaux [42] and Lewis
[43], on inviscid, two-dimensional stator/rotor interaction; Jorgensen [44] on
viscous, quasi-three-dimensional stator/rotor interaction; Ni [17], on inviscid
three-dimensional stator/rotor interaction; and Chen [45], on three-dimensional,

viscous stator/rotor interaction.

In 1990, Giles [34] introduced a new method for the two-dimensional
computation of unsteady flow through a turbine stage with unequal pitches. He
transformed the governing equations from the physical time into the
computation time and, therefore, dramatically simplified the periodicity
boundary condition on free boundaries. In 1996, Jung and Stetter [36,37,38]
extended Giles work into three-dimensions and considered a 1 % stage turbine

with equal blade count for both stators.
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1.5 Objectives and Overview of Thesis

The objective of this Thesis is to develop a capability for the analysis of viscous,
compressible, and turbulent flows and solve for the steady and unsteady blade
row interaction in a gas turbine engine. In this Thesis, fully implicit finite element
formulations for the simulation of multistage turbomachinery have been
developed in terms of the Reynolds-averaged Navier-Stokes equations for three-

dimensional steady or unsteady, viscous, compressible, turbulent flows [46].

The first contribution of this Thesis is the finite element implementation of a
mixing plane model for the analysis of steady flow in axial and centrifugal
turbomachinery stages and its validation against available engine data. The
mixing plane method represents an intermediate milestone between existing
finite element based through-flow axisymmetric codes and the fully unsteady
multistage approach, based on the Navier-Stokes equations, requiring enormous
computer resources. The mixing plane method has also been used to build loss
correlations for the calibration of the through-flow code. While this methodology
is extensively used as a powerful analysis tool by the gas turbine community,
there is little work published on its validation and application to centrifugal
stages. In this work, it has been found that for axial machines, the mixing plane
simulation methods match very well the experimental data. However, the results
for a centrifugal stage, consisting of an impeller and a vane diffuser of equal
pitch, show flagrant inconsistency with engine performance data, indicating that
the mixing plane method may be inappropriate for centrifugal machines. This

represents a significant contribution of this Thesis.

Consequently, a fully implicit finite element method, which treats non-matching

grids at the rotor-stator interface, has been developed and implemented for the
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analysis of the unsteady flow in multistage turbomachiners with equal number
of blades and vanes. The solution vector U, for momentum vector and pressure
field, on rotor and stator grids, is solved simultaneously. The implicit approach,
characterized by its superior convergence rate compared to other approaches
Erdos [27], Giles [6], and Jung [36,37], is another contribution of this Thesis. It
permits the use of a high time-step and hence drastically reduces the computing
time required to achieve a time periodic solution. An interpolation procedure at
the rotor-stator interface, consistent with the matrix assembly of the governing
flow equations, has been developed to ensure continuity of solutions across the
interface. The time accuracy of the methodology has been validated against the
flow past a circular cylinder at Re=100, and demonstrated on a centrifugal stage,

comprising of an impeller followed by a vane diffuser.

Another contribution of the Thesis is the implementation of a time-inclined
computational method for the analysis of the unsteady flow in a single
turbomachinery stage with unequal number of rotor and stator blades. This
method, based on the 2-D viscous compressible work of Giles [6], has been
implemented and validated for 3-D viscous flows. In contrast to Giles, the
method developed in this Thesis is implicit, uses mismatched grids at interfaces,
and is formulated in terms of the physical solution vector U, as opposed to Q, a
non-physical variable. The time-inclined U formulation inherits all the properties
of the fully implicit equal pitches formulation but has the added advantage of
being able, within limits, to handle a stage with arbitrary blade count. The
coupling of the time-inclined approach together with the use of mismatched
grids at interfaces, and the implicit treatment of the interface, are major offerings
of this Thesis. The method has been evaluated on unsteady flow through a rotor

blade passage of the power turbine of a turboprop engine. A post-processor
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based on Fourier transform theory has been developed to map the finite element

solution from the computational space into the physical space.

The work of this Thesis has been embedded in NS53D, an efficient, three-
dimensional finite element code for the analysis of inviscid and viscous
compressible flows, which has been developed by PWC with Concordia

University.

The second chapter of the Thesis describes the numerical discretization of the
governing Reynolds-Averaged Navier-Stokes equations. The finite element
equations, which are based on a Streamwise Upwind Petrov-Galerkin

formulation, are derived.

The third chapter describes the mixing plane methodology for the analysis of
steady flow in multistage turbomachinery. This is followed by a detailed
description of the treatment of the interface region for unsteady flow through a
single turbomachinery stage with (a) equal rotor and stator pitches, and (b)

unequal rotor and stator pitches.

The fourth chapter on solution procedure provides details of the flow solver
algorithm as well as the coupling of the solver with the multistage methods for

the analysis of steady and unsteady flows.
The fifth chapter presents validation test cases for the multistage methodology.

For all cases, solutions are analyzed and compared to experimental and/or other

numerical results.
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The sixth and final chapter states the conclusions of the Thesis and discusses

future research work.
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2. Governing Flow Equations and
Finite Element Discretization

2.1 Introduction

Chapter 2 describes the governing equations for viscous flows and their finite
element discretization. The flow solver used in the current work is NS3D, which
is a 3-D laminar/turbulent, steady/unsteady, compressible Navier-Stokes/Euler
code, developed jointly by Concordia University (CFD Laboratory) and Pratt &
Whitney Canada [47]. In this thesis, viscous compressible flow of Newtonian
fluids will be considered in the context of 3-D blade row interaction in axial and

centrifugal turbomachinery stages. NS3D solves for the mass flux components
variables pu,, pu, pu, pressure pand total enthalpy H,.

2.2 Navier-Stokes Equations

The fluid dynamics equations arise from the application of the conservation of
mass, momentum and energy laws to a fluid flow. These governing equations
are often written in non-dimensional form so that the non-dimensional flow
variables are usually of the order of magnitude of unity - a convenient means in
computational work to minimize numerical roundoff errors resulting from the
different flow variable scales. In NS3D the following non-dimensionalization has

been carried out,

u

u p _T .._G 2.1)
V.

u =

lq
Il

p' =L p‘ =
p.

| >
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where the non-dimensional variables are denoted by an asterisk, free stream
conditions are represented by « and L is the reference length used in the

Reynolds number.

The full system of Reynolds-Averaged Navier-Stokes equations provides the
most commonly used description of viscous fluid flow. This system of equations
includes:

Continuity Equation

ﬂ)— [ J V =
at+V (JV) 0 (2.2)

Momentum Equations

The body forces are neglected in the following vector form of the viscous

momentum equations:

pD_‘;’:_VP+L[§V@V.\7)+V(\7.uv)—\7v2u}

+ 2 Fux @ xT)- o VFu-vx@xu?)]

(2.3)

Energy Equation
The energy equation, under the assumption of a variable property perfect gas

and in the absence of heat sources and radiation heat transfer, can be written as

oD 2 g (X _yr)-ve[Egs, )0 24
Dt ot PrRe Re “,

where o, denotes the viscous stress tensor.
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It has become common practice to include the continuity equation (2.2) and the
energy equation (2.4) in the set of equations called the Navier-Stokes equations
although, strictly speaking, this term refers only to the components of the viscous
momentum equation (2.3). To close the system of equations, additional relations

are required, namely, the equation of state

p=pRT 2.5)

and empirical equations expressing viscosity | and thermal conductivity k as

functions of temperature [48].

2.3 Galerkin Finite Element Method

2.3.1 Overview of the Finite Element Approximation

In the finite element method, a geometrically complex domain of a given flow
problem is discretized as a collection of simple nonoverlapping subdomains
called elements [49-51]. Within each element a certain number of points or nodes
are defined, which can be located on the edges, faces or inside the element. The
numerical value of the solution unknowns is to be determined at these nodes.
These solution variables are approximated by polynomials. If 9, is an

approximate solution of (%), a series expansion of the form

oy (i): 261 N; (i) (2.6)

may be written where the summation extends over all nodes J and N, are the

shape or interpolation functions. The functions N; are chosen to be locally
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defined polynomial interpolations within each element, taking on a zero value
outside the particular element. The coefficients ¢, in equation (2.6) are the

unknown nodal values of the solution variable. These local interpolation
functions possess the following properties on each element e, where node ]

belongs to e:
@  at¢,(x,,y,,2,)=9,, the function N satisfies

0 if I[#] 27

(ii) atany point (x,¥,z) within an element,

2.8
ZN,(”(x,y,z):l.O 28)
I

The global function N, is obtained by assembling the contributions N ¢ of all

the elements to which node ] belongs.

The method of weighted residuals offers a means by which to formulate the
finite element equations. In this work the discretized form of the governing
equations is obtained by minimizing, in a weighted average sense, the residuals
of the system of equations (Navier-Stokes equations (2.2)-(2.4)) over the solution
domain. This is carried out by multiplying each equation by a weight function,
which in the Galerkin finite element method is identical to the shape function,
and integrating over the domain. The weak form is then obtained by integrating

by parts the weighted residual form of the system of equations. Details of the
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weak Galerkin formulation for the full Navier-Stokes system of equations are

provided in Appendices A and B.

2.3.2 Finite Element Discretization

NS3D accommodates isoparametric linear tetrahedral, trilinear hexahedral, and
linear prismatic elements. Isoparametric elements use the same shape functions
to define both geometry and solution variables. To simplify analytical
expressions for elements of complex shapes, a reference element is defined in a
local non-dimensional space with a simple geometrical shape, as shown for the
trilinear hexahedral element in fig. 2.1. The transformation from E -space to X°-
space makes use of the shape functions in local coordinates through the

geometrical discretization:

ndper} ndperl ndperl

X= ;N,(&,T],C)i, y= EJ:NJ(E’T"C)S’J z= gN;@m,Cﬁ; (2.9)

where the variable, ndperl, refers to the number of nodes per element. Similarly,

the solution vector U = (pu,,pu,,pu,,p) is approximated as

ndperl}

U= 2 N, (Ev ﬂ,C)ﬁ; (2.10)

In NS3D all the solution variables are interpolated with shape functions of equal

order and trilinear hexahedral shape functions are used,
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N, =3 (-E)i-n)i-0) N, =g (-EXt-n)i+0)

szé(H-EXl—nXl—C) N6=é(1+E)(1—n)(1+C) @.11)
N, =%(1+Ig)(1+n)(1—t;) N, =%(1+§)(1+n)(1+C)

N, =g (-E)iemli-0) N, =g (-EXi+n)i+Q)

Such a transformation to local coordinates facilitates the numerical integration of

the stiffness matrix and residual vector equations.

In the Galerkin weighted residual method, the weight functions are chosen to be

identical to their corresponding shape functions, that is,

W,(En.8)=N,(En.¢) (2.12)

2.4 Artificial Dissipation

2.4.1 Continuity Equation

In NS3D the discretized form of the continuity equation is obtained by applying
the Galerkin finite element method which is equivalent to approximating the
derivative terms by a central finite difference scheme. In such a centered scheme,
the first order derivatives are decoupled leading to an odd-even point
decoupling or checkerboarding effect. The Ladyzenskhaya-Babuska-Brezzi (LBB)
stability condition established that checkerboarding would occur unless the
interpolation functions for velocities are one order higher than those for pressure
[51]. Since NS3D employs equal order interpolation for both velocities and
pressure variables, artificial dissipation terms are added to the governing

equations to suppress this decoupling. These additional terms help eliminate
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unphysical numerical oscillations which should be minimized so as not to

degrade the approximate solution.

A pressure dissipation term, AV’p, is added to the right-hand side of the

continuity equation, yielding

2 194 7)=Av 2.13)

This dissipation term produces an error in mass conservation proportional to its
magnitude. To refine it to second order accuracy, the dissipation term is

reformulated as follows,

%+V0¢)V)=}LVO(VP—V_p) 2.14)

where the balancing term, Vp, represents the nodal values of the averaged
gradients of pressure [47,52]. The user-specified coefficient A must be
sufficiently small to minimize the error in mass conservation but also large

enough to prevent spurious pressure oscillations.

2.4.2 Momentum Equations

Most fluid flows in turbomachinery blade rows have high Reynolds numbers
where the convective terms of the Navier-Stokes equation are dominant. If left
unmodified, the convective terms may lead to numerical instabilities. Thus, all
Navier-Stokes schemes must incorporate some form of numerical dissipation to

stabilize the numerical scheme. This may involve the addition of explicit upwind
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biased dissipation terms to the momentum equations or the use of an upwind

biased discretization for the convective terms.

