INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

Performance Evaluation of Multimedia Satellite Communications

Systems Using On-board Packet Switches

Tien Hy Bui

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

February 1998

©Tien Hy Bui, 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéeque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your filg Votre reference
Qur file Notre réfdrence
The author has granted a non- L’auteur a accord€ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la proprniété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-39978-8

ABSTRACT

Performance Evaluation of Multimedia Satellite Communications Systems Using
On-board Packet Switches

Tien Hy Bui

Satellite communications systems are ideally equipped to provide future multime-
dia services on a global level and at a distance-independent cost. In order to meet
the ever-growing bandwidth demands of these new applications, satellites employing
multiple spot beam antennas are required. An on-board packet switch is an essential
element in such a system as it offers full connectivity among users and offers efficient
utilization of the space segment. This thesis evaluates the performance of a satellite-
switched system in a multimedia environment mainly composed of voice, video, and
data sources. Aggregate voice or video traffic is modeled as a 2-state Markov Modu-
lated Poisson Process (MMPP) while two models for aggregate data traffic, MMPP
and Pareto Modulated Poisson Process (PMPP) are used to examine the effects of
traffic burstiness and long-range dependent behaviour. Multiple Frequency Time Di-
vision Multiple Access (MF-TDMA) is utilized on the uplink in conjunction with a
dynamic capacity allocation scheme. Higher priority is given to voice and video real-
time traffic to avoid delay variation. On-board downlink queue is provided for data
jitter-tolerant traffic to achieve high statistical multiplexing gain.

Simulation results show that the system can support traffic predominently com-

il

posed of real-time applications. As jitter-tolerant data becomes the dominant traffic
component and becomes highly correlated, the size of the uplink and downlink queues
need to be increased to maintain an acceptable quality-of-service (QoS). The packet
loss due to the Knockout contention scheme is much lower than that due to the lim-
ited capacity on the uplink and downlink. This makes the Knockout switch fabric
attractive for on-board switching since it achieves low complexity. The need for a
congestion control scheme that can shape the traffic is required, especially when the
traffic has long-range dependent behaviour.

Keywords: Packet Switching, Satellite Communications, Multimedia Traffic

iv

To the memory of my grand-parents

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my thesis supervisor, Prof. Tho
Le-Ngoc for his invaluable guidance and support without which it would have been
impossible to complete this thesis.

I gratefully acknowledge the role of the Canadian Institute for Telecommunications
Research (CITR) and Spar Aerospace Limited in funding this project.

I would like to thank my colleagues and friends at the National Centre of Excel-
lence in Telecommunications (Concordia University), especially Dr. P. Tsingotjidis,
R. DiGirolamo, T.V.J. Ganesh Babu, S. Shah-Heydari, H.R. Mehrvar for their con-
tinuous encouragement and support.

My special thanks to my parents, brother and extended family members who have
always been by my side through good times and bad.

I am also in debt to my fiancee and future wife, Thanh Tam, who had to endure
all the possible range of emotions I have gone through.

Finally, I would also like to extend my gratitude to faculty and staff members of

the department of Electrical and Computer Engineering, Concordia University.

vi

CONTENTS

LIST OF FIGURES
LIST OF TABLES

INTRODUCTION

1.1 Background

1.2 On-board Switching
1.2.1 On-board Circuit Switching
1.2.2 On-board Packet Switching

1.3 Thesis Outline.

SATELLITE SYSTEM DESCRIPTION

2.1 End-user Applications,

2.2 Uplink Beam Components

2.3 On-board Packet Switching
2.3.1 Time-division Switch
2.3.2 Space-division Switch L.
2.3.3 Candidates for Satellite Applications

2.4 Downlink Beam Components.

2.5 Methodology of Performance Evaluation

SIMULATION MODELS

3.1 UplinkModel
3.1.1 Traffic Modeling
3.1.2 Modeling of the Effect of Uplink Access.

3.2 On-board Switching Model
3.2.1 Shared-memory Switch Modeling
3.2.2 Knockout Switch Modeling

3.3 Downlink Model

SIMULATION RESULTS

4.1 Traffic Scenarios,

4.2 Uplink Performance
4.2.1 Loss probability of real-time traffic
4.2.2 Queueing of jitter-tolerant traffic

vii

4.3 On-board Packet Switch Performance
4.3.1 Shared-memory switch
4.3.2 Knockout switch

4.4 Downlink Performance

......................

..........................

4.5 Discussions L e e e e e e
4.5.1 On-ground Concerns
4.5.2 On-board Concerns

4.6 Summaryt e e e e e e

CONCLUSIONS

Bibliography

A PROGRAM LISTING

viii

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

3.5

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

LIST OF FIGURES

A typical multibeam satellite communications system 11
An MF-TDMA frame (C =neslots) 14
A shared-memory switcho 17
A shared-medium switch: (a) shared-bus, (b) shared-ring 18
A crossbar-based switcho 0oL L. 20
A Knockout switch L L 22
Simulation model of the satellitesystem 27
Simulation model of earth-station population of one spot beam 28
An on-off source; o and 3, probability transition rates; A constant

peakrate Lo 29
A 2-state MMPP source; oy and oy, probability transmission rates; A;

and)y, Poisson packetrates 30

Scheduler slot assignment: (a) MF-TDMA frame sent at uplink, (b)
multiplexed MF-TDMA frame into a high-speed stream on board the

satellite L 36
Model of aggregate real-time traffic 45
Survivor function of the on-ground uplink queue at 95% load when
MMPP model is used for data traffic 47
Survivor function of the on-ground uplink queue at 95% load when
PMPP model is used for data traffic 48
Survivor function of the on-ground uplink queue for data dominant at
95% load, 49

Survivor function of on-ground uplink queue for data dominant at 95%
load as a function of capacity C: (a) MMPP data traffic and (b) PMPP

datatrafic. 50
Packet loss probability vs. L of the on-board 16X16 packet switch
with load as a parameter L. 52
Packet loss probability vs. L of the on-board 4 x 4 packet switch with
load as a parameter L 54

Packet loss probability vs. L of the on-board packet switch in a hot
spot environment: (a) at port 1, (b) at port 2, (c) at port 3, and (d)

atport 4 e 56
Probability density function of the number of packets arrived at the
downlink every frame 58

4.10

4.11

4.12

4.13

4.14

Al
A2
A3
A4
A5

Survivor function of the on-board downlink queue at 95% load when
MMPP model is used for data traffic
Survivor function of the on-board downlink queue for data dominant
at 95% load
Downlink queue size vs. L for data dominant at 95% load (for a prob-
ability of excessof 10™3) L.
Survivor function of the average individual on-board downlink queue
at 95% load as a function of the switch size: (a) voice dominant with
MMPP data, (b) data dominant with MMPP data, (c) voice dominant
with PMPP data (H=0.8), and (d) data dominant with PMPP data
(H=0.8) e e
Survivor function of the individual on-board downlink queue at 50%
load when data traffic is modeled by MMPP under a burst-level packet
destination distribution: (a) voice dominant and (b) data dominant .

Network model of the system employing a 4 x 4 switch
Network model of the system employing a 16 x 16 switch
Process model of the uplink
Process model of the scheduler.
Process model of theswitch

4.1
4.2
4.3
4.4

4.5
4.6

LIST OF TABLES

Traffic scenarios
Input source parameters for various media
Achievable statistical multiplexing gain for each traffic scenario
Real-time traffic state average arrival rate, probability of loss in that
state, and the state probability for voice dominant case at 95% utiliza-
179 1o) o
Real-time traffic loss probabilities of all traffic scenarios and load cases
Summary of the simulation results obtained for the different perfor-
mance measures when MMPP model was used for data.
Summary of the simulation results obtained for the different perfor-
mance measures when PMPP model was used for data

Xi

40
42
43

46
46

66

CHAPTER 1
INTRODUCTION

1.1 Background

Multimedia applications will revolutionize every aspect of our daily lives. Be it
at home, school or business, it will be an integral part of our everyday activities. In
the near future, we will be able to reach out to the world directly from the comfort
of our home. In fact, with the simple click of a button, a multitude of services such
as videophony, video-on-demand, high definition television (HDTV), high-resolution
imaging, and home-banking will be available at our fingertips. Moreover, thanks
to the breakthroughs in electronics and digital communications, these services will
be available and in an integrated manner. However, the amalgam of new services
(multimedia traffic) will require larger bandwidths and higher bit rates to support
the resulting traffic through broadband networks [1, 2].

In order to rapidly deploy these broadband services over vast regions, especially
in remote and rural areas, a wireless communications network is needed. A wireless
network (e.g., cellular-based or satellite-based) not only provides wide area coverage,
but also liberates the user from the tether. This in turn enables the possibility of mo-
bile communications and a universal personal telecommunication (UPT) approach [3].

1

When we consider the available wireless options [4], a satellite-based system is the
only one capable of truly providing global services at a distance-insensitive cost, in
addition to supplying all the advantages of a wireless system.

A satellite system is composed of two parts: (i) a space segment, comprising the
satellite spacecraft in orbit, and (ii) a ground segment that includes all the earth-
stations. The end-user can either be connected directly to the earth-station or indi-
rectly through the auspice of an existing terrestrial network (e.g., telephone network,
cable system, dedicated lines, etc.). End-user traffic is sent to the earth-station, where
it is processed and transmitted to the satellite by modulating a radio frequency car-
rier. Traditionally, the satellite received all the earth-station radio frequency carriers
in its uplink (earth-to-satellite) frequency spectrum, amplified these carriers, and re-
transmitted them back to earth in a different downlink (satellite-to-earth) frequency
spectrum in order to avoid interference. In essence, the function of the satellite was
simply that of a large repeater in space, providing mainly overseas telephone trunks
and broadcasts of television programs [5, 6, 7].

One of the major drawbacks of early generation satellites was the need for large
and expensive earth-stations which limited the penetration of satellite-based services
mainly to the business sector. As satellite and space technology improved, more
powerful satellites with larger antennas and longer life spans were deployed. This
reduced the channel cost, as well as the size and cost of earth-stations. The satellite
system steadily became an economical means of communications, readily available to
a greater number of users.

With the growing satellite user population, a need to increase total system capacity

2

was felt. An efficient way to sustain such a capacity increase is to use multiple spot
beams in conjunction with a reuse of their frequency allotment. Theoretically, if one
large beam covering a given area can provide capacity C, N non-overlapping spot
beams covering the same area will provide capacity NC. However, in practice, the
actual capacity provided is always lower than NC, in order to avoid interference
between adjacent beams. Another beneficial effect of using narrow antenna beams is
the introduction of high antenna gains, permitting power savings in both the uplink

and downlink channels [5].

1.2 On-board Switching

While the use of multiple spot beams improves transmission aspects, it introduces
the requirement for full connectivity between earth-stations. The satellite system
then acts as a provider of dynamic links connecting any pair of earth-stations in the
network whenever the need arises. From the network management standpoint, the
usage of satellite resources has to be optimized when supporting a large population
of earth-stations. On the other hand, the quality-of-service (QoS) required by users
should be maintained. To achieve both the efficient utilization of space segment
resources and acceptable user QoS, an element of switching is required in the satellite
network [8].

The first issue to address, when a switch is being introduced into the satellite
system, is its location; that is whether it should be placed in a ground terminal or on
board the satellite. In the case of an on-board switch, two earth-stations communicate
with each other in one hop (up and down transmission) through the satellite. On the

3

other hand, the same earth-stations would need two hops to be interconnected when
the multiple spot beam satellite is used as a simple repeater in the sky; one hop from
the source station to an intermediate switching node on-ground, and a second hop
from the intermediate switching station to the destination station. Each hop through
the satellite incurs some delay and the value of the total delay contracted is strongly
related to the distance separating the satellite from the earth.

In the case of a geosynchronous or geostationary earth orbit (GEQ) satellite sys-
tem with an on-ground switch, communication between two different earth-stations
requires approximately 500 ms. This will certainly be unacceptable for delay-sensitive
applications. In the case of low earth orbit (LEO) satellite systems, two-round trip
delays correspond to 20 ms, a delay value that is within the limits of most service re-
quirements. Although the propagation delay is not a limiting factor in an on-ground
switch implementation for LEO systems, tracking of the on-ground switching node by
the satellites becomes an issue because of the non-geostationary orbit. This tracking
mechanism added to the already complex nature of a LEO satellite system makes an
on-ground switch configuration less favourable in the case of LEO as well.

Additional advantages of the on-board switch configuration include increased flex-
ibility to allocate system resources, such as uplink and downlink bandwidth, and in-
dependent uplink and downlink optimization. This last advantage comes from the
fact that the uplink-transmitted digital signal is completely regenerated on board the
satellite, by performing demodulation down to baseband. After switching and ampli-
fication, the signal is remodulated onto the downlink carriers. Thus, the uplink and
the downlink can be designed as separate independent links.

4

1.2.1 On-board Circuit Switching

The most popular and easy to implement switching technique is circuit switch-
ing. Used in terrestrial networks, it offers delay-sensitive (real-time) services such
as telephony. In circuit switching, a complete path is set up from the origin to the
destination when a call is made. The path remains dedicated to that call until one of
the two communicating parties releases it.

At least two proposed satellite systems employ circuit switching on board the
satellite; the European Space Agency (ESA) [9] and the National Aeronautics and
Space Administration (NASA) Advanced Communications Technology Satellite [10].
Although circuit switching is attractive for stream type traffic, e.g., telephony, it is not
very suitable in an environment where traffic demands are not constant throughout
time, but vary in an abrupt and unpredictable way. This is exactly the kind of
environment that future multimedia traffic creates. We describe this environment
as bursty. Burstiness is characterized by the variability in the message-generation

process, in terms of both the length of the message and the message-interarrival time.

1.2.2 On-board Packet Switching

Packet switching is a switching technique designed to handle bursty data traffic.
In packet switching, the communications bandwidth is dynamically assigned to users
on an as-needed basis. This is achieved through the segmentation of user information
messages into a series of packets and independently routing them to their destina-
tion. Hence, during the inactivity period of a user, when no packets are created, the
remaining user population can use the free bandwidth to transmit their packets, thus

5

achieving a certain sharing leve! of the communications capacity. The level of sharing
can be expressed through the measure of statistical multiplexing gain, where the term
multiplexing refers to any technique which permits a number of independent users to
share one physical facility. As we can see, the level of sharing is increased as the users
information messages become more bursty. Finally, an additional advantage of the
packet switching technology is that it can integrate stream and bursty traffic more
easily than circuit switching can.

To support the larger bandwidth and higher bit rate demands of multimedia
services, a refined packet switching technique called fast packet switching will have
to be employed. Basically, this fast packet switching technique is very similar to the
one proposed for Asynchronous Transfer Mode (ATM) networks in the sense that
both employ a constant length packet format and have self-routing capability. The
difference lies in the size of the constant packet format and the nature of the links
between the users and the on-board packet switch. In the case of an ATM switch, the
size of the packet (cell) is specified to be 48 bytes payload plus 5 bytes header, and
there are permanent links between the users and the on-board switch. Meanwhile, in
the satellite context, the packet format is unspecified, and the links between the users
and the on-board switch are dynamically allocated on demand. In this thesis, we will
only address fast packet switches and hence, for simplicity, we will refer to them as
packet switches. The term packets will be used to designate fixed-length packets in
general. Nevertheless, we will use the term cell when ATM switches are involved.

On-board packet switching has been researched by companies and space agen-

cies in many countries including Canada, the United States, and European coun-

6

tries. For example, the ESA program [11, 12], the NASA ACTS program [13, 14],
Spar Aerospace Limited and the Canadian Department of Communications (15, 16],
Teledesic’s network of 288 LEO satellites [17], and Motorola’s Celestri System [18].
A more detailed list of all the broadband satellite projects can be found in [19].

All these proposed projects are aimed at providing a broadband satellite com-
munications system to support future multimedia applications. Accordingly, their
common primal concern is the type of on-board switch they will employ and how
it will behave in a multimedia environment. This is not only an issue linked with
space communications, but it is also at the heart of research in terrestrial communi-
cations [20, 21, 22, 23, 24, 25]. The reason is that an ideal switch for every imaginable
application does not exist, and it is both inefficient and inconceivable to design a new
switch for every new application that appears. In that sense, it is essential that a
performance study of the existing packet switches, under the light of the new appli-
cation, be undertaken before any attempt to design a new switch. This will provide
the designer with information on the capabilities and limitations of this system. As
multimedia becomes the service of the future, satellite-switched systems have to be

designed to support the increased traffic generated by these applications.

1.3 Thesis Outline

In this thesis, we will address the performance evaluation of an on-board packet
switch in a multimedia environment. Due to the complex nature of multimedia traffic,
which does not lend itself easily to analysis, system simulations were considered to

be the best alternative.

In Chapter 2, we present a detailed description of the different components of a
satellite system, i.e., uplink beam components, on-board packet switch and downlink
beam components. We introduce the traffic types that our system supports, namely,
real-time (voice and video) and jitter-tolerant (data). Moreover, we elaborate briefly
on the multiple access schemes used at the uplink. Finally, we will review the fast
packet switch architectures, focusing particularly on two switching fabrics, the shared-
memory switch and the Knockout switch.

Chapter 3 presents the simulation model of our system. We will describe the
models of the different traffic types. For voice and video traffic, we will use the well-
known Markov Modulated Poisson Process (MMPP) model [26]. For data traffic, we
will use two different models; the first one is the above-mentioned MMPP model and
the second one the recently proposed model in [27], the Pareto Modulated Poisson
Process (PMPP) model. Note that this last model resembles the MMPP model in
all aspects but the sojourn times of the controlling Markov process and has been
introduced to capture long-range dependencies in data traffic [28]. Furthermore, we
will delineate the simulation models of the uplink, the Knockout and the shared-
memory switches, and the downlink.

Chapter 4 presents the results of our simulative analysis. Specifically, we are
concerned with the packet loss probability for real-time traffic at the different stages
of the system. The packet loss probability as well as several performance indices
relating to the queueing of the jitter-tolerant traffic will also be discussed. Moreover,
we present these results for the two different types of switches that we used in our

system, that is the Knockout and the shared-memory switches. Parametric analysis

8

pertaining to the switch size and the packet destination distribution is also performed.
Chapter 5 concludes the thesis discussing the impact of our simulation results on

the system design and suggests several future work.

CHAPTER 2
SATELLITE SYSTEM DESCRIPTION

In this chapter, we describe the satellite system under study. Starting with a brief
system overview, we will look in detail at the functions of the different components
of the system. Complexity as well as performance of on-board switching are of great
concern since the satellite is limited in mass, power and bandwidth. We will review
several available packet switches and we will select those which are more attr-active
based on their features, both promising and suitable for our applications.

Figure 2.1 shows a typical multiple spot beam satellite communications system
using an on-board packet switch to provide multimedia services to earth-stations.

In order to transmit information via the satellite network, the end-user must first
issue a call admission request to a scheduler on board the satellite. The on-board
scheduler will decide whether or not to grant admittance to the call, based on a set of
parameters which include the type of QoS the system has to provide to the end-user
and the current or predicted status of the network.

Once the call is admitted, the end-user begins to generate its bursty multimedia
traffic in a packetized format. These packets are either forwarded directly to the
earth-station or indirectly, through the help of existing terrestrial network, e.g., the
Internet. In general, more than one end-user can be connected to an earth-station,

10

SATELLITE

Ny
\§<
<- ?"i
A/

NETWORK
ICONTROLLEHR

hiN
~
N
N
.
N

Figure 2.1: A typical multibeam satellite communications system

creating a confluence of all earth-station end-users traffic.

In order to access the satellite, the aggregate earth-station traffic has to contend
for uplink capacity with the aggregate traffic of all the other earth-stations in the
footprint of the uplink spot beam. As a result, a multiple access scheme in conjunction
with queueing at the earth-stations is required to efficiently divide the limited uplink
bandwidth into channels and to dynamically allocate these channels to fit the demands
of the traffic.

