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Abstract

Necessary and Sufficient Conditions so that a

Commutative Ring Can be Embedded Into a strongly n-regular Ring.

Anthony Philippoussis

If R is commutative ring then R can be embedded into a strongly m-regular ring if

and only if there exists a set of prime ideals Y = {P_}ac A and for each P,.aP,-primary

ideal Q, such that:

I) Y is closed in the patch topology on Spec R.
II) r1.| .\Qu = {O: -
[II) for each a € R there is n(a) € N such that for n > n(a), {P, | P, Y and

a"e Q,} 1s patchopenin Y.
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Introduction

In this thesis all rings will be assumed to have 1 = 0 and that in a]l chapters, except

chapter 2, all rings will be assumed to be commutative.

Arting S is said to be strongly n-regular if for every a € S there exists n > 1 such that
a" < a"'S. It can equivalently be defined as S is strongly n-regular if for every a € S there
existsn > 1 and b € S such that a® =a"'b. G. Azumaya [2], W. D. Burgess, P. Menal [5].
M. F. Dischinger [6] and Y. Hirano [7] have proven several properties of strongly n-regular
rings using one or the other of the definitions above. The properties, necessary for the

results of this thesis, are proven herein.

Two other ideas that are important in getting the desired result are that of patch R
and the universal regular ring of R. The properties and the relations between patch R and
Spec R were proven by M. Hochster [12]. Hochster showed that patch R must be the
spectrum of some ring, which he described. Some of these properties \_m'll be used and
proved in this thesis. The second idea - that of the universal regular ring of R -, its properties
and 1ts relation to patch R were proven by R. Wiegand [24] using the ring that Hochster
found. Wiegand showed that Hochster’s ring was a regular ring, that every homomorphism
from R into a regular ring factors uniquely through ¢, where @ 1s the map from R into the

ring found by Hochster. So that ring must be the universal regular ring of R.
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Chapter I

Definitions and Theorems

Definition 1.1: Let R be a ring. A right R-module is an Abelian group M together with a

map MxR-M written (x,r)-xr, such that for all x, vyeMandr,seR
a)(x+y)r=xr+yr,
b) x (r+s) =xr + xs,
C) x (rs) =(xr) s,

d) xl = x.

Definition 1.2: Let A and B be two rings. M is an A-B-bimodule if M is a left A-module and
a right B-module (with the same underlying additive group), such that (ax)b = a(xb) for

acA xeMandbeB.

Definition 1.3: Let M, N be R-modules. A map a:zM-N is an R-linear map if forx,ve M,

aeR
a) a(x +v) = a(x) + a(y),

b) a(xa) = a(x)a.

Definition 1.4: Let o be a homomorphism ¢:R~R’, the dominion D = D(p,R") is the largest

subring of R' such that YR" Va,B:R'-R" if ar = B implies that o, =B,



Definition 1.5: Let ¢ be a homomorphism p:R~R'. @ is an epimorphism if

VR" Va,B:R'-R" ap = B implies a = B.

Definition 1.6: A maximal epimorphic extension of ¢, E = E(o,R’) is the largest subring

of R' such that ¢:R~E is an epimorphism.

Definition 1.7: Let M be an ideal of R, M = R. M is called a Maximal ideal if McIcR

thenI=RorI=Mforalll ideal ofR.

Definition 1.8: Let R be a ring, the intersection of all maximal ideals of R 1s called the

Jacobson radical of R and denoted J(R).
Definition 1.9: P is said to be a prime ideal of R if
a)P=R,
bjvxye Rx,yeP=xveP.

Definition 1.10: Let R be a ring a € R is called nilpotent if 3na" = 0.

Definition 1.11: The nilradical of R is the set of all nilpotent elements of R and will be

denoted by mnil(R). It is also the intersection of all the prime ideals of R.



Definition 1.12: Q is said to be a primary ideal of R if

a)leQ,

b) for x,y € R, if Xy € Qand x € Q then 3In>0 y°¢ Q.

Definition 1.13: A ring is Noetherian if every ideal is finitely generated.

Definition 1.14: A ring is Local if it is Noetherian and has exactly one maximal ideal.

Definition 1.15: LetRbearingScRisa multiplicative set if

a)x,yeS=xveS,
b)0 ¢ S,

c)leS.

Definition 1.16: Let R be a ring and S a multiplicative set. Let F={(rs){reRands € S}

(r;s)~(r's') = (rs'-r's)t =0 for somet € S. The equivalence classes of (r,s) will be denoted
by /s and S”'R the set of equivalence classes. Note that SR is a commutative ring with
operations 1/s + r/s' = (rs' + r's) / ss' and (r/s) (r'/s') = rr'/ss' and is called the localization of

R and denoted by R,

Definition 1.17: Let R be a ring, a € R is a zero divisor if there is a, b = 0 such that ab = 0.




Definition 1.18: Let R be a ring and A the set of all non zero divisors of R then the classical

ring of quotients of R, Q4(R) =R,

Definition 1.19: A ring R is called regular if vreR 3xeR such that r = IXT.

Definition 1.20: Let R be a ring and @:R-R. then R is called the universal regular ring of

R if for every homomorphism from R into a regular ring factors uniquely through ¢.

Definition 1.21: A ring R is strongly w-regular if for every a ¢ R there exists n > 1 such

that a" € a" 'R.

Definition 1.22: A commutative ring R is ®-regular if every prime ideal of R is maximal.
Definition 1.23: Let R be a ring. The supremum of the lengths r taken over all strictly
decreasing chains P=P,> P, 5P, > .. > P, of prime ideals of R is called the Krull

dimension and it is denoted by dim(R).

Definition 1.24: The set of all prime ideals of a ring R is called the Spectrum of R and

written Spec R.

Definition 1.25: Let R be a commutative ring, then B(R) = {ecR|e’=¢!.



Definition 1.26: Leta,be B(R)then avb=a+b-ab.

