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Abstract

Aerodynamic Inverse Design of Transonic Turbomachinery Cascades

Majid Ahmadi, Ph.D.
Concordia University, 1998

An aerodynamic inverse design method for turbomachinery cascades is presented and
is implemented in a finite volume method. In this design method, the mass-averaged swirl
schedule and the blade thickness distribution are prescribed. The design method then pro-
vides the blade shape that would accomplish this loading by imposing the appropriate pres-
sure jump across the blades and satisfying the blade boundary condition, the latter implies
that the flow is tangent to the blade surfaces. This inverse design method is implemented
using a cell-vertex finite volume method which solves the Euler equations on unstructured
triangular meshes. A five-stage Runge-Kutta pseudo-time integration scheme is used to

march the solution to steady state. Non-linear artificial viscosity is added to eliminate
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pressure-velocity decoupling and to capture shocks. Convergence is accelerated using lo-
cal time stepping and implicit residual smoothing. The boundary conditions at inflow and
outflow are based on the method of characteristics. The finite volume discretization method
is validated against some standard cases of internal flow as well as linear cascades.

The inverse design method is first validated for three different cascades namely, a
parabolic cascade, a compressor cascade and a turbine inlet guide vane. It is then used
to obtain a shock-free design of an impulse transonic cascade and of the ONERA transonic
compressor cascade. A parametric study has shown that the blade profile is rather sensitive
to the prescribed loading distributions and that, in most cases, a smooth loading distribution

results in a shock-free cascade design.
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Chapter 1

Introduction

The flow in a turbomachine is typically three-dimensional, viscous and inherently unsteady.
Figures 1-1 and 1-2 show the flow complexity in a compressor and turbine passage respec-
tively, where schematic illustrations of several flow phenomena influencing performance
are shown. The inherent unsteadiness is due to the series of fixed and rotating blade-rows.
It is important to point out that only one case can be considered as steady (in the relative
frame): it corresponds to the particular configuration of an isolated blade-row when the
flow is attached and all the boundary conditions including a fixed rotational speed remain
constant. In fact this case is very rare in a turbomachine: the unsteady effects can be ne-
glected and the flow can be assumed as steady only in the first blade row of a compressor
or turbine [2, 3].

There are many physical problems involving two-dimensional flows around blading
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which remain unsolved. Figure 1-3 taken from Gostelow [1], shows a representative com-
pressor blade and lists some of the unresolved problems. On the pressure surface the desta-
bilizing effects of concave curvature usually result in Gortler vorticity. This affects the heat
transfer and makes prediction of boundary layer characteristics difficult. Other problems
are boundary layer transition and its inception, extent and behavior under free-stream tur-
bulence, pressure gradients on concave surfaces. Separation is a related problem, especially
the long and short bubble modes of laminar separation. Turbomachinery blading usually
has a thick trailing edge, and the resulting trailing edge flows and base pressure cannot yet
be reliably predicted. Unsteady interactions, especially the passage of wakes through blade
rows, are complex phenomena that merit much closer attention. Solution of each of these
problems requires a better understanding of the flow physics.

To understand the physics of the flow, mentioned above, numerous research activities
using experimental as well as numerical approaches have been initiated in the past few
decades. In order to improve the performance of modern highly loaded turbomachinery
components, the designer needs a good understanding of the different flow phenomena
occurring in a turbomachine passage. It is important to design aerodynamically efficient
blade profiles. The viscous effects and shocks, for example, can be reduced by designing
blade geometries which give a proper velocity (or pressure) distribution. In the past, this
was done iteratively by successive modifications of the blade geometry followed by ex-

perimental verification or numerical flow simulation. However, depending on the designer
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experience, such a process can be very time consuming, can result in increased design
costs, moreover it may not always produce the targeted performance and usually does not
result in break throughs in the technology.

A study of the published literature and of the present state-of-the-art shows that usually
the detailed definition of the tubomachinery geometry is done iteratively using analysis
code, which simulate inviscid or viscous flow namely Euler or Navier-Stokes solvers (this
is referred to as the direct approach to the design). This process consists in choosing a blade
geometry, and then analyzing the flow field around this geometry using analysis codes. If
the target performance is not achieved, then a new blade geometry is guessed and the whole
process is repeated, until the desired results are obtained, eventually. The task of guessing
a blade geometry has been done in a great variety of ways. For example, it is common to
use straight lines and circular arcs, or in general conic sections (such as elliptic arcs), both
in the definition of the meridional geometry and of the camber surface (see Moore [4]).
Another different form of doing this is presented in Baines e al.[5] who used Lamé ovals
for the definition of the geometry of mixed flow turbines.

In what follows this approach, which is referred to as the analysis or direct method
will be presented, it will be followed by a totally different approach, known as the inverse
design method, where the blade performance is prescribed and the blade shape that would

accomplish it is sought after as described below.
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1.1 Analysis or Direct Approach

In the analysis method, a certain geometry is analyzed and, through the designer’s experi-
ence, is modified to yield the required performance. Several analysis methods have been
implemented to simulate inviscid and/or viscous flow in cascades. Among them, the Fi-
nite Volume Method (FVM) has proved to be simple yet very efficient in computing such
flows. Also, this methodology is very suitable for approximating the solution in less cost
and enough accuracy [6, 7, 8, 9, 10, 11, 12].

Over the last decade, there has been an increasing trend to use unstructured meshes (as
opposed to structured ones) in discretizing the computational domain; the main advantages
being: the ease of generating an isotropic mesh (using e.g. Delaunay triangulation) for
an arbitrarily complex geometry without severely distorted mesh cells, and the fact that it
couples naturally and efficiently with solution-adaptive schemes.

While Navier-Stokes solvers are needed to obtain accurate solutions for viscous flows
in turbomachines, a fast Euler solver is still a desirable tool for routine applications par-
ticularly in problems where viscous effects are confined to the walls regions, typically in
attached high Reynolds number subsonic flows. Many flow phenomena typical of turbo-
machines are present in two-dimensional cascades [1], therefore they provide a good test
ground for the different numerical methods; a good compilation of these test cases can be

found in Fottner [13].
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In the blade-to-blade plane, or linear cascade, Amone and Stecco [7] and Liu and Jame-
son [12] developed a cell-centered scheme to solve the Euler equations on a structured
H-type mesh while Siden er al. [9] implemented a cell-vertex adaptive scheme using an
unstructured triangular mesh where the entropy variation along the edges was used as an
indicator for mesh refinement. More recently, Irmisch [14] presented a vertex-centered
adaptive scheme where he used Delaunay triangulation to generate the mesh and to adapt
it based on density variation along the edges.

Using cell vertex FVM, with linear approximation for all variables, global second-order
accuracy can be achieved on unstructured meshes for the Euler equations [15]. It is found in
practice that the solution accuracy is most significantly affected by mesh quality (smooth-
ness, number of connections at a point), the construction of the artificial diffusion terms

and the formulation of the inlet and outlet boundary conditions.

1.1.1 Present Analysis Approach

In the analysis mode of present study, inviscid flow in cascades is simulated by solving the
Euler equations on purely triangular unstructured meshes using a time-marching solution
method. The time dependent integral form of the equations are discretized in space using a
cell-vertex Finite Volume Method (FVM) and integration in pseudo-time is performed us-
ing an explicit five-stage Runge-Kutta time-stepping procedure. Convergence acceleration

is achieved by employing local time-stepping and implicit residual smoothing [16]. The
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non-linear artificial viscosity formulation advanced by Jameson et al. [17, 6] combined
with the pseudo-Laplacian discretization presented by Holmes and Connel [18] provide a
model with lower numerical losses and higher accuracy. The inflow and outflow boundary
conditions are based on a linearized one-dimensional characteristic method, developed by

Giles [19, 20].

1.2 Inverse Design Method

The inverse design method is one where the required blade performance is specified and
the blade shape that would accomplish such a performance is sought. Inverse techniques
for turbomachine blades are widely used in industry, but they are far from being at the

sophistication level of the analysis methods [8, 10, 11].

1.2.1 Previous Investigations

The first inverse design method was introduced by Lighthill [21] in 1945 for incompress-
ible flow. He showed that one cannot prescribe any arbitrary velocity distribution in order
to obtain a solution, but rather a given prescribed velocity distribution on the blade surface
must satisfy certain constraints that deal 1) with the compatibility of the velocity distribu-
tion and the specified free-stream velocity and 2) with the closure of the profile. It has been

shown that the same holds for compressible flow. Surface boundary layers can be taken into
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account within the design procedure via any fast integral boundary layer computation [22].
The calculated displacement thickness is subtracted after smoothing from the computed
profile to yield the final metal blade.