At the satellite, the packets carried by the different uplink beams are processed and
switched according to their destination downlink beam request. There is a possibility

that two or more packets have requested the same destination, causing a destination

11

contention problem that is resolved accordingly by the switching fabric used.
Switched packets to be resent to earth in the same downlink beam will have to
contend among themselves for the limited downlink capacity. As such, queueing is
required at the downlink.
Finally, the unique broadcasting capability of the satellite enables the downlink
beam traffic to be received at all the earth-stations in the coverage area of that beam.
The destination earth-stations will then forward only those packets intended to their

end-users.

2.1 End-user Applications

We assume that the admitted end-users employ bursty multimedia applications.
Thus, at any given time, each end-user can generate voice (e.g., telephone call), video
(e.g., videophone call) or data (e.g., file transfer) traffic. Voice and video traffic
have very strict requirements in terms of delay and delay jitter (variation), but can
sustain some packet loss. On the other hand, data traffic is loss-sensitive (e.g., a bank
transaction), but can absorb variable delays. Due to their nature, we will refer to
voice and video traffic as real-time traffic, and data traffic as jitter-tolerant traffic.

This general method of classifying services can also be used in other service-
providing systems. For example, in the context of ATM, there are five proposed classes
of services, namely, constant bit rate (CBR), real-time variable bit rate (rt-VBR), non-
real-time variable bit rate (nrt-VBR), available bit rate (ABR), and unspecified bit
rate (UBR) [2]. CBR (e.g., uncompressed voice) and rt-VBR (e.g., compressed video)
traffic, having tight constraints on end-to-end transfer delay and delay jitter, are real-

12

time traffic. Meanwhile, nrt-VBR (e.g., image), ABR and UBR (both specified to
accommodate the transfer of data, e.g., HTTP and FTP) traffic, having no constraints

on delay jitter and being tolerant to delay, are jitter-tolerant traffic.

2.2 Uplink Beam Components

As multimedia information is generated by the end-user, it is packetized and
forwarded to the end-user earth-station. The earth-station serves as a gateway to the
space segment, and it is possible that more than one end-user can be connected to it.
Since the uplink beam has a fairly wide coverage area, more than one earth-station
is within the footprint of the beam. This results in a situation where there is a large
population of users requiring access to a bandwidth-limited link. For this reason, an
efficient uplink multiple access scheme is required.

In order to support a wide range of traffic types and provide a high level of statisti-
cal multiplexing, Multiple Frequency Time Division Multiple Access (MF-TDMA) is
used at the uplink [16, 29, 30]. Moreover, MF-TDMA employs much lower transmis-
sion bit rates when compared to TDMA, permitting the use of smaller and cheaper
earth-stations. Under MF-TDMA, the bandwidth of each uplink spot beam is orga-
nized as a group of n equal-size frequency slots, each is shared by the earth-stations
in a TDMA manner on a demand-assignment basis. Each TDMA carrier is further
divided into ¢ equal-size, non-overlapping time slots per frame. Thus, an uplink beam
has a total capacity of C' = nc frequency-time slots per frame, each of which can ac-
comodate a fixed-length packet (e.g., an ATM cell). The frame structure is shown
in Figure 2.2. A small portion of the uplink MF-TDMA frame is reserved for signal-

13

MF-TDMA FRAME

n carriers

LITIf it

call
admission
requests c slots for information
slot size = time required to
channel transmit one packet

requests

Figure 2.2: An MF-TDMA frame (C = nc slots)
ing, e.g. channel requests. Each earth-station can transmit up to ¢ non-overlapping
time-frequency slots. In other words, c is selected to accomodate the maximum peak
rate of the earth-station, e.g. 2.048 Mbps. The aggregate peak rate when all earth-
stations are active can be larger than the allowable peak rate in the MF-TDMA frame
structure, but the probability that all earth-stations are active at the same time is
very low, as we will see in Chapter 4.

Since end-users employ bursty multimedia applications, the number of packets
arriving at an earth-station in a frame can vary from one frame to another. For this,
an on-board scheduler is used to dynamically allocate non-overlapping frequency-
time slots to demanding earth-stations in each frame. However, due to the nature of
the traffic and the large amount of end-users, the number of packets arriving at the
earth-station during a frame can still exceed the uplink capacity. In anticipation of
such a case, a priority scheme in conjunction with queueing at each earth-station is
implemented.

Since jitter-tolerant packets can be queued and forwarded at a later time while

real-time traffic cannot tolerate delay variation, the scheduler gives a higher priority

14

to real-time traffic in dynamic capacity allocation, i.e., the scheduler first allocates
frequency-time slots to real-time traffic, and then uses the remaining capacity to
accommodate jitter-tolerant traffic. In this way, if more than C real-time packets
require transmission in a given TDMA frame, the excessive ones are lost. If the
number of real-time packets demanding uplink transmission is smaller than C, but
the total of arrival real-time and jitter-tolerant packets in a TDMA frame exceeds C,
then the excessive jitter-tolerant packets will be stored in the on-ground queues of
the corresponding earth-stations.

Packets received from different carriers of the same uplink beam are multiplexed
into one stream at the rate of C' packets per frame and passed to the input port of

the N x N on-board packet switch.

2.3 On-board Packet Switching

We chose to investigate on-board packet switching over on-board circuit switch-
ing for its dynamic and efficient allocation of bandwidth, permitting high statistical
multiplexing gains in a bursty multimedia environment. However, when considering
on-board packet switching, output port contention and queueing are of major concern.

Output port contention refers to the situation where more than one packet arriving
in the same slot are destined to the same output port. This problem occurs in packet
switching due to the absence of coordination among arriving packets as far as their
destination requests are concerned. As a result of the contention problem, queueing
is needed to store the contending packets.

A plethora of packet switching fabrics have been proposed to solve the contention

15

and queueing problems [21, 22, 24, 23, 25]. We will now review these switching fabrics
and highlight the candidates for satellite applications.

Packet switching fabrics can be classified based on different attributes [21, 22, 25].
We choose to classify them according to the type of physical connection implemented
between the input and output ports. Based on this attribute, we have two families of
switching fabrics: time-division switch and space-division switch [25]. Furthermore,
time-division switches are themselves divided into two classes: shared-memory and
shared-medium switches. In turn, space-division switches are composed of crossbar-

based switches, Banyan-based switches, and switches with N? disjoint paths [22].

2.3.1 Time-division Switch

A switch can be regarded as a communications resource which is shared by all
input and output ports. A time-division switch allows access to this resource via a
time division multiplexing (TDM) scheme, where all ports transmit according to a
common time reference. An important feature of this family of switches is that their

cost and complexity increase linearly with their size V.

Shared-memory switch [22]

Packet switching fabrics of the shared-memory type consist of a memory shared
by all input and output lines (Figure 2.3). The packets arriving on all input lines are
multiplexed onto a single stream which is fed to the common memory for storage. The
common memory can be completely partitioned into N separate sections, one section

for each output port, or shared among all output ports. The complete partitioning of

16

Input line | — > OQutput line 1
L] ®
: MUX COMMON MEMORY DEMUX :
Input line N ———> ——> OQutput line N
]
:
1
]
L MEMORY BUFFER
CONTROLLER

Figure 2.3: A shared-memory switch

the memory permits the implementation of a simple array of first-in first-out (FIFO)
buffers, but can require a larger overall size of memory. On the other hand, fully
sharing the memory can reduce the overall size, but requires a more complicated
memory management.

The actual routing function in shared-memory switch is performed by a central
controller. In order to route all incoming packets to their requested destination port,
the controller must be capable of processing sequentially N incoming packets and
selecting V outgoing packets every time slot. For an input and output port speed V/,
the required memory bandwidth of a shared-memory switch will be 2NV. In order
to alleviate the demand for high memory access speeds, a parallel memory (or W
bit-slice) organization can be implemented.

One of the drawbacks of this switching fabric is a lack of modularity which limits

its size expansion capability.

Shared-medium switch [22]

In the shared-medium switch (Figure 2.4), all arriving packets on the N input

lines are synchronously multiplexed onto a common high-speed medium (which can

17

be a bus or a ring) requiring a bandwidth of NV, for an input and output port speed
V. Each output line is in turn connected to the shared-medium through an address
filter, capable of receiving all packets transmitted on the medium, and an output
buffer. It is the address filter that decides if a packet observed on the medium is

destined to that output.

Output lines

——— e - - . = e = — - o - - ——— -

Terminator

B e U Uy UG

Pl [Iy R RSy IS ORI S U S SR,

t AY
| 1
1]
High speed bus ! X
Il I

Input lines

(a)

Station

—
_—

Ring interface module

Ring

/

(b)

Figure 2.4: A shared-medium switch: (a) shared-bus, (b) shared-ring

18

Similar to the shared-memory switch, one of the main concerns in a shared-
medium switch is how to implement the high-speed medium. Again, to meet the
bandwidth requirement, we can use a parallel organization to reduce the circuit speed.

The structure of the shared-medium switch makes it easier to expand in size
than the shared-memory switch, but there is still a limit on the achievable switch
size due to the bandwidth limitation. In addition, shared-medium switch enjoys the
advantages of a higher degree of fault-tolerance, and the ability to support multicas-
ting/broadcasting functions with little modifications. However, a drawback of the
shared-medium switch is the buffers cannot be pooled and shared among the output

ports.

2.3.2 Space-division Switch

Contrary to time-division switch, where all the inputs are multiplexed onto a
stream in order to share the switching resource, in space-division switch, multiple
connections exist between the switch input and output ports. As a result, no mem-
ory component in the switch has to operate at a speed higher than the port speed.
However, the complexity of space-division switches grows faster than the linear rela-

tion in time-division switches. In some cases, it can reach the order of N2.

Crossbar-based switch [22]

In a crossbar-based switch, each pair of input and output ports is connected via a
crosspoint switch, resulting in a square array of N? crosspoint switches (Figure 2.5).

Crossbar-based switches are internally non-blocking; two packets originating from

19

Vertical

Input
4 Horizontal Horizontal
Input Output
3 |
Inputs v
2 Vertical
Qutput
l
1 2 3 4
Qutputs
Bar state Cross state
CROSSBAR SWITCHING FABRIC CROSSPOINT SWITCHING ELEMENT AND ITS STATES
(SWITCHING ARRAY)

Figure 2.5: A crossbar-based switch

different sources and destined to different output ports can be switched without in-
ternal conflicts. However, if packets contend for the same output port, buffering is
mandatory for the packets having conflicting destination port. The possible locations
of the buffers are at the inputs, outputs or crosspoints of the switching array.

The advantages offered by this class of switches include the self-routing capability,
simplicity and modularity of the switching array. However, the complexity of the

switch is of the order of N2.

Banyan-based switch [22]

Banyan-based switches are designed with the objective of reducing the number of
switching elements to less than the N? required for the crossbar-based switch. As a
result of the lower number of switching elements, input lines will have to share the
use of some switching elements. Although sharing the use of switching elements helps

reduce the switch complexity, it imposes the problem of internal blocking. There

20

are various derivatives of the multi-stage interconnection networks that have been
proposed and studied to resolve internal blocking [32, 33, 34, 35, 36, 37, 38].

On the positive side, Banyan-based switches are modular and self-routing.

Switches with N? disjoint paths [22]

Due to the performance setbacks encountered in the two previous space-division
switch classes, efforts have been made to alleviate the problems of output contention
and internal blocking. The switch with N? disjoint paths employs the maximum
available hardware resource to allow each input port to be directly connected to
every output port.

Within the switching fabrics with N? disjoint paths, the Knockout switch has dis-
tinguishing advantages, such as simplicity, modularity, low latency and self-routing [39].

In the sequel, we will focus our attention exclusively in its description.

The Knockout switch [39]

The Knockout switch operates on a slot basis. Broadcast buses are used to trans-
port packets from N input ports to the corresponding output ports as shown in Fig-
ure 2.6. Each output port has a bus interface that selects the corresponding packets.
In each time slot, the bus interface receives up to NV packets from all input ports, and
can switch up to L packets, where L is less than or equal to N. Excessive packets are
discarded. As L increases, the loss probability is reduced but the switch complexity
is increased.

The many advantages associated with the Knockout switch are a reduction in

21

®
Inputs : oo (X)
N ® o -
b 100 0
Filters Filters
L X 1] [X 1]
I SelectuptoL] eee L Selectupto L l
Output Output

Figure 2.6: A Knockout switch

resource wastage, ease of implementing a priority scheme in the Knockout contention,
ease of implementing multicasting/broadcasting function, cell order preservation, and

modularity.

2.3.3 Candidates for Satellite Applications

When choosing a switching fabric for satellite purposes, special attention must
be paid to its unique spatial environment. Due to the mass limitation and the long
mission lifetime (approximately a decade) of the spacecraft, complexity and fault
tolerance become important issues. In addition, the numerous and diversified appli-
cations necessitate tighter bounds on performance in terms of packet loss and delay.
On the other hand, while modularity is of particular interest in terrestrial applica-
tions, it is of secondary importance in satellite applications [16]. With these criteria in
mind, we will now select the candidates most suitable for an on-board switch system.

From our earlier discussions, we know that time-division switches have the lowest
level of complexity. However, they require high memory access speeds. Since a
shared-medium switch has to have dedicated output buffers for each output port, it

22

will require more memory compared to a shared-memory switch employing a fully
shared buffer. In that sense, the shared-memory switch presents a stronger case for
satellite applications. Especially, when we consider the improved shared-memory
switch employing parallel access proposed in [31]. The novel approach in switching
reduces considerably the high memory access speed requirements. For these reasons,
the shared-memory switch is a good candidate for satellite communications.

As for space-division switches, we observed that the cost of extra complexity to
improve the performance in the case of the crossbar-based switch grows in the order of
N2. Hence, to achieve a respectable performance, the complexity of the switch will not
be attractive for satellite communications anymore. We also argued that the major
drawback of Banyan-based switches is internal blocking. The various derivatives
of the Banyan-based switch that have been proposed to solve the internal blocking
involve the use of multi-stage interconnection networks in a stand-alone, multi-plane
or tandem organization (32, 33, 34, 35, 36, 38]. Thereby, the complexity level of
the switch is significantly increased. Finally, we perceived that the Knockout switch
(belonging to the N? disjoint paths class) offered an efficient scheme to resolve output
port contention while maintaining a high level of performance. In addition, the ease
of implementing a fault-tolerant system, the self-routing capability and the simple
switch reconfiguration to support multicasting and broadcasting functions make the

Knockout switch the leading candidate for satellite applications.

2.4 Downlink Beamn Components

At the output of the on-board packet switch is the downlink. Unlike the uplink, no

23

multiple accessing scheme is required, and hence, packets arriving at the downlink are
simply TDM onto a carrier on a frame basis. Since switched packets are uncoordinated
as far as their destination requests are concerned, the number of switched packets can
exceed the downlink capacity. Again, a priority scheme in conjunction with downlink
queueing is implemented.

The downlink queue has to be distinguished from the switch buffer due to their
different raisons d’étre. The switch buffer is needed when the available switching
capacity cannot route all incoming packets to their appropriate output port. On the
other hand, the downlink queue is required when the available downlink capacity
cannot support all switched packets.

Assuming symmetry between input and output, the downlink TDM carrier also
has a capacity of C packets per frame. Similar to the uplink allocation, the downlink
server gives real-time traffic a higher priority. If the number of real-time packets
arriving at an output port in a frame exceeds the capacity C, the excessive ones
are discarded. If there are less than C real-time packets but the total number of
arrival packets is larger than C, excessive jitter-tolerant data packets are stored in
the on-board downlink queue and forwarded whenever capacity becomes available.
Jitter-tolerant traffic loss occurs on the downlink only when the downlink queue is
full. Downlink queues for jitter-tolerant traffic can be organized as separated mem-
ory blocks, one for each output port. Alternatively, the N downlink queues can be
combined in one single common memory block. By using separated memory blocks,
the downlink queue is simply a FIFO buffer and has a simple control. However, this
approach can require a larger overall size of memory. On the other hand, the com-

24

mon memory approach can reduce the overall size, but requires a more complicated

memory management.

2.5 Methodology of Performance Evaluation

The performance of a communications system is mainly dependent on the traffic it
has to serve. In our case, we evaluated two classes of traffic, namely, real-time traffic
and jitter-tolerant traffic. While jitter-tolerant traffic can be queued, real-time traffic
has stricter requirements on delay and delay variation, and thus cannot. In order to
evaluate their performance, we will first define the different performance measures,
followed by the approach we will use to obtain these values.

We define average packet delay as the average transit delay of a packet from the
time it arrives at its originating earth-station to the time it has reached its desti-
nation earth-station. Since the medium propagation delay is a constant, dependent
entirely on the orbital location of the satellite, we choose to exclude it in our delay
measurement. (As a matter of fact, we can always obtain a particular mean delay for
any orbital system by simply adding its round-trip delay to the measured value.) In
addition, we will also measure the standard deviation of the delay, and, when possible,
the probability of queue exceeding any given threshold value.

Another performance measure of importance is the packet loss probability. The
packet loss probability is the probability that a packet is lost in the system as a result
of limited resources (memory and/or switching capacity). It is defined as the ratio of
the total number of packets lost to the total number of packets actually sent.

The performance study of this system aims to provide us with the values of the

25

parameters just described. In order to appreciate the results of such a study, we must
clearly understand the issues and nature of multimedia traffic modeling. Multimedia
systems require the traffic modeling of the many services they offer. There is a vast
number of mathematical models proposed to generate the traffic of the individual
multimedia services (voice, video, data) [40, 41], but their mathematical tractability
when combined has yet to be proved.

Additionally, the degree of complexity of an exact queueing analysis of such a
system grows very rapidly when we consider larger switch sizes. This is due to the
network of queues at the input and output of the switch, where the application of
mathematical traffic modeling is highly likely to be non-parsimonious.

System simulation is the most viable approach given the complexity entailed in
the network of queues analysis involving multimedia traffic. Furthermore, simula-
tions provide a precise model of the system, rapidly available results and a means of

validating analytical results (when analysis is possible).

26

CHAPTER 3
SIMULATION MODELS

We described in the previous chapter the satellite system under study. Due to the
complex nature of this system, simulations were chosen as the most viable approach
for a performance study of the system. In the following, we will present the simulation
models of the system, beginning with a discussion on multimedia traffic modeling.
The modeling and simulations of this system will be performed using OPtimized Net-
work Engineering Tools (OPNET'). The OPNET code used can be found in Appendix
A.

Figure 3.1 shows the simulation model of the satellite system. It is composed of

i MODEL OF UPLINK
P’ ¥
Voice @ ! Real-time traffic
1]
'

Video @ ' UPLINK
Jitter-tolerant traffic SERVER

Pan D T[T}
]

+ On-ground queue
)

SWITCH

1
t
I
1
[l
1
]
J
t
'
!
1
t
1
t
1
I
X [d
1
1
[
1
T
]
t
T
1
1
]
L}

' P '
' ° On-board queue :
: . :
. 1
Voice @ » Real-time traffic 3]
1 — — I
. t
Video @ ' UPLINK Real-time traffic ;
Jitter-tolerant traffic SERVER '

Data — I— E Z 3

1 .

! On-groiind queue Jitter-tolerant traffic !
' peveet Dl
e e mm—ema- 3 - On- quene - _ _ __ . 4

Figure 3.1: Simulation model of the satellite system

three parts, namely, the uplink model, the on-board switch model, and the downlink

27

model. In the sequel, we will describe each of these parts in details, starting with the

uplink model.

3.1 Uplink Model

As discussed in last chapter, the earth-stations are the end-users access points to
the satellite. The earth-stations can be logically viewed as queueing facilities where
the multiple accessing scheme to the satellite is implemented. In order to simplify the
model at the uplink, we represent the ensemble of earth-stations in the coverage area
of a spot beam by one mega-earth-station. This mega-earth-station is then modeled

as a queue representing the sum of all earth-station queues (Figure 3.2).

Video Q O E UPLINK
Jitter-tolerant traffic SERVER
§

i

I

Pae D | :
I

, On-ground queue

I

i

. I
Voice @ 1 Real-time traffic !
P :

|

Figure 3.2: Simulation model of earth-station population of one spot beam

The mega-earth-station will then receive the aggregate traffic of the entire end-
user population in a spot beam coverage area, and will forward the resulting packet
traffic to the satellite using the uplink access scheme. Since our main goal is to study
the performance of the on-board switch, we are only interested in the effect of the
uplink access scheme on the input traffic to the switch. Thus, we will divide our
discussion on the uplink model into two parts, namely, the traffic model and the

model of the effect of uplink access.