2.4.2.1 Streamline Upwind Petrov-Galerkin Formulation (SUPG)

NS3D uses the Streamline Upwind Petrov-Galerkin (SUPG) numerical
dissipation scheme [53-55] whereby the finite element weight functions are
modified to give them an upwind bias. The weight functions are applied to all
terms in the momentum equations. This is an important difference since most
numerical dissipation methods are developed by focusing only on the convective

terms.

In the standard finite element formulation the governing equations are

multiplied by a weight function W, and integrated over the domain. The SUPG
formulation adds to this weight function a perturbation weight function, wWUre ,
that gives the system good stability properties, while maintaining second order
accuracy [53]. This perturbation weight function is calculated as follows:
oW,  OW. W, 2.15)
WP =gy (“r . '*'ue_rae +u, 3z :] (
where (u,,u,,u,) represent the velocity components and (r,8,z) denote the

Cylindrical coordinates. The variable, Tg,; , is similar to a time term and is

defined as

hC
Tsupg =€ *factl *M (2.16)



where

h® is the length of the streamline cutting through a given element,

[V| is the velocity magnitude,

¢, is a numerical constant (In [53], a value of 0.5 is recommended but the
current work has shown that it may be lowered to 0.25 with no adverse
effects), and

factl is a factor based on the grid Peclet number given by

factl = MIN(Pec/3, 1.0) (2.17)
which, in the case of grid Peclet numbers less than three, results in a

decrease in the value of Tgpg -

The perturbation weight function W;""° contains derivatives and thus cannot be
integrated by parts since it would vanish for trilinear elements. However, NS3D
uses the conservative form of the momentum equations which must be
integrated by parts. To circumvent this problem, a non-conservative form of the
momentum equations, excluding the viscous terms, is used which does not need
to be integrated by parts. The implementation of SUPG in NS3D requires that a
mixture of conservative and nonconservative forms be used. Specifically, the
standard Galerkin weight function is applied to the conservative form of the
equations and the perturbation SUPG weight function is applied to the non-
conservative form. It should be noted that, for both conservative and non-
conservative equations, the SUPG term vanishes for the viscous terms. The

resulting formulation can be illustrated by examining the inviscid z-momentum

equation:
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(2.18)

2.4.2.2 Shock Function

While SUPG works very well when the flow varies smoothly, it is known to have

stability problems in the presence of sharp discontinuities such as shocks [56].
For this reason, another weight function, W/, is defined to capture shocks. It is

identical to W>U*° with the exception that Tgpgis replaced with Tg given

below,

Tk =fact2* b (2.19)

i

The variable fact2 is calculated from a shock detection algorithm, which is
activated only in the presence of shocks. This additional weight function is
applied only to the non-conservative form of the convection terms. Using the z-

momentum equation as an illustration, this yields a term taking the form below:

d
WS"K( (g: )+p ) a;r ;aa:)ﬂ)uz aauzz 1 (2.20)

Y
2.5 Time Discretization

A finite difference time integration scheme based on Gear’s method has been
implemented in NS3D for the time-accurate solution of the unsteady
compressible Navier-Stokes and Euler equations [57]. Gear’s method is a class of
implicit time integration schemes which are characterized by large stability

limits. The method is of backward differentiation type and possesses a variable
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order of accuracy in time which can be controlled by the number of time levels

used.

In general, after space discretization one arrives at a set of ordinary differential

equations in time,
MU+KU=F 0<t<T (2.21)

where U represents the global vector of nodal values of the solution variable

U(r,8,z,t), M is the mass matrix, K is the influence matrix, F is the source

vector and T denotes the time span over which U is computed. Applying the

kth order Gear scheme to the time term in equation (2.21) yields:

ot At

(3_U) =L(a0U‘ +3 U | (2.22)

i=} J

where @; (for i=0,1,....k) and k are the coefficients and required order of time

accuracy of the Gear scheme, respectively. In NS3D’s time-marching approach to

a steady-state solution, the first order Gear scheme (k=1,0,=1 and @, =-1), which
is identical to the implicit Euler backward scheme, is applied to the time-

dependent terms of the system of equations, giving

U =U_+AaM'[F-KU] (2.23)

The Euler backward scheme is commonly used as a matrix preconditioner to
augment the diagonal dominance and hence the stability of time-marching

approaches to steady-state problems. The second order Gear scheme (k=2) is
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used to accurately resolve unsteady flow phenomena. Details of the temporal
discretization of the full Navier-Stokes system of equations are given in

Appendices A, Band C.

2.6 Newton Linearization

For reasons of stability and robustness of the numerical scheme, the continuity
and momentum equations (2.2-2.3) are solved simultaneously (for details, see
Chapter 4). To keep the coefficient matrix to a manageable size, the energy
equation (2.4) is solved in a segregated manner. The nonlinear governing
equations are linearized by a Newton method whereby each variable of the
solution vector, U = (pu,,pu,,pu,,p), is expressed in delta form, AU =U"" - U".
After neglecting second order terms and substituting equations (2.10) and (2.12)
into the Newton linearized system of equations, the delta form of the continuity,
momentum and energy equations is assembled, over the elements of the domain,

in terms of the nodal unknowns, A(pu,), A(pu,), Alpu,), Ap and AH,. The

discretized equations may be written compactly as equations (2.24-2.28) below:

ndcj:nd rlﬁcpu ljlA(pu )+h( ulA(Pue) +B( ,,IA(pu +ﬁ( "lA(P)}] —Res
ﬂ( sk, aGu,) + s L, Au,), + b |, au, ) + bers ], A(p)}] ~Res;,,

.._1
=

"f ndfﬂﬁ( .,1 Alpu,) +ﬁ(° i lu,, Alpu, ), +ﬁ< ulu.,A(P“ ‘*‘ﬁ‘ ulu“A(P)}]_—Res pu,

e=l

nelemy " ndpert

< ﬁ(w ul Alpu,) +B(DU».,1 A(Oue +ﬁ( .,], Alpu,) +ﬁ(,,1 A(p)}:l ~Res},
f ilﬁ(*{"ﬁ L, 2@, ),-] =—Res},

e=l
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where nelem denotes the total number of elements, Res" represents the residual
of the given governing equation at Newton step n, and (j,j) are the row and
column indices. Details of equations (2.24)-(2.28) may be found in Appendices A,

B and C.

2.7 Boundary Conditions for the Navier-Stokes Equations
Inlet Boundary Condition: (pu,,pu,,pu, ) are specified.

The surface integrals of the continuity equation (A.6) are computed using the
specified inlet mass flux, pV. However, the contribution of the pressure
dissipation term to the continuity contour integral is neglected due to the small
value of A. The momentum equations are not evaluated at the inlet and are

replaced by the imposition of the specified inlet mass flux, pV .

Wall Boundary Condition: u, =u, = u, =0 is imposed as the no-slip condition.

The surface integral of the continuity equation is not evaluated since V=0 and
the contribution of the pressure dissipation term to this integral is neglected due
to the small value of A. The momentum equations are replaced at the wall nodes

by the imposition of V =0.

Exit Boundary Condition: p is specified.

The static pressure is specified at all exit points and replaces the continuity
equation. The normal derivatives of V are neglected in the momentum contour
integrals. All artificial dissipation terms in the momentum surface integrals are

also neglected due to the small value of the artificial dissipation coefficients.
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Symmetry Boundary Condition:

For the continuity equation zero normal mass flux is imposed by neglecting the
surface integrals. In the computation of the momentum surface integrals the
convective terms are assumed small and neglected. The shear stress is also set to
zero as one of the boundary conditions. All artificial dissipation terms in the
momentum surface integrals are neglected due to the small value of the artificial

dissipation coefficients.

Periodic Boundary Condition:

For a passage of a blade row and under the assumption of steady flow or
unsteady flow with equal rotor and stator pitches, the grid points on the upper
free surface are identical to those on the lower one. This is done by warping the
grid around at the free surfaces, and solving for the first node of the periodic pair
while imposing Dirichlet boundary concitions on the second pair. The solution
of the second pair inherits that of the first periodic pair, which is obtained from

the flow solver.

Interface Boundary Condition:

This boundary condition is required for multistage test cases. For steady
multistage the interface has a “mixed-out” boundary condition: exit and inlet.
The upstream interface plane is treated as an exit, whereas the downstream
interface plane is treated as an inlet. Boundary conditions are exchanged at these
planes as they are updated, iteratively, via the flow solver. For unsteady
multistage with equal rotor and stator pitches, the rotor and stator grids are just
touching one another at the interface plane. One side of the interface, which is
termed the dead side, is set to Dirichlet type boundary conditions, while the

other side, referred to as the live side, is to be solved for. Faces on both sides of
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the interface are assembled into the governing equations and the contribution of
the dead side is properly distributed into the live side. The solution of the nodes
of the dead is interpolated from those of the live side. Details on the

implementation of the interface and the interpolation procedure are described in

Chapter 3.
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Figure 2.1 Isoparametric trilinear element
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3. Multistage Methods

3.1 Introduction

The flow in a turbomachine is very complex, being three-dimensional, viscous,
turbulent and unsteady. Analyzing the flow field within the passage of a blade
row without considering the effects of the upstream and the downstream blade
rows is both misleading and inaccurate. Thus, it is not possible to optimize a
design of a blade row without thoroughly studying the effects of neighboring
ones. Benefits due to aerodynamic flow behavior are difficult, if not impossible,
to achieve if multistage effects are to be ignored. Specifically, the effects of axial
spacing, blade count, clocking, and levels of unsteadiness may be quite
significant. Over the last decade, researchers and engineers have been
investigating the flow physics within the passage of a blade row embedded in a
multistage environment to gain a better understanding of flows through
compressors and turbines. In doing so, gas turbine manufacturers rely heavily on
experimental testing as well as numerical simulation. This chapter describes the
computational multistage methods used in this Thesis. These methods are
applicable to the analysis of the flow in axial and centrifugal stages of

turbomachines.

3.2 Steady Rotor-Stator Interaction Models

Numerical simulation of the flow phenomena in axial turbines and compressors
is demanding in terms of computing resources. It is for this reason that much
research has been devoted to the development of fast and efficient numerical
models. One popular method, which is applied in this thesis and has been used

extensively by gas turbine companies, is the mixing plane method.



3.2.1 Mixing Plane Method

The mixing plane method is a powerful analytical tool for the analysis of fluid
flow in axial turbomachinery stages under the assumption of steady flow. The
novel features of the mixing plane method are two-fold: it is able to represent the
multistage environment while solving for an individual blade row and, the inter-

blade row boundary conditions are calculated rather than being imposed [5].

The boundary conditions at inlet and outlet of each blade row are assumed to be
steady and uniform in the circumferential direction. These boundary conditions
are not known a priori and, hence, they constitute part of the numerical solution.
The mixing plane is defined as the common interface plane between adjacent
blade rows (figure 3.1). The rotor-stator interaction begins with an initialization
of the flow fields in the adjacent blade rows and, at each iteration, the interface
boundary conditions are updated by passing the proper information between the
upstream and the downstream blade rows. It is at the mixing plane that the
solutions of adjacent blade rows are coupled and the quantities necessary for
conservation laws are averaged. Once the averaging procedure has been
performed, these quantities are then passed axisymmetrically to the adjacent
blade row. As an example, one mixing plane would be required in the analysis of
a single stage axial flow compressor, that is, a rotor followed by a stator, and this
interface would be located somewhere between the trailing edge of the rotor and

the leading edge of the stator, normal to the engine axis.

The_mesh requirements for the mixing plane method can be stated as follows:
e Single passage mesh for each blade row with tip clearance

¢ Non-overlaping grids between blade rows
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¢ Mixing plane shared between adjacent blade rows normal to engine axis

o Identical spanwise grid point distribution at the mixing plane.

A non-matching spanwise grid point distribution at the mixing plane is possible,
while this has been found to slow the rate of convergence and introduce
interpolation errors of averaged flow quantities at the mixing plane. Therefore,

such a grid point distribution was abandoned.

The solution procedure for the mixing plane method consists of the following

steps:

e Solve each blade row with fixed inlet and exit boundary conditions

o Iteratively update boundary conditions at the mixing plane via proper
averaging methods

e Match radial profiles or averaged flow properties at the mixing plane
The derivation of thermodynamic variables is based on the "mixed-out" approach
which assumes that the flow is instantaneously mixed at the interface plane [6].