In two-dimensional blade-to-blade design methods, this performance is characterized
with two design quantities: either the flow properties on both sides of the blade or the flow
properties on one side (typically the suction side to eliminate possible shocks) and e.g. the
blades thickness distribution. These flow properties may be either the pressure [22], the
velocity [23], or the Mach number [24] distribution on the blades pressure and suction sur-
faces. These choices of the design variables are most appropriate for two-dimensional flow
where the designer knows how to choose a ‘good’ pressure (or Mach number) distribution
and where it is implicitly assumed that the two-dimensional plane under consideration is
a stream-tube. However, in three-dimensional flow, the choice of a ‘good’ pressure dis-
tribution is unknown. Another choice of the design variables, that can readily be applied
to the three-dimensional design problem, is the pressure jump across the blades and their
thickness distribution. Novak and Haymann-Haber [25] and Zannetti [26] used these de-
sign variables for cascade design. Moreover Zannetti [26] extended his method to three-
dimensional shock-free flows [3] and used it to design a subsonic stator.

A three-dimensional inverse blade design theory [27], referred to as the blade circula-
tion method, was presented in 1984, where the arithmetic mean swirl distribution (r7,(r, z)

in cylindrical coordinates) is specified in the blade region and the blade shape that would
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accomplish that swirl schedule is then calculated. A solution for a steady irrotational flow
of an incompressible inviscid fluid over an infinitely thin blade set at zero incidence angle
in a constant hub and shroud passage was given in the form of series of eigen functions
[27]. That theory was further extended to handle complex passage geometry for incom-
pressible [28] and compressible flow [29]; the numerical implementation involved the use
of Fourier series in the circumferential direction and finite difference [28] or finite element
[29] in the meridional plane (plane passing through the axis of the turbomachine) so that
the three-dimensional problem was converted into a series of two-dimensional ones for the
Fourier components. The method was also extended to handle transonic flow [30] and finite
blade thickness [31] where a finite volume scheme in three dimensions was used to solve
the flow equations. This is to list some of the research activities where this method has
been applied.

Recently, this theory [27] has been modified such that the mass average, rather than the
arithmetic average, swirl schedule is specified [32], the advantage being that the gradient
of the mass-averaged swirl is directly proportional to the pressure jump across the blades
(and the rate of change of angular momentum for a stator or specific work for a rotor),
hence the Kutta condition can be directly and easily imposed, and the design method can
be implf:mented into current Euler solvers. The specification of the mass-averaged swirl
(which is directly proportional to the pressure jump across the blades) is more appropriate

for three-dimensional flows as mentioned earlier, and the prescription of the blade thickness
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guarantees that the profile is closed and gives the designer some control on structural and
manufacturing constraints. As shown in [32], the finite volume Euler solver, which is
based on Jameson’s original cell-centered finite volume scheme [17] with blended second
and fourth order nonlinear artificial diffusion, was used to demonstrate the effect of using
the mass-averaged swirl as a design variable. This new design method has also been used
to suggest some modifications to the three-dimensional aerodynamic blade design of a

transonic fan [33].

1.2.2 Present Inverse Design Approach

In the present work, the inverse design method [32], where the design variables are the
mass-averaged tangential velocity and the blades thickness distribution, is presented and
is used to design the different compressor and turbine cascades. It is implemented in a
cell-vertex finite volume method (FVM) on unstructured triangular meshes using an edge
based data structure for efficient and optimum performance of the FVM [6, 15].

The advantage of prescribing the mass-averaged tangential velocity is that the gradient
of the mass-averaged swirl is directly proportional to the pressure jump across the blades
(and the rate of change of angular momentum), hence the Kutta condition can be directly
and easily imposed, and the design method can be implemented into current Euler solvers.

The specification of the mass-averaged swirl (which is directly proportional to the pressure
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Jjump across the blades) is more appropriate for three-dimensional flows, and the prescrip-
tion of the blade thickness guarantees that the profile is closed and gives the designer some

control on structural and manufacturing constraints.
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Figure 1-1: Compressor blade row: flow characteristics (Courtesy NASA-Lewis Research
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Figure 1-3: Some unresolved cascade flow problems, Gostelow [1].
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Chapter 2

Inverse Design Methodology

In this chapter, the governing flow equations is first presented. Then, the inverse design
method, where the design variables are the mass-averaged swirl schedule and the blades
thickness distribution, is described. The blade boundary conditions and camber line equa-

tion are also explained.

2.1 Governing Equations

The continuity, momentum and energy equations, governing the unsteady two-dimensional
flow of an inviscid fluid (loosely referred to as the Euler equations) are written in conser-

vative form in a Cartesian coordinate system as follows:

6U+8F+3G_
ot Oz Oy

0 2-1)

14
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where U is a state vector of dependent variables and F' and G are the flux vectors in the =

and y directions, and are given by:

p pu pu
pu pu?+p puv
U= , F= , G= . (2-2)
pu puv pv* +p
pE puH pvH

Assuming that the fluid is an ideal gas thermally and calorically and. given the definition
of total enthalpy H

H=FE+p/p (2-3)
the pressure p can then be written as:
— lra, 2
p—('y—l)p[E——i(u -{-'u)] 2-4)

where 7 is the ratio of specific heats.
Additional equations which will be required are the definitions of the speed of sound,

Mach number, stagnation pressure and stagnation temperature.

c= 771“ 2-5)
‘/ 2 2
M= Lc_ti (2-6)

-7
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T.=T (1 + 3’-;—1—M2) 2-8)

In what follows, all distances are non-dimensionalized using an appropriate character-
istic length and all flow variables are non-dimensionalized using the upstream stagnation

pressure and temperature as follows:

u,v p

VRT, °Tp L &

o]
I
|
N
I
3|

sy UU=

Since the Euler equations are nonlinear, they are solved iteratively using a time march-

ing finite volume scheme that is discussed in detail in the next chapter.

2.2 Inverse Design Formulation

The inverse design method presented in [32] is summarized in this section, and the dif-
ferences between that method and the current implementation are emphasized. In a linear
cascade, the prescribed design quantities are the mass-averaged tangential velocity #(z)
(which corresponds to the swirl schedule 774(r, z) in an annular cascade) and the blades
thickness distribution T'(z). As mentioned earlier, the gradient of the mass-averaged swirl
is directly proportional to the pressure jump across the blades. The specification of the
blade thickness guarantees that the profile is closed and gives the designer some control

over structural and manufacturing constraints.
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The equations of motion, equations (2-1), are solved in both analysis and design modes,
hence both modes are implemented in the same computer code, the primary difference
comes in the implementation of the boundary conditions along the blades. In the analy-
sis mode, the usual flow tangency condition is enforced; while in the design mode, the
prescribed mass-averaged tangential velocity is used to impose a pressure jump across the
blades and the blade boundary condition (implying that the flow be tangent to the blade
surfaces) results in the imposition of the tangential component of velocity v* along the

blade surfaces and the imposition of the camber line f(z), as described hereafter.

2.2.1 The Mass-Averaged Swirl Schedule

Following the rectilinear cascade notation given in Figure 2-1, the mass-averaged tangential

velocity 7(z) in the bladed region is defined as [32]:

1 (v
lp) = — d 2-10
o(z) m/r v(pu dy) (2-10)
This velocity 7(z) can be related to the local blade pressure loading via the y-momentum
equation [32]:
. du

—pt —p— = Y -
Ap=p™ —p U (2-11)

where m is the mass flow rate through the blade passage, and the superscripts (+) and

(—) denote the blade upper and lower surfaces, respectively. Equation (2-11) implies that
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prescribing the pressure jump across the blades can be obtained by prescribing the mass-
averaged tangential velocity, #(z) (rTg(r, 2) in an annular cascade). In the design mode,

equation (2-11) is used to find pressure difference across the blade.

2.2.2 The Blade Boundary Conditions

The blade boundary condition implies that the flow is tangent to the blade surfaces, it can

be expressed as [27]:

VE.Va*f=0 (2-12)

In the above expressions, the blade upper and lower surfaces are described by the constant

surfaces o~ and are defined as [32]:

ot =y - (f(z) @ =ns (2-13)

where n is any integer, s is the blade spacing-to-chord ratio, T'(z) is the prescribed blade
thickness distribution, and f(z) is the unknown blade camber line in the inverse problem,
as shown in Figure 2-1.

Subtracting and adding the two blade boundary conditions given in equations (2-12),

we obtain:
(wtr—v7) = (u'*‘ - u") g{; + % (u*’ + u") % (2-14)
(u“" + u‘) % =@t +v7) - % (u"” - u") % (2-15)
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Equations (2-14) and (2-15) are alternative forms of the flow tangency condition along the
blades, referred to as the blade boundary condition in the inverse problem.

