INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

A Multimedia Presentation System
For
Interactive Learning

Mai Lan Nguyen

A Major Report
In
The Department
Of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

December 1997
© Mai Lan Nguyen, 1997

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre relference
Our filg Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-39990-7

Abstract

A Multimedia Presentation System

for Interactive Learning

Mai Lan Nguyen

With the advances in multimedia technology, computers now support learning in
many ways. Further, the Internet may make it possible to break the traditional
classroom contact model. The major goal of this project work is to develop a prototype
Multimedia Presentation System for Interactive Learning based on a graph model. This
model is called the CONCEPT GRAPH MODEL (CGM). The CGM is a digraph in
which the nodes correspond to “concepts” to be taught (learned) and a directed arc
corresponds to the suggested precedence order. The CGM may be structured
hierarchically. The navigation of Concept Graph Model is adjusted to suit the level of
understanding of the students. While navigating the CGM, a student can listen to the
lecture, see the professor’s teaching on the screen, request for a quiz and receive quiz
answers Interactively. For further detailed discussions, the student may communicate to
the professor by using the built-in E-mail sub-system. The student’s progress and status

can be monitored by the proposed system during the course.
The proposed system is developed using Visual Basic 5.0 with Microsoft Access

as the database. Module # 2 (prepared by Dr. Radhakrishnan for teaching Assembly

language) is used as a sample topic to demonstrate this system.

iii

Acknowledgments

The many months that it took to complete this project work were very rough
with my attention divided four ways among my work, project, family, and my new
born daughter. I would like to give my special thanks to my great supervisor and
professor, Dr. T. Radhakrishnan for giving me full support and good advises during
the preparation and writing of this work. I am very glad to have him as my supervisor
for my graduate studies. His dedicated work and his care for students are never

forgotten.

I would like to thank Vitaly Iourtchenko, who helped me with the video
capturing and sharing multimedia data required. The financial support provided towards
the Multimedia Research by the IOR grant (NSERC and NORTEL) awarded to Dr. T.
Radhakrishnan is gratefully acknowledged.

Finally, I would like to thank my family, especially my mother, my husband
and my little daughter for being so patient, caring, and supportive during my studies

and the completion of this project work.

iv

Table of Contents

LIST OF TABLES VIII
LIST OF FIGURES IX
CHAPTER 1: INTRODUCTION 1
[T MULTIMEDIA ..ooiiiicriieneeeeertentee e e eeessaseseeesessesssssssssesss s ssesneeaaseseasss e sesesesensnn s snnssessssseessnsssesssens 1
1.2 MULTIMEDIA PRESENTATIONo.oeiiiieeeeiieeceieeeerneeeteeneeeeeesessssmteeesrseassmsesssesnessseseseeaessssssnnesssssssnsssas 2
1.3 COMPUTER ASSISTED LEARNING..........oueeiiiieeemeeeenneeeeeeerereeeessoseseeasseessnesesssssessess sesasesssnesssesssnnesseas 4
1.4 HOW COMPUTER CAN ASSIST IN LEARNING?ooceiimeeeeeieeieeiittceeeeeereeere e eeeseessssssssesssesensnnesesssemessssns 6
1.5 PROJECT OVERVIEWnniiiiiettietieeeeeeee et eeeeeeeeeeesmmmeeaesaammeaseeesesssss s sem e e e e eeeeee e s e et 7

CHAPTER 2: COMPUTER AIDED LEARNING WITH MULTIMEDIA - REQUIREMENTS

DEFINITION 9
2.1 FOCUS ON LEARNING ASSEMBLY LANGUAGE ...ttt eeeeeeeee e e ee e eee et e 9
2.2 HOW TO ASSIST IN THE LEARNING?ouoivuietieeeceeeeeeeneeetesseesteseetseee s eeseeeseseeemsesesmseeeeseesseessnssennns 10
2.3 TEACHER S CONTROL .cuuutitirmrtiiiieeeeceeesteeceeeresesaeesssssssesstessonssresseemmeeseessesseemeseseeseeme s ssssssosssns 11
2.4 STUDENT’S CONTROL OR NAVIGATIONSccueuveureneenenrenteensieseaeseseteseseaeeesasaseseseeseseeseesesesesemsesssaess 12
2.5 SYNCHRONIZATION......otcoeutriesennnitrinrreessessesestesseerseesssessesasesssessessssessnseneeseeseseeeesssesssemseesses e eees 12
2.6 TRADITIONAL LEARNING VS, CAL.....ooiioiieoieieeeeeeeeee et 14
2.7 THEMAINISSUES IN CAL oottt e e e e e e e 15

CHAPTER 3: THE CONCEPT GRAPH MODEL 17
3.1 INTRODUCTION TO CGMcociiiiei ettt et e e e e e e e ee e sese s 17
3.2 MODULES FOR TEACHING ASSEMBLY LANGUAGE:uiittteeeeeeeeeeeeeeeee oo e 19
3.3 A NODE IN THE CGM MODELL:courietrirrirterreeaeereereseesseseneastesesse s s tsessesseeseseseesesessemesssessesesson 21
3.4 CONCEPT GRAPH ORGANIZATION OF MODULE 2 ...ecouueiuieeeeee e eeeee e 23

3.4.1. Register as aScratch PAd (C1)o.ooeeeeeeeeeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeo 23
3.4.2. Size and NUmber Of REGISIEr (C2) ... 24
3.4.3. What to Store in the ReGiSer (C3).............oweeeeeeeeeeeeeeeeeeeeeee e ee oo, 25
3.4.4. Classifying the Register St (C4)ou oo e 26
3.4.5. Three Essential REQISIEFS (C5)couoooeeeeeeeeeeeeeceeeeeeeeeeeee e 27

v

3.4.6. Attributes of an InStruction (CO6)..........ueoeemeemecoererrieeeeeecee e seeaectssensasieeineeeneees 28
3.4.7. ASample Program (C7) ...t eeat st et e 29
348 MeMOrY MaD (C8) ..ottt b e ettt n 30
CHAPTER 4: SOFTWARE DESIGN OF THE PROPOSED “PRESENTATION SYSTEM™. 31
4.1 INTRODUCTION ..ucoerirrirmirresressiressssnssesansassnssessssmsessetssesaessassesmassensacessasatsessontensessstestametesasesasessenren 31
4.2 OBIJECTIVE & SCOPE........comrmeriirrererenteneseseness st seseseeetesen s nssm e et et ns s eseaeacesetsessassnsesesesenen 31
4.3 SYSTEM REQUIREMENTecuveuimereerereemesessesssseseassomeasesessesessesemssesesssnesmesoeseesseeteasseemseeesesesemmesssssses e 33
4.4 MULTIMEDIA PRESENTATION SYSTEM PROCESS DEFINITIONc..covcimeeietecnnenteereseeerennseseseenenas 33
4.4.1 Welcome Panel — Getting Started..............oocoooooooooiiioioieieeeeeeeeee e, 34
4.4.2 Login panel — Register 10 tRe SYSIEM...............ccooeoiiiieeeeeeeeeeee e 34
4.4.3 Login panel — Sign On tRE SYSIEM....................cocoiiiiieecieeeeeeeenee et 35
4.4.4. Main Panel —Select a Module..................ooeoioioiiniiieieeeeeeeeeeeeee e 36
443 Main Panel in ACHION.c..coom oot eee e e eee et et eeeneen 37
4.4.6 The Concept Graph Model Panelc.ccocooooeuiieemioeaeeeeeeeeeeeeeeeee e 38
4.4.7 The CGM Panel — Slide Section in ACHON...................ccccocveeeioveemeeeeeeeeeeeeeeeeteeeeeeeeee e 40
4.4.8 The CGM Panel — Movie Section in QCLiONooeeeereeeeeeeeeeeeeceeeieeeeeereseeeeeene s 41
4.4.9 Quiz Panel — PerfOormancCe................c.coouwouumoemeeeeeeeeeececeeeeeeeeeeeeeeeeee et eee e 42
4.4.10 FAQ — Frequently Asked QUESHIONcocoocoooiimieiiiiiieeiieeeeeeeeeeeeee e 43
4.4.11 Mail Panel — Contacting TRE PPOfESSOFcc.cccocoeoeeeeeeeeeeeeeeeeeeeeeeee e 44
4.5 DATABASE DEFINITION FOR MULTIMEDIA PRESENTATIONcuoueeovemeueetemmetreeeeareseesesaoeseeeseee e 46
4.5.1 CGM_Student_Grad..................cccccoueemmmomeieneeeeeeeeeeeeeeeeeeeeeeee e 46
4.5.2 CGM _Module_INfo.................ccooomomiieeeeeeeeeeee e ees et 47
453 CGM_NOQE_INfO ...ttt 49
454 CGM_Prev_Nodecoooouoiieiiiieeeeeeeeee e e 51
4.5.5 CGM_Next NOde.............oocoeeiieiineeee et 52
4.5.6 CGM Slide_INfo............ooooomomiieieieeeee et e 33
457 COM_QUIZ IR0 ..o 54
4.6 DATAFLOW DIAGRAM & PROCESS DEFINITIONc.ouvmieieeoeeeeeeeeemeeeeeeeceese e seeeeee s 56
4.6.]1 DALABASE COMMECLIVILY........eeeeeeeeereeeeieeeeeeeeeeeeeee e e 56
4.6.2 Process Modeloccooucemeiniameeeeeeeeeeeeeeeee et e 57
4.6.3 Detailed Process MOdel................c..ocoooommmmmmooeeoeieieaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 38
4.6.4 Process DEfinitioncuueeeiceeeeeneeieeeeeeeee e ene e e er e 39
CHAPTER 5: A TYPICAL USER AND THE SYSTEM - SUMMARY & CONCLUSION............... 62
5.1 A TYPICAL USER ..ottt stss s st st s ee e st e seesess s e eeen 62
5.2 WALK-THROUGHoueneuvmeteinentenscasssascsssectsmecasetsssessasassases st ses s s sss s essenssesnsssenssnesnsesnss s seses s 62

5.3 SYSTEM SUMMARY AND CONCLUSIONo.ueiueeeeeerereeeeeeeeeaesassenraseosesseesseesese e e e 66

5.4 FUTURE EXTENSIONcouriiiitiiieinteteteeetesecest e etseseas e messsene st esssee st ssesessseseasessseeees e s e een e emeen 68
REFERENCES 69
APPENDIX - SOURCE CODE 70

FRMABOUT — ABOUT THE APPLICATION......covuurueuttereremcrmerseeeesessessstsessssemememe e eeesssesesesesesseese e eeeeseses 70

FRMADDSTUDENT — ADD NEW STUDENT TO SYSTEM.....cvucuruemrmeueaeaeaesesecsesssesesessescemssesssme s eeeeee oo 73

FRMCGM — CGM MAIN PANEL ..ottt eeees e eeeeeteseemsoeeseeseseseseesase e eseeesee e s 74

FRMFAQ — F.A.Q. PANEL c..eoieetet et ee e eesseseeesteseeses e s e s e s e e eeseeeeeeeeeeeeeeo 102

FRMLOGIN — LOGIN THE APPLICATIONc.cuuruemenrurenreeesesememeaesemssssaeeeemnesemeeseesesssessee e oo 104

FRMMAILLIST — LIST OUT THE MAILSetmturierreneeeecereseses e seessesssseeeeeessemeeesetessseesoes s e eeeee e 106

FRMMAILMESSAGE — MAIL MESSAGES......cueuiaueteeseeconeeceee e see e e e e ee s eesesessesses e 109

FRMMAILOPTION — MAIL AVAILABLE OPTION.........ovvieneeceseeeeeeeeeeeeeeeeeoteeeee et esesees oo 111

FRMMESSAGE — ERROR/WARNING MESSAGEcvvmveeeiesesenieesseeneeeeeseeseeseseses oo oo 113

FRMMODULE — MODULE CONTROL PANEL ..c........eetoeeen e eeeteeeeeeeeeeeseseses s e oo oo 114

FRMQUIZ — DISPLAY QUIZ........ouiuiumimimecunene e et eee e e e eeseee s s et se s s e e e 119

FRMSENDNOTE — SEND OUT A MESSAGE.....cuuuruiueunreceeesenceseseeessteessesseseesessesssees e oo 122

FRMSPLASH — SPLASH SCREEN..........oucmiumctmttnntereesas e aseeeosevs e e sesseeeeeeseseeseeseeees e ees e eeeeeeen 124

FRMVBMAIL — MAIL MAIN CONTROL PANEL.........ouvutuemmmeeeeoeeeee oo eeseeeeese s ee oo 125

MODAUTHORING — AUTHORING MODULESc.ecceeeeeeere e eeee s eeeeeeeee s 131

MODVBMAIL — MAIL MODULES ...ttt eeeeee e eee e eseesee e e 143

vii

Table 1:
Table 2:
Table 3:
Table 4:
Table S:
Table 6:
Table 7:

Student Grade Table 47
Module Table 48
Node Information Table...................c.. i, 50
Previous Node Tableo.co 51
Next Node Table.......... .. 53
Slide Information Tableoo 54
Quiz Information Table Part 1 & 2)..........cooviiiiii e, 56

viii

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

List of Figures

The Concept Graph Models for modules Band C............................ 18
Concept Graph Modelof Module 2 ... 23
Welcome Panel ... 34
Login Panel - Registering student to the system 34
Addnew student panel ... 35
Login Panel - Sign on the system ... 36
Main Panel - Selectamodule... 36
Mail panel -Inaction......................oooooii i 37
Concept Graph Model panel .. 38
CGM panel - Displaying slides........................c..oooi . 40
CGM panel - Playing movies..............................o.ooi 42
Quiz panel.......... ... 43
FAQ Panel ... 43
Mail Panel - Contacting Your Professor 44
Mail Panel - Composing Messages......................cooeeeeeieiii] 45
Database Connectivity........................oooiiiiiiiiii 56
Process Model 57
Detail Process Model 58

ix

Chapter 1: Introduction

1.1 Multimedia

In the olden days, computers displayed everything as text. All the information
shown to users was in the form of text on a monochrome monitor. This was adequate
for certain things, such as word and data processing, however, this media does not
appeal to the majority of the public. In order for today's applications to have an
improved look and feel, the computer industry has searched for better media or
combinations of media. First, color graphics were introduced, then sound animations
followed and finally movies appeared. This created the new term “multimedia” as we

know it today.

As defined by the Center of Excellence for Education at Indiana University
(CEE): Multimedia is any combination of text, graphic art, sound, animation, and

video delivered to us by computer or other electronic means [CEEP 95].

With the multimedia approach, one does things differently. Instead of using
words to describe an object, one uses diagrams, photos, audio, images or video in an
effective manner. Particularly, with the wide spread use of Internet, multimedia will be

used in every field from commercial to educational.

As a way of learning, when you watch a recorded program from a VCR or a
program on a television, you are in fact, watching multimedia. This multimedia
learning approach is comprised of moving graphics and sound. You are simply an

observer and you have almost no control on the training program. This is a form of
1

passive multimedia [Gert 95]. In passive multimedia, you have minimal control of the
flow of the presentation. You can only control forward or backward movement of the
flow but it will always follow the same path. On the other hand, interactive multimedia
is different in the sense that the user has better control on the activities of the
presentation; the flow of the presentation does not always follow the same path. The
participation from the observer could represent itself as different actions; posing

questions or requesting more detailed explanations.

The use of computer-controlled media is referred to as interactrive because it
enables a whole new level of user interaction, and control. Users can navigate through
a multimedia interactive presentation at their own speed. There is the opportunity for
the instructor to tailor materials to individual's needs. Students can review, assess, get
feedback when necessary, and follow up in more detail on selected items. As a
consequence, students are more likely to understand the complex interplay of the

multitude of events.

1.2 Multimedia presentation

Multimedia presentation means giving a presentation using multimedia. This
refers to a wide range of techniques and capabilitiess. With a traditional slide
presentation, text and graphics are used along with sound. This indeed could be
considered as a multimedia presentation. However, the users can not branch off from a
predefined slide sequence during the presentation. To make a presentation even more
interesting, animation or movies may be inserted and interactive controls introduced.
When users get more control, they can navigate through a multimedia presentation at

their own speed.

Producers created multimedia presentations as far back as the early 1980s. The
main difference is that in those days it took months, and cost hundreds of thousands of
dollars to produce a presentation which today can be done in half the time and at a
fraction of the cost [Hols 94]. Audio and video media take huge amounts of storage and
require fast CPUs for handling. As current technologies continue to improve by way of
increasing speed and storage and decreasing size and cost in the market, multimedia
presentation is becoming more common. We can integrate text, graphic art, sound,
animation, and digital video into one hardware and software package. The wide
availability of multimedia information creates the demand for communication

capability, presentation and sharing of information over networks such as the Internet.

It has proved convenient to divide multimedia applications into four classes
according to their requirements. These are:

e Multimedia DATABASE applications

e PUBLISHING applications

e CAL (computer-aided learning)

e GENERAL multimedia information services

The traditional DATABASE applications involve large collections of numeric or
text data. They require a range of search and retrieval techniques. Users submit a
search request using text as the search key. The search engine searches the database for

retrieving the best matched documents.

PUBLISHING applications require a range of media types, hyperlinking, and the
capability to access the same data using different access paradigms (search, browse,
hierarchical, links). Authentication of information and charging facilities are required.
Many scientific publishers have plans for electronic publishing of existing academic

journals and conference proceedings, either on physical media or on the network [Adie

96]. Some publishers view CD-ROM as an interim step to the ultimate goal of making

journals available on-line on the Internet.

CAL applications require sophisticated presentation and interaction capabilities,
of the type found in existing multimedia authoring tools. Authentication and
monitoring facilities are required. This form of multimedia is currently used in self-
training software. However, each software has its own approach of delivering the

material to the audience. Our project is concerned with one such category.

GENERAL multimedia information services include on-line documentation,
campus-wide information systems, and other systems, which don't conveniently fall
into the preceding categories. For example, online documentation - manuals and
instruction books often rely on pictorial information and are enhanced by some sound

and video effects.

1.3 Computer Assisted Learning

Today, universities and academic institutions have been put under a financial
crunch. This creates a need to support too many students with too few resources. The
student’s progress and faculty instructional contributions are measured by contact-
hours. It's impossible to be every where physically, to meet each and every need, and
to answer individual questions. It takes a lot of time giving verbal instructions over the
telephone and/or in class to individual students. The time-consuming learning process
can prove exceptionally frustrating when the student can not understand a term or
articulate a problem. One solution is to hire more staff and create new and/or different
teaching materials. This is a universal problem, which can be effectively addressed by
pooling resources of people and information together through the use of multimedia

technology.

With the advances of digital technology, computers are capable of supporting
professors in many ways. New digital technologies such as interactive multimedia and
Internet may make it possible to break the traditional classroom contact model. There is
an opportunity for the instructor to tailor materials to individual students’ needs and
reuse the materials several times, and thus save time for development of more difficult
subjects. The students understand the material better when it is presented in multimedia
formats than through lectures and readings alone. So, it is useful for generating
multimedia presentation for selected topics that would benefit a large body of students.
The computer can give students diagrams at several different abstractions and with
different degrees of complexity or perspective. Self-paced and independent learning help
students to develop their understanding. Students can concentrate on parts they don't
understand and move quickly through the parts they do. Students are able to repeat more
difficult material, or review ideas when needed. Thus, they do not miss important points
like they might miss in the lectures. People at different levels of knowledge can use the
same single package. This makes the Computer Assisted Learning or the Computer

Aided Learning to be even more important today than in the past.

A recent study showed that CAL received high marks in terms of appeal by the
learners. It is difficult to measure effectiveness and efficiency but it does appear that CAL
has high potential for on-site learning [HeGr 93]. We can design CAL modules to take
advantage of the experiences of many teachers. CAL developed in this way could be

better than the efforts of a single teacher.

Computer Assisted Learning could take different forms. It can be supported by
a stand alone software system where a student has access to it from a CD-ROM drive.
The software should make it easy to customize lectures and test so as to satisfy the
needs of a student. To overcome the lack of network communication, the software

could be built on a nerwork drive (LAN) and hence a group of students (perhaps in the

5

same department) can access it at the same time. The software then could take the
advantages of grouping them to identify the common needs of students. Questions may
be grouped based on the degree of commonality and frequency; thus leading to the
construction of FAQ (Frequently Ask Questions). Moreover, the knowledge could be
shared through a shared bulletin board. To expose to a bigger group of audience, the

software then could be posted throughout the Intraner or the Internet.

1.4 How computer can assist in learning?

In the use of CAL, one should clearly understand what CAL can do and what it

can not do.

Exercising - Reviewing

The computer as a tool is used in management and word processing tasks,
laboratory instrumentation, simulation of experiments, information storage and retrieval
(databases), programming, course review and testing. A student can choose some lecture
from the computer, and review it repeatedly as required for his/her comprehension.
Students who only need an overview can skim through certain stages of presentation.
Students with some prior knowledge can quickly pass simple stages and move to more
detailed levels.

The adaptability of details to individual student’s needs is very convenient and
effectively helps students to learn with different pace. However, it has its own drawback.
It is more difficult to identify and quantify the level of understanding of students to adjust

the lecture. Modelling the student as a user is essential but difficult.

Interacting with peers through shared bulletin board

The computer can answer many questions, but not all questions raised by all
students. One way to optimize the human resources is to collect frequently asked
questions (FAQ) and pool these questions into a shared bulletin board. The new
questions that have never been encountered before by the computer are forwarded to
professors to be answered. A list of students interested in such unanswered questions
can be kept track by the computer. When the professor answers a certain question,

proactively the answer can be delivered to several students.

Supplementing teacher - Tutoring

Self-assessment by students can be included in CAL in such a way that students
can use it when they want to. The best forms of self-assessment not only provide
feedback but also provide advice to the student about their misunderstandings,
misconceptions, or simple lack of knowledge. Computers have been used extensively in
tutorial and drill programs [MiDu 93].

Replacing a teacher as much as possible

Using only the computer and eliminating teachers is a dream, at least for today.
Students need an opportunity to ask questions and seek further clarification or alternative
explanations of an idea. Personalising a CAL system could be one way to enhance the
student's confidence. Intelligent and knowledge based systems can be used for
personalising [ISKM 93].

1.5 Project overview

It is advantageous to develop a CAL system based on a solid reasoning model.
There are different models that have been used to develop interactive aided learning
tools. Each model has its own advantages and disadvantages [Pate 96]. Our project is

7

based on the CONCEPT GRAPH MODEL proposed by Dr. T. Radhakrishnan. The

details of this model will be discussed in the following sections.

Our system will be a stand-alone. For each node of the concept graph, there is a
file or multiple files with the following types: text, power point, audio, or video to
associate with it. The concept graph of a selected module for learning is displayed on
the screen and the student can click on any node so that, the corresponding file(s) is
displayed. Module # 2 (prepared by Dr. Radhakrishnan for teaching Assembly
language) will be used as a sample topic to demonstrate this system. When the video
file is played, the student can forward, backward, pause, stop, or resume the video
clip. As the user completes navigating a node in the concept graph, it will be shaded to
indicate that the node has been visited. Based on the performance of the student at a
concept node, the navigation of Concept Graph Model will be adjusted according to the
level of understanding of the students. The student can choose the quiz that is associated
with the current concept graph node. These quizzes are mainly in True/False or
multiple choice questions formats (for now). The system will compute the score for all
the answers given by the student and display the result as requested. When possible, it
will compare the level of achievement of that student with past students. The student
can use the FAQ and the bulletin board for self-testing and send e-mail to professors for
more detailed clarification. However, the bulletin board will be available in the
network version only. The students can exit at any time and resume at later date/time.
The partial state will be preserved in a persistent database and reloaded when the

student resumes in the future.

Chapter 2: Computer Aided Learning with Multimedia -
Requirements Definition

2.1 Focus on learning ASSEMBLY language

Assembly language is a primitive language and it is hard to learn for many
beginning level students. However, knowledge of computer at this level helps them to
learn the principles of computer organization in a "look-and-feel” manner. In the
assembly language course, one learns about CPU registers, primitive hardware
operations in the form of machine instructions, and primitive data types like integers,
character strings, and Boolean constants. The three control flow concepts (sequential,
conditional, and iterative executions) are easy to map to the hardware level features

(instruction pointer, flag register, conditional jump instructions and loop instruction).

At the first year B. Comp. Sc. level, at Concordia University we have well over
200 students. They are taught by 7 or more instructors throughout the year. Many of
these instructors are working on a part-time basis. In our context, CAL can also

contribute to some degree of consistency in teaching these multi-section courses.

In this project, we focus on the Assembly language portion of the first year
course. The contents are divided into eight modules. Each module is divided into
several sections. One section corresponds to one node in the concept graph model, and
every module has an associated concept graph as conceived by the authors. For each

module, we have the following entities:

e Text material (including figures, tables, algorithms, Assembly language
programs).

e Self-examination questions (True/False type, multiple choice type, ...).

e A set of slides prepared under power point.

¢ An audio file to be used in conjunction with the slides.

¢ Optionally, some modules may have algorithm animation or video clippings.

2.2 How to assist in the learning?

The proposed software system for CAL must be able to deliver the material to
the audience in an efficient and effective way. In our case, the Assembly Language
lectures are the materials that need to be delivered to the students. The following modes

of assistance are identified to assist the students in their learning.