The mathematical derivation is presented below.

Consider the following fluxes

1

F =91 = de 3.1

H=P% = Pitch b[pu’ GD

1 Pitch h

F =pul+p= u?+pho 32

A zppimh!(ozp (3.2)
1 Pitch

F, =Dl i, = . u.de 33

3 z-0 Pitc Z‘).p z 08 ( )
Pitch

F, =PU,T, =—— | pu,u,do 3.4)

2 T pitch 4



pu_H_do (3.5)

H-"YP. l@ig.m) 3.6)
P

Since the mixing plane is assumed to be normal to the engine axis, equations (3.1-
3.5) can be obtained from the continuity, momentum, and energy. The viscous
terms in the momentum and energy fluxes have been neglected since they

involve the derivatives of the three components of velocity.

Equations (3.1-3.6) can be solved to obtain the "mixed-out" values of pressure,

velocity, and total enthalpy as follows:

=L FrGE+EE-E)  67)

— F‘) —ﬁ

= — 3.8

5, =B (3.8)

_ _FE

-5 3.9

5, =1 (3.9)

g =5 (3.10)
I:l

-5 (3.11)
K

=t (3.12)
uZ

Values of all other flow variables, such as total pressure, static temperature,

Mach number, and flow angles can be defined based on the "mixed-out"
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quantities. It should be noted that the physical mixing process implied in this
procedure will generate viscous losses and result in a flow with a higher entropy
level and, thus, higher measured losses than the actual ones. All the
circumferenfial profiles are assumed to be mixed out instantaneously at the
interface. This instantaneous mixing at the interface plane changes the blockage
which, in turn, causes the static pressure to increase across the plane, while the

mixing loss brings about a drop in total pressure across the plane [6].

The objective of this method is to match the averaged flow quantities as
boundary conditions at the mixing plane. The following quantities are converted
into the appropriate frame of reference, that is, relative in the rotor and absolute

in the stator;

P oy = P (suators (3.13)
U, (oo = U2 (stator) (3.149)
U roon = U (seatory — ST (3.15)
U, (rotory = U (staton) (3.16)
P (roton =P (saton) (3.17)

3.3 Unsteady Rotor-Stator Interaction

This section describes a finite element based method for the computation of the
unsteady flow in a turbomachinery stage with equal and unequal pitches. The
method for the case in which the blade rows have equal pitches is presented first,
since it incorporates most of the essential elements for the algorithm for unequal
pitches. The algorithm for the general case of unequal pitches, which uses the

time-inclined computational planes mentioned in Chapter 1, will then be
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described. From a purely mathematical viewpoint, the latter procedure is a

straightforward extension of the equal pitch method.

3.3.1 Rotor-Stator Interaction with Equal Pitches
In the current work, the frame of reference is chosen to be the absolute stator
frame. However, when the flow variables are to be updated, they must be

converted back into their local frame of reference.

The computational grid is composed of two parts, one part fixed to the stator
blade row and the other part fixed to, and moving with, the rotor blade row. As

shown in figure 3.2, the grids are not conforming at the rotor-stator interface.

It has been found that the grid at the interface should be generated such that both
the rotor and stator grids have approximately the same density, that is, the same
element size. Figure 3.3 shows a typical mismatched grid at the interface plane.
The grid with solid lines is termed “live” while the grid marked with the dashed
lines is referred to as “dead”. Nodes of a live grid (nodes 1 to 9) have a direct
representation in the matrix solver and so, the finite element solution at these
nodes is updated through the iterative solver. However, nodes of the dead grid
(nodes I to L) have an indirect representation in the matrix solver since their
contributions are distributed, based upon their physical location with respect to
the elements of the live grid, into the nodes of the live grid. For example, nodes I,
], K and L lie in the middle of the four-noded elements: 2-5-4-1, 3-6-5-2, 6-9-8-
5,and 5-8-7-4, respectively. Assembly of the live elements is carried out using the
standard finite element method. A different approach is taken in the assembly of
the dead elements: for example, the contributions of dead node I are distributed

into the nodes 1, 2, 5 and 4, according to the value of the finite element shape
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functions at node I (see table 3.1). The same procedure applies to nodes J, K and

L.

Table 3.1 Contributions of dead nodes into live nodes

Local nodes 1 2 3 4
Global Nodes 2 5 4 1
Weight 0.25 0.25 0.25 0.25

A Dirichlet boundary condition is imposed at Node I and, therefore, it has no
equation number. However, it is still assembled in the matrix and the residual.
The contributions of equation I are distributed into equations 1, 2, 3, and 4. The

finite element solution of node I can then be written as

U, =3 N, EnL,
= (3.18)
The solution at node I is then updated from the solution at nodes 1, 2, 3, and 4
using the above equation. In doing so, the residual and the solution at node I are
computed in a consistent manner.
When the stator-to-rotor pitch ratio is unity, the periodic boundary condition
may be implemented in a straightforward manner. The lower periodic line sees
the same flow field as the upper periodic line at the same time. In situations
where the stator pitch is different from the rotor pitch, this no longer holds true.
If one considers the case in which the stator pitch is larger than the rotor pitch,
then an incoming stator wake would cross the rotor upper periodic boundary at
a small time AT after the neighboring wake crosses the lower periodic boundary.

This is discussed in the next section.
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3.3.2 Rotor-Stator Interaction with Unequal Pitches

Computationally, it is very easy to enforce the spatial periodicity for steady flows
or unsteady flow with equal pitches, as mentioned earlier. However, in unsteady
calculations in turbomachinery stages where there are different numbers of stator
and rotor blades, a problem arises which is not present in steady-state
calculations. The number of pitchwise periodic boundaries in a stator-rotor
configuration is equal to the largest common divisor of the number of rotor
blades to that of stator ones. In the worst case, the common divisor is unity. This
means that all blade passages of the stator and rotor would have to be considered
in the computation since integration of the system of governing flow equations
cannot be carried out without a full set of boundary conditions. Even with
today’s supercomputers, it is difficult to get a reasonable unsteady Navier-Stokes
simulation that includes all blade passages of a single turbomachinery stage.
Therefore, one seeks a method that allows simple periodicity conditions to be
applied on small computational domains, independently of the pitch ratio and

without modifying or scaling the actual geometry of the problem.

To address this problem, Giles [6] developed the idea of a time-inclined

computational domain. If a node at 8=0 is at time t, then the corresponding

periodic node at 6 =6y is at time t + AT . Mathematically, this corresponds to the

use of a reversible transformation to transform the whole flow problem from
(,8,z,t), the physical space, into (’,6’,z',t"), a computational space in which
pitchwise boundaries are periodic boundaries even if they are not periodic in the
physical space. This method [6] has been extended in this Thesis to three-
dimensional viscous flows on non-conforming meshes at the interface plane

common to adjacent rows.
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The transformation is defined as follows:

=06
z' =z
t'=t—-A0

(3.19)

The inclination parameter A represents the slope of the t’= constant line and has

a different value in the rotor and stator frames

2—T in the stator frame
A= A’SI‘ (3.20)
—— in the rotor frame
B
The time lag, AT, which is given by
6. O
AT=T, -T.=—=--FR (3.21)
R S Q Q

represents the difference between T, , the rotor blade-passing period and T, the

stator blade-passing period. The stator and the rotor pitch angles are denoted as
8; and 6, respectively. The time lag may be viewed as the amount of time in
which the upper pitchwise boundary lags the lower pitchwise boundary to be
periodic. In physical space, the periodicity condition is defined such that the time
lag, AT, is equal to the difference in pitches divided by the rotor wheel speed.

When one transforms the unsteady governing equations, the resulting equations,

in this new coordinate system, with t’= constant, are

19
r’ 00’

0
arl

Q_ 1 —a— (r'A)+

— B
8t'+r'8r’ ®)+

©)+2=0
r (3.22)
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Thus, the conservation state variables have changed from U to Q=U—&B,
r

where

p Pu,
-0
U={P% | B=| Pt O (3.23)
pug PUg +P— O
puz puzue - oze

The lagged periodic condition on the upper and lower periodic lines in the rotor

and stator frames is given by

Q(,6,2,t)=Q(,0+6, ,z,t+AT) (3.34)

Applying the transformation to the above equation yields the desired result

Q[ 0,z',t')=Q(, 0"+ 6, 5,2, t’) (3.35)

This method does not require any assumptions about the flow at the pitchwise
boundaries or any geometry adjustments. Thus, it is able to reproduce all
frequencies that are present in the flow field. A weak Galerkin formulation of the

time-inclined Navier-Stokes equations is provided in Appendix D.

For inviscid flows, under the ideal gas assumption, the state variables U can be
computed analytically from Q (examine equations (1.7) and (3.23)). For viscous
flows, however, a differential algebraic system of equations results. The

differentials in this case are simply ignored. The neglected viscous terms are
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comparable in magnitude to those terms which are usually dropped in the thin-

shear-layer Navier-Stokes equations under high Reynolds number conditions [6].

The calculation of U from Q leads to a quadratic equation for the static pressure.
The investigation of its solutions, for a subsonic flow in the circumferential

direction, yields the condition

M. (3.26)
1+M,

,Or l-———=< —gf <i+
This means that the inclination parameter A is limited by the physical
characteristics of the linearized Euler equations. This is a reasonable and
fundamental limitation, as without this constraint, information, which is
propagating forward in physical time, could be propagating backward in the
computational time. This violates the principle of causality and is inconsistent
with an integration algorithm that marches forward in time. Therefore, stator-
rotor configurations with big differences in the pitches cannot be simulated using
only one stator passage and one rotor passage. With the use of multiple blade
passages, the inclination parameter can be reduced to a value that allows a stable

simulation [6].

At the end of the computation, the solutions at different instants of the
computational time are transformed back to obtain solutions at different instants
of the physical time. This is done by storing the solutions at a number of time-
steps (typically 50-100) during the last blade-passing period of the computation.

After the simulation, the desired number of solutions at the desired instants of
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the physical time are calculated from the stored solutions (see Section 3.6, Post-

processing of Results for Unequal Pitches).

The calculation possesses the same number of time-steps per period on each half,

so the time-steps on the two halves are related by

0, At, =0, At 3.27)

Figure 1.7 attempts to explain this by showing both the stator and rotor inclined
computational grids in the stator frame of reference. This figure depicts a case in
which the stator pitch is greater than the rotor pitch. The stator and rotor nodes
coincide at the beginning of a computational period. Although at each time-level
the stator and rotor grids lie on the same inclined computational plane, the rotor
is displaced relative to the stator grid. The diagram shows that the stator pitch is
greater than the rotor pitch at fixed time t, but that on the inclined computational
plane the rotor pitch is identical to the stator pitch. The stator time step size is not
equal to the rotor time step, even though both grids are consistently at the same

computational time level [6].

3.4 Interpolation Procedure at the Rotor-Stator Interface

The goal of the interpolation procedure at the rotor-stator interface is to locate
nodes of the target mesh (rotor or stator) in elements of the source mesh (stator
or rotor) at the interface plane. The physical coordinates X, Y, and Z of any node
T(X,Y,Z) of the target mesh can be represented by a finite element discretization

in terms of the interpolation shape functions N;. The coordinates of the nodes

within an element, E, of the source mesh are expressed as follows:
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X=§4:Nixi Yzi:Niyi Z=24:Nizi (3.28)
=t i=1

i=l
where the 2-D quadrilateral finite element shape functions are given by

N, =5 (-EX-n), N, = (+E)Mi-n) (3.29)

N =1 (+E)i+n), N, =5 (4-E)i+)

and £ and m are the local coordinates of element E and xj, yj and zj are its

physical nodal coordinates.

The aim is to minimize the function D, which represents the distance between

node T and element E,

D(x,y,z)=DEn)=H*+G* +P* (3.30)
where
4 4 4
H=YNx;,-X,G=YNy,-Y,P=)Y Nz, -Z (3.31)
1=l

i i=l i=1

The minimization process requires that

a_ 2Ha—H+2G§9+2Pa—P=O (3.32)

dE 9E  9E  oE

dD _,yH 1696 2pP (3.33)

dn on on on
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X, Y, and Z can be easily found if E and m are given. However, this is not the
case in the present problem and the task is to find the local coordinates (E.m) of

node T given its physical coordinates (X,Y,Z). The equations representing X, Y,
and Z are nonlinear and are solved via Newton method for the natural

coordinates § and 7.