Definition 1.27: @ = I < B(R) is called an ideal of BR)iffora,be |

a)avbel,

b)ac=cthencel

Theorem 1.28: If I is an ideal of R then I N B(R) is an ideal of B(R ).

Proof:
a)Leta,beImB(R)thena+b-abeIsoavbeIand(a.vb)2=(a+b-ab)2=
a2+ab—aab+ba+bz-bab-aba-abb+(ab)2=a+ab-ab+ab+b-ab-ab-ab+ab=

a~b-ab=avbsoavbelnB(R).

b)Letac INnB(R)and c € B(R)suchthatac=c. aclsoc=acel a,ce B(R)so

(ac)y’ = acac =aacc =acsoc=ac € B(R). This shows that c € I n B(R).

Theorem 1.29: If I is an ideal of B(R) then RI is an ideal of R.

Proof:
a)Leta be Rande,feIthenae,bfeRIand(ae+bﬂ(evf)=(ae+bﬂ(e+f-eﬂ
= aee + aef - aeef +bfe + bff - bfef = ae +aef - aef + bfe + bf - bfe = ae + bf. But(evf)el

and (ae + bf) € R. So (ae + bf) = (ae + bf)(e v f) € RI.
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b) Leta, c € R and e € [ so that ae € RI then c(ae) = (ca)e but ca € R so (ca)e € RI

and therefore c(ae) € RI.

Definition 1.30: LetR be a ring and M € Spec B(R) then the Pierce stalk at M is R/RM.

Definition [.31: Let A be a set and T a set of subsets of A. T is called a topology and the

elements of T open sets if it satisfies the following conditions:
a) any union of open sets is open,
b) the intersection of two open sets is open,

c) the set A and the empty set are open.

Definition 1.32: C < A is called closed if C\A is an open set.

Definition 1.33: K < A is called clopen if K is both closed and openin A.

Definition 1.34: Let X be a topological space and x € X then a neighbourhood of x, N(x),

is a set containing an open set containing x.

Definition 1.35: A topological space is called compact if every open cover possesses a finite

subcover.



Definition 1.36: A topological space is called Hausdorff if for any two different points a. b

there exists N(a) and N(b) such that N(a)nN(b) =0.

Definition 1.37: Let X and Y be topological spaces. A map f:X-Y is called continuous if

the inverse image of an open set in Y is always open in X.

Definition 1.38: A bijective map £X-Y is called a homeomorphism f and f' are both

continuous.

Definition 1.39: Let A be a subset of a commutative ringR. V(A)={PespecR|{A c P} and

D(A) = (Spec R) \ V(A).

Theorem 1.40: F = {D(I)| I an ideal of R} forms a topology on spec(R) called the Zariski

topology. To prove this we must show that F satisfies all three properties of a topology.

Proof*

a) Let {l,JacA be a set of ideals of R (not necessarily countable).
UD(I,) = U ((Spec R)\ V(1)) = (Spec R) \ NV(1,) = (Spec R) \ V(¥ 1) since Y1, is an ideal

of R there is I an ideal of R such that UD(I,) = D().

b)LetI, Jbeideals of R. V(I)u V(J)={P ¢ specR | IcP} u {PespecR|Jc P} =

{PeSpecR|IcPorlcP}=V({InJ)butlnJisan ideal of R so there is K an ideal of R
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such that D(I) n D(J) = (spec R) \ (V(I) u V{J)) = (spec R)\ V(K) = D(K).
¢) D(R) = spec R since R ¢ P. Since {0}is an ideal of R and for anyP 0P

D(0) =0.

Definition 1.41: Let X be a topological space. A set B of open sets is called an open

subbasis for the topology if every open set is a union of finite intersections of sets in B.

Definition 1.42: Let R be a ring and X = Spec R then a new topology, called the patch

topology, is created by taking all compact open sets of X and their complements as an open

subbase.

Definition 1.43: Let R be a ring, then patch R is spec R with the patch topology.




Chapter I
If a commutative ring R can be embedded into a strongly x-regular ring S

then it can be embedded into a commutative strongly ®m-regular ring

In this chapter (and only in this chapter) the term Ring will be applied to any ring
(commutative and non-commutative), and commutative ring for any riné that must be
commutative. If a commutative ring R can be embedded into a strongly n-regular ring S,
it will be shown that the condition that S is strongly m-regular implies that there must be a

strongly n-regular commutative ring T such that R can be embedded in T.
This must be proven since commutativity does not necessari ly get transmitted by the

function of embedding. One such example is the ring R, which is a commutative ring and

can be embedded into M, = {the ring of all 2x2 matrices} by ¢:R-M, where a € R and
a o0
a =
e@=,

M. is not commutative but R is.

Lemma2.l:LetRbearingifs, x € R 3 s"=s"!x then s" = s* x".
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= g(s" ' x)x

=s?s" x? Continuing in the same way

—_ Sn-l (Sn—l x)xn-l

=g x"

Lemma 2.2: LetR be aring. Ifa, b, c e R and a"= a™'b and b™ = b™'c. then there exists n

such that a" = a™'b and b® = b*"!c.

Proof: 2™ =2a"a"=a"a"'b=a"""'b and b"™ = b'b™ = bb™'c = b™™"'c s0 by letting

n=r+m=m-+r,a"=a"'band b"=b"c.