Textbook

It is closely tied to the lecture and the textbook is divided into small modules
and sections within a module. In our project, the text files are small text files that are
abstracted by the professor to illustrate the material of the course. Each text file
contains the lectures relevant to current concept graph node. This text file will be

displayed on a screen during the time the video is played.

Yideo
Videos are recorded as "avi" files to enrich the text presentation. Video player
will play the video clip until it finishes. It can be controlled using VCR like functions

(rewind, play, stop, forward).

10

Slides

Slides to be represented by the teacher are scanned into bit map files to enhance
the presentation. Since slides prepared under power point can be considered a visual
tool, the slide player will display the slide on the space occupied by the video player.

The slides may have to be synchronized with the corresponding audio presentation.

Short quizzes for self-evaluation

Short quizzes are inputted as text files and the answers are multiple choice
selection or True/False to ease the process of evaluation. The teacher's answers are

stored in an answer file for comparison with the answers entered by the students.

Level of student understanding

Based on the performance of the students, a level of understanding is
determined. The navigation of concept graph (whether to go one level deeper or not) is
adjusted according to the level of understanding of the students. As the level of nodes

are changed and so the quizzes would be adjusted as well.

2.3 Teacher’s control

The teacher will reply to e-mail questions from students and post some of them
in bulletin board to benefit other students. Teachers will send e-mail replies to students
who place requests for more detailed explanation or for additional explanation of

advanced topics.

11

2.4 Student’s control or Navigations

A student normally navigates through a concept graph visiting several nodes as
many times as are required. The precedence relationship recommended between
concepts (or sections of a module) is encoded in the concept graph. While reviewing
the questions provided at the end of the module, the student may find out some parts of
the module that he/she may have to repeat for better understanding. Then, direct
access to a section of the current module is permitted. The various modules of the
course, eight modules in our case, have linear relationships, or may be controlled by
another concept graph at a level higher than the modules. Thus, the concept graph

model is applicable recursively.

2.5 Synchronization

The problem of synchronization between multiple media is important. Related
information of different media types must be synchronized for display. For example,
while displaying the video for a specific topic, the text related to that topic must be
displayed at the same time. Commercial multimedia authoring packages provide many
different ways of presenting, synchronizing and interacting with media elements. Some

of these techniques are summarized below [Adie 93].

Backdrops
An application may present all its visual information against a single background

bitmap. A CAL application might use a background image of an open textbook, with

graphics, text and video data all presented on the open pages of the book.

12

Buttons

A burton can be defined as an explicitly delimited area of the display, within
which a mouse click will cause an action to occur. Typically, the action will be (or can
be modeled as) a hyperlink traversal. Applications use different styles of button: some
may use fabs as in a notebook, or perhaps bookmarks in conjuncticn with the open
textbook backdrop mentioned above. Others may use plain buttons in a style
conforming to the conventions of the host platform, or may simply highlight a word or
phrase in a text display to indicate it is active. In our model, icons are used to represent

the nodes that students can click to traverse.

Synchronization in space

When two or more nodes are presented together. The author may wish to
specify that they be presented in a spatially related way.
e This may involve x/y synchronization. For example, a video node being
displayed immediately above its text caption.
e It may involve contextual synchronization. For example, an image being
displayed in a specific location within a text node.
e It may involve z-axis synchronization as well. For instance a text node
containing a simple title being displayed on top of an image, with the text

background being transparent so that the image shows through.

Synchronization in time

It is also important to have data be synchronized in time as well; the obvious
case being audio and video tracks (where these are held separately). Other examples
are the synchronization of an automatically scrolling text panel to a video clip (for
subtitling); or to an audio clip (e.g., a translation); or synchronizing an animation to an

explanatory audio track.

13

2.6 Traditional learning vs. CAL

At the undergraduate level, the main elements of the traditional teaching
methods are the professor’s lectures, slides, hand-outs and what is written on black
boards. Students do assignments, special projects such as research papers, internships,

or field projects.

In an ideal situation, how do each of these elements contribute to learning? In
the presentation, the authors of the CAL lessons will analyze each of the elements of
the traditional model in light of their contribution to learning. One can divide the
contributions to learning into several pedagogical strategies that include student control;
interactivity; motivation; meaning of content; knowledge-dependent learning;

knowledge constructionism; situational learning; and transfer of content value.

The traditional model has a number of important strengths. Ericksen states that
"by precept and example, good teachers give voice to knowledge and beliefs linking the
past to the present and to the future." [HeGr 93]. On the other hand, there are certain
disadvantages inherent in each of the elements of the traditional learning. For example,
the lecture provides very limited student interactivity or learner control. Both of these

learning strategies appear important for effective learning.

Similarly, the CAL model has its own important strengths and weaknesses.
Even an intelligent interactive software can not replace a good teacher. However, from
time to time, from certain points of view, CAL will be preferred over the traditional

model.

14

2.7

The main issues in CAL

Multimedia network is essential. It refers to sending digital video, animation and
multimedia data over network. This allows students to take courses remotely.
Especially for the continuing education students who can work during the day and
study from home at night.

CAL applications require sophisticated presentation and synchronisation
capabilities. Authentication and monitoring facilities are required. Ability to
identify and authenticate the students using the material, to monitor their progress,

and to supply on-line assessment exercises for the student to complete.

Creating multimedia titles for various platforms is one of the biggest challenges.
While different platforms are currently incompatible with each other,
development tool, therefore, needs to be carefully selected. For example, UNIX

platform and Windows are two popular systems.

Software needs to be distributed and used effectively, efficiently and economically.
Courses should be given to right students who have completed prerequisite

courses. Otherwise, the students will get lost.

User interface needs to be flexible and intelligent. It must handle various forms of
information. The interface should direct a user's cognitive processing toward

learning the content and away from the details of using the system.

HTTP (HyperText Transfer Protocol) and HTML (HyperText Markup Language)
need to be extended in a backward-compatible way to add multimedia facilities

[Adie 96]. In our project, the HTML is not used to link topics to topics. The

15

implementation of HTML should be done in a bigger project because of the

complexity involved.

Which topics are most suitable for CAL? To reduce the problem of staff, the
university is eager to use CAL as much as possible. Theoretically, any existing
course could be replaced by CAL. However, they are not all equally suitable.
Courses to be used should be carefully examined by a committee to maximise the

benefit to the university and more useful to the students.

How can we design a good learning system? To have a good leaning system, a lot
of efforts has to be put in. A good system has to be co-ordinated by
administrations, teachers and students. The continual change in the system of this

sort needs careful design, development, and delivery repeated cyclically often.

16

Chapter 3: The Concept Graph Model

3.1 Introduction to CGM

Different approaches have been followed by different researchers to provide
interactivity in computer aided learning. The work reported herein is “model driven”
and a graph based model named concept graph model (CGM) is developed for this
purpose. Using this model, an author who is an expert teacher of the given subject
develops a course consisting of modules. They are stored at a server’s site, in the case
of networked client-server computing platform, or locally at a workstation for a stand-
alone system. Design and development of an interactive software system for the
presentation of such modules is the main scope of the work reported in this Major
Report. The precedence relationship among the modules would be stored appropriately.
A module could be viewed as a complex muitimedia object that may contain video
lectures, oral presentations along with a set of slides, animations of certain concepts or
algorithms, a written text perhaps in the form of a supplemental textbook, or any other

media object considered suitable by the teacher.

Dividing a course into a set of well-connected modules is an intellectual activity
to be performed by the teacher who is also an author in our case. Developing the CGM
model for each of the modules also needs the author’s intelligence, creativity, and
organizational skills. We assume that transforming a module into a lesson that can be
interactively presented to learmers could be done in more than one way. This
manifestation of a module in the form of a lesson can be made appropriate to meet the
trade-off necessary in the preparation of materials for computer aided learning. As the
experience of the teacher evolves, so will the organization of a course into modules; but

17

one would expect the variations would be more in the initial periods of a course
development, whereas they would be relatively less as years pass by. Thus, we believe
that well experienced teachers (domain experts) should participate in the generation of

modules and the CGM models for a course.

C1: Register as a Scratch Pad

C2: Size and Number of Registers

C3: What to store in a Register

C4: Classyfing the Register Set

CS: Essential Registers (IP. IR, Flag)

C8: Atinbutes of an Instruction

C7: A Sample Program

C8: Memory Map

Figure 1: The Concept Graph Models for modules B and C.
Module B has to be completed before going to module
C. C is module#2 (A sample program) of the 8
modules in the Assembly Language course. There are 8

concepts in module C.
18

The concept graph model is a directed cyclic graph (DAG) in which a node
corresponds to a ‘chunk’ of grouped knowledge, and a directed edge joining node x to
node y means, in the author’s opinion, x should be presented and learnt before y. What
should be the knowledge pertinent to a single node is left unspecified, except for the
“approximate constraint” that a single module should be linearly presentable in about
40 to 50 minutes, real time. The only permissible interventions during such time-
bounded presentation are the direct responses from a learner to the pre-inserted
clarification or test questions, inserted into the module by the author. There are two
types of nodes in a CGM: a solid or filled circle denoting an atomic concept that is not
further refined in this module (or in this course), and an empty or unfilled circle
denoting a concept at level j that is further refined at the next level j+I. For a given
node 'm’', the author could possibly provide a first-cut explanation called D,(m),
detailed explanation D,(m), more detailed explanation D,(m) ... etc. This is called a
degree of explanation. Thus, the concept graph can be viewed as a two-dimensional
DAG in which vertical axis corresponds to the concepts i, i+1,... etc; and the

horizontal axis corresponds to the varying degrees of explanation of a specific concept,

say 'j'.

3.2 Modules for Teaching Assembly Language:

In the Computer Science Curriculum at Concordia University, at the first year
level, we have three streams: (a) computer systems stream, (b) programming stream,
(c) mathematical foundations stream. Each stream consists of a sequence of two
courses. The first course in the computer systems stream is about computer
organization and assembly language. Assembly language programming of the Intel 8086
family is used for hands-on practice in the lab, whereas the course itself is not Sully

devoted to IBM-PC. The course provides generic introduction to computer

19

organization and specific programming exercises with the Intel family of processors.
Thus, we do not devote too much time for teaching assembly language programming,
but we introduce a small subset of the instructions and the basic organization of the
processor and its instruction level view. Experience shows that we devote about 8 to 10
hours towards teaching the assembly language aspects. An experienced professor, who
has taught this course several times, has organized the materials for this part of the

course into the following 8 modules:

Module 1: BEGINNING

This is an introductory lecture to Assembly language part. The student will get
an idea about what is meant by hardware, software of a PC, and the ASSEMBLER's
input and output.

Module 2: A SAMPLE PROGRAM

In this module, the student will learn about the structure of registers, some of
the registers, how an instruction looks, a sample program as input to the ASSEMBLER
and as output by it, and memory map.

Module 3: ASSEMBLING

In this module, the student will learn about OPCODE table, SYMBOL table,

and some assembler instructions; student can start to write a simple loop-free program.

Module 4: SEGMENT REGISTERS

In this module, the student will learn about the use of segment register,
conditional branch, relative addressing so that he can write a more complicate
ASSEMBLER program.

Module 5: INDEXING AND IMMEDIATE ADDRESSING

In this module, the student will learn about array data structure, the use of
indexing and immediate addressing, loops instruction, the distinction between compile

time and run time.

20

Module 6: PROGRAM RELOCATION

In this module, the student will learn about the program relocation in memory,
the idea of memory stack, and the protection of one program against another program
in RAM.
Module 7: MODULARITY

In this module, the student will learn about the modularity. Student will be able
to write a modular program using CALL, RETURN, passing parameters.
Module 8: ASSEMBLE, LINK, LOAD

In this module, the student will learn about LOADER, LINKER and how an
ASSEMBLER program is executed in more detail.

For this major report, we will be using Module#2 as a sample data. Later, we
will describe the lesson created in a multimedia form corresponding to the CGM model

of Module#2. In the next section, we describe how a node in CGM is characterized.

3.3 A node in the CGM model:

A node in the CGM model corresponds to a concept that is an identifiable unit
for discussion and presentation in a classroom or authoring. We view it as a quintuple,

consisting of the following details:

D: {d} D is the natural language description of the concept; d is
a text unit.

E: {e} e = example to describe the concept.

N: {n} n = an analogy used by the teacher to explain the

concept, possibly empty.
P: {p,,p,,... p, } probe questions to examine student’s level of
understanding [p;s are linearly ordered or partial

ordered]. A probe question can be answered with
21

True/False choice, or a multiple choice type question.
These are used on-line by the presentation software
system to judge how far the learner has understood what

is presented.

Q: {q,, 95, -.- q,} q; = test questions that can be used (optionally) by

teacher or student for practicing the “skill” taught; they

are in the form of short quizzes, practice problems etc.

Each module when completed by the author comnsists of the following six

entities. These are generated from <D,E,N,P,Q> that are used in the planning stage

of the authoring.

1.

Running text embedded with figures, tables and equations like a
conventional book . (T)
A set of test Question. (F)

3. An ordered sequence of power-point slides. (S)

An audio file that is segmented into partitions with one-to-one

correspondence between partitions and slides. (A)

5. Keywords and phrases used is introduced in this module. (K)

6. A set of zero or more animations, videos corresponding to different

algorithms or concepts discussed in the module. (M)

A node in DAG can be one of the following types:

> Start node No predecessor.

> End node No successor.
» Milestone node Marked by the author

(they could be used by the presentation system to advise

learners about their achievement, speed, etc.).

»> Choice node Having multiple successors

(they could be used to select which concept to learn next).

22

> Solid node Not further refined in the module.
> Empty node Further refined in the module.

3.4 Concept Graph Organization of Module 2

C1: Register as a Scratch Pad

C2: Size and Number of Registers
c2 C3: What to store in a Register
C4: Classyfing the Register Set

C5: Essential Registers (IP, IR, Flag)

° C6: Attributes of an Instruction
e C7: A Sample Program

C8: Memory Map

Figure 2: Concept Graph Model of Module 2

3.4.1.Register as a Scratch Pad (C1)

> D:
* Registers are temp storage
* Like scratch pad - quick access

* Accessing a RAM takes 100s of ns; registers are 10 times faster

23

> E

> N

Every computer has many registers

Read from RAM into registers, process and then leave it in registers
Register to RAM = STORE

RAM to register = LOAD

IBM S/370 has 16 general purpose registers (GPRs)
PC has 14 registers partitioned

Short term memory

Load from address X destroys contents of memory location named X |,

this is denoted as C(X): T/F?
Store into address X destroys C(X): T/EF?

Null

3.4.2.Size and Number of Register (C2)

> D:

> E

The size and the number of registers vary depending on the machines.

*

*®

Length of the register: 8, 16 , 32 or 64 bit register

Longer register can store more information; However, if it is not

used effectively, it is a waste

Register is used to store the address of RAM hence RAM size is

determined

Register could also be used to store the data range

8086 has both 8 & 16 bit registers

24

> N

*

SMAC2 has 32 bit register

Null

Length of sub-register = Length of register: T/F?
Disadvantages of long register?

Disadvantages of short register?

A 3 bit address register can address -— item (fill up)

Null

3.4.3. What to Store in the Register (C3)

> D:

> E

> N

Data, bits, bytes, integers
Instruction (op_code / zero or more operands)
Address of operands or destination in RAM or other registers

Address 2"registers need n bits

add ax, bx
if op_code (add) = OB Hex
address (ax) =2 Hex
address (bx) =4 Hex
then code it as 0B24 16-bit long instruction.
Semantics is C(ax) + C(bx) replaces as C(ax)

Null

25

*

*

*

How many bits are needed to address 13 items?
A bit sequence, in general could be a data or an instruction: T/F?

Op_code table is fixed for the life of a computer hardware: T/F?

Add ax, bx where ax, bx are 8-bit registers, ax = 255, bx = 255
e What happens due to addition?
e Explain this phenomenon

e Explain op_code decoding

3.4.4.Classifying the Register set (C4)

> D:

The register set can be partitioned

Each partition has a pre-determine role to play

To partition or not to partition is the question

Index register for vector operation (SI, DI)

Segment register for extending addressable range (CS, DS, SS)

Data register for computation (AX, BX, CX, DX)

Pointer register for holding base address, for stacks, etc.. (SP, BP)
General purpose register - Context will determine the role played and

encoded in the instruction

Add b X DISP |b X DISP

b: base register reference
X: index register

DISP: displacement value

26

> E

> N

Set of all humans = set of men U set of women

Null

A N B = where A and B are partitions of a set T/F?

What prevails having too many addresses with an instruction
e instruction length becomes too long
e too hard to program

e too hard to code

Advantages / Disadvantages of partitioning or keeping as GPRs of a

register set?

3.4.5.Three Essential Registers (C5)

> D:

> E

Three essential registers in any computer are:
1. IP: Instruction pointer or program counter - Hold the address
of next instruction
2. IR: Instruction register - Hold the current instruction
3. FLAG: FLAG register or condition code register - Hold the
conditions resulting from operations
At the end of non-branch instruction IP is incremented to point to the
next instruction. At the end of a successful branch, it contains the

“branch address” where the next instruction is

Null

27

> N
* Null

* IP will be incremented by 1 if all instructions are unit length T/F?
* [P always contains an address T/F?
* IR may contain data in some cases T/F?
* FLAG register bits are:

e set at the end instruction execution

e reset at the beginning of every execution

e reset at the beginning of some execution

e not touch by the CPU but only programmer sets and resets

* How does the CPU know the length of an instruction to increment the
PC?
* Difference between branch and conditional branch?

* How does the FLAG register help conditional branch instructions

3.4.6. Attributes of an Instruction (C6)

> D:
* An instruction has
1. Op_code
2. One, two or more operands
— operand value
— operand address
> E
* Null

28

> N

*

*

Null

Op_code and operand address are two essential parts of an instruction

T/F?

Op_code table is always sufficient to decode an instruction

T/F?

* Can there be 4 addresses in an instruction?

*

How is an instruction with zero address work?

3.4.7.A Sample Program (C7)

> D:

> E

> N

A sample program to read X, Y and then print the lager of the two

1.
2. Read Y
3.
4

. Print the lager of two

Read X

Compare

Null

Null

What is/are the basic part(s) of the program?

What is meant by assembler instruction?

Modify the program to find the largest of three numbers

29

3.4.8.Memory Map (C8)

»> D:
* Contiguous area in RAM
* Code block
* Data block
> E
* Null
> N
* Null

* What happens if program is relocated

* Relocate the program to start at address 1000

30

Chapter 4: Software Design of the proposed “Presentation
System”.

4.1 Introduction

The main goal of this project is to illustrate the concepts used in a Multimedia
Presentation System for Interactive Learning. Some courses taught over a long period
of time with a stable set of concepts could be adopted fer computer based interactive
learning. Students learning in this manner may use a network like Internet or use a
stand-alone system for self-learning. Our project is concerned with the presentation

aspects of such courses in a stand-alone mode.

4.2 Objective & Scope

Our objective is to build a Multimedia Presentation system to be used by one or
more students. The multimedia course material could reside either in a network (LAN)
or on a CD-ROM (stand-alone application). To accomplish this objective, the following

tasks are identified:

1. The author records material of the course to be presented. For now, no
special support is provided by our system for this purpose.
2. The students access our software to have:
¢ Lectures delivered whenever they wish.
e Monitored by professor for certain aspects (i.e., performance of the
student is logged in the database and the professor could monitor student’s

achievement off-line).

31

e Student receives answers from professor for questions asked at an earlier
time through e-mail.
e System adjusts the level of difficulty in presentation according to a few

predetermined categories: level 0, 1, 2 etc.

The scope of this project is limitted to design and build a system to the required
specification and give a demo of the prototype system. It should provide online
activities, namely a student can listen to the lecture, request for quiz and receive quiz
answers interactively. For more detailed interactions, the student will communicate

with the professor using the e-mail facility.

Our software should be able to handle text, graphical animation (embedded in
slides), audio and videos all in the form of a shared medium. Module # 2 (prepared by
Dr. Radhakrishnan for teaching Assembly language) will be used as a sample topic to

demonstrate this system.

Based on the performance of the student “on a node”, the level of difficulty on
the next node is determined and the student will be guided to a pre-determined “next
node”. If a student does not pass the quiz at the default level “n” then the system will
pass the student to a sibling node using simpler examples and conceptually “low level”
concepts at level n-1. If the student still does not understand and the system can not
identify a lower level sibling node, then the system will lead him to a consultation with
the professor. In our sample, the performance of node C1 will determine the next node,
the next node could either be C2, C3 or C4 if student passes the C1 quiz (grade > 50).
In case the student fails the C1 quiz, then the system will lead him to a consultation

with the professor.

32

4.3 System Requirement

Hardware

User's equipment:

IBM PC or compatible 486 SX or later

Sound blaster or compatible

CD ROM drive (if it is stand alone version)
Speaker(s)

Developer's equipment:

Same as user requirement plus

Software

Video capture facility

Scanner for image capturing

Windows 95/NT
Visual Basic 5.0

Database

Microsoft Access

4.4 Multimedia Presentation System Process Definition

The Multimedia Presentation System is a GUI system. Information exchanges
between student and the system is controlled by a series of graphical panels where
students are able to login the system, listen to the lecture and perform various tasks. In

this section, we present the GUI aspects through a set of screen print-outs.

33

4.4.1 Welcome Panel - Getting Started

There are a few different ways to start the Multimedia Presentation System. One
of the easiest ways is that the student just double click on the icon on the desktop to

start the application.

Figure 3: Welcome Panel

Upon starting the application, a welcome panel will pop-up. Student, then, is
asked to click the command START to start the software or the command QUIT to quit

the application.

4.4.2 Login panel - Register to the System

Figure 4: Login Panel - Registering student to the system

34

For the first time log in, the student has to enter ‘SELF’ in student ID dialog
box of the login panel to initiate the registration panel. This process should be done by
the student if he/she is using stand-alone version and it should be done by the

University’s staff if it’s a network version.

By clicking the OK button, the ‘Add Student’ panel is displayed. Student has to
enter the requested information. The information is save in local ID file, which will be

used to validate subsequent log in of this student.

"" Add Student

Master in Computer Science

Figure 5: Add new student panel

4.4.3 Login panel - Sign on the system

The login panel is used to log the student into the multimedia presentation
application. The student ID and password will be asked for verification. The password

is validated against the ID file, which was created in the first time login.

35

Figure 6: Login Panel - Sign on the system

The student has to enter the student ID and the password to get into the system.
If either the student ID or the password was incorrect, a dialog box will display

requesting the student to try again.

4.4.4.Main Panel - Select a Module

:": Assembly Language Learning,

Figure 7: Main Panel - Select a module

36

The Main panel, as the name stands for, is the main form where the student can
select a module that he or she is interested on. This panel contains eight command

buttons, which represent the eight modules of the course.

The student can click on

e Progress button on the tool bar to view his performance from previous
sessions, or

e Help button on the tool bar to initiate the help on using the application, or

e Quit command on the tool bar to quit the application, or

e One of the buttons labeled Module to select the module that he/she would

like to learn.

4.4.5 Main Panel in Action

:": Assembly Language Learning

Figure 8: Mail panel - In action

37

Once a module is selected, additional command buttons will be popped up so
that the student could either select to start the module right away or view the
introduction of the module that he/she is interested on. If the introduction button is
clicked, a video clip will be played to introduce the module that the student just
selected. While the introduction is playing, the student is allowed to START the module
or select another module. Moreover, for convenience, the command under the video
window allows the student to

e Pause/resume the movie by clicking the command

e Fast forward/backward the movie by dragging the control on the slider

4.4.6 The Concept Graph Model Panel

Y

=": Concept Graph Model

Figure 9: Concept Graph Model panel

The concept graph model CGM panel is actually the heart of the application.

This panel is composed of seven sections:
38

Menu bar:

The menu bar is introduced for future expansion. On this release, menu bar

only has 2
1.
2.

Tool bar:
1.
2.

3.
4.
S.

options
File - Exit: Exit the multimedia presentation system.

Help-About: Display a brief message about the application.

FAQ button allows student to access to Frequently Asked Questions.

Mail button allows student to activate the mail sub-system so that he/she
could communicate with the professor or other students.

Main button allows student to go back to the main panel.

Help button allows student to get help of current application.

Quit button allows student to quit the application at any time.

CGM Section:

This section displays the CGM nodes where nodes are linked together. The

structure of the node is top-down and color coded where

1.
2.
3.

Red means that the nodes have been complered.
Yellow means that the nodes are not visited yet.

Green means that node is current active node.

Control section:

This section contains the control buttons to the CGM nodes.

1.
2.
3.

Prev Node button allows student to play the previous node.

Curr Node button allows student to start playing a node.

Next Node button allows student to play next node in the concept graph
model. However, this command is enabled only if the student has already
completed the current node. In another word, the student has to pass the quiz
of the current node before he/she can advance to the next level of the course.

Sibling button allows student to play the sibling node.

5. Play button resumes the current movie.

Stop button stops the current movie.

39

7. Quiz button requests or quiz of the current node.

8. Progress button requests for student performance status.
Video/Slide Section:

This section displays the movie of the current selected node. It can also be used
to display the slides of the current active node.
Lecture Section:

This section displays the lecture (including probe questions, examples,
analogies...) of the current active node. The lecture is a text file. Usually the lecture
text file is displayed in conjunction with a movie.