The residuals of the equations are as follows:

R,=——— and R, =—— (3.34)

Expanding the residuals in a Taylor series and retaining the first order term, one

obtains the following system of linear equations in A and An

8H8H+8G8G+8P8P 8H8H+8G8G+8P8P AE -R,
0E d§ OJE 0 JE d§ on oE dn 0 onadg _ (3.35)
8H8H+8G8G+8P8P 8H8H+8G8G+8P8P )
on 0§ dn dE ondg amon ondn dnom |An -R,
where, as an example,
3 4 4
oH &N, dG =zaNi 0P _oN,; (3.36)

E O EEE GEE HoE

It should be noted that X, Y, and Z are the coordinates of the node T of the target
mesh, are constants, and hence are known quantities. As the above matrix is

nonlinear, one solves for AE and An to update the values of & and M as

indicated
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£ =E" +AE, 1™ =7" +An (3.37)

n+l

where E"is the previous guess of § and§"" is its updated value. Once the correct
values £ and 7 are found, that is, their values lie between -1 and 1, and the
distance D is below a user-defined tolerance, then the node is deemed to be

inside the element E.

Details on the interpolation procedure at the rotor-stator interface are provided

in Appendix E.

3.5 Grid Rotation

In the modeling of unsteady rotor-stator interaction, the rotor grid moves relative
to the stator grid. This is a pure rotation which depends on the time step used, as
well as the rotational speed of the rotor. At every time step, the rotor grid rotates

as

04 =" + QAL (3.38)

Once the rotor grid has moved, the target mesh nodes should be found in the

new location of source mesh elements at the interface plane.

3.6 Post-processing of Results for Unequal Pitches
The Fourier transform pairs used for the post-processing of the results in this
Thesis are based upon the following equation, which expresses a mapping from

the Fourier domain into the physical domain,
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~ inE ~ —21-|:iE
{Uke T+U.e T} (3.39)

K. ~ 'l:'tiﬁ - K
U(t)=ER{ZUke T}:UO =<y
k=0 240

where 9‘({2} denotes the real part of the complex variable z, and z* denotes the
complex conjugate of z. The plotting procedure reconstructs the solution U(t) at

any instant in time based upon the Fourier coefficients U,. The aim is to

calculate these coefficients from the data supplied by the rotor-stator finite
element calculation, which consists of flow data on time-inclined computational
planes at 40 (NOS 2 40) equally spaced intervals during the last period of the

calculation.
The correct time at a particular node on the computational plane is equal to

t=t'+A0=——T+A0 (3.40)
NOS

where T is the period, 6 is the circumferential location of the node, and A is the

time-inclination parameter. Thus, one arrives at the following expression:

U, =0, +%i{ﬁkem(£s “;9) +ﬁ;e—2ﬁ(“‘kgs k';;e)} (3.41)

k=l

The Fourier coefficients are determined as shown below:

1 8 2k 1, k=k’
— D e NOS =8k —k')= (3.42
NOS 2. (k-K) {o, k=K )
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1 Nos _2ni KD
——>Y»Ue NS = (3.43)
NOS n=l " 1 -~ Z:riﬂ
—Ue T, k21
Hence,
_ 1 NOS
o =—— > U, 3.44)
NOS o=
- 2 27 ¥ NOS -2ni
U, = e T EUne NOS
NOS P

The vector U, used in the above description, is not the usual state vector. Rather,
it is the vector of primitive quantities. The main reason for this choice is that, in
stator/rotor interaction cases, it ensures that the post-processing is independent

of the choice of frame of reference, since the primitive variables are the same in

both frames, except for a constant difference, Qr, in u,.

For the maximum accuracy in reproducing the unsteady results, the
recommended value for the variable K is 24. However, in practice, it is sufficient
to choose K such that

24

2
Y|g,| <107 (3.45)

k=K+l

which guarantees that the resulting values of U(t) will be correct to within 107,

which is perfectly acceptable for plotting. This compression of the Fourier data

results in tremendous savings in terms of memory.
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The flow at any instant in time is reconstructed through equation (3.39), which

can be re-written as

u@)=0, +kZ:€R(ka Jeos (i)~ 1T, Jsin(ko)} (3.46)

where I(z) is the imaginary part of z, and ¢ is defined by

o= 211:-;;- (3.47)

In calculating ¢, care must be taken in stator/rotor cases to use the correct
period on either side of the interface. A slight complication arises in plotting

multiple blade passages from one set of Fourier data. This requires computing

different values of ¢ for each blade passage, allowing for the time lag between

passages. For the m™ passage, ¢ is given by

O = Zn(H(m—_mT] (3.48)
T /

where AT is the time lag between periodic surfaces.
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Figure 3.1 Mixing plane method illustrated with a turbine stage

configuration (a) upstream exit; (b) downstream inlet
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Figure 3.2 Mismatched grid at the rotor-stator interface

=

Figure 3.3 Mismatched grid at the interface



4. Solution Procedure

4.1 Introduction

This chapter describes the flow solver algorithm as well as the coupling of the
solver with the multistage methodology. The numerical scheme used to iterate
for time advance and for the spatial nonlinearity will be discussed. In addition,
two separate approaches are described: one for the time-accurate solution of
unsteady flows and another for the time marching solution of steady flows [57].
Stabilization details through an artificial dissipation scheme are then detailed.
The robustness of the numerical scheme is ensured through the coupling of
continuity and momentum equations. Finally, modeling aspects of the near-wall
behavior of the turbulence equations, as implemented in the NS3D code, are
briefly presented because of its novel idea of using a wall finite element to

represent the logarithmic law of the wall [58,59].

As discussed in Chapter Two, the nonlinear governing equations are linearized
by the Newton method and spatially discretized by the Galerkin finite element
method. Furthermore, the time derivatives are discretized by the Gear scheme, a
multi-level implicit, hence unconditionally stable method, with controllable
accuracy. A second order Gear scheme, assuming two preceding time levels to be

available, is used in this current work.

It has been previously demonstrated that the following systems of equations

must be solved at each time iteration:

1. A coupled system of the continuity and momentum equations (hereby,

Navier-Stokes Equation System)
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2. the full energy equation, and
3. the two-equations describing (k,®) turbulence model.

4.2 The Navier-Stokes and Energy Equations
The Newton linearization procedure results in a set of linear equations for pu_,

puy, pu,, and p. The delta form of the assembled equations can be represented

K }{Ap\'/} _ _{va} (4.1)
Ap R,

The continuity and momentum equations (2.2-2.3) are solved in a coupled

symbolically as:

manner for the mass flux components, pu,, pu,, pu,, and pressure p. To reduce

the overall memory requirements, the energy equation (2.4) is solved for the total

enthalpy in a segregated manner.
nelem| ndper (4_2)
3| Sl atw) |- res
=1 | FI

Equation (4.2) is linear and hence simple to solve. This fact can be illustrated by
examining the terms in equation (C.6-C.7). In order to construct the coefficient
matrix of the energy equation, the density, velocity, and effective conductivity
must be known throughout the flow field from the previous iteration, but the
total enthalpy does not enter in the construction of the matrix [}(;' L . Hence,

one Newton iteration is sufficient for the solution of the energy equation.

The total enthalpy field obtained via equation (4.2), along with the velocity field

from the Navier-Stokes iteration, are used to update the static enthalpy field.
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4.3 The k-0 Turbulence Equations
The discretized form of the (k,®) two-equation model, is given by:

""i“ —“dfzh(g lA(K)J-— =—Res,
e ) 4.3)
31 Skl o), - es,
T ) 4.4)

To reduce the computing cost of solving equations (4.3-4.4), the Jacobian matrices
ﬁ(:jl and ﬁ(j‘]’L are made identical by considering only the essential, and similar,
terms of the k— and w-—equations. Equations (4.3-4.4) yield therefore identical
influence matrices but are solved in a sequential manner with (4.3) solved first to

update K, followed by equation (4.4) to update w, using the updated values of

kand the turbulent viscosity, pn , -

The solution strategy for these equations consists of an update of the turbulent
parameters and the solution of the Navier-Stokes equations for a few Newton

iterations, typically five. This sequence is then repeated. At each turbulence

update, the (k,») equations are not solved to complete convergence but their

residuals reduced by only an order of magnitude. At, or near, the convergence of

the coupled system of continuity and momentum equations, the (k,®) equations

are, however, completely converged.

While a low-Reynolds number (k,®) model could be used near walls, it would

require an additional resolution of 10 to 20 grid points in the direction normal to

the wall at any location within the boundary layer. This would be quite
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demanding in terms of solution time and memory, making a Navier-Stokes code
a less practical design tool. An alternative is using the wall function approach to
describe the high-gradient region near walls through a slip velocity derived from
the shear stress at the wall and respecting a certain behavior between that point

and the wall. In the present work this slip velocity is given by:

u’:y? 6>y+>0
+ - 1 + +
y o~y )+[—ln(y )+c](y ~20) @5a)
- S . .
u = 20>y™ >6
14
o =L@ )+ C y* >20
S
where:
s=0.4184; C=5.1
TREL I ) A P A T (4.5b)
u, 11 pRe

For the boundary conditions imposed on (k,®) the production and dissipation of

turbulent energy at the wall are assumed to be equal. The turbulent shear stress

at the wall, 1,,, is obtained from the wall function assumption, equation (4.5),

and is used to compute new values for (k, ).

While the wall-function approach reduces the number of grid points in the near-
wall region, by avoiding the solution of the governing equations in this high
gradient region, it proves to be a source of inaccuracy for three-dimensional and
separated flows. In NS3D, an alternative approach is taken in which a special
wall finite element is implemented. This method is similar to [58,59] but is

considerably more accurate than wall functions and much less costly than
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applying a low-Reynolds number turbulence model. A special wall element,
illustrated in figure (4.1), incorporates into its shape function the partially
logarithmic behavior of the velocity vector in the direction normal to the wall,
equation (4.5), while remaining linear in the other two directions. For elements
adjacent to a wall, the velocity shape function in the normal direction to the face
of the element lying on the wall is therefore modified to reflect the presumed
flow behavior in this region, characterized by a viscous sublayer, a transition

layer and a logarithmic outer layer, equation (4.5). For example, for the element

shown in figure (4.1), assuming the bottom face to lie on a wall, F, () of nodes

related to the opposite face, are re-expressed as F{ Y } to reflect a triple deck

+

chge )

behavior [58,59].

As for the turbulent viscosity in the near-wall region, it is interpolated as follows:
a linear behavior starting at the edge of the near-wall region, where y* is

assumed to be less than 300, to y* =30, and a quadratic variation between

y™ =30 and the wall i.e. y* =0.

It must be appreciated that the velocity shape functions in this special near-wall
element cannot be integrated accurately using a two-point Gauss quadrature as
in the rest of the flow field. Through numerical experimentation, it was
determined that nine Gauss points, in the direction normal to the wall, are

sufficient to adequately integrate the logarithmic behavior.
4.4 Global Iterative Scheme: Outer Newton Iteration

It is seen that upon advancing to a given time, the Newton linearization leads to

the solution of a series of systems of linear equations for (pu,,pug,pu,,p), H,,
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k and w. This is referred to as the outer iteration. To solve the linear systems at
each Newton iteration, a direct or iterative solver can be used. Since an iterative
solver is used here, this solution step is denoted as the inner iteration, to

distinguish it from the outer iteration for nonlinearity.

It is worthwhile to note that efficient direct and iterative methods have been
developed at the Concordia CFD Lab and P&WC and have been continuously
incorporated in the company’s code NS3D. NS3D uses iterative solvers based on
the Preconditioned Conjugate Gradient Squared method (PCGS) or the
Generalized Minimum Residual Method (GMRES). The necessary
preconditioning for these two iterative approaches is obtained through an

incomplete factorization process [60-63].

To stabilize the convergence of the Navier-Stokes system of equations at high
Reynolds numbers, a strategy with a centered scheme for the continuity equation
and artificial viscosity in the cross stream direction is always needed. Here, this

extra artificial dissipation is introduced explicitly to the equations and

RHS
ant

symbolically represented as p," in equation (4.1).