Lemma 2.3: [most of this proof came from 6] Let S be strongly n-regular then ¥seS 3n> |

3xeS 3 s"=s"'x and s"x = xs”

Proof: Lets. y, z€ R such that sn"=s"'y and y* = y™'z. There is no problem for the
two equations to have the same exponent because of lemma 2.2. Choosinga=s', b= V.

c =z"and by lemma 2.1 a =a’b and b = b’c. Let d be such that (c - a)y=(c-a)'d

ac = a’bc = a(a’b)bc = a*(b’*c) = a(a’b) =aa=a2so a®- ac =0 (1)
abc = (a’b)bc = a*(b’c) =a’b=a (2)

Using (1) (c-a)*=c?-ca-ac+a’=c*-ca=c(c-a) 3)

-11-



Using (1), (2)and (3) ab(c-a)’=abc(c-a)=a(c-a)=ac-a2=0 (4)

Using b’c =band (3) b¥c-a)* =bc(c - a) = b(c - a) (5)
Using (5) repeatedly  b™(c -a)™ =b™'(c - a)™' = ... = b(c-a) for anym (6)
Using (c-a)"'d=(c-a)and(6) b'(c-a)"'d=b"(c- a) =b(c - a) (7)
Using (6) and (7) b*(c-a)=b""(c-a)"'d=b(c -a)d (8)

Using (4), (5) and (7) ab(c - a) = ab’ (c - a)~'d = ab(c - a)*d = 0d =0 (9)

Using (8) and (9) 0 =ab(c - a) = ab(c - a)d = ab¥(c - a) (10)
Using b =b’c and (10) ab’a = ab’*c = ab (11)
Using (2)and (9) aba=abc=a (12)
Using (11) and (12) a = aba = (ab)a = (ab%a)a = ab?a? (13)

By (13), and returning to our original notation s"= s‘a*s* = s"a*s"'s™'. Multiplying
on the right by s°, s* =5'a%s™' s> But ¥ 's" a% 5" = ™' s a¥ " = sl g aTg" = ge¥arstl =
ss's™' =s”. Soif n=2rand x =s"a%s"! then s" = xs™' = §" 'x.

for x and n as chosen above s"x = (xs"' )x = x(s"! x) = xs"

Lemma 2 4: [2] Let S be strongly n-regularands€ S. Then 3n>1and a unique x € S such

that s"=s* x, sx =xsand x> s" = x

Proof: By lemma 2.3 JyeSs"=s""'vands'"y =vs" Letx =y s'y"
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S x=sTy sy

=("y)sy

=(s")s"y" By lemma 2.1
=gy

=s" By lemma 2.1

Sx:synsnynzsn-lynyn=snyln-l =y.2n-l Sn=y2n-lysn-»l =y‘“SnynS=XS

X7 S" = Xxs" = (y" " V') (V" " V) §°

=V's"Y' ¥ (s™y") By lemma 2.3

=V's"yy'§" By lemma 2.1
=V Y sty By lemma 2.3
=V (5P v7) ¥ By lemma 2.3
=ysy Bv lemma 2.1
=X.

Assume that there is x, y € S such that x and v satisfy the equations.

Theny=y?s" =y2(sz"x)=y(ysz“)x=y(sz"y)x=ys"x=y(sz“x)x=(ysz")x2=

(sTy)xX’=s"x=x.

Therefore x =y and the solution is unique.

-13-



Lemma 2.5: Let {S,} .-, be a set of strongly n-regular subrings of aring R. ThenS=N§,

1s strongly m-regular.

Proof: Let s € S and fix a € A then there is an n>0 and x € S, such that it satisfies

lemma 2.4.

Now consider Sg, s"€ Sgsince s € Sg. By lemma 2.4 3m>1 JveS, (s")" =(s"Y"v.

(s")v = y(s") and y* (s")™ =y.

But

g"m = sn(m-l)sn = Sn(m-l) Sznx — Sn(m-Z) g" sln X = Sn(m-l)s-m X2= sn(m-s)sén 3 3 = = san x™
$X™ =s"Ixsx™! =sTIxIx™? = | =g"IxPs=_ = x7g"

me g = xZ(m—l)(x2 Sn)smm-l) = xe(m-Z)(xl Sn)sn(m-Z) = xz xl(m-3)(x252)sn(m-3) = =xM

if the property that s € S, is used.
But y must be unique, therefore y = x™ € S;. This holds for anv f.

When m = 1 then x € S; from the above line.
When m > |

X =x's" = xxs" = x(xX*s")s" = X*xs¥ = x? (X} §7)s? = x3 xs7" = . =x™2xg("IM = ymg (m-in

But x™€ Sgand s € Sy so x™s™'" ¢ Sy therefore x € S;and x € S.

-14-



Lemma 2.6: Let 9:R~T be a homomorphism with dominion D, then the following properties
of t € T are equivalent:

a)te D.

b) If M is a T-T-bimodule and x € M has the property that rx = xr for all r € R then
tx = xt.

c)tel=letin Te,T.

d) If M and N are right T-modules and a: M~N is R-linear, then a(xt)=a(x)t ¥xcM.

Proof:
a) = b)Let aB: T-TxM as a(b) = (b,0) and B(b) = (b,bx - xb). Both a and B are ring
homomorphisms, and ag = Be by the hypothesis on x. So if t € D, then (t,O)=a(t)=B(t)=

(t.tx - xt) and hence 0 = tx - Xt sO tx = xt.

b) =c) TerT isa T-T-bimodule and take x = 1@ 1 which is the multiplicative identity

inTegTsobvbtel =t(lel)=tx=xt=(lel)t= lst.

¢) = d) Define B:TegT~N as B(beb') = a(xb)b'. This is well defined because «a is

R-linear. a(xt) = a(xt)l =p(te1) =B(let) = a(x1)t = a(x)t since to] = 1ot bv c).

d) = a) Let a,p: T-T'be homomorphisms such that ap = Be. If T" is considered as
a right T-module by means of B, then a becomes an R-linear map. But then a(t) = a(1t) =
a(1)B(t) = B(t). Thereforete D.

-15-



Lemma 2.7: {5] Suppose R~T is a homomorphism with dominion D. If for any a € D there

isb € T satisfyingab=ba,a=a’handbZa=bthenbe D,

Proof: Note that x € D if and only if 1@ x = xe1 in TeT (by lemma 2.5). From
a=a’banda # 0 we geta(l -ab)=a-a’ =0 so (ae 1)(1 -ab)=a(l -ab)el = 0e1=0 =
le@a(] - ab) = (le a)(1 -ab). Sincea=01l®a = 0hence ] -ab=0 and ab=1. So
a®l = aeab and bag1 =bagab. From ab = ba and a similar argument we get bae =1 ba
soba€ D. Let a.B:T-T such that ay = B,.

a(b) = a(b’a)
= a(b)a(ba) because a is a homomorphism
= a(b)B(ba) sinceba e D
= a(b)B(ab) since ba = ab
= a(b)B(a)B(b) since B is a homomorphism
= a(b)a(a)B(b) sinceae D
= a(ba)B(b)
= B(ba)B(b)
= B(bab)
=B(b’a)
=B(b).