Status bar

Displays the status of the current node. For the time being, it’s used to display

the long description of the active node and the current system time, date. In future, its

use can be enhanced.

4.4.7 The CGM Panel - Slide Section in Action

IP: Instruction Printer (Program Counter)
lrw“abn Register

nies 3dd ax, bx
1108 imul ax, ex

1105
[

IR before

IR after

[TeT Jruosen
ov

T T v

Figure 10: CGM panel - Displaying slides
40

The student could click a node on the CGM section. The information pertinent

to this node will be played. It could be either an audio presentation in conjunction with

the slides or a video presentation in conjunction with lecture.

The audio has the following characteristics:

The audio is a sound file with the extension of ‘.wav’.

No display (it’s sound).

The slides have the following characteristics

The slide could be either a windows meta file (extension .wmf) or a bit map
file (extension .bmp).

The slide of the current node is displayed on in the Video/Slide extended
section.

The slides are displayed as a slide show where the time intervals between the

start time and end time of the given slides are predefined by the professor.

4.4.8 The CGM Panel - Movie Section in action

A node could also be composed of a video clip with other media. Then the clip

is constrained as follows:

The video clip is played and displayed in the video section.
The size of the clip is fixed.

The clip is controlled by the control commands in the middle of the screen

or the control button positioned underneath the clip.

41

egiters are temp storage

" Like scratch pad - quick access

“ Accessng a RAM takes 100s of ns:
1§ regstess are 10 times faster

" Every computer has many registers

° Read from AAM into registers.

process and then leave & in registers

" Register to RAM = STORE

Figure 11: CGM panel - Playing movies

Every lecture has the following overall characteristics
e The lecture actually is a text file.
e The lecture of the current node is displayed in the lecture frame.

e Scroll bars are used if the lecture text does not fit in the lecture frame.

4.4.9 Quiz Panel - Performance

The Quiz panel is designed to test the student’s understanding of the subject
described in the node. Normally, most of the nodes have the quizzes to evaluate the

level of understanding of the student.

To activate the quiz panel, the student simply clicks the Quiz button. The quiz
will be popped up showing the question on the top part of the panel. The proposed
answers are in the Answer frame. Radio buttons are used for the student to enter his or

her answers.

42

Figure 12: Quiz panel

4.4.10 FAQ - Frequently Asked Question

The FAQ panel is nothing more than an electronic board to display the answers
to the frequently asked questions. The FAQ is a text file, developed by the professor.
This file should be updated by the professor whenever there is need.

<": Frequently Asked Questions

91 What is an Autharing System?

Figure 13: FAQ Panel

43

4.4.11 Mail Panel - Contacting The Professor

The mail panel allows student to log on to the Windows 95 mail system and
send E-mails to the professor or to his/her fellow students. Basically, the student has to
log into a mail profile that was assigned to him or her. (This option is practical if the
workstation is used by more than one student). Once successfully logged on to the mail

system, the student will be able to send and receive mails.

Figure 14: Mail Panel - Contacting Your Professor

The mail panel has the following control:

On the Menu bar:
1. File - Print Message: Allows student to print a message.
2. File - Printer Setup: Allows student to change the set up of printer (using

Windows printer control).

Edit - Delete: Allows student to delete messages.

Mail - Log on: Allows student to logon his or her mailbox.

Mail - Log off: Allows student to log off from his or her mailbox.
Options - Mail: Allows student to change mail references.
Windows - Cascade: Change the view of mail system.

Windows - Horizontal/Vertical: Change the display of the messages.

A S AR A

Help - About: Display help.
Upon successful log-on, the buttons on the tool bar are activated and the student

could perform the basic functions of a mail system.

On Tool bar:

1. Compose button: Allows student to compose a new message. The tool for
the mail editing is actually the default mail editor of the workstation. For
example, if the default mail of the workstation is the Internet mail, then the

Internet mail editor will be used to compose a new message.

Figure 15: Mail Panel - Composing Messages

45

2. Reply or reply all buttons: Allows the student to reply to the authors all the
mails that he or she has received.

3. Delete button: Allows the student to delete his or her E-mails in the mailbox.

4. Previous/Next buttons: Allows student to select another message in a linear

sequence.

4.5 Database Definition for Multimedia Presentation

In this section we present the various databases along with their definitions as
used in our system. Each sub-section describes one table of the database and they are

implemented in Microsoft’s Access.

4.5.1 CGM_Student Grade

Description
This table contains all grades which the student has obtained after
visiting node(s) of the CGM.
Purpose
We use this table to keep track of student's grades and student's
performance level.
Primary keys
1. Curr_Student Id
2. Curr_Module Name
3. Curr_Node Name
Field Name, Data Types and Field Size
1. Curr_Student Id Text 10
2. Curr_Module_Name Text 10

46

3. Curr_Node Name Text 10

4. Curr_Node_Grade Number Integer
Example

In this example, student '2169568' has visited nodes 'C1','C3','C5' of

module 'M2'. Student '1234567' has visited node 'C1' only.

Curr_ Curr_ Curr_ Curr_
Student ID | Module | Node Node_
Name Name Grade
2169568 M2 C1 80
2169568 M2 C2 0
2169568 M2 C3 90
2169568 M2 C4 0
2169568 M2 O8] 100
2169568 M2 Cé6 0
2169568 M2 C7 0
2169568 M2 C8 0
1234567 M2 C1 100
1234567 M2 C2 0
1234567 M2 C3 0
1234567 M2 C4 0
1234567 M2 Cs5 0
1234567 M2 Cé6 0
1234567 M2 C7 0
1234567 M2 C8 0

Table 1: Student Grade Table

4.5.2 CGM_Module Info

Description
This table contains all information regarding a module such as name,

description, avi /audio file name.

47

Purpose
We use this table to find the module's description and the introduction

video/audio file associated with it.

Primary keys
1. CGM_Module Name

Field Naine, Data Types and Field Size

1. CGM_Module Name Text 10

2. CGM_Module_Short_ Desc Text 10

3. CGM_Module Long Desc Text 40

4. Mod_Avi_FName Text 10

5. Mod_Wav_FName Text 10
Example

In this example, we have 8 modules of the Assembly Language Course.

Each module has either video/audio introduction file.

CGM_ CGM_ CGM_ Mod Mod _
Module_ |Module |Module Avi_ Wav_
Name Short _ Long FName FName
Desc Desc

Ml M1 Beginning M1 NA
M2 M2 A Sample Program NA M2
M3 M3 Assembling M3 NA
M4 M4 Segment Registers NA M4
MS5 M5 Indexing & Immediate| M5 NA
M6 M6 Program Relocation [INA M6
M7 M7 Modularity M7 NA
MS8 M8 Assembler Link LLoad INA NA

Table 2: Module Table

48

4.5.3 CGM_Node Info

Description
This table contains all information about a node such as name, position,
type, its sibling, description, video + text file name, audio file name,
number of questions in the quiz for this node.

Purpose
We use this table to find the CGM node's name, position, type, sibling
node, description , video + text file name, audio file name, number of
quizes.

Primary keys
1. CGM_Module Name
2. CGM_Node Name

Field Name, Data Types and Field Size

1. CGM_Module Name Text 10
2. CGM_Node Name Text 10
3. CGM_Node Row Number Integer
4. CGM_Node Col Number Integer
5. CGM_Node Type Text 3
6. CGM_Sibling Node Text 10
7. CGM_Module Short Desc Text 10
8. CGM_Module Long Desc Text 40
9. CGM_Avi FName Text 10
10. CGM_Txt_FName Text 10
11.CGM_Wav_FName Text 10
12. CGM_Quiz_Count Number Integer

49

Example
In this example, we have 8 nodes in module #2 of the Assembly

Language course. Each node has either video + text files or audio file.
There are 3 types of CGM_Node Type: TOP, MID, BOT.

CGM_ | CGM_ | CGM_ | CGM_ CGM_ | CGM_ | CGM_
Module_| Node_ | Node_ | Node_ | Node_ |Sibling ' Node_
Name | Name Row Col Type Node | Short_
Desc
M2 Cl 1 3 TOP PROF C1
M2 C2 2 2 MID C3 C2
M2 C3 2 3 MID C4 C3
M2 C4 2 4 MID PROF C4
M2 C5 3 3 MID PROF C5
M2 C6 4 3 MID PROF C6
M2 C7 5 3 MID PROF Cc7
M2 C8 6 3 BOT PROF C8
CGM_ CGM_ | CGM_ CGM_ | CGM_
Node _ Avi_ Txt Wav_ Quiz_
Long_ FName | FName | Fname | Count
Desc
Register as scratch pad C1 Cl NA 2
Size and number of registers NA NA C2 1
What to store in a register NA NA C3 1
Classifying the registers C4 C4 NA 1
Essential registers NA NA C5 | 4
Attributes of an instruction Cé6 C6 NA | 2
A sample program C7 C7 NA 1
Memory map NA NA C8 1

Table 3: Node Information Table

50

4.5.4 CGM _Prev_Node

Description
This table contains the previous node(s) of the current node.
Purpose
We use this table to find the previous node with respect to the current
node.
Primary keys
1. Curr_Module
2. Curr_Node Name
3. Prev_Node Name
Field Name, Data Types and Field Size

1. Curr_Module Text 10

2. Curr_Node Name Text 10

3. Prev_Node Name Text 10
Example

In this example, current node C5 has 3 different previous nodes C2, C3,
C4. Current node C2, C3, C4, C6, C7, C8 have only 1 previous node.

Curr_ Curr_ Prev_

Module_ Node _ Node

Name Name Name
M2 Cc2 C1
M2 C3 C1
M2 Cc4 Cl
M2 C5 c2
M2 (O8] C3
M2 C5 C4
M2 C6 CS
M2 Cc7 Cé6
M2 Cs8 Cc7

Table 4: Previous Node Table

51

4.5.5 CGM_Next Node

Description
This table contains the next node(s) and the different range(s) of grade
of the current node.
Purpose
We use this table to find the next node based on the grade of the current
node.
Primary keys
1. Curr_Module
2. Curr_Node Name
3. Next_Node Name

Field Name, Data Types and Field Size

1. Curr_Module Text 10
2. Curr_Node Name Text 10
3. Next_Node Name Text 10
4. Curr_Node Min Number Integer
5. Curr_Node Max Number Integer

Example
In this example, current node C1 has 3 different grade ranges for the 3

different next nodes C2,C3,C4. Current node C2, C3, C4, CS5, Ce6, C7

have only 1 grade range because they have only 1 next node.

Curr_ Curr_ Next_ Curr_ Curr_
Module_ | Node Node_ Node _ Node _
Name Name Name Min Max
M2 Cl1 c4 50 70
M2 C1 C3 71 85
M2 Cl1 C2 86 100

52

M2 C2 Cs 50 100
M2 C3 C5 50 100
M2 4 Cs 50 100
M2 C5 C6 50 | 100
M2 Cé6 C7 50 100
M2 c7 C8 S50 100

Table 5: Next Node Table

4.5.6 CGM_Slide Info

Description

This table contains the information about the slide(s) of the CGM node.
Purpose

We use this table to show the slide(s) of the CGM node using the

sequence and time interval given a priori for synchronization purposes.
Primary keys

1. CGM_Module

2. CGM_Node Name

3. CGM_Slide Name

4. CGM_Slide_Seq

Field Name, Data Types and Field Size

1. CGM_Module Text 10
2. CGM_Node Name Text 10
3. CGM_Slide Name Text 10
4. CGM_Slide Seq Number Integer
5. CGM_Slide_Start_Time Number Integer
6. CGM_Slide_End Time Number Integer
7. CGM_Slide FName Text 10
Example

In this example, current node C1, C3, C4, C5, C8 have 1 slide; C2, C7
have 2 slides; C6 has 4 slides.

53

CGM_ | CGM_ | CGM_ | CGM_ | CGM_ | CGM_ CGM_
Module | Node_ | Slide_ | Slide | Slide | Slide_ | Slide
Name | Name | Name Seq Start | End_ | FName
Time Time

M2 C1 S11 1 0 10 S11
M2 C2 S21 1 0 10 S21
M2 C2 S22 2 30 50 S22
M2 C3 S31 1 0 40 S31
M2 C4 S41 1 0 20 | 841
M2 Cs S51 1 0 45 Ss1
M2 C6 S61 1 0 30 S61
M2 Cé6 S62 2 31 56 S62
M2 Cé6 S63 3 57 100 S63
M2 C6 S64 4 200 300 S64
M2 C7 S71 1 0 40 | Sl
M2 Cc7 S72 2 41 90 . _S72
M2 C8 S81 | 1 0 100 . S81

Table 6: Slide Information Table

4.5.7 CGM_Quiz _Info
Description
This table contains the information about the quiz(s) of the CGM node.
Purpose

We use this table to show the quiz question(s) of the given CGM node.
The quiz questions can be one of the following types:
e YES/NO or TRUE/FALSE
e Multiple choices
Primary keys
CGM_Module
CGM_Node Name
CGM_Quiz_Name
CGM_Quiz_Seq

WO -

54

Field Name, Data Types and Field Size

1.

12. CGM_Ans_Desc

Example

A A L o

CGM_Module

CGM_Node_Name
CGM_Quiz Name

CGM_Quiz_Seq

CGM_Quiz_Grade
CGM_Quiz_FName
CGM_Ansl_FName
CGM_Ans2 FName
CGM_Ans3_FName
10. CGM_Ans4 FName
11. CGM_Correct_Answer

Text
Text
Text
Number
Number
Text
Text
Text
Text
Text
Number

Text

10

10

10
Integer
Integer
10

10

10

10

10
Integer
100

In this example, current node C2, C4, C7 have 1 quiz; C1, C6 have 2

quizzes; C5 has 4 quizzes. Each quiz has maximum 4 choices and one

correct answer with the description associated with it.

CGM_ | CGM_ | CGM_ | CGM_ | CGM_ | CGM_ CGM_
Module_| Node | Quiz_ | Quiz_ | Quiz_ | Quiz_ | Ansl_
Name | Name | Name Seq Grade | FName | FName
M2 C1 Q11 1 50 Q11 Ql1Al
M2 C1 Q12 2 50 Q12 Q12A1
M2 c2 Q21 1 100 Q21 Q21A1
M2 Cc4 Q41 1 100 Q41 Q41A1
M2 (O] Q51 1 25 Q51 Q51A1
M2 (O] Q52 2 25 Q52 0Q52A1
M2 C5 Q53 3 25 Q53 Q53A1
M2 Cs Q54 4 25 Q54 Q54A1
M2 Cé6 Q61 1 50 Q61 Q61A1
M2 Ccé6 Q62 2 50 Q62 Q62A1
M2 Cc7 Q71 1 100 Q71 Q71Al1

55

CGM_ | CGM_ | CGM_ | CGM CGM

Ans2 Ans3 Ans4_ |Correct Ans

FName | Fname | FName Desc

011A2 | Q11A3 | Ql11A4 The correct answer is number 1

Q12A2 | Q12A3 | Q12A4 The correct answer is number 2

021A2 | Q21A3 | Q21A4 The correct answer is number 3

Q41A2 | Q41A3 | Q41A4 The correct answer is number 2

051A2 | O51A3 | O51A4 The correct answer is number 1

0Q52A2 | O52A3 | O52A4 The correct answer is number 4

053A2 | O53A3 | O53A4 The correct answer is number 2

0Q54A2 | O54A3 | O54A4 The correct answer is number 3

Q61A2 | Q61A3 | Q61A4 The correct answer is number 2

Q62A2 | 062A3 | O62A4 The correct answer is number 4

RN W N | = 1N O N (= g
[¢]
]

Q71A2 | Q71A3 | Q71A4 The correct answer is number 1

Table 7: Quiz Information Table (Part 1 & 2)

4.6 Data Flow Diagram & Process Definition

In this section we describe the overall data flow in the operation of the proposed

system. The various databases explained in the previous section are used here.

4.6.1 Database connectivity

- CGM_Prev_Node

SS—
CGM_Student_Grad

CGM_Next_Node

Figure 16: Database Connectivity
56

The above diagram illustrates the overall data flow between the various
databases (tables). The left side of the diagram displays the four information tables to
complement the current node. The information contained in these tables will be used to
drive the application. The information can be the location of the files, the time attribute
to drive the slide show or the description of the node etc. The right side of diagram
displays the two control node tables. These tables are used to conmtrol the flow of
software. For example, the CGM_Next Node ids used to join with the
CGM_Student_Grade table to identify the next node that the student has to visit.

4.6.2 Process Model

MMDB

Descriptive

o fp—
Test
Questions

: =

N

P Probe
Questions

Q

Figure 17: Process Model

Legend:
E: {e} e = example to describe the concept.
N: {n} n = analogy used by the teacher to explain the concept.

57

P: {p,.p,,..- P, } Probe question to examine student’s level of
understanding [p;s are linearly ordered or partial
ordered].

Q: {q,, 9,, .-- 4,} q; = test questions that can be used by teacher or student
for practicing the “skill” taught, like mid-terms, exams,
quizzes etc.

(Based on the CGM proposed by Dr. Radhakrishnan & Dr. V. Rajaraman).

4.6.3 Detailed Process Model

e e e R

Figure 18: Detail Process Model

58

4.6.4 Process Definition

Main Module:

Main driver to control Multimedia Presentation system. By calling appropriate

sub modules. Multimedia Presentation system gives lectures to student, monitors

students activities, populates quiz questions.

> Start up Multimedia Presentation system software.

> Display log in screen.

> Call initialize module to get student information.

> Query studying level database to identify the studying pattern of this student.

> Start lecture, example, quiz where the student left off from last session by
calling appropriate player.

> Display log off screen.

Lecture Control:

Delivery lecture, probe questions, concept example sections following the order
from main module. However, in case of interrupts, it should be able to stop and

return to main module.

Base on the option selected from student perform:
> Display video & text
Call video player and text player at the same time having the same node
ID. For example, the lecture would be: C1.Avi and C1.Txt where video
clip can be found from c:\author\video and text file can be found from
c:\author\text.

> Display audio & slides

59

Call audio player and slide player at the same time having the same node
ID. For example, the lecture would be: C1.Wav and C1.Wmf where
audio file can be found from c:\author\audio and slides can be found

from c:\author\slide.

Quiz Control:

This control populates the quizzes to student upon requested by the student. This

control calls the text player to display the questions and accepts responses from the
student in the form of Yes/No, True/False, and multiple choices. Answers from
students are captured, accumulated and diagnosed to identify the next appropriate

node to the student.

Student Info Control:

The student can ask for his or her performance during the course. It also
compares the level of achievement of that student with the group’s average where
group’s average is calculated upon accumulating the grades of other students. Note

that, the group’s average is achievable only if it’s the network version.

Video Class (video player)

According to the request from the calling module, the appropriate video clips

are searched from correct folders and played. N.B: Video player could be
interrupted and returned to the calling module. The video player can restart from
the frame where it left off or restart from the beginning. Moreover, the video player

can perform the fast forward/backward as well.

Audio Class (audio player)

According to the order from the calling module, the appropriate audio files are
searched from correct folders and played. N.B: Audio player could be interrupted

and returned to the calling module. In this event, the audio player can not restart

60

from where it left off. This module can not be run concurrently with video player

otherwise, it makes no sense at all.

Slide Class (slide player)

According to the order from the calling module, the appropriate slides are

searched from correct folders and displayed. Since the slide show is time
dependent, timer is used to control the flow of the slides. N.B: Slide show is

executed at the same time as the audio show.

Text Class (text player)

According to the order from the calling module, the appropriate text files are
searched from correct folders and displayed. This class is also a gateway to
BBS/FAQ (FAQ will be text only environment).

61

Chapter 5: A Typical User and the System - Summary &
Conclusion

5.1 A Typical User

As we have mentioned in previous chapter, the multimedia presentation system
is built to assist beginning students in self-learning of the Assembly language for a PC.
Since, the users are novices; the system is built in such the manner that the GUI based
user interface is helpful to them. As an example, let us assume that a new student who
just joined Concordia University in the Computer Science program, nick named Sam

with student ID 1234567 is using our system.

5.2 Walk-through

In order to access and operate the system, the following two conditions have to
be satisfied:
a) Sam is registered and authorized to use the system.

b) Sam selects a password.

The system administrator registers a new student by using Login & Add Student

Panels. (See section 4.4.2 to register a new student into the system).

1. Sam uses the Login Panel to login the system (see section 4.4.3) by entering his

student ID and his password. This will lead him to the main menu.

62

. From the Main Menu Panel, Sam has the choice to select the module that he
wishes to learn. In this menu, he has no restriction in selecting a module at all.
This means that he can start module #2 before module #1 (this is subject to

change in future extension - see section 5.4).

. Sam decides to learn the module #2 for now. He, then, clicks the button
“Module 2”. Two additional buttons will pop up allowing him to start the

module #2 or view the introduction.

. Since, he is new to the system, he would choose “Intro to Module 2” button. He
clicks this button. A video clip will be played. The movie will introduce Sam to

the content of Module 2 - An assembly sample program.

. He clicks the “Start” button. The Concept Graph Panel will appear (see section
4.4.6). Since it’s the first time Sam accesses to the system, the first node, C1, in
the CGM panel will be green and enabled. All the other nodes will be yellow
indicating that these nodes are not visited yet and these nodes are not enabled.

Sam will not be able to click on these nodes to start the lecture.

. To start the lecture of the node C1, Sam could either click on the node C1 itself
or click on the button “Curr Node” to start the lecture of node C1. A video clip
will be played in the Video/Slide frame to delivery the C1 lecture. At the same

time, the text lecture of C1 will be displayed in the “lecture” frame.
. The control buttons (in the “Control” frame”) are changed according to the state

of the lecture. For example, while the video clip is playing, the “Stop” button
will be activated but the “Play” button will be deactivated.

63

8. Since the CGM panel is the most important panel of the application, Sam has to

understand the meaniug and functionality of each control on this panel. As per

our design, the panel is friendly to use and simple to understand. Following is

the list of CGM panel characteristics:

The CGM node:

Green nodes - This is current active node. This node will be played if the
button “Curr Node” is clicked. The state of the node is enabled which means
that Sam can click the node to start the lecture.

Red nodes - These nodes were visited and quizzes have been passed (Sam
had obtained a mark of 50 or more). These nodes are enabled; Sam can click
on these nodes for a review.

Yellow nodes — These nodes are not visited yet and most of the time, but not

all, they are not activated unless Sam has already passed the previous node.

CGM path:

A path (sequence of nodes) in the CGM is appropriately chosen to suite
Sam’s level of understanding. For example, if Sam passed the node C1 after
obtaining a mark of 50, the node C4 will be “green” to suggest that C4 is
the next node he should visit. On the other hand, if he passed C1 with mark

of 86 or over, the node C2 will turn “green”.

Video frame:

When a video clip is played, Sam could move forward or backward the
video by dragging the control on the slider under the movie screen. Sam
could also stop or restart the video by clicking the square/triangle button

under the movie screen. (See section 4.4.8 for more detail).

Slide frame:
This frame shares the space with the movie frame. This means that the
movie and the slides will never go together. As Sam will find out that the
slides are displayed in conjunctions with an audio clip. The software
assumes that the audio and the slide are a pair while the video and the

lecture are another pair.

The Sibling button:
This button allows Sam to choose an easier node. For example, Sam passed
node C1 with the mark of 86. The application suggests that the next node is
C2. Sam visited node C2 and found that it was too difficult for him. He,
then, could click “Sibling button” to select an “equivalent node” but simpler
in presentation. Upon clicking “Sibling Node” button, the node C3 will be
activated. Again, Sam might click “Sibling Node” button if he finds C3 is
still difficult to him. And so on, until there are no sibling node to the current

active node.

As Sam keeps going on clicking “Sibling” button, at a certain point, there will
be no more sibling node and the system will suggest Sam to use the e-mail sub-system
to contact his professor. Sam, then, click the “Mail” button on the tool bar. The Mail
Panel (section 4.4.11) will pop up and Sam is ready to sign in the mail system to

contact his professor.

At any time, Sam can check his progress status (compared to another students)

by clicking “Progress” button.

Sam is also able to get a certain kind of information if he is uncertain about

some concepts in the lecture. He can click the “FAQ” button on the tool bar to access

65

the frequently asked question bulletin board. From the FAQ Panel, Sam might find the
answers to his questions. On the contrary, Sam might find that the FAQ does not
contain his specific question. He, then. can click on the “Send Mail” button and sign on
the e-mail sub-system to contact his professor. The mail sub-system in this project has

all the basic functions of a mail system.

While the lecture attached to the current node is being delivered, Sam will be
able to pause and test his understanding by clicking the “Quiz” button to access to Quiz
Panel (see section 4.4.9). In the Quiz Panel, Sam will encounter a series of questions
with multiple choice answers. Upon answering a question, Sam will be advised if his
answer is correct or not. In the event if his answer is incorrect, a brief description of
the answer will be displayed. When the quiz is completed, the system will update the
database with the accumulated mark and the next node suggested by the system will be

enabled and marked “green”.