28

3.1.1 Traffic Modeling

In this section, we will discuss the modeling of multimedia traffic [40]. We assume
that the individual end-users have independent sources generating either voice, video
or data packets. In the following, we will describe the modeling of the individual
sources and their approximate aggregate model. We will also present an algorithm to
capture the relevant characteristics of the traffic, such as the peak packet rate of an
individual source, A, the peak-to-average rate ratio of an individual source, R, the
number of end-users sources admitted for voice, Ny,, video, N,;, and data, N4, and
the value of the index of dispersion of counts (IDC) at infinity, [(co). The index of
dispersion of counts at time ¢, I(¢), is equal to the ratio of the variance of the number

of arrivals by time ¢ to the mean number of arrivals by time ¢.

Voice source modeling

A packetized voice source, such as that of an end-user, can be modeled by an on-off
source (Figure 3.3). During the silence period (off-state), no packets are transmitted.
Meanwhile, during the talk period (on-state), packets are generated at a constant
peak rate A packets/s. It is assumed that the sojourn time in a state is exponentially
L

distributed with mean off-time i, and mean on-time 3

o

RN

0 packet/s @ @ A packets/s

B

Figure 3.3: An on-off source; a and 3, probability transition rates; A constant peak
rate

29

In [26], it has been shown that a superposition of on-off sources can be modeled
successfully by a 2-state Markov Modulated Poisson Process (MMPP). An MMPP
is a Poisson process with rate modulated by a Markov Process. It can be better
described by refering to Figure 3.4. The figure shows a 2-state Markov Process with
states 1 and 2 and probability transition rates oy and o2. When in state 1, the process

generates packets with Poisson rate A\; and when in state 2, with \,.

[}

N\

o}

Figure 3.4: A 2-state MMPP source; o, and o, probability transmission rates; \;
and A,, Poisson packet rates

We follow the approach of [26] and model the aggregate of N,, on-off voice sources
by a 2-state MMPP source. Towards this end, we must choose the four parameters
that characterize the MMPP process, namely A;, Az, o1, and 0. We perform this
task by matching several statistical characteristics of the original superposition of
on-off sources with the corresponding ones of the MMPP. At this point, we deviate

from [26] and we use a different technique to perform the above matching.

Parameters matching technique [43, 44]

In this technique, we will match the I(co), the mean arrival rate, and the duration
of underload and overload periods, as explained below, of the original process with the
same of the MMPP model. In the following, we will describe the technique assuming

voice traffic only. However, the matching process can be applied as is for video and

30

data traffic, as it will be discussed in the appropriate section.

In order to find A; v, and Aj v, we will match the mean arrival rates in underload
and overload states of the on-off model with the two rates of the MMPP. Underload
and overload states in the on-off model are given with respect to a parameter w 2
L—II\%:'J’ dependent on the average capacity devoted to the voice traffic. When the
number of active on-off sources, 7, is less than or equal to w, ¢ < w, we say that

we are in an underload state. In contrast, when i > w, we say that we are in an

Nyo i Nyo—i
overload state. Denoting by m;, m; = (ﬁl‘:) (R—l"{‘fl-) , the probability
]

that 7 sources are on, and performing the matching, we obtain

_ Z:Liu:O (iAVOﬂ-i)

A vo — o 3.1
b = e () @1
and
Nvo y .
/\2,‘,0 — Zz:u;\-[t:(ZAvort) (3-2)
i=w+1(7ri)

To find the two remaining parameters of the MMPP model, i.e., 0y, and o3 vo,
we match the I,,(00) of the two models, as well as their mean arrival rate. We know

that for N, on-off voice sources the I,,(c0) and the average aggregate rate are given

as [26]
1—(1—g=)
Ion—o wvolOQ) = Avo 3.3
ff,vo(00) (32 1 Bayz (3.3)
and

>
]

/\on—oﬂ',vo = Nvo (34)

oy,
s

31

Meanwhile, the same parameters for the 2-state MMPP are expressed as [26]

20'1,v002,vo(/\1,vo - /\2,vo)2
(Ul,vo + 02,vo)2(/\1,v002,vo + /\Z,VOGI,VO)

IMMpp,vo(OO) =1 + (35)

_ /\1,v00'2,vo + /\2,voal,vo
AMMPP vo = (3.6)
O1,vo + J2,vo

Matching Equations (3.4) and (3.6), as well as Equations (3.3) and (3.5), we obtain

/\l,v002,vo + /\2,voal,vo

a1 VO + aZ,vo

/\on—oﬁ' Vo —

and

2
201,v002,vo(/\ 1,vo — /\2,vo)

(Ul,vo + UZ,vo)z(/\l,voa'2,vo + /\2,voal,vo)

Ion—oﬂ',vo(oo) =1+

Noting that

A /\1,voa2.vo + /\Q,VOUI.VO _ Ul,vo(/\l,vo - ’\2,vo)
/\l,vo - /\on—oﬂ',vo = Al,vo — =
al,vo + UZ,vo al,vo + U2,vo

and

/\l,voa2,vo + /\2.v00'1,vo /\ 0'2,vo(/\1,vo - ’\2.vo)
- AN\2,vo —
O1,vo + O2,v0 T1vo + O2,vo

’\on—oﬁ',vo - /\2,vo =

we can solve Equation (3.7), yielding the last two equations,

2(/\1 vo — /\on-oﬁ' vo)z(/\on—oﬁ' vo — /\2 vo)
o vo = 1 [v ' 3.8
b /\on—off,vo(/\l,vo - /\2,vo)(Ion—off.vo(Oo) - 1) ()

32

and

2(/\I,VO - /\on—-—oﬂ',vo)(/\on—oﬁ',vo - /\2,vo)2
/\on-oﬁ'.vo(/\l,vo - /\Z,vo)(Ion—oﬁ',vo(oo) - 1)

(3.9)

O2,vo =

We will use the measurements of the individual on-off sources provided by Spar
Aerospace Limited, i.e., Ion—off,vo(00), Avo, and Ry,,. However, Aon—of vo will depend
on the number of on-off sources, Ny,, we will aggregate. These four parameters will

be used in Equations (3.1), (3.2), (3.8) and (3.9) to obtain values of A;, \,, oy, and

09.

Video source modeling

There are various techniques to model video traffic [40]. From these, we choose the
approach proposed in [45] where a video source or the superposition of video sources
is modeled by an aggregate of a number of mini-on-off sources. Each mini-on-off
source is a process similar to that represented by the model in Figure 3.3, used to
characterize the traffic of a voice source. As a consequence, the superposition of the
many video sources can be modeled by a 2-state MMPP. This approach permits us

to apply the same matching technique used in voice modeling.

Data source modeling

At the time of this writing, the modeling of computer data traffic is still a subject
of hot debate [40]. One way of modeling a data traffic is through the same technique
described above which was used to model the video sources. Then, the superposition
of many data sources can also be modeled by a 2-state MMPP, and the matching tech-

nique used in voice modeling can be applied. However, recent measurements [28] have

33

revealed that data traffic has long-range dependence ! and self-similar characteristics,
which are not captured by Markov chain-based models.

We will use a 2-state MMPP with theoretical value of /DC(oc0) = oo and we will
also consider the model in [40], where a 2-state Pareto Modulated Poisson Process
(PMPP) model was proposed to capture the long-range dependent nature of data
traffic. A PMPP resembles to an MMPP in all aspects but the sojourn times of
the controlling Markov process. The sojourn times of a PMPP are independent and
identically distributed with a Pareto distribution having parameter ay = 3 — 2H,
where H (0.5 < H < 1) is used to measure the degree of self-similarity and is called
the Hurst parameter.

We can use a similar matching technique as above to choose the parameters of the
PMPP model, namely, A1 4, A24, and H. We will, thus, match H of the data traffic
with the same of the PMPP model. In addition, we will use a similar approach to

the underload and overload matching described for voice modeling to obtain A; 4 and

A2 d-

3.1.2 Modeling of the Effect of Uplink Access

The sources models described in the previous section are used to generate the
aggregate traffic at the uplink. Since source traffic has to contend for slots on the
uplink MF-TDMA frame of capacity C, queueing is required on-ground (Figure 3.2).

We model the otherwise distributed queue, that is formed in every earth-station

1The autocorrelation function of the number of packets generated in each slot of long-range
dependent traffic decays hyperbolically as the lag increases, while that of short-range dependent
traffic decays exponentially as the lag increases

34

accessing the same uplink capacity C, as a unique mega-earth-station uplink queue,
ignoring its distributed nature. The uplink server in Figure 3.2 represents the queue
scheduler, which otherwise resides on board the satellite. The scheduler discriminates
between the different traffic types trying to access the uplink capacity by giving
priority to the real-time traffic. However, there is no priority between voice and
video.

In a MF-TDMA frame, the voice, video, and data sources generate X, Y, and Z
packets, respectively. The Z packets enter the on-ground queue. The scheduler first
serves the voice and video traffic. If (X 4 Y') exceeds C then there are (X +Y — ()
real-time packets discarded (lost). Otherwise, the scheduler will use the remaining
(C—(X +7Y)) slots to serve the jitter-tolerant packets in the front of the on-ground
queue. Jitter-tolerant data traffic is lost when overflow occurs in the on-ground queue.
In order to investigate the packet loss behaviour for different queue sizes, we assume
an infinite queue in our simulation model, and examine the survivor function, i.e.,
probability that the queue length exceeds a threshold value.

Finally, we need to model the slot assignment of the frame performed by the
scheduler. The actual scheduler assigns slots of the MF-TDMA frame in a semi-
random fashion (Figure 3.5 a), insuring that no user can transmit at more than one
frequency carrier during a time slot. The frame is then sent to the satellite where
it is multiplexed into one stream at rate C packets per frame. Due to this step,
the resulting stream at the input of the on-board switch seems to have their slots
randomly allocated to each user (Figure 3.5 b). We will model this effect of the

uplink access scheme by randomly assigning the served packets a slot in the uplink

35

MF-TDMA FRAME HIGH-SPEED FRAME ON-BOARD

R Ll o Dalsl T T I T [ls]T o[4T Ti] 2]

(a) (b)

Figure 3.5: Scheduler slot assignment: (a) MF-TDMA frame sent at uplink, (b)
multiplexed MF-TDMA frame into a high-speed stream on board the satellite

frame.

3.2 On-board Switching Model

At the satellite, the MF-TDMA frame of a spot beam is multiplexed into one
stream at the rate of C packets per frame, and passed to the input port of the
N x N on-board switch. The way these packets are switched depends on the type
of switch. We will model two types of switches, namely, the shared-memory and
the Knockout switches [39]. Note that in section 2.4 we have discussed the different
purposes of the switch buffer and the downlink queues: the former is to store the
packets requesting the same output ports while the latter contains switched packets
contending for downlink capacity. Nevertheless, as the output of the switch buffer
is actually the input to the downlink queues, instead of modeling two side-by-side
memory areas, we select to model the memory component of the switch as an integral
part of the downlink queues and will, consequently, address this in the downlink

model section.

3.2.1 Shared-memory Switch Modeling

The model of the shared-memory assumes that there is no restrictions on memory

36

access time. As a result, no packets will be lost at the switch level. The shared-

memory switch can operate on a slot or a frame basis.

3.2.2 Knockout Switch Modeling

The Knockout switch operates on a slot basis. At every time slot, the switch can
receive up to N packets from the N input ports. However, the switch can only route
L (L < N) packets to a particular output port during the same time interval. As
a consequence, if the number of packets requesting the same output port is greater
than L, the exceeding packets are lost. There is no priority given at the switch, and
hence, there is no discrimination in packet loss between real-time and jitter-tolerant
traffic.

In the next section, we will discuss the downlink model.

3.3 Downlink Model

Switched packets are stored at the downlink queues, where they will be transmit-
ted to the destination earth-stations in a TDM manner. We assume that the downlink
has the same capacity as the uplink, which is C packets per frame. The downlink
TDM server gives a higher priority to real-time traffic. In a given TDM frame, the
numbers of arrival packets are z, y, and z for voice, video, and data, respectively.
The 2z data packets enter the on-board FIFO downlink queue as shown in Figure 3.1.
The TDM server first transmits real-time packets. If (z + y) is larger than C, the
excessive (z 4+ y — C) real-time packets are lost. Otherwise, the TDM server uses the
remaining capacity of (C—(z + y)) time slots to send data packets in the front of the

37

downlink queue. Jitter-tolerant traffic is lost when overflow occurs in the on-board
queue. Again, in order to investigate the packet loss behaviour for different queue
sizes, we assume an infinite queue in our simulation model, and examine the survivor
function. As a means of improving the size of the on-board memory, we studied the
cases where the memory is divided into separated blocks and where it is taken as a
common block.

In the next chapter, we will establish the traffic scenarios used in the simulation
of the system model. We will present the simulation results and discuss their impact

on the system design.

38

CHAPTER 4
SIMULATION RESULTS

In this chapter, we will examine the effects of multimedia traffic mix and total traffic
load on the satellite system performance. More specifically, we will be interested
in the packet loss performance of the real-time traffic at three different points: (i)
at the uplink, (ii) inside the on-board switching fabric, and (iii) at the downlink.
As for the jitter-tolerant traffic, we present the survivor function of the uplink and
downlink queue size as well as the packet loss performance inside the on-board switch.
Moreover, we will study the effects of switch size and burstiness of traffic on both the
performance of the switch and the performance of the downlink.

We will start our presentation by first describing the different traffic scenarios,
and the particular values of the different parameters characterizing the voice, video,
and data traffic models that were intreduced in Chapter 3 and will be used in the

simulation experiments.

4.1 Traffic Scenarios

The best way to explain our traffic scenarios is by first introducing the parameters

Qvoy Qvi, and aq (where ayo + avi + ag = 1). Denoting the aggregate average traffic

39

arrival rate by A, i.e.,

A= Avo + Avi + Ag (41)

we can define ay,, ayi, and ag as

aq = — (42)

Each one of these expresses the composition of voice, video, and data traffic in the
overall traffic, respectively.

In reality the composition of admitted multimedia traffic varies depending on the
applications requested by the end-users, resulting in an infinite number of combi-
nations. In order to study the traffic mix, we chose to study four typical traffic
composition scenarios, namely, (i) voice dominant, (ii) video dominant, (iii) data
dominant, and (iv) equal load. These four traffic scenarios permit us to cover the
cases where each type of service is predominently used, and a general case where all

three services are equally utilized. Table 4.1 shows the corresponding values of ayo,

Scenario voice | video | data
(avo) | (awi) | (aa)
Data dominant 20% 10% 70%
Equal load 33.3% | 33.3% | 33.3%
Video dominant | 10% 70% 20%
Voice dominant || 70% 10% 20%

Table 4.1: Traffic scenarios

awi, and ag for each traffic scenario. For example, the data dominant case implies

that, on average, the aggregate arrival traffic to one uplink is composed of 20% voice

40

traffic, 10% video traffic, and 70% data traffic [46].

To study the effect of traffic load, we define p (where the condition for system
stability is 0 < p < 1) as the normalized system utilization. We will consider three
traffic utilization points for each traffic scenario: p = 0.5, 0.8, and 0.95.

Using Equations (4.1) and (4.2), as well as p and C (the beam capacity on the

uplink or downlink as discussed in Chapter 3), we can alternatively express X as

/\vo /\vi
Qyo Qi

Ad

Qd

(4.3)

Unless otherwise specified, in the remainder of this thesis, we will assume that C
is equal to 512 packets/frame. Furthermore, we will assume that the duration of a
frame is 0.024 s. In other words, a frame will carry 512 packets every reoccuring 24
ms.

From Equation (4.3), we can obtain the average arrival rate of each type of traffic
(i-e., Avo, Avi, and Aq) in terms of their respective traffic composition (i.e., Qyo, avi,

and ag), p, and C, as follows,

Avo = yopC, Avi = avipC, Ad = agpC (4.4)

We note that Ay, Avi, and Ay correspond to the two values, given in Equation (3.4)
and (3.6), we wanted to match in Chapter 3. Thus, we only need to know the value
of IDC at infinity, peak packet rate, and peak-to-average ratio to obtain the four

parameters of the 2-state MMPP. These values are measurements provided by Spar

41

Aerospace Limited, and are summarized in Table 4.2. Using ATM as an example (1
packet = 1 cell = 48 bytes), the peak rate for voice source is 64 kbps, and that for
the video source is 384 kbps. The peak rate and peak-to-average ratio are hard to
determine for data source, because of its bursty nature. As a consequence, they were
not provided by Spar. Instead, for our matching purposes, we assumed a peak rate of
64 kbps (under ATM cell format) and peak-to-average ratio of 100. This will result
in a large data user population with a high degree of variability in their transmission

rates, a condition similar to the one we want to model.

Traffic | Peak rate | Peak-to-Average | IDC(c0)
Source || (packets/s) Ratio

Voice 1090 2.5 15.9
Video 1000 5 55.9
Data = 100 o0

Table 4.2: Input source parameters for various media

The aggregate peak rate in an uplink beam, A, can be obtained by summing the
product of the peak-to-average ratio and the average rate of the three traffic sources,
as follows,

A= /\vono + /\viRvi -+ /\de = 2.5/\vo + 5/\vi + 100/\d (45)

We define the ratio Gsm = 4 as the statistical multiplexing gain. The term multi-
plexing refers, in general, to any technique which permits more than one independent
user to share one physical facility. In our case, it is the number of multimedia users
who can share the channels otherwise dedicated to each user in the case of circuit
switching.

42

Using Equation (4.5), we can alternatively write

2.5A1 +5A; + 10073
o

GSM = = p(25a1 + 502 + 10003) (4.6)

Table 4.3 shows the achievable Gsy for each traffic scenario under study.

Scenario voice | video | data Gsar
(a1) | (o) | (e3)
Data dominance || 20% | 10% | 70% | 71.00p
Equal load 33.3% | 33.3% | 33.3% | 35.83p
Video dominance | 10% | 70% | 20% | 23.75p
Voice dominance || 70% | 10% | 20% | 22.25p

Table 4.3: Achievable statistical multiplexing gain for each traffic scenario

However, Gsy introduces the problems of contention (resulting in packet loss)
and queueing (resulting in delay, delay jitter, and queue size). We will report its
effects on the performance of our system through simulation results when a 16 x 16
switch is used. The results of the system using a 4 x 4 switch will be shown to study

the effects of switch size.

4.2 Uplink Performance

The uplink queue models the sum of all on-ground queues of users within the
coverage area of a beam. With the assumption that each user is independent, we can
consider one uplink queue to be representative of the ensemble of uplink queues. Since
the server gives priority to the different types of traffic, the on-ground performance is
determined by both real-time and jitter-tolerant traffic. For the uplink performance
of real-time traffic, we look at the loss probability which is the probability that the

43

arriving real-time packets exceed the uplink capacity (and thus are lost). Meanwhile,
for the uplink performance of jitter-tolerant traffic, we investigate the average queue

size and the survivor function.

4.2.1 Loss probability of real-time traffic

As previously discussed, real-time traffic loss occurs when the number of real-time
packets arriving during a frame exceeds the uplink beam capacity, since no queueing
is provided to real-time traffic. This translates into finding the probability that the
number of arriving packets exceeds C' = 512 packets/frame. We consider the models
used for voice and video traffic. Consistently in all traffic scenarios, 2-state MMPP’s
were used to generate real-time traffic. We assume the average arrival rates for each
2-state MMPP to be A;; and the transition rates to be o;; (where : = 1 for voice
source, ¢ = 2 for video source, ;7 = 1 for underload state, and j = 2 for overload
state), the resulting real-time traffic yields a 4-state MMPP, with each state having
the average arrival and transition rates as shown in Figure 4.1. In addition, we assume
transitions between states to occur only at the frame edges (beginning or ending of
a frame). This is a valid approximation since all mean sojourn times are larger than
one time frame. Then, for the duration of a frame, the arrival rate is equal to the
Poisson rate of the state the process is in. The probability of excess of a Poisson

distribution is known and expressed by

T

P(a>512) =1~ ;,(F) (4.7)

44

RN

video

Figure 4.1: Model of aggregate real-time traffic

where P; is the probability of excess in state 7, a is the number of arrivals, and J; is
the average arrival rate in state 1.

