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ABSTRACT

Neural Network-Based Control of Flexible-Link Manipulators

Heidar Ali Talebi. Ph.D.

Concordia University, 1997

The problem of modeling and control of flexible-link manipulators has received
much attention in the past several years. There are a number of potential advan-
tages arising from the use of light-weight flexible-link manipulators. such as faster
operation. lower energy consumption. and higher load-carrying capacity. However.
structural flexibility causes many difficulties in modeling the manipulator dvnam-
ics and guaranteeing stable and efficient motion of the manipulator end-effector.
Control difficulties are mainly due to the non-colocated nature of the sensor and
actuator position. which results in unstable zero dynamics. Further complication~
arise because of the highly nonlinear nature of the system and the difficulty involved
in accurately modeling various friction and backlash terms. Control strategies that
ignore these problems generally fail to provide satisfactory closed-loop performance.

This dissertation presents experimental evaluation on the performance of neu-
ral network-based controllers for tip position tracking of flexible-link manipulators.
The controllers are designed by utilizing the output redefinition approach to over-
come the problem caused by the non-minimum phase characteristic of the flexible—
link system. Four different neural network schemes are proposed. The first two
schemes are developed by using a modified version of the “feedback-error-learning”
approach to learn the inverse dynamics of the flexible manipulator. The neural net-
works are trained and employed as online controllers. Both schemes require only
a linear model of the system for defining the new outputs and for designing con-

ventional PD-type controllers. This assumption is relaxed in the third and fourth
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schemes. In the third scheme, the controller is designed based on tracking the hub
position while controlling the elastic deflection at the tip. In the fourth scheme
which employs two neural networks, the first network (referred to as the output
neural network) is responsible for specifying an appropriate output for ensuring
minimum phase behavior of the system. The second neural network is responsi-
ble for implementing an inverse dynamics controller. Both networks are trained
online. Finally, the four proposed neural network controllers are implemented on
a single flexible-link experimental test-bed. Experimental and simulation results
are presented to illustrate the advantages and improved performance of the pro-
posed tip position tracking controllers over the conventional PD-tyvpe controllers in
the presence of unmodeled dynamics such as hub friction and stiction and pavload

variations.
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Chapter 1

Introduction

In this chapter. several issues regarding the design and implementation of controllers
for flexible-link manipulators are discussed. The motivation and objectives of the
thesis are given in Section 1.1. In Section 1.2. a literature review is provided. Section
1.3. discusses some experimental issues. In Section 1.4, inverse dvnamics control
strategy is explained. Section 1.5 states the contributions of this dissertations.

Finally. in Section 1.6 the outline of the thesis is provided.

1.1 Preamble

The problem of modeling and control of flexible-link manipulators has received
much attention in the past several years. There are a number of potential advan-
tages arising from the use of light-weight flexible-link manipulators. For instance.
in designing a space manipulator, energy efficiency and microgravity must be consid-
ered. For this reason. the robot manipulator is normally designed as a light—weight
structure which results in smaller actuators for deriving the joints and consequently
lower energy is consumed. On the other hand, increased structural flexibility may
be desirable in tasks such as cleaning delicate surface or avoiding damages to the

manipulator system due to accidental collisions [23. 104]. The use of light-weight



manipulators also results in a high ratio of payload to arm weight [24]. Traditional
manipulators have a poor load-carrying capacity of 5 to 10 percent of their own
weights. This restriction is mainly put forth by the requirements for having a stable
closed-loop system. By using heavy (rigid) robots, a designer makes the control
problem less complicated. Light-weight manipulators also exhibit higher speed ma-
nipulations compared to the conventional rigid manipulators.

Consequently, achieving high speed manipulation with lower energy consump-
tion is a desirable objective. However. in taking advantages of the light-weight
structure one should also be concerned with the inherent complexities involved.
Structural flexibility causes extreme difficulty in modeling the manipulator dyvnam-
ics and providing stable and efficient motion of the end-effector of the manipulator.
This requires inclusion of deformation effects due to the flexibility of the arms in
the dynamic equations which generally tends to complicate the analysis and design
of the control laws. Flexible-link robot models belong to a class of distributed pa-
rameter systems described by partial differential equations (PDE’s). The assumed
mode and finite element methods are two common approaches currently used for
approximating the PDE’s by a system of ordinary differential equations (ODE’s).
A relatively large number of flexible modes are required to accurately model the
syvstem behavior in this case.

For a rigid manipulator. the tip trajectory is completely defined by the trajec-
tory of the joint. Effective control of the joint is equivalent to good control of the
tip. The situation is not as straightforward for a flexible manipulator and difficulties
arise when one tries to track a specified end-effector position trajectory by applving
the torque at the joint. In this case. the control difficulty is due to the non-colocated
nature of the sensor and actuator positions which results in unstable zero dynamics
[113. 115]. In other words, the nonlinear system is non-minimum phase. Therefore.
the system has an unstable inverse. The non-minimum phase property of the flex-

ible arm makes exact asymptotic tracking of a desired tip trajectory impossible, if

o



one is to employ causal controllers [99]. Furthermore, model truncation, which arises
due to a finite-dimensional representation of a distributed parameter system causes
unmodeled dynamics to be present in the mathematical model of the system. Using
a reduced-order model for the controller design may also lead to the phenomenon of
control and observation spillover. Control spillover is the excitation of the residial
modes by the control action. and observation spillover is the contamination of ~et~o
readings by the residual modes. When both control and observation spillover are
present. the closed-loop system may become unstable. Further complications arise
because of the highly nonlinear nature of the system and the difficulty involved in
accurately modeling various friction and backlash terms. Moreover, the coupling
between the rigid dynamics and the flexible dynamics of the link may also cause
stability problems. A change in the arm configuration and in the pavload also lead
to a change in the arm dynamics. This change has a serious degrading effect on the
performance of the controllers.

Various difficulties involved in controlling a flexible-link manipulator are sum-

marized as follows:

¢ Instability of the zero dynamics related to the tip position which vields a

non-minimum phase svstem.
¢ Highly nonlinear nature of the system.
¢ Requiring a large number of states for accurate modeling.

¢ Unmodeled dynamics due to model truncation and presence of various fric-

tion and backlash terms.
e Variation of the payload.

The non-minimum phase characteristic, coupling effects, nonlinearities. pa-
rameter variations and unmodeled dynamics all contribute to make the problem of

controlling the end-effector of a flexible-link manipulator much more difficult than



for a rigid-link manipulator. Control strategies that ignore these uncertainties and
nonlinearities generally fail to provide satisfactory closed-loop performance.

The principal aim of this dissertation is to address the above issues and to
develop and ezperimentally evaluate strategies for controlling flexible-link manipu-
lators in presence of all of the aforementioned difficultjes. The first objective is to
develop our control schemes assuming some e priori nominal (inexact) dynamics.
This is due to the fact that accurate modeling of flexible-link manipulators is ex-
tremely difficult. The next objective is to relax this assumption and design a control
strategy that does not rely on any a priori knowledge about the system dynamics.
A single flexible-link test-bed is considered for the experimental work. The hub of
the manipulator exhibits a considerable amount of Coulomb friction and the link i~
relatively long (1.2 m) and is verv flexible. These characteristics Make control ofF

this test-bed a challenging problem.

1.2 Control Strategies

As we mentioned earlier. various complexities are involved in the control problem
of light-weight manipulators. In an effort to reduce these complexities several re-
searchers have proposed to perform local linearization of the equations of motion.
A common approach in this case is a colocated proportional derivative (PD) control
(10, 19]. By colocated, we mean the sensors and actuators are placed at the same
location. It is shown in [3] that colocated PD control at either end of the arm guar-
antees stability of the system to parameter variations within a certain bound. By
using this type of controller. however. the flexible modes of the svstem remain un-
affected. Kotnik et al. [54] and Ge et al. [28] combined the joint PD controller with
tip acceleration or strain measurements to damp out the vibrations of the flexible
modes at the tip. In [29], the flexible beam was approximated by a spring-mass sys-

tem and based on that a PD-type controller was designed to achieve bounded-input



bounded-output (BIBO) stable tip-tracking performance.