In the bladed region, fluid is allowed to cross the blade surfaces during the iterative pro-
cess for the blade camber line, the technique used to satisfy the blade boundary conditions,
equations (2-14) and (2-15) and the pressure loading, equation (2-11) is as follows. A blade
value of a given quantity is defined as the average value of that quantity at the blade upper

and lower surfaces, e.g. the blade value of the z-component of velocity is defined as:

] =

(U = [u* + u‘] (2-16)

and the difference between the blade upper- and lower-surface values is defined as:
A (u) =ut —u~ 2-17)

To satisfy the conditions given in equation (2-11) and equation (2-14), we enforce the
following constraints on the pressure and the y-component velocity along the blade upper-

and lower-surface:

<v>bl [Abl (u) +( )bl dT] (2-18)

dv
sl o]
At convergence, the only contribution to the flux vectors on the blade surfaces are the

pressure forces given in equation (2-11).
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2.2.3 Camber Line Generator

In the design mode, the blade shape is periodically updated by integrating equation (2-15)

(using the trapezoidal rule) from the blade leading to trailing edge [32]

_ [0 18w -
f@ =/, [(uii " i & @20

Each time the blade shape is updated, a new computational mesh needs to be generated.
This can be implemented using either a sheared H-grid or a purely Delaunay triangular

mesh as described in the next chapter.
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Figure 2-1: Cascade notation and computational domain.



Chapter 3

Numerical Implementation

In this chapter, the finite volume discretization method and the boundary conditions im-
plementation are first presented. Then, the numerical implementation of inverse design
approach is described. The validation of finite volume solver and a mesh adaptation library

used in optimizing the analysis mode are presented in appendix A.

3.1 Finite Volume Discretization Method

A cell-vertex finite volume method is used to discretize the equations of motion, equa-
tions (2-1), on an unstructured triangular mesh. The computational domain is divided into
triangles, fixed in time, and the flow variables are stored at their vertices. For any node, the
control volume (surface in 2D) is taken as the union of all triangles with a vertex at that
node, i.e. the control volumes are overlapping.

22
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The governing equations, equations (2-1), are then integrated over each control volume
Q (surface in 2D) which is bounded by the surface Q2 (curve in 2D), and using Gauss

theorem (Green’s Theorem in 2D) one obtains

gt‘//QU drdy + /m(FdnI + Gdn,) = 0. (3-1)

The fluxes F" and G along a particular edge of the control volume are numerically evaluated
as the average of the nodal flux values at the ends of that edge, which assumes a linear
variation along the control volume edges and is second order accurate [34].

When the cell-vertex discretization scheme is applied to equation (3-1), the following
set of coupled ordinary differential equations is obtained for each cell or control volume ¢

surrounding node z:

g—t (S:Us) + D (Feng, + Geny, ) =0 (3-2)

e=l

where the summation is taken over all edges of cell 7, S; is the cell area, U; is the solution
vector, F, and G, are the components of the flux vector on edge e, and n._, n,, are the
components of the outward normal to edge e. The fluxes F, and G, are functions of the
flow variables at neighboring nodes, thus when equation (3-2) is written for all cells ¢, we
get

0
5 (SU) +Q(U) =0 (3-3)

where the convective operator @ (U;) represents the discrete approximation to the con-

vective flux integral. It should be mentioned that an edge-based data structure is used to
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construct the connectivity of the unstructured mesh and the convective flux balance is com-

puted in a single loop over the edges using indirect addressing.

3.2 Artificial Viscosity

Artificial viscosity terms are introduced to provide for pressure-velocity coupling, to cap-
ture shock waves and to diffuse non-physical numerical oscillations. The discretized Euler

equations, equations (3-3) are augmented by an artificial viscosity term as follows.
0
57 () +Q(U) =D (U) =0 (34)

where D (U;) represents the integral of the artificial viscosity term. D (U;) is formed of
a blend of Laplacian and biharmonic terms [6]. The Laplacian is discretized using an
undivided pseudo-Laplacian, proposed by Holmes and Connell [18], where an inexpensive

approach using geometric weights is used

LW) =Y wes U = Uy). (3-5)

=1
where k represents all neighbors of node . The weights wy ; are chosen such that the
pseudo-Laplacian of a linear function will be zero, as would be the case for the true Lapla-

cian. These weights w; ; are defined as

Wei =1+ Awk,,- . (3-6)
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Following Holmes and Connell [18], the Awy ; are of the form

Awg; = Az i (Te — T) + Ay i (e — ¥0) 3-7
where
oo = Sefly I Fe), (3-8)
(Ieelyy — Iiy)i
(I:rny - I::Ry) {
= i 3-9
P (el - 1%,), )
and
R;;= E (e —z:i), Ry:= Z (Ye —v:) » (3-10)
k=1 k=1
[J::r:,i = Z (xlc - Ii)z s Iyy,i = Z (yk - yi)2 ' (3'11)
k=1 k=1
Ly =Y (zk — 7o) (Y — i) - (3-12)
k=1

The Laplacian term at each node ¢ is then constructed as:

VU; = L(U;) = Y wes (Us — Us) (3-13)

k=1

The biharmonic AV term is formed by taking the pseudo-Laplacian of V2U, which is done

in a second loop over all edges
ViU =Y (VU — V2U;) - (3-14)
k=1
The final form of the artificial viscosity term at node ¢ is

D) =) (%) [ (U —U:) = €5 (V2U: — V°U5)] (3-15)
k=1
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where A; is given [16]:

n
Ai =) luena, +veny |+ Cer/T2, + 12, (3-16)
e=1

Physically, A; represents the integral, over each cell Z, of the maximum eigenvalue of the
Euler equations (| | + ¢) in the direction normal to each cell edge. By taking the average
of A; and Ag, the diffusion term becomes conservative in the U quantities.
To ensure that the AV is significant only in the vicinity of shocks and oscillations, the
(2) (4)

coefficients £;” and ; * are made proportional to the second derivative of the pressure and

are defined as:
(2)

Ei = x(? max [V, vi] (3-17)

el =max [0, £ — (2] (3-18)

where the pressure switch v is given by:

Zn: Wi,i (Pr — Pi)
k=1
> (o +pi)

k=1

3-19)

Vi =

and «(? and (%) are empirical coefficients taken as 1/2 and 1/128 [16].
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3.3 Time Integration

The space-discretized Euler equations, given in equations (3-4), are solved for the steady
state solution by pseudo-time marching. Given some initial guess for the flow field, equa-

tions (3-4) become:

%4-3((;,-):0, i=123,. .. (3-20)
where R (U;) is the residual
1
R(U;) = 5 Q (U:) — D (Uy)].- (3-21)

These equations are integrated in time using a fully explicit five-stage hybrid time-
stepping Runge-Kutta scheme, where the convective flux operator Q (U;) is evaluated at
each stage in the time step, and the AV term D (U;) is evaluated only in the first two stages,

and is then frozen at that value. The solution is advanced one time step At as follows:

i:” =Ut,

N

U = U - a5t [Q (US°) - D (V)]

U = U — e [ (U8?) - D (UF)]. e
90— ) -0 1)

0 =0 - e G [ (09) - 0 (B8)].
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where U ? and U ?*!are the values at the beginning and at the end of the n** time step and

the coefficients o’s are:
1 1 3 1
=7, =g a=g o=z a=1L (3-23)

This scheme represents a particular case of a large class of hybrid time-stepping schemes,
which have been specifically designed to produce strong damping characteristics of the

high-frequency error modes.

3.4 Convergence Acceleration

To accelerate the convergence to steady state, local time stepping and implicit residual

smoothing have been implemented.

3.4.1 Local Time Stepping

The local time step for each cell 7 is set to the maximum stable value and is given by:

S,

At; = CFL-A—i (3-24)

where CFL is Courant-Fredrick-Lewy number and A; is defined by equation (3-16).
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3.4.2 Implicit Residual Smoothing

The residual R; at node ¢z is implicitly smoothed by replacing it by an average of the resid-

uals at the neighboring nodes [16]:
R:;=R:+eV?R; (3-25)

where € is a smoothing coefficient. The Laplacian term V2R; is computed by a looping
over all the edges using the pseudo-Laplacian formulation and the geometrical weights so

that equation (3-25) may be written as:

R;+¢€ zn: wj,il-_ij
R; = = (3-26)

T
l1+¢€ z Wy i
j=1

Since the resulting matrix of residuals is diagonally-dominant for the ¢ values of inter-

est, this implicit system can be solved by performing several Jacobi iterations:

n
RO +¢ Z wj,iR;-m_l)
R™ = = (3-27)

n
l+e€ Z Wi
=1

where R.EO) represents the unsmoothed residual. In practice only two iterations were used to
get an adequate approximation of the smoothed residual. This smoothing technique allows

the CFL number in equation (3-24) to be increased up to values of 8 or even higher.
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3.5 Inflow and Outflow Boundary Conditions

The computation of inflow and outflow boundary conditions is based upon a linearized
one-dimensional characteristic method, described in Giles [19, 20] and Lindquist [34]. At
each inflow/outflow boundary there is a certain number of incoming/outgoing modes. The
changes in the outgoing characteristic values are taken from the changes predicted by the
flow solver. The changes in the incoming characteristics are determined such as to sat-
isfy specified boundary conditions. The flow angles, stagnation enthalpy and stagnation
pressure are specified at inflow, while the static pressure is specified at outflow.