Knowing the probability of excess in each state 7, we only need to find the prob-
ability that the process is in state i to obtain the loss probability of real-time traffic,
given by

4

Ploss = Z(’ytpt) (4'8)

i=1
where +; is the probability of state ¢, and P; is defined in Equation (4.7).

We follow the procedures in [44] to obtain the probability v; of each of the four
states of the aggregate MMPP. Table 4.4 shows the probability of loss in each state
according to the average arrival rate in that state, and the state probability for the
voice dominant traffic scenario at 95% utilization. From the values in Table 4.4 and
Equation (4.8), Pss for the voice dominant case at 95% load is 5.3169 x10~.

Similarly, we have calculated the loss probability for the other utilization points
and traffic scenarios. Table 4.5 summarizes all the results for real-time traffic. As

expected, the loss probability increases as the overall traffic becomes more dominated

45

State A P i

'] (packets/s)
14,825 1.6488 x10~'2 | 0.2922
17,024 3.6864 x10~7 | 0.2627
15,551 6.0705 x10~'2 | 0.2388
17,750 2.3675 x1075 | 0.2053

W N

Table 4.4: Real-time traffic state average arrival rate, probability of loss in that state,
and the state probability for voice dominant case at 95% utilization

Traffic Scenario p

05 | 03 [095
Data dominant | < 10~ <1071 <1074
Equal load <1071 [9.2524 x 10~13 | 1.6692 x 10~!2
Video dominant || < 107 | 1.6514 x 1012 | 3.0806 x 10~
Voice dominant || < 107* | 1.6808 x 102 | 5.3169 x 10—¢

Table 4.5: Real-time traffic loss probabilities of all traffic scenarios and load cases

by real-time packets. Due to the CPU limitations of the computers (SPARC 5, 10,
and 20) performing these simulation runs, we have recorded no packet loss in a sample
population of 107 packets. This was true even for the voice dominant case at 95%
utilization, in which we have calculated the loss probability to be 5.3169 x 107S.
These results show that, at a confidence level of 95%, the uplink can support services
requiring a loss probability of 107° for all traffic compositions.

In the next section, we will discuss the queue size requirement on-ground for

jitter-tolerant traffic.

4.2.2 Queueing of jitter-tolerant traffic

Unlike real-time traffic, jitter-tolerant traffic can sustain delay, but it is loss sen-

sitive. Therefore, queueing is required on-ground. In order to study the queue be-

46

haviour, we assumed an infinite queue and examined the survivor function (i.e., the
probability that the queue length exceeds a threshold value). Mathematically, we
can express the survivor function in the following way; let g(z) be the probability
density function of the number of packets in the queue, and Q(z) be the cumula-
tive probability function of ¢(z) (Q(z) = [Z q(t)dt), then the survivor function is
S(z)=1-Q(=).

Figure 4.2 shows the simulation results for the traffic scenarios, in which data
packets were assumed to be generated by a 2-state MMPP (short-range dependent
process). We observe that as the traffic becomes dominated by data applications, the
queue size required has to be increased to maintain the same loss probability. This
is shown through Figure 4.2 where the data dominant case required more queueing
than the equal load, video dominant, and voice dominant cases (in descending order of

10° T T T r r T T

.........................

- - Video dominant
----- Voice dominant

P(Queue size > Q)

-2 P .
1 O L 1 - L i AN 1 :
0 500 1000 1500 2000 2500 3000 3500 4000
Uplink queue size (Q)

Figure 4.2: Survivor function of the on-ground uplink queue at 95% load when MMPP
model is used for data traffic

47

queue size requirement). The two real-time dominant scenarios presented the lowest
occupancy since they were both composed of 80% real-time packets and 20% jitter-
tolerant packets. Despite the fact they had similar Gsar (23.75p for video dominant
and 22.25p for voice dominant), the video dominant case has a longer queue size since
video sources are burstier than voice sources.

We also took into account the burstiness of data sources by studying the survivor
function when a 2-state PMPP (long-range dependent process) is used to model data
traffic [40]. For PMPP, H is used as a measure of the level of burstiness (the higher
the value of H, the burstier the traffic). Figure 4.3 depicts the survivor function of
all traffic scenarios when data traffic is modeled by a 2-state PMPP. Comparing the
queue values, at the same probability of excess, of Figure 4.3 with Figure 4.2, we

10°

-—- - Video dominant
---- Voice dominant

P(Queue size > Q)
5

" 1] 1 1
10 0 2000 4000 6000 8000 10000 12000

Uplink queue size (Q)

Figure 4.3: Survivor function of the on-ground uplink queue at 95% load when PMPP
model is used for data traffic

48

observe that when data composition is low (as in the cases of voice dominant, video
dominant, and equal load) the queue size required to support long-range dependent
traffic is larger than that required to support short-range dependent traffic, but not
by a significant number. However, when data composition is high (as in the case
of data dominant) we can clearly see that the nature of jitter-tolerant traffic has a

strong impact on the size of the uplink memory (Figure 4.4).

Q

10
= [y ——PMPP data (H=0.8) '|]
A)\ ' - - PMPP data (H=0.6)
2 :
L I - - MMPP data
@ 107 F s T e
3 N —
S e b s Nt e e e e]
s} TN
= O TP
o 1 T Y
1 RN
_____ e
1 ~
e POyt PSR
1 \\‘\
T N
i \\\
i \
-2 l | 1 A) L L 1
10
0 1 2 3 4 5 6

Uplink queue size (X) 4

x 10

Figure 4.4: Survivor function of the on-ground uplink queue for data dominant at
95% load

A closer look at the PMPP curves (Figure 4.3) reveals two slopes or regions.
These regions, as defined in [2], are the cell region and the burst region. They are
a result of a 2-state process (MMPP or PMPP). It is worth noting that the burst
region has a profound effect on the design of the queue, since it implies that after

a certain threshold any further increase in the size of the queue will not improve

49

the performance (i.e., reduce loss probability). From the designer perspective, this
means that the queueing of jitter-tolerant traffic alone cannot always satisfy the QoS

requirements of the end-user applications.

Uplink Capacity

One method to alleviate the queueing requirement is to increase the beam capac-
ity [20]. Figure 4.5 shows the probability of excess as a function of the normalized
queue size required to support data dominated traffic utilizing 95% of the capacity,
for C = 64, 256, 512, and 4096. This is a good solution, but it has its constraints. To
a certain extent, higher capacity can require the use of higher frequency bands which

will always be limited by the available technological equipment.

(@)

o

-
o

P(Queus size > Q)
3

0 20 40 60 80 100 120 140 160 180
Uplink queue size (Q)

(b)

P(Queus size > Q)

A L]
0 100 200 300 400 500 600 700 800 200
Uplink queue size (Q)

Figure 4.5: Survivor function of on-ground uplink queue for data dominant at 95%
load as a function of capacity C: (a) MMPP data traffic and (b) PMPP data traffic

50

In the next two sections, we will move from the on-ground terminals to the on-
board components and study the on-board performance of the switch (in Section 4.3)

~ and the downlink (in Section 4.4).

4.3 On-board Packet Switch Performance

In this section, we discuss the performance of the on-board switch, which is mea-
sured in terms of packet loss probability. We considered two types of switch: the

shared-memory and the Knockout switch.

4.3.1 Shared-memory switch

In the case of the shared-memory switch, we assumed that all packets arriving at
the switch input ports can be written into the output memory (downlink). Hence, no
contention needs to be resolved and the shared-memory switch is assumed to have no
packet loss due to contention. This leads to larger on-board memory size requirements

which will be discussed in section 4.4.

4.3.2 Knockout switch

In a Knockout switch, only L out of the possible N contending packets can be
switched at every time slot and hence, the exceeding packets are lost [39].

We assumed that the on-board scheduler randomly assigns the slots of an MF-
TDMA frame and, thus, there is an equal chance that a packet occupies any slot of

the frame. In addition, we assume each spot beam population to be large enough that

o1

each packet is equally likely to choose any of the N available output ports (cell-level
destination distribution).

Figure 4.6 shows the simulation results of the packet loss probability for various
values of L and for different loads. Since no priority was given at the switch, Figure 4.6
is representative of both real-time and jitter-tolerant packets. We notice that the
results are the same for both models of data trafic, MMPP and PMPP. Furthermore,

they are equal to those computed by using the following analytical expression [39]

P[packet loss] = L i (k—1L) N (—i%)k(l — %) e (4.9)
k

p k=L+41

where p is the probability that a packet occupies a time slot.

0

10

-1 N

10

107

Packet loss probability

Figure 4.6: Packet loss probability vs. L of the on-board 16X 16 packet switch with
load as a parameter

52

The fact that there was no difference in terms of performance when the different
data traffic models were used shows that the burstiness of the traffic is greatly reduced
once it has reached the on-board switch. This is explained in part by the framing
structure which effectively limits the number of arrivals at one port to C in every
frame. However, the significant factors which influence the traffic burstiness on the
on-board switch are the size of the switch (assuming a fair use of the switch output,
the larger the size of the switch, the fewer packets are likely to contend) and the packet

destination distribution (when one output is in more demand than the others).

Effects of switch size

We observe in [39] that the size of the switch affects the packet loss probability
and hence the on-board performance. In fact, since the probability that a large
number (close to N) of arriving packets during a slot requesting the same output
port is very small, and since packet loss in the system is inevitable, we can fix the
number of accepted packets L (L < N) at an output port in such a way that the
quality-of-service is not affected too much. This value was found to be around L = §
for large values of N [39]. Our problem in obtaining simulation results for large
systems is due to CPU limitations of the computer. Thus, instead of showing the
benefits of increasing NV, we have decided to show the drawbacks of reducing N. For
this, we have obtained results for the same satellite system at N = 4. Figure 4.7
depicts the simulation results. Again, we observed the same packet loss probability

as found in [39]. Given our simulation results for N = 4 and N = 16, we are inclined

53

Packet loss probability

Figure 4.7: Packet loss probability vs. L of the on-board 4 x 4 packet switch with
load as a parameter

to believe that the results in [39] are applicable in determining the on-board switch
performance for any N. Consequently, increasing the size of the switch will improve

the performance.

Effects of packet destination distribution

In previous discussions, we have assumed a large user population sharing the
system in such a way that packets arriving at the switch seem to have an equal
chance of selecting any output port (cell-level distribution). We will now consider a
case where the resulting input traffic, seen at the switch, is not uniformly distributed
(i.e., a burst-level destination distribution). The 4 x 4 system, previously used to
study the size of the switch, will be utilized to assess the effects of packet destination

distribution. This will also give us an idea as to what extent it affects the performance

54

in [39].

The burst-level destination distribution presents the highest correlation in packet
destination since all packets from the uplink choose the same destination for the
length of the burst. Of course, it is assumed that each burst has an equal chance of
choosing any of the NV output ports. It is applicable when the user population in a
spot beam is small or when a destination becomes a "hot spot” for the spot beam
user population. This kind of dynamic hot spot traffic should be differentiated from
the static one: more attention should be paid to burst-level destination distribution,
since the destination area changes with the beginning of a new burst (hence the name
dynamic hot spot) making it hard to predict where the highly demanded port will
be next. Meanwhile, in a static hot spot (not covered in this thesis), the highly
demanded port is fixed and known. Figure 4.8 shows the packet loss probability at
each output, for the data dominant scenario at 50% utilization and using the PMPP
model for data traffic. Unlike the cell-level packet destination distribution cases, we
see that there is a noticeable difference in the packet loss probability at each output
port. In general, if the model used is short-range dependent, the resulting packet loss
probability is not affected by the packet destination distribution (as shown by the real-
time packet loss behaviour). However, if the model used is long-range dependent, the
hot spot will show differences in packet loss probability depending on whether the
output port is under-used or over-used (as shown by the jitter-tolerant packet loss
behaviour). Overall, the sum of all losses at all the ports can still be determined by
Equation (4.9). This is because while the hot spot has changed location, the overall

traffic load remains the same. From these results, we see that as the correlation of

35

—— Results using equation (4.3)
-~ - Sum of both types of traffic
o Real-time traffic
x Jitter-tolerant traffic

(b)

Packet loss probabillity
Packet loss probability

Packet loss probability

1 1.5 2 2.5 3
L

Figure 4.8: Packet loss probability vs. L of the on-board packet switch in a hot spot
environment: (a) at port 1, (b) at port 2, (c) at port 3, and (d) at port 4

packet destination address increases, we have to pay more attention to the individual
output ports if the input traffic shows strong correlation. The effects of the burst-level
destination distribution are much greater at the downlink as we shall see in the next

section.

4.4 Downlink Performance

Switched packets will require queueing prior to being transmitted to the downlink
beam in a TDM manner. Similar to the uplink, the downlink has a maximum capacity
of C = 512 packets/frame, and gives priority to real-time packets over jitter-tolerant

packets. However, unlike the on-ground queues, on-board queues can be organized

56

as separated FIFO memory blocks (one for each output port) or can be combined in
one single common memory block. As discussed in the previous section, the downlink
queues of the shared-memory switch will have the most packets to store since none
are lost due to contention. We will discuss the memory requirement of this type of
switch first. Then, we will study the effects of the Knockout scheme on the queue size.
All the survivor function figures in this section show the total queue size required for
all N downlink ports.

It is worth noting that unlike the uplink, we cannot derive an analytical expression
for the loss probability at the downlink. While the real-time traffic at the uplink is
known to be generated by a 4-state MMPP, the real-time traffic at the downlink is a
combination of the split traffic of all the uplinks, of which the process is not known.
We have plotted the probability density function of the real-time traffic arriving at
the downlink queue in Figure 4.9 for the video dominant scenario at 80% utilization
when the PMPP model is used for data traffic !. In addition, we have provided the
Poisson curve with average arrival rate equal to that obtained from simulation for
the arriving real-time traffic at the downlink. We note that the probability density
function of the arrivals at the downlink resembles that of a Poisson process or an
MMPP with A’s very close to each other in value. Further research will need to be
done to assess the validity of this approximation model and to match the significant
parameters of the traffic. When a model of the downlink traffic is available, the

performance of the downlink queue will be at our immediate disposal without the

INote that the probability density function of the arriving real-time traffic at the downlink for
the same scenario using, instead, an MMPP model for data generation, will be the same as that
given in Figure 4.9 since real-time traffic service is unaffected by jitter-tolerant traffic

57

0.025 T T T T
Average arrival rate = 328 packets/frame :
0.02F - oo ,l -
' - —Poissobcurve
-—- - Simulation results
0.015_ | e -
<
a
001 - e 1 IR N [
0.005F - v s R ERREETEIER TR .-
0 I . - 1 L
200 250 300 350 400 450

Number of packets arrived at the downlink per frame (X)

Figure 4.9: Probability density function of the number of packets arrived at the
downlink every frame

need of simulating the satellite system. Until then, we will rely on simulation results
to determine the downlink performance. From simulations, we see no real-time packet
loss at the downlink in a sample population of 107 packets. Then, at a confidence
interval of 95%, we can say that the loss probability is less than 103,

Figure 4.10 shows the queue size required for each traffic scenario when data
traffic is modeled by a 2-state MMPP and when the shared-memory switch is used.
We note that the bursty nature of traffic has been greatly reduced on-board since
all four curves are very similar. There is a saving factor of about 3 when a common
memory block is used instead of separated queues. As was the case in the uplink, when
data composition is low (as in the voice dominant, video dominant, and equal load
scenarios), the downlink queue size is not much affected by the correlation of traffic.

Hence, the queue size found in Figure 4.10 to support a given probability of excess

38

10

1
-

-
o

P(Queue size > X)

B 1 1 1 + N
0 200 400 600 800 1000 1200 1400 1600 1800
Downlink queue size (X)

Figure 4.10: Survivor function of the on-board downlink queue at 95% load when
MMPP model is used for data traffic

when data traffic is generated by MMPP, can also support the same probability of
excess when PMPP is used for all scenarios except the data dominant one. Figure 4.11
depicts the shared-memory queue size required when traffic is dominated by data at
varying degree of traffic correlation. We observe a similar behaviour as that found at
the uplink (discussed in section 4.2), but the effect is less prominent. We can thus use
the same reasoning as elaborated in section 4.2 which is, in the long run, queueing
of long-range dependent traffic is not a good solution. We will discuss this subject in
the next section.

Finally, we see the effect of the Knockout scheme on the amount of queueing
required on-board in Figure 4.12. Obviously, as L approaches N, the queue size
approaches that found for the shared-memory switch where there is no contention
loss (which is L = N in the Knockout scheme). This value of L is found to be L = 6

59

10

L= PMPPdata(H=08) & |
: : : : :--- PMPP data (H=0.6)
R : ~— common memory : | *—*— MMPP datz

P(Queus size > X)

1 1 -
0 200 400 600 800 1000 1200 1400 1600 1800
Downlink queue size (X)

Figure 4.11: Survivor function of the on-board downlink queue for data dominant at
95% load

2000 T T T T T T
: x EMEP data (H=08), separated memory blocks | _ _ _ _ _ }
1800_ / - -
’a : : :
,/>
1600} S e -
'/
X
1400L - - Fro e PMl_’_P_ga_ta(H—06),sepmte_d,mem°ryblods R TTT|
1 -
8 ool Ix " o PMPP data (H-0.8), commonmemory, _ _ _ _ | _ ___ %
1200 i /x _______________________________________ ¥
§ / ,'):'(,, - il MMPPdata,separated memory blockv.
T 1000} Fpg - o0 4
> oo
£ i
[S S e USRS .
g 800k i
o "/',I v
600 ‘i PMPP data Q{:O_Gchm_zXIgn_mgnlog __________ p
.ll// - -
1! e~ ” —————————————————————————— -
400 --~~r - g MMPPdata,commonmemory St e L -
I, ’, . :
i 27 3 :
G e e
200 ";”"/” : ’ 5 : 5 :
1, .
| | H 1 L 1
2 4 6 8 10 12 14 16

Figure 4.12: Downlink queue size vs. L for data dominant at 95% load (for a proba-
bility of excess of 1073)

60

from Figure 4.12. We will see the effects of the switch size and the packet destination

distribution on the downlink queue in the next two subsections.

Effects of switch size

Figure 4.13 shows the average individual on-board queue size required in a 4 x 4

— N=16
---N=4
(@ (b}
10° — 10° — —
< <
a0 510
N N
172} 2]
[} [}
3 3
é 107}] 10
. a
107 : : 107 '
0 20 40 60 o] 50 100 150
Downlink queue size (X) Downlink queue size (X)
0 © _ o _ (d)
< <
A A
Q (2]
N N
w (7]
(] Q
3 p=}
L] [}
3 =3
g S
a. a
104 A : . .
0 20 40 60 4] 50 100 150

Downlink queue size (X) Downlink queue size (X)
Figure 4.13: Survivor function of the average individual on-board downlink queue at
95% load as a function of the switch size: (a) voice dominant with MMPP data, (b)
data dominant with MMPP data, (c) voice dominant with PMPP data (H=0.8), and
(d) data dominant with PMPP data (H=0.8)
system as compared to a 16 X 16 system for the two extreme cases of data composition,
namely, the voice dominant and the data dominant. Since we assumed the destination

address is chosen following a cell-level distribution, the correlated uplink traffic is

randomly split to each downlink, resulting in a reduction of the burstiness of the

61

downlink traffic. As the size is increased, we should expect to see further reduction
in the correlation of the downlink traffic, improving the queue size requirement on-
board. This is depicted through Figure 4.13, as we see the individual memory size
required to maintain the same level of loss probability actually decreases when we
change the size of the switch from N =4 to N = 16. In the next subsection, we will

see the effects of burst-level destination distribution on the downlink queue size.