Of the early experimental work in this area, the work of Canon and Schmitz
[12] should be mentioned. They applied linear quadratic Gaussian (LQG) control
by designing an optimal controller that assumes the availability of all the states
of the system. Sakawa et al. [90] used linear quadratic (LQ) control to dampen
the flexible modes while tracking the hub reference trajectory. Availability of all the
states of the system is assumed. In the recent work of [3] an LQG/H.. controller wasx
presented for a single flexible-link manipulator. While flexible modes are damped
out in the inner-loop by the LQG controller. the outer-loop H.. controller ensures
stability of the system in the presence of uncertainties. Optimal control theory is
also used in [37. 47, 91. 111] for controlling flexible-link manipulators.

Bayo [6] proposed a non-causal controller which acts before the tip starts mov-
ing and after the tip stops moving. Kwon and Book [36] proposed a decomposition
of the inverse dynamics of the manipulator into a causal and an anti-causal systems
by using coordinate transformations. The causal part is integrated forward in time
and the anti-causal part is integrated backward in time. These methods. however.
require heavy computation and are limited to a linear approximation of the flexible-
link manipulator. Nemir et al. [78] introduced the pseudo-link concept but have
not addressed the non-minimum phase issue pertaining to the chosen output.

Input command shaping is also used for flexible-link robot control. There are
two shaping algorithms, the impulse shaping method and the command filtering.
The impulse shaping algorithm was first introduced in [97, 98] and was later used by
Hillsley and Yurkovich [42] to control the vibrations of flexible modes in large angle
slewing maneuvers of a two-link flexible robot. This method essentially involves
the convolution of a sequence of impulses with the reference input to suppress the
vibration of flexible modes. The command filtering algorithm deals with filtering
out the frequencies around the flexible modes. This method has been applied to

vibration control of flexible-link manipulators by Magee and Book [61, 62], Tzes
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and Yurkovich [110]. Khorrami et al. [51] combined the rigid body based controller
with input preshaping to control a two-link flexible manipulator. The validity of
such methods depends on the exact knowledge of the flexible structure dvnamics.
Such methods are open-loop strategies.

Although linear controllers may yield desirable closed-loop performance, their
region of operation is limited due to the nonlinearities present in the original system.
To have a wider region of operation, one has to take into account the nonlineari-
ties. The most common approach to compensate for the nonlinear dynamics of a
rigid manipulator is the so-called inverse dynamics or computed torque strategy.
By employing this scheme. the manipulator dvnamics is externally linearized and
decoupled by the nonlinear controller introduced in the feedback loop. A servo con-
troller is then constructed for the resulting decoupled linear model <o that certain
design specifications are satisfied. This scheme assumes exact cancelation of the
manipulator dynamics by the nonlinear controller. Wang and Vidyasagar [113] have
shown that the nonlinear flexible flexible-link system is not in general input-state
linearizable, however the system is locally input-output linearizable but the associ-
ated zero dynamics are unstable when the tip position is considered as an output
of the system. that is, the system is non~minimum phase. Consequently, the exten-
sion of this approach to flexible-link manipulators is impeded by the non-minimum
phase characteristic of the arm. There have been several methods proposed in the
literature to resolve this issue.

For instance. singular perturbation theory [15, 52] has been used by several
researchers for modeling and control of flexible-link manipulator. This method has
been attractive due to the two time scale nature of the system dynamics. In these
control strategies. a linear stabilizer is used to stabilize the fast dyvnamics (Hexible
modes) and a nonlinear controller is used to make the slow dynamics (joint vari-
ables) track the desired trajectories. In [93]. a singular perturbation model for the

case of multi-link manipulators was introduced which follows a similar approach in



terms of modeling to that introduced by Khorasani and Spong [50] for the case of
flexible-joint manipulators. The same strategy is also addressed in [1, 57, 92, 95, 96].
A comparison is made experimentally between some of these methods by Aoustin
et al. [2]. Standard singular perturbation results that are applied to flexible-link
manipulators generally exclude high-performance light-weight manipulators. since
a reduced-order rigid body equivalence of the flexible arm has limited use and appli-
cation. To overcome this limitation. several researchers used the integral maunifold
approach introduced in [49. 101] to control the flexible-link manipulator 35. 71,940
In [35]. a linear model of the single flexible-link manipulator was considered. A
nonlinear model of a two-link flexible manipulator is used in [71]. In this approach.
new fast and slow outputs are defined and the original tracking problem is reduced
to track the slow output and stabilize the fast dynamics.

The output redefinition approach is also used to overcome the non-minimum
phase characteristic of the system. In [114], the output of the system was redefined
as the “reflected” tip position to ensure stable zero dynamics for the new input-
output map. This method was later used in [85. 116] to control a single flexible-link
manipulator using the passivity theorem. De Luca and Lanari [17] studied the
regions of sensor and actuator locations for achieving the minimum phase property
for a single flexible link. Similar approaches were used in [I8. 60] by selecting a
point on the link between the joint and the tip as a new output. The new output
is defined in such a way that the zero dynamics associated with this output are
stable. Based on the new output, the input-output linearization (inverse dynamics)
approach {11, 43] was used to control a single-link manipulator (18] and a two-
link manipulator [60, 72]. In [31, 32], a novel approach based on transmission zero
assignment [68, 84] was applied to control a single flexible-link manipulator. The
idea is to add a feedthrough compensator in parallel to the plant so that the zeros of
the new output are placed at specified locations in the left-half plane. Based on this

output. a dynamic output feedback strategy can be used to place all the poles of the
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closed-loop system at the desired locations. Using the output redefinition approach
to control some classes of nonlinear non-minimum phase system was also suggested
in [34. 58]. In [8, 39], the authors applied this method to a flight control system.

It should be pointed out that all of these methods assume exact knowledge of
the dynamics and the nonlinearities of the flexible-link system. Since, in general. it
is very difficult to model a flexible-link manipulator accurately, the performance of
these control strategies may be unsatisfactory for real applications.

In [20, 82, 109. 112], the authors studied fuzzy supervisory controllers that tune
conventional (PID) controllers. In [55], a fuzzy logic controller for a fast-moving
single flexible-link was developed which focused on smooth. rigid body motion con-
trol. In [74]. a fuzzy learning control approach was used focusing on automatic
svnthesis of a direct fuzzy controller and its subsequent tuning when there are pay-
load variations. In [26. 27]. a fuzzy logic supervisory level is used for a lower-level
conventional controller selection. In [73]. a two-level hierarchical rule-based con-
troller was proposed. This scheme employs an upper-level “expert controller” that
captures the knowledge about how to supervise the application of low-level fuzzy
controllers during movements in the robot workspace. In [64]. an “anticipatory fuzzy
control” for a flexible beam was introduced. By “anticipatory”. we mean that the
effect of the control signal on the system output is predicted and is replaced with
another controller if it is not acceptable. This prediction is accomplished through
mathematical simulation of the dynamic equations. A neural network is trained to
perform the function of the anticipatory fuzzy logic controller.

Although these controllers can somehow take into consideration the effect of
parameter variations. the structures of the controllers are limited to simple gains
which cannot cancel the effect of the nonlinearities.