This approach is based upon a characteristic analysis of the linearized Euler equations.
At each inflow or outflow boundary there is a certain number of incoming modes and a
certain number of outgoing ones. The first step in the process is to linearize the Euler
equations (2-1). Using equation (2-2) to eliminate £ from equations (2-1), and rearranging

substantially, yields the following primitive form of the Euler equations.

() oo0) ()Y (vo o o) (,)

u p 0
1
5 u 0O » 0 - ) u 0 v 0 O F) u
2 + ar= + P =0 (3-28)
v 0 0 2 O v 00 v - Y1 v
p
v) \»

\?/ \0 P 0w/ AP) \00 7P
This equation is still nonlinear. The next step is to consider small perturbations from a

uniform, steady flow, and neglect all but the first order linear terms. This produces a linear
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equation of the following form where the spatial directions z and y are along the grid lines.

o, _ 3-29
5t A%z TB8% =0 (3-29)

where U, is the primitive state vector variables

[ h

U, = (3-30)

p

and the coefficient matrices A and B are constant matrices based on the uniform, steady

variables
(u p O 0\ /v p P O\
0 2« O l 0 v 0 O
A= P |, B= (3-31)
0 0 u 0 00 v =
p
\ 0 vp 0 u ) \0 0 vp v )

It is clear that a number of approximation errors are being introduced in converting the
nonlinear Euler equations into the linearized equations. For steady state calculations the
error will be proportional to the square of the steady state perturbation at the inflow and
outflow. These should be very small and may well be unnoticeable except for the case of
an oblique shock at the outflow.

Because the wave propagation normal to the boundary is dominant, variations parallel

to the boundary may be neglected and the linearized one-dimensional Euler equations, in
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primitive variables, can be written as:

au, =, oU, _
SE+A5L =0 (3-32)

The reference state for evaluating the matrix A will be the state on the boundary at the
old time step. To make the matrix A constant, the average value of the state vector on the
boundary will be used to evaluate A. This state will be denoted by the subscript (),i4_ay,-

Then, the constant matrix A is

( u p 0 O )
0 u O -1-
A= P (3-33)
0 0 « 0
\ 0 pz 0 u

old~avg

where equation (2-5) is used. The matrix A can be diagonalized by a similarity transfor-

mation,

T AT = =A (3-34)

old—avg

where the matrix T is the matrix of right eigenvectors of A and the matrix T ~!is the matrix

of left eigenvectors of A. Matrix A is a diagonal matrix whose elements are the eigenvalues
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of matrix A.
(-1 1 1) ( \
z 0 3@ a2 - 0 01
1 -1
0 35 3pe 0 0 pc O
T= . pc epc ,Th= (3-35)
0 — O 0 0 pc 01
pc
1 1
0 nd t 0 —pc 0 1
\ 2 2 ) old—avg K } old—avg
Multiplication of equation (3-32) by T ~! produces the equation
0¢ 0¢
= — =0 3-36
5 +A 3z (3-36)

where ¢ = T“lUp. Variation from the values at the old time step will be considered,
therefore ¢ = T ~'6U,. The four equations in the system of equations (3-36) are now
independent. The elements of ¢ are the linearized characteristic variables and the corre-
sponding elements of A indicate the direction of the flow of information. For subsonic flow
where 0 < u < cthe first three characteristics gives waves propagating downstream since
the corresponding elements of A are positive and the fourth propagating upstream since the
fourth element of A is negative. For supersonic flow where © > c all waves propagate

downstream since all elements of A are positive.

3.5.1 Subsonic Inflow Boundary

For subsonic inflow, there are three incoming waves and one outgoing wave. The outgoing

characteristic wave is obtained from the flow solver whereas the three incoming waves are
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specified by prescribing the values of total enthalpy H, entropy s, and flow angle o

¥ \p_ 1
() e
s =In(p) —7In(p) (3-38)
tana =v/u (3-39)

Note that specifying the total enthalpy H and entropy s is equivalent to specifying the
total temperature and pressure. A numerical boundary condition or outgoing characteristic
wave predicted by flow solver is denoted by the subscript ()pred. Let also the subscript
()spec Stand for the value which is specified by the inlet flow conditions and the subscripts
()o1a and () e, for the values at the old and new time steps. The amount needed to bring the
old values of H, s and tan « on the boundary to the specified values can be written in terms
of a first order Taylor series in . The constant coefficient of the series can be changed by

using the chain rule to contain elements of U,. Using relation U, =T ¢,

(H )spec (H new
OH
(H old + (%)
old—avg
%) ( ;)
Yorg + | oo 56
“ ( aUp old—avg old~avg (3 .40)
OH
(H old + (-aﬁ) old—nvg 6¢
old—avg
1 v ctu c—u
H — ]
= Hlaa + [ (v=1)p pc 2pc 2pc ] ¢

ocld—avg



CHAPTER 3. NUMERICAL IMPLEMENTATION 35

a
(s)spec = (s)old + (%) I:ld—tvg 5¢
P
old—avg (3 _41)

=(s)°[d+[% 000 8¢

old—avg

T::ld—nvg 5¢
old —avg (3 _42)
1 —v /] :l 56
pu c 2mLZC 2pu 2C old~avg

The change in the fourth characteristic § (¢4) is equal to the change that the flow field

_ Jdtana
(ta.na)spec —(ta.na)old+ —aW

= (tana),y + [ 0

predicts, 8 (@4) . eq- Since 8¢ = T ~'3U,, the predicted change in the characteristic variable

0 (#4) req is found to be

6 (¢4)pred = (_pc)o[d 6upred + 5ppred (3-43)

there are now four equations for the change in the characteristic variable ¢ which can

be written in matrix form

- -

[ ] 1 v c+u c—u [
(H)spec — (H) o (vy—1Dp p_c 2pc 2pc 0 (¢1)
1
(8)spec — (8)ola B » 0 0 0 0 (¢2)
B 1 —v J
(tan @)y, — (tana)old 0 cue ZpPc Zouie 4 (¢3)
_ 6 (84)pred ] 0 0o 0 1 §(¢4) |

s = old—.vg-

(3-44)

Using the relation 6U, = T § ¢, 6 ¢ in equation (3-44) can now be changed back into
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primitive state vector values U,

é (p)
5 (u)
5U, =
é (v)
| 6 (p) | .
[ pu —p( Yu +u2+112 (—pv) o2 u? +v? |
c c \vr—-1 2 c c?
L —) u2 _u
=___1___2 ¢ (v=1)p (=v) p
UC+'U2+'U —up 2 —v
—— + ——
! (v—1)p (e+u)u p
pcu _cup (—pcv) u?2 u? + 0?2

old—avg

L (v—1) )
(H)spec - (H)old

% (s)spec - (s)old . (3-45)

(tan a)g,,. — (tan o),y

spec

6 (#4) prea

To transform the change in the primitive state vector variables U, back into the change

-

in the state vector U the following transformation is performed,

é (p) 1 0 0 O é (p)
5 (pu) u p 0 0 8 (u)
5Unew = =
é (pv) v 0 » 0 é (v)
1 1
& (pE) 5@ +v?) pu pv P é (p)

(3-46)
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Hence, the change in the conservative variables at inlet becomes:

where

A’Il =

v

(tan )

4 (p)
4 (pu)
é-ljnewz
é (pv)
| 9 (pE) |

0 O 0
p 0 0
0 »p 0

(w*+v%) /2 pu pv 1/v-1

(H)spec - (H)old

(s)spec - (s)old

spec (ta'n a)old

i (—pC)old aupred + Jppred ]

MIX

M,

uc + u? + v?

XM3

(=)
(—v) u?

(c + u)u?