For an iterative solver is used at each Newton iteration to solve the ill-
conditioned linear system coming from the Navier-Stokes equations, it has also
been found highly beneficial for the convergence of the iterative scheme to

introduce a similar dissipation in the Jacobian matrix itself. This is symbolically
represented as p-*° in equation (4.1). Equation (4.2), after the introduction of

ant

these two concepts, can be re-expressed in the form:
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KGO 1. )}{éfj%{*‘gp%; )} (4.6)

The solution procedure involves a series of steps in which the amount of artificial
dissipation in the numerical scheme is progressively decreased or unloaded. The
unloading is usually performed in five steps, resulting in four intermediate
solutions as well as the desired final solution which is obtained using the

smallest amounts of artificial dissipation possible. Typically, the values specified

for p*** in the iterative scheme are greater than those of the residuals of the

arn

systems of equations, which represent the problem’s physics. This is equivalent
to setting up the iteration matrix to be at a lower Reynolds number than that at

which the residuals are computed.

4.5 Steady Flow (Time-Marching) and Unsteady Flow (Time-
Accurate) Algorithms

There are two solution procedures available in NS3D: one solves the steady-flow
equations by a time-marching procedure (hereby called steady-flow algorithm,
SFA, see flow chart presented in figure 4.2) and the second solves the unsteady
flow equations by a time-accurate procedure (hereby called unsteady-flow
algorithm, UFA, see flow chart presented in figure 4.3). In both algorithms, the
discretized time terms improve the condition number of the system matrix, K, by
increasing its diagonal dominance. In the steady-flow case, it provides a
mechanism to ensure the convergence of the linear system by allowing the time

step size to be dynamically changed, as necessitated by the problem.
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4.5.1 Steady Flow Algorithm (SFA)
In the Steady Flow Algorithm, assuming that the initial values of pV and p are

given, the overall residual of the coupled continuity and momentum equations in
R ;.R,| , can be computed. The SFA has also previously been

o

the L2-norm,

described as a hybrid artificial viscosity scheme [46]. The outer and inner

iterations are carried out as follows:

A.LHS A.RHS LHS RHS
’

1. Compute , b and po

2. Solve the turbulence equations every K;,,; Newton iterations and the energy
equation every E;,; Newton iterations, where K;+ and E;.; are typically 5

and 1, respectively.

Newton Ilteration:

3. Solve A(pV) and A(p), at each Newton iteration,
</ R - RHS
[K( HS 7“;11-: > ){AAPZ} = —{ RD V(A‘Ra:s ))} 4.7)
P

4. Update pV and p:
o)

pV’RP

L < TOL, a specified convergence criterion

repeat from step 1.
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The hybrid artificial viscosity scheme is a key feature in allowing large time

steps, making the use of iterative methods viable for steady-state problems.

4.5.2 Unsteady Flow Algorithm (UFA)

In the Unsteady Flow Algorithm, the values of pV and p are assumed to be
IRpV’Rp" can be computed. It should be

given at an initial time t and, hence,

noted that UFA may also be used for steady-state problems. At each time step,

the solution procedure is as follows:

1. Solve the turbulence equations every Kj; Newton iterations and the energy

equation every Ej,; Newton iterations, where Kint and Eint are typically 5

and 1 ,respectively.

Newton Iteration:
2. Solve AG)\—/) and A(p) at each Newton iteration:

e )20
5. Update pV and p:
=518

"RPV’RP
R ..R,

until = < TOL,

v?
pv o

4. Advance solution in time, repeat from step 1.
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4.6 Coupling of Flow Solver with Multistage Methodology

In steady multistage analysis, the mixing plane algorithm is coupled to the
steady flow algorithm. The averaging procedure is first applied to both the exit
plane of the upstream blade row and the inlet plane of the downstream blade
row to extract the so-called "mixed-out" flow properties from the current
numerical solution. The proper interface boundary conditions are then specified.
Circumferentially-averaged radial profiles of absolute total temperature, density,
radial velocity, absolute tangential velocity and axial velocity, which are
obtained from the solution of the upstream blade row, are specified as the inlet
boundary conditions at the downstream blade row. The circumferentially
"mixed-out" static pressure, obtained from the solution at the inlet of the
downstream blade row, is then specified as a boundary condition at the exit
plane of the upstream blade row. The above procedure is repeated at each
Newton iteration until the residuals of the governing equations are reduced by
three orders of magnitude, and the mass flow rates and the circumferentially-
averaged radial profiles, obtained from the upstream and downstream blade

rows, are matched within a user-specified tolerance.

In unsteady multistage analysis, the solution is advanced in time using the Gear
scheme with second order accuracy in time. The solution of the live side of the
interface is updated, at each Newton iteration, via the flow solver while the
solution on the dead side is interpolated from that of the live side. The solution
of the time-dependent system of equations is updated to the next time level
when the residual is reduced by two orders of magnitude or when the maximum
number of Newton iterations per time step is attained. This procedure is then
repeated and the solution time history is stored over one full period at selected

grid points in the computational domain. At every time step, the time history is
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checked to detect if time periodicity has been achieved. The time stepping is
terminated only if the solution has converged to a time periodic response or the

maximum number of time step is reached.
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5. Numerical Results

5.1 Summary of Test Cases

Numerical results from five test cases are presented to validate the current work.
All but one of these cases possess very complex geometries and are in fact actual
engine stages. The predictions span the full range of the transonic flow regime,
be it inviscid, viscous, laminar, turbulent, steady or unsteady. The test cases have

been validated against engine data when available.

When performing a numerical simulation it is important to evaluate the
sensitivity and dependency of the numerical solution of turbomachinery stages
on grid parameters. These parameters comprise the grid density, and the its
distribution in regions where flow features such as shocks, wakes, and
separation zones are present. One, ultimately, aims to obtain a grid-independent
solution and this may be achieved through grid adaptation [7]. In this work,
however, the PWC in-house grid generation system for the analysis of
turbomachinery flows, which is based on engineering and design experience of
gas turbines, has been used to generate the grids for all test cases presented in
this Thesis. It has been found that the numerical prediction on these “calibrated”
meshes has consistently compared well with available engine data; hence it is
believed that the effects of grid dependence on the numerical results have been

minimized.

Section 5.2 describes numerical predictions of the mixing plane method on the
second stage of the United Technologies Research Center (UTRC) Large-Scale
Rotating Rig (LSRR) low-speed axial flow compressor. This low Mach number

test case, which is selected due to the availability of extensive experimental data

80



[64], investigates the capability of the two-equation (k,w) turbulence model in
predicting the corner stalls near the endwalls of the second stator, which has

been observed experimentaly.

Section 5.3 provides an analysis of the numerical results obtained on a first stage
HP compressor of a PWC turboprop engine. This is a high Mach number case
with shocks emanating off the rotor leading edge region. The predicted results
are compared to those of the mean line model at PWC, as well as to other
numerical results. In Section 5.4, further analysis of the same test case is then
conducted with the second stage compressor of the same turboprop engine so as
to introduce an additional mixing plane. Thus, the two-stage analysis comprises
four blade rows and, hence, three mixing planes: the first rotor followed by the
first stator as the first stage, followed by a second rotor and second stator as the
second stage. The aim of this test case is to predict the overall performance
characteristics of the two-stage axial flow compressor such as choking line, stall,
maximum efficiency, pressure ratio and temperature ratio versus corrected mass

flow rate.

Section 5.5 presents the steady analysis of the complex geometry of a centrifugal
stage compressor, specifically an impeller-vane diffuser configuration in which
the flow enters the impeller axially and exits radially. The gap between the
impeller and the diffuser is extremely small and the physics of the flow field in
the gap region is not well understood. It has been established in the literature
that the the mixing plane methodology provides a good prediction of the
performance characteristics, such as pressure ratios and efficiencies, of axial

turbomachines at their design points. The objective of this particular test case is
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to test the applicability of this method to centrifugal stages and assess its
performance in analyzing the complex flow features.

Section 5.6 examines laminar flow over a circular cylinder at Re=100. This
important test case serves to validate the accuracy of the time discretization
scheme in the NS3D code as well as the mismatched grid methodology, which
has been applied in the unsteady multistage simulation of test cases with equal
and unequal blade counts or pitches. The mesh of the flow over the circular
cylinder consists of two sections. The first section includes the region upstream
of the cylinder, the cylinder region, and a small region downstream of the
cylinder surface. The second section comprises the remainder of the downstream
region and, hence, the remainder of the computational domain. The meshes at
the interface plane, common to both sections of the mesh, are non-conforming in
the y- and z- directions. Thus, the desired outcome of completely mismatched
grids at the interface plane would have been achieved. Such grids are required in
the analysis of unsteady rotor-stator interaction whereby grids need to move

relative to one another.

Section 5.7 provides unsteady flow predictions on the centrifugal stage

configuration presented in section 5.5. This test case meets several objectives:

i. comparison of the results between steady and unsteady analysis;

ii. a better understanding of the flow physics in such turbomachinery
components and a means to gauge the importance of unsteady effects on
the performance of the impeller as well as the diffuser.

iii. It is also believed to be the first application of rotor-stator interaction to

centrifugal machines
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Section 5.8 presents the time-inclined unsteady results of wake-rotor interaction
test cases in which the pitches of the rotor and wake differ. This cases serves to
validate the post-processing method which maps the solution from the

computational plane (r’,8’,2’,t") into the physical plane (t,6,z,t).

5.2 Steady Analysis on the UTRC Axial-Flow Compressor

The multistage mixing plane method has been demonstrated for the second stage
compressor of the UTRC large-scale rotating rig, at an rpm of 650 and a flow
coefficient of 0.51. The results compare very well to the available experimental
data and demonstrate the potential of this method for multistage application. It is
considered a difficult test case, not only because of the incompressible nature of
the flow field, but also due to the presence of corner stalls near the endwalls of

the stator [64,65].

The rotor grid uses 25 points upstream of the blade, 55 points on the blade and 12
points downstream. There are 30 points in the hub-to-shroud direction and 29
points in the blade-to-blade direction. The stator grid uses 14 points upstream of
the blade, 57 points on the blade and 15 points downstream. There were 25
points in the hub-to-shroud direction and 21 points in the blade-to-blade
direction. The rotor tip clearance/chord is 1% and there is no stator hub
clearance. To ensure the quality of the grids used in this test case, a grid
adaptation procedure was applied to the stator grid in [7] and the results of static
pressure recovery, flow angles and normalized axial velocity at inlet and exit

planes of the stator indicate that the grids are near-optimal.

As shown in figure 5.1 the rotor inlet is located at station 3 and the stator exit at

station 5. Station 4 represents the interface mixing plane between rotor and
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stator. Station 3 is situated at 24% of the rotor axial chord upstream of the rotor
leading edge, while station 4 is located at 30% of the rotor axial chord
downstream of the rotor trailing edge and 19% of the stator axial chord upstream
of the stator leading edge. Station 5 is located at 18% of the stator axial chord
downstream of the stator trailing edge. The rotor and stator possess 44 blades
each.

The analysis is performed with the inlet conditions at station 4 (that is, the exit of
rotor and inlet of stator) determined iteratively. Each component is first
converged separately in terms of mass. Interaction then begins between the
adjacent rows. The proper mixed-out radial profiles are calculated at the planes
corresponding to the interface, from each side. The new inlet variables to the
downstream component consist of rothalpy, components of mass flux-scaled to
correspond to the inlet mass flow rate in the far upstream component, and
turbulent quantities, whereas the new exit variable to the upstream component is
the radial static pressure profile. Both inlet and exit variables are obtained by
suitably under-relaxing the changes at the nodal values from the previous
iteration. This interaction then continues at each Newton nonlinear iteration until
convergence for all blade rows is reached. In figures 5.2a-5.2g, comparisons
between the measured and computed rotor pressure distributions are made at
3%, 14%, 269%, 45.1%, 73.4%, 86.1% and 95.5% span, respectively. The

comparison is very good from leading to trailing edges, at all sections.

Figure 5.3 shows the radial profile for the total pressure loss coefficient of the
rotor. The loss is well predicted, even near the end walls. Figures 5.4-5.5 depict
the spanwise distributions of axial velocity, and relative flow angles at stations 3

and 4 of the rotor. Predictions for flow angles at station 3 compare extremely well

84



with the experimental data. At station 4, however, the numerical results are
underpredicted in the hub region.