An approach that looks promising for control of flexible-link manipulators

is based on neural networks. There are several ways that a neural network-based



controller can be used to adaptively control rigid manipulators. Most of them, how-
ever. are based on either the minimum phase characteristic of the input—output
map or require full state measurements— conditions that are not generally satisfied
for flexible-link manipulators. In [14] a neural network controller for a flexible-link
manipulator was designed. Hub position and velocity were used to stabilize the
system. Then an adaptive observer was used to identifv the system parameters. A
modified Hopfield neural network was used to realize the observer. Based on tie
identified parameters. an auxiliary system was constructed and a feed-forward con-
trolier was designed so that the output of the auxiliary system tracks the desired
trajectory. This work. however. is restricted only to linear models of the flexible-link
robot. The problem of online self tuning adaptive control (OLSTAC) using a back
propagation neural network (BPNN) is considered in [63]. The authors emploved
online learning of BPNN in both stages of OLSTAC. i.e., system identification as
well as control. It was assumed that the dynamics of the flexible-link manipulator
can be separated into two nonlinear/uncertain terms representing the state term
and the control term. The control consists of two parts. the displacement part. and
the velocity part. Two separate neural networks were employed to construct these
signals. The error function was obtained by propagating back the error between
the desired trajectory and the output of the neural identifier. through the neural
identifier. In [22]. partial knowledge of the dvnamics of the flexible-link is assumed
and the unknown part of the dynamics is identified by a supervised learning algo-
rithm. The same methodology used in [44] was pursued for control. The control
is constructed in two stages, an optimal controller and an unsupervised neural net-
work controller using model-based predictive control. The scheme is based on an
identification stage that also requires feedback from the states of the system. In
[103], a variable structure control was used. A neural network was employed to
identify the payload and to select the proper linear controller previously designed

for each range of the payload variation. Register et al. [88] extended the neural



controller proposed in [105] to a lightly damped system by adding a term related to
the hub velocity to the cost function of the neural network. In [79]. the joint tracking
control problem for a space manipulator using feedback-error-learning is proposed.
They assume known rigid body nonlinearities and neglected flexible dvnamics. The
known nonlinearities were used as composite inputs to the neural network. In this
scheme. the tip position tracking is not guaranteed especially for high-speed desired
trajectories. In [118]. tracking control of a partially known flexible-link robot was
considered. A physically meaningful and measurable output, namely hub angle. was
selected for tracking. The controller was composed of a singular-perturbation-based
fast control and an outer-loop slow control. The slow subsystem is controlled by
a neural network for feedback linearization. plus a PD outer-loop for tracking and
a robustifying term to ensure the closed-loop stability. This work is restricted to
a manipulator with sufficiently large stiffness. It should be mentioned that except
for the work in [79] which considered the joint tracking problem assuming known
rigid~-body nonlinearities. no experimental work has been reported for controlling

flexible-link manipulators using neural networks.

1.3 Experimental Issues

In this section we briefly discuss the complexities inherent in practical implementa-
tion of controllers for flexible-link manipulators. These complexities may basically

be categorized as follows:

¢ Hub friction and stiction: Because of the lightweight structure. the joint torque
is lower than in industrial manipulators and thus joint friction is higher. This
can cause difficulty in modeling and result in poor performance for model-

based control strategies.

e Vibration of the flexible modes: As the speed of the desired trajectory is in-

creased, the magnitude of the vibration of the flexible modes becomes larger
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and this may result in instability of the system due to the limitation of the sen-
sors usually used for measuring these vibrations. This is important especially

for linear controllers that use higher gains to satisfy the design specifications.

Computation time required for implementing the algorithms and the sampling
rate selection: Discretization of analog controllers usually demands high servo
rates which due to the complexity of the nonlinear controllers. may not always

be feasible.

Actuator saturation: Different control strategies demand different amounts of
the input torques. If the actuator cannot provide the demanded torque. it

may lead to instability of the closed-loop system.

Type of sensors used for deflection measurements: Another major question
in implementing a controller is the number and type of sensing points. Since
the tip positions and their time derivatives are to be controlled, the least in-
formation to be provided to the controller is accurate information on the tip
positions. In particular. sensing the tip deflection is possible by using strain
gauges and/or photodetectors. Accuracy. installation. dynamic range and the
possibility of measuring all the states are important issues to be considered.
For instance. using photodetectors may result in more accurate sensing: lLow-
ever. feeding the state vector back for control purposes will not he possible
by using only photodetectors. On the other hand. using strain gauges brings
certain difficulties that may affect the accuracy of the measurement. For in-
stance, one needs to determine the mode shapes for the computation of the

flexible modes from the measurements.
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1.4 Inverse Dynamics and Non-minimum Phase

Systems

Consider the following single-input, single-output (SISO) affine nonlinear system *
described by the state space representation
x = f(x)+g(x)u
y = h(x)
where x € R, y € R, v € R and f.g.h are smooth nonlinear functions. The
objective is to make the output y track a desired trajectory y, while keeping the
whole state bounded. where y, and its time derivatives up to a sufficiently high
order are assumed to be known and bounded. In input-output linearization (inverse
dynamics) approach. this goal is achieved by generating a linear differential relation
between the output y and a new input v. The new input v is later designed to

satisfy tracking requirements.

Relative Degree

An apparent difficulty in controlling svstem (1.1) is that the output y is only indi-
rectly related to the input u. through the state variable x and nonliyear equalions
(1.1). Therefore. it is difficult to see how the input u can be designed tu coutrol
the tracking behavior of the output y. If a direct and simple relation can be found
between the system output y and the control input u, then the difficulty of the track-
ing control design can be reduced. This idea constitutes the basis for the so—called
input-output linearization approach to nonlinear control design.

To generate a direct relationship between the output y and the input u, the
output function y is repeatedly differentiated until the input u appears. Suppose

the input u appears after the rth differentiation, then we have

y = a(x) + b(x)u.

'A class of nonlinear systems that are linear in control.
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The system is said to have relative degree r in a region of interest 2 € R™ if ¥x € Q.

b(x) # 0.

Normal Forms

r—1

Assuming the relative degree r is defined and r < n, then by using y,3.---y"~! as

part of the new state component

T T
“:[#1#2...#r] =[yy....y(r-1)]
and by defining a (local) diffeomorphism [99] state transformation
T
[;11 Tt Me Uyttt Uty ] = H(x).
then the normal form of the system can be written as

"

K1 = M2

[1?—1 = UUr

L Hr = a(p, W)+ b(pe, Y)u

¥ = Z(p,?P) (1.3)
¥y =

T
where g and ¥ = [ Wy oo Ynor ] are the normal coordinates and a.b and Z

are nonlinear functions of g and W.

The Zero Dynamics

By employing the inverse dynamics approach, the dynamics of a nonlinear system is
decomposed into an external (input-output) part and an internal (“unobservable™)
part. System (1.2) is called the external dynamics and system (1.3) is called the

internal dynamics. Since the external part consists of the controllability canonical
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form between y and u, as in (1.2). it is easy to design the input u to cancel the non-
linearities a(u, W) and b(g, W) or equivalently to externally linearize (1.2). Towards

this end. the input u should be taken as

1 ‘

where v is the control for the linearized system to be designed subsequently. Specif-
ically. to make the system output y track the desired trajectory y, asvmptotically.

the servo control v is designed as

v=y = koo =y = o = kol — yr) (1.5)

where ko.--- . k._;, are selected to place the roots of s” +k,_;s"~ !+ - +kis+ko=0
at some desired location in the left half of the complex plane (LHP). Although the
nonlinear control law (1.4) and the servo control law (1.5) seem to be sufficient to
guarantee the desired trajectory performance. the question is whether the internal
dyvnamics will behave well. i.c.. whether the internal states will remain bounded.
Since the control design must account for the whole dynamics {and therefore can-
not tolerate the instability of internal dynamics). the internal behavior has to be
addressed carefully.

Generally. the internal dynamics depend on the state u. However, some con-
clusions about the stability of the internal dynamics can be made by studying the
so—called zero dynamics. The zero dynamics (1.6) are defined as the internal dy-
namics when the control input u is such that the output y is maintained at zero. In
order for the system to operate in zero dynamics. the initial state of the system must
be selected as u = 0 and W(0) = Wy (arbitrary), furthermore the input u must be
such that y stays at zero, i.e., such that y(")(¢) = 0. From (1.2), this means that u

must equal



Now. the system dynamics can be simply written in normal form as

g =0
¥ = Z(0,%). (1.6)

Recall that linear systems whose zero dynamics are stable are called minimum phase.
This notion can be extended to nonlinear systems. The nonlinear system (1.1) is
said to be asymptotically minimum phase if its zero dynamics (1.6) are asymptoti-
cally stable. Then the following result from [99] shows that provided that the zero
dynamics are asymptotically stable. then the control law (1.4) and (1.5) stabilize

the whole system locally.