(—pcv) u?

pu 1,2
Lathed ML
p 2
u —up
M,= (r=1)p
3 v —’Up
(v-1)
new _pcu (’Y —_ 1)
Mb2 = P u
] 2 "Y _ 1

37

(3-47)

Using the equation (3-47), the new value of the state vector U at the inlet nodes becomes

Unew = Uold + 6Unew-

(3-48)

old—~avg



CHAPTER 3. NUMERICAL IMPLEMENTATION 38

3.5.2 Subsonic Outflow Boundary

For subsonic outflow, three outgoing waves are calculated from the numerical solution,
while the incoming wave is fixed by specifying the static back pressure, ps.cc- Once again
the amount needed to bring the old value of p to the specified value on the boundary can be

written in terms of a first order Taylor series in ¢

(p)spec = (P new
- (p)old

QJI%J
——

old—avg aU
( ") i (3-49)

) old—~avg ¢

) old—.vg 6¢

old—-avg

=(p)o,d+[0 0o 1 i] 5.

old—avg

I'u S"g’

(%
O
(3

= (Plog + 3

=

2 2

The change in the first, second and third characteristics is equal to the change the flow

field predicts. Again, since ¢ = T ~'6U,, the predicted change in the characteristic vari-

ables 6 (A1) preqr 8 (82) preq and 8 (B3) ,,eq are found to be
4 (¢1)pred = (_CZ) old appred + 6ppred (3-50)
0 (#2) prea = (PC)g1q IVpred (3-51)

o (¢3)pred = (pc)old Jupred + Jppred (3-52)
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As in the subsonic inlet condition, there are now four equations for the change in the char-

acteristic variable ¢

3 (1) prea 1000 & (61) W
& (62) pred 0100 6 (¢2)
= - (3-53)
6 (63) prea 0010 & (¢3)
1 1
i (P)spec — (Ploia ] i 00 5 3| s L 0 (d4) |

Using the relation 6U, = T J ¢, ¢ in equation (3-53) can now be changed back into

primitive state vector values U,

é (p)
0 (u)
5U, =
é (v)
| 0(p) | N
- - (3-54)
-1 -1 i
? 0 0 _g— (—cz)o[d 6ppred + 5ppred
1 -1
_ 0 E 'E' (PC) p1a Vpred
1
0 o 0 o (PC) 1q OUpred + OPpred
0 0 0 1 i (p)spec - (p)old ]
- < old—avg

The primitive state vector variables, dU,, are transformed to the state vector, U, by equa-

tion (3-46). Hence the corresponding change in values of the conservative variables at the
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outlet nodes becomes:

_ 1 1 - _ )
2 0 0 = (—=¢*)oid 9Ppred + OPpred
1 -1
0 0 — — (pc) Id vared
U = e " o 355
0 ;E 0 0 (o c)old Jupfed + Jppred
0 0 0 1 3
- 4 old—avg L (p)spec (p)old

The update is performed as in equation (3-48).

3.5.3 Supersonic Inflow Boundary

There are four incoming waves for supersonic inflow which can be specified by inlet Mach

number (M) the inflow angle (a) and subsequently the flow condition will be

spec? spec?®

determined from these variables using isentropic relations.

3.5.4 Supersonic Outflow Boundary

There are four outgoing waves for supersonic outflow which can be predicted by numerical

solution. Therefore the change in the state vector predicted by the scheme is used

aUnew = 6Upred- (3-56)
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3.6 Periodic Boundary Conditions

For a linear cascade, the flow periodicity implies that all the variables are the same at
periodic pairs of nodes. To avoid interpolation and the accompanying inaccuracy, the grid
generation provides the periodic nodes in pairs. To implement the periodicity condition,
these pairs of periodic nodes are treated as interior nodes by adding all the contributions at

any one periodic node to its periodic pair.

3.7 Wall Boundary Conditions

The wall boundary conditions are implemented in different manner for analysis and design

approaches.

3.7.1 Analysis Approach

For an inviscid flow along an impermeable wall, the flow tangency condition implies that all
fluxes through the wall faces vanish except for the pressure contribution to the momentum
flux. However, since the flux through any edge on the wall is the average of the two nodal
fluxes associated with that edge, it is possible that the average flux vanishes while the nodal
fluxes do not. For this reason, it was found necessary to explicitly impose the tangency

condition.
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By imposing tangency at these nodes, this oscillatory state cannot occur and the change
in the state vector is such that the new conservative variables will satisfy flow tangency on
the boundary. At each wall node a flow angle, a, is prescribed. The second and third con-
servative variables are changed from the value predicted by solver, denoted by the subscript

()RK—stage » SO the new values become:

(pu)new = (m‘)RK—-stage + (W)n Sina (3-57)
(pv)new = (pv)RK—stage - (W)n Cos (3'58)

where
(pw), = — (PU)RK—stage SIN & + (PV)RK - grage COS O- (3-59)

3.7.2 Design Approach

In the design approach, the flow tangency condition is expressed in terms of p* and v* as
given in equations (2-18) and (2-19). These values of p and v are used at the beginning
of each time step, together with p and pu, to compute a new set of conservative variables
along the blade surfaces; two of these variables, namely pu and pv, are fixed during each
Runge-Kutta stage. Note that, during the iterations, there will be flow through the blades.
In other words, both design and analysis approaches use a Dirichlet boundary condition
on the mass flux components, pu and pv. In the analysis approach, these components are

modified to satisfy the flow tangency condition described in the previous section whereas,
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in the design approach, the conservative variables are updated such that p* satisfies the
global y-momentum equation (2-19) and v* satisfies the blade boundary condition, equa-

tions (2-18).

3.8 Inverse Design Implementation

As explained in chapter 2, the analysis and design modes are implemented in the same
computer code, which solves the Euler equations using a cell-vertex finite volume method,
where Euler equations are integrated in pseudo-time to steady state; the only difference
between both modes is in the boundary conditions imposed along the blade surfaces.

When running in the analysis mode, the tangency condition along the blade surfaces is
imposed at each pseudo-time step as described above either implicitly, by imposing zero
fluxes through the control volume edges coinciding with the blade surfaces, or explicitly
as described in § 3.7 to avoid velocity decoupling since a zero average flux can result from
two non-zero equal fluxes but of opposite signs.

In the design mode, given some initial guess for the blade camber line f(z) as described
below, the Euler equations are marched in pseudo-time for m iterations then the following

steps are executed periodically every n pseudo-time iterations:

1. A new blade shape f(z) is computed from equation (2-20) and is relaxed (an under-

relaxation factor of about 0.2 is typically used).
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2. The mesh between the blade leading edge and the outflow planes is shifted in the
y-direction by the amount of change occurring in the camber line f(z) as described

in the following section.

3. Using the latest blade shape f(z) and the prescribed blade thickness, a new value for
v* and p* is computed from equations (2-18) and (2-19) and is used at the beginning
of each time step, together with p and pu, to compute a new set of conservative
variables along the blade surfaces; two of these variables, namely pu and pv, are

fixed during each Runge-Kutta stage.

The above-mentioned iteration procedure is continued until convergence, which is mea-
sured by the L2-norm of the residual of the equations of motion, is reached.

In the design mode, it was found that, for the test cases presented in this work, the
iteration procedure is rather insensitive to the initial guess of the camber line f(z), for
convenience a parabolic profile that is tangent to the inlet and exit flow angles is taken as
an initial guess for f(z). For convenience also, the flow regions upstream and downstream
of the blades are usually constructed so as to be parallel to the inflow and outflow directions,
which are prescribed in the design approach. Last but not least, note that this design method
is a fully inverse method: given the design choices which are the mass-average tangential
velocity 7(z) and the blades thickness T'(z), the design iteration described above can be
executed until convergence, without any special procedure at the start of (or during) the

design iterations.
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3.8.1 Grid Remeshing

In this work, sheared H-grids and Delaunay triangular meshes have been used to discritize
the computational domain. Figures 3-1, 3-2 and 3-3 show these two types of meshes and
a close-up view of the leading edge area of an inlet guide vane cascade with round LE
and TE. As it is shown in these figures, the Delaunay triangular mesh is unaffected by
the presence of a fat round leading edge whereas the sheared H-grid is highly distorted
near the LE and, if the mesh is further refined, this distortion will increase resulting in
more numerical error in that crucial area. The following sections explain the remeshing

procedure for these two types of meshes.

3.8.1.1 Remeshing of Sheared H-grid Triangular Meshes

An unstructured mesh generator has been developed to construct an sheared H-mesh. The
advantage of such a mesh is the ease of generating it and, more importantly, the remeshing
is almost trivial as discussed below. The triangular mesh is produced by cutting quadri-
lateral into two triangles based on the minimum area of each triangle or minimum angle
between two edges of each triangle. In this mesh generator, two hyperbolic type stretch-
ing functions are also used to provide clustering for mesh points in the z- and y-directions
[35]. During the design iteration process, as the blade camber line f(z) is changing, the
z-coordinate is fixed, while the y-coordinate, between the leading edge and the exit planes,

is displaced by the amount of change occurring in the camber line f(z).
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3.8.1.2 Remeshing of Delaunay Triangular Meshes

For Delaunay triangular meshes, the remeshing procedure is more elaborate. Normally,
the number of nodes on the pressure and suction sides of the blade is not equal and also
the nodes are not at the same z-location. Since equations (2-18) and (2-19) require the
computation of Av and Ap across the blades, it was decided to have nodes on opposite
sides of the blade added or moved to the same z-location to avoid interpolation and the
associated error. This is implemented in a pre-processing step.

Two different approaches have been developed to carry out the remeshing process. The
first approach is to use an elliptic solver or smoothing process (spring analogy) to move the
mesh-points due to movement of the camber line f(z). During the design iteration process,
since the blade camber line f(z) is changing, the mesh-points are moved accordingly to
new locations using the smoothing process and, if the mesh is not regular enough, the
triangle edges maybe swapped.