In figures 5.6a-5.6g comparisons between the experimental and numerical stator
pressure distributions are made at 3%, 14%, 26.9%, 45.1%, 73.4%, 86.1% and
95.5% span, respectively. The comparison is good from hub to tip, with the
numerical solution clearly indicating the region of separation on the suction side

at the 3% span section.

Figure 5.7 reveals the spanwise total pressure loss coefficient of the stator.
Comparisons between the numerical and experimental radial profiles of axial
velocity, and absolute flow angles at stations 4 and 5 of the stator are depicted in
figures 5.8-5.9. The numerical prediction of these quantities is accurate despite
the small pressure ratio of this case, which gives little variation in the total

pressure profiles, leading to some inaccuracy in being able to define the loss.

Figures 5.10-5.11 compare both the total and static pressure coefficients at stator
inlet and exit (stations 4 and 5). The numerical results are in very good

agreement with the experimental data [ 64].

5.3 Steady Analysis on a Turboprop’s First HP Stage Axial
Compressor

NS3D multistage analysis results for a PWC turboprop first HP stage axial
compressor at 43,500 rpm are presented. This high Mach number test case is
characterized by shocks near the rotor leading edge. Comparisons of the
numerical predictions are made with those of the mean line model at PWC as

well as to other numerical results obtained by a proprietary viscous compressible
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flow solver, which is explicit, multi-grid, and finite-volume-based with k-¢ as its

turbulence model [66].

The multistage analysis procedure is detailed below:

1-

Inlet boundary conditions, which include inlet radial distributions of total
temperature To, total pressure Po, Mach number M, inlet gas angle o, and
cone angle ¢, and exit boundary conditions which include radial distribution
of static pressure p for each blade row, are obtained from an axisymmetric
inviscid through-flow analysis.

An inviscid (Euler) grid for each blade row is generated and the flow field is
initialized based on the through-flow results obtained from step 1.

A viscous grid for each blade row is then generated and a viscous flow field is
initialized, axisymmetically, based on the restart solution obtained in step 2.
Single-component viscous calculations are carried out using NS3D with the
restart solution obtained in step 3 as an initial solution.

Multistage computations are then performed using NS3D. This step is usually

combined with step 4 in the same analysis.

In this analysis, tip clearance effects are neglected and the finite element mesh

used is shown in figure 5.12. The rotor grid contains 43,750 nodes with 25 nodes

in the spanwise direction, 25 nodes in the pitchwise direction, 21 nodes

upstream, 41 nodes on the blade, and 10 nodes downstream. The stator grid

contains 46,250 nodes with 25 nodes in the spanwise direction, 25 nodes in the

pitchwise direction, 10 nodes upstream, 41 nodes on the blade, and 25 nodes

downstream.
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Converged single-blade viscous solutions for the rotor and the stator are
obtained before the interaction process between the rotor and the stator begins. It
has been observed that the multistage calculations cannot be started unless the
percentage change in static pressure at the mixing plane, common to the rotor

and the stator, falls below 20%.

The convergence history of the Navier-Stokes equations for both the rotor and
stator as a stage is shown in figure 5.13. The L2-residual for the rotor is two
orders of magnitude greater than that of the stator. Approximately 450 Newton
iterations are sufficient to reduce the residuals of the governing equations by
three orders of magnitude for both blade rows. Convergence of the stage
calculation is, however, not only based on the residuals, but also on the
percentage change of physical quantities such as static pressure, total
temperature, and mass flow across the mixing plane. Stage calculations are
terminated when the percentage change in mass flow, area-averaged static
pressure, and mass-averaged total temperature at the mixing plane are less than
0.2%, 0.5%, and 0.1%, respectively. Plots of the percentage change in mass flow
versus iteration number for each rotor and stator are depicted in figure 5.14a and

5.14b, respectively.

Figure 5.15 shows the map predictions for the first rotor by NS3D, meanline
model and the proprietary code. Due to the lack of test data for the first rotor, the
results obtained by NS3D and the proprietary code are compared with those of
the meanline. As displayed in figure 5.15, the NS3D results are in better
agreeement with the meanline than those obtained by the proprietary code. The
proprietary code over-predicts choking flow by 2.1%, peak efficiency by 1.39%,
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and pressure ratio by 3.27% while NS3D over-predicted choking flow by 1.03%,
under-predicted efficiency by 1.25% and over-predicted pressure ratio by 2.4%.

Figure 5.16 shows the map predictions for the first turboprop’s compressor stage
by NS3D, the meanline model, and the available test data. NS3D predictions are
compared with test data at the choking flow condition and to meanline model
predictions at non-choking conditions. The choking flow is over-predicted by
1.03% with respect to the test data. The stage isentropic efficiency is under-
predicted by 0.97% and the pressure ratio is over-predicted by 1.98% with

respect to the meanline model.

The discrepancies observed with the Thesis predictions can be explained as

follows:

1- The coarse mesh used in the present analysis may not be fine enough to
resolve the flow.
2- Tip clearance, which has not modeled in the present analysis, should reduce

the predicted choking flow.

54 Steady Analysis on a Turboprop’s Two-Stage HP Axial
Compressor

A two-stage analysis, with tip clearance, of a PWC turboprop HP axial
compressor at 43,500 rpm is carried out using NS3D. A compressor map is

obtained and the numerical results are compared with experimental.

All the blade rows in this case were analyzed using medium size grids since fast

workstations were not available. A midspan section of the two-stage
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configuration is depicted in figure 5.17 with the first rotor, first stator, second
rotor and second stator grids consisting of 81,780, 73,080, 73,080 and 73,950
nodes, respectively for a total of 301,890 nodes. Six grid points are used in the
spanwise direction and three points inside the blade for tip clearance. The same

number of grid points is used for all other blade rows.

Converged single-blade viscous solutions for each row are obtained before the
interaction procedure among adjacent components is initiated. Five solutions are
then obtained by changing the static pressure at the exit of the compressor, that
is, the exit plane of the second stator. The first solution corresponds to the lowest
static pressure at the exit of the compressor, also the choking condition. The
second solution is obtained by solving with NS3D for about 250 iterations with
the first solution as an initial guess. The remainder of the solutions are started
from previous solutions with different static pressures at the compressor exit.
Stage calculations are terminated when the difference in mass flow and mixed
out quantities (static pressure, total temperature, and total pressure) at the

mixing plane are less than 0.1%, and 0.4%, respectively.

Figure 5.18 shows the map predictions for the two-stage compressor by NS3D. It
can also be observed from this figure that NS3D over-predicts choking flow by
0.44%, under-predicts efficiency by 2.16% and under-predicts pressure ratio by

0.2% with respect to the experimental data at the design corrected flow.
Figure 5.19 compares NS3D radial profiles of absolute flow angle and normalized

total temperature at the exit of compressor to experimental values. It is apparent

from figure 5.19 that both the normalized temperature and exit flow angle are
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slightly over-predicted in the end-wall regions. However, the overall prediction

compares very well with the experimental data.

One reason for the observed discrepancies in the Thesis predictions may be the

coarseness of the grids.

5.5 Steady Stage Analysis on a Centrifugal Compressor Stage

Steady mixing plane analysis is conducted on a centrifugal stage, comprising an
impeller and a vane diffuser, shown in figure 5.20. An important objective of this
selected test case is to extend the applicability of this method to centrifugal stages

and assess its performance in analyzing its complex flow features.

The flow at the inlet of the impeller is subsonic with a Mach number of 0.4 and a
swirl relative to the axial direction ranging from zero to 30 degrees. The total
pressure ratio across the impeller varies from 2.5 to 10. The flow at the exit of the
impeller is primarily circumferential due to the high swirl of the flow (75 degrees
with the radial direction since the flow enters the impeller axially and exits
radially). The impeller increases the fluid’s kinetic energy, resulting in a high
speed flow with Mach numbers in the range of 0.85-1.2. The flow enters the vane
diffuser where its kinetic energy in converted into pressure energy via a
diffusion process characterized by a static pressure rise and an accompanying
drop in velocity, to a Mach number of approximately 0.15. The total loss in the
diffuser is about 10%.

Two simplifications were made to the impeller-diffuser geometry [70]. First, a
vane diffuser is analyzed despite the fact that all PWC engines employ a pipe
diffuser. This is done simply to reduce the grid size since a pipe diffuser would

90



require at least twice the grid size of a vaned diffuser. As a preliminary step, one
is also interested in studying the qualitative behavior of the interaction which
would be similar for both vane diffusers and pipe diffusers. Secondly, the
blade/diffuser count is altered in this case to produce a one to one ratio (figure
5.21). The total grid contained 202,140 nodes with 137,340 in the impeller and
64,800 in the vaned diffuser. It should be noted that the impeller tip gap is

modeled and the diffuser does not have a de-swirl cascade at the exit.

At the inlet, the total pressure, total temperature and flow angles are specified.
At the exit of the diffuser, a constant static pressure is specified. Approximately,
500 Newton iterations are performed to resolve the non-linearity of the
governing equations and match the axial profiles at the interface plane in the gap

region between the impleller and the diffuser.

The flow in the interaction region is best viewed by aligning along the engine
axis. Figure 5.22 reveals the Mach contours from such a vantage point. As shown,
the flow separates right off the leading edge of the diffuser. The results make
sense as the flow coming out of the impeller is far from uniform leading to an
incidence on the diffuser of 10 degrees or more. Classical cascade theory,
however, suggests that the incidence tolerance of the diffuser is no more than

two degrees, thus the large separation obtained in the steady analysis is not

surprising.

Figure 5.23 shows radial velocity contours obtained from a steady analysis as
they develop through the back end of the impeller. The profile is typical of any

steady analysis, showing strong flow near the hub and a relatively dead zone

near the shroud.
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The discrepancy between the mixing plane results and the engine performance
data is attributed to the diffuser static pressure rise obtained with such a large
separation zone. These results suggest that unsteady effects are significant and
may have a first order effect on the solution, rendering the use of a mixing plane
steady analysis inappropriate. An unsteady analysis would be more realistic in

an engine environment as will be demonstrated in section 5.7.

5.6 Flow Past a Circular Cylinder at Re=100

This test case investigates laminar flow over a circular cylinder for the purposes
of validating the time discretization scheme, as well as the mismatched grid
methodology described in this work. The computational domain and the
boundary conditions are presented in figure 5.24. The mesh has 37,920 nodes and
30,702 elements (figure 5.25). The grid over the cylinder is divided into two
regions which share an interface plane (figures 5.25 and 5.26). The interface is
normal to the x-direction and located several diameters behind the cylinder. The
grid in the first region, to the left of the interface, has 38x58x8 nodes in the x-, y-,
and z-directions, respectively, while the grid in the second region, to the right of
the interface plane, has 25x64x10 nodes in the x-, y-, and z-directions,
respectively. The mismatched grids at the interface plane from the left and right
regions are illustrated in figure 5.26a while finer mesh details near the cylinder

wall surface are shown in figure 5.27.

The analysis begins with a steady-state calculation, at Re=100, using the steady
flow algorithm, SFA, with no artificial viscosity. The time-accurate calculation is
then started from this steady-state solution. The second-order Gear method, with
a time step At=0.23, was applied, which corresponds to approximately 25 time

steps per shedding cycle. At each time step, 6 Newton iterations were found to
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be sufficient to reduce the residuals of the Navier-Stokes equations by two orders
of magnitude. The convergence history of the unsteady Navier-Stokes equations
for flow past a circular cylinder at Re=100 is displayed in figure 5.28, with the

peaks and troughs corresponding to the start and end of a time step, respectively.

In figure 5.29 the evolution of the transverse velocity v is plotted versus time at
x/D = 0.65 downstream from the cylinder along the symmetry line y = 0. The
Strouhal number, Sr=fD/V_, is computed by measuring the vortex shedding
period based on the transverse velocity v from figure 5.29 and is found to be
within 5% of the experimental one given in [67]. It was also found that the
horizontal velocity oscillates at twice the shedding frequency. The flow is
periodic, with a period of T=5.75, and as shown in figure 5.30, the contours of
transverse velocity are continuous across the interface plane where the grids are
totally mismatched. Figure 5.30 shows the transverse velocity contours of vortex
shedding behind the cylinder during a period of 6.0 (about 1.05 cycle). The global
flow field is saved at five equally spaced time levels, covering one cycle of vortex

shedding.