Theorem 1.1 [99] Assume that the system (1.1) has relative degree r and that its
zero dynamics are locally asymptotically stable. Choose constants k; such that the
polynomial K(s) = s" + ke_1s"™' + --- + kys + ko has all its roots strictly in the
LHP. Then. the control laws (1.4) and (1.5) yield a locally asymptotically stable
closed-loop system.

Proof: For details refer to [99].

Therefore. instability of the zero dynamics may imply instability of the closed-loop
system. Hence. the inverse dynamics approach is not directly applicable to non-
minimum phase systems.

For a linear time-invariant system. b is a constant matrix. a is a linear functions
of the states and the internal dynamics and consequently the zero dynamics are
linear time-invariant systems. Note that the eigenvalues of the zero dynamics are
exclusively determined by the location of the system zeros. Therefore. the inverse

dynamics control is directly applicable only if the system zeros are all in the LHP.



1.5 Contributions and Accomplishments of this
Dissertation

In this thesis. trajectory tracking control is considered for tip position of a flexible-
link manipulator. Several reasons make this control problem an extremely difficult
one. Non-minimum phase characteristic, coupling effects. nonlinearities. param-
eter variations and unmodeled dynamics all contribute to this difficulty. Several
researchers have tried for more than a decade to address different aspects of this
control problem. In this regard. the contributions of this thesis are summarized as

follows:

1. Output Redefinition without a priori Knowledge about the Payload
Mass

Output redefinition approach to control a flexible-link manipulator is based on the
development described in [17]. {18] and {60]. However. all of these works relv o
complete a priori knowledge about the system dvnamics and \'a;iation of pavlvad i~
not considered. In this dissertation. a modified output redefinition approach is given.
This modification is based on using minimum a priori knowledge about the system
dynamics. The modified output redefinition approach requires a priori knowledge
about the linear model of the system and no a priori knowledge about the payload

mass.

2. Tracking Control using Feedback—-Error-Learning

A tip-position tracking control strategy is considered for flexible-link manipulators
based on the feedback-error-learning scheme. This control strategy is similar to
those developed in [33, 69] where it was applied to control rigid-link manipulators.
The extension of this idea to the flexible-link case is made possible by utilizing the

output redefinition approach. Two feedback-error-learning schemes are developed
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to learn the inverse dynamics of the flexible-link manipulator. Both schemes require
only a linear model of the system for defining the new outputs and for designing
conventional PD-type controllers. In both schemes, the error signal for the neural
network is the output of the feedback controller. After learning, the output tracks
the reference trajectory according to the error dynamics that are specified by the

feedback controller. This topic has appeared in [106].

3. Modified Feedback-Error-Learning for Deflection Control

When the redefined output becomes too far away from the tip and too close to the
hub. the output redefinition approach does not necessarily vield a satisfactory per-
formance for the tip position. This is due to the fact that there is no direct way to
effectively damp out the elastic vibrations of the flexible modes. It is proposed to
include the tip elastic deflection directly in the objective function of the neural net-
work. Consequently. a direct control over the elastic vibrations of the flexible modes
becomes feasible. Simulation and experimental results demonstrate the effectiveness

of this modification on the performance of the neural network controllers.

4. Joint—Based Neural Controller

This scheme aims to relax the a priori knowledge about the linear model of the
flexible-link manipulator. The first two neural network-based schemes use this
knowledge to first define a new output and to design a PD controller to stabilize the
system during learning. The key to designing this controller is to define the natural
choice of joint position as the output for control which ensures the minimum phase
property of the input-output map due to its colocated actuator/sensor pair aud
then to damp out the tip elastic deformation by adding tip deflection in the cost

function of the neural network.
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5. Output Redefinition Through Online Learning

In this scheme. the assumption of a priori knowledge about the linear model of the
system is relaxed through online learning. Two neural networks are emploved in
this structure. The first neural network (NN1) is trained to function as a feedback
controller and the second neural network (NN2) is trained to provide a proper output
for feedback. Tip elastic deflection is also introduced in the objective function of

NN1 to reduce the vibrations of the flexible modes of the system.

6. Experimental Evaluation

The proposed neural network controllers are implemented on a single flexible-link
experimental test-bed. Several experiments are performed to test the performance
of the control schemes under different conditions of loading, reference trajectories
and unmodeled dynamics. Experimental results are demonstrated to illustrate the
advantages and improved performance of the proposed tip position tracking con-

trollers over the conventional model-based controllers.

1.6 Thesis Outline

Chapter 2: Manipulator Model

In this chapter. the dynamic equations of the manipulator are derived. Although.
the proposed control strategies are not based on a full nonlinear model, derivation
of the dynamic equations is still needed for the purpose of simulations (forward
dynamics). The model is derived by using the Recursive Lagrangian approach and
then verified by using experimental data. The first two control schemes proposed
in this thesis assume a priori knowledge about the linear model of the manipulator.
Verification of this linear model is difficult due to the presence of significant amount

of stiction and Coulomb friction at the hub. To resolve this problem. experimental
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verification of the linear model is performed by using PD hub position control with
high gain to overcome the effect of the friction. At the end of this chapter. the

non-minimum phase property of the flexible-link manipulator is discussed.

Chapter 3: Output Redefinition

The output redefinition approach is illustrated in this chapter. The idea of output
redefinition is motivated by the fact that zero dynamics depend on the choice of
the output. More specifically. the output is redefined such that the linearized zero
dvnamics associated with the new output are asymptotically stable. First. the “re-
flected tip position™ introduced in [114] is discussed. It is shown that the difference
between the reflected tip position and the actual Up pousition becomes significant
for high-speed reference trajectories as well as for very flexible-link manipulators.
Next. the sum of the joint angle and a scaling of the tip elastic deformation is de-
fined as a new output and the condition for obtaining this output is provided. The
new output is defined assuming a minimum a prior: knowledge about the svstem
dyvnamics. Specificaily. no a priori knowledge about the payload mass is assumed.
This forms the basis for the construction of the first two control strategies proposed

in the next chapter.

Chapter 4: Proposed Neural Network Structures

This chapter presents the proposed neural network-based control schemes. Four
neural network schemes that utilize the output redefinition approach are introduced.
The first two schemes are developed by using a modified version of the “feedhack

error-learning”™ approach to learn the inverse dynamics of the flexible manipulator.
Both schemes assume some a priori knowledge of the linear model of the system.
This assumption is relaxed in the third and fourth schemes. In the third scheme.
the controller is based on tracking the hub position while controlling the elastic

deflection at the tip. The fourth scheme employs two neural networks, one of the
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neural networks define an appropriate output for feedback and the other neural
network acts as an inverse dynamics controller. Simulation results for two single

flexible-link manipulators and a two-link manipulator are presented.

Chapter 5: Experimental Results

Experimental results are demonstrated in this chapter. First. an experimental test-
bed is described which consists of a very flexible link. The actuating and sensing
mechanisms: controller. data acquisition and interface card are discussed. Different
aspects of implementation of the proposed control strategies and inherent difficulties
involved are discussed. Finally. experimental results are provided that are performed

in the presence of payload variations. friction. and model uncertainties.

Chapter 6: Conclusions and Suggestions for Future Work

Based on the proposed control strategies. general conclusions concerning the out-

come of this thesis are given. Finally. several suggestions for future work are indi-

cated.