So a(b) = B(b) and therefore b € D.
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Lemma2.8: D(¢,T)=T if and only if T is an epimorphic extension of R
Proof:
= LetaB: T-T and ap = Bo then a(t) = B(t) for all t € T. But T is the whole domain

of a, B therefore a = B and T is an epimorphic extension.

= Let T be an epimorphic extension of R and ap =P thena =B butsincete T is

in the domain of a, B, a(t) = B(t) so that T = D(o,T).

Theorem 2.9: Let R be a ring and S a strongly n-regular ring @:R~S be a ring

homomorphism. Then D = D(9,S) and E = E(¢,S) are strongly m-regular.

Proof: Since D < S for d € D 3n>0 3xeS with d" = d*, dx = xd and x?d" = x by

lemma 2.4. However, if a = d" and b = x in lemma 2.7 it shows that x € D, hence D is

strongly n-regular.

Let D, =D and for an ordinal a, D,,, =D(¢@,D,). This definition permits the creation

of the chainR ¢ ... ¢ D; ¢ D, ¢ D, ¢ D, = D which shows that for some t© D.=D,,, and

E =D, =D, and by lemma 2.7 E is strongly n-regular.
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Lemma 2.10: Let R be a commutative ring and E an epimorphic extension of R, then E is

commutative.

Proof: Let D = D(9,E). E is an E-E-bimodule and for each x e Rc Exr=rxforall

r € K since R is commutative. But this means by lemma 2.6 that foralld e Dand allx e R
dx = xd. ButE is an epimorphic extensionso D=FE by lemma 2.8. Therefore forallb ¢ E

and all x € R bx = xb.

But this means that foreachx € Exr=rxforallre R by above. Hence by lemma
26foralld e Dand all x € E dx = xd. Since D=E by lemma 2.8 ¥x,beE bx = xb.

Therefore E is commutative.

Theorem 2.11: IfR is a commutative ring and S’ a strongly n-regular ring @:R—S' then there

is S a strongly n-regular ring that is commutative and o(R) < S.

Proof: E is such a ring by theorem 2.9 and corollary 2.10.

-18-



Chapter ITI
If R is a commutative ring

then R is strongly x-regular if and only if R is n-regular

Lemma 3.1: Let R be a ring, if VacR 3n>1 3beR a" = a™'b, then VI VacR/l a IS a zero

divisor or a is a unit.

Proof: If a € R/I then 3acR a =a+ 1. Letnandb be such that 3" = a"'b
(a+I)y'=a"+1 By multiplication in R/I

=a"'b+ L

This implies that I = (a"+I)-(@"'b+1)=(a"-a""'b)+ [=a"(1 -ab)+ . So

a" (1 - ab) € I. This means that a” + 1 is a zero divisor of R/l orthat 1 -ab+ [ =1

The first possibility is that 8" + I is a zero divisor of R/I, then (a+I)"is a zero divisor

of R/I. And consequently a + [ is a zero divisor of R/I.

The second possibility is that [ = (1 -ab) + I = (1 + ) - (ab + I). This results in

l+I=1+(ab+I)=ab+ 1= (a+1I)(b+I)which means that a + I is a unit of R/

From these two possibilities it can be deduced that “I YaeR/I a is a zero divisor or
o 1S 2 unit.
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Lemma3.2: LetR be a ring. If VI VaeR/I a is a zero divisor or a is a unit, then every prime

ideal of R is maximal.

Proof:Letheanypn'meidealofR,aeR/Panda,beRsuchthata+P=aand

(a+P)b+P)cP. This means that ab+ P ¢ P and that ab € P but since P is a prime ideal
a € Porb e P. Therefore the only zero divisor of R/P is the 0 and every other element of

R/P is a unit, demonstrating that R/P is a field and that P is a maximal ideal.

Lemma 3.3: Let R be a ring. If every prime ideal of R is maximal then:
a) J(R) =nil(R).

b) R/J(R) is regular.

Proof:

a) J(R)=NM=NP =nil(R).

b) RIJ(R) = X,., R/M, but R/M, is a field so everyv element is a unit. So RM, is a

regular ring and X,.., R/M, is regular and consequently R/J(R) is regular by isomorphism.

Lemma 34: Let R be a ring If JR) = nil(R) and R/J(R) is regular, then

VaeR JyeRa"=a"'y

-

Proof: Let a € R, then, by the regularity of R/J(R), a - awa € J(R) for some w € R.
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But this implies that (a - awa)" =0 for some n. So 0 = (a-awa)"=3a"- Yy forifrom I ton,

but each y, = a"'x; for some x, e R. So 0 =2"- a™'y x, and a" = a""! x where x = ¥Yx,
Theorem 3.5: For a commutative ring R, R is r-regular if and only if R is strongly r-regular.

Proof:

If R is strongly n-regular, then by lemma 3.1 and 3.2 R is n-regular.

If R is n-regular, then by lemma 3.3 and 3.4 R is strongly n-regular.
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Chapter IV

Spec R, patch R and R

This chapter will deal with theorems on Spec R, patch R and R_, It will also deal
with the relationship between these three concepts. It should also be noted that in this

chapter all rings will be assumed to be commutative.

Lemmad4.1: Leta e R then D(a)=D(aR) = {P e Spec R | a ¢ P} is an open set of Spec R.

Furthermore the set of all D(a) forms a basis for Spec R.