Table 5.1 Numerical and experimental data for the

flow past a circular cylinder at Re=100

T Sr
Present work 0.17
(conforming grids) 5.750 174
Present work 0.174
(non-conforming grids) 5.750 )
Li et al. [68] 6.133 0.163
Gresho et al. [69] 5.600 0.180
Exp. [67] 6.024 0.166
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Comparison of the principal parameters of the flow over the circular at Re=100
are presented in Table 5.1. The period of vortex shedding T, the Strouhal number
Sr, at the points, x/D = 0.65 on the centerline behind the cylinder obtained from
the present work are in good agreement with the numerical results of [68,69] and

the experimental measurements of [67].

5.7 Unsteady Stage Analysis on a Centrifugal Compressor Stage
An unsteady stage analysis is conducted on the same centrifugal stage presented

in section 5.5 to study the effect of unsteadiness on impeller performance.

As carried out in the steady analysis, the total pressure, total temperature and
flow angles are specified at the inlet of the impeller, and a constant static
pressure is specified at the exit of the diffuser. At each time step, 5 Newton
iterations are performed to resolve the non-linearity of the governing equations.

There are 70 time steps per blade-passing period.

The solution is restarted several times and it is not clear exactly how many time
steps are carried out since only the last output file has been retained, which ran
for 700 time steps. It is quite likely that more than 2000 time steps were
performed, which represent 10,000 Newton iterations. Even with such a large
number of time steps, a solution with a temporal periodicity of the blade-passing

frequency is never achieved.

It is worth mentioning that both the steady and unsteady analyses, which are
carried out on the same grid size, have the same memory requirements as well as

the same computing cost per Newton iteration. This implies that the computing
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time required for an unsteady analysis is approximately 20 times longer than that

of the steady analysis.

Figure 5.31 reveals a comparison of Mach contours between the steady and
unsteady analysis. As shown, there is a modest sized separation zone on one side

of the diffuser, resulting in a large qualitative difference in the two results.

Another interesting effect seen in the analyses is the difference in the flow fields
emerging from the impeller in the unsteady and steady analyses. Figure 5.32
shows radial velocity contours obtained from a steady and unsteady analysis. It
is observed that the unsteady velocity profile has changed substantially from the
steady results with the highest velocity flow now being in the shroud region

when the flow leaves the impeller.

Figure 5.33a shows the instantaneous static pressure contours at an axial cut
through the centrifugal stage. The pressure does not rise smoothly through the
diffuser, but has a wave pattern. A videotape of the pressure field shows that
these waves move up the diffuser. Figure 5.33b plots the instantaneous static
pressure midway between the diffuser from the throat to the trailing edge. The

wave pattern is clearly visible.

Large pressure fluctuations in a diffuser have been observed experimentally [71].
These pressure waves may be responsible for the difficulty in achieving a time
periodic flow field. The pressure wave moves downstream and reflects off the
walls and at the exit, sending waves upstream. The frequency of these waves can
be completely different from the blade passing frequency, resulting in a very
complicated flowfield where the temporal periodicity may be very different than
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the blade passing frequency.

The unsteady calculations also reveal a difference in the pressure field. In a
steady analysis the leading edge stagnation point pressure field radiates out from
the leading edge in a direction that lines up with the incident flow. Figure 5.34
shows the pressure field at an instant in time from the unsteady analysis. The
direction of the pressure gradient has a very strong radial bias even though the
incident flow is predominately tangential. An explanation for this behavior can
be found if one considers the effect that the impeller must have on the time
averaged flow field. In an impeller flow that is steady in the relative frame there
is an equivalence between the tangential direction and time, namely that
d® =Qdt where 0 is the tangential direction, £ is the impeller rotation speed
and t is time. The time averaged flow field is thus constant in the 8-direction
allowing a gradient only in the radial direction. The stagnation point pressure
field from the diffuser is strongly influenced by this fact giving it the radial bias
[72].

Fourteen solutions are saved equally spaced in time over one blade-passing
period. These results are post-processed and time-averaged to give an overall
impeller performance. The unsteady solution has an inlet corrected flow that is
lower by 8.25% from the steady one. The unsteady results are scaled to determine
the appropriate steady results. The downstream station is a plane halfway

between the impeller trailing edge and the diffuser leading edge.

The steady and unsteady results are similar in terms of overall performance
except for a difference in the total pressure. This indicates that the blockage is

noticeably lower in the unsteady analysis. Figure 5.35 shows the magnitude of
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the radial velocity at the impeller exit for the steady and unsteady analyses and

the flow is, indeed, more uniform in the unsteady analysis.

Figure 5.36 shows the unsteady fluctuations in area averaged total pressure ratio,
static pressure ratio and mass-averaged total temperature ratio at the interface.
The results for two periods are plotted although only one was actually calculated
and the results repeated. As noted earlier, the actual temporal periodicity of this
problem is not the blade passing frequency. The largest fluctuation is in the total
pressure. The static pressure fluctuation is considerably lower than that shown in
figure 5.35, indicating that the diffuser amplifies the static pressure fluctuations.

This is consistent with the experimental results in [71].

5.8 Wake-Rotor Interaction

The purposes of this test case are two-fold: (i) to demonstrate the capability of the
time-inclined method to analyze wake-rotor interaction in which the pitches of
the rotor and wake differ and (ii) to validate the post-processor which maps the
solution from the computation plane (r’,8’,z,t") discussed in Chapter 3 into the
physical plane (r,0,z,t). Two cases are analyzed with different number of wakes
striking the rotor. The first case has 66 stator wakes and 72 rotors, while the
second has 60 wakes and 72 rotors. This results in a pitch ratio of 1.091 and 1.2
for the first and second cases, respectively. Results for the case with a pitch ratio

of 1.2 are presented in this Thesis.

First, a steady inviscid solution is obtained for the turbine stage using the mixing

plane method. The steady boundary conditions U(r,z) from the steady analysis

are applied, after being modified, and are used to carry out an unsteady

computation in the inclined plane. The rotor grid consists of 21,021 nodes with 13
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nodes in the spanwise direction, 13 nodes in the pitchwise direction, and 49
nodes in the streamwise direction. Table 5.2 lists the relevant flow parameters for
this case. The unsteady calculations use 600 time levels with 50 time steps per
blade-passing period to resolve the temporal periodicity of the flow. At every
time step, five Newton iterations are used to reduce the residual by two orders of
magnitude. The flow attains a perfect time periodic solution after only three

cycles which is equivalent to 150 time steps.

Table 5.2 Parameters for wake-rotor interaction test case

Inlet relative Mach number 0.73
Exit relative Mach number 0.80
Inlet absolute flow angle (deg) -60.0
Stator-to-rotor pitch ratio 1.2
Wake velocity defect 0.1

The incoming wakes are specified at the rotor inlet boundary by applying the

following sinusoidal function for the momentum vector pV :

U(r,e,z,t)= U(r,le - Dcos(2m])]

Qt

where N = O+ and D is the wake velocity defect and typically has a value of

S

0.05. Transformingm from the physical space into the computation space yields

n= 0+Q(t"+A.0) Qt
eS eS

+i+m,e=m+_e_+(es—ek)a=m+_e_
6, O, 06, 6 0,0, 8, O,

It is clear that the flow in the inclined time plane has a time periodicity equal to
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the rotor blade-passing period defined as T, =%5—, and more importantly, a

spatial periodicity equal to the rotor pitch angle 8, and, hence, one rotor passage
is required to perform the computation, even with the differing values of wake
and rotor pitches. The flow solution is saved at 50 equally spaced timesteps in
the computation space covering a full period. The post-processor is run to
produce 20 solutions per period in the physical space. A video is then produced
using the commercial post-processing software, Fieldview. Plots for relative
Mach number at different physical time steps are shown in figure 5.37. As
shown, the same flow phenomena takes place in one passage as in the
neighboring passage, after a time span AT equal to the time lag. The actual
spatial periodicity is over (60 stators/12) five wakes which is equivalent to (72
rotor /12) six rotor passages. Therefore, five incoming wakes on a configuration
consisting of six rotor passages is sufficient to fully describe the flow field in this

case.
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Figure 5.21 Centrifugal stage configuration; impeller-vane diffuser
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Figure 5.22 Mixing plane Mach contours through a vane diffuser
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Figure 5.23 Mixing plane radial velocity contours at the impeller exit plane
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Figure 5.24 Computational domain and boundary conditions for

the flow around a circular cylinder

(a) Side view

(b) Top view

Figure 5.25 Finite element mesh for flow over a circular cylinder
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Figure 5.26 Details of mismatched grid; (a) front view; (b) side view

Figure 5.27 Mesh details near cylinder surface
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Figure 5.28 Convergence history of the unsteady Navier-Stokes equations for the

laminar flow past a circular cylinder at Re=100
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Figure 5.29 Predicted evolution of the y-component of velocity, v, with respect to
time. Solution at a point (x/D=0.65, y=0) on the centerline behind the cylinder;
Re=100, Ar=0.23 , T=5.75, Sr=0.174
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Figure 5.30 Predicted transverse velocity contours behind the cylinder over one
cycle at times; (a) 0, (b) 0.23T, (c) 0.46T, (d) 0.69T, and (e) 0.92T. Laminar flow,
Re=100, T=5.75, Sr=0.174

121



(a) Steady analysis (b) Unsteady analysis
Figure 5.31 Comparison of Mach contours through a centrigugal stage

(a) steady analysis, (b) unsteady analysis

(a) Steady analysis (b) Unsteady analysis

Figure 5.32 Comparison of radial velocity contours through a centrigugal

stage; (a) steady analysis, (b) unsteady analysis
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(a) static pressure contours
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(b) static pressure midway through vane diffuser
Figure 5.33 Static pressure at an instant of time through a centrifugal

compressor; (a) contour plot, (b) variation midway through vane diffuser
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Figure 5.34 Instantanous static pressure gradient at the leading edge
of the vane diffuser of the centrifugal stage
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Figure 5.35 Radial velocity contours at the exit of plane of the

impeller of the centrifugal stage
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Figure 5.36 Unsteady fluctuations of various flow quantities at the

interface plane of the centrifugal stage
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Figure 5.37A Predicted velocity contours through a rotor blade of a PT stage

over one blade-passing period T
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Figure 5.37B Predicted velocity contours through a rotor blade of a PT stage

over one blade-passing period T
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6. Discussion

6.1 Conclusions

In this Thesis, a finite element formulation for the analysis of multistage
turbomachinery is presented in terms of the Reynolds-averaged Navier-Stokes
equations for three-dimensional unsteady, viscous, compressible, turbulent flow.
Three methodologies are comprehensively described and their advantages and

shortcomings are discussed.

A mixing plane finite element method applicable to multi-row turbomachinery
has been implemented for the solution of three-dimensional viscous flows. A
non-reflecting interface boundary condition is incorporated with the mixing
plane methodology. It allows for a circumferential variation in static pressure at
exit boundaries, while the radial profiles of static pressure, from the upstream
exit and the downstream inlet at a mixing plane, are matched. This steady
multistage methodology has been validated against three test cases, with
hexahedral grids. The first test case involves the second stage of a low speed
axial flow compressor with corner stall separation in the stator. The second test
case considers a two-stage axial compressor of a turboprop engine, with
transonic flow in the first rotor. Numerical results obtained for both cases
compare well with the experimental data. The third test case deals with a
compressor’s centrifugal stage, comprising an impeller followed by a vane
diffuser of equal pitch. It was found that the mixing plane predictions have
flagrant inconsistency with engine performance data, indicating that the method
is inappropriate for centrifugal machines. This finding is an important

contribution of this Thesis.
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The steady-state formulation of the system of Navier-Stokes equations in [46] has
been extended to the time-accurate analysis of unsteady flows by implementing a
second order Gear scheme. This formulation has been validated using the well-
known two-dimensional test case of laminar flow past a circular cylinder. The
vortex street shedding, observed experimentally, is captured and its computed

shedding frequency is shown to be within 5% of the measured data.

The formulation is extended to handle the unsteady flow solution through a
multistage turbomachine with equal pitches. Such flows are more complex since
the rotor grid, at every time step, moves relative to the stator grid. A fully
implicit finite element based methodology, using non-conforming grids at the
interface, has been implemented to couple the rotor and stator solutions. One
advantage of using non-conforming grids for the rotor and stator at the interface
is that this method may be coupled to a grid adaptation capability. Such a
capability would facilitate the grid generation process and open the doors for
more complex geometries to be analyzed. The novelty of this implicit coupling
procedure is that the assembly of element influence matrices of elements and the
interpolation of solution are treated in a consistent manner at the interface plane.
The implicit approach, characterized by its superior convergence rate, is a
significant contribution of this Thesis. It permits the use of a high time-step and
hence drastically reduces the computing time required to achieve a time periodic

solution.