5.3 System Summary and Conclusion

The Multimedia Presentation System presented in this report has a GUI
interface. Information exchanges between student and the system is controlled by a
series of graphical panels where students are able to log into the system, listen to the

lecture and perform various tasks.

The subject matter to be taught is organized into several modules where each
module is divided into several sections like in the textbook. One section corresponds to
one node in the concept graph model. Every module has an associated concept graph as
conceived by the authors. For each node of the concept graph, there is a file or multiple
files with the following types: text, power point, audio, video or slides to associate with

it. As a rule of thumb, the audio will go with slides where the video will work with

66

lecture. This makes sense, because the student will not watch the video and the slides at

the same time. Moreover, the real estate (area of screen displayed) is limited.

The concept graph of a selected module for learning is displayed on the screen
and the student can click on any valid node so that, the corresponding file(s) is
displayed. When the video file is played, the student can forward, backward, pause,
stop, or resume the video clip. Each text file, which contains the lectures relevant to
current concept graph node, will be displayed on a screen during the time the video is

played.

A student normally navigates with the help of a concept graph, visiting several
nodes as many times as required. The various modules of the course, eight modules in
our case, have linear relationships, or may be controlled by another concept graph at a

level higher than the module level.

For self-evaluation, the student can choose the quiz that is associated with the
current concept graph node. At the same time, the system based on the student’s
achievement will adjust the flow of the module by routing the student to the most
suitable path of nodes. Based on the performance of the student “at a node”, the level
of difficulty on the next node is determined and the student will be taken to a pre-
assisted level of complexity of the next node. If a student does not pass the quiz at the
default level “n” then the system will pass the student to a sibling node using simpler

examples and conceptually “low level” concepts at level n-1.
To enrich the application, an e-mail sub-system is integrated so that student can

send adhoc questions (not appearing the FAQ panel) and receive answers from the

professor.

67

The main goal of this project has been illustrated through a prototype showing
how a Multimedia Presentation System can be used for Interactive Learning. In
general, a student learning in this manner may use a network like Internet for
cooperative learning or use a stand-alone system for self-learning. The current project
is aimed as a stand-alone system intended for self-learning. The proposed system for
interactive learning was designed, developed, tested and implemented successfully.

Extensive usability testing of the system remains to be done.

5.4 Future Extension

1. Adding intelligent heuristics during navigation of the CGM so that it can

adjust the details of presentation to match the student needs.

2. Adding voice recognition and speech I/O for the user’s convenience.

3. Modifying the system to have the network/Internet version. It will have to
send digital video, animation and multimedia data over network. This allows

students to take courses remotely. It will help the continuing education students

who work during the day and swdy from home at night.

68

References

[Adie 96]

[CEEP 95]

[HeGr 93]

[Hols 94]

[ISKM 93]

[MiDu 93]

[Pate 96]

[Gert 95]

Chris Adie, Network Access to Multimedia Information - Summary, Jan.
96, http://far.mit.edu/diig/NII_info/nami. html.

CEE Publication, Introduction to Multimedia, Center for Excellence in
Education at Indiana University, Oct. 95,
http://cee.indiana.edu/workshops/multipres/MM.html.

Brian E. Heckman, Thomas M. Graziano, Integrating Computer-aided
Learning into the University Classroom: A Revised Teaching Model,
Preprint Volume Of The First International Conference On Computer-
Aided Learning And Distance Learning In Meteorology, Hydrology, And
Oceanography (CALMet), 5-9 July 1993.

Erik Holsinger, How multimedia works, Ziff-Davis Press, CA, 1994.

Hiroshi Ishikawa, Fumio Suzuki, Fumihiko Kozakura, Akifumi
Makinouchi, The model, language, and implementation of an object-
oriented multimedia knowledge base management system, ACM
Transactions on Database Systems, Voi.18, No. 1 (March 1993), pp- 1-
50.

Chunsheng Miao & Charles Duncan, International Cooperation in
Developing CAL Material, Preprint Volume Of The First International
Conference On Computer-Aided Learning And Distance Learning In
Meteorology, Hydrology, And Oceanography (CALMet), 5-9 July 1993.

Kinshuk and Ashok Patel, Intelligent Tutoring Tools - Redesigning ITSs
Jor Adequate Knowledge Transfer Emphasis, International Conference on
Intelligent and Cognitive Systems - ICICS'96, Iran, 23-26 September
1996.

Nat Gertler, Multimedia Illustrated, Que Corporation, IN, 1994.

69

Appendix - Source Code

FrmAbout - About the application

' Form Name..: frmAbout.frm
' Description: Display information about the application

Option Explicit

' Reg
Const
Const
Const
Const
Const
Const
Const
Const

' Reg
Const
Const
Const
Const

Const
Const
Const
Const

Key Security Options...
READ CONTROL

KEY QUERY VALUE

KEY SET VALUE

KEY CREATE SUB_KEY

KEY ENUMERATE_SUB_KEYS
KEY_NOTIFY

KEY CREATE_LINK

KEY ALL_ACCESS

Key ROOT Types...
HKEY LOCAL MACHINE
ERROR_SUCCESS
REG_SZ

REG_DWORD = 4

gREGKEYSYSINFOLOC
gREGVALSYSINFOLOC
gREGKEYSYSINFO
gREGVALSYSINFO

= &H20000

= gH1

= gH2

= &H4

= &H8

= EH10

= §H20

= KEY_QUERY VALUE + KEY SET VALUE + _
KEY_CREATE_SUB_KEY + KEY_ENUMERATE SUB_KEYS +
KEY NOTIFY + KEY_CREATE_LINK + READ CONTROL

&HB80000002

=0

=1 ' Unicode nul terminated string
' 32-bit number

= "SOFTWARE\Microsoft\Shared Tools Location"
= "MSINFO"

= "SOFTWARE\Microsoft\Shared Tools\MSINFO"

= "PATH"

Private Declare Function RegOpenKeyEx Lib "advapi32" _

Alias
(ByVal
ByVal
ByVal
ByVal
ByRef

"RegOpenKeyExA" _

hKey As Long, _

1pSubKey As String, _
uilptions As Long, _
samDesired As Long, _
phkResult As Long) As Long

Private Declare Function RegQuerColValueEx Lib "advapi32" _

Alias
(ByvVal
ByVal
ByVal
ByRef
ByVal
ByRef

"RegQuerColValueExA" _
hKey As Long, _
lpValueName As String, _
lpReserved As Long, _
1pType As Long, _

lpData As String, _
lpcbData As Long) As Long

70

Private Declare Function RegCloseKey Lib "advapi32" (ByVal hKey As Long) As Long

Private Sub cmdQuit Click()
End
End Sub

Private Sub cmdSysInfo Click()
Call StartSysiInfo
End Sub

Private Sub cmdOK_Click()
frmLogin.Show
Unload Me

End Sub

Private Sub Form Load()
' Center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height) / 2
1blVersion.Caption = "Version " & App.Major & "." & Bpp.Minor & "." & App.Revision
End Sub

Public Sub StartSysInfo(}
On Error GoTo SysInfoErr

Dim rc As Long
Dim SysInfoPath As String

' Try To Get System Info Program Path\Name From Registry...
If GetKeColValue (HKEY LOCAL_MACHINE, gREGKEYSYSINFO, gREGVALSYSINFO, SysInfoPath) Then
' Try To Get System Info Program Path Only From Registry...
ElseIf GetKeColValue(HKEY LOCAL MACHINE, gREGKEYSYSINFOLOC, _
gREGVALSYSINFOLOC, SysInfoPath) Then
' Validate Existance Of Known 32 Bit File Version
If (Dir(SysInfoPath & "\MSINFO32.EXE") <> "") Then
SysInfoPath = SysInfoPath & "\MSINFO32.EXE"
Else ' Error - File Can Not Be Found...
GoTo SysInfoErr

End If
Else ' Error - Registry Entry Can Not Be Found...
GoTo SysInfoErr
End If
End If

Call Shell (SysInfoPath, vbNormalFocus)
Exit Sub

SysInfoErr:

MsgBox "System Information Is Unavailable At This Time", vbOKOnly
End Sub

Public Function GetKeColValue(KeyRoot As Long, KeyName As String, _
SubKeyRef As String, _
ByRef KeyVal As String) As Boolean

71

Dim i As Long ' Loop Counter

Dim rc As Long ' Return Code

Dim hKey As Long ' Handle To An Open Registry Key

Dim hDepth As Long !

Dim KeyValType As Long ' Data Type Of A Registry Key

Dim tmpVal As String ' Tempory Storage For A Registry Key Value
Dim KeyValSize As Long ' Size Of Registry Key Variable

' Open RegKey Under KeyRoot {HKEY LOCAL MACHINE...}

rc = RegOpenKeyEx (KeyRoot, KeyName, 0, KEY ALL ACCESS, hKey) ' Open Registry Key

If {(rc < ERROR_SUCCESS) Then GoTo GetKeyError ' Handle Error...
tmpVal = String$(1024, 0) ' Allocate Variable Space
KeyValSize = 1024 ' Mark Variable Size

' Retrieve Registry Key Value...
rc = ReqQuerColValueEx (hKey, SubKeyRef, 0,

KeyValType, tmpVal, KeyValSize) ' Get/Create Key Value
If (rc <> ERROR_SUCCESS) Then GoTo GetKeyError ' Handle Errors
If (Asc(Mid(tmpVal, KeyValSize, 1)) = 0) Then ' Win95 Adds Null Terminated Str
tmpVal = Left(tmpVal, KeyValSize - 1) ' Null Found, Extract From Str
Else ' WinNT Does NOT Null Terminate
tmpVal = Left(tmpVal, KeyValSize) ' Null Not Found, Extract Str

End If

' Determine Key Value Type For Conversion...

Select Case KeyValType ' Search Data Types...

Case REG_SZ ' String Registry Key Data Type
KeyVal = tmpVal ' Copy String Value

Case REG_DWORD ' Double Word Reqg. Key Data Type
For i = Len(tmpVal) To 1 Step -1 ' Convert Each Bit

KeyVal = KeyVal + Hex(Asc(Mid(tmpVal, i, 1))) ' Build Value Char. By Char.

Next
KeyVal = Format$("&h" + KeyVal) ' Convert Double Word To String

End Select

GetKeColValue = True ' Return Success

rc = RegCloseKey (hKey) ' Close Registry Key

Exit Function ' Exit

GetKeyError: ' Cleanup After An Error Has Occured...

KeyVal = "" ' Set Return Val To Empty String

GetKeColValue = False ' Return Failure

rc = RegCloseKey (hKey) ' Close Registry Key

End Function

72

FrmAddStudent - Add new student to system

Al - —_

' Form Name: frmAddstudent. frm
' Description: This form is used for registering student name into the system

Option Explicit

Private Sub cmdCancel Click()
Unload Me
End Sub

Private Sub cmdOK Click()
With CurrStudent

.StudentID = txtStudentID
.Password = txtPassword
.FirstName = txtFirstName
.MiddleName = txtMiddleName
.LastName = txtLastName
.IntelligentLevel =5 'Maximum level which student can achieve
.AccumGrade =90
.Comments = txtComment
End With

stuFileName = App.Path & "\" & txtStudentID & stuFileExtn
Call PutStudentInfo
Call InsertIntoCurrNode(txtStudentID)

Unload Me
End Sub

Private Sub Form Load()
' Center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height) / 2

73

FrmCGM - CGM main panel

' Form Name: frmCGM. frm
' Description: This form is the main form of the application.
' It contains the CGM, video, text, slide .. screens.

1

Public SveNodeName As String
Public AllSlideCnt As Long
Public SlideShowOn As Boolean

Private Sub cmdCurrNode Click()

' Start current node
Call ProcessCurrNode (CurrCntlImg.Tagq)

End Sub

Private Sub cmdFAQ Click()

' active for frmFAQ when requested

frmFAQ. Show
frmCGM. Hide

End Sub
Private Sub cmdHelp Click()

frmMessage.rtfMessage = Chr(13) & Chr(10) & Chr(13) & Chr(10)

& "Click a node in the CGM panel" & Chr(13) & Chr(10) _

& "to have the to view the lecture" & Chr(13) & Chr(1l0) _
& "Click a button in the control panel" & Chr(l3) & Chr(10)
& "to perform an action" & Chr(13) & Chr(10) _

&

frmMessage.Show
End Sub
Private Sub cmdMain Click()

Unload Me
frmModule. Show

End Sub
Private Sub cmdNextNode Click()

' Get next available node and then

74

' process the node

' re-set the color of current node to what it was
CurrCntlimg.Picture = imgControlNode.Picture

Dim tmpNodeName As String

tmpNodeName = SelectNextNode (CurrStudent.Module, _
CurrCntlimg.Tag, _
CurrStudent.StudentID)

If tmpNodeName = "NA" Then
Dim tmpMessage As String
tmpMessage = "Warning - No next node information was found." & Chr(13) & Chr(10) &
Chr(13) & Chr(i0) _
& "Please contact your system administration”
frmMessage.rtfMessage = tmpMessage
frmMessage.Show
Else
Call ProcessCurrNode (tmpNodeName)
End If

End Sub

Private Sub cmdPrevNode Click()

' get previous node and then process the node

CurrCntlimg.Picture = imgControlNode.Picture

Dim tmpNodeName As String
tmpNodeName = SelectPrevNode {CurrStudent.Module, _
CurrCntlimg.Tag, _
CurrStudent.StudentID)
If tmpNodeName = "NA" Then
Dim tmpMessage As String
tmpMessage = "Warning - No prev node information was found." & Chr(13) & Chr(10) &
Chr(i3) & Chr(10) _
& "Please contact your system administration"
frmMessage.Tag = "CGM"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show
frmCGM. Hide
Else
Call ProcessCurrNode (tmpNodeName)
End If

End Sub
Private Sub cmdProgress Click()

Dim tmpMessage As String

75

' generate heading
tmpMessage = "The progress of " & Trim(CurrStudent.FirstName) & " " &
Trim(CurrStudent.LastName) & ":" & Chr(13) & Chr(10) _
& "Module Concept Yours Class # Std." & Chr(13) & Chr(10) _

& LSOO -— - n

' get progress info
Call SelectProgress (CurrStudent.StudentID)

' concatenate progress info
For i = 1 To ProgressCnt

tmpMessage = tmpMessage _
Chr(13) & Chr(10) _
StudentProgress(i).ModuleName _
StudentProgress (i) .NodeName _
StudentProgress(i).StudentGrade
StudentProgress(i) .GroupGrade _
StudentProgress (i) .GroupCount

R AR

Next i

' display progress message
frmMessage.Tag = "CGM"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

End Sub
Private Sub cmdSibling_Click ()

identify the sibling node and then process the node

Dim tmpMessage As String

' identify the sibling node
If CGMNodeInfo.CGMSiblingNode = "PROF" Then
tmpMessage = "Please use the E-Mail sub-system to contact your" & Chr(13) &
Chr(10) _

& "Professor for further explaination or help." & Chr(13) & Chr(10) _

& "Thank you"

frmMessage.Tag = "CGM"

frmMessage.rtfMessage = tmpMessage

frmMessage.Show modal

frmCGM. Hide
Else

CurrCntlImg.Picture = imgControlNode.Picture

Call ProcessCurrNode (CGMNodeInfo.CGMSiblingNode)
End If

End Sub
Private Sub cmdQuit Click()

End

End Sub
Private Sub cmdQuiz Click()

76

' Quiz(zes) of current node is(are) requested by student even though
' student has not finished the node yet
' this command is enabled, which means current node has quiz

CurNodeName = CurrCntlImg.Tag

Call ProcessQuizzes(CurrStudent.Module, _
CurNodeName)

End Sub

Private Sub cmdPlay Click()

' play the current video/audio

mciControl.Command = "play"
Call EnableCommands (mciControl.Mode)

End Sub

Private Sub cmdSendMail Click()

' Activate Mail subsystem
' Note: Mail system works independently to CGM presenation

frmVBMail.Show
frmCGM.Hide

End Sub

mciControl.Command = "stop"
Call EnableCommands (mciControl.Mode)

End Sub

Private Sub Form Load()

' on form load either

' *)}) process the current node
' *) process initialization

‘center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height - 480) / 2

If InitCGMNode Then
Call EnableCommands ("init")
Call InitializeAllNodes

77

InitCGMNode = False
Else

Call ProcessCurrNode (CurNodeName)
End If

End Sub
Private Sub imgNode0101 Click()

CurrCntliImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0101

Call ProcessCurrNode{CurrCntlImg.Tag)

End Sub
Private Sub imgNode0102 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0102
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0103 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0103
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0104 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0104
Call ProcessCurrNode(CurrCntllImg.Taq)

End Sub
Private Sub imgNode0105 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlimg = imgNode0105
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0201 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0201
Call ProcessCurrNode (CurrCntlImg.Tagq)

End Sub
Private Sub imgNode0202 Click{)

CurrCntliImg.Picture = imgControlNode.Picture
Set CurrCntlimg = imgNode0202
Call ProcessCurrNode(CurrCntlImg.Tagq)

78

End Sub
Private Sub imgNode0203_Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0203
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0204 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0204
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0205 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0205
Call ProcessCurrNode(CurrCntlImg.Taq)

End Sub
Private Sub imgNode0301 Click()

CurrCntlimg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0301
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0302 Click()

CurrCntlimg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0302
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0303 Click()

CurrCntlimg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0303
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode0304 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0304
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0305_ Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0305

79

Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode0401 Click(]j

CurrCntlimg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0401
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode0402 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0402
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode(403 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0403
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode0404 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0404
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode(0405 _Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0405
Call ProcessCurrNode (CurrCntlimg.Tag)

End Sub
Private Sub imgNode0501 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0501
Call ProcessCurrNode(CurrCntlImg.Tag)

End Sub
Private Sub imgNode0502 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0502
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub

Private Sub imgNode0503 Click()

80

CurrCntiImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0503
Call ProcessCurrNede (CurrCntlImg.Tagq)

End Sub
Private Sub imgNode0504 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0504
Call ProcessCurrNode (CurrCntlImg.Tag)

End Sub
Private Sub imgNode0505 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0505
Call ProcessCurrNode {(CurrCntlImg.Tag)}

End Sub
Private Sub imgNode0601 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0601
Call ProcessCurrNode (CurrCntlImg.Tagq)

End Sub
Private Sub imgNode0602 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(0602
Call ProcessCurrNode (CurrCntlImg.Taq)

End Sub
Private Sub imgNode0603_Click()

CurrCntlImg.Picture = imgControiNode.Picture
Set CurrCntlImg = imgNode0603
Call ProcessCurrNode(CurrCntlImg.Tagq)

End Sub
Private Sub imgNode0604 Click()

CurrCntlimg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode(604
Call ProcessCurrNode(CurrCntlImg.Taq)

End Sub
Private Sub imgNode0605 Click()

CurrCntlImg.Picture = imgControlNode.Picture
Set CurrCntlImg = imgNode0&05
Call ProcessCurrNode (CurrCntllImg.Tag)

End Sub

81

Private Sub mnuAbout Click()

' display about info

frmMessage.rtfMessage = Chr(l3) & Chr(10) & Chr(l13) & Chr(10) & Chr(13) & Chr(19)

& MULTIMEDIA PRESENTATION SYSTEM" & Chr(13) & Chr(lO)
& " for INTERACTIVE LEARNING" & Chr(13) & Chr(10) _

& Written by Mai Lan Nguyen" & Chr(13) & Chr(10) _

& Concordia Unversity, Dec. 1997"

frmMessage.Show

End Sub

Private Sub mnuExit Click()
End

End Sub

Private Sub tmrDrawLine Timer()
'

use timer to draw lines between nodes once on form init

Dim i As Integer
' disable timer so that lines will not be drew again
tmrDrawLine.Enabled = False

For i = 1 To LineNumber

picCGM.Line (CGMLineArray(i).X1, CGMLineArray(i).Y1)-(CGMLineArray(i).X2,
CGMLineArray(i) .Y2)

Next i
End Sub

Private Sub mciControl ModeChange(Mode As String)

' endable command buttons
EnableCommands {(Mode)

End Sub
Sub ProcessCurrNode (ByVal CurrNodeName As String)

' process all neccessarily events when this node is clicked.

1

Dim tmpNodeName As String
Dim TmpNodePosX, TmpNodePosY As Integer

' a new conceopt node is requested:
' terminate all the the threads that were activated from prev. node

82

' *) set slide show to off to stop slide show thread if any
' *} stop mciControl
SlideShowOn = False

' make sure movie is not playing
mciControl.Command = "stop"

Call SelectNodeInfo(CurrStudent.Module, _
CurrNodeName,
CGMNodeInfo)

' set info in the status bar
sbrCGM.Panels (1) .Text = CGMNodeInfo.CGMShortDesc & ": "
& CGMNodeInfo.CGMLongDesc

CGMNodeInfo.CGMNodePosX
CGMNodeInfo.CGMNodePosY

TmpNodePosX
TmpNodePosY

' activate/deactivate commands
Call EnableCommands("playing”)

Set CurrCntlImg = IdentifyThisNode (TmpNodePosX, TmpNodePosY)

' reset prev. picture
imgControlNode.Picture = CurrCntlImg.Picture

CurrCntlImg.Picture = frmCGM.imgActiveNode.Picture

lecFileName CGMNodeInfo.CGMTxtFName
aviFilename = CGMNodeInfo.CGMAviFName
wavFileName = CGMNodelInfo.CGMWavFName
lecFullName = lecFilePath & lecFileName & lecFileExtn

aviFullName
wavFullName

aviFilePath
wavFilePath

Call PrepareDisplayArea

& aviFilename & aviFileExtn
& wavFileName & wavFileExtn

prepare diaplay area for either video+lecture or audio+slide
' presentation

If Dir(aviFullName) <> "" Then

play movie clip now

mciControl.FileName =
mciControl.Command = "play"

aviFullName

If Dir(lecFullName) <> "" Then
' display text box (lecture)
Dim DisplayText$
' process lecture
Open lecFullName For Binary As #1
DisplayText$ = Space$(LOF(1))
Get #1, , DisplayText$
Close #1

rtfLecture.Text = DisplayText$

End If

'display file

83

Else
If Dir(wavFullName) <> "" Then
' play audio clip now
mciControl.FileName = wavFullName
mciControl.Command = "play”
End If
' *) identify all slides to be displayed
' *) identify the time of each slide
' *) get start slide time (current)
' *) check timer from time to time to identify the lapse time
' *) get next slide and displayr
If CGMNodeInfo.CGMBmpCount > 0 Then
' load slide info into array
SlideShowOn = True
Call SelectSlidelInfo(CurrStudent.Module, _
CurrNodeName)
If SlideShow(On Then
fraVideo.Height = fraCGM.Height
' process all slides in the array. upon processing,
' yield resources to other processes
Call ProcessSlides
End If
End If
End If

End Sub
Private Sub PrepareDisplayArea()

If aviFilename <> "NA" Then
fravideo.Height = 3275
mciControl.Visible = True
fralecture.Visible = True
rtflecture.Visible = True
rtflecture.Enabled = True

Else
fralecture.Visible = False
rtflecture.Enabled = False
rtflecture.Visible = False
mciControl.Visible = False

End If

End Sub

Private Sub EnableCommands (ByVal Mode As String)

'frmegm.Caption = cgm
If CGMNodeInfo.CGMNodeType = "TOP" Or CGMNodeInfo.CGMNodeType = "T&B" Then
frmCGM. cmdPrevNode.Enabled = False
Else
frmCGM. cmdPrevNode.Enabled = True
End If
If CGMNodeInfo.CGMNodeType = "BOT" Or CGMNodeInfo.CGMNodeType

"T&B" Then

84

frmCGM.cmdNextNode.Enabled = False
Else
If CGMGradeArray(CGMNodeInfo.CGMNodePosX, _
CGMNodeInfo.CGMNodePosY) >= 50 Then
frmCGM. cmdNextNode.Enabled = True

Else
frmCGM. cmdNextNode.Enabled = False
End If
End If
If CGMNodeInfo.CGMSiblingNode = "PROF" Then
frmCGM.cmdSibling.Enabled = False
Else
frmCGM.cmdSibling.Enabled = True
End If

Select Case Mode
Case Is = "init"
frmCGM. cmdPrevNode.Enabled = False
frmCGM.cmdCurrNode.Enabled = True
frmCGM. cmdNextNode.Enabled = False
frmCGM.cmdPlay.Enabled = False
frmCGM.cmdStop.Enabled = False
Case Is = "playing"
frmCGM.cmdCurrNode.Enabled = False
frmCGM.cmdPlay.Enabled = False
frmCGM.cmdStop.Enabled = True
Case Is = "stopped"
cmdCurrNode.Enabled = True
cmdPiay.Enabled = True
cmdStop.Enabled = False
End Select

End Sub
Private Sub SelectSlideInfo(ByVal CurrModuleName As String, _
ByVal CurrNodeName As String)

get information to slides that associate with current module/node

Dim AllSlideDbs As Database, AllSlideRst As Recordset
Dim tmpSQL As String
Dim tmpMessage As String

Pim i As Integer
On Error GoTo ErrorHandlerl
Set AllSlideDbs = OpenDatabase (CGMDatabase)

tmpSQL = " SELECT CGM_Slide Name," _
" Slide_Seq Number," _

" Slide_Begin Time," _

" Slide End Time," _

" CGM_Slide FName " _

R R

85

" FROM CGM Slide Info" _

" WHERE CGM_Module Name = '" & CurrModuleName & "'"
" AND CGM_Node Name = '" & CurrNodeName & "'"
" ORDER BY Slide_Seq Number;"