Proof: Since R is never a subset of P aR c P = a € P, which means that V(a)= V(aR)

and, furthermore, D(2) = D(aR). Since aR is an ideal, D(a) is an open set in spec R. But

either a € P or a ¢ P and it cannot be both, so D(a)=(spec R)\ V(a)={P e specR|a ¢ P}.

D(a) n D(b) = D(ab) because of the properties of prime ideals. D(0) =0 and

D(1) =Spec R. D(I) =D(N,.; {aR}) =UD(aR) =U D(a).

Lemma 4.2: Let R be a ring and M is a maximal ideal of R if and only if M/nil(R) is a

maximal ideal of R/nil(R)

Proof:

=Since nil(R) ¢ M, M/nil(R) is an ideal of R/nil(R). Let I be an ideal of R/nil(R)
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such as M/nil(R) ¢ I. This implies that there exists J an ideal of R such that J/nil(R) = I.
Since M/nil(R) ¢ J/nil(R) and M is maximal J=MorJ =R which implies that [ = M/nil(R)

or [ = R/nil(R). So M/nil(R) is maximal in R/nil(R).

= Let M/niR) be a maximal ideal, then M is an ideal of R. Suppose M ¢ I an ideal

of R, then I/nil(R) is an ideal of R/nil(R). But M/nil(R) is maximal, so M/nil(R) = I/nil(R)

or R/mil(R) = I/nil(R). This implies that | =M or [ = R. Therefore M is maximal.

Lemma 4.3: Let S be a strongly n-regular then Spec S is homeomorphic to Spec (S/J(S)).

Proof: S/J(S) is regular by lemma 3.3 so S/J(S) is strongly n-regular. By lemma 4.2

we can define a bijective function o that takes the prime ideals of Spec (S/J(S)) and maps
them to the prime ideals of Spec S. Furthermore this function is a homeomorphism since

fora e S, D(a) is mapped to D(a + J(S)) and vice versa.

Lemma 4.4: Let 7Spec R - R such that if Y is a closed subset of Spec R .F(Y) is the
intersection of the prime ideals that belong to Y. If I, J are two ideals of R then

V(I) < V(J) = rad(I) o J = rad(I) > rad (J).

Proof: V(I) ¢ V(J) =.7TV(I)) 2.77V(J)) = rad(I) = rad(J) = rad(I) o J.



Theorem 4.5: For a € R, D(a) is compact. In particular Spec R is compact.

Proof: Since these sets form a basis in Spec R it is sufficient to show that, if {b,} <R

such that D(a) ¢ UD(b,), then there is {b,} < {b;} such that {b_} is finite and D(a) < U(b,).
Let D(a) « UD(b;), then N V(b,) c V(a) and, furthermore, V( {b;}) < V(a). Using lemma 4.4,
it can be seen that a must be in the radical of the ideal generated by the b,'s or that a™ for
some m21 is in the ideal generated by the b's. This can be restated as a™ = Y gb,forg eR.
but then there must be {b,} < {b,} which is a finite set and h, € Rsuchthata®=} h b,
This implies that V(a) = V(a™) = V({b,}) = N V(b,) for {b,} finite. Or, to conclude,

D(a) < UD(b,).

Since D(1) = Spec R, and by the first part of the proof, Spec R is compact.

Lemma 4.6: [12] Let R be a ring, then patch R is Hausdorff.

Proof: Let P and Q be two different prime ideals of R and a € P\Q (if P ¢ Q, then
interchange P and Q). Then P € V(a) and Q € D(a), but D(a) is a compact open set of Spec R
(by lemma 4.5) and V(a) is its complement so, by the definition of the patch topology, V(a)

and D(a) are open sets in patch R. Therefore patch R is HausdorfT since V(a) n D(a) =0.

Lemma 4.7: If R is a regular ring then every principal ideal is generated by an idempotent.
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Proof: R is regular = for all r € R there exists s € R such that (rs)*= (rsr)s = rs. But

=rsrersRandrs e IR sorsR =rR.

Lemma 4.8: If R is a regular ring, then Spec R is a compact Hausdorff and totally

disconnected space.

Proof: Spec R is compact by lemma 4.5. Since R is regular it is strongly n-regular
(i.e. using n = 1) and furthermore by theorem 3.5 every prime ideal of R is maximal. Let
P = Q be two prime ideals of R, then there exists e € P\Q such that e is an idempotent. This
implies that D(e) and D(1-e) are disjoint open subsets of Spec R such that Q € D(e) and
P e D(1-e) (orelsee, 1-e € P which would imply 1 = 1-e + e € R which is impossible). Thus

spec R is HausdorfT.

Let O be an open set in spec R and P € O. There is A < R such that O =D(A), and,
since Pe D(A), there exists a € A\P. Then D(a) is an open subset of Spec R such that
P € D(a) < D(A). Let e, an idempotent of R, be such that eR = aR_ then D(a) = D(e).
Furthermore D(e) = V(1-e), which is closed. Thus D(a) is a clopen subset of spec R such

that Q e D(a)c O

Lemma 4.9: A closed subset of a compact space is compact. A compact subset of a

HausdorfT space is closed.
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Proof: Let X be compact, F a closed subset of X, F'=X\F and U an open covering
for F. Thus U u {F'} is an open covering of X and so there must be a finite subcovering
U'< Usuchthat U' v {F'} is an open covering of X. Then U' is a finite cover of F, so Fis

compact.

Suppose now that X is a Hausdorff space and K a compact subset of X. Let v € X\K.
Since X is Hausdorf¥, for each x € K there are disjoint open sets O, and N, such that x € O,
and v € N.. The sets {O,| x € K} form an open covering of K, and so there is a finite
subcovering {O,, ..., O_} of K. Let N, =M N. Then N, is an open set containing y and

N, ¢ X\K. But X\K =U N, and so XK is open, which proves that K is closed.

Lemma 4.10: The continuous image of a compact set is compact.