Effects of packet destination distribution

As in section 4.2, we use the results of the 4 x 4 system under burst-level destina-
tion distribution. Figure 4.14 plots the survivor function of the individual on-board
downlink queue for the voice and data dominant scenarios at 50% utilization when
data is generated by MMPP. When compared to the queue size required for the same
cases under cell-level packet destination distribution (where we observed no queueing
for all scenarios with 80% or lower load), there is a significant increase in the memory
size due to the correlated nature of the packet destination distribution. This increase
In queue size is large, and, even though we expect a smoothing effect in a larger switch
system, the presence of the burst region in the 4 x 4 switch at a low probability of
excess in the survivor function indicates that queueing will not help to improve the
performance. In addition, we observe significant real-time packet losses that we did

not see in a cell-level destination distribution.

62

— Average of all downlink queues
- = - Hot downlink queue

(b)

10

P(Queue size > X)
P(Queue size > X)

—
O.
)
T
s
o
S

-3

v 10

10 L i ¢ L
0 500 1000 1500 2000 0 5000 10000 15000
Downlink queue size (X) Downlink queue size (X)

Figure 4.14: Survivor function of the individual on-board downlink queue at 50%
load when data traffic is modeled by MMPP under a burst-level packet destination
distribution: (a) voice dominant and (b) data dominant

4.5 Discussions

The simulation results presented in sections 4.2, 4.3, and 4.4 can be divided into
the on-ground part and the on-board part. The concerns related to each part are the

subjects of the following two subsections.

4.5.1 On-ground Concerns

It can be observed that the significant factors on-ground affecting the system
performance are the traffic composition and the nature of the traffic. Evidently,
the uplink can support real-time traffic without compromising the quality-of-service
(maximum observed loss probability of 10~°). However, jitter-tolerant traffic can

63

cause overflow in the uplink queue, and hence results in data loss. On the other hand,
since jitter-tolerant data sources are delay insensitive, the network manager is always
inclined to accept more data users in the system to maximize the resource utilization
in order to achieve high statistical multiplexing gains. As the composition of the
traffic becomes more data dominated, and the data traffic becomes more correlated,
the queue performance, as seen through the survivor function, seems to level off very
quickly. Within this region, which is defined in [2] as the burst region, a very small
improvement in the loss probability will require a large increase in the queue size.
Consequently, particular attention must be paid to the nature of data traffic.

In the long run, the solution to the queueing problem can be found through ob-
servations made in section 4.2.2 . We saw that when traffic is short-range dependent,
the burst region of the survivor function occurs at a lower loss probability, and the
cell region, where an increase in the memory will effectively improve the queue per-
formance, is considerably extended. Hence, when highly correlated traffic needs to
be supported, an intelligent congestion scheme that shapes the traffic can be used
to break the long-range dependency nature, and scatter long bursts throughout the
frames, yielding results similar to, or even better than, those of a short-range depen-

dent traffic.

4.5.2 On-board Concerns

The performance on-board is dependent on the size of the switch, the packet des-
tination distribution, traffic composition and nature of the traffic. We saw that once
packets have reached the on-board switch, the burstiness of the traffic is greatly re-

64

duced. This can be explained in part by the framing structure incorporated at the
uplink and the random splitting of traffic at the switch, which imposes an upper limit
to the size of the burst in every frame and scatters the burst to different outputs,
respectively. This results in the performance of the on-board switch being compa-
rable to the one reported in [39]. At the downlink, we have noted that the reduced
burstiness has alleviated the memory size requirement. The on-board memory can be
further reduced by using a common memory block organization, forcing the downlink
ports to share the storage area. The resulting memory size would be reduced by up
to 3 times.

Combining the switch and downlink results, we notice that there is no advantage
to increasing the switching capacity L. In fact, from Figures 4.6 and 4.12, we can
guarantee a packet loss probability of 107® with L = 8, and with the same required
queue size as when using L = N (shared-memory switch). This advantage becomes
more apparent as we increase the size N. However, if the uplink traffic is highly
correlated, on-board queueing may not be a good solution. In order to study the
impact of traffic burstiness on-board, we studied the effects of switch size and packet
destination distribution.

Assuming a fair use of each of the switch output, a larger switch will smooth the
traffic and improve the performance at both the switch and the downlink. However,
in the case where a port is in higher demand, particular attention should be paid
to individual ports as the hot spot will present far worse performance than what we
observe on average. This can be clearly seen at the downlink, which demonstrates
the true need for a good congestion control scheme.

65

4.6 Summary

From the results presented in this chapter, it can be observed that the prominent

point is a need for a good traffic control scheme to reduce the burstiness of the traffic

arriving at the satellite system. This will help reduce both the memory size and the

delay at the uplink and downlink. Tables 4.6 and 4.7 summarize the simulation results

of our 16 x 16 satellite system. For simplicity, we only present two scenarios, namely,

data dominant and video dominant. Since the results for the voice dominant and

the equal load scenarios are not significantly different from the video dominant one,

we have only presented the video dominant and data dominant cases in Tables 4.6

Traffic Scenario Total Average Standard Queue Size Required
and Load Delay (frames) | Deviation of | Uplink Downlink
Delay (frames) Separated | Shared

Video dominant at 50% 2.50 0.2887 0 0 0
Video dominant at 80% 2.50 0.2887 0 0 0
Video dominant at 95% 4.42 3.0447 2080 1054 339
Data dominant at 50% 2.50 0.2887 0 0 0
Data dominant at 80% 2.50 0.2893 0 0 0
Data dominant at 95% 5.21 5.0466 3635 1492 464

Table 4.6: Summary of the simulation results obtained for the different performance
measures when MMPP model was used for data

Traffic Scenario

Total Average

Standard

Queue Size Required

and Load Delay (frames) | Deviation of Uplink Downlink
Delay (frames) Separated | Shared

Video dominant at 50% 2.50 0.2889 0 0 0
Video dominant at 80% 2.50 0.2894 0 0 0
Video dominant at 95% 5.14 4.9065 1836 1495 394
Data dominant at 50% 2.50 0.2889 0 0 0
Data dominant at 80% 2.51 0.2897 0 0 0
Data dominant at 95% 26.88 95.5778 > 280,000 1831 1210

Table 4.7: Summary of the simulation results obtained for the different performance
measures when PMPP model was used for data

66

and 4.7.

In Tables 4.6 and 4.7, the total average delay and its standard deviation are
normalized and given in terms of frames. These values do not take into account
the medium propagation delay, and hence they are applicable to any environment.
Furthermore, they assume that there is no loss due to contention at the switch and
that all queues are of infinite size. Hence, for a Knockout switch with (or without)
finite queues, these values will be lower. We note that the minimum average delay
through the system is 2.50 frames, which is the constant amount of delay seen by the
traffic with higher priority (i.e., real-time traffic). The minimum standard deviation
of delay is 0.2887 frame and, again, is a constant for real-time traffic.

The queue size shows the memory requirement, in terms of packets, of one port in
order to maintain a loss probability of 1072, in the case of the uplink, or 103, in the
case of the downlink. Thus, given the packet size in bits and the transmission speed
in bits/s, we can find the memory size required in bits. For example, an ATM cell (48
bytes = 384 bits) in a C = 512 packets/frame = 196,608 bits/frame (alternatively,
C = 8.192 Mbps) environment will require the designer to multiply the normalized
value in the table by 196,608 to get the memory size in terms of bits per frame.
We note that for the data dominant case at 95% load using PMPP data traffic, 107
samples were not enough to obtain a queue size at the uplink.

Tables 4.6 and 4.7 did not show the packet loss probability at the switch since it
is readily available through [39] (Figure 4.6). When we consider the overall packet
loss probability of the system, we see that L = 8 is enough to guarantee a packet loss
probability of 107° at the switch. By increasing L to 12, the packet loss probability is

67

reduced to less than 107!°. This loss is less than that due to the uplink and downlink.
This implies that the loss probability is not limited by the switching capacity L, but
instead it is determined by the choice of the memory size on-ground and on-board.
The memory size, as we have discussed, can be further reduced without affecting the
packet loss probability through a good congestion control scheme. As a result, we do
not need to provide a large switching capacity to meet the required QoS (L around 8
is enough) which makes the Knockout architecture attractive for on-board switching.
In addition to the level of performance attainable by the Knockout switch, it also
has key features such as a modular growth, easy maintainability, fault tolerance, and
lower complexity [39], that make it an excellent candidate for on-board switching.
Finally, the numbers under Gsas in Tables 4.6 and 4.7 represent the number of
users we can potentially multiplex (given their characteristics at the input) into a line
required to support one user in a circuit switched environment. We observe that high
Gsu is related to large data user population, large queue size and delay, and it can
get out of control when the data traffic is highly correlated. Therefore, the on-board
packet switch system is ideally suited for a traffic dominated by real-time applications.
As we move towards a traffic dominated by jitter-tolerant applications, the satellite
system becomes more complex and expensive to realize (in terms of memory and
mass), unless a congestion control that can shape the traffic is used. It is only then
that the on-board packet switch can fulfill its promise of high statistical multiplexing

gain.

68

CHAPTER 5
CONCLUSIONS

Satellite communications systems have the potential of effectively and economically
providing multimedia services to a world-wide user population. In fact, they are the
only true wireless solution capable of global coverage at a distance-insensitive cost.
With the rapid advances in the field of telecommunications, broadband integrated
applications are becoming a reality, and broadband networks are being deployed to
accommodate the ensuing traffic.

Future generation satellite communications systems will have to be designed with
broadband multimedia services in mind. In order to increase the bandwidth to meet
the growing user demand, a multiple spot beam configuration is required for the
satellite. Although a multiple spot beam satellite system has a much larger overall
capacity and improved transmission aspects, it necessitates full connectivity between
earth-stations. An on-board packet switch in conjunction with an efficient uplink
access scheme can fulfill this function, while insuring an efficient utilization of the
space segment and maintaining an acceptable QoS.

In this thesis, we have studied the performance of a satellite-switched system
in a multimedia environment to support future trends in broadband services. The
driving force behind the choice of packet switching over circuit switching is the high

69

achievable statistical multiplexing gain (Gspr). However, Gsar comes at a cost in
terms of packet loss, average delay, queue size requirement and, in the case of satellite
systems, complexity. Qur obstacle in obtaining the performance measures is the
nature of multimedia traffic. We have considered 2-state MMPP’s to model the
aggregate traffic of voice and video, and two models for the aggregate data traffic,
namely a 2-state MMPP and a 2-state PMPP. We used two data models in order to
study the correlation of data traffic, a topic raised by recent findings [28]. In order
to examine the effects of multimedia traffic mix and total traffic load on our satellite
system performance, we have considered four traffic scenarios in conjunction with
three load points.

Simulations of the system revealed that the satellite-switched system can easily
accommodate traffic dominated by real-time applications requiring loss probability of
107°%. As the traffic becomes dominated by jitter-tolerant applications, and data traffic
are more correlated, the average delay grows significantly, and the size of the uplink
and downlink queue needs to be increased if acceptable QoS is to be maintained.
In fact, we observed that both on-ground and on-board queues can require a large
amount of memory. The problem aggravates when output ports become hot spots,
and these hot spots change with time. We have considered varying the beam capacity
in order to alleviate the queueing problem at the uplink, but this solution has its
constraints. The restrictions are set by the bandwidth limitations on satellite systems.

The following three factors play a large role in the on-board performance of the
system: (i) the framing structure imposed by the uplink access, (ii) the size of the
switch, and (iii) the packet destination distribution. The framing structure and the

70

increase in the size of the switch have beneficial effects on the on-board performance
as they reduce the burstiness of the incoming traffic. Meanwhile, a correlated packet
destination distribution (burst-level or dynamic hot spot) requires a larger on-board
queue size.

The observations made for the on-ground and on-board components lead us to
believe that a traffic control scheme that shapes the traffic is required to reduce the
burstiness. This is especially true when jitter-tolerant traffic has long-range dependent
behaviour and has a strong correlation in the choice of packet destination. In addition,
our results can be used in traffic admittance. For example, if the satellite traffic is
dominated by long-range dependent data traffic at 95% load, the controller should
not accept any more users requesting data services.

Finally, we see that since the packet loss probability of the system is ultimately
determined by the loss probability due to queue overflow at the uplink and downlink,
and since the queueing requirement does not improve much after L has increased
beyond the value of 8, the Knockout switch is an excellent fabric for satellite applica-
tions. In addition, the Knockout switch offers modular growth, easy maintainability,
fault tolerance, and lower complexity [39], that reinforce its candidacy.

Our study can be further extended in the following areas:

1. Incorporation of a traffic control scheme: a traffic control scheme can break the
sequence of packet arrivals during long burst periods of a long-range dependent
traffic and shape it into a short-range dependent one. The scope of our study

did not permit us to investigate further the benefits of congestion control in a

71

satellite environment, but it is a possible subject to consider in future works.
Connection admission control, which is a form of congestion control, can be of
three types, namely, reactive, preventive, and proactive. Reactive connection
admission control will not be useful in a long propagation delay environment
such as a satellite system, since information on the status of the system will be
obsolete by the time it reaches the network controller. Preventive connection
admission control can be used in satellite systems, but can result in an under-
utilization of the network. Of the three aforementioned schemes, proactive
connection admission control is the most promising for satellite applications
since it attempts to predict the status of the network based on past history of

the system and reacts before the congestion actually occurs.

. Mathematical modeling and analysis: in our study, we cannot investigate switches
with size larger than N = 16, and loss probabilities of low order of magnitude
(in some cases, lower than 107*) due to the extremely long simulation run-time
required and the CPU limitations of the computers (SPARC 5, 10, and 20).
This shows that although system simulation is a powerful tool in a system per-
formance study, there are limitations to this method. The solution to overcome
this obstacle is to obtain a mathematical model of the system, and from analy-
sis, we can provide equations for the performance measures for all values of N
and all orders of magnitude. However, as we have discussed, analysis of this sys-
tem is very complex (this is the reason for our choice for simulation approach),

but possible, if certain generalization rules or assumptions are made. At which

72

point, even if an approximate mathematical model is established, its valida-
tion will be based on a comparison of the analytical results and the simulative

results.

. Implementation of broadcasting and multicasting functions: although the satel-
lite provides inherent broadcasting capability to the user population within the
coverage area of the same downlink beam, multicasting to different downlink
spot beams will affect the performance of the system as it adds more packets
inside the network, specifically in the space segment. However, as the size of
the switch increases, the number of permutations increases exponentially and

care must be taken to make the study a feasible one.

73

Bibliography

(1] D. Delisle and L. Pelamourgues, "B-ISDN and How it Works”, IEEE Spectrum,

Aug. 1991, pp. 39-42.
(2] M. Schwartz, Broadband Integrated Networks, Prentice Hall, 1996.

[3] F. Ananasso, F.D. Priscoli, "The Role of Satellites in Personal Communication
Services”, IEEE Journal on Selected Areas in Communications, Vol. 13, No. 2,

Feb. 1995, pp. 180-196.

[4] F. Leite, et al., ”Regulatory Considerations Relating to IMT-2000", IEEE Per-

sonal Communications, Aug. 1997, pp. 14-19.
(5] T.T. Ha, Digital Satellite Communications, McGraw-Hill, 1990.
[6] J. Martin, Communications Satellite Systems, Prentice-Hall, 1978.

[7] T.N. Saadawi and M.H. Ammar with A.E. Hakeem, Fundamentals of Telecom-

munication Networks, John Wiley & Sons, 1994.

(8] T. Le-Ngoc, T.H. Bui, and M. Hachicha, "Performance of A Knockout Swicth for
Multimedia Satellite Communications”, in Proc. Globecom’97, Phoenix, Arizona,
Nov. 3-8, 1997.

74

[9] G.B. Alaria, et al, "On-Board Processor for a TST/SSTDMA Telecommunica-

tions System”, ESA Journal, Vol. 9, 1985.

[10] G. Beck, W. M. Holmes, "The ACTS Flight System: Cost Effective Advanced
Communications Technology”, in Proc. Communication Satellite Systems Con-

ference ATAA, Mar. 1984,

(11] S.J. Campanella, B.A. Pontano, and H. Chalmers, "Future Switching Satellite”,
in Proc. AIAA 12th International Communication Satellite Systems Conference,

Virginia, Mar. 13-17, 1988, pp. 264-273.

[12] P. Garland, S. Irani, and T. Inukai, ”Fast Packet Based On-Board Switching for
Advanced Business Services”, in Proc. Second European Conference on Satellite
Communications, Palais des Congres, Liege, Belgium, Oct. 22-24, 1991, pp. 127-

136.

(13] W.D. Ivancic, M.J. Shalkhauser, and J.A. Quintana, ” A Network Architecture for
a Geostationary Communication Satellite”, JEEE Communications Magazine,

Jul. 1994. pp. 72-84.

(14] T. Inukai, F. Faris, and D.J. Shyy, "On-Board Processing Satellite Network Ar-
chitectures for Broadband ISDN”, in Proc. ATAA 14th International Communi-

cation Satellite Systems Conference, Washington D.C., Mar. 1992, pp.1471-1484.

[15] P. Garland, T. Le-Ngoc, and P. Takats, "Fast Packet Switches for Next Gener-
ation SATCOM Applications”, in Proc. ICDSC9, 9th International Conference
on Digital Satellite Communications, Copenhagen, May 18-22, 1992, pp. 63-70.

75

[16] J. Gilderson, J. Cherkaoui, "Onboard Switching for ATM via Satellite”, [EEE

Communications Magazine, Vol. 35, No. 7, Jul. 1997, pp. 66-70.

[17] Teledesic LLC, http://www.teledesic.com/

[18] Motorola, http://www.mot.com/

[19] ATM Over Satellite, http://www.ee.surrey.ac.uk/Personal/T.Ors/atmsat/

[20] J.Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks,

Kluwer Academic Publishers, 1990.

[21] H. Ahmadi, W.E. Denzel, A Survey of Modern High-Performance Switching
Techniques”, IEEE Journal on Selected Areas in Communications, Vol. 7, No. 7,

Sep. 1989, pp. 4-16.

[22] F.A. Tobagi, "Fast Packet Switch Architectures for Broadband Integrated Ser-
vices Digital Networks”, in Proceedings of the IEEE, Vol. 78, no. 1, Jan. 1990,

pp. 133-167.

[23] J. Garcia-Haro, A. Jajszczyk, "ATM Shared-Memory Swicthing Architectures”,

IEEE Network, Jul./Aug. 1994, pp. 18-26.

[24] Y. Oie, et al., "Survey of Switching Techniques in High-Speed Networks and
their Performance”, International Journal of Satellite Communications, Vol. 9,

1991, pp. 285-303.

[25] R. Rooholamini, V. Cherkassky, and M. Garver, "Finding the Right ATM Switch
for the Market”, Computer, Apr. 1994, pp. 16-28.

76

[26] H. Heffes and D. M. Lucantoni, " A Markov Modulated Characterization of Pack-

[28]

[30]

[32]

[33]

etized Voice and Data Traffic and Related Statistical Multiplexer Performance”,

IEEE JSAC, Vol. SAC-4, No. 6, Sept. 1986, pp. 856-868.

T. Le-Ngoc, S.N. Subramanian, ”A Pareto Modulated Poisson Process (PMPP)
Model for Long-Range Dependent Traffic”, in Proc. Interop’97?, Las Vegas, May

7-8, 1997.

H.J. Fowler, W.E. Leland, "Local Area Network Traffic Characteristics with
Implications for Broadband Network Congestion Management”, JEEE JSAC,

Sept. 1991, pp.1139-1149.

T. Le-Ngoc, "Dynamic Resource Allocation Schemes for Multimedia Satellite

Communications”, in PIMRC’93, Japan, Sept. 8-11, 1993, pp. 552-556.

LF. Akyildiz, S.H. Jeong, "Satellite ATM Networks: A Survey”, [EEE Commu-

nications Magazine, Vol. 35, No.7, Jul. 1997, pp. 30-43.

W.E. Denzel, A.P.J. Eenggbersen, and I. Iliadis, "A Flexible Shared-buffer
Switch for ATM at Gb/s Rates”, Computer Networks and ISDN Systems, Vol.

27, 1995, pp. 611-624.

V.E. Benes, "Optimal Rearrangeable Multistage Connecting Networks”, Systems

Technical Journal, Vol. 43, No. 7, Jul. 1964, pp. 1641-1656.