The second approach is to use transfinite interpolation. During the design iteration
process, as the blade camber line f(z) is changing, the new value of the y-coordinate at
each node in the bladed and downstream regions is computed using linear interpolation

while the z-coordinate remains the same.
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Figure 3-1: Unstructured triangular sheared H-mesh for an inlet guide vane cascade.
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Figure 3-2: Unstructured Delaunay triangular mesh for an inlet guide vane cascade.
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Figure 3-3: Unstructured Delaunay and sheared H-mesh with a close-up view of leading
edge area of an inlet guide vane cascade.



Chapter 4

Inverse Design Results

In this chapter, the design method described in chapter 2 is first validated for three different
cascades namely, parabolic cascade, compressor cascade and turbine inlet guide vane. The
usefulness of the inverse design method in eliminating shocks is then demonstrated on
the design of an impulse transonic cascade and on the redesign of the ONERA transonic
compressor cascade [13]. A parametric study is performed to demonstrate the effect of the
different prescribed loading distributions on blade profile and on the incidence angle. A
sensitivity study of the effect of the initial camber profile on the convergence history is also
carried out.

It should be mentioned that each pair of cases, compared hereafter, accomplishes the
same overall change in mass-averaged tangential velocity, i.e. each pair accomplishes the

same amount of overall turning (or change in angular momentum). For demonstration
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purposes, the loading takes on the following analytic form:

do _

- =6402(1 - 12) @&-1)

where A7(z) =' Ute — UL is the overall change in mass-averaged tangential velocity. The
blades axial chord is used as reference length and the subscripts LE / TE refer to the blades
leading/trailing edge.

It is worth noting that, at the blades leading and trailing edges (whether sharp or round),
all flow variables have to be continuous so that p = p* = p~ hence the loading d7/dz has
to vanish at both LE and TE. Therefore, the Kutta condition, implying flow continuity at a
sharp TE, is directly and exactly satisfied by setting d7/dz = 0. Moreover, the incidence
angle is simulated by a loading distribution which has a sharp rise near the LE and the
deviation angle is part of the solution. This effect will be reflected in the choice of mass-
averaged swirl distribution.

It was found that the computing time required for a design calculation varies between

0.5 and 2 times that of an analysis calculation.

4.1 Parabolic Cascade

To validate the design method, a parabolic cascade is first analyzed by running the FVM
code in design mode, the prescribed loading and thickness distributions assume a parabolic

profile. The loading distribution is given in equation (4-1) while the thickness distribution
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is given by the following form:

T(z) = 6T naxz(l — 1) 4-2)

This loading distribution is symmetric around mid-chord and this prescribed thickness dis-
tribution implies sharp LE and TE. The maximum thickness Ty,ax is 4.1%, the flow inlet
and exit angles are 9.3° resulting in a A% = 0.174, the spacing-to-chord ratio is 0.5 and the
ratio of exit static to inlet total pressure is 0.84. The resulting blade shape is then analyzed
by running the same code but in analysis mode. If this design method is valid, then the
results of the two runs should be identical (to within a tolerance), in particular, the analysis
run should result in the same prescribed loading.

This validation case was implemented using both a sheared H-mesh and a Delauney
mesh. The sheared H-mesh is composed of 40 nodes in the y-direction (the pitch-wise di-
rection) and 40/170/40 in the z-direction (stream-wise direction), and the Delauney mesh
is composed of 7690 nodes and 14978 triangles. The iso-Mach lines for both design and
analysis calculations are compared in Figure 4-1. The pressure distribution along the upper
and lower surfaces of the blade is shown in Figure 4-2 and the mass-averaged tangential
velocity computed from analysis is compared with the one prescribed in the design mode
in Figure 4-3. These results confirm the agreement between the two solutions, hence vali-

dating this design method.
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4.2 Subsonic Compressor Cascade

To validate the design method, the flow around a subsonic compressor cascade with a round
LE and a sharp TE is first simulated by running the FVM code in design mode, with a
loading that varies according to the following form:

- 2
d_v—Aﬁ[a+1r2

= ] e sinwr 4-3)

(1l +e2)
where a = w/tan wzy and zy is the location of maximum loading. The thickness distribu-

tion assumes the following profile:

3V3

T(I) = TTmax\/E(l - Z’) 4-4)

which implies a round LE and a sharp TE. The maximum thickness Tpnae = 12% and
occurs at mid chord, the flow inlet angle is 25.6°, and the overall turning is A7 = 0.345,
the spacing-to-chord ratio is one and the exit static to inlet total pressure is 0.9. The blade
shape resulting from the design calculation is then analyzed by running the same code but
in analysis mode.

The convergence history of the analysis and design runs, given in Figure 4-4, shows
that both runs converge to machine accuracy and the convergence rate of the analysis run is
about 1.4 times of the design run for this particular case. The mesh used in this calculation
is given in Figure 4-5 with a close-up view of the leading edge area.

The pressure distribution along the upper and lower surfaces of the blade and the

mass-averaged tangential velocity computed from analysis and design are compared in
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Figures 4-6 and 4-7. These figures confirm the agreement between the two solutions hence
validating the present design approach.

To test the robustness of the inverse design code, the initial guess for the camber line
is taken to be zero, i.e. a symmetric airfoil and the design iterations are started from that
symmetric airfoil and are run to convergence. Figure 4-8 shows the evolution of the blade

profile from a symmetric one to the final one which has a maximum camber of 15% chord.

4.3 Turbine Inlet Guide Vane

To validate the design method for a fat cascade with round LE & TE, a subsonic turbine

inlet guide vane with analytical thickness distribution:

T(z) = 2Tpax\/z(1 — 1) (4-5)

is first analyzed by running the FVM code in design mode, the prescribed loading and
thickness distributions assume a parabolic profile. The maximum thickness is 25%, the
flow inlet and exit angles are 0° and 50°, respectively, the spacing-to-chord ratio is 1 and
the exit static to inlet total pressure is 0.9. The resulting blade shape is then analyzed by
running the same code but in analysis mode.

The pressure distribution along the upper and lower surfaces of the blade computed
from analysis and design is shown in Figure 4-9 and the mass-averaged tangential velocity

computed from analysis is compared with the prescribed one in design in Figure 4-10.
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These figures confirm once again the agreement between the two solutions for this fat

cascade with round LE and TE.

4.4 Parametric Study of Loading Distribution

The effect of the loading distribution on the blade shape and the incidence angle was carried

out for the parabolic cascade given in § 4.1.

4.4.1 Effect of Loading on the Blade Shape

Three different loading distributions were applied to the parabolic cascade, where they
assume the variation form according to equation (4-3).

These three loading distributions differ in the location of a which corresponds to 20%,
50% and 80% chord, respectively. Figure 4-11 shows the resulting blade profile when the
above three loading distributions is applied. It should be noted that all loadings accomplish
the same overall flow turning, i.e. the same global performance.

The effect of loading on the blade shape can be physically interpreted as follows. The
loading is proportional to dv/dz, hence 7(z) for a front loaded airfoil would vary more
rapidly in the front part of the airfoil. Since the flow is tangent to the blades, then df /dz

is proportional to v/u, hence df /dz (and f) will also vary more rapidly in the LE area,
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provided that the z-component of velocity  is of order 1. This explains the resulting blade

shapes.

4.4.2 Effect of Loading on the Incidence Angle

To show how the incidence angle is affected by the loading distribution, two different load-
ing profiles, which have the same overall flow turning 7(z) and the same location for max-
imum loading but have different loading shapes, have been prescribed. The two loading

distributions vary according to equation (4-3) and the following equation:

dv m _ _ T

E—EA’USIIIE 0<z < xy
di w,_  7(z—xzp)
b = 0 > 4-
T 2Av cos 21— 20) T > Ig 4-6)

where z is the location of maximum loading.