Chapter 2

Manipulator Model

2.1 Introduction

This chapter develops the dynamic model for the flexible-link manipulator. Al-
though the proposed control strategies in this thesis require no knowledge or only
a partial knowledge about the system dynamics. the analytical model of the sys-
tem is still needed for the purpose of simulations (forward dynamics). Based on
Euler-Bernoulli beam theory. a partial differential equation (PDE) known as the
Euler-Bernoulli beam equation is used to model the vibration of the beam. vield-
ing an expression for the deflection as a function of time and distance along the
beam. Using the separation of variables method, the beam equation is expressed as
two ordinary differential equations (ODE’s). The Recursive Lagrangian approach is
then used to derive the dynamic equations of the manipulator. This model is then
linearized and is used in the first two proposed schemes in later chapters.

The dynamic modeling of the manipulator is derived in Section 2.2. In Section
2.3. the non-minimum phase property of the flexible-link manipulator is discussed.
Finally, in Section 2.4, the experimental manipulator’s parameters are incorporated
into the model. The accuracy of the model is verified by comparing its responses

with those of the experimental manipulator.
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2.2 Dynamic Model of a Flexible-Link Manipu-
lator

Systematic methods for formulating the dynamic equations of motion for rigid ma-
nipulator arms have been extensively studied by many researchers and variety of
techniques are available to obtain the dynamic equations e.g. [65. 100]. Modeline
of a flexible-link manipulator. however. is difficult due to the structural Hexibility
and the distributed parameter nature of the system. The assumed modes and fi-
nite element methods are two common ways to obtain an approximate model of a
flexible-link manipulator.

In the following, we focus on the modeling of a single flexible-link manipulator
which is fixed at one end (hub) and is driven by a torque 7. The other end is free
to flex in a horizontal plane. and has a mass M; as a payload (see Figure 2.1 ).
It is assumed that the length of the beam, {. is much greater than its width. thus
restricting the beam to oscillate in the horizontal direction. Neglecting the effects
of shear deformation and rotary inertia. the deflection of any point on the beam

W(r.t) is given by the Euler-Bernoulli beam equation (e.g. [67])
W (z.t) W (z.1)

where E is Young’s modulus of the material. A is the link cross-sectional area. I is

(2.1

its inertia and p is its uniform density.

Before a dynamic model of the arm can be developed, it is necessary to find
the natural modes of the arm. The natural modes vary with the rigid dynamics and
the configuration of the arm and, therefore, require frequent recalculation [24]. It
is possible, however, to model the system using a set of modes other than natural
modes. As long as the geometric boundary conditions remain unchanged, the same
set of functions can be applied to the arm throughout its workspace. Two commonly
used sets of functions are the so—called cantilever (clamped-free) modes [7. 13. 36.

114] and pinned-free modes [7. 12, 13].
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Figure 2.1: Schematic of the one link flexible arm.

Hasting and Book [36] experimentally verified that clamped-mass admissible
functions yield better results than the other mode shapes such as pinned-free modes
used by Canon and Schmitz [12]. Bellezza et al. [7] have shown that open-loop
modes obtained by using clamped-free and pinned-free eigenfunctions are identical
and only differ in the reference frame in which the elastic deflections are measured.
Cetinkunt and Yu [13] have compared the first three modes of the closed-loop system
for pinned-free and clamped-free mode shapes with the modes obtained from the
exact solution of the Euler-Bernoulli beam equation. They have shown that the pre-
dictions of clamped-free mode shapes are much more accurate than the predictions

of pinned-free mode shape modes.



To obtain a solution for equation (2.1). separation of variables is used. ..
Wi(z.t) = o(z)d(t) (2:2)

the general solution for equation (2.1) can be written as the following [66. 107]:

§t) = Aet
2 BiE]

@& =
pAl

o(r) = Cisin(3z)+ C;cos(3z) + Cssinh(3z) + C, cosh(3z) (2.3)

A complete solution of the cantilever beam problem with an inertia tip load consist-
ing of point mass M, requires solving for the constants C, through C; in equation

(2.3). These constants are calculated using the following boundary conditions:

Atr=0
Wi(r.t)limo = 0
8”?@(;.1) o = 0
at r =1
(Bending moment)VM = Elﬂ';% |z=i= —Jzaa—; al;;'—t)) |e=t
(Shear force)S = Efﬁ;:—'t) |omi= M,Qz%(f;t) - (2.4)

where J; is the load inertia.The conditions on M and S follows from the fact that

214" .
M, and J; cause concentrated force = .M,?—%@ and bending moment to act on the

beam at z = [.

Using (2.2). (2.3) and (2.4, boundary conditions at the end-point become:

9*W(z,t) | Bt oW (z,¢t) |
or? =t = pALB Oz ==t

FPW(z,t) M3t ,

a0 le=t = - oAl Wiz.t) |z=

The clamped conditions at the joint vield
C3 = —C1 Cq = —Cz
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while the mass conditions at the end-point lead to

[ 2w ] g: =0

The frequency equations are then given by setting to zero the determinant of the
2 x 2 matrix Q(3). Now. the positive values of 3 are obtained by the solutions of

the transcendental equation

( 1+ cos3cosh3)— M3(sin3cosh3 — cosIsinh3)
— J3*(sin3cosh 3 + cosdsinh3) + MJ3*1 — cos3coshd) =0

where M = M;/pAl and J = Ji/pAl. For M; = J; = 0. the above equation is

reduced to

1 4+ cos3cosh 3 =0.

The natural frequencies of vibration are obtained from

g [E
L p.4[4.

To each of the natural frequencies w;. corresponds a specific mode shape function

oi(r) and a specific amplitude function or normal coordinate 8,(t). A single solution

to the deflection problem may be expressed as
wi(z.t) = oi(x)d:(t).

The single solution w;(z,t) will not usually satisfy the initial conditions for position.
W (z.0) and velocity W (z,0). Since equation (2.1) is linear and homogeneous, the
principle of superposition holds that the sum of infinitely many solutions w; is a
solution of (2.1).

W(z.t) = 3 di(z)5(2). (2.5)

=1

[~
(<]}



1,2, --- ,oc} is the set of functions

The set of eigenfunctions {¢;(z), 1

(stnBil + sinh3:l)

- (cosB;l + cosh3;l) (cosB;x — cosh3;z)].

oi(r) = ¢[(sinfBiz — sinh3;z)
The constant ¢; normalizes the eigenfunctions so that

{
/ éi(z)dz = 1.
o]}

2.2.1 The Assumed Modes Method

Equation (2.5) states that an exact solution to the Euler-Bernoulli PDE requires
an infinite number of modes. The exact solution. however. can be approximated by

the assumed modes method using a finite number of modes.
W(z.t) = 3 wul2)at)
=1

where the ;(r) are any functions that satisfy the boundary conditions. If the
functions ,(x) are selected to be a set of polynomials in z. the resulting frequencies
of vibration are only approximations to the actual natural frequencies of the system.
If the functions i(r) are chosen as the eigenfunctions &;(z). the frequencies of
vibration equal the natural frequencies of the system. Therefore. the deflection of

the cantilever beam can be approximated by

Wir.t) = io,(r)&(t).
=1

2.2.2 Dynamic Equations

By considering a finite number n of modal terms, the dynamic equations for the

one-link flexible arm can be derived by using a Recursive Lagrangian approach [9]

6 . hi(0,6,8) + Fi6 + f. u

) _ (2.6)
§ ha(0,8) + K& + Fy6 0

M($)
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where 8 is the hub angle, § is the n x 1 vector of deflection variables, and k; and A,

are the terms representing the Coriolis and the centrifugal forces. namely

hi(6.8,8) = 2M6(0T5)(dT4)

[
-

ha(6.8) = —ME*(d.67)S (-

M is the positive—definite symmetric inertia matrix given by

myu(8) MEL
."/112 .’Wgz

M(8) =

The elements m;; of the inertia matrix A (J) take on the expression below, which
is valid when clamped-free modes are used in the presence of a tip payload and

neglecting load inertia.

my () = Jo+ MI®+ [y + M(®T5)? (2.8)
my;, = Mlo,.ye+0,01. j=2.---.n+1
my = pA+ Mol ,,. i=2 .on+1

I
o

m,, = -‘[lol—l.eoj-'l.f‘ t .n=1o g =y

with
(b;r = ‘I’Tlr:[ = [Ol s On”r:l O{: = oi(-r)l:=l

!
o = pA[; oi(z)zdr

where m is the link mass. [, is the joint actuator inertia, and J; is the link inertia

relative to the joint; K is the positive-definite diagonal stiffness matrix
K = diag{hi, ---, k,.}
ke = 131/ [a 0il)124, (2.9)

F} is the viscous damping at the hub and F3 is the positive-definite diagonal damping

matrix

Fg:diag{fl, N fn.} (2,10
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which accounts for the internal viscous friction in the flexible structure.