The unsteady approach for multistage turbomachines with equal pitches has
been demonstrated on the same centrifugal stage compressor analyzed by the
mixing plane method. In contrast with the steady mixing plane results, the

unsteady numerical predictions agree well with experimental observations,
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indication that the flow in centrifugal stages in fundamentally unsteady. This test
case highlights the high stability limit of this method, as indicated by the high
time step sizes allowed. As a comparison, typically 50 to 70 time-steps per blade-
passing period are required with this method whereas 1000 to 3000 time-steps

may be taken with explicit methods.

The equal pitch formulation is then enhanced, by transforming the governing
flow equations from the physical time plane into a computational time plane, to
handle the solution of a turbomachinery stage with different number of rotor and
stator blade counts. The method is different from [6] in that it is implicit,
formulated in terms of the solution vector U, not Q as in [6], and implemented in
3-D for viscous flows. The decision to solve for the solution vector U, as opposed
to Q, is due to the resulting simplification of the interpolation procedure when
transforming the solution from the stator frame to the rotor frame and vice-versa.
The advantages of time-inclined appreach are that only one channel per blade
row is required and the implementation of the periodicity boundary condition at

free boundaries is simplified.

The time inclination method is demonstrated on unsteady flow through a rotor
blade passage of the power turbine of a turboprop engine. A stator wake is
imposed at the inlet boundary of the rotor and unsteady computations are
carried out in the time inclined plane of the rotor. The wake-to-rotor pitch ratio
in this case is 1.2. The method is shown to be a powerful tool for single-stage

analysis with unequal blade count.

An interpolation procedure has been developed and implemented to exchange

the finite element solutions across interface planes common to rotors and stators.
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The scheme has been proven to produce perfectly matching contour lines for all
flow variables through the interface, even with the use of completely

mismatched grids.

A post-processor based on Fourier transform theory has been developed to map
the finite element solution from the time inclined computational plane into the
physical time plane. The quality of the solution in the physical plane has been
shown to be quite good, with no discontinuities in contour lines of all flow
variables at free boundaries where the flow is periodic in the computational

space.

The work of this Thesis has been embedded into a Concordia-Pratt & Whitney
three-dimensional, turbulent, steady Navier-Stokes code, NS3D. It provides a
powerful flow analysis tool which is essential in the design of modern

turbomachinery blades.

6.2 Future Work

The applicability of the time-inclination formulation can be improved by
considering cases with unequal airfoil counts for successive rotor or stator rows.
As implemented in this Thesis, the time-inclination formulation is applicable to a
multistage configuration with equal airfoil counts for successive rotor or stator
rows, an example being a two-stage turbine with blade counts 75 and 76 for the
first stage, and 75 and 76 for the second stage. However, it is not applicable for
cases with unequal airfoil counts for successive rotor or stator rows, such as
blade counts 66 and 72 for the second stage as in the previous example. This

problem may be addressed by coupling the time-inclined solution of the first

131



stage to that of the second stage through a mixing plane placed downstream of

the second blade row and upstream of the third blade row.

There is also a need to make this multistage methodology a useful analysis and
design tool for low pressure (LP) turbines where the concepts of high-lift airfoils
and clocking are of importance. Both design concepts and their relevance to

unsteady flow phenomenon will be described briefly.

Cost and weight savings of LP turbines can be achieved by reducing the airfoil
count and hence increasing the loading, thus the term high-lift airfoils. As the
airfoil loading is increased, the diffusion level of the suction surface boundary
layer also increases, making it more susceptible to separation. LP turbines
operating at cruise conditions are particularly susceptible to boundary layer
separation due to the low Reynolds numbers at which they operate. Under these
conditions, a significant fraction of the suction surface boundary layer is laminar
and transition to turbulence usually occurs via a laminar separation bubble. If
this separated flow does not reattach before the trailing edge, the losses increase

substantially [73,74].

One of the biggest shortcomings of today’s CFD tools for the simulation of LP
turbines is the lack of an accurate transition/turbulence modeling. The problem
of predicting periodic transition in an unsteady flow environment is very
challenging and a mathematical model for separated flow transition needs to be

developed [75].

The study of high-lift airfoils and clocking can be thought of as a related subject

since the clocking effect may possibly allow increased airfoil loads due to its
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effect on the boundary layer transition process. Successive rotor or stator rows
with equal airfoil counts can be circumferentially indexed relative to one another
in order to minimize losses. This arises from the fact that the wakes from the
upstream row of the clocked pair are "chopped", convected through the
intermediate row and impinge on the downstream row in the same pitchwise
position relative to each airfoil. A sinusoidal pattern in loss level then results
based on whether the wake impinges on the leading edge, exactly between
airfoils, or at some intermediate point. The loss mechanisms are not clearly
understood; possibly they depend on unsteady boundary layer transition, as is
the case for high-lift airfoils [76]. With the implementation of the unsteady
multistage capability in NS3D, it is now possible to address these problems

occurring in LP turbines.

Although potential performance benefits can result from airfoil clocking, the
effects of clocking on blade vibratory stresses and noise generation are less
understood. Any clocking investigation aimed at measuring performance should
be accompanied with blade stress as well as acoustics analysis. Future work may
include coupling the unsteady multistage code with the aero-acoustic code
developed by the CFD Lab of Concordia University. In such a case, the predicted
unsteady pressure is fed into the aero-acoustic code for noise prediction. Another
future project may involve coupling the multistage code with the aero-elastic
code developed by the Concordia CFD Lab to predict flutter phenomena and
blade failure.
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Appendix A
Weak Galerkin Formulation of the Navier-Stokes Equations

The weak Galerkin formulation of the system of equations consisting of the
continuity (2.2) and the Navier-Stokes momentum equations (2.3) in cylindrical
coordinates will be demonstrated. Each equation is multiplied by a weight

function, W, which is identical to the shape function, and integrated over the

volume:

d 10 10 d D

\%

where

pu, (A2)

pu, (A.3)
_|pui+p-o,

pueur - oer

puluf —GZF

Pu, (A4
pun,—0g4
PU; +P— O
Pu g — 0O,
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pu, (A.5)
C — puruz - oﬂ
pugu, — Gy,
pu; +p—o,
0 (A.6)
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n

az/

Subsequent integration by parts yields the weak Galerkin form of the system of

equations

A+ liv113+--—C+w—]d jwrzas
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r 06

atar

ou oW
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where the surface integral term, E, is of the form:

pVei

2 rdédz drdz rdrd®

‘+p- + -0 + -0

E G)ur p on' E G)urue be¢) dggz @uruz rz grsde (A_lO)
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(puzur —ozr)—_d_é—.*-&)uzue _026 )_E'-*-Q)ui +p_on)?
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Appendix B
Time Discretization and Newton Linearization

of the Navier-Stokes Equations

B.1 Time Discretization
The weak Galerkin form of the Navier-Stokes system of equations (A.6-A.7) is
discretized in time using the fully implicit Gear scheme, with variable order of

time accuracy (k), as follows:

oW 10W
_wu+ AT+ -2 B'+—C' :
{[ x T o0 (B1.1)
where
U’ ] 1
c » (aop +§ap )
4 —tAt \
U | | L) + S u, Y
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Ce pu, (B1.5)
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B.2 Newton Linearization

The terms of the discretized matrix and residual equations (2.24-2.27) are written

in detail below:

element influence matrices and residual from r-momentum equation
o3 aW, 10W, oW,
kKL = —=WN —N |20 —-+u;———+u, —
A A Ak
L (40W,0N; 19W, oN; 9w, oN;
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Rep,\3 or or r’ 98 d6 Jz Oz

L2 u _N; oW, W, aNj_z_lxh
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Appendix C
Numerical Discretization of the Energy Equation

The weak Galerkin formulation, time discretization, and Newton linearization of

the energy equation (2.4) will be demonstrated. Equation (2.4) is first multiplied
by a weight function, W, which is identical to the interpolation function, and then

)— Ve (Evoﬁ J}de =0
Re C.D)

After integration by parts, the weak Galerkin form of equation (C.1) can be

integrated over the domain:

DH, op K
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The SUPG form of the energy equation can be expanded as:
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The time-dependent terms of equation (C.3) is then discretized using Gear

scheme as follows:

f{[ﬂzl;(aloiaiHa‘“‘J EcAi(aop + Y gp )

v i=l 1=l
:l OVW}dV C4)

+(VeVH, )IW-!—WSUPG}-[

B

The Newton method is applied whereby the total enthalpy is expressed in delta

Re

form, AH,=H,""' —H,", and the second order terms are neglected. Upon

substitution of equations (2.10) and (2.12) into the Newton linearized equation,
the delta form of the energy equation is assembled, over the elements of the

domain, in terms of the nodal unknown, AH,:

z[fhc LOA(Ho)j]=—ResH0 s
e=l |

where the element influence matrices and residual vectors from the energy

equation take the form:
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Appendix D
Weak Galerkin Formulation of the Time-Inclined

Navier-Stokes Equations

Consider the following coordinate transformation from (r, G,z,t), the physical

coordinated, to (r’,8’,z’,t"), the computational coordinates in which t’ is constant

on each computational time level.

’

r=r

=86 (D.1)

2/ =z
t'=t—-A0

and

AT srator
— 6s _ _ eR —es
A=1,5 AT=T, -Ty=—5— (D.2)
— rotor
G

where A is the inclination parameter, AT is the time lag, and 65 and 8; denote

the stator pitch and the rotor pitch, respectively.

Applying this transformation into Eq. (A.1) and dropping the ‘ symbol from the

equation yields

lw[%(qy i aar A+ : aae (B)+%(C)+—?—}W -0 o
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where

Q=U-=B (D.4)

In NS3D, the choice was to solve for the variable U and this requires a minor

modification to the principal algorithm with equal pitches.

The time term 9Q in equation (D.3) can be written as

ot
3Q_3Q3U (| 138U ©5)
ot JU ot rou ot
where
1 0 _2 0
r
A A
[I_EE:I_ uu, [l—?ue) —?u, 0
Ul |2z rT) 0 (1—2&%] 0 (D.6)
r r
—u,u, 0 ——;:uz (l—&ue)
- r r -

Note that the matrix in (D.6) is derived based on the Euler system of equations
for momentum and continuity. The energy equation is solved in a segregated
manner and hence the static temperature is lagged by one Newton iteration for a

given time level.

The implementation of this modification in the code is extremely simple. It is
achieved by modifying the definition of the time terms in the governing flow

equations with equal pitches.
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Appendix E
Interpolation Procedure at the Rotor-Stator Interface
For Equal and Unequal Pitches

Equal Pitches
The rotor grid location at an instant of time t is given by

0,(t)=6, +Qt (E.1)

At every time step the rotor moves by QAt and the new position of the rotor is

established with respect to that of the stator by satisfying the following equation

8.(t) =8, (1) +%t-—n (E2)

b

where N is the blade count and n =0,1,.., N, is the stator passage index.

Note that the 2nd term on the right hand side of equation (3) is introduced

through the spatial periodicity of the flow problem.

Unequal Pitches Algorithm

Viewed in the stator frame of reference as shown in figure (1.7) the rotor pitch
lines up with the stator pitch and thus both pitches are identical. For proper
interpolation of flow properties across the interface the rotor grid is scaled in the
pitchwise direction. The scale factor is the pitch ratio and the new theta-

coordinate of the rotor
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0, (new) = ;ie, (old) (E.3)

R
after scaling becomes identical to that of the stator.

When one transforms equation (E.1) into the time inclined plane

8/(t) =0, +Q(t'+1.,6,)=0,+Qt'+ QA 0’ (E4)

Equation (E.4) can be recast as follows

- p.(t)= Il:—se;(t') =0, +Qt’ (E.5)

R
Substituting equation (E.3) into (E.5) yields the desired equation

0 (new) =0, +Qt’ (E.6)

Equation (E.6) is the equivalent of equation (E.1). At each time step, the rotor

moves by QAt’ and the rotor pitch is identical to the stator pitch.
On an inclined plane, the angular pitch of the rotor is exactly the same as the

stator. The interpolation at the interface is exactly as it would be in ordinary time

if the two blade pitches were identical.
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