These loadings are given in Figure 4-12 where one can see clearly that the location
of maximum loading is the same but the value of maximum loading is different, this is
expected since both loadings accomplish the same amount of turning, i.e. the area under
these'two curves has to be the same. The resulting blades are shown in Figure 4-13. The
incidence angle, which is defined as the difference between the inflow angle and the slope of

the camber line at the blades LE, increases as the value of the maximum loading increases.
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4.5 Transonic Impulse Turbine Cascade

To present the usefulness of the inverse design method in removing shocks, an impulse
turbine cascade is first analyzed. The inlet flow angle is 40.63°, the overall turning is A7 =
0.751, and the exit static pressure is 0.84. The spacing-to-chord ratio is 0.526 and both
camber line and thickness distributions assume a parabolic profile with a maximum camber
of 21.45% and a maximum thickness of 21.45% chord. Figure 4-14A shows that a shock
occurs around 60% chord. This blade is then redesigned to eliminate that shock keeping
the same overall flow turning, the same thickness distribution, and the same pressure rise
(exit static to inlet total pressure ratio). The prescribed loading distribution is chosen to
be a smooth parabolic one. The resulting transonic flow is shock-free, as can be seen in
Figure 4-14B. The static pressure along the blade suction and pressure sides and the blade
profile for both original and modified design are compared in Figure 4-15. A comparison of
the blade profiles, given in Figure 4-16, shows that, to eliminate the shock, the redesigned
blade has a reversed curvature along both suction and pressure sides to allow the flow to
compress reversibly. This reversed curvature was also observed by Dang [32] and Cumpsty

[36] to remove the passage shock when designing transonic compressor blades.
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4.6 ONERA Compressor Cascade

The third test case is that of a highly loaded transonic compressor cascade, tested at ON-
ERA [13]. This compressor cascade has been redesigned using the present method to
remove the passage shock. The inlet flow angle is 39°, the exit static pressure is 0.77 and
the blades thickness distribution is given in [13]. This cascade was first analyzed and the
Mach number field, given in Figure 4-17A, shows the presence of a shock on the suction
side where the maximum Mach number is around M = 1.65. A parametric study was
carried out to see the effect of the prescribed swirl distribution on the blade shape and on
the flow field particularly on the position and strength of the passage shock, shown in Fig-
ure 4-17A. To compare the original and the redesigned blades, the corrected mass flow rate
m\/Ts /Do as well as the overall flow turning A% were fixed. That parametric study showed
that a parabolic loading distribution did remove the shock, as can be seen in Figure 4-17B,
and the flow in the redesigned cascade is transonic with a maximum Mach number of 1.14.
The static pressure along the blade suction and pressure sides and the blade loading for
both original and modified design are compared in Figure 4-18. It is interesting to note
the drastic change in camber line between the original and the redesigned cases which is
due to the fact that the original blade is front loaded whereas the redesigned blade has a
loading that is symmetric around mid-chord. This implies that, from 0 to 50% chord, 7 in

the redesigned case (and hence df /dz) is larger than that of the analysis case.
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Figure 4-3: Mass-averaged tangential velocity distribution in the bladed region.
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Figure 4-4: Convergence histories for analysis (A) and design (B) of a compressor cascade.
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CHAPTER 4. INVERSE DESIGN RESULTS

Mass-Averaged Velocity

Figure 4-7: Mass-averaged tangential velocity distribution in the bladed region.

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.25

Compressor Cascade

I

Design
Analysis

0.2

o4 0.6
% Chord

62



CHAPTER 4. INVERSE DESIGN RESULTS 63

Figure 4-8: The evolution of the compressor blade profile from a symmetric one (solid line)
to the final one which has a maximum camber of 15% chord (solid line).
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Figure 4-9: Static pressure along the pressure and suction sides of the blade.
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Figure 4-10: Mass-averaged tangential velocity distribution in the bladed region.

Figure 4-11: Effect of loading distribution on the blade profile.
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Figure 4-12: Loading distributions.

Figure 4-13: Effect of loading (solid line: sine-cosine form and dashed line: exponential-
sine form) on incidence angle.
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A.

Figure 4-14: Mach isolines: The original (A) and the improved design (B) of an Impulse
turbine cascade.
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Figure 4-15: Static pressure along the blade surfaces for the original and the modified
blades.
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Figure 4-16: Original and modified (solid lines) blade profiles.
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Figure 4-17: Mach isolines: The original (A) and redesigned (B) blades of the ONERA
cascade.
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Figure 4-18: Static pressure along the blade surfaces (A) and the corresponding pressure

loading (B) for the original and redesigned blades.



Chapter S

Conclusion

An aerodynamic inverse design method for transonic turbomachinery cascades has been
presented and implemented using the finite volume method. The mass-averaged tangen-
tial velocity and the thickness distribution are the prescribed design variables. This design
method is implemented in a cell-vertex finite volume scheme where the two-dimensional
Euler equations are solved on an unstructured triangular mesh. The steady state solution is
reached by pseudo-time marching the Euler equations using an explicit five-stage Runge-
Kutta scheme. Local time stepping and implicit residual smoothing were used for conver-
gence acceleration. The non-linear blend of second and fourth order artificial viscosity was
found to be successful in capturing shocks and eliminating pressure-velocity decoupling
with minimal numerical diffusion. The method of characteristics, used to impose inflow

and outflow boundary conditions, allowed for placing the boundary relatively closer to the
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body. The only difference between the analysis and design modes of computation lies in
the boundary conditions along the blade surfaces. In the analysis mode, the conventional
flow tangency condition is implemented whereas, in the design mode, the flow tangency
condition results in the imposition of the y-component of velocity and the blades camber
line.

The design method has been validated for different compressor and turbine cascade
configurations. It was shown that, for the cases that were tested in this work, the inverse
design method is relatively insensitive to the initial guess of the camber line profile. A
parametric study on the effect of the different loading distributions on the blade profile and
on the incidence angle, demonstrated that the blade shape is rather sensitive to the loading
distribution. The usefulness of this inverse design method in designing shock-free transonic

cascades has also been demonstrated.

5.1 Future Work

There are several possible extensions to the present inverse design method. To list a few:

1. The present design method can be readly extended to simulate viscous flows. The
viscous effects can be accounted for using a body force representation, following the

work of Denton [11].

2. It can be extended to three-dimensional flow in annular blade rows as follows. The
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prescribed quantities will be the swirl schedule r7,(r, z), the blade tangential thick-
ness distribution T'(z) and the stacking line. The Euler equations, written in cylin-
drical coordinates, are then solved with a design boundary condition similar to the
one implemented in this work, to give the 3D blade camber surface. This design
method can be easily incorporated into current industrial design systems as follows.
The current practice is to obtain a radial distribution of flow variables by running a
through-flow analysis. Blade sections at different radii and a stacking condition are
then assumed and the flow is then simulated. This design method can be introduced
in to the design system by taking the overall turning that is produced by the through-
flow analysis and use it as input to the design method which then provides the blade

shape.

3. Another interesting extension would be to couple this design method with an opti-
mization technique to allow for the addition of some constraints. A typical example
occurs in turbine cascades where the plan-form area is limited near the hub section,

therefore a maximum camber should be prescribed.
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Appendix A

Validation of the Finite Volume Solver

In this appendix, the FVM solver described in chapter 3 is validated against a number of
internal subsonic, transonic and supersonic test cases. Also the solver is applied to two
theoretical cascade and one practical cascade, namely the Hobson shock-free impulse cas-
cade, Denton’s supersonic wedge cascade and the ONERA transonic compressor cascade
given in Fottner [13]. A mesh adaptation library LIBOM, described below, has been used

to optimize the solution obtained from the finite volume solver.

A.1 Mesh Adaptation

A mesh adaptation library LIBOM, described in Dompierre et al. [37] has been used in the
present work to show the capability of the finite volume solver with mesh adaptation. This
library is summarized here-after.

78
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In any adaptive meshing procedure, there are two basic elements: a) an error estimator
to quantify the mesh quality and give directives for mesh improvement so as to minimize
and equi-distribute the estimated errors, and b) a mesher that would implement the direc-
tives given by the error estimator and create the adapted mesh.

The ideal error estimator is the discretization error [[Uexact — Unumericai|l, however, as
this error is inaccessible, the interpolation error |[Ueact — Uinterpolated||, Which bounds the
actual error, will be used as error estimator. When the discretization is based on a piece-
wise constant function, e.g. a cell centered FVM, the interpolation error is obtained from
the solution gradients. However, when piecewise linear functions are used, e.g. cell-vertex
FVM, the error based on the gradient becomes less effective, and adaptation must be based
on second derivatives, i.e. the mesh will be refined in regions where the solution curvature
is large. Therefore, the error estimator is based on seccnd derivatives, that is the Hessian
matrix of the numerical solution Upymerica;- The second derivatives of a piecewise linear
function are then evaluated in a weak sense using integration by parts. The eigenvalues of
this Hessian matrix correspond to the error scales and the eigenvectors give the principal
directions of these errors. Hence, this error estimator provides directional error estimates,
more details can be found in Dompierre et al. [37].

The next task is to construct a mesh that will equi-distribute the calculated error. To
keep the directional character of the error estimator, the error over the edges is evaluated

and is used to construct an anisotropic mesh with triangles and/or cells stretched in the
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direction of maximum error. Starting from the current mesh, this new mesh is constructed
using four simple local operations: mesh refinement, mesh coarsening, node relocation and
node reconnection. Each of these operations has the effect of equi-distributing the error
estimate over the edges. Convergence of this mesh adaptation process is demonstrated in
Fortin et al. [38].

The mesh adaptation library LIBOM is solver-independent. Given a starting mesh, the
solver is first called for a certain number of iterations. The solution thus obtained is passed
on to the mesh adaptor which adapts it as described above, the control is then passed on to
the solver and so on. This process is repeated until convergence of both mesher and solver
as shown in Vallet ez al. [39].