K.E. Batcher, ”Sorting Networks and Their Applications”, in AFIPS Proc. 1968

Spring Joint Computer Conf., Vol. 32, pp. 307-314.

77

[34] A. Huang, S. Knauer, ”Starlite: A Wideband Digital Switch”, in Proc. Globecom

84, Atlanta, Georgia, Dec. 1984, pp. 121-125.

[35] J. Giacopelli, M. Littlewood, and W.D. Sincoslie, "Sunshine: A High Perfor-
mance Self-routing Broadband Packet Swicth Architecture”, submitted to ISS

90.

[36] C.P. Kruskal, M. Snir, " The Performance of Multistage Interconnection Networks
for Multiprocessors”, IEEE Trans. Computers, Vol. C-32, No. 12, Dec. 1983, pp.

1091-1098.

[37] M. Kumar, J.R. Jump, "Performance of Unbuffered Shuffle-exchange Networks”,

IEEE Trans. Computers, Vol. ¢-35, No. 6, Jun. 1986, pp. 573-577.

[38] T. Kwok, F. Tobagi, "Tandem-banyan Switching Fabric”, Computer Systems

Laboratory, Technical Report, Mar. 1990.

[39] Y. Yeh, M. Hluchyj, and A. Acampora, "The Knockout Switch: A Simple, Mod-
ular Architecture for High-Performance Packet Switching”, [EEE JSAC, Vol.

SAC-5, No. 8, Oct. 1987, pp. 1274-1283.

[40] S.N. Subramanian, "Traffic Modeling in a Multimedia Environment”, M.A.Sc.

Thesis, Department of ECE, Concordia University, Montréal, 1996.

[41] S.N. Subramanian, T. Le-Ngoc, ”"Traffic Modeling in a Multi-media Environ-

ment”, in Proc. CCECE/CCGEI 95, Montréal, 1995, pp. 838-841.

78

[42] T. Le-Ngoc, S.V. Krishnamurthy, ”Performance of Combined Free/Demand As-
signment Multiple-Access Schemes in Satellite Communications”, Int. Jour. of

Sat. Comm., Vol. 14, 1996, pp.11-21.

[43] J. Huang, T. Le-Ngoc, and J.F. Hayes, "Broadbaand SATCOM System for Mul-

timedia Services”, in Proc. ICC’96, Dallas, 1996, pp. 906-909.

[44] T.V.J. Ganesh Babu, T. Le-Ngoc, and J.F.Hayes, ”Performance Evaluation of
Priority Based Service in Multimedia ATM Networks”, Second IFIP Workshop
on Traffic Management and Synthesis of ATM Networks, Montréal Sept. 24-26,

1997.

[45] B. Maglaris, et al., "Performance Models of Statistical Multiplexing in Packet
Video Communications”, IEEE Trans. on Comm., Vol. 36, No. 7, July 1988,

pp.834-843.

[46] A. Arcidiacono, "Multimedia Services and Data Broadcasting via Satellite”, Elec-

tronics and Communication Engineering Journal, February 1997, pp.33-37.

79

APPENDIX A
PROGRAM LISTING

Our satellite-switched system was developed on a simulation package called OPti-
mized Network Engineering Tools (OPNET). The simulation is built with indepen-
dent building blocks called process models. The operations of these process models
are specified by finite state machines, translated into C code.

Figure A.1 shows the network model of the system employing a 4 x 4 switch. The
system can easily be modified to accommodate a 16 x 16 switch (Figure A.2). However,
for simplicity, in the following we will give the process model and the program code
for each of the parts comprising the 4 x4 satellite-switched system. namely, the uplink
(up00, up01, up02, and up03), the scheduler, and the switch. The traffic generator

model (gen00, gen01, gen02, and gen03) and program code are given in {40].

30

[
gen00 up00
. -0
genQ0l up01
U wllll [m
gen02 up02 scheduler
[-
geno3 up03 y

switch

Figure A.1: Network model of the system employing a 4 x 4 switch

81

gendC upQ0 upOB geno8
Ol O
Qen0l upll upo9 gen09
O (] O
gan02 upa2 upld genld
O =
gend3l upQ3 upll genlil

schegule:

O
gen04 up04 upl2 Jenl2
O

genos upds switch upll genil
gen0é up08 upld genld
gen07 upQ? uplS genlsS

Figure A.2: Network model of the system employing a 16 x 16 switch

82

end_sim

i)

(

Figure A.3: Process model of the uplink

83

Process Model Report: uprand4X4

| Wed Feb 11 23:23:131998 | Page 1 of5

. ewe

I...

Header Block

#include<math.h>
#include<stdio.h>
#include<sys/time.h>
5 | #define N_inputs
#define frame
#define C

#define ARRIVAL
#define SLOT_INTRPT

#define FRAME_INTRPT

4

#define SLOT_TIME_CODE 2
#define FRAME_TIME_CODE 22

0.024
s512

(op_intrpt_typeQ == OPC_INTRPT_STRM)
{(op_intrpt_typeQ == OPC_INTRPT_SELF &&\
op_intrpt_code() = SLOT_TIME_CODE)
(op_intrpt_type(Q == OPC_INTRPT_SELF &&\
op_intrpt_code() = FRAME_TIME_CODE)

State Variable Block
double \slot_time;
int\a{16];

int \status{16]{512];
int \pt

|

Temporary Variable Block

packet *pkpm;
inti:

int j;

int packs

int count:

int soream:

int flag;

W

forced suate _init

| attribute value type defautt value
name init string st
enter execs (See below.) textlist {See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced

enter execs _init

slot_tme=frame/C;

for (i=0: i<N_inputs; i++)

{alil=0:
5 for (j=0: j<C: j++)
{status(i]{j}=0:
}
}
10 | pt=0:

34

Process Model Report: uprand4X4 | Wed Feb 11 23:23:13 1998 | Page 2 of 5

op_intrpt_schedule_self(op_sim_timeQ+frame. FRAME_TIME_CODE);
op_intrpt_schedule_self(op_sim_time(Q+stot_time, SLOT_TIME_CODE);

ransition__init -> queue
| _attribute _value type default value

name tr_0 string tr

condition ARRIVAL string

executive string

color RGB333 color RGB333
-_drawing style spline togale spline a

rransition__init -> wait
_ attribute value type default value

name tr_7 string r g

condition default string i

executive string
" color RGB333 color RGB333 |
._drawing style spiine toaale spline 5

unforced state _wait i
|_attribute value type default vaiue !

name walit string st !

enter execs (empty) textlist (empty) ;
. exit execs (empty) textlist (empty) ‘
~_status unforced togale unforced
|_transition wait -> queue
i_attribute value type defauft value

name tr_1 string tr

condition ARRIVAL string

executive string

color RGB333 coior RGB333

drawing style spline togale spline
|_transion _wait -> frame

attribute value type default value

name tr_4 string r

condition FRAME_INTRPT string

executive string

color RGB333 color RGB333

drawing style spline toggle spline

transition _Wait -> slot

attribute value type default value

name tr_5S string tr

condition SLOT_INTRPT string

executive string

85

i Process Model Report: uprand4X4]| Wed Feb 11 23:23:131998 | Page 3 of 5
i
color RGB333 color RGB333
drawing style spline toggie spline
| forced state queue
atiribute value type default value
name queue string st
enter execs (See below.) textlist (See below.)
exit execs {empty) textlist (empty)
status forced toggle unforced
enter execs queue i
sream=op_intrpt_strm();
pkpu=0p_pk_get(stream); |
5 | op_subq_pk_insert(sream. pkptr. OPC_QPOS_TAILL): i
a[sream ll
' _transition _queue -> wait l
|_atiribute value type default vaiue f
name tr_2 string tr ;
condition string |
executive string i
color RGB333 color RGB333 5
drawing style spline toggle spline ?
forced state frame
attribute value type default value
name frame string st |
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist {empty)
status forced togaie unforced l
enter execs frame 1
pr=C;
for(i=0: i<N_inputs; i++)
{for (5=0: j<C: j++)
{stats(i]{jl=0:
5 }
}
for (i=0: i<N_inputs: i4++)
{count=C;
10 for(j=1: j<=alil; j++)
{ pack=(int)op_dist_uniform(count);
flag=0;
while (pack>=0)
{if (status(i]{flag] = 0)
15 {pack—:

86

' Process Mode! Report: uprand4X4 T Wed Feb 11 23:23:13 1998 | Page 4 of 5

{ oo
f
I e

flag++;

{flag++:

}
flag—;
status{i][flag}=1:
count—;
}
}

for (i=0: i<N_inputs: i++)
{afi}=0:
}

op_intrpt_schedule_self(op_sim_time(+frame. FRAME_TIME_CODE});

i rransidon_frame -> wait

i _gttribute value type default value
name tr_3 string tr {
condition string
executive string
colior RGB333 color RGB333
drawing stvie spline togaie spiine
_forced siuate _slot !
gtiribute value type default value !
name siot string st l
enter execs (See below.) textlist (See below.) f
exit execs (empty) textlist (empty) i
status forced toggle unforced 1

enter execs__slot

(V]

10

for (i=0: i<N_inputs: i++)
{if (statusiil{pt] = 1)
{pkptr = op_subq_pk_remove(i. OPC_QPOS_HEAD):
op_pk_send(pkptr. 0);
}

pt++:

op_intrpt_schedule_self(op_sim_timeQ+slot_time, SLOT_TIME_CODE);

ransition__Slot -> wait

attribute value type default value
name tr 6 string tr

condition string

executive string

87

! Process Model Report: uprand4X4 | Wed Feb 11 23:23:131998 | Page 50f 5

oe

| color RGB333 color RGB333
|_drawing style spline toggle spline

88

[Csioc |
\ .

Figure A.4: Process model of the scheduler

89

Process Mode! Report: nk4X4 | Wed Feb 11 23:33:21 1998 | Page 1 of 19

.re

Process Model Attributes

atiribute value type default value
out filename promoted string out.dat

Header Block
#inciudecmath.h>
#includecstdio.h>
#includecsys/time.h>

5 | #define N_inputs

#define L

#define M

#define N

#define O

10 | #define frame

#define cell

#define QUEUE

#define SLOT_CODE

#define FRAME_CODE 9

15 | #define PACKET op_intrpt_type(== OPC_INTRPT_STRM

#define SLOT op_intrpt_type() == OPC_INTRPT_SELF &&\
op_intrpt_code() == SLOT_CODE

#define FRAME op_intrpt_type(Q) = OPC_INTRPT_SELF &&\ |
op_intrpt_code() == FRAME_CODE i

20 | #define END_SIM op_intrpt_type() == OPC_INTRPT_ENDSIM i

o
R

SO WVMO — 13 W
—
%3

int flag:

State Variable Block
FILE* \fpx ~‘
char \outfile[40];
int \idz

int \dest_addr;
int \type: |

int \gloss 1. \gloss2, \gloss3:

int \qlossmoO. \glossm1. \qlossm2. \qlossm3:
int \aqlossnQ. \glossn1. \qlossn2. \qlossn3:

10 | int \qlosso0. \giossol. \qlosso2. \qlosso3:

w

double \totgloss:

int \totqlossm. \totqtossn. \totgiosso:

double \tomtlossm, \tortlossn, \ortlosso:
15 | double \totdalossm. \totdalossn. \totdalosso:

int \as0. \asi.\as2. \as3:

int\mO0. \n0. V00, \m!. \al.ol. \m2, \n2. V02, \m3. \n3. \o3:

int \rumO, N0, \rro0, \rtml. \m i, \rto 1. \rtm2. \rm2, \r102. \rim3. \rm3. \rto3:

20 | int \rtdmO. \rtdn0, \rtdoO. \rtdm1, \rtdnl. \rtdo 1. \rtdm2. \rtdn2, \rtdo2, \rtdm3, \rtdn3, \rtdo3:
int \nm_lossm0. \am_lossn0, \am_losso0, \am_lossm!. \am_lossal. \nm_lossol. \am_lossm?2. \am_lossn2. \nm_losso2. \nm_lossm3J
int \am_lossdmo. \am_lossdnQ. \am_lossdo0Q. \am_lossdm1. \nm_lossdn!, \am_lossdol, \am_lossdm2. \am_lossdn2. \am_lossdoZ. \q
int \dam0. \dan0. \dao0. \dam!, \dan1i. \daol. \dam2, \dan2, \dao2, \dam3. \dan3, \dao3;

int \dadmo. \dadn0, \dadoO. \dadm . \dadn1. \dado1. \dadm?2. \dadn2, \dado2. \dadm3. \dadn3, \dado3:

decuble \nm_sent_datam. \nm_sent_datan, ‘\am_sent_datao:
double \delaym. \delavn. \detavo:

90

i-Process Model Report: nk4X4

| Wed Feb 11 23:33:21'1998 | Page 2 of 19

double \avg_delaym. \avg_delayn. \avg_delayo;
double \square_delaym. \square_delayn. \square_delayo:
30 | double \vanance_delaym. \variance_delayn, \variance_delayo:

int\ag.\al. \a2, \a3;
int\atQ, \atl, \ar2, \ar3;
int\am@. \am1, \am2. \am3:
35 | int\anQ, \ani. \an2, \an3;
int\ao0. \aol, \ao2, \ao3;
tne\rtl, \n2. \t3;
int\dal. \da2, \da3;

int \rrd 1. \rtd2, Med3:

40 | int\dad1. \dad2. \dad3:
double \queued_rea::
double \queued_dara;

1* packets destinated to each output BEFORE being swiiched *!
45 | int\data_to_outQ;

int \voice_to_out(;

int \video_to_out0;

I* packers destinated 1o output Q AFTER being switched */!
50 |} int\outO_data:
int \outQ_realtime:

1* packets at output0 after being served ar output buffer */
int \outbufferQ_dara;
55 | int “outbufferQ_reaitime:

double \am_loss:

double \avg_loss:

double \sw_total;

60 | double \total_arrived:
double \nm_sw_reai:
double \nm_sw_darta:
double \siot_time;
double \total_delay_data:
65 | double \avg_delay_data:
double \g_loss:

double \avg_q_loss:
double \am_received_total:
double \am_sent_real:

70 | double \nm_sent_data:
double \tmp_delay;
double \delay;

double \square_defay;
double \avg_delay;

75 | double \variance_delay:

| Temporary Variable Block

Pacscet *pkpm
Packet *new_pkpm:
int i;

int count:

5 | int pksize;

double cr_time:

91

Process

Model Report: nkdX4

[Wed Feb 11 23:33:21 1998 | Page 3 of 19

attribute

forced state init

value

type default valug

name

status

enter execs
exit execs

init
(See below.)

(empty)
forced

string st

textiist (See below.)
textlist (empty)
toggle unforced

10

15

20

30

35

45

enter execs init

/* wialization of parameters ~/

glossi=C: gloss2=0: qloss3=C:

qlossm0=0: qlossmi=0: qlossm2=C: glossm3=0:
glossn0=0: glossni=0: giossn2=0: qlossn3=0:
qlosso0=0: glosso1=0: giosso2=(: glosso3=0:

as0=0: asi=0; as2=0: as3=0:

am0=0: am! =0 am2=0; am3 =0

an0=0:anl =0:an2=0:an3 =0C:

a00=0: a0l =0:a02=0:a03 =

mQ=0; 00=0: 00=0: mi=0: ni=0: ol=0:

m2=0: n2=0: 02=0: m3=0: n3=0: 03=0:

m0=0: nn0=0: rto0=0: rum 1=0; rn1=0: roi=(:
mm2=0; rn2=0: rto2=0: rm3=0: n3=0: ro3=0:
tdm0=0: rtdn0=0: rtdo0=0: ndm1=0; ndni=0: ndo1=C:
ndm2=0: rtdn2=0; rtdo2=0: rtdm3=0: ndn3=0: rtdo3=0:

dam0=0: dan0=0: dao0=0: dami=0: dani=0: dao1=0:
dam2=0: dan2=0: dao2=0: dam3=0: dan3=0: dao3=0:
dadm0=0: dadn0=0: dadoU=0: dadm1=0: dadn1=0: dado1=0:
dadm?2=0: dadn2=0: dado2=0: dadm3=0: dadn3=0: dado3=0.
nm_sent_datam=0.0:

nm_sent_datan=0.0:

nm_sent_datao=0.0:

delaym=0.0:

delayn=0.0:

delayo=0.0:

avg_deiaym=0.0:

avg_delayn=0.0:

avg_delayo=0.0:

square_delaym=0.G:

square_delayn=0.0:

square_delayo=0.0t

variance_delaym=0.0:

variance_delayn=0.0:

vanance_delayo=0.0:

0=0al=0:22=0:3=0

a0=0al=0a2=0u3 =0
=0m=0mw=0

dal=0:da2=0:da3 =

nmdl =0:nd2=0:nd3 =0:

dadl = 0: dad2 = 0: dad3 =0t

siot_time = framescell:

92

nm_lossm0=0: nm_lossn0=0: nm_losso0=0: nm _lossm1=0: nm_lossn1=0: nm_lossoi=0:
om_lossm2=0: nm_lossn2=0: om_losso2=0: nm_lossm3=0; nm_| lossn3=0: nm_losso3=0:
nm_lossdmO=0: nm_lossdnG=0: nm_lossdo(0=0; am_| lossdm1=0; nm_lossdnl=0; nm_lossdo1=(:
nm_lossdm2=0: nm_lossdn2=0: nm_iossdo2=0: nm_lossdm3=0: nm_ lossdn3=0: nm_lossde3=0:

i Process Model Report: nk4X4

| Wed Feb 11 23:33221 1998 | Page 4 of 19

queued_real = 0.0:

50 | queued_dara = G.0;
om_loss = 0.0
avg_loss = 0.0:
sw_total = 0.0;
total_arrived = 0.0;

55 | om_sw_real = 0.0:
nm_sw_data = 0.0;
toral_delay_data = 0.0;
avg_delay_data = 0.0;
q_loss=0.0:

60 | avg_q loss = 0.0
nm_sent_real = 0.0
nm_sent_dara = 0.0;
unp_delay = 0.0
delay =0.0:

65 { square_delay = 0.0
avg_delay = 0.0
variance_delay = 0.0
data_to_outO=0:
voice_to_out0=0:

70 | video_to_out0=0;
out0_data=0;
outQ_realume=0:
outbufferQ_dara=0:
outbufferQ_reaitime=(;
75
id=op_id_self(:

fp=topen(outfile."w*);

arnved. */

op_ima_obj_attr_get(id.- cuz_Z:iIename-.outfile}:

80 | /= schedule the first slot going out of the switch */
/™ note: the incremental ume shift to assure that only
previous packets are being served. not the ones that just

85 | op_intrpt_schedule_seif(op_sim_time(+frame. FRAME_CODE):
op_intrpt_schedule_self(op_sim_time(+slot_time. SLOT_CODE);

transition _init -> wait

| attribute value type gefault value
name tr_ 0 string tr
condition defauit string
executive string
color RGB333 color RGB333
| _drawing style spline toggie spline
transition _init -> enqueue
_attribute vaiue type default value
name tr_1 string tr
condition PACKET string
executive string
color RGB333 color RGB333
|_drawing style spline togale spline

93

Process Model Report: nk4X4

| Wed Feb 11 23:33:221998 | Page 5 of 19

! unforced state_ Wait
atmibute

value type default value
| name wait string st
! enter execs (empty) textlist (empty)
' exit execs (empty) textlist (empty)
status unforced togale unforced
rransition__wait -> enqueue i
| attribute value type defauft vaiue i
name tr 2 string tr i
condition PACKET string i
executive string i
color RGB333 color RGB333 ;
drawing style spline toggle spline i
transition wait -> end sim]
| attribute vaiue type default value 1
name tr_6 string tr i
condition END_SIM string |
executive string |
i color RGB333 color RGB333 |
-_drawing style spline togale spiine i
rransition__wait -> siot_time i
attribute value type default value
name tr_8 string tr
condition SLOT string
executive string
color RGB333 color RG2z23
drawing style spline togaie spline
ransition _wait -> frame time
|_attribute value type derauit value
name tr_10 string tr
condition FRAME string
executive string
color RGB333 color RGB333
drawing style spline togale spline
! forced state _enqueue
_atiribute value type default value
name engueue string st
enter execs (See beiow.) textlist (See below.)
. exit execs (empty) textlist (empty)
__status forced togale unforced