[T "SI s I - o)

' get all the info of slides of the current node
Set AllSlideRst = AllSlideDbs.OpenRecordset (tmpSQL)

On Error GoTo ErrorHandler2

' go to last record to count
AllSlideRst.Movelast

AllSlideCnt = AllSlideRst.RecordCount

ReDim CGMSlideInfo(Al1SlideCnt)
' go to lst row in recordset
AllSlideRst.MoveFirst

On Error GoTo ErrorHandler3

' Loop thru recordset to get Slide names and attributes etc...
For 1 = 1 To AllSlideCnt
With CGMSlidelnfo (i)
.CGMSlideName = AllSlideRst.Fields(0)
.SlideSeqgNumber = AllSlideRst.Fields(l)
.SlideBeginTime = AllSlideRst.Fields(2)
.SlideEndTime = AllSlideRst.Fields(3)
.CGMSlideFName = AllSlideRst.Fields(4)
End With
' verifying slide info
bmpFullName = bmpFilePath & CGMSlideInfo(i).CGMSlideFName & bmpFileExtn
If Dir(bmpFullName) = "" Then
SlideShowOn = False
tmpMessage = "Warning - Not able to find slide" & Chr(13) & Chr(10)
& bmpFullName & Chr(13) & Chr(10) & Chr(13) & Chr(10)
& "Please contact your system administration" -
frmMessage.rtfMessage = tmpMessage
frmMessage. Show

AllSlideDbs.Close

Exit Sub
End If

' advance to next row
AllSlideRst.MoveNext
Next i
AllSlideDbs.Close
Exit Sub

' Handle fatal error => stop apps
ErrorHandlerl:

86

tmpMessage = "Fatal Error - Authoring Database was not found." & Chr(13) & Chr(l0) &
Chr(13) & Chr(10) _
& "Please contact your system administration”
frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage. Show
frmCGM.Hide

Exit Sub
ErrorHandler2:

tmpMessage = "Warning - No SLIDE information was found." & Chr(13) & Chr(10) & Chr(l3)
& Chr(10) _
& "Please contact your system administration”

frmMessage.Tag = "CGM"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmCGM. Hide

Exit Sub
ErrorHandler3:

tmpMessage = "Fatal Error - Problem upon loading SLIDE." & Chr(13) & Chr(10) & Chr(l13)
& Chr(10) _
& "Please contact your system administration”

frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmCGM.Hide

Exit Sub

End Sub
Private Sub ProcessSlides()

' perform slide show when SlideShowOn = true otherwise terminate the thread

Dim CurSlideNdx As Integexr
Dim CurShowTimer As Long
Dim BegSlideTime As Long
Dim EndSlideTime As Long

CurShowTimer = Timer
' try to display all slides of the current node
For CurSlideNdx = 1 To AllSlideCnt

BegSlideTime = CurShowTimer + CGMSlideInfo(CurSlideNdx).SlideBeginTime
EndSlideTime = CurShowTimer + CGMSlideInfo(CurSlideNdx).SlideEndTime

' wait until time to display curr slide request
Do While Timer < BegSlideTime And SlideShowOn

87

DoEvents
Loop

' time to display current slide
' to be on the safe side
' we check both end time and slide show flag
If Timer < EndSlideTime And SlideShowOn Then
imgSlide.Visible = True
Call LoadOneSlide (CurSlideNdx)
End If

' keep displaying slide

Do While Timer < EndSlideTime And SlideShowOn
DoEvents

Loop

' display time is over
Set imgSliide.Picture = LoadPicture()
imgSlide.Visible = False

If Not SlideShowOn Then
Exit Sub
End If

Next CurSlideNdx
End Sub

Private Sub LoadOneSlide(SlideCntlNbr As Integer)

bmpFullName = bmpFilePath & CGMSlideInfo(SlideCntiNbr).CGMSlideFName & bmpFileExtn
If Dir(bmpFullName) <> "" Then
On Error Resume Next
Set imgSlide.Picture = LoadPicture (bmpFullName)
If Err Then
Set imgSlide.Picture = LoadPicture()
SlideShowOn = False
End If
Else
SlideShowOn = False
Dim tmpMessage As String
tmpMessage = "Warning - Not able to find slide" & Chr(13) & Chr(10) _
& bmpFullName & Chr(13) & Chr(10) & Chr(13) & Chr(10) _
& "Please contact your system administration"
frmMessage.Tag = "CGM"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show
frmCGM. Hide
End If

End Sub
Private Sub ProcessQuizzes(ByVal CurrModuleName As String, _

88

ByVal CurrNodeName As String)

' process quizzes that associate with current node

LI - —_— -

Dim AllQuizCnt As Long

Dim AllQuizDbs As Database, AllQuizRst As Recordset
Dim tmpSQL As String

Dim i As Integer

On Error GoTo ErrorHandlerl

Set AllQuizDbs = OpenDatabase (CGMDatabase)
tmpSQL = " SELECT CGM_Quiz Name ," _
" CGM Quiz _Grade ,"
" CGM Quiz_FName ,"
" CGM_Ansl FName ,"
" CGM_Ans2 FName ,"
" CGM_Ans3 FName ,"
CGM_Ans4 FName ," _
" CGM_Correct Answer ," _

" CGM_Ans Desc" _

" FROM CGM Quiz_Info" _

" WHERE CGM Module Name = '" & CurrModuleName & "'"
" AND CGM_Node Name = '" & CurrNodeName & "';"

R 8RR RYR R R R R R
2

' get all the info of quizzes of the current node
Set AllQuizRst = AllQuizDbs.OpenRecordset (tmpSQL)

' no data found
On Error GoTo ErrorHandler?2

' go to last record to count
AllQuizRst.Movelast
AllQuizCnt = AllQuizRst.RecordCount

CurrStudent.AccumGrade = 0
ReDim CGMQuizInfo(AllQuizCnt)
' go to lst row in recordset
AllQuizRst.MoveFirst
' Loop thru recordset to get quiz names and attributes etc...
For i = 1 To AllQuizCnt
With CGMQuizInfo (i)
.CGMQuizName = AllQuizRst.Fields ()
.CGMQuizGrade = AllQuizRst.Fields(1)
.CGMQuizFName = AllQuizRst.Fields(2)
.CGMAns1FName = AllQuizRst.Fields(3)
.CGMAns2FName = AllQuizRst.Fields(4)
.CGMAns3FName = AllQuizRst.Fields(5)
.CGMAns4FName = AllQuizRst.Fields(6)
.CGMCorrectAnswer = AllQuizRst.Fields(7)
.CGMAnsDesc = AllQuizRst.Fields(8)
End With
' advance to next row
AllQuizRst.MoveNext

89

Next i

AllQuizDbs.Close

QuizCntliNbr = 1
QuizCntlMax = AllQuizCnt
Unload Me

frmQuiz.Show
Exit Sub

' Handle fatal error => stop apps
ErrorHandlerl:

Dim tmpMessage As String
tmpMessage = "Fatal Error - Authoring Database was not found.™ & Chr{(13) & Chr(10) &
Chr(13) & Chr(10) _
& "Please contact your system administration”

frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmCGM.Hide

Exit Sub
' no quiz was found in quiz table but the number of quizzes was
' not equal to zero in the node info table => could be mistake
ErrorHandler2:

tmpMessage = "Warning - No quiz information was found." & Chr(13) & Chr(10) & Chr(13)
& Chr(10) _
& "Please contact your system administration”

frmMessage.Tag = "CGM"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmCGM. Hide

Exit Sub

End Sub
Sub InitializeAllNodes()

' *) Get all available nodes from database and store them in
! recordset array ALLNODERST
' *}) Loop through ALLNODERST to intialize each node

T

Dim AllNodeCnt As Long

Dim tmpNodeName, TmpNodeDesc, TmpStudentID As String
Dim TmpNodePosX, TmpNodePosY, TmpNodeGrad As Integer
Dim AllNodeDbs As Database, AllNodeRst As Recordset
Dim tm2NodeName As String

Dim tmpSQL As String
Dim i As Integer

On Error GoTo ErrorHandlerl
Set AllNodeDbs = OpenDatabase(CGMDatabase)

tmpSQL = " SELECT C.Curr Node Name ," _
& " C.Curr_Node_Grade" _
& " FROM CGM_Curr Node AS C " _
& " WHERE C.Curr_Student ID = '" & CurrStudent.StudentID & "'" _
& " AND C.Curr_Module Name = '" & CurrStudent.Module & "';"

Set AllNodeRst = AllNodeDbs.OpenRecordset (tmpSQL)}

On Error GoTo ErrorHandler2

' go to last record to count
AllNodeRst.MovelLast

Al1NodeCnt = AllNodeRst.RecordCount

' go to lst row in recordset
AllNodeRst.MoveFirst
' save starting node as the lst node, this might be changed
' in sub IntializeThisNode
tm2NodeName = AllNodeRst.Fields(0)
SveNodeName = ""
' Loop thru recordset to get node names and attributes etc...
LineNumber = 0
For i = 0 To AllNodeCnt - 1
tmpNodeName = AllNodeRst.Fields(0)
TmpNodeGrad = AllNodeRst.Fields(1l)
Call SelectNodeInfo(CurrStudent.Module, _
tmpNodeName, _
CGMNodeInfo)
TmpNodePosX = CGMNodelnfo.CGMNodePosX
TmpNodePosY = CGMNodelInfo.CGMNodePosY
TmpNodeDesc = CGMNodelnfo.CGMShortDesc
CGMGradeArray (TmpNodePosX, TmpNodePosY) = TmpNodeGrad
Call InitializeThisNode(TmpNodePosX,
TmpNodePosY,
tmpNodeName,
TmpNodeDesc,
TmpNodeGrad)

' advance to next row
AllNodeRst.MoveNext
Next i

If SveNodeName = "" Then
tmpNodeName = tm2NodeName

Else
tmpNodeName = SelectNextNode (CurrStudent.Module, _
SveNodeName, _
CurrStudent.StudentID)
End If

91

' identify current active node
Call SelectNodeInfo{CurrStudent.Module, _
tmpNodeName, _
CGMNodeInfo)
Set CurrCntlImg = IdentifyThisNode(CGMNodeInfo.CGMNodePosX, _
CGMNodeInfo.CGMNodePosY)

imgControiNode.Picture = CurrCntlImg.Picture
' change the color of the node after the save
CurrCntlImg.Picture = frmCGM.imgActiveNode.Picture

tmrDrawline.Enabled = True
AllNodeDbs.Close

Exit Sub

' Handle fatal error => stop apps
ErrorHandlerl:

Dim tmpMessage As String
tmpMessage = "Fatal Error - Authoring Database was not found." & Chr(13) & Chr(10) &
Chr(13) & Chr(10) _
& "Please contact your system administration”

frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmCGM.Hide

Unload Me

Exit Sub
ErrorHandler2:
tmpMessage = "Fatal Error - No NODE information was found." & Chr(l3) & Chr(10) &

Chr(13) & Chr(10) _
& "Please contact your system administration”

frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmCGM.Hide

Unload Me

Exit Sub
End Sub

Sub InitializeThisNode(ByVal RowValue As Integer, _
ByVal ColValue As Integer, _
ByVal NodeName As String, _
ByVal NodeDesc As String, _
ByVal NodeGrade As Integer)

' Initialize node (RowValue, ColValue) using NcdeName, NodeDesc, Enabled
T -

Dim OnOrOff As Boolean

Dim tmpNodeName As String

Set CurrCntlImg = IdentifyThisNode (RowValue, ColValue)
' quiz must be passed to be considered as visited
If NodeGrade >= 50 Then
CurrCntlImg.Picture = frmCGM.imgVisitedNode.Picture

Else
CurrCntlImg.Picture = frmCGM.imgUnvisitedNode.Picture
End If
If CGMNodeInfo.CGMNodeType = "TOP" Or _
CGMNodeInfo.CGMNodeType = "T&B" Or _

NodeGrade >= 50 Then
' enable the node if it's first node or it's a visited node
OnOrQff = True
If NodeGrade >= 50 Then
' save the node that the student passed. This will be used to determine next
active node
SveNodeName = NodeName
End If
Else
' a node should also be enabled if the prev. node is passed
tmpNodeName = SelectPrevNode(CurrStudent.Module, _
NodeName,
CurrStudent.StudentID)
Call SelectNodeInfo(CurrStudent.Module, _
tmpNodeName, _
CGMNodelInfo)
If CGMGradeArray(CGMNodeInfo.CGMNodePosX, _
CGMNodeInfo.CGMNodePosY) >= 50 Then
OnOrQff = True
Else
OnOrOff
End If
End If

False

Select Case RowValue
Case Is =1
Select Case ColValue
Case Is =1
frmCGM. imgNode0101.Visible = True
frmCGM. imgNode0101.Tag = NodeName
frmCGM. imgNode0101.Enabled = OnOrOff
frmCGM. 1blNode0101.Caption = NodeDesc
Case Is =2
frmCGM. imgNode0102.Visible = True
frmCGM. imgNode0102.Tag = NodeName
frmCGM. imgNode0102.Enabled = OnOroff
frmCGM.1blNode0102.Caption = NodeDesc
Case Is = 3
frmCGM. imgNode0103.Visible = True
frmCGM. imgNode(0103.Tag = NodeName

93

frmCGM. imgNode0103.
frmCGM. 1b1Node(103.
Case Is = 4
frmCGM. imgNode0104.
frmCGM. imgNode0104.
frmCGM. imgNode(0104.
frmCGM. 1b1Node0104.
Case Is =5
frmCGM. imgNode0105.
frmCGM. imgNode0105.
frmCGM. imgNcde(105.
frmCGM. 1b1Node0105.
End Select
Case Is = 2
Select Case ColValue
Case Is =1
frmCGM. imgNode0201.
frmCGM. imgNode0201.
frmCGM. imgNode0201.
frmCGM. 1b1Node0201.
Case Is = 2
frmCGM. imgNode0202.
frmCGM. imgNode0202.
frmCGM. imgNode0202.
frmCGM. 1blNode0202.
Case Is = 3
frmCGM. imgNode0203.
frmCGM. imgNode0203.
frmCGM. imgNede0203.
frmCGM. 1blNode0203.
Case Is = ¢
frmCGM. imgNode0204.
frmCGM. imgNode0204.
frmCGM. imgNode0204.
frmCGM. 1b1Node0204.
Case Is = 5
frmCGM. imgNode0205.
frmCGM. imgNode0205.
frmCGM. imgNode0205.
frmCGM. 1blNode0205.
End Select

Enabled = OnOrOff
Caption = NodeDesc

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

Visible = True
Tag = NodeName
Enabled = OnCOrOff
Caption = NodeDesc

If frmCGM. imgNode0101.Visible Then
Call LogLineCordinates(l, 1, RowValue,

End If

If frmCGM.imgNode0102.Visible Then
Call LogLineCordinates(l, 2, RowValue,

End If

If frmCGM.imgNode0103.Visible Then
Call LogLineCordinates(l, 3, RowValue,

End If

If frmCGM.imgNode0104.Visible Then
Call LogLineCordinates(l, 4, RowValue,

End If

If frmCGM.imgNode0105.Visible Then
Call LogLineCordinates(l, 5, RowValue,

ColValue)

ColvValue)

ColValue)

ColValue)

ColValue)

94

End If

Case Is = 3
Select Case ColValue
Case Is =1

frmCGM. imgNode0301.
frmCGM. imgNode0301.
frmCGM. imgNode0301.
frmCGM. 1blNode0301.

Case Is = 2

frmCGM. imgNode0302.
frmCGM. imgNode0302.
frmCGM. imgNode0302.
frmCGM. 1b1Node0302.

Case Is = 3
frmCGM. imgNode0303
frmCGM. imgNode0303

Case Is = 4
frmCGM. imgNode0304

frmCGM. imgNode0304.
frmCGM. imgNode0304.
frmCGM. 1b1Node0304.

Case Is = 5

frmCGM. imgNode0305.
frmCGM. imgNode0305.
frmCGM. imgNode0305.
frmCGM. 1blNode0305.

End Select

Visible = True
Tag = NodeName

Enabled = OnOrOff
Caption = NodeDesc
Visible = True

Tag = NodeName

Enabled = OnOrOff
Caption = NodeDesc
.Visible = True

.Tag = NodeName
frmCGM. imgNode0303.
frmCGM.1blNode0303.

Enabled = OnOrOff
Caption = NodeDesc
.Visible = True

Tag = NodeName

Enabled = OnOrOff
Caption = NodeDesc
Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

If frmCGM.imgNode0201.Visible Then
Call LogLineCordinates(2, 1, RowValue,

End If

If frmCGM.imgNode0202.Visible Then
Call LogLineCordinates(2, 2, RowValue,

End If

If frmCGM.imgNode0203.Visible Then
Call LogLineCordinates(2, 3, RowValue,

End If

If frmCGM.imgNode0204.Visible Then
Call LogLineCordinates(2, 4, RowValue,

End If

If frmCGM.imgNode0205.Visible Then
Call LogLineCordinates(2, 5, RowValue,

End If

Case Is = 4
Select Case ColValue
Case Is = 1

frmCGM. imgNode0401.
friaCGM. imgNode0401.
frmCGM. imgNode(401.
frmCGM. 1b1Node0401.

Case Is = 2
frmCGM. imgNode0402

Visible = True
Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

.Visible = True
frmCGM. imgNode0402.
frmCGM. imgNode0402.

Tag = NodeName
Enabled = OnOrOff

ColValue)

ColValue)

ColValue)

ColValue)

ColValue)

95

frmCGM. 1blNode0402.

Case Is = 3
frmCGM. imgNode0403
frmCGM. imgNode0403

Case Is = 4

frmCGM. imgNode0404.
frmCGM. imgNode0404.
frmCGM. imgNode0404.
frmCGM. 1blNode(0404.

Case Is = 5

frmCGM. imgNode0405.
frmCGM. imgNode(405.
frmCGM. imgNode(405.
frmCGM. 1b1Node0405.

End Select

.Visible =
.Tag = NodeName
frmCGM. imgNode0403.
frmCGM. 1bl1Node0403.

Caption = NodeDesc

True

Enabled = OnOrOff
Caption = NodeDesc
Visible = True

Tag = NodeName
Enabled = OnOrCff
Caption = NodeDesc
Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc

If frmCGM.imgNode0301.Visible Then
Call LogLineCordinates(3, 1, RowValue,

End If

If frmCGM.imgNode0302.Visible Then
Call LoglLineCordinates(3, 2, RowValue,

End If

If frmCGM.imgNode0303.Visible Then
Call LogLineCordinates(3, 3, RowValue,

End If

If frmCGM.ingNode0304.Visible Then
Call LogLineCordinates’3, 4, RowValue,

End If

If frmCGM.imgNode0305.Visible Then
Call LoglLineCordinates(3, 5, RowValue,

End If

Case Is = 5

Select Case ColValue
Case Is =1

frmCGM. imgNode0501.
frmCGM. imgNode0501.
frmCGM. imgNode0501.
frmCGM. 1blNode0501.

Case Is = 2

frmCGM. imgNode(502.
frmCGM. imgNode0502.
frmCGM. imgNode0502.
frmCGM. 1biNode0502.

Case Is = 3

frmCGM. imgNode0503.
frmCGM. imgNode0503.
frmCGM. imgNode0503.

frmCGM. 1b1Node0503
Case Is = 4
frmCGM. imgNode0504

frmCGM. imgNode0504.
frmCGM. imgNode0504.
.Caption =

frmCGM. 1blNode0504
Case Is = 5

Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc
Visible = True

Tag = NodeName
Enabled = OnOrOff
Caption = NodeDesc
Visible = True

Tag = NodeName
Enabled = OnOrOff
.Caption = NodeDesc
.Visible = True

Tag = NodeName
Enabled = OnOrOff
NodeDesc

ColValue)

Colvalue)

ColValue)

ColValue)

ColValue)

96

frmCGM. imgNode0505.Visible = True
frmCGM. imgNode0505.Tag = NodeName
frmCGM. imgNode0505.Enabled = OnOrOff
frmCGM. 1blNode0505.Caption = NodeDesc
End Select
If frmCGM.imgNode0401.Visible Then
Call LogLineCordinates(4, 1, RowValue,
End If
If frmCGM.imgNode(402.Visible Then
Call LogLineCordinates (4, 2, RowValue,
End If
If frmCGM.imgNode0403.Visible Then
Call LogLineCordinates (4, 3, RowValue,
End If
If frmCGM.imgNode0404.Visible Then
Call LogLineCordinates (4, 4, RowValue,
End If
If £rmCGM.imgNode0405.Visible Then
Call LogLineCordinates(4, 5, RowValue,
End If

Case Is = 6

Select Case ColValue
Case Is =1
frmCGM. imgNode0601.Visible = True
frmCGM. imgNode0601.Tag = NodeName
frmCGM. imgNode0601.Enabled = OnOrOff
frmCGM. 1b1Node0601.Caption = NodeDesc
Case Is = 2
frmCGM. imgNode0602.Visible = True
frmCGM. imgNode0602.Tag = NodeName
frmCGM. imgNode0602.Enabled = OnOrOff
frmCGM. 1b1Node0602.Caption = NodeDesc
Case Is = 3
frmCGM. imgNode0603.Visible = True
frmCGM. imgNode0603.Tag = NodeName
frmCGM. imgNode0603.Enabled = OnOrOff
frmCGM. 1b1Node0603.Caption = NodeDesc
Case Is = 4
frmCGM. imgNode0604.Visible = True
frmCGM. imgNode0604.Tag = NodeName
frmCGM. imgNode0604.Enabled = OnOrOff
frmCGM. 1blNode0604.Caption = NodeDesc
Case Is =5
frmCGM. imgNode0605.Visible = True
frmCGM. imgNode0605.Tag = NodeName
frmCGM. imgNode0605.Enabled = OnOrOff
frmCGM. 1b1lNode0605.Caption = NodeDesc
End Select
If frmCGM.imgNode0501.Visible Then
Call LogLineCordinates(5, 1, RowValue,
End If
If frmCGM.imgNode(0502.Visible Then
Call LogLineCordinates(5, 2, RowValue,
End If
If frmCGM.imgNode0503.Visible Then

ColValue)

ColValue)

ColValue)

ColValue)

ColValue)

ColValue)

ColValue)

97

Call LogLineCordinates(5, 3, RowValue, ColValue)

End If

If frmCGM.imgNode0504.Visible Then
Call LogLineCordinates{5, 4, RowValue, ColValue)

End If

If frmCGM.imgNode0505.Visible Then
Call LogLineCordinates(5, 5, RowValue, ColValue)

End If
End Select
End Sub

Function IdentifyThisNode(ByVal RowValue As Integer,
ByVal ColValue As Integer)
As Object

' having the X-Y cordinate, return the corresponding image node

Select Case RowValue
Case Is =1
Select Case Colvalue
Case Is =1
Set IdentifyThisNode
Case Is = 2
Set IdentifyThisNode
Case Is = 3
Set IdentifyThisNode
Case Is = 4
Set IdentifyThisNode
Case Is =5
Set IdentifyThisNode
End Select
Case Is = 2
Select Case ColValue
Case Is =1
Set IdentifyThisNode
Case Is = 2
Set IdentifyThisNode
Case Is = 3
Set IdentifyThisNode
Case Is = {4
Set IdentifyThisNode
Case Is =5
Set IdentifyThisNode
End Select
Case Is = 3
Select Case ColValue
Case Is =1
Set IdentifyThisNode
Case Is = 2
Set IdentifyThisNode
Case Is = 3
Set IdentifyThisNode
Case Is = 4
Set IdentifyThisNode
Case Is = 5
Set IdentifyThisNode

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

frmCGM.

imgNode0101
imgNode0102
imgNode0103
imgNode0104

imgNode0105

imgNode0201
imgNode0202
imgNode0203
imgNode0204

imgNode0205

imgNode0301
imgNode0302
imgNode0303
imgNode0304

imgNode0305

98

End Select
Case Is = 4
Select Case ColValue
Case Is =1
Set IdentifyThisNode = frmCGM.imgNode0401
Case Is = 2
Set IdentifyThisNode = frmCGM.imgNode0402
Case Is = 3
Set IdentifyThisNode = frmCGM.imgNode0403
Case Is = ¢4
Set IdentifyThisNode = frmCGM.imgNode(404
Case Is = 5
Set IdentifyThisNode = frmCGM.imgNode0405
End Select
Case Is = 5
Select Case ColValue
Case Is =1
Set IdentifyThisNode = frmCGM.imgNode0501
Case Is = 2
Set IdentifyThisNode = frmCGM.imgNode0502
Case Is = 3
Set IdentifyThisNode = frmCGM.imgNode0503
Case Is = 4
Set IdentifyThisNode = frmCGM.imgNode0504
Case Is = 5
Set IdentifyThisNode = frmCGM.imgNode0505
End Select
Case Is = 6
Select Case ColValue
Case Is =1
Set IdentifyThisNode = frmCGM.imgNode0601
Case Is = 2
Set IdentifyThisNode = frmCGM.imgNode0602
Case Is = 3
Set IdentifyThisNode = frmCGM.imgNode(603
Case Is = 4
Set IdentifyThisNode = frmCGM.imgNode0604
Case Is =5
Set IdentifyThisNode = frmCGM.imgNode0605
End Select
End Select
End Function
Private Sub LogLineCordinates(ByVal FromRow As Integer, _
ByVal FromCol As Integer, _
ByVal ToRow As Integer, _
ByVal ToCol As Integer)