As can be seen, the hub friction f. is included in equation (2.6). The hub fric-
tion cannot be modeled accurately and is included for simulation purposes only. In
this regard, f. is often considered as the Coulomb friction which may be represented

by a hard nonlinearity f. = CcouISGz\’(é), where

1 ford> 0,
SGN(6)={ ~1 foré <O, (2.11)
0 forf=0

or may be approximated by a smooth function and is expressed as

9
fc = Ccoul(‘_-_- - 1). C,_-ou[ >0, a>0.
1 +e-2¢

The input torque 7 is represented with u.

The Recursive Lagrangian approach can also be used to derive the dyvnamic

- [“} (2.12)
0

where 6 is the n x 1 vector of joint variables. § is the m x 1 vector of deflection

equations for multi-link flexible manipulators as

éJ . { F1(8.6) + hi(6.6.6.8) + F\6 + f.
5

A8.8) | , o .
[ f200.6) + h2(0.6.6.8) + K& + Faé

variables and f;. f2, k1 and h, are the terms due to gravity (f; only). Coriolis. and
centrifugal forces. If a finite number of flexible modes m; is considered for ith link,
then § = [ 8§ ... 6. ]T, 6 = [ 81 e Oim, ],i =1, --- ,n,and m=Y7 m,.

As pointed out in [114], the tip position can be obtained from Y = 6 + -w
where W;(/;,t) is the elastic deflection at the tip and /; is the length of the ith
link. When m; modes are considered for the ith link. W;((,.t) may be expressed as
Willi.t) = 70, 64(£:)di5(). where &;, is the jth eigenfunction of the ith link aud

d;, is the jth mode of the ith link. Thus. the tip position vector can be expressed as

Ye = 0+ 7nxm6
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where

oI 0 --- 0
0 I --- 0
Inxm = . U.z . . . (2.13)
0 0 --- U,T_
T lr . , :
o= ¢ Oia(ly) + Gimi(l) |1 =1.---.n
r=
yz - LyI"'yn]

2.2.3 Local Linearization of the Equations of Motion

Local linearization may be used to derive a linear model of the actual system. This
linear model is an approximation of the nonlinear system in the neighborhood of an

operating point. Neglecting the Coulomb friction term f. in (2.6) and performing
local linearization yields

é F}é u
Mo .1+ .| = (2.14)
) Ré+ F6 0

where Mo, is the linearized M. Now. by defining XT = [z;. ---. Z2,42] = [0.67.6.467].

the state space equations can now be derived in the form

X = AX +Bu
Yy, = Ct-\, (_)l-ﬂ
where
4 _ ( 0n+lxn+1 In+lxn+1
~M'KK —M-FF |’

0n+1xl




I U - AP
T o o
KK =
_Onxl 1{
Fi Oyxn |
FF = P .
_Onxl F'Z J

Wang and Vidyasagar [114] have shown that if the number of flexible modes is
increased the transfer function from the input torque to the tip position does not
have a well defined relative degree. Moreover, the associated zero dynamics are
unstable for this output. Hence the system is non-minimum phase and is very
difficult to control using this output for feedback. This issue is discussed in the

following section.

2.3 Non—-minimum Phase Characteristic of a Flexible—
Link Manipulator

The non-minimum phase behavior is a characteristic of underactuated mechanical
systems such as the acrobot [38]. PVTOL aircraft [39. 99], and the flexible-link
manipulator. In the flexible-link manipulator. the non-minimum phase behavior
may be traced to the non-colocated nature of the sensor and actuator position.

To illustrate the non-minimum phase characteristic of the flexible-link system.
a single-link flexible arm is considered (see Figure 2.1). Equation (2.14) represents
a linearized model of the system. By setting M; = 0, and by considering one flexible

mode, Equation (2.14) can be rewritten as

m“é + mlzg <+ Flo- = u
mlgé + mgg(.s: + ths- <+ Ké = 0 (2]6)

where m;;. 1,5 € {1. 2} are elements of the inertia matrix M, (linearized version of
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(2.8)). Fi is the viscous damping at the hub and A" and F; are given by (2.9) and

(2.10). respectively.

my, = Jo + [i;.
{
my, = pA/O o1(z)zdr,
ma2 = pA
, ¢ azo[(.’t) 2 ¢ g

the zero dynamics related to this output can be found by the procedure explained

in Section 1.4. Setting y, identically zero yields

ALY (2.18)
l
Substituting (2.18) in (2.16) gives
(77112—%771“)5-;— Flé = u 20
O1« = : . .
(a0 — Tmlg)d +F§+RS = 0 (2.20y

Now. the stability of the zero dynamics (2.20) can be investigated by specifving the

sign of the coefficient (C.o = ma2 — Z=m,;). Using (2.17). C.o can be written as
g 1 g

; {
pA(l - 9;—/0 r6,(z)dx). (2.21)

Since the product of z6,(z) for clamped-free eigenfunction is always positive, if  is
large enough C.q becomes negative in (2.21). Therefore, the zero dynamics (2.20)
are unstable and the flexible-link system is non-minimum phase. Consequently, the
system cannot be inverted and the inverse dynamics control strategy results in an
unstable closed-loop system. Therefore, for such a system. perfect or asymptotic
convergent tracking should not be pursued. Instead. one should find controllers

which lead to acceptably small tracking errors for the desired trajectories of interest.
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{ 1.2 m

v 1.2 kg/m

Iy .3 kg.m?

b .59 N.om/rad.s~!
Cou | >0 474 N.m
<0 4.77 N.m

ET 1.94 N.m?*
Wy 3 rad/s

w2 19 rad/s
Ci 0.4

C2 4.0

.‘I[ 30 q

Table 2.1: The link parameters for experimental manipulator

2.4 Model Verification

In this section, the validity of the model represented by (2.6) is examined by com-
paring the responses of the system obtained by solving (2.6) to those obtained by the
experimental manipulator. The experimental system consists of a single flexible-link
whose parameters are taken from [30] and are shown in Table 2.1. In this table. /
is the length of the link 4 is the mass per unit length, /4 is the hub inertia. b is the
viscous friction at the hub, C..y; is the coefficient of Coulomb friction. E is Young's
modulus, / is the beam area moment of inertia. w; is the jth resonance frequency
of the beam. ¢;’s are the viscous damping coefficients. and M, is the payload. Two
flexible modes are considered in this model. More details about the experimental
manipulator are given in Appendix C.

The validity of the model is tested by applyving different patterns of torge
signals to the experimental test-bed. The model responses to the same torques are
then obtained and the accuracy of the model is investigated by comparing these two
sets of responses.