Proof: Let f'be a continuous function that maps the compact set K onto a topological

space Y. If U is an open covering for Y, then the collection of sets f*'[O] for all O € U is
an open covering of K. By the compactness of K, there are a finite number 0,,0,,...,0,0f

sets of U such that f*'[0;] cover K. Since fis onto, the sets O,, ..., O,cover Y.

Theorem 4.11: Patch R is homeomorphic to the spectrum of its universal regular ring.

Proof: Let @:R ~S be the natural homomorphism from R into its universal regular ring

S. In this proof subscripts will be used to identify in what space the sets belong, ¢ will
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indicate that the set belongs to Spec S, while on the other hand, ; will be used to indicate

that the set belong patch R.

Define f:Spec S—patch R such that forany P € S, f{P) = ¢o(P). LetaeR, thenitis
obvious that f~/(Dg(a)) is open. But f(Vg(a)) = V(p(a)) = V(e) for some e an idempotent
of S, hence. f"(Vg(a)) = Dg(1-e) so it is open. Since Vi(a) and Dg(a) form a subbasis of

patch R f'is a continuous function.

Let O be an open set of Spec S and Cs= (Spec S)\Og. By the first part of lemma 4.9
Cs must be compact but then f(C;) is a compact set in Patch R by lemma 4.10 and,
furthermore, it must be closed by the second part of lemma 4.9. So f{ Cs) = Cy for a closed
set in Patch R. Finally f{lOg)= f((Spec S)\C,) = f(Spec S\f(Cs) = (patch R)\C, which is an

open set in patch R. So £ is continuous.

Since f is continuous and f™' is continuous, fis a homeomorphism and Spec R is

homeomorphic to Patch R.



Chapter V

When can a ring be embedded into a strongly x-regular ring?

Theorem 5.1: Let R be a ring with Krull dimension equal to 0, then R is n-regular.

Proof: If dim(R) = O then for any prime ideal P the only decreasing chain is P = P,

. This means that there is no P, (a prime ideal of R) such that P, > P,. Therefore there is no
ideal I # R such that I > P,. This implies that P 1 1s a maximal ideal. But since this istrue for

any prime ideal P, every prime ideal is maximal. Therefore R is n-regular.

Lemma 5.2: [5] Let a:R~S be a monomorphism that is also an epimorphism in the category
of rings, where S is a n-regular ring. Then the composition R& S-S/J(S) factors through ¢,

via B:R-S/J(S), which is a surjection.

Proof: Since S/J(S) is a regular ring (from lemma 3.3), B is given by the universal

property of R. It is an epimorphism, which must be a surjection since B(R) is regular.

Lemma 5.3:If M e Spec Sand M=Mn B(S)then M € Spec B(S).

LetabeMand a, b € B(S). Since ab € M this implies that ab € A and, furthermore,
thata € AMforthat be M. ButSincea,be B(S), we get that a € M or that b € M. Therefore

M € Spec B(S).



Lemma 5.4: Let Q be an ideal of R, then Q is primary if in R/Q every zero divisor is

nilpotent.

Proof: Let every zero divisor in R/Q be nilpotent. This is the same as saying that for

all r € Rif r is a zero divisor of R/Q, then 3n such that T *=0. This however means that
7reR 1f 3aeR\Q such that ra € Q, then 3nsuch that " ¢ Q. This can be written as: ifra € Q

and a ¢ Q then r" € Q. This is the definition of primary and therefore Q is primary.

Theorem 5.5: [5] Let R be a commutative ring. Then R can be embedded into a

commutative n-regular ring if and only if there exists a set of prime ideals Y = {P,JaeA and

for each P,, a P,-primarv ideal Q, such that:

I) Y is closed in the patch topology on Spec R.

I N,-AQ, = {0}.

[II) for each a € R there is n(a) € N such that for n > n(a), {P,| P, € Yanda"c Q,}

1s patch open in Y.

Proof:

= Suppose 3, a:R~S. By Theorem 2.9 it may be assumed that the embedding is an

epimorphism of rings. The Pierce stalks of S given bv S/SM for M € Spec B(S) are local

rings since M,/SM and M,/SM are maximal = SM ¢ M, and SM < M, are maximal in
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S = SM ¢ M, nB(S) and SM ¢ M, n B(S) = M, n B(S) = M, n B(S) =M since they are all

maximal = M, = M, = S/SM has only one maximal ideal.

We can define y:Spec S-Spec R by (M) = «’(M). Since dim(S) =0, v is identical
with the function defined by B:R—+S/N(S) givenin lemmaS5.2. Infact yisa monomorphism

and its imageY is a closed in patch R.

Spec S

S
/ \ / Nomeomorphic
R S/I(S) patch R Spec S/J(S)
R

homeomorpkk /

Spec R

Let Y be the set of prime ideals of R. For each P € Y, P = v(M) for some
M € Spec S. Define M = M n B(S). By lemma 5.3 the Pierce stalk S/SM is local and
n-regular. Setq(P)=a'(SM) c P. Since a maps P-M, q(P)-SM and R-S, there exists an
embedding 8:R/q(P)—~S/SM which sends P/q(P) into AM/SM the Jacobson radical of S/SM.
Since S/SM is n-regular AM/SM is nil(S/SM) and, furthermore, P/q(P) 1s nil(R/q(P)), therefore
P is a unique minimal prime of q(P). Ifr € R\P, then &T) £ (S/SM) \ (M/SM) but S/SM is

a local ring therefore &(r) is a unit. This implies that &) is a non-zero divisor, furthermore
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that r is a non-zero divisor in R/q(P) and, finally, that every zero divisor of R/q(P) is

nilpotent. Therefore, using lemma 5.4 q(P) 1s P-primary.

Since R q(p) is the kernel of a we get that Qq(p) - {0}. Butaisa monomorphism

so K1 q(p) = {0}. So this shows that condition II) holds.