' log line cordinates in an array so that lines could be drewn later
Dim tmpX2, tmpY2 As Integer
Select Case FromCol
Case Is = ToCol

tmpX2 = (ToCol - 1) * 800 + 240
tmpY2 = (ToRow - 1) * 800

99

Case Is < ToCol

tmpX2 = (ToCol - 1) * 800 + 50
tmpY2 = (ToRow - 1) * 800 + 50
Case Is > ToCol
tmpX2 = (ToCol - 1) * 800 + 480 - 50
tmpY2 = (ToRow - 1} * 800 + 50
End Select
LineNumber = LineNumber + 1
With CGMLineArray(LineNumber)
Select Case FromCol
Case Is = ToCol
.X1 = (FromCol - 1) * 800 + 240
.Yl = (FromRow - 1) * 800 + 480
Case Is < ToCol
.X1 = (FromCol - 1) * 800 + 480 - 50
.Yl = (FromRow - 1} * 800 + 480 - 50
Case Is > ToCol
.X1 = (FromCol ~ 1) * 800 + 50
.Yl = (FromRow - 1) * 800 + 480 - 50
End Select
.X2 = tmpX2
.Y2 = tmpY2
End With

' log the line left arrow

LineNumber = LineNumber + 1
With CGMLineArray(LineNumber)
.X2 = tmpX2
.Y2 = tmpY2
Select Case FromCol
Case Is = ToCol
X1 = .X2 + 100
YL = Y2 - 100
Case Is < ToCol
X1 = X2
Y1 = (Y2 - 144
Case Is > ToCol
X1 = X2 + 144
Y1 = Y2
End Select
End With

' log the line right arrow

LineNumber =

LineNumber + 1

With CGMLineArray(LineNumber)

.X2 = tmpX2
.Y2 = tmpY2
Select Case
Case Is

.X1

Y1

Case Is

.X1

.Yl

FromCol

= ToCol

.X2 - 100
.Y2 - 100
ToCol

X2 - 144
.Y2

A It

100

Case Is > ToCol

X1 = X2
Y1 = .Y2 - 144
End Select
End With
End Sub

101

FrmFAQ - F.A.Q. panel

' Form Name: frmFAQ.doc
' Description: This form is used to display the Frequency Asked Questions

Private Sub cmdFAQHelp Click()
Dim tmpMessage As String

tmpMessage = Chr(13) & Chr(10) & Chr(l3) & Chr(10) _

& "These are common questions" & Chr(13) & Chr(10) _

& "If you could not find the answers to your questions," _
&

&

Chr(13) & Chr(10) _

"please contact your Professor"
frmMessage.Tag = "FAQ"
frmMessage.rtfMessage = tmpMessage
frmMessage. Show
frmFAQ.Hide

End Sub

Private Sub cmdQuit Click()
End

End Sub

Private Sub cmdReturn Click()

frmCGM. Show
frmFAQ.Hide

End Sub

Private Sub Form Load()

' Center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height - 480} / 2

Dim DisplayFAQS

fagFullName = fagFilePath & faqFileName & faqFileExtn
Open fagFullName For Binary As #1

DisplayFAQ$ = Space$ (LOF(1))

Get #1, , DisplayFAQS$

Close #1

102

rtfFAQ.Text = DisplayFAQS$
End Sub
Private Sub Form Unload{Cancel As Integer)

frmCGM. Show
End Sub

103

FrmLogin - Login the application

' Form Name: frmLogin.frm
' Description: This form is used for checking the student's access

Option Explicit

' Define type student to store student information
Private Sub cmdCancel Click(]

LoginSucceeded = False

Unlcad Me

End Sub

Private Sub c¢mdOK_Click()

' Check for correct password

' See workshop chapter 13, page 268 for more detail
Dim tmpFileName As String

txtStudentID = Format{txtStudentID, "<") ' convert to lower case
txtPassword = Format (txtPassword, "<") ' convert to lower case

Call Initialize Path

If Trim(txtStudentID) = "" Then
MsgBox "Invalid StudentID, try again!”, , "Login"
txtStudentID.SetFocus
SendKeys "{Home}+{End}"
Else
If (txtStudentID = "self") Then
' this is a new student
' call another form to handle input
frmAddStudent . Show
Else
stuFileName = App.Path & "\" & txtStudentID & stuFileExtn
' try to find out if file exist
tmpFileName = Dir(stuFileName)
If tmpFileName = "" Then
MsgBox "Invalid StudentID, try again!", , "Login"
txtStudentID.SetFocus
SendKeys "{Home}+{End}"
Else
Call GetStudentiInfo
If Trim(txtPassword)
LoginSucceeded =
'Call Main
Unload frmLogin
frmModule. Show

Else
MsgBox "Invalid Password, try again!", , "Login"

= Trim{CurrStudent.Password) Then
True

104

txtPassword.SetFocus
SendKeys "{Home}+{End}"
End If
End If
End If
End If

End Sub

Private Sub Form Lcad()

' Center the form

Me.Move (Screen.Width - Me.Width) / 2,
End Sub

(Screen.Height - Me.Height) / 2

105

FrmMailList - List out the mails

' Form Name: frmMailList.frm
' Description: This form is about the Mail list functions

' Module variable to hold MouseDown position information.
Dim ListX, ListY

Private Sub Form Load()
' Resize the form.
Height = 3945

Call Tools Resize

' Set list box headings.

a$ = Mid$ (Format$ ("From", "!"™ + String$(25, "@")), 1, 25)
b$ = Mid$(Format$ ("Subject™, "!" + String$(35, "€")), 1, 35)
c$ = "Date"”
Headings = a$ + b$§ + c$
End Sub

Private Sub Form QueryUnload(Cancel As Integer, UnloadMode As Integer)
' If the user is clcsing the application, let this form unload.
If UnloadMode = 4 Then

' Unloading is permitted.

Else
" If the user is still logged on, minimize the form rather than closing it.

If frmVBMail.MapiMess.SessionID <> 0 Then
Me.WindowState = 1
Cancel = True
End If
End If
End Sub

Private Sub Form Resize{)
' If the form isn't minimized, resize the list box to fit the form.

If WindowState <> 1 Then

If frmvBMail.DispTools.Checked Then
xHeight% = Tools.Height

Else
xHeight% = 0

End If

' Check for the minimum form height.
If Height < 2500 - xHeight% Then
Height = 2500
Exit Sub
End If

106

MList.Width = ScaleWidth - MList.Left - 90
MList.Height = ScaleHeight - 90 - MList.Top - xHeight%
End If
End Sub

Private Sub MList Click()
' Set the message index and enable the
' Previous and Next buttons as needed.
Select Case MList.ListIndex
Case 0
frmVBMail.Previous.Enabled = False
Case MList.ListCount - 1
frmVBMail.Next.Enabled = False
Case Else
frmVBMail.Previous.Enabled = True
frmVBMail.Next.Enabled = True
End Select

frmVBMail.MapiMess.MsgIndex = MList.ListIndex
End Sub

Private Sub MList_DBLClick()
' Check to see if the message is currently viewed,
' and if it isn't, load it into a new form.
If Not frmMailList.MList.ItemData(frmMailList.MList.ListIndex) Then
Dim Msg As New frmMailMessage
Call LoadMessage(frmMailList.MList.ListIndex, Msg)
frmMaillList.MList.ItemData (frmMailList.MList.ListIndex) = True
Else
' Search through the active windows to
' find the window with the correct message to view.
For 1 = 0 To Forms.Count - 1
If TypeOf Forms(i) Is frmMailMessage Then
If Val(Forms(i).Tag) = frmMaillist.MList.ListIndex Then
Forms (i) .Show
Exit Sub
End If
End If
Next 1
End If
End Sub

Private Sub MList KeyPress(KeyAscii As Integer)
' If the user presses ENTER, process the action as a DblClick event.
If KeyAscii = 13 Then
Call MList DBLClick
End If
End Sub

Private Sub MList MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
' Save the X and Y positions to determine the start of the drag-and-drop action.

ListX = X
ListY = Y
End Sub

107

Private Sub MList_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single)
' If the mouse button is down and the X,Y position has changed, start dragging.
If Button = 1 And ((X <> ListX) Or (Y <> ListY)) Then
MList.Drag 1
End If
End Sub

Private Sub PrtImage DragDrop(Source As Control, X As Single, Y As Single)
' Same as File.PrintMessage on the frmVBMail File menu.
Call PrintMail

End Sub

Private Sub Tools_Resize()
' Adjust the width of the lines on the top of the toolbar.
Linel (0) .X2 = Tools.Width
Linel(l).X2 = Tools.Width
Tools.Refresh
End Sub

Private Sub Trash_DragDrop(Source As Control, X As Single, Y As Single)
' Delete a message (Delete Button or Edit.Delete).
Call DeleteMessage
End Sub

108

FrmMailMessage — Mail messages

' Form Name: frmMailMessage.frm
' Description: This form is used for mail messages information

Private Sub aList DblClick()
' ListIndex is the index into the attachment list.
frmVBMail.MapiMess.AttachmentIndex = aList.ListIndex
If frmVBMail.MapiMess.AttachmentType = vbAttachTypeData Then
Call DisplayAttachedFile(frmVBMail.MapiMess.AttachmentPathName)
Else
MsgBox " This sample application doesn't view OLE-type attachments"
End If
End Sub

Private Sub AttachWin Resize()
' Update the widths of the fields and adjust the line
' controls as needed.
alist.Width = AttachWin.Width - aList.Left - 315

End Sub

Private Sub Form_Activate()
' When the form is activated, update frmMailList.MList
' to reflect the current item. The Tag property contains
' the index of the currently viewed message.
frmMailList.MList.ListIndex = Val (Me.Tag)

frmMaillList.MList.ItemData(Val (Me.Tag)) = True
frmVBMail.MapiMess.MsgIndex = Val (Me.Taq)
End Sub

Private Sub Form Load()
' Ensure all resizing is done on startup.
Call Picturel Resize
Call AttachWin Resize
Call Form Resize
End Sub

Private Sub Form Resize()
' Adjust the window size if the form isn't minimized.
Call SizeMessageWindow (Me)

End Sub

Private Sub Form Unload(Cancel As Integer)
' Tag is set to -1 after the currently viewed message

' is deleted.
If Val(Me.Tag) > O Then
frmMailList.MList.ItemData(Val(Me.Tag)) = False
End If
End Sub

109

Private Sub Picturel Resize()
' Update the widths of the fields and adjust the line
' controls as needed.
TopLine.X2 = Picturel.Width - 90
BottomLine.X2 = Picturel.Width - 90
RightLine.X1 = Picturel.Width - 90
RightLine.X2 = Picturel.Width - 90
1£% = txtTo.Left
txtTo.Width = Picturel.Width - 120 - 1f%
txtDate.Width = Picturel.Width - 120 - 1f%
txtec.Width = Picturel.Width - 120 - 1f%
txtsubject.Width = Picturel.Width - 120 - 1£%
txtFrom.Width = Picturel.Width - 120 - 1f%
Picturel.Refresh

End Sub

Private Sub txtcc KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtDate KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtFrom KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtNoteText_ KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtsubject KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtTo KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

110

FrmMailOption - Mail available option

' Form Name: frmMailOption.frm
' Description: This form is used for choosing the mail options

Private Sub alist DblClick()
' ListIndex is the index into the attachment list.
frmVBMail.MapiMess.AttachmentIndex = aList.ListIndex
If frmVBMail.MapiMess.AttachmentType = vbAttachTypeData Then
Call DisplayAttachedFile(frmVBMail.MapiMess.AttachmentPathName)
Else
MsgBox " This sample application doesn't view OLE-type attachments”
End If
End Sub

Private Sub AttachWin_Resize()
' Update the widths of the fields and adjust the line
' controls as needed.
alist.Width = AttachWin.Width - aList.Left - 315

End Sub

Private Sub Form Activate()
' When the form is activated, update frmMaillist.MList
' to reflect the current item. The Tag property contains
' the index of the currently viewed message.
frmMaillList.MList.ListIndex = Val(Me.Tagq)

frmMailList.MList.ItemData(Val(Me.Taqg)) = True
frmVBMail.MapiMess.MsgIndex = Val(Me.Tag)
End Sub

Private Sub Form_Load{)
' Ensure all resizing is done on startup.
Call Picturel Resize
Call AttachWin Resize
Call Form Resize
End Sub

Private Sub Form Resize()
' Adjust the window size if the form isn't minimized.
Call SizeMessageWindow (Me)

End Sub

Private Sub Form Unload{(Cancel As Integer)
' Tag is set to -1 after the currently viewed message

' is deleted.
If val(Me.Tag) > 0 Then
frmMaillist.MList.ItemData(Val(Me.Tag)) = False
End If
End Sub

111

Private Sub Picturel Resize()
' Update the widths of the fields and adjust the line
' controls as needed.
TopLine.X2 = Picturel.Width - 90
BottomLine.X2 = Picturel.Width - 90
RightLine.Xl = Picturel.Width - 90
RightLine.X2 = Picturel.Width - 90
1f% = txtTo.Left
txtTo.Width = Picturel.Width - 120 - 1f$%
txtDate.Width = Picturel.Width - 120 - 1f$%
txtcc.Width = Picturei.Width - 120 - 1f%
txtsubject.Width = Picturel.Width - 120 - 1f$
txtFrom.Width = Picturel.Width - 120 - 1f%
Picturel.Refresh

End Sub

Private Sub txtcc_KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtDate KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtFrom KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtNoteText KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtsubject KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

Private Sub txtTo_KeyPress(KeyAscii As Integer)
' Ignore all keystrokes.
KeyAscii = 0

End Sub

112

FrmMessage — Error/Warning message

Form Name..: frmMessage
Description: Being called by many other forms

to display prompt message to the
student

Option Explicit
Private Sub cmdOK Click()

frmMessage.Hide

Select Case frmMessage.Tag
Case Is = "CGM"
frmCGM. Show
Case Is = "FAQ"
frmFAQ.Show
Case Is = "MOD"
frmModule.Show
Case Is = "MAIL"
frmVBMail.Show
Case Is = "QUIZ"
frmQuiz.Show
Case Is = "END"
End
End Select

End Sub
Private Sub Form Load()

Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height) / 2

End Sub

113

FrmModule - Module control panel

A} -—

' Form Name: frmModule.frm
' Description: Main module allowing student select a module

1

Option Explicit

Public sveModuleNdx As Integer
Public allModuleMax As Integer

Private Sub cmdHelp Click()

Dim tmpMessage As String
Dim tmpTit As String

= Chr(13) & Chr(10) & Chr(13) & Chr(10) _

& "Select a module you wish to learn" & Chr(13) & Chr(10) _
& "Click <start> to start the module"™ & Chr(13) & Chr(10) _
&

" <intro> to have a brief introduction”

tmpMessage

["

frmMessage.Tag =
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

End Sub
Private Sub cmdModule Click(Index As Integer)

lblStart.Visible = True

cmdStart (sveModuleNdx) .Visible = False
cmdIntroduction{sveModuleNdx).Visible = False
sveModuleNdx = Index

cmdStart (Index) .Visible = True
cmdIntroduction(Index).Visible = True

sbrModule.Panels (1) .Text = CGMModuleInfo(Index).CGMModuleSDesc _
&n_"
& CGMModuleInfo(Index) .CGMModuleLDesc
End Sub

Private Sub cmdProgress_Click()

114

Dim tmpMessage As String
Dim i As Integer

' loop through the database to get the progress
tmpMessage = "The progress of " & Trim(CurrStudent.FirstName) & " " &
Trim(CurrStudent.LastName) & ":" & Chr(13) & Chr(10)

& "Module Concept Yours Class # Std." & Chr(13) & Chr(10) _

"

' get progress info
Call SelectProgress(CurrStudent.StudentID)

For 1 = 1 To ProgressCnt

tmpMessage = tmpMessage _
Chr(13) & Chr(10) _
StudentProgress (i) .ModuleName _
StudentProgress (i) .NodeName _
StudentProgress(i}.StudentGrade _
StudentProgress (i) .GroupGrade _
StudentProgress (i) .GroupCount

R R R R |

Next i

frmMessage.Tag ="
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

End Sub
Private Sub emdQuit Click()
End
End Sub
Private Sub cmdStart Click(Index As Integer)

' for the time being, actiavte only if it's module 2
mciControl.Command = "stop"

InitCGMNode = True

CurrStudent.Module = CGMModulelInfo (Index).CGMModuleName
frmCGM.Caption = "Concept Graph Model " _

" "

CGMModuleInfo (Index) .CGMModuleName

L (n

CGMMoauleInfo(Index).CGMModuleLDesc _

ll) "

R R R R |

£rmCGM. Show
Unload Me

End Sub

Private Sub cmdIntroduction Click(Index As Integer)

' play video
aviFilename = CGMModuleInfo(Index).ModuleAviFName
wavFileName = CGMModuleInfo (Index).ModuleWavFName

115

If aviFilename <> "NA" And aviFilename <> " " Then
' if avi is available, play avi file lst
aviFullName = aviFilePath & aviFilename & aviFileExtn
mciControl.FileName = aviFullName
fravVideo.Visible = True
mciControl.Visible = True
mciControl.Command "play"
Else
If wavFileName <> "NA" And wavFileName <> "™ " Then
wavFullName = wavFilePath & wavFileName & wavFileExtn
mciControl.FileName = wavFullName
mciControl.Command = "play”
End If
End If

End Sub
Private Sub Form_Load()
Dim i As Integer

'center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height) / 2

' get info from database
Call Select Module Info

For 1 = 1 To allModuleMax
cmdModule (i) .Caption = CGMModulelInfo(i).CGMModuleSDesc
cmdStart (i) .Visible = False
cmdIntroduction(i).Caption = "Intro to " & CGMModulelnfo(i).CGMModuleSDesc
cmdIntroduction{i).Visible = False

Next 1

sveModuleNdx = 2

1blModule.Visible = True
lblStart.Visible = False
fraVideo.Visible = False
mciControl.Visible = False

End Sub
Private Sub mciControl ModeChange(Mode As String)

If Mode = "stopped" Then
' if there are any quizzes, popup quiz pane
Unload Me
InitCGMNode = True
frmCGM. Show
End If

End Sub
Sub Select_Module Info{)

116

' *) Get all available modules from database and store
! them in recordset array ALLMODULERST
' *} Loop through ALLMODULERST and load module info into array

Dim AllModuleDbs As Database, AllModuleRst As Recordset

Dim tmpSQL As String
Dim i As Integer

On Error GoTo ErrorHandlerl

Set AllModuleDbs = OpenDatabase (CGMDatabase)
tmpSQL = " SELECT C.CGM Module Name,"
" C.CGM_Module SDesc, " _

" C.CGM_Module LDesc," _

" C.Module Avi FName," _

" C.Module Wav_FName" _

" FROM CGM Module Info AS C;" _

R R

Set AllModuleRst = AllModuleDbs.OpenRecordset (tmpSQL)

On Error GoTo ErrorHandler2

' go to last record to count
AllModuleRst.Movelast

allModuleMax = AllModuleRst.RecordCount

If allModuleMax > 8 Then
allModuleMax = 8
End If

ReDim CGMModulelInfo (allModuleMax)

' go to lst row in recordset
AllModuleRst.MoveFirst
' Loop thru recordset to get module names and attributes etc...
For i = 1 To allModuleMax
With CGMModuleInfo(i)
.CGMModuleName = AllModuleRst.Fields(0)

.CGMModuleSDesc = AllModuleRst.Fields (1)
.CGMModuleLDesc = AllModuleRst.Fields (2)
.ModuleAviFName = AllModuleRst.Fields(3)

.ModuleWavFName = AllModuleRst.Fields (4)
End With
' advance to next row
AllModuleRst.MoveNext
Next 1

AllModuleDbs.Close
Exit Sub

' Handle fatal error => stop apps
ErrorHandlerl:

117

Dim tmpMessage As String

tmpMessage = "Fatal Error - Authoring Database was not found. " _

& "Please contact your system administration™
frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show
frmModule.Hide
Exit Sub

ErrorHandler?2:

tmpMessage = "Fatal Error - No information was found. " _
& "Please contact your system administration"

frmMessage.Tag = "END"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show

frmModule.Hide

Exit Sub

End Sub

118

FrmQuiz - Display quiz

' Form Name: frmQuiz.frm

' Description: Handle the quiz by:

! display question in the text box
' display answers in radio buttons
' accept input from student

' evaluate the answer

! accunmulate the mark

' update grade table

Private QuizResponse As Integer
Private Sub cmdCancel Click()

InitCGMNode = True
Unload Me
frmCGM. Show

End Sub
Private Sub cmdOK_Click()

Dim tmpMessage As String
frmMessage.Tag = "QUIZ"
' verify if an answer is check if NOT generate error
If QuizResponse = 0 Then
' generate error
Beep
tmpMessage = Chr(13) & Chr(10) & Chr(13) & Chr(10) _
& "Please enter an answer, try again!" _
& Chr{13) & Chr(10)
frmMessage.rtfMessage = tmpMessage
frmMessage.Show
Else
' calculate mark
If QuizResponse = CGMQuizInfo(QuizCntlNbr).CGMCorrectAnswer Then
CurrStudent.AccumGrade = CurrStudent.AccumGrade _
+ CGMQuizInfo (QuizCntlNbr).CGMQuizGrade
tmpMessage = Chr(13) & Chr(10) & Chr{13) & Chr(10} _
& "Congratulation! Your answer is correct”

Else
tmpMessage = Chr(13) & Chr(10) & Chr(13) & Chr(10) _
& "Sorry! Your answer is not correct" & Chr(13) & Chr(10)
& "Beason: " & Chr(13) & Chr(10) _ -
& CGMQuizInfo(QuizCntlNbr) .CGMAnsDesc
End If

frmMessage.Tag = "QUIZ"
frmMessage. rtfMessage = tmpMessage

119

frmMessage. Show
If QuizCntlNbr < QuizCntlMax Then
QuizCntlNbr = QuizCntlNbr + 1
Call LoadOneQuiz(QuizCntlNbr)
Else
Call UpdateCurrNode (CurrStudent.Module, _
CurNodeName, _
CurrStudent.StudentID, _
CurrStudent.AccumGrade)
tmpMessage = "You have finished your quiz and your grade is " _
& CurrStudent.AccumGrade
' prompt student indicating quiz has been finished
InitCGMNode = True
frmMessage.Tag = "CGM"
frmMessage.rtfMessage = tmpMessage
frmMessage.Show
Unload Me
End If
End If

End Sub
Private Sub Form Load()

' Quiz is started
' load question base on quiz name

'center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height) / 2

Call LoadOneQuiz(QuizCntlNbr)

End Sub

Private Sub LoadOneQuiz(ByVal QuizCntlNbr As Integer)
gizFileName = CGMQuizInfo(QuizCntlNbr) .CGMQuizFName
Dim DisplayQuestion$, DisplayAnswer$

' get question

gqizFullName = qizFilePath & gizFileName & gizFileExtn

Open qizFullName For Binary As #1

DisplayQuestion$ = Space$ (LOF(1))

Get #1, , DisplayQuestion$

Close #1

rtfQuestion.Text = DisplayQuestion$ ‘'display file

rtfQuestion.Enabled = True

' get proposed answer 1

If CGMQuizInfo(QuizCntlNbr).CGMAns1FName <> "NA" Then
gizFileName = CGMQuizInfo(QuizCntiNbr).CGMAnslFName
gizFullName = qizFilePath & gizFileName & gizFileExtn
Open qizFullName For Binary As #1
DisplayAnswer$ = Space${LOF(1))
Get #1, , DisplayAnswer$

120

Close #1
optAnswer (1) .Caption = DisplayAnswer$
optAnswer(1l).Visible = True

End If

' get proposed answer 2

If CGMQuizInfo(QuizCntlNbr).CGMAns2FName <> "NA" Then
gizFileName = CGMQuizInfo(QuizCntlNbr).CGMAns2FName
qizFullName = gizFilePath & gizFileName & gizFileExtn
Open qizFullName For Binary As #1
DisplayAnswer$ = Space$(LOF (1))
Get #1, , DisplayAnswer$
Close #1
optAnswer(2).Caption = DisplayAnswer$
optAnswer(2).Visible = True

End If

' get proposed answer 3

If CGMQuizInfo(QuizCntlNbr).CGMAns3FName <> "NA" Then
gizFileName = CGMQuizInfo(QuizCntlNbr).CGMAns3FName
qizFullName = gizFilePath & qizFileName & qizFileExtn
Open gizFullName For Binary As #1
DisplayAnswer$ = Space$ (LOF (1))
Get #1, , DisplayAnswer$
Close #1
optAnswer(3) .Caption = DisplayAnswer$
optAnswer(3) .Visible = True