The torque 7(t) and its responses are shown in Figures 2.2-a to 2.2-d. Figure

2.2-a shows the applied torque 71(t). The hub position, tip deflection and net tip
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6>0(60<0
Ceounl 4.8 4.55
Ceoouiz | 4.95 4.6

Ceoutn | 495 | 4.55

Table 2.2: Different sets of Coulomb friction coefficients.

position are shown in Figures 2.2-b to 2.2-d, respectively. Each figure includes
the experimental result (solid line) and three simulation results which are obtained
using different sets of Coulomb friction coefficients shown in Table 2.2. Specifically.
in Figure 2.2. dashed lines correspond to C.,.;;. dash-dot lines correspond to C.,,2.
and dotted lines correspond to C,..3. As can be seen. the best agreement can be
obtained by setting the value of the Coulomb friction coefficients to C.,.;;. This set
of Coulomb friction coeficients differs from the values of Table 2.1. These changes
are required because the original values are averaged over a range of hub angles and
therefore yield imprecise responses when compared with the experimental responses.
particularly for the hub position. In Figure 2.3, the torque 7(¢) and its responses
are shown. In these figures. each figure includes the simulation results (solid line)
obtained by setting C. = C.uy and three experimental responses. As can be
observed. the hub position response (Figure 2.3-b) is different for each experiment.
These differences are caused by slight variations of the initial hub positions and
demonstrate the variation of the actual Coulomb friction with hub position.

To alleviate this problem. the torque 73(¢) is applied to the system . Figure
2.4-a to 2.4-d show 73(¢) and its responses . Each figure includes the experimental
response (solid line) and three simulation responses obtained by setting C.,., =
Ceout (dashed line), Ceour = Coourz (dotted line) and Ceoui = Ceows (dash-dot line).
Figure 2.4-b shows the hub position responses. and a considerable amount of error
can be observed for the case C oy = Ceoun (dashed line) which yields close agreement
when applying torque 7i(t). In this case, the best result is obtained by setting

Ceout = Ceourz (dotted line). Consequently, the use of a single set of Coulomb friction
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coefficients leads to an inaccurate model. Neglecting the stiction also contributes to
inaccuracy. The inaccuracy is particularly significant when the value of the applied
torque approaches that of the Coulomb friction.

To verify the linear model of the flexible-link manipulator. the Coulomb fric-
tion at the hub should be canceled. This cannot be done in an upen-loop marnine:
since the exact value of Coulomb friction coefficient is not known and it varies with
hub position. To resolve this problem, the Coulomb friction can be compensated
for in a closed-loop system. A PD control strategy with very high gains [30] is
able to overcome the effect of the friction. The linear model of the system can then
be verified by comparing the closed-loop responses of the model to those of the
experimental system.

Towards this end, a reference trajectory 8,(t) (Figure 2.5-a) is selected for this
experiment. Appropriate selection of controller gains K, and K, ensures that torque
saturation does not occur. A proportional gain K, of 3000 and a derivative gain
I, of 25 ensure slightly overdamped tracking of 6.(¢). Figure 2.5-a to 2.5-d show
the experimental responses (dashed lines) and simulation responses (solid lines) to
the reference trajectory 6,(¢). Figure 2.5-a shows the hub position respouses. and
close agreement between the simulation and experimental responses can be obseryed.
The tip deflection is shown in Figure 2.5-b. Note that until ¢ = 7 seconds. the peak
amplitudes of the experimental curve are greater than those of the simulated plot.
This behavior is a result of the linearly decaying response that is a characteristic
of the Coulomb friction present in the actual test-bed and of the exponentially
decaying response characteristic of the viscous damping used in the model. The tip
position responses are shown in Figure 2.5-c, and the input torque 7(¢) is shown in
Figure 2.5-d and is within saturation limits of £35.25 N.m

The above analysis demonstrates that the linear model (2.14) approximates
the actual system reasonably well in the absence of Coulomb friction and is suitable

for defining the new output and designing the controllers. The former is the subject



of the next chapter.

2.4.1 The Linear Model of the Experimental Manipulator

The linearized state-space equations (2.15) can be transformed to the transfer func-

tion representation

Ye(s) — pe(s) (2.22)
u(s)  q(s)’ o

where p,(s) and g(s) are polynomial functions of the Laplace transform variable s,
and y(s) and u(s) are the Laplace transforms of y:(t) and u(t), respectively. For

the experimental manipulator whose parameters are given in Table 2.1.

pe(s) = 0.16s* —0.25° — 1.88 x 10%s2 + 6.28 x 10%s + 2.18 x 10°.

q(s) = s°+6.125° +5.65 x 10%s* + 16.71 x 10%s% + 2.11 x 10%s2 + 1.29 x 10%s.

The poles and zeros of Ge(s) are simply the roots of q(s) and p.(s). respectively

which are given in Table 2.3 and are plotted in Figure 2.6. The presence of two

Poles Zeros |
0 13.3212
—0.6355 30.5436

—1.1531 £6.1678; | —9.6169
—1.5910 + 22.64525 | —33.4977

Table 2.3: Poles and zeros corresponding to the tip position

RHP zeros (see Table 2.3) identifies G'(s) as a non-minimum phase transfer functjon.
Consequently, the inverse dynamics control strategy based on the tip—position as the
system output cannot be applied to control the flexible-link system. In the following
chapter, the output of the system is redefined such that the corresponding zero
dynamics are stable. This output is then used for performing the inverse dynamics

control discussed in later chapters.



6 0.4
at | _ T=====cooZ7
. g O3F -4 e N
gE’ 2. ............... g
g o} o2t o k]
& e |/ Vooooooo
B _2 SRR I R S o e
201 . EEmeTEEES
_4 P e e
0 )
0 5 10
t(S)
d
0.6
. :°)
B g o4
o | =
2 2 02
L &
3 e O
o -
= 2-02
-0.4 : -0.4 :
0 5 10 0 5 10
%(S) t(S)

Figure 2.2: Open-loop responses to the applied torque 7(t): (a)- Applied torque
71(t), (b) Experimental (solid) and simulated hub angles 6(t), (c) Experimental

(solid) and simulated tip deflections W ([, ), (d) Experimental (solid) and simulated
net tip positions y,(t).
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Figure 2.3: Open-loop responses to the applied torque m2(t): (a)- Applied torque
72(t). (b) Simulated (solid) and experimental hub angles 6(¢), (c) Simulated (solid)
and experimental tip deflections W(/, ), (d) Simulated (solid) and experimental net
tip positions y,(t).
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Figure 2.4: Open-loop responses to the applied torque 73(t): (a)- Applied torque
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Figure 2.5: Closed-loop responses for the PD hub control: (a)- Desired hub position
8o(t) . simulated hub position (solid) and experimental hub position 6(t) (dashed).
(b) Experimental (dashed) and simulated tip deflection W(l.¢) (solid). (¢) Exper-
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Chapter 3

Output Redefinition

In this chapter, the output redefinition method used for the first two control schemes
proposed in this thesis is explained. First. a brief introduction is given regarding the
output redefinition approach for nonlinear systems. Then. application of this idea v
control a flexible-link manipulator is discussed. Finally. this approach is modified to
enable the designer to employ this scheme with minimum a priori knowledge about
the system dynamics. Towards this end. a linear model of the system is assumed to

be known with no a priori knowledge about the payload mass.

3.1 Introduction

As stated earlier. application of inversion control techniques for exact trajectory
tracking of non-minimum phase systems is impossible with a bounded control in-
put. Several methods have been proposed in the literature to control non-minimum
phase nonlinear systems. One methodology is to bypass the minimum phase re-
quirement by applying an input-state rather than input—-output (inverse dvnamics)
linearization. Tornambe [108] studied output feedback stabilization for observable
input-state linearizable nonlinear systems. The strategy is based on (i) introduc-

ing a cascade precompensator dynamics, (i) input-state linearizing the augmented
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system, and (ii) converting linear state-feedback control into dynamical output
feedback control using the observability property assumed for the system.

However. the input-state linearization approach is not suitable for output
tracking control unless there is a way to express the desired states in terms of
the desired output trajectory which is not always straightforward. Moreover. the
flexible-link system is not input-state linearizable as shown by Wang and Vidyvasagar
[115].