Leta € R define U, = {M € Spec B(S) | a(a) € SM1.

a)Let Ac R. One possibility is that U,., U, = Spec B(S) = U,. For the others, define
B = {M ¢ Spec B(S) | JacA a(a) € SM}, then there is e € (M. M)\ U,,.sM). Bute € M for
some M in Spec B(S), which implies that e € SM for that M and that there is r € R such that
a(r) =e. If M € U, then e € SM and that there is a € A such that M € U, since all M ¢ B
were eliminated. If M ¢ U, then e € SM and, furthermore, M does not contain any element

of A since M ¢ B. Therefore U,= U, U,.

b)U,nU,={Me Spec B(S)|a(a)e SM} n {M € Spec B(S) | a(b) € SM!} =

‘M € Spec B(S) i a(a) € SM and a(b) € SM} = {M € Spec B(S) | a(ab) € SMi=U,,

c) U, = {M € Spec B(S) | a(1) € SM} = and U, = {M € Spec B(S) | a(0) € SM!} =

Spec B(S)

By a), b) and c) it has been proven that the set U, is open. However since S is

-31-



n-regular, Spec B(S) is homeomorphic to Spec S via M-MNB(S). Hence
v(U,) = {P € Spec R | a € q(p)} is open in Spec R and in Patch R and also in Y. Which

shows that III) holds.

= To prove the converse the n-regular ring S will be constructed as a subring of

Hu, aS, where S, = Q(R/Q,).

Let C(a)= {P < patchR ja € P}. Since D(a) is compact by theorem 4.5 C(a) is
open. but (patch R)\C(a) is also open, therefore C(a) is clopen. Clearly C(a) = C(a%) =
C(a') ... sincea€ P = a" € P because Pisanideal anda"c P —a ¢ P because P is a prime
ideal. Ifforsomea e A,a€eP, thenae Q. By property III), {{P,{a"€ Q_} }n>n(a) is

an open covering of the compact set Y\C(a). Hence SmeN VoecA a € P,=a™ e Q,

Fora,c € R,leta. c denote the equivalence classes of a, ¢ in R/Q, and N a clopen

subset of C(c) ~ Y.

{a/aesu if P,eN

Bl =1 6 fpen

Define S to be the subring of IL._.AS,, generated by the elements described above.

Remark 5.6: Let a. b, ¢, d €R, N be a clopen subset of C(c) N Y and L a clopen subset of

C(d) N'Y, then [a,c]y [b.d], = [ab,cd]y .



For P e NnL. [ac]y[b.d], = (a/cXb/d) = (ab)/(cd) = [ab,cd] , . For P£N., [a.c]x
[b.d], =0[b.d], =0 =[ab,cd]y-, . By the symmetry of commutativity of muitiplication, it

also holds for P¢L and thus holds for all S_

Remark 5.7: [S] Let a, b, ¢, d €R, N be a clopen subset of C(c)n Y and L a clopen subset

of C(d) ~ Y. then [a,c]y ~ [b,d], = [a,c]y. + [b.d] n + [ad+bc.cd]y ;.

Proof: For P € NnL, [a,c]y + [b.d].=(a/c) + (b/d)=(ad + bc)/(cd)= [ad+bc,cd]y-,.
butP ¢ N\Land P ¢ L\N so [a,c]y; = [b.d],x=0. ForP € N\L, [a.c]y + [bd], =[a,c]y; -0
=[a,c]y .. but P& L\N and P € LnN so [b,d], , = [ad + bc,cd]y-, =0. An identical proof can
be used for P € L'\N. For P € LUN, [a,c]y + [b.d],;=0+0=0,butP £ NL.P ¢ L\N and

P & LnN so [a,c}y, = [b.d], x= [ad+bc,cd]y, = 0.

Remark 5.8: [5] Every element of S can be expressed in the form ¥ * [a,.c ]y, where the N,

's are disjoint. (The expression is not unique but such a presentation is said to be of Standard

form).

Proof: Let [a.clx =Y ", [a,.c;]x, where the (N, =0 then a sequence can be made such
that all the sets are disjoint. This is proven using mathematical induction:

For n =2 it was proven in remark 5.7.

Assume that it is true forn =k

_ k-1 , e kel .
Then for n =k+1, Z i=1 fa.c, ]N[+ [a; .ck ]Nk * [a-1 .61 ]Nk-l = E 1-1 [a =Cx]N[ + [a, ., ]Nk Nk-1



R NI | MR R N Y Ing-ny.,- But each of the three new sets are disjoint,
which implies that the longest chain such that the intersection is not empty has k elements.

So by the assumption a chain can be found such that all the sets are disjoint.

Remark 5.9: [5] For N a clopen set of Y [1,1], = e, is an idempotent. Ife e S, e =€ then

in each component S, e is 0 or 1. Hence e = e, for some N.

Proof: Let 1 € R[1,1]y [1,1]y=[I*1,1e1]y-n = [1,1]x. So[1,1]y is an idempotent.

Let e = [a,c]y be idempotent then [a.c]y = [a° c*]y by remark 5.7. If P € N' then
¢ = c¢* which means that Oy, = ¢* - € = ¢(C - ) but since ¢ is not a zero divisor
C - Igy = Orq and therefore ¢ = lg,. Fora, a =a° and therefore Og , = a(7 - lg,,). If
a-lgo=0rqthena = Iz, Ifnotthena"=0g,,,since Q isprimary.but 2=22=3aa =aa’=

a’=_.. =a" =0. IfP £ N'then it is 0 bv definition. So for each component S, e1s 0 or 1.