94

{ Process:Model Report: nk4X4

| Wed Feb 11 23:33:22 1998 | Page 6 of 19

[enterexecs enqueue

I* ger info about incoming packer */

pkpr = op_pk_get(op_intrpt_strm(Q);
op_pk_nfd_get(pkptr, “desc_addr*, &dest_addr);
5 | op_pk_nfd_get(pkptr, * cype”, &type);
op_pk_nfd_get(pkptr, - cr_zime*. &cr_time):

total_armved++;
10 | /* keep packers going to output 0 only */

switch(dest_addr)

{case Q:
a0++:

15 at0++:

sw_total++;

asO++:

if (asO>M) mO=1:

if (asO>N) n0=1;

20 if (as0>0) o0=1:

switch(type)

{case 1:

video_to_outQ++;
queued_reai+-+;

25 am_sw_real++;

outQ_realtime++:

op_pk_destroy(pkpiry;

if (m0=0)
{mO++:

30 amQ++; }

else om_lossmO++:

if (n0==0)
{rmn0++:
anG-=+; }

35 else nm_lossnQO+-+;

if (00==0)
{rto0++:
a00++: }

eise nm_lossoQ++:

40 break:

case 2:

voice_to_out(++;
queued_real++;
om_sw_real++;

45 outO_realtme-++:

op_pk_destroy(pkptr);

if (m0==0)
{rm O+
amG++; }

50 else nm_lossmO++:

if (n0==0)
{rmQ=+;
an(++;}

else om_lossnQ-—+;

55 if (00=0)
{rtoQ+—+;
a00++: }

else nm_lossoQ4—+:

95

Process Model Report: nk4X4

| Wed Feb 11 23:33:221998 | Page 7 of 19

60

70

75

80

85

95

100

105

110

115

break:

case 3:

}

data_to_outQ+=+;
queued_data++:
nm_sw_dara++:
out0_dara++;
total_delay._data += op_sim_time() - op_pKk_creation_time_get(pkpm);
if (m0==0)
{damO++;
amQ+4-+:
new_pkpr=op_pk_copy(pkptr);
op_pk_nfd_set(new_pkpr. "cr_cime=, cr_time);
op_subq_pk_insert(1.new_pkpa.OPC_QPOS_TAIL):
}
else nm_lossdmO++;
if (00=0)
{danC++;
anO-++:
new_pkpo=op_pk_copy(pkptr);
op_pk_nfd_set(new_-xnr. “cr_cime*. cr_time):
op_subq_pk_insert(Z.new_pkptr.OPC_QPOS_TAIL);
}
else nm_lossdnQ-+:
if (00=0)
{daoO++:
ao0++:
new_pkpa=op_pk_copy(pkpw):
op_pk_nfd_set(new_pkpt, “cr_time-, cr_time);
op_subq_pk_insert(3.new_pkpm,OPC_QPOS_TAIL):
}
else nm_lossdoQ+~+:
op_subq_pk_insert(QUEUE,pkpar.OPC_QPOS_TAIL}):
break:

break:

case 1:

Al

atl++;

asl++;

if (asI>M) mi=1:
if (asi>N) nl=1i:
if (as1>0) ol=1;
switch(rype)
{case 1:

rtl4—+;

if (mi==0)
{rmm L+=+;
aml+~+;}
else nm_lossm 14=+;
if (n1==0)
{rml++;
anl++;}
else nm_lossnl++:
if (01==0)
{TTO L4=+;
aol++:}
else nm_losso1++:
break:

case 2;

96

Procass Model: Report: nk4X4

| Wed Feb 11 23:33:22 1998 | Page 8 of 19

120

12§

130

135

140

145

150

155

160

165

170

175

i+
if (m1=0)
{rmml++;
ami++;}
else om_lossml++;
if (ni==0)
{rml+=+;
anl++;}
else am_lossnl+=+;
if (01==0)
{rIol4=+:
20 1++;}
else am_lossol++:
breaks
case 3:
dal++;
if (mi==0)
{daml++:
ami++;}
else nm_lossdm -++:
if (nl==0)
{danl++;
anl+=:}
else nm_lossdnl4-+:
if (01==0)
{dao l+=+;
aol++;})
else nm_lossdol++:
break;
}
op_pk_destroy(pkpu):
break:
case 2:
a24+;
ar24+;
as2++:
if (as2>M) m2=1:
if (as2>N) n2=1:
if (as2>0) 02=1;
switch(type)
f{case 1:
2+4+;
if (m2=0)
{rom2++;
am2++;}
eise nm_lossm2++;
if (n2==0)
{rm2++:
an2+4=+;}
else nm_lossn2++;
if (02==0)
{rto24=+;
a02++;}
else nm_losso2++:
break:
case 2.
2++;
if (m2==0)
from2++:

97

Process Model Report: nk4X4

| Wed Feb 11 23:33:22 1998 | Page 9 of 19

oo

see

180

185

190

195

215

220

230

235

am2++;}
else nm_lossm2++;
if (n2==0)
{rm2++;
an2++:}
else nm_lossa2++;
if (02=0)
{rto2++;
02+ }
else nm_losso2++;
break:
case 3:
da2<—+:
if (m2==0)
{dam2++:
am24+;}
eise nm_lossdm24-+;
if (n2==0)
{dan2++;
an2+4-+;}
else nm_lossdn2++:
if (02==0)
{dao2++:
202++:}
eise nm_lossdo2++:
break:
}
op_pk_destroy(pkpu);
break:
case 3:
B4+
a3+
as3++;
if (as3>M) m3=L;
if (as3>N) n3=1;
if (as3>0) 03=1;
switch(type)
{case 1:
34+
if (m3=0)
{rom3+-+:
am3+-+; }
else nm_lossm3++;
if (n3==0)
{rn3+-+:
an3++;}
else nm_lossa3++;
if (03=0)
{rto3++:
a034+:}
eise nm_losso3++;
break:
case 2:
3+
if (m3==0)
{rum3++:
am3++; }
else nm_lossm3++:
if (n3==0)

98

| Process Model Report: nk4X4

| Wed Feb 11 23:3322 1938 | Page 10 of 19

{rm3<+=+;
an3++:}
else nm_Jossn3++:
if (03==0)
240 {r103++;
a03++:}
else nm_losso3-++:
breakz
case 3:
245 da3+4—+;
if (m3==0)
{dam3++:
am3++; }
else nm_lossdm3++:
250 if (n3==0)
{dan3++;
an3++; }
eise nm_lossdn3++:
if (03==0)
255 {dao3++:
a03++:}
else nm_lossdo3++:
break:
}
260 op_pk_destroy(pkpir);
break:

| mransition enqueue -> wait

i _attribute value type default value ?
' name tr_4 string tr
condition string !
executive string ;
color RGB333 color RGB333
drawing styie spiine togaie spline
_forced state slot time
|_attribute value type default value |
name slot_time string st ’
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced togale unforced

enterexecs slot time

as0=0: asi=0: as2=0; as3=0;
m0=0: n0=0: 00=0: m1=0: ni=0: 01=0;
m2=0; n2=0: 02=0: m3=0; n3=0; 03=0;

S | /= schedule next ume siot */

op_intrpt_schedule_self(op_sim_time() + slot_time. SLOT_CODE);

99

| Process Model Report: nk4X4

| Wed Feb 11 23:33:221998 | Page 11 of 19

mransition__siot_time -> wait !
attribute value type defaulft value
name tr 7 string tr
condition string
executive string
color RGB333 color RGB333
drawing stvie spline togale spline

| unforced state _end_sim
attribute value type default value
name end_sim string st
enter execs (See below.) textiist (See below.)
exit execs (empty) textlist {empty)
status unforced toggle unforced

enter execs__end_sim

fclose(fp):

n

prnntf(* SWITCE
prntf(-zctal arrived
pnntf(*<otal arrivaed
15 | printf(* =otal arrivec
pontf(-zocal arrtived
printf(*r:deo zo oucl
printf(*voice o ou:zl

printf(* numper of
printf(-numoer o
pnotf(-numper o

(4]

pnntf(*daca o outl =
20 | printf(-average loss =
pnoif(*number cf reai-
prntf(~numper of rea:
pontf(“number ¢ real
printf(-numper of reali-z.me pacxet loss at
25 | prntf(-tozal reai-time packet Loss (L=3d)
printf(*numper <f daca
prntf(- numoer oI daca
printf("number oI daca

avg_loss = nm_loss/sw_total:
rorttossm=nm_lossm{+om_lossmi+nm_lossm2+nm_lossm3:
totdalossmm=am_lossdmO-+nm_lossdm I+am_lossdm2+nm_lossdm3:
toutiossn=nm_lossn0+nm _lossnl+am_lossn2+om_jossn3:
totdalosso=om_lossdn0+nm_lossdnl+om_lossdn2+nm_lossdn3:
torrtiosso=nm_lossoO+am_losso l+am_losso2+nm_losso3:
totdalosso=nm_lossdo0+am_lossdo l+nm_lossdo2+nm_lossdo3:

10 pnn[f('r'tvv"ft"-'vv"'vf'v'vvr"\»:-):

s mm \me

RZEULTE Sed

~

Dacket

Dacxet 10ss at .l
pacxet .oss at

pnntf('vv"v'r""v"vr"r'-'v""\—-}-
Bolul) ¢

= ad\n-. al):
sd\n". atl):

= sd\n-, a2);
aé\n-, a3);

ad\n-, video_to_outO);
sd\n-. voice_to_out0):
d\z-. data_to_outQ):
12.38\ne, avg_loss):
Lme packe: 10S3 at
.me packet :1o0sSs a:t

:me packet :0SS5 a

ioss at C

packet loss at
packet .oss at
packet loss at

(&)

It b oae

3i\n

o

d: = sd\a-*.M.nm_lossm0):
: &) = 3d\n*,M.om_lossml);
iL=%d) = 3d\n-, M.m_lossm2);
(L=%d! = sd\n°*.M.nm_lossm3);
xf.n-. M tottossm};

iL=3d} = sd\n°.M.om_lossdm0);
. {L=%d) = ®d\n-, M.nm_lossdm1i);

2 iL=%d) = sd\n°",M.nm_lossdm2):
printf(*numper of cata packet l1oss at I {l=id) = sd\n", M.nm_lossdm3);
30 | printf(*zccal data pacxe:l loss {L=8d} =

. M.totdalossm);

{L=3d} = 3d\r"*,N.nm_lossn0);
(L=8d} = sd\n-.N.nm_lossaol):
{L=%d) = 3d\rn-, N.om_lossn2);

35

o

prantf(*numper cI reai-Iime packet 0SS at
printf(*zstal real-zime packet Loss (L=id) s £\n-, N.toatlossn);

printf(-numper ¢ data pacxet loss at O (Lsbd) = sd\n-. N.nm_lossdnQ);
printf(*number of daca packet loss at [L=&d) = sd\r-. N.nm_lossdnl);
printf(-numper »f daza sacket less ac 2 {i=%d) = 3d\n-.N.nm_lossdn2);

TS F

100

(L=%d} = sd\rn-.N.nm_losso3);

| Process Model Report: nk4X4

| Wed Feb 11 23:33:221998 | Page 120f19

ove

45

50

55

60

65

70

75

80

&S5

90

95

printf("number of 3a:t: pacxet loss at i (L
pnatf(*=otal data pacxet .oss {L=ad) = $£\n

printf(-number c¢I resal-time packet loss at 9 L=%d) = %c:\n'.O.nm_lossoO):

t
prntf(*number of reai-zime packet ioss at I (L=%d! = sd\n -, O.nm_lossol);
printf(*number cf cz2.-iime packer loss at I {L=3%d) = sd\n-. O.nm_losso2);
printf(* qumber ci -:.-time packe: loss at I (L=&d) = sd\n° . O.nm_losso3);
printf(-cotal real-:.me packet loss iL=8d) = 3f\rn-,O.tomtlosso):
printf(*numper =Z & packet loss at 0 (L=3d) = sd\n- . O.nm_tossdo0):

(L=3d) = sd\z*.O.om_lossdol):
(L=3d} = %dé\n-,O.nm_lossdo2);
‘L=sd! = ad\n-, O.nm_lossdo3);
3£vn". O.totdalosso);

(2]

printf(*number o
pnntf(" number ©
printf(*numper o
printf(*cczal dac

packet 10Ss at
cacket 10Ss3 at
Dacxet 1eSs at

[LI PY IR 35 T I

[

/> pringf{ "delay from begin svnc to begin swicin");
printf("average delay (daiay = %l1 9f\n". avg_aeiav_dara): */

primtf(*zocai arrived o switch = 33z, rotal_amved)
printf(®zocal arr:ved and destination 2 = %fin-.sw_towal)
printf(* real packezs switzned = 3f\n-. nm_sw_real);
pnoif(*2ata packets swizctned = 3i\n-.am_sw_dara)

priotf(* cctai :oss = iI-n-.nm_loss)y

nm_received_total = nm_sent_real + nm_sent_dara + queued_real + queued_dara + q_loss:
avg_q_loss = q_loss/nm_received_total:

avg_delay = delay/nm_sent_dara:

avg_delaym = delaym/am_sent_datam:

avg_delayn = delayo/am_sent_datan:

avg_delayo = delayo/nm_sent_darao:

vaniance_delay = (square_delay/nm_sear_data) - (avg_delay = avg_delay):.
variance_delaym = (square_delaym/nm_sent_datam) - (avg_delaym * avg_delaymj):
variance_delayn = (square_delayn/nm_sent_datan) - (avg_delayn = avg_delayn);
variance_delayo = (square_delayo/nm_sent_datao) - (avg_delayo = avg_delayo);

printi(= ~swersevervrrorerrrrrrerroriney

pnntf(' QUTPUT QUEUZ =ESULTS Selal 4

pONti(~< = e rrrvexvrrrsvevaveorre\neg
prmtf(-average loss = 3il.2Swn-.avg g loss):
pnotf(deiay :3 Irom sSwWi1TcCh TS SUIDUT queuenn®):

printf(* average celay ‘data: = 311.2f\n-.avg_ delay)

paotf(-average cesiav idaca) (L=sd! = 31i.9f\n<. M.avg delaym)
printf(*average deiay f‘data) (L=%d] = 3li.3f\n-.N.avg delayn)
printf(-average deiay i{daca; (L=3d) = %11.2Z\n-.Q.avg delayo):
prntf(*deiay variancs :daza) = 311.2f\n°.vanaoce _delay);
prnntf(*delay variance :dataj{l=3d) = 31l.9f\n", M.variance_delaym):
pantf("celay ~var:ance tdaca;(i=3d] = 311.92f\n" . N.variance_delayn);
printf(*delay var:ance idata){i=3d} = 3i..9f\n-. O.variance_delayo):

pantf(*-eal in queue = %f\n-.queued_real);
pnmf(-caca in queue = %I\n°.queued_data)
printf(- eal packets sent = 3f\n°.nm_sent real);
printf(®data packets sent = 3£\n".am_sent_daa).
totgloss=q_loss+qlossi+gloss2+qloss3:
totgiossm=glossmO+qlossm+qlossm2+qlossm3:
torglossn=qlossn0+qlossa 1 +qiossn2+qlossn3;
totqlosso:qlosso0+qlosso1+qlossoz+qlosso3

pnotf(* gueue ioss at 3f\n-. g_loss);

printf(* queue ioss at 1 = %c\n-,qlossl);

printf(* queue ioss a2t I = 3c\r".qloss2)

printf(* queue ioss at I = 3d\n°.qloss3)
prntf(-=ccal Zueue loss = 3 2. . torgloss);

(]
1]

101

Process Model Report: nk4X4 [Wed Feb 11 23:33:221998 | Page 13 of 19

.on

printf(*queue loss ac C {L=%d) = sd\r*. M.glossm0);
printf(*queue loss at I (L=id) = sd\n-. M.qlossm1);
100 | printf(~queue loss at I {L=3d) = sd\n-. M.qlossm2);
printf(*gueue loss at I (Lsid) = sd\n". M.glossm3);
printf(-total gqueue loss (L=8d} = 3d\n-. M.torglossm);
printf(-queue loss at @ {L=8d) = sd\n-.N.glossn0);
printf(*queue loss at @ (L=sid) = sd\n-. N,qlossal);
105 { printf(*queue loss at I {L=3d) = sd\n-. N.glossn2);
prinif(*queue loss at : rL=8d! = sd\n-.N.,glossn3);

printf(*total queue loss (L=%d) = sd\n -, N.totglossn);
printf(*queue loss at ¢ 1L=88) sd\n-. O.glosso0):

printf("queue ioss at > (n=%d! = sd\rn-.O.glossol):
110 | printf(* ueue loss at 2 {L=3d} = s%d\n-.0.glosso2):
printf(-queue loss at i 'L=3d} = 3d\n-.0.qlosso3);
printf(*zocal queue icss !l=id) = sé\wn-. O.totqlosso):
forced state frame time
| attribute value type default value !
name frame_time string st ;
enter execs (See below.) textlist (See below.) ;
exit execs (empty) textlist (empty) g
status forced toggle unforced !

enter execs__irame_time

/* reinitialize count. the counter that keeps track of
the number of packers served */

count =0t

w

rtdm0=0: ridn0=0: rtdo0=0: ridm 1=0: rda1=0: ndo i=0:
ridm?2=0: rtdn2=0: rtdo2=0: ndm3=0: ndn3=0: ndo3=0:
mdl=0Grnd2=0:nd3 =0

fpnotf(fp."1 ¢ d 3¢ 0\n-.daa_to_our ~woice_to_outQ.video_to_out0):
10 | fprintf(fp.-2 %d 3d 3¢ sc\n-.alalal.as.
fprintf(fp.©2 3¢ sd sd sd\rn*.am0.aml.am2.am3);
fprintf(fp.= 4 3d 3d 3d 3d\n-.an0O.anli.anZ.an3):
fprintf(fp.*s 3¢ 3¢ 3¢ id\n-.200.a0l.a02.a03):
fprintf(fp,"s %d 3d sd 0\rn-Jula2r);

15 | fprintf(fp.<7 3¢ #c ac sd\n* . ml.amloam2rm3);
fprintf(fp.*8 3¢ 3¢ sc¢ sd\n°qmOrmliom2rmd):
fprintf(fp.*¢ 3¢ sd %c¢ 3d\n-rro0riol.o2rto3):

data_to_out0 =0;

20 { voice_to_out0O=0;
video_to_outG=0;
outbufferO_dara=0:
outbufferQ_reaitime=0:

25 |a0=C:al=0:2=0:a3=C:

am0=0:aml =0;:am2=CGam3 =0

an0=0;anl =C:an2=C:an3 =C:

200=0:301 =0:a02=0:203=C:

dadl += dal: dad2 +== da2; dad3 +=dal:

30 dadm0+=dam02dadml+=daml:dadm24=dam2:dadm3+=dam3:

102

Process Model Report: nk4X4 | Wed Feb 11 23:3322 1998 | Page 14 of 19

35

45

50

35

60

70

75

80

85

dadnO += dan0; dadnl += danl: dadn2 += dan2: dadn3 += dan3:
dado0 += daoQ; dado1 += daoi: dado2 +=dao2: dado3 +=dao3:

if (queued_real {=0)
{if (queued_real > cell)
{q_loss += queued_real - cell;
nm_sent_real +< cell:
outbufferQ_reaitime += ceil:
count = cell:
}
else
{nm_sent_real += queued_real;
count = queued_real:
outbufferO_realtime += queued_real:
}
queued_real = 0.0

}

I* check if we still have capacuy *!
* if yes. serve up 1o capactty *'

if (count < cell)
{if (top_subq_empty(QUEUE))
{ pksize = op_subq_stat(QUEUE. OPC_QSTAT_PKSIZE);
if ((count + pksize; > cell)
{nm_sent_data += cell - count:
pksize = cell - count
outbufferQ_data += cell -count:
}
else
{nm_sent_data += pksize:
outbuffer0_data += pksize:
}