End If

' get proposed answer 4

If CGMQuizInfo(QuizCntlNbr).CGMAns4FName <> "NA" Then
gizFileName = CGMQuizInfo(QuizCntlNbr).CGMAns4FName
gizFullName = qizFilePath & gizFileName & gizFileExtn
Open gizFullName For Binary As #1
DisplayAnswer$ = Space$(LOF(1))
Get #1, , DisplayAnswer$
Close #1
optAnswer (4) .Caption = DisplayAnswer$
optAnswer{4).Visible = True

End If

End Sub

Private Sub optAnswer Click(Index As Integer)
QuizResponse = Index
End Sub

121

FrmSendNote - Send out a message

T

' Form Name..: frmSendNote

' Description: Handle the send message to the professor
1}

Private Sub Attach _Click()
' Handle attachments.
On Error Resume Next
frmVBMail.CMDialogl.DialogTitle = "Attach"
frmVBMail.CMDialogl.Filter = "All Files(*.*)[*.*{Text Files{*.txt)|*.txt"
frmVBMail.CMDialogl.ShowOpen
If Exr = 0 Then
On Error GoTo 0
frmVBMail.MapiMess.AttachmentIndex = frmVBMail.MapiMess.AttachmentCount
frmVBMail .MapiMess.AttachmentName = frmVBMail.CMDialogl.FileTitle
frmVBMail.MapiMess.AttachmentPathName = frmVBMail.CMDialogl.FileName
frmVBMail.MapiMess.AttachmentPosition = frmVBMail.MapiMess.AttachmentIndex
frmVBMail .MapiMess.AttachmentType = vbAttachTypeData
End If
End Sub

Private Sub ChkNames Click()
' Resolve the names.
Call CopyNamestoMsgBuffer (Me, True)
Call UpdateRecips (Me)

End Sub

Private Sub CompAdd Click()
' Display the address book and update upon return.
Call CopyNamestoMsgBuffer (Me, False)
frmVBMail.MapiMess.Action = vbMessageShowAdBook
Call UpdateRecips (Me)

End Sub

Private Sub CompOpt_Click()
' Display the Message Option form.
OptionType = conOptionMessage
MailOptFrm.Show 1

End Sub

Private Sub Form Activate({)

' Set the Messagelndex to -1 (Compose Buffer) when this windew is activated.
frmVBMail .MapiMess.MsgIndex = -1

End Sub

Private Sub Form Load({()

' Ensure the windows are sized as needed.
Call Picturel Resize

Call Picture2 Resize

122

Call Form_Resize
End Sub

Private Sub Form Resize()
' Adjust the window sizes if the form isn't minimized.
If WindowState <> 1 Then
If ScaleHeight > txtNoteText.Top Then
txtNoteText.Height = ScaleHeight - txtNoteText.Top
txtNoteText.Width = ScaleWidth
End If
End If
End Sub

Private Sub Picturel Resize()
' Update the widths of the fields and adjust the line
' controls as needed.
TopLine(0) .X2 = Picturel.®Width
TopLine(l).X2 = Picturel.Width
Picturel.Refresh
End Sub

Private Sub Picture2 Resize()
' Update the widths of the fields and adjust the line
' controls as needed.
TopLine2.X2 = Picture2.Width
Picture2.Refresh
End Sub

Private Sub Send Click()
' Place the Subject and Note text into the buffer.
' Add room in the beginning for attachment files.
If frmVBMail.MapiMess.AttachmentCount > 0 Then
txtNoteText = String$(frmVBMail.MapiMess.AttachmentCount, "*") + txtNoteText
End If
frmVBMail .MapiMess.MsgSubject = txtsubject
frmVBMail .MapiMess.MsgNoteText = txtNoteText
frmVBMail .MapiMess.MsqReceiptRequested = ReturnRequest
Call CopyNamestoMsgBuffer (Me, True)

On Error Resume Next
frmVBMail .MapiMess.Action = vbMessageSend
If Err Then
MsgBox "An error occurred during a send: " + Str$(Err)
Else
Unload Me
End If
End Sub

123

FrmSplash - Splash screen

' Form Name. .: frmSplah
' Description: Splash the screen when the load is slow

Option Explicit

Private Sub Form KeyPress(KeyAscii As Integer)
Unload Me
End Sub

Private Sub Form Load()
'center the form
Me.Move (Screen.Width - Me.Width) / 2, _
(Screen.Height - Me.Height) / 2

1blVersion.Caption = "Version " & App.Major & "." & App.Minor & "." & App.Revision
1blProductName.Caption = App.Title
End Sub

Private Sub Framel Click()
Unload Me
End Sub

124

FrmVBMail — Mail main control panel

' FormName. .: frmVBMail
' Description: Handle the mail sub-system

Private Sub About Click()
Dim tmpMsg As String
Dim tmpTit As String
frmMessage.rtfMessage = Chr(13) & Chr(i0) & Chr(13) & Chr(10) _

"Make sure you already logged on your"™ & Chr(13) & Chr(10)

"mail box prior to compose a message” -

ol

frmMessage.Show
End Sub

Private Sub cmdExit Click()
' log user off
Call Exit Click

End Sub

Private Sub Delete Click()
' Delete a mail message.

' View all selected messages that are deleted.
If TypeOf frmVBMail.ActiveForm Is frmMailMessage Then
Call DeleteMessage
ElseIf TypeOf frmVBMail.ActiveForm Is frmMaillist Then
' Delete multiple selection.
frmVBMail.MapiMess.MsgIndex = frmMailList.MList.ListIndex
Call DeleteMessage
End If

End Sub
Private Sub DispTools_Click()

DispTools.Checked = Not DispTools.Checked
frmMailList.Tools.Visible = DispTools.Checked

If frmMailList.Tools.Visible Then

Factor = 1

ToolsSize% = -frmMailList.Tools.Height
Else

Factor = -1

ToolsSize% = 0
End If

125

Select Case frmMailList.WindowState
Case 0 ' Change the size of the form to reflect the addition/deletion of atocolbar.
frmMaillist.Height = frmMailList.Height + (Factor * frmMaillist.Tcols.Height)
Case 2 ' If maximized, adjust the size of the list box.
frmMaillist.MList.Height = ScaleHeight - 90 - frmMaillList.MList.Top _
+ ToolsSize$%
End Select
End Sub

Private Sub EditDelete Click()
' Delete the items in the list.
On Error GoTo Trap
If TypeOf frmVBMail.ActiveForm Is frmMailList Then
Call Delete Click
End If
Exit Sub

Trap:
' If an error occurs, there is probably no active form.
' Exit the Sub procedure.
Exit Sub

End Sub

Private Sub Exit Click()
Unload Me

End Sub

Private Sub FontPrt Click()

' Set the printer fonts.

On Error Resume Next

CMDialogl.Flags = 2

CMDialogl.FontName = Printer.FontName

CMDialogl.FontSize = Printer.FontSize

CMDialogl.FontBold = Printer.FontBold

CMDialogl.FontItalic = Printer.FontItalic

CMDialogl.ShowFont

If Err = 0 Then
Printer.FontName = CMDialogl.FontName
Printer.FontSize = CMDialogl.FontSize
Printer.FontBold = CMDialogl.FontBold
Printer.FontItalic = CMDialogl.FontItalic

End If

End Sub

Private Sub FontScreen Click{)
' Set the screen fonts for the active control.
On Error Resume Next
CMDialogl.Flags = 1
CMDialogl.FontName = frmVBMail.ActiveForm.ActiveControl.FontName
CMDialogl.FontSize = frmVBMail.ActiveForm.ActiveControl.FontSize

126

CMDialogl.FontBold = frmVBMail.ActiveForm.ActiveControl.FontBold

CMDialogl.FontItalic = frmVBMail.ActiveForm.ActiveControl.FontItalic

CMDialogl.ShowFont

If Err = 0 Then
frmVBMail.ActiveForm.ActiveControl.FontName = CMDialogl.FontName
frmVBMail.ActiveForm.ActiveControl.FontSize = CMDialogl.FontSize
frmVBMail.ActiveForm.ActiveControl.FontBold = CMDialogl.FontBold
frmVBMail.ActiveForm.ActiveControl.FontItalic = CMDialogl.FontItalic

End If

End Sub

Private Sub logoff Click()
' Log off from the mail system.
Call LogOffUser

End Sub

Private Sub Logon Click{()

' Log onto the mail system.

On Error Resume Next

MapiSess.Action = 1

If Err <> 0 Then
MsgBox "Logon Failure: " + Error$

Else
Screen.MousePointer = 11
MapiMess.SessionID = MapiSess.SessionID
' Get the message count.
GetMessageCount
' Load the mail list with envelope information.
Screen.MousePointer = 11
Call LoadList{MapiMess)
Screen.MousePointer = 0
' Adjust the buttons as needed.
Logon.Enabled = False
LogOff.Enabled = True
frmVBMail.SendCtl (vbMessageCompose) .Enabled = True
frmVBMail.SendCtl (vbMessageReplyAll) .Enabled = True
frmVBMail.SendCtl (vbMessageReply).Enabled = True
frmVBMail.SendCtl (vbMessageForward) .Enabled = True
frmVBMail.PrintMessage.Enabled = True
frmVBMail.DispTools.Enabled = True
frmVBMail.rMsgList.Enabled = True
frmVBMail.EditDelete.Enabled = True

End If
End Sub

Private Sub MailOpts Click()
' Display the Mail Options form.
OptionType = conOptionGeneral
frmMailOption.Show 1

End Sub

Private Sub MDIForm Load()

' center the form
Me.Move (Screen.Width - Me.Width) / 2, (Screen.Height - Me.Height - 480) / 2

127

' Ensure all the controls are sized as needed.

SendWithMapi = True

frmVBMail.sbrVBMail.Panels(l).Text = "Off Line"

End Sub
Private Sub MDIForm Unload(Cancel As Integer)
' Close the application and log off.

If MapiSess.SessionID <> 0 Then
Call logoff Click

End If

frmCGM. Show

End Sub
Private Sub Next Click()

' View the next message in the list.

If frmMaillist.MList.ListIndex <> frmMailList.MList.ListCount - 1 Then
frmMailList.MList.ItemData(frmMaillist.MList.ListIndex) = False
frmMailList.MList.ListIndex = frmMailList.MList.ListIndex + 1

End If

Call ViewNextMsg

End Sub
Private Sub Previous Click()

' View the previous message in the list.

If frmMailList.MList.ListIndex <> 0 Then
frmMailList.MList.ItemData(frmMaillist.MList.ListIndex) = False
frmMailList.MList.ListIndex = frmMailList.MList.ListIndex - 1

End If

Call ViewNextMsg

End Sub

Private Sub PrintMessage Click()

' Print mail.
Call PrintMail

End Sub

Private Sub PrSetup Click()

' Call the printer setup procedure in the common dialog control.
On Error Resume Next

CMDialogl.Flags = &¢H40 ' Printer setup dialog box only.
CMDialogl.ShowPrinter

128

End Sub

Private

End Sub

Private

Dim

Sub rMsgList Click{()
Screen.MousePointer = 11
GetMessageCount

Call LoadList(MapiMess)
Screen.MousePointer = 0

Sub SendCtl Click(Index As Integer)

NewMessage As New frmSendNote

On Error Resume Next

' Index

1

1

= 6: Compose New Message
= 7: Reply

= 8: Reply All

= 9: Forward

' Save the header information and current note text.

If I

End

ndex > 6 Then

' SVNote = GetHeader (frmVBMail.MapiMess) + frmVBMail.MapiMess.MsgNoteText
SVNote = frmVBMail.MapiMess.MsgNoteText

SVNote = GetHeader (frmVBMail.MapiMess) + SVNote

If

frmVBMail.MapiMess.Action = Index

' Set the new message text.

IfI

End

If S

Else

End
End Sub

Private

On Error
' Sh
frmV

If E

Else

ndex > 6 Then
frmVBMail.MapiMess.MsgNoteText = SVNote
If

endWithMapi Then
frmVBMail .MapiMess.Action = vbMessageSendDlg

Call LoadMessage(-1, NewMessage) ' Load message into frmVBMail frmSendNote window.
If

Sub ShowAB Click()

Resume Next

ow the address for the current message.
BMail.MapiMess.Action = vbMessageShowAdBook
rr Then
If Err <> 32001 Then ' User chose Cancel.
MsgBox "Error: " + Error$ + " occurred trying to show the Address Book"
End If

If TypeOf frmVBMail.ActiveForm Is frmSendNote Then
Call UpdateRecips (frmVBMail.ActiveForm)

129

End If
End If

End Sub
Private Sub wa_Click(Index As Integer)

' Arrange the windows as selected.
frmVBMail.Arrange Index

End Sub

130

ModAuthoring — Authoring modules

' Module Name: modAuthoring

' Description: Common subroutine module to handle different tasks

! For example, get module information from database or
' find next node

' faq = Frequently Asked Question
' lec = Lecture
' qiz = Quiz

avi = movie avi file
' wmf = window meta file slide type
wav = audic wav to go with slide

' path of files

Public faqFilePath, lecFilePath, qizFilePath, aviFilePath, wavFilePath, bmpFilePath,
stuFilePath, datFilePath

' file name

Public lecFileName, qizFileName, aviFilename, wavFileName, bmpFileName, stuFileName

' full file name = file path & file name

Public fagFullName, lecFullName, qizFullName, aviFullName, wavFullName, bmpFullName,
stuFullName, datFullName

' location of database

Public CGMDatabase As String

' Node name to control the flow

Public CurNodeName, NxtNodeName, PrvNodeName

' Quiz control number to identify the current processing quiz

Public QuizCntlNbr, QuizCntlMax As Integer

Public ProgressCnt As Integer

' Current & Save image control
Public CurrCntlImg As Object
Public imgControlNode As Object

Public InitCGMNode As Boolean

' define student type to hold student info

Public Type Student
StudentID As String * 8
Password As String * 8
FirstName As String * 20
MiddleName As String * 20
LastName As String * 20
Module As String
IntelligentLevel As Integer
AccumGrade As Integer
Comments As String * 60

End Type

131

Public CurrStudent As Student

Public Type CGMModule
CGMModuleName As String
CGMModuleSDesc As String
CGMModuleLDesc As String
ModuleAviFName As String
ModuleWavEName As String

End Type

Public CGMModuleInfo() As CGMModule

Public Type CGMNode
CGMModuleName As String
CGMNodeName As String
CGMNodePosX As Integer
CGMNodePosY As Integer
CGMNodeType As String
CGMSiblingNode As String
CGMShortDesc As String
CGMLongDesc As String
CGMAviFName As String
CGMTxtFName As String
CGMWavFName As String
CGMQizCount As Integer
CGMBmpCount As Integer

End Type

Public CGMNodeInfo As CGMNode

Public Type CGMQuiz
CGMQuizName As String
CGMQuizGrade As Integer
CGMQuizFName As String
CGMAnsl1FName As String
CGMAns2FName As String
CGMAns3FName As String
CGMAns4FName As String

CGMCorrectAnswer As Integer

CGMAnsDesc As String
End Type

Public CGMQuizInfo() As CGMQuiz

Public Type CGMSlide
CGMSlideName As String

SlideSeqNumber As Integer
SlideBeginTime As Integer

SlideEndTime As Integer
CGMSlideFName As String
End Type

Public CGMSlideInfo () As CGMSlide

Public Type StudProgress

132

ModuleName As String * 10

NodeName As String * 10

StudentGrade As String * 7

GroupGrade As String * 7

GroupCount As String * 7
End Type

Public StudentProgress() As StudProgress
Public CGMGradeArray(6, 5) As Integer
Public Type CGMLine

X1 As Integer

Yl As Integer

X2 As Integer

Y2 As Integer
End Type
Public CGMLineArray(200) As CGMLine
Public LineNumber As Integer

Public LoginSucceeded As Boolean

Public Const fagFileName = "FAQ"

Public Ccnst fagFileExtn = ", txt"
Public Const lecFileExtn = ".txt"
Public Const qizFileExtn = ".txt"
Public Const aviFileExtn = ".avi"

Public Const wavFileExtn = ".AVI"
Public Const bmpFileExtn = ", wmf"
Public Const icoFileExtn = ".ico"
Public Const stuFileExtn = ".id"

'GetDriveType return values
Const DRIVE REMOVABLE = 2
Const DRIVE_FIXED = 3
Const DRIVE REMOTE = 4
Const DRIVE CDROM = 5
Const DRIVE_RAMDISK = 6

' Identify drive type (to find CD Drive)
Declare Function GetDriveType

Lib "kernel32" Alias "GetDrivefypeA" (_

ByVal nDrive As String _
) As Long
Sub Main()

' show the splah screen
frmSplash.Show

Initialize Path

frmCGM. Show

133

Unload frmSplash

End Sub
Sub Initialize Path()

' verify if the application is run on hard drive or not
fagFullName = App.Path & "\FAQ\FAQ.txt"
If Dir(faqFullName) <> "" Then

' run app on harddrive

faqFilePath = App.Path & "\FAQ\"
lecFilePath = App.Path & "\Lecture\"
qizFilePath = App.Path & "\Quiz\"
aviFilePath = App.Path & "\Video\"
wavFilePath = App.Path & "\Audio\"
bmpFilePath = App.Path & "\Slide\"

Else
' run app on CD
' identify CD drive
CDDriveName = GetCDDrive ()

If CDDriveName = "NA" Then
' CD Drive not found
' Prompt user for alternative location
GoTo ErrorHandlerl

Else
fagFilePath = CDDriveName & "Authoring\FAQ\"
lecFilePath = CDDriveName & "Authoring\Lecture\"
gizFilePath = CDDriveName & "Authoring\Quiz\"
aviFilePath = CDDriveName & "Authoring\Video\"
wavFilePath = CDDriveName & "Authoring\Audio\"
bmpFilePath = CDDriveName & "Authoring\Slide\"

End If

End If

fagFullName = faqFilePath & "FAQ.txt"
On Error GoTo ErrorHandlerl
If Dir(faqFullName} = "" Then
GoTo ErrorHandlerl
End If
' database must be where the app is (required update access)
datFilePath = App.Path & "\Database\"
CGMDatabase = App.Path & "\Database\Authoring.mdb"”
On Error GoTo ErrorHandler2
If Dir(CGMDatabase) = "" Then
GoTo ErrorHandler2

End If

Exit Sub

134

' Handle error => stop apps
ErrorHandlerl:

Dim ErrorMessage As String

ErrorMessage = "Fatal Error - Application components were missing. " & _
"(multimedia files not found on local nor CD ROM) " & _
"Please contact your system administration"

MsgBox ErrorMessage

End
Exit Sub

ErrorHandler2:

ErrorMessage = "Fatal Error - Application database were not found. " & _
" (MS ACCESS Ruthoring database not found on local) " & _
"Please contact your system administration”

MsgBox ErrorMessage
End
Exit Sub

End Sub
Function GetCDDrive ()

' Loop through all available characters to identify CD Drive
' If CD Drive is not found - Return NA
' Otherwise - Return CD Drive (R:\)

Dim i, Drv, D$
GetCDDrive = "NA"™ ' intialize return value as not found
For i = 0 To 25 ' Verify all possible drives A to Z
DS = ChrS(i + 65) & ":\"
Drv = GetDriveType (D$)
If Drv = DRIVE CDROM Then
GetCDDrive = D$
End If
Next i
End Function
Sub GetStudentInfo()

Open stuFileName For Binary As #1
' read student record

Get #1, , CurrStudent

Close #1

End Sub
Sub PutStudentInfo()

Open stuFileName For Binary As #1

135

' write student record
Put #1, , CurrStudent
Close #1

End Sub
Sub InsertIntoCurrNode(ByVal CurrStudentID As String)

' Create a new set of nodes for current student.

' logic:

' insert into table CGM_Curr_Node all the node names available having
! the student ID be intialized to current student ID

Dim dbs As Database
On Error GoTo ErrorHandlerl
Set dbs = OpenDatabase (CGMDatabase)

' Create 2 new records in the CGM_Curr Node table
dbs.Execute " INSERT INTO CGM Curr_Node " _

" (Curr_Module name, "

" Curr Node _Name, " _

" Curr _Student_ID,"

" Curr Node Grade) "

" SELECT CGM Module Name," _

" CGM_Node_Name _

" '"™ & CurrStudentID & "',"

"o"

" FROM CGM Node Info" _

" ORDER BY CGM Module _Name, CGM_Node Name;"

R Y R R R R R R R

dbs.Close
Exit Sub

' Handle fatal error => stop apps
ErrorHandlerl:

Dim ErrorMessage As String
ErrorMessage = "Fatal Error - RAuthoring Database was not found. " &

"Please contact your system administration" -
MsgBox ErrorMessage

End
Exit Sub

End Sub

Sub UpdateCurrNode (ByVal CurrModuleName As String, _
Byval CurrNodeName As String, _
Byval CurrStudentID As String, _
ByVal CurrNodeGrade As Integer)

' update the grade of curr node

On Error GoTo ErrorHandlerl

136

Dim dbs As Database
Set dbs = OpenDatabase (CGMDatabase)
' update grade for the quiz that just completed
dbs.Execute " UPDATE CGM_Curr Node" _
& " SET Curr_Node Grade = " & CurrNodeGrade _
& " WHERE Curr_Student_ID = '" & CurrStudentID & "'" _
& " AND Curr_Node_Name = '" & CurrNodeName & "'" _
& " AND Curr Module Name = ‘" & CurrModuleName & "';"
dbs.Close
Exit Sub

' Handle fatal error => stop apps
ErrorHandlerl:

Dim ErrorMessage As String

ErrorMessage = "Fatal Error - Authoring Database was not found. " & _

"Please contact your system administration”
MsgBox ErrorMessage

End
Exit Sub

End Sub
Function SelectNextNode(ByVal CurrModuleName As String, _
ByVal CurrNodeName As String, _
ByVal CurrStudentID As String) _
As String

On Error GoTo ErrorHandlerl

Dim dbs As Database, rst As Recordset
Dim tmpSQL As String

Set dbs = OpenDatabase (CGMDatabase)

tmpSQL = " SELECT N.Next Node Name "
& " FROM CGM_Curr_Node AS C, " _
& " CGM_Next_Node AS N " _
& " WHERE C.Curr_Student_ID = '" & CurrStudentID & "'" _
& " AND C.Curr_Node_ Name = '" & CurrNodeName & "'" _
& " AND C.Curr_Module Name = '" & CurrModuleName & "'" _
& " AND N.Curr_Node_Name = C.Curr_Node Name " _
& " AND N.Curr_Module Name = C.Curr Module Name " _
& " AND N.Curr_Node Min <= C.Curr_Node Grade " _
& " AND N.Curr_Node Max >= C.Curr Node Grade;"

Set rst = dbs.OpenRecordset (tmpSQL)

On Error GoTo ErrorHandler2
' Populate the Recordset.