Lete={w,} ac A where w, =1 or 0. If the number of 1's is finite let Ac A be the set
of all a such that w,=1. Thene=Y ., [1.1]p, . let N={P,}_., then e=[1,1],. If the number
of O's is finite let N' be the set of primes for which w = 1. [(L1]y + [[1,1]y =
[L1)yn* [-1,1 vy + [1-1.1]¢ v . But[1,1]y) = esince the I's and 0's coincide, [-1,1]y =0
since N\Y is empty, and [1-1,1]y.y =[0,1]y-y = 0. So ey =[1,1]y + [-1,1]y. ButSisa

ring and ey € S so there exists a clopen set N= Y \ N' hence e = ey, = en-
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Now it can be shown that S is a strongly n-regular ring. By remark 5.6 it can be
shown that [a,c]*; = [a*,c*],. It should be noted that earlier on in this proof it was shown that
=meN VaeA a € P, = a" € Q,. So [a.c]™"y [caln-ce = [2"7"c™'Ix [C.aly-cr =
[a""'c,c™'a]y.c., but either a coordinate is 0 or a, ¢ are not zero divisors so
[a"(ac).c™(@c)ln ¢ = [@™.C™In~cr However, for N\C(a), P ¢ N\C(a) then P ¢ C(a) and
furthermore a € P but a™ € Q, therefore [a™,c™]yc,, =0. This results in [a.c]™ 'y [c.aly e =
[@"C"Ix cawr * 0 = [@™.C"Iv-ciar T [2™C" v cimy = (a".c™]y = [ac]. Thus Sisa strongly

n-regular ring.

To finish this proof it must be shown that R embeds into S. Let a £ R then define

®a) = [a,l]y. So o(a)e(b) = [a,1]y [b,1]y = [ab,1]y = @(ab). And @(a) + ¢(b) =

[a.l]y = [b.1]ly=0-0+[a+b,l1]ly=¢a+b). Andgisa monomorphism bv II). Therefore

R embeds into S.
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Chapter VI

Examples

Three things will be shown in this chapter: 1) that even though it mi ght appear from
the previous chapter that R can be embedded into a n-regular ring iff it can be embedded
into a regular ring it is not so: 2) that the set of rings that can be embedded into a n-regular

ring is not empty: 3) that the set of rings that cannot be embedded into a n-regular ring is not

empty:

Example 6.1: Let R =2Z/4Z = {0, 1. 2, 3} .This is an example of a ring that can be embedded

into a w-regular ring but not a regular ring.

Since dim(R) = 0, by theorem 5.1 it can be embedded into a n-regular ring. Let's
assume that @ maps R into R’ a regular ring . Then for some a € R’. ¢(2) = ¢(2)a =
¢(0)a =0a = 0 therefore ¢ is not an embedding. So R is a ring that can be embedded into a

n-regular ring but cannot be embedded into a regular ring.

Example 6.2: Since Z can be embedded into R and Q_which are fields and so n-regular. it

will be used to show how the theorem works. So let R =Z, Y =SpecR and Q,=P,.
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[) Y = Spec R so Y is closed in the patch topology on Spec R

MmNQ,=NP,= {0} since P, = {0}

i

[MLetn(a)=1 {P,{a"€ Q,} = {P,{a" € P, } = {P, !a € P,} = V(a) which is open

in patch R.

Lemma 6.3: Let A_ B be two rings then the prime ideals of A x B are of the form A x Pgor

P, x B where P stands for prime ideal.

Proof: Let P be a prime ideal of A x B, then {ab,cd} € P implies {a,c! or {bd} ¢ P

and that {b,c} or {a.d} € P. but this is true only if ab € I, implies thataorbe I, so I, = A
or I, =P, The same holds true for the component in B. {A,B! = A x B so it is not prime.
LetacP,,ce Py, be P, dePgand P,Pg=1then {ab,cd! € Ibut {ad}, {b,c! € Isolis
not a prime ideal. Finally {ab.cd} € A xPsthena be A and c ord € P; so {ac! or
{b.d} € AxPyandthat {b.c} or {a,d} € A xPg. By asimilar argument, the same holds true

for P, x B. So the only prime ideals are of the form P, x B and A x Py,

Lemma 6.4: Let R =II A be an infinite product of rings and e, € R such that it has 1 in the
n'th position and O's evervwhere else. Then for any prime ideal P,, e, € P, for all i = n where

P, =(IL,; A) x Px (I, ; A)) and P is a prime ideal of A,.

Proof: By lemma 6.3 and mathematical induction, it is obvious that P, is a prime ideal
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of R. ForPaprimeofA,-andforan_vj=i,OeAj,l €A.,0cPand! £P.SoeneP,

Lemma 6.5: Let R be as above. Let Q be a primarv ideal with radical P, Then
Q=L , A)xQx (I, A)) where Q is a primary ideal with radical Pand e, € Q, fori = n.

Furthermore V. V,.y q, € Q, where q, = qe, where g € Q.

Proof: e, € P, if and only if 5, e/ € Q. But e, is an idempotent. so this is true if and
only if e, € Q. So e, € Q for all i # n by lemma 6.3. The ideal I, = {{0! 01 AL
10}.....10} } is generated by e, Therefore } .., [, Q, forall Q;so Q,=(IT,,A)) xQx (IL , A)
is a primary ideal with radical P, for Q a primary ideal with radical P. Sincee, € Q. fori = n.
s =qe, € Q; fori =n. Butq=Qand0 ¢ A, forall j so q, € Q, which means that q, € Q, for

all 1 and n.

Example 6.6;:Let V=1II |, Z/2Z and R = Z x V then R is an example of a ring that cannot

be embedded into a strongly n-regular ring.

Spec R = {P,,., P,} for n>1 where P, = (p;) X V. p; is the j'th prime and (p,) = 0.
{0} x V< (2)x V and both are prime ideals by the properties of integers and lemma 6.3.
So Dim(R) = 0. So if R can be embedded into a stronglyv r-regular ring, then NQ, must be

{0}. Bvlemma6.5¢,€ Q, forall i # n, so we must have {P,} < Y forall n € N and where
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P, will be P,,.

Another problem that will limit the choice of Q's is that q; € Q, for all i and all n. If
P, = {0!V is chosen to be in Y, then q, = 0. But for n>0 q, = qe, where q € Q. S0 0 = q,, if
and only if 0 = q if and only if {0} = Q if and only if Q = P_. But. since this is an infinite

sequence. this is impossible so Q, = {0}. so it cannot be embedded into a strongly n-

regular ring.
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