In the present work, the solution was started on a uniform Delaunay mesh and the
residual was reduced by four orders of magnitude, the solver-mesher loop was then started
and the solver was allowed to converge one order of magnitude before remeshing. Typically
5 to 10 mesher-solver iterations were needed to obtain a converged solution. The time taken

by the mesher is negligible compared to that taken by the solver.

A.2 Supersonic Compression Corner

The first test case is that of a supersonic compression corner with an inlet Mach number of

3.0 and a wedge angle of 15°. Figure A.l shows the initial Delaunay mesh composed of
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8583 nodes and the iso-Mach lines computed on that mesh, whereas Figure A.2 shows the
adapted mesh with 1188 nodes and the corresponding solution.

A close view of the shock region on the initial and adapted meshes, given in Figure A.3,
shows that the shock is captured on two to three triangles (i.e. one to two cells). However,
on the adapted mesh, the elements in the shock region have an aspect ratio of about 50, i.e.
the shock is 50 times thinner. The computed shock angle is 17.4° compared to the exact

value of 17.5° [40].

A.3 A 15° Wedge in a Channel

The supersonic (M = 2.0) and subsonic (M = 0.5) flows over a 15° wedge in a channel are
considered. The results obtained for supersonic test case using Delaunay triangulation and
those obtained using directional adaptation are compared in Figure A.4. The supersonic
flow features, namely the oblique shock at the beginning of the ramp, the expansion fan at
the end of the ramp and the shock reflection are well captured. The convergence history
for the initial mesh is shown in Figure A.5. The convergence rate is increased by a factor
of three using implicit residual smoothing. The convergence rate is unaffected by mesh
adaptation.

Figure A.6 presents iso-Mach lines for the subsonic case, where M = 0.5 at the out-

flow boundary. The smoothness of the Mach isolines reflects the high-accuracy of the AV
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scheme. As the ramp starts near the inflow section, it was not possible to obtain a converged
solution when a zero order space extrapolation was used as boundary condition at inflow,
therefore the current boundary condition implementation has proved to be relatively more

robust.

A4 GAMM-Bump with 4.2% and 4%

The third test case is that of the transonic and supersonic flows in a channel with a 4.2%
and 4.0 % circular arc bumps, respectively. The transonic case is taken from the GAMM-
test cases [41]. The exit Mach number for the transonic case is 0.85 and inlet Mach number
for the supersonic one is 1.4.

In the case of the transonic bump, there is a transonic bubble followed by a normal
shock near the bump trailing edge. Figure A.7 shows the original and the adapted meshes.
When the solver has partially converged on the original mesh, the mesh adaptation library
is called and, after ten solver-mesher cycles, the grid is reduced from 7863 to 5119 nodes.
It should be noted that the shock is captured on two to three triangles (i.e. one to two cells).
On the adapted mesh, the elements in the shock region have an aspect ratio of about 100,
i.e. the shock is 100 times thinner as can be seen in Figure A.8. The numerical results
for C, along the lower wall agree rather well with the experimental values, as shown in

Figure A9.
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For the supersonic bump, compression shocks form at the bump leading and trailing
edges, reflect from the wall and interact. Figure A.10 shows the shock-shock and shock-
wall interactions for the original and the adapted meshes. The shocks are captured on the

initial mesh and are much thinner on the adapted mesh.

A.5 Blunt body

The supersonic flow (M = 3.0) around a circular blunt body is considered. The adapted
mesh and the Mach contours are shown in Figure A.11. The detached bow shock is accu-
rately captured. The adapted mesh indicates that the solution second derivative is high only
in the shock region and is more or less uniform downstream of the shock where the flow
decelerates and turns around the blunt body. It should be mentioned that, for this particular
case, the solution obtained on the initial (unadapted) mesh did capture the shock however,

it did not correctly predict the shock strength.

A.6 Hobson Turbine Cascade

The second test case is the Hobson shock-free impulse turbine cascade [13]. At inlet, the
flow angle is 46.123° and Mach number is 0.575. The total enthalpy, entropy and flow
angle are taken to be uniform at inlet and the static pressure at exit is chosen such as to give

the specified Mach number there. Since the flow is symmetric about mid-chord, the inlet
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and exit Mach numbers are equal. The Mach contours, given in Figure A.12, show that
the numerical solution is indeed symmetric and shock free. The numerical and analytical
Mach number distributions along the suction and pressure surfaces, plotted in Figure A.13,
are in good agreement. The original and adapted meshes, composed of 849 and 697 nodes
respectively, are given in Figure A.14. Note that the initial mesh was manually optimized
using stretching factors in the mesh generator. Note also that, as there are no large gradients
in anyone direction, the adapted mesh is rather isotropic and is also symmetric as the flow

is symmetric around mid-chord.

A.7 Supersonic Wedge Cascade

The next test case is Denton’s supersonic wedge cascade [13], for which an exact solu-
tion exists. This wedge is designed such that the shock ensuing from the leading edge,
after reflection on the pressure surface, is exactly cancelled at the first corner on the suc-
tion surface. Denton [42] and Liu and Jameson [12] analyzed a similar configuration and
their results suggest that a mesh adaptation would be needed to properly resolve the flow
features for that case. The original and the directionally adapted meshes are shown in Fig-
ure A.15 and the corresponding iso-Mach lines are compared in Figure A.16. The adapted
solution is obtained after four solver-mesher cycles, where the grid has been increased from

1534 to 3371 nodes with a high concentration in the shocks and expansion fan areas. The
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flow features are evident by examining the adapted mesh, and the corresponding iso-Mach
contours. The adapted solution has uniform flow regions except in the shocks and the ex-
pansion fans. The numerical and analytical Mach number distributions along the pressure
and suction sides of the wedge, given in Figure A.17, show that the numerical and analyt-
ical Mach number levels are in good agreement, the shocks are captured rather well with
about 2 to 3% overshoot and the cancellation of the shock off of the first corner is also

evident.

A.8 ONERA Compressor Cascade

The last test case is that of a transonic flow through a highly loaded double circular arcs
compressor cascade, tested at ONERA and compiled in Fottner [13]. The inlet Mach num-
ber and the flow angle are 0.85 and 50°, respectively. The original and the adapted meshes
are shown in Figure A.18 and the corresponding iso-Mach contours are shown in Fig-
ure A.19. The grid is increased from 1473 to 1900 nodes with a significant concentration
in the shock and the trailing edge areas. On the original and the adapted meshes, the shock
is captured, however, on the adapted mesh, the shock is much thinner which demonstrates

the ability of both solver and mesh adaptor in shock capturing.
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A. , ‘ B.

Figure A.1: Initial mesh (A) and the corresponding solution (B) for the superscnic com-
pression corner.

. I
A. ! B.

Figure A.2: Adapted mesh (A) and the corresponding solution (B) for the supersonic com-
pression corner.
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D.

Figure A.3: Close-up view of the shock region on the initial (A) and adapted (C) meshes
with the corresponding solutions (B) and (D) for the supersonic compression corner.

Figure A.4: Iso-Mach lines for the original (A) and the adapted mesh (B) for supersonic
wedge (M = 2).
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Figure A.5: Convergence history for the supersonic wedge with an inlet Mach number of
2 with (A) and without (B) implicit residual smoothing.

Figure A.6: Iso-Mach lines for subsonic 15° wedge test case.
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'B.

Figure A.7: Initial (A) and the adapted mesh (B) for the transonic bump GAMM-test case.
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Figure A.8: Iso-Mach lines for the original (A) and the adapted mesh (B) for the transonic
bump GAMM-test case.

Pressure Coefficient on the Lower Wall

-1 T — T T T T T T

-0.6

Experimental :
-04 -

Numerical T

g 02 - B
0 —rmrr——
0.2 —
0.4 -
0.6 e
15 4 05 0 05 1 15 2 25 3s
x/ic

Figure A.9: Computed and experimental values of C,, for transonic GAMM-test case.
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Figure A.10: Iso-Mach lines for the original (A) and the adapted mesh (B) for the super-
sonic bump (M = 1.4).

~—,
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Figure A.11: The anisotropic adapted mesh (A) and solution (B) for supersonic blunt body
M = 3.0).
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Figure A.12: Iso-Mach lines for Hobson turbine cascade.
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Figure A.13: Computed and Analytical Mach Number Distribution for Hobson’s shock-
free cascade.
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Figure A.15: The original (A) and the adapted mesh (B) for supersonic wedge cascade.
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B.

Figure A.16: Iso-Mach lines for the original (A) and the adapted mesh (B) for supersonic
wedge cascade.
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Figure A.17: Computed and Analytical Mach Number Distribution for supersonic wedge

cascade.

Figure A.18: The original (A) and the anisotropic adapted mesh (B) for ONERA compres-

sor cascade.
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Figure A.19: Iso-Mach lines for the original (A) and the adapted mesh (B) for ONERA
compressor cascade.