/= send up to C packets (max. capacity); *!

for (i=1: i<=pksize: 1++)
{pkpt = op_subq_pk_remove(QUEUE. OPC_QPOS_HEADY):
mmp_delay = op_sim_time() - op_pk_creation_time_get(pkpu):
delay += unp_delay:
square_delay += (tmp_delay * mmp_delay);
op_pk_destroy(pkpm):
queued_data—:
}

}

if (rtmQ 1= 0)
{if (rzmQ > cell)
{ rtdmO=cell:
qlossmQ += nmo-cell:
}
else rtdmO=run0:
}
if (ndm0 < cell)
{if (lop_subq_empty(1)):
{ dadmO=0p_subq_stat(1.OPC_QSTAT_PKSIZE):
if ((rtdmO+dadmQ) > cell)
{ damQ=cell-rtdmQ:

103

Process Model Report: nk4X4

| Wed Feb 11 23:33:22 1998

| Page 150f 19

95

100

105

110

115

120

125

130

135

145

om_sent_daram +<= cell-ndm(;
}

else
{damQO=dadmOQ:
om_sent_datam += dadmQ:
1

for (i=l:i<=damQ:i++)
{pkpr=op_subq_pk_remove(1.0PC_QPOS_HEAD);
op_pk_nfd_get(pkpw, “cr_zime*. &cr_time);
mp_delay = op_sim_time()-cr_time:
delaym += mp_delay;
square_delavm += (tmp_deiay*unp_delay):
op_pk_destroy(pkptr):
}

}

if (mn0 1= 0)

{if (rm0 > cell)
{rtdnO=cell:
qlossn0 += rmO-cell:
}

eise ridnO=rm:

}
if (rtdn0 < cell)
{if (lop_subq_empty(2));
{dadnO=0p_subq_stat(2.OPC_QSTAT_PKSIZE):
if ((ndnO+dadnQ) > cell)
{danQ=ceil-rtdnQ:
am_sent_daran -= cell-ridn0:
}

eise
{dan(O=dadn(;
nm_sent_datan += dadn(0:
}

for (i=1:ic=dan0:i++)
{pkpr=o0p_subq_pk_remove(2.0PC_QPOS_HEAD):
op_pk_nfd_get(pkpw. "=r_zime-, &cr_timej;
unp_delay = op_sim_time()-cr_ume;
delayn += tmp_delay:
square_delayn += (tmp_delay*tmp_delay):
op_pk_destroy(pkptr):
}

}

if (r100 = 0)

{if (o0 > cell)
{rtidoO=cell:
qlosso0 += rro0-cell:
}

else rtdoO=t100;

}
if (ntdo0 < cell)

{if (lop_subq_empty(3)):
{dadoC=0p_subgq_stat(3.0PC_QSTAT_PKSIZE}
if ((ndoO+dadoQ) > cell)

{daoO=cell-ndoC:
nm_sent_darao += cell-rtdoQ:

104

Procass Model Report: nk4X4

Py

150

155

160

165

170

175

180

185

190

195

200

205

}

else
{dao0=dado0;
nm_sent_datao += dado0:
}

for (i=1:i<=daoQ:i++)
{pkpr=op_subq_pk_remove(3,0PC_QPOS_HEAD):
op_pk_nfd_get(pkptr. *cr_ctime*, &cr_time);
mnp_delay = op_sim_time()-cr_times
delayo += tnp_delay:
square_delayo += (tmp_detay*mmp_delay):
op_pk_destroy(pkprr):
}

}

if (rtl t=0)
{if (rtl > cell)
{rtdl = celk
glossl += rtl-cell;
}
eise rtdl = r1l:
}
if (td1 < cell)
{if (dadl '=0)
{if ((rtdl +dad1) > cell) dadl = dadl - (cell - rtd1);
else dad!l = 0:
}
1
if (rum1l !=0)
{if (rum1 > cell)
{rtdml =cell:
qlossm! +=runl-cell;
}
else ndml =rm!:
}
if (ndm1 < cell)
{if (dadm| !'=0) .
{if ((dm! +dadm]l) > cell) dadmi = dadm! - (ceil - rtdm1);
else dadml = 0;
}
!
if (rml '=0)
{if (ml > ceil)
{ridnl = cetl:
glossnl += rml-cell:
}
else ntdnl = rml;
}
if (rtdni < cell)
{if (dadn! '=0)
{if ((rtdnl +dadnl) > ceil) dadn! =dadnl - (cell - dni);
else dadnl = (;
}
}
if (ol 1=0)
{if (rrol > cell)
{rido1 =cell;
glossol +=rtol-cell;

105

[Wed Feb 11 23:33222 1998 | Page 160f19

| Process Model Report: nk4X4

T Wed Feb 11 23:33:23 1998 | Page 17 0f 19

220

230

235

245

255

265

}

eise rido! =rtol:

)
if (rido1 < cell)

{if (dadol 1= 0)
{if ((rdol +dadol) > cell) dado! = dadol - (cell - tdo1):
else dadol = Oz
}

}

if (n2!'=0)
{if (12 > cell)
{rtd2 =cell:
qloss2 +=r2-cell;
}
else rtd2 = r12:
}
if (rtd2 < cell)
{if (=Q)
{if ((nd2 + dad2) > cell) dad2 = dad2 - (cell - td2):
else dad2 = 0:
)
}

if (rum2 = 0)
{if (rtm2 > cell)
{rtdm2 = cell:
glossm2 += rum2-cell;
}
else rtdm2 = rum2:
}
if (ndm2 < cell)
{if (dadm?2 != Q)

{if ((nMdm?2 + dadm?2) > cell) dadm?2 = dadm2 - (cell - tdm2);

else dadm?2 = (;
}
}
if (mn2 '=0)
{if (rm2 > cell)
{rtdn2 = cell:
glossn2 +=rm2-cell:
}
else rtdn2 = rm2:;
}
if (rtdn2 < cell)
{if (dadn2 '=0)
{if ((rtdn2 + dadn2) > cell) dadn2 = dadn2 - (cell - ndn2):
eise dadn2 = Q;
}
}
if (rt02 !=0)
{if (rt02 > cell)
{rtdo2 = cell:
qlosso2 += rto2-cell;
}
else ndo2 = rto:
I
if (rido2 < cell)
{if (dado2 != Q)

106

Process Model Report: nk4X4

] Wed Feb 11 23:33:23 1998 | Page 18 0of 19

e

270

275

290

295

300

305

310

315

320

{if ((rtdo2 + dado2) > cell) dado2 = dado2 - (cell - rdo2);
eise dado2 = (:
}

)

if (3 '=0)
{if (113 > cell)
{nd3 =cell;
qloss3 +=ri3-cell:
}
else nd3 =r3:
}
if (nd3 < cell)
{if (dad3 != Q)
{if ((rtd3 + dad3) > cell) dad3 = dad3 - (cell - nd3);
else dad3 = Oz
}
)
if (mm3 !=0)
{if (rm3 > cell)
{ridm3 = celil:
glossm3 += rtm3-cell:
}
else ndm3 = rtm3;
}
if (ndm3 < cell)
{if (dadm3 = O .
[if ((rtdm3 + dadm3) > cell) dadm3 = dadm3 - (cell - tdm3);
eise dadm3 = O:
}
}
if (3 !=0)
{if (nn3 > cell)
{ridn3 = cell:
qlossa3 += rm3-cell:
}
else rtdn3 = rm3:
}
if (rtdn3 < cell)
{if (dadn3 != Q)
{if ((rtdn3 + dadn3) > cell) dadn3 = dadn3 - (cell - rtdn3):
else dadn3 = (:
}
}
if (o3 1=0Q)
{if (rto3 > cell)
{rtdo3 =cell;
qlosso3 += rto3-cell:
}
else rido3 = rto3:
}
if (ndo3 < cell)
{if (dado3 != Q)
{if ((rdo3 + dado3) > cell) dado3 = dado3 - (cell - ndo3);
else dado3 = (;
}
}

nl=0tm2=0r3=0

107

| Process Model Report: nk4X4 | Wed Feb 11 23:33:23 1998 | Page 18 of 19

dal =0:da2=0;:da3 =0;

rmC=0: rm0=0; rto0=0: mm1=0: tn1=0; rto1=0:
rm2=0: rm2=0: mo2=0; nm3=0: m3=0; rt03=0:
dam0=0: dan0=0: dao0=0: dam1=0: dan1=(0: daol=0:
330 | dam2=0: dan2=0; dao2=(: dam3=0: dan3=0: dao3=0;

avg_delay = delay/nm_sent_data:
avg_delaym = delaym/nm_sear_datam:
avg_delayn = delayn/nm_sent_datan:
335 | avg_delayo = delayo/nm_sent_datao:

dadmO=op_subgq_stat(1.OPC_QSTAT_PKSIZE):
dadnC=op_subq_stat(2.0PC_QSTAT_PKSIZE):
dadoO=o0p_subq_stat(3.0PC_QSTAT_PKSIZE):

fprintf(fp."1¢ %d %4 3d 3d\n-,outO_realtime. outQ_data.
outbuffer0_data, outbufferQ_realtime);

forintf(fp.*12 %11.9€ 31:.9% xd 31l.3£\n-.queued dara avg delay.
dadmO. avg_delaym):

345 | fprintf(fp.- 12 3¢ 311.9Z ad 311.2f\n-,dadn(. avg delayn.
dadoO0. avg_delayo):

fprintf(fp.- 13 84 8d 83 O\n-.dadl.dad2.dad3);

fprintf(fp.~ 1+ 3¢ 84 3¢ 0\=z-.dadml.dadm2.dadm3):

fprintf(fp.- 13 3¢ 3¢ 3¢ d\rn-.dadnl.dadn2.dadn3).

350 | fprintf(fp.- 1¢ 3d 36 3¢ 9\x-.dadol.dado2.dado3);

out0Q_realtime=0;
out(_data=0;

355 | /* schedule next frame time *!

op_intrpt_schedule_self(op_sim_time() + frame. FRAME_CODE):

' wansition_frame_time -> wait

._attribute value type default value
; name tr_9 string tr
| condition string
executive string
color RGB333 color RGB333
drawing style spiine toggle spline

108

Figure A.5: Process model of the switch

109

~ Process Model Report: nin0

| Wed Feb 11 23:15:58 1998 | Page 1of7

| eee
+

 Header Block

#includecmath.h>
#include<stdio.h>
#includecsys/time.h>

5 [#define N_inputs S
#define C 12
#define frame_time 0.024
#define REAL 0
#define DATA 1

10 | #define O_Q_STRM 0

#define Q_EMPTY (op_g_empty())

#define FRAME_CODE 3

#define PACKET op_intrpt_type(Q == OPC_INTRPT_STRM
#define FRAME op_intrpt_type() == OPC_INTRPT_SELF &&\

op_intrpt_code() == FRAME_CODE

#define END_SIM op_intrpt_type(== OPC_INTRPT_ENDSIM

 Stat

10

15

30

35

te Variabie Block

/* dest_addr: address of the desunaton of the packet
ype: type of packer (1 : video. 2: votce. 3: data)
queued_pk: keep track of # ¢f packets queued
queued_real: # of reai packets waining (o be transmitted in next frame
queued_data: 7 of data packets acruaily queued
total_delav_data: total delay through whole system of data packets
avg_delav_real: average delay through whole system of real packets
avg_delav_data: average deiay through whole system of data packets
nm_sen!_real: ¥ of real packets that got through the ouiput buffer
nm_sent_data: # of data packets that gor through the ouiput buffer
nm_loss: # of real packets blocked
avg_loss: average packer loss
nm_total: total # of packets
tmp_delay: delav of one packer
total_square_delay: 1o calculate expected value of square
variance_delay: vanance of deiay (expected value of square - square of expected value)

L 74

int \dest_addr:

int \type:

int\queued_pk:

int \queued_reai:

int \queued_data:

double \totai_delay_data:

double \avg_delay_data:

double \am_loss:

double \avg_loss:

double \nm_(otal;

double \am_senr_real:
double \am_sent_dara;
double \tmp_delay:

double “total_square_delay:
double \wariance_delay;

int \wideo:

int \voice:

int \data:

int \frame_count:

110

| Process Mode! Report: nin0

| Wed Feb 11 23:15:58 1998 | Page20f 7

[¥]]

Temporary Variable Block

packet *pkptr:

int i

int count:

int pksizes

int voice_sent_per_frame:
int data_seat_per_frame:
int video_sent_per_frame:

| forced state init

' gttnibute

value

type

default value

name

init

enter execs (See below.)
exit execs {empty)

status

forced

string

textlist
textlist
toggle

st
(See below.)

(empty)
unforced

| enter execs _init

W

10

15

/* wutialization of parameters */

video =0:

voice =(:

data=0:

queued_pk =0;
queued_real = (:
queued_data = Q:
rotai_detay_data = 0.0;
avg_delay_data = 0.0:
nm_loss = 0.0:
avg_loss = 0.0;
am_towal = 0.0
am_sent_real = 0.0;
am_sent_data = 0.0
tmp_delay = 0.0
total_square_delay = 0.0;
variance_delay = 0.0;
frame_count = 0;

= schedule the first frame going out of the buffer =/

op_intrpt_schedule_self(op_sim_time() + frame_time. FRAME_CODE);

mansition__init -> wait

attribute

value

fyoe

default value

name

color
drawing

tr_0

condition d;fault
executive

RGB333
style spline

string
string
string
color
togagie

tr

RGRB333
spline

111

Process Model Report: nin0

| Wed Feb 11 23:15:58 1998 | Page 3of 7

ransition _init -> enqueue

|_attribute value type default value
name tr_ 2 string tr
condition PACKET string
executive string
calor RGB333 color RGB333
drawing styie spline togale spline
{ unforced state wait
i attribute vaiue type default value
name wait string st
enter execs {empty) textlist (empty)
exit execs (empty) textiist (empty) |
status unforced togaie unforced :
rransiton wait-> end sim i
_attribute value type default vaiue |
name tr_1 string tr ;
condition END_SIM string i
executive string !
color RGB333 color RGB333 ?
drawing style spiine togale spline f
_transidon__wWait -> enqueue i
attribute value type default value l
name tr_4 string tr ;
. condition PACKET string ;
executive string I
color RGB333 color RGB333 i
drawing stvie spline toggle spiine !
transition _wait -> send ;
attribute value type default vaiue |
name tr_7 string tr |
condition FRAME string §
executive string ;
color RGB333 color RGB333 |
drawing stvie spline toggle spline '
forced state _enqueue |
aftribute value type default value
name engqueue string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced toggle unforced !

| Wed Feb 1123:15:58 1998 | Page 4 of 7

* Process Model Report: ninQ

i .o

[

ente

w

10

15

20

rexecs engueue

I* get info about incoming packet */

pkp = op_pk_get(op_intrpt_strm()):
op_pk_nfd_get(pkpr. - =ype-. &type):
queued_pk+-+;

om_total++;

switch(type)
{case 1:
op_subq_pk_insert(REAL. pkpa. OPC_QPOS_TAIL):
queued_reals~+:
video++;
break;
case 2:
op_subq_pk_insert(REAL. pkpo. OPC_QPOS_TAILj:
queued _real++:
vGice++;
break:
case 3:
op_subq_pk_insert(DATA. pkpur. OPC_QPOS_TAIL);
queued_datas+;
data++;
break:

transition__enqueue -> wait

| attribute value type default vaiue ;
name tr_6 string tr {
condition string ,
executive string ;
color RGEZ33 color RGB333 !
__drawing style spline togale spline !

_forced state_send

W

|_attribute value type default value
name send string st !
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status forced togaie unforced
| enter execs _send

/* retruiialize count, the counter that keeps track of
the number of packets served during the present frame time *!

count =0
frame_count++;

/* we only serve if the queues are not empzy */
I* we start serving the real subqueue first. then. if
capactty allows us, we serve the data subqueues. */

voice_sent_per_frame=(0:

113

i Process Model Report: ning

[Wed Feb 11 23:15:58 1998 | Page 5 of 7

o

s

15

30

35

45

50

55

60

65

70

video_sent_per_f{rame=0;
data_sent_per_frame=0:

if (\Q_EMPTY)
{if (lop_subq_empty(REAL))
{pksize = op_subq_stat(REAL. OPC_QSTAT_PKSIZE);
queued_pk -= pksize:

r* case where real packers exceed capacity */

if (pksize > C)
{nm_loss += pksize - C:
om_sent_reai += C;
pksize = C:
count =C;
}

else
{nm_sent_real += pksize:
count = pksize:

}
1* send up to C packets (max. capactty) */

for (i=1: i<=pksize: 1++)

{pxoz = op_subq_pk_remove(REAL. OPC_QPOS_HEAD):

op_pk_nic_get(pkpt. “type-. &type):
switch(type)
{case 1:
video_sent_per_frame-;
breaks
case 2:
voice_sent_per_frame-++:
breaic:
}
op_pk_send(pkptr. O_Q_STRM):
}
op_subq_flush(REAL);
queued_real = (;
}

/™ we now check the data subqueue *!

if (‘op_subq_empty(DATA))
{ pksize = op_subq_stat(DATA. OPC_QSTAT_PKSIZE):

I* check if we still have capacity */
/* if yes. serve up to capactry *!

if (count < C)

{if ((count + pksize) > C)
{nm_sent_dara += C - count;
pksize = C - count
}

else
nm_sent_data += pksize:

/* send up to C packets (max. capacity): */

for (i=1: i<=pksize: i++)

114

| Process Mode! Report: ning

[Wed Feb 11 23:15:58 1998 | Page 6of 7

75

80

85

90

95

{pkpr = op_subq_pk_remove(DATA. OPC_QPOS_HEAD):
tmp_delay = op_sim_time() - op_pk_creation_time_get(pkptr):

total_delay_data += mnp_deiay;

total_square_delay += (unp_delay > tmp_delay):

op_pk_send(pkpr. O_Q_STRM);
data_sent_per_frame-~+:
queued_pk—:
queued_data—:
}
}

}

printf(* ¢ 3¢ 3d 3& 3d ad 3c ad\n-.video. voice, data.
data_sent_per_frame.
voice_sent_per_frame.,
video_sent_per_frame.
queued_data);

video=(:
voice=0:
dara=0;

I* schedule next frame time *!

op_intrpt_scheduie_self(op_sim_time() + irame_time. FRAME_CODE);

transition _send -> wait

_atiribute value type defauft value
name tr_5 string tr |
condition string 5
executive string
color RGB333 color RGB333 g
__drawing styie spline togale spline f
_unforced state _end_sim
|_aftribute value type default value
{ name end_sim string st
enter execs (See below.) textlist (See below.)
exit execs (empty) textlist (empty)
status unforced togaie unforced

10

enter execs end_sim

avg_loss = am_loss/nm_total;
avg_delay_data = totai_delay_data/nm_sent_data:

variance_delay = (total_square_delay/am_sent_dara) - (avg_delay_

Prntf(* 33 =x=rrererveversewrrrrveerTI\n°)
printf(~ %% INPUT QUEUE RESULTS \nt)
Drntf(~$% ==vvresserwvwrewmsrrecmmsTainty
printf(- 3% ~idec = 3d\n-".video);

printf(* %% voice = %d\n-.voice)

pnntf(- %% daca = sd\n-.dam)

115

* avg_delay_dara);

Process Model Report: nin® | Wed Feb 11 23:15:58 1998

[Page7of7

printf(* 8% average loss = %11.9f\n-", avg_loss);

printf(" %% delay from creation to end input queue\n®);
printf(* %% average delay (data} = %11.9f\n-",avg _delay data)
printf(= %% delay variance (data)} = %11.9f\n", variance_delay);
15 | printf(- 3% total arrived te buffer = 3f\n",nm_total);
printf(“ %% in queue = %d\n-*, queued_pk);

printf(“3% real in queue = %d\n*, queued_real);

printf(*$% daca in queue = $d\n-, queued_data);

printf(* %% real packets sent = %f\n",nm_sent_real);

20 | printf("%% daca packets sent = %f\n°",nm_sent_dara);
printf(* 3% cotal loss (biocked) = %f\n<, nm_loss):

116