137

rst.MoveLast
SelectNextNode = rst.Fields(0)
dbs.Close
Exit Function
ErrorHandlerl:
Dim ErrorMessage As String
ErrorMessage = "Fatal Error - Authoring Database was not found. " & _
"Please contact your system administration"

MsgBox ErrorMessage

End
Exit Function

ErrorHandler2:
SelectNextNode = "NA"
dbs.Close
Exit Function
End Function
Function SelectPrevNode(ByVal CurrModuleName As String, _
ByVal CurrNodeName As String, _
ByVal CurrStudentID As String) _
As String

Dim dbs As Database, rst As Recordset
Dim tmpSQL As String

On Error GoTo ErrorHandlerl

Set dbs = OpenDatabase (CGMDatabase)

tmpSQL = " SELECT P.Prev_Node Name " _
& " FROM CGM _Curr Node AS C, " _
& " CGM_Prev_Node AS P " _
& " WHERE C.Curr_Student ID = '" & CurrStudentID & "'" _
& " AND C.Curr_Module Name = '" & CurrModuleName & "'"
& " AND P.Curr_Module Name = '™ & CurrModuleName & "'" _
& " AND P.Curr Node Name = '" & CurrNodeName & "'" _
& " AND P.Prev_Node Name = C.Curr_Node Name " _
& " AND C.Curr_Node Grade = (SELECT MAX (C2.Curr Node Grade) " _

& " FROM CGM_Curr_Node AS C2, " _

& " CGM_Prev_Node AS P2 " _

& " WHERE C2.Curr_Student ID = '" & CurrStudentID &
wrn

& " AND C2.Curr_Module Name = '" & CurrModuleName

& nmin

138

&

& " AND P2.Curr Module Name

men

& " AND P2.Curr Node Name

LU

& " AND P2.Prev_Node Name
Set rst = dbs.OpenRecordset {tmpSQL)
On Error GoTo ErrorHandler2

' Populate the Recordset.
rst.MoveLast

SelectPrevNode = rst.Fields (0)
dbs.Close

Exit Function

ErrorHandlerl:

Dim ErrorMessage As String

= '" & CurrModuleName
'" & CurrNodeName &

C2.Curr_Node Name);"

ErrorMessage = "Fatal Error - Authoring Database was not found. " & _

"Please contact your system administration”
MsgBox ErrorMessage

End
Exit Furction

ErrorHandler2:

End

Sub

SelectPrevNode = "NA"

dbs.Close

Exit Function

Function

SelectNodeInfo (ByVal CurrModuleName As String, _
ByVal CurrNodeName As String,

ByRef CurrNodeInfo As CGMNode)

Dim dbs As Database, rst As Recordset
Dim tmpSQL As String

On Error GoTo ErrorHandlerl
Set dbs = OpenDatabase (CGMDatabase)
tmpSQL = " SELECT C.CGM _Module Name ," _
" C.CGM_Node_Name, "
" C.CGM_Node Row,"

" C.CGM_Node Col," _
" C.CGM Node Type," _

;R R Rl

139

.CGM_Sibling Node," _
.CGM_short Desc," _
.CGM_Long Desc," _
.CGM_Avi_FName,"
.CGM_Txt_FName, " _

.CGM_Wav_FName, " _

.CGM_Qiz_Count," _

.CGM_Bmp Count"” _

" FROM CGM_Node Info AS C " _

" WHERE C.CGM Node Name = '" & CurrNodeName & "'"

" AND C.CGM Module Name = '" & CurrModuleName & "';"

3
OOOO0O0O0O00a0n

RY B R R R R RRYRY R R
2

Set rst = dbs.OpenRecordset (tmpSQL)
On Error GoTo ErrorHandler2

' Populate the Recordset.
rst.Movelast

" £fill up returned info to calling procedure

With CurrNodeInfo
.CGMModuleName = rst.Fields(0)
.CGMNodeName = rst.Fields(l)
.CGMNodePosX = rst.Fields(2)
.CGMNodePosY = rst.Fields(3)
.CGMNodeType = rst.Fields(4)
.CGMSiblingNode = rst.Fields(5)
.CGMShortDesc = rst.Fields(6)
.CGMLongDesc = rst.Fields(7)
.CGMAviFName = rst.Fields(8)
.CGMTxtFName = rst.Fields(9)
.CGMWavFName = rst.Fields(10)
.CGMQizCount = rst.Fields(11)
.CGMBmpCount = rst.Fields(12)

End With

dbs.Close
Exit Sub
ErrorHandlerl:
Dim ErrorMessage As String
ErrorMessage = "Fatal Error - Authoring Database was not found. " &

"Please contact your system administration”
MsgBox ErrorMessage

End
Exit Sub

ErrorHandler2:

CurrNodeInfo.CGMNodeName = "NA"

dbs.Close

140

Exit Sub

End Sub
Sub SelectProgress(ByVal CurrStudentID As String)

Dim dbs As Database, rst As Recordset
Dim tmpSQL As String

On Error GoTo ErrorHandlerl

Set dbs = OpenDatabase(CGMDatabase)
tmpSQL " SELECT Curr Module Name ," _
" Curr_Node Name,"
" Curr_Node_Grade"” _
FROM CGM_Curr Node " _
" WHERE Curr_Student_ID = '" & CurrStudentID & "*" _

" ORDER BY Curr Module Name," _
" Curr_Node_Name;"

AR R R

Set rst = dbs.OpenRecordset (tmpSQL)
On Error GoTo ErrorHandler2

' Populate the Recordset.
rst.Movelast

ProgressCnt = rst.RecordCount

ReDim StudentProgress(ProgressCnt}
' go to lst row in recordset
rst.MoveFirst

' Loop thru recordset to get the student progress info.
For i = 1 To ProgressCnt
With StudentProgress(i}
.ModuleName = rst.Fields(0)
.NodeName = rst.Fields(1l)
RSet .StudentGrade = rst.Fields(2)
End With
rst.MoveNext
Next i

' Get group average

tmpSQL = " SELECT Curr_Module Name ,"
" Curr_Node_Name," _
" AVG {Curr_Node_Grade)," _

" COUNT (Curr_Node Grade)" _

" FROM CGM_Curr Node" _

" GROUP BY Curr_Module Name," _
" Curr_Node_Name;"

Lol S~ AT SO - AT ST |

Set rst = dbs.OpenRecordset (tmpSQL)

141

On Error GoTo ErrorHandler2

' Populate the Recordset.
rst.Movelast

ProgressCnt = rst.RecordCount

Dim TmpGrade As Integer
' go to 1lst row in recordset
rst.MoveFirst

' Loop thru recordset to get the student progress info.
For i = 1 To ProgressCnt
With StudentProgress(i)
TmpGrade = rst.Fields(2)
RSet .GroupGrade = TmpGrade
RSet .GroupCount = rst.Fields(3)
End With
rst.MoveNext
Next i

dbs.Close
Exit Sub
ErrorHandlerl:
Dim ErrorMessage As String
ErrorMessage = "Fatal Error - Authoring Database was not found. "
"Please contact your system administration”

MsgBox ErrorMessage

End
Exit Sub

ErrorHandler2:

ErrorMessage = "Fatal Error - Student progress was not found. " & _

"Please contact your system administration"
MsgBox ErrorMessage

End
Exit Sub

End Sub

&_.

142

ModVBMail - Mail modules

' Module Name: modVBMail
' Description: Common subroutine module to handle different tasks

of the mail sub-system. For example, log user off
the E-mail

Public
Public

Public
Public

Public

Public
Public

Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public
Public

Public
Public
Public

Const
Const

Const
Const

Const

Const
Const

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

Const
Const
Const

conMailLongDate = 0
conMailListView = 1

conOptionGeneral = 1 ' Constant for Option Dialog Type - General Options
conOptionMessage = 2 ' Constant for Option Dialog Type - Message Opticns
conUnreadMessage = "*" ' Constant for string to indicate unread message
vbRecipTypeTo = 1

vbRecipTypeCc = 2

vbMessageFetch = 1

vbMessageSendDlg = 2

vbMessageSend = 3
vbMessageSaveMsg = 4
vbMessageCopy = 5
vbMessageCompose = 6
vbMessageReply = 7
vbMessageReplyAll = 8
vbMessageForward = 9
vbMessageDelete = 10
vbMessageShowAdBook = 11
vbMessageShowDetails = 12
vbMessageResolveName = 13
vbRecipientDelete = 14
vbAttachmentDelete = 15

vbAttachTypeData = 0
vbAttachTypeEOLE =
vbAttachTypeSOLE =

no
N

Type ListDisplay
Name As String * 20
Subject As String * 40
Date As String * 20
End Type

Public currentRCIndex As Integer
Public UnRead As Integer

Public SendWithMapi As Integer
Public ReturnRequest As Integer

143

Public OptionType As Integer

Declare Function GetProfileString _
Lib "kernel32" _
(ByVal lpAppName As String, _
lpKeyName As Any, _
ByVal lpDefault As Strina, _
ByVal lpReturnedString As String, _
ByVal nSize As Long) As Long

Sub Attachments(Msg As Form)

' Clear the current attachment list.
Msg.aList.Clear

' If there are attachments, load them into the list box.
If frmVBMail.MapiMess.AttachmentCount Then
Msg.NumAtt = frmVBMail.MapiMess.AttachmentCount & " Files"
For i%¥ = 0 To frmVBMail.MapiMess.AttachmentCount - 1
frmVBMail.MapiMess.AttachmentIndex = i%
a$ = frmVBMail.MapiMess.AttachmentName
Select Case frmVBMail.MapiMess.AttachmentType
Case vbAttachTypeData
a$ = a$§ + " (Data File)"
Case vbAttachTypeEOLE
a$ = a$ + " (Embedded OLE Object)”
Case vbAttachTypeSOLE

a$ = a§ + " (Static OLE Object)"
Case Else

a$ = a$ + " (Unknown attachment type)"
End Select

Msg.aList.AddItem a$
Next i%

If Not Msg.AttachWin.Visible Then
Msg.AttachWin.Visible = True
Call SizeMessageWindow(Msg)

' If Msg.WindowState = 0 Then

! Msg.Height = Msqg.Height + Msg.AttachWin.Height
' End If

End If

Else

If Msg.AttachWin.Visible Then
Msg.AttachWin.Visible = False
Call SizeMessageWindow(Msg)

' If Msg.WindowState = 0 Then

! Msg.Height = Msg.Height - Msg.AttachWin.Height
' End If
End If
End If
Msg.Refresh
End Sub

Sub CopyNamestoMsgBuffer (Msqg As Form, fResolveNames As Integer)

144

Call KillRecips(frmVBMail.MapiMess)
Call SetRCList(Msg.txtTo, frmVBMail.MapiMess, vbRecipTypeTo, fResolveNames)
Call SetRCList(Msg.txtcc, frmVBMail.MapiMess, vbRecipTypeCc, fResolveNames)

End Sub

Function DateFromMapiDate$ (ByVal S$, wFormat$)

' This procedure formats a MAPI date in one of
' two formats for viewing the message.

YS = Left$(S$, 4)
MS = Mid$(S$, 6, 2)
D§ = Mid$(s$, 9, 2)
T$ = Mid$(S$, 12)

Ds# = DateValue(MS$S + "/"™ + DS + "/" + Y$) + TimeValue(T$)
Select Case wFormat
Case conMaillongDate
f$ = "dddd, mmmm d, yyyy, h:mmAM/PM"
Case conMailListView
£$ = "mm/dd/yy hh:mm"
End Select
DateFromMapiDate = Format$(Ds#, £$)

End Function

Sub DeleteMessage()
' If the currently active form is a message, set MListIndex to

' the correct wvalue.

If TypeOf Screen.ActiveForm Is frmMailMessage Then
frmMaillist.MList.ListIndex = Val(Screen.ActiveForm.Tag)
ViewingMsg = True

End If

' Delete the mail message.
If frmMaillist.MList.ListIndex <> -1 Then
frmVBMail .MapiMess.MsgIndex = frmMaillist.MList.ListIndex
frmVBMail.MapiMess.Action = vbMessageDelete
X% = frmMaillist.MList.ListIndex
frmMaillList.MList.Removeltem X%
If X% < frmMailList.MList.ListCount - 1 Then
frmMaillist.MList.ListIndex = X%
Else
frmMailList.MList.ListIndex = frmMailList.MList.ListCount - 1
End If
frmvBMail.sbrVBMail.Panels(1l).Text = Format$ (frmVBMail.MapiMess.MsgCount)
+ " Messages" -

' Adjust the index values for currently viewed messages.
If ViewingMsg Then

Screen.ActiveForm.Tag = Str$(-1)
End If

145

For i = 0 To Forms.Count - 1
If TypeOf Forms(i) Is frmMailMessage Then
If Val(Forms(i).Tag) > X% Then
Forms (i).Tag = Val(Forms(i).Taqg) - 1
End If
End If
Next i

' If the user is viewing a message,
' load the next message into the frmMailMessage form
' if the message isn't currently displayed.
If ViewingMsg Then
' First check to see if the message is currently being viewed.
WindowNum$% = FindMsgWindow((frmMailList.MList.ListIndex))
If WindowNum% > 0 Then
If Forms(WindowNum$).Caption <> Screen.ActiveForm.Caption Then
Unload Screen.ActiveForm
' Find the correct window again and display it.
' The index isn't valid after the unload.
Forms (FindMsgWindow ({frmMailList.MList.ListIndex))).Show

Else
Forms (WindowNum$) . Show
End If
Else
Call LoadMessage(frmMailList.MList.ListIndex, Screen.ActiveForm)
End If

Else
' Check to see if there was a window viewing the message,
' and unload the window.
WindowNum$ = FindMsgWindow (X%)
If WindowNum% > 0 Then
Unload Forms (X%)
End If
End If
End If
End Sub

Sub DisplayAttachedFile(ByVal FileName As String)

On Error Resume Next
' Determine the filename extension.
ext$ = FileName
junk$ = Token$ (ext$, ".")
' Get the application from the WIN.INI file.
BufferS = String$(256, " ")
errCode’ = GetProfileString("Extensions", ext$, "NOTFOUND",
Buffer$, Len(Left(Buffer$, Chr(0)) - 1))
If errCode% Then
Buffer$ = Mid$(Buffer$, 1, InStr(Buffer$, Chr(0}) - 1)
If Buffer$ <> "NOTFOUND" Then
' Strip off the ".EXT information from the string.
EXEName$ = TokenS$ (Buffer§, " ")
errCode% = Shell (EXEName$ + " " + FileName, 1)
If Err Then
MsgBox "Error occurred during the shell: "™ + Error$

146

End If
Else
MsgBox "Application that uses: <" + ext$ + "> not found in WIN.INI"
End If
End If
End Sub

Function FindMsgWindow(Index As Integer) As Integer

' This function searches through the active windows

' and locates those with the frmMailMessage type and then
' checks to see if the tag contains the index the user

' is searching for.

For i = 0 To Forms.Count - 1
If TypeOf Forms(i} Is frmMailMessage Then
If Val(Forms(i).Tag) = Index Then
FindMsgWindow = i
Exit Function
End If
End If
Next i

FindMsgWindow = -1
End Function
Function GetHeader (Msg As Control) As String
Dim CR As String

CR = Chr$(13) + ChrS$(10)

Header$ = String$(25, "-") + CR
Header$ = Header$ + "Form: " + Msg.MsgOrigDisplayName + CR

Header$ = Header$ + "To: " + GetRCList(Msg, vbRecipTypeTo) + CR
Header$ = Header$ + "Cc: " + GetRCList(Msg, vbRecipTypeCc) + CR
Header$ = Header$ + "Subject: " + Msg.MsgSubject + CR
Header$ = Header$ + "Date: " _
+ DateFromMapiDate$ (Msg.MsgDateReceived, conMailLongDate) + CR + CR

GetHeader = Header$
End Function

Sub GetMessageCount ()
' Reads all mail messages and displays the count.

Screen.MousePointer = 11

frmVBMail .MapiMess.FetchUnreadOnly = 0

frmVBMail.MapiMess.Action = vbMessageFetch

frmVBMail.sbrVBMail.Panels{1l).Text = Format$ (frmVBMail.MapiMess.MsgCount) _

+ " Messages"
Screen.MousePointer = 0

End Sub

147

Function GetRCList(Msg As Control, RCType As Integer) As String
' Given a list of recipients, this function returns

' a list of recipients of the specified type in the

' following format:

' Person 1;Person 2;Person 3

For i = 0 To Msg.RecipCount - 1
Msg.RecipIndex = i
If RCType = Msq.RecipType Then
a$ = a$ + ";" + Msg.RecipDisplayName
End If
Next i

If a$ <> "" Then
a$ = Mid$(a$, 2} ' Strip off the leading ";".
End If

GetRCList = a$
End Function
Sub KillRecips (MsgControl As Control)

' Delete each recipient. Loop until no recipients exist.
While MsgControl.RecipCount

MsgControl.Action = vbRecipientDelete
Wend

End Sub

Sub LoadList(mailctl As Control)

' This procedure loads the mail message headers

' into the frmMailList.MList. Unread messages have

' conUnreadMessage placed at the beginning of the string.

frmMailList.MList.Clear
UnRead = 0
StartIndex = 0
For i = 0 To mailctl.MsgCount - 1
mailctl.MsgIndex = i
If Not mailctl.MsgRead Then
a$ = conUnreadMessage + " "
If UnRead = 0 Then

StartIndex = i ' Start position in the mail list.
End If
UnRead = UnRead + 1
Else
as - i n
End If

a§ = a$ + Mid$(Format$(mailctl.MsqOrigDisplayName, *!" + String$(10, "@")), 1, 10}
If mailctl.MsgSubject <> "" Then

b$ = Mid$(Format$(mailctl.MsgSubject, "!" + String$(35, "@")), 1, 35)
Else

b$ = String$(30, " "}

148

End If

c$ = Mid$(Format$ (DateFromMapiDate(mailctl.MsgDateReceived, conMailListView), _

1" + String$ (15, "€")), 1, 15)
frmMaillist.MList.AddItem a$ + Chr$(9) + b$ + Chr$(9) + c$
frmMaillList .MList.Refresh

Next i

frmMaillist.MList.ListIndex = StartIndex

' Enable the correct buttons.
frmVBMail.Next.Enabled = True
frmVBMail.Previous.Enabled = True
frmVBMail! (Delete] .Enabled = True

' Adjust the value of the labels displaying message counts.
If UnRead Then
frmVBMail.sbrVBMail.Panels(2).Text = " - " + Format$(UnRead) + " Unread”
frmMaillList.Icon = frmMailList.NewMail.Picture
Else
frmVBMail.sbrVBMail.Panels(2).Text = ""
frmMaillist.Icon = frmMaillist.nonew.Picture
End If

End Sub

Sub LoadMessage(ByVal Index As Integer, Msq As Form)
' This procedure loads the specified mail message into
' a form to either view or edit a message.

If TypeOf Msg Is frmMailMessage Then
a$ = frmMailList.MList.List (Index)
' Message is unread; reset the text.
If Mid$(a$, 1, 1) = conUnreadMessage Then
Mid$(as$, 1, 1) =" "
frmMailList.MList.List(Index) = a$
UnRead = UnRead - 1
If UnRead Then
frmVBMail.sbrVBMail.Panels(2).Text

Else
frmVBMail.sbrVBMail.Panels(2).Text = ""
' Change the icon on the list window.
frmMailList.Icon = frmMaillist.nonew.Picture

End If

End If
End If

Format$ (UnRead) + "™ Unread"

' These fields only apply to viewing.
If TypeOf Msg Is frmMailMessage Then
frmVBMail .MapiMess.MsgIndex = Index
Msg.txtDate = DateFromMapiDate$(frmVBMail.MapiMess.MsgDateReceived,
conMailLongDate)
Msg.txtFrom = frmVBMail.MapiMess.MsgOrigDisplayName
frmMailList.MList.ItemData(Index) = True
End If

149

End

Sub

End

' These fields apply to both form types.
Call Attachments(Msg)

Msqg.txtNoteText = frmVBMail.MapiMess.MsgNoteText
Msg.txtsubject = frmVBMail.MapiMess.MsgSubject

Msg.Caption = frmVBMail.MapiMess.MsgSubject
Msg.Tag = Index

Call UpdateRecips (Msg)

Msg.Refresh
Msg.Show

Sub

LogOffUser()
On Error Resume Next
frmVBMail .MapiSess.Action = 2
If Err <> 0 Then
MsgBox "Logoff Failure: " + ErrorR
Else
frmVBMail .MapiMess.SessionID = 0
' Adjust the menu items.
frmVBMail.LogOff.Enabled = 0
frmVBMail.Logon.Enabled = -1
' Unload all forms except the MDI form.
i = Forms.Count - 1
Do Until i =1
i=1i-1
If TypeOf Forms(i) Is MDIForm Then
' Do nothing.
Else
Unload Forms (i)
End If
Loop
' Disable the toolbar buttons.
frmVBMail .Next.Enabled = False
frmVBMail.Previous.Enabled = False
frmVBMail! [Delete].Enabled False

frmVBMail.SendCtl (vbMessageCompose) .Enabled = False
frmVBMail.SendCtl (vbMessageReplyAll) .Enabled = False
frmVBMail.SendCtl (vbMessageReply) .Enabled = False

frmVBMail.SendCtl (vbMessageForward) .Enabled = False

frmVBMail.rMsgList.Enabled = False
frmVBMail.PrintMessage.Enabled = False
frmVBMail .DispTools.Enabled = False
frmVBMail .EditDelete.Enabled = False

' Reset the caption for the status bar labels.
"O0ff Line"

frmVBMail.sbrVBMail.Panels (1) .Text
frmVBMail.sbrvBMail.Panels (2).Text
End If

nmw

Sub

150

Sub PrintLongText (ByVal LongText As String)

' This procedure prints a text stream to a printer and
' ensures that words are not split between lines and

' that they wrap as needed.

Do Until LongText = ""
Word$ = Token$ (LongText, " ")
If Printer.TextWidth(Word$) + Printer.CurrentX > Printer.Width _
- Printer.TextWidth("2Z2Z2ZZZZZ") Then
Printer.Print
End If

Printer.Print "™ " + WordS$;
Loop

End Sub

Sub PrintMail ()
" In List view, all selected messages are printed.
' In Message view, the selected message is printed.

If TypeOf Screen.ActiveForm Is frmMailMessage Then
Call PrintMessage(frmVBMail.MapiMess, False)
Printer.EndDoc

ElseIlf TypeOf Screen.ActiveForm Is frmMaillist Then
For i = 0 To frmMailList.MList.ListCount - 1

If frmMailList.MList.Selected(i) Then
frmVBMail .MapiMess.MsqIndex = i
Call PrintMessage(frmvBMail.MapiMess, False)
End If
Next i
Printer.EndDoc
End If

End Sub

Sub PrintMessage(Msg As Control, fNewPage As Integer)
' This procedure prints a mail message.

Screen.MousePointer = 11
' Start a new page if needed.

If fNewPage Then
Printer.NewPage

End If
Printer.FontName = "Arial"
Printer.FontBold = True

Printer.DrawWidth = 10

Printer.Line (0, Printer.CurrentY)-(Printer.Width, Printer.CurrentY)
Printer.Print

Printer.FontSize = 9.75

Printer.Print "From:";

Printer.CurrentX = Printer.TextWidth(String$(30, " "))

151

Printer.Print Msg.MsqgOrigDisplayName
Printer.Print "To:";
Printer.CurrentX = Printer.TextWidth(String$(30, " "))
Printer.Print GetRCList (Msg, vbRecipTypeTo)
Printer.Print "Cc:";
Printer.CurrentX = Printer.TextWidth(String$(30, " "))
Printer.Print GetRCList(Msg, vbRecipTypeCc)
Printer.Print "Subject:”";
Printer.CurrentX = Printer.TextWidth(String$(30, " "))
Printer.Print Msg.MsgSubject
Printer.Print "Date:";
Printer.CurrentX = Printer.TextWidth(String$(30, " "))
Printer.Print DateFromMapiDate$ (Msg.MsgDateReceived, conMaillongDate)
Printer.Print
Printer.DrawWidth = 5
Printer.Line (0, Printer.CurrentY)-(Printer.Width, Printer.CurrentY)
Printer.FontSize = 9.75
Printer.FontBold = False
Call PrintLongText (Msqg.MsgNoteText)
Printer.Print
Screen.MousePointer = 0

End Sub

Sub SaveMessage (Msg As Form)

' Save the current subject and note text.

' Copy the message to the compose buffer.

' Reset the subject and message text.

' Save the message.

svSub = Msg.txtsubject

SVNote = Msg.txtNoteText
frmVBMail.MapiMess.Action = vbMessageCopy
frmVBMail .MapiMess.MsgSubject = svSub
frmVBMail.MapiMess.MsgNoteText = SVNote
frmVBMail.MapiMess.Action = vbMessageSaveMsg

End Sub

Sub SetRCList(ByVal NameList As String,
Msg As Control, -
RCType As Intege;, _
fResolveNames As Integer)
' Given a list of recipients:

' Person 1;Person 2;Person 3
' this procedure places the names into the Msg.Recip
structures.

If NameList = "" Then
Exit Sub
End If

i = Msg.RecipCount
Do

152

Msg.RecipIndex = i
Msg.RecipDisplayName = Trim$ (Token(NameList, ";"))
If fResolveNames Then
Msg.Action = vbMessageResolveName
End If
Msg.RecipType = RCType
1=1+1
Loop Until (NameList = "")

End Sub
Sub SizeMessageWindow(MsgWindow As Form)
If MsgWindow.WindowState <> 1 Then

' Determine the minimum window size based
' on the visiblity of AttachWin (Attachment window) .

If MsgWindow.AttachWin.Visible Then ' Attachment window.
MinSize = 3700

Else
MinSize = 3700 - MsgWindow.AttachWin.Height

End If

' Maintain the minimum form size.

If MsgWindow.Height < MinSize And (MsgWindow.WindowState = 0) Then
MsgWindow.Height = MinSize
Exit Sub

End If
' Adjust the size of the text box.
If MsgWindow.ScaleHeight > MsgWindow.txtNoteText.Top Then
If MsgWindow.AttachWin.Visible Then
X% = MsgWindow.AttachWin.Height
Else
X$ =0
End If
MsgWindow.txtNoteText.Height = MsgWindow.ScaleHeight _
- MsgWindow. txtNoteText.Top ~ X%
MsgWindow. txtNoteText.Width = MsqWindow.ScaleWidth
End If
End If

End Sub
Function Token$ (tmp$, search$)

X = InStr(l, tmp$, search$)
If X Then
Token$ = Mid$(tmp$, 1, X - 1)
tmp$ = Mid${tmp$, X + 1)
Else
Token$ = tmp$
tmps = nn
End If

End Function

153

Sub UpdateRecips(Msg As Form)
' This procedure updates the correct edit fields and the
' recipient information.

Msg.txtTo.Text
Msqg.txtcc.Text

GetRCList (frmVBMail.MapiMess, vbRecipTypeTo)
GetRCList (frmVBMail.MapiMess, vbRecipTypeCc)

End Sub
Sub ViewNextMsg()

' Check to see if the message is currently loaded.
' If it is loaded, show that form.
' If it is not loaded, locad the message.
WindowNum%# = FindMsgWindow{ (frmMaillist.MList.ListIndex))
If WindowNum% > 0 Then
Forms (WindowNum$%) . Show
Else
If TypeOf Screen.ActiveForm Is frmMailMessage Then
Call LoadMessage({frmMaillist.MList.ListIndex, Screen.ActiveForm)
Else
Dim Msg As New frmMailMessage
Call LoadMessage(frmMaillist.MList.ListIndex, Msg)
End If
End If
End Sub

154