In view of the potential advantages of an inversion control law. e.g. its straight-
forward extension to the nonlinear setting and motivated by the fact that the zero
dynamics depend on the choice of the output. it may be convenient to slightly mod-
ify the problem specifications in order to achieve a minimum phase characteristic
for the system. One interesting approach is the output redefinition method whose
principle is to redefine the output function so that the resulting zero dynamics are
stable. Then an inverse dynamics control strategv can be designed based on the
new output. However. the important question to be answered is the following: Does
the actual output track the desired trajectory as closely as possible? There are 1wo
ways to deal with this question.

Gopalswamy and Hedrick [34. 41] proposed a sliding control strategy based on
() defining a new output such that the associated zero dvnamics are asymptotically
stable and (ii) defining a modified desired trajectory such that asymptotic tracking
of the modified desired trajectory by the new output results in asymptotic tracking
of the original desired trajectory by the original output. However, modifying the
desired trajectory is not possible for every problem.

Consequently, approximate tracking control has been proposed in the litera-
ture. In this way, the output of the nonlinear system is redefined in such a way that
it is essentially the same as the original output in the frequency range of interest,

Hence. exact tracking of the new output also implies approximate tracking of the
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original output. When performing input-output linearization using successive dif-
ferentiations of the output, One practical approximation {39] is to simply neglect the
terms containing the input and keep differentiating the selected output a number
of times equal to the system order, so that there are “approximately” no zero dy-
namics. Of course, this approach can only be meaningful if the coefficients of u at
the intermediate steps are “small” , i.e, if the systems are “weakly” non-minimum
phase. The approach is conceptually similar to neglecting “fast™ right-half plane
zeros in linear systems (in the frequency domain, 1 —rs = 1/(1 + 7s) if [rs] << 1

i.e. if the zero (1/7) is much faster than the frequency range of interest).

3.2 Redefinition of the Output for Flexible-Link
Systems

It is well-known that the zero dynamics of a flexible-link manipulator associated
with the tip position are unstable. In other words. the system is non-minimum phase
and direct application of the inverse dvnamics control strategy results in unstable
closed-loop internal dynamics. Wang and Vidyasagar [114] proposed the reflected

W, (.. . .
—5——'1. where it can be shown that the zero dvnamics

tip position. i.e. y,; = §; —
related to this output are stable. and consequently the system is minimum phase
and can be stabilized by a PD-type control law. This output is easy to compute from
the hub and tip position measurements i.e. y,; = 26; — y,;. The main advantage of
using the reflected-tip position control over the joint-based control is that by using
a joint-based control strategy the vibrations of the system cannot be controlled.
and as a result the only damping experienced by the system is its natural damping.
Therefore. the vibrations of the elastic modes take a long time to die out resulting in
considerable oscillations at the tip. Note that, as the speed of the reference trajectory

is increased, the unmodeled higher frequency flexible modes will become excited.

Given that y,; = 6; + &gl_q and y,; = 6; — L"—f—f—‘l therefore the difference between
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the reflected-tip position (RTP) and the actual tip position becomes significant for
high-speed reference trajectories and hence acceptable tracking performance cannot
be ensured. The same argument applies to the case when the link under control is
very flexible and the flexible modes are excited easily. This issue will be described
further in Chapter 4. Hence, for a very flexible system instead of RTP, a different
output should be defined for designing the control law.

De Luca and Lanari [17] suggested a set of actuation and sensing points which
convert the input-output mapping to a minimum phase one. The more natural
choice of keeping the actuation point at the Joint while varving the output location
along the link has been considered in [18]. An alternative approach is to keep the
output fixed at the tip and let the actuation point vary along the link [83]. These
methods however. suffer from the point of view of practical applications. i.e.. the

installation of the actuator or sensor along the link.

3.2.1 Defining an Output Close to the Tip Position

To define the new output as close as possible to the end effector, Madhavan and
Singh [60] used the joint angle plus a scaling of the tip elastic deformation as the
output for control in each link. namely y,, = 6, + a,ﬂ-’—g'—‘—’l, where —1 < a, < 1 (see
Figure 3.1). It can be seen that different values of a correspond to different points
on the beam. As an example. the point A on the link corresponds to a particular
value of a. Therefore. control of the point A accomplishes the control of point 4~.
For the choice of a = 1, the output becomes the tip angular position. for a = 0 the
output becomes the joint angle. and for a = —1 the output becomes RTP.

In [60]. the authors also showed that a positive critical value a; < 1 exists such
that the zero dynamics related to the new output, y,; are unstable for all a; > o and
are stable for all a; satisfying —1 < a; < a;. Hence an inverse dynamics controller
can be designed to control the system output for a; in the range —1 < a; < a;j.

Even though one must choose a; = 1 for the tip position control, in order to avoid
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Figure 3.1: The outputs of the flexible link.

unstable zero dynamics, one must keep a; < a] < 1. This evidently leads to
trajectory control of a coordinate close to the actual tip position. Our objective
in this section is to show that by using the new ovutput y... the dyvnamics of e
flexible-link manipulator may be expressed such that the feedback-error-learning
method (see Chapter 4) is applicable for controlling the system.

Consider the dynamics of the manipulator given by equation (2.12) and define

-1 Hy Hy, ) )
H(8.8)= A"14,8) = . Then (2.12) can be re-written as

H2l H22

u— f1(0,0) — h,(0.6,6,8) — F,6 — f.
—f2(0,8) — hy(6.6,8,8) — K§ — Fyé
Defining I'nxm = Tv, where T = diag{a;---a.} and v is given by (2.13), the new

= H(8,5) '(3.1)

output can be expressed as y, = 0 + I',x,»d. Now, consider system (2.12) with the
output defined above. To find the external dynamics related to this new output

successive time differentiation have to be taken until the input appears. namely

y..c =0.+ ry;)(ruJ ‘;_f‘
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Using (3.1) and (3.2), it follows that

v. = A(8.6,68,5) + B(6,6)u (3.3)
where

B(6.8) = Hyy + [pxm Hay
and
A(8.6.8.8) = —~(Hy + THay )(fi + b1+ Fi6 + f.) = (Hya + THaya)(fo + ha + RS + Fob)
The external dynamics related to the new output can be written in general as
u=f(6.6.4.5.y,) (3.4

Zero dynamics by definition in [43] are the dynamics which are left in the
system once the input is chosen in such a way that it constrains the output to

remain at zero. This input can be obtained from (3.3) as
u = B~(6,8)[-A(8.6.5.5)]

The zero dynamics of the system may now be expressed as

§ = =Plfa(wl.w2) + ho(wl. w2 w3, wd) + K6 + F4] (3.5)
where

wl=-T4, w2=-T6 w3=4§ wi=§

and P is given by

P =[Hy — Hy(Hy + THy ) ' (Hyp + T Hyy)) l(wi.w3) (3.6)

At this stage by linearizing the zero dynamics, one can find the value of al.

But. since the mass matrix M (and hence H and P) depends on the payload M,
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a; also depends on the payload mass. Consequently, to obtain the exact value of
a;. the value of M, should be known a priori. But. the control schemes proposed
in this thesis assume no a priori knowledge about the payload mass M,. In Section
3.3. it will be shown that the dependence of a; to the payload mass M, is such that
the value of of takes its lowest value when M, is zero. In other words. the value of
o] obtained for zero payload mass guarantees stability of the zero dyvnamics as ./,
increases. This choice of o is conservative, since as M, increases larger values of a’
can be used.

Now. by neglecting the payload (for the purpose of performing output redefi-

nition only). and by linearizing (3.5), equations (3.5) and (3.6) become
§ = —P[K§+ Fd] (3.7)
Po = [Hyp — Hun(Hy +THy ) ' (Hyp + T'H2,)] |00
where P is the value of the linearized P evaluated at M, = 0. Now. suppose that
the vector a and the matrices H. A". and F, are such that

0 /
—-FPBR -PF

A(T) =

is Hurwitz. Then the origin of (3.7). and hence (3.5). is locally asymptotically
stable and the original nonlinear system is locally minimum phase [99]. Provided
that the linearized mass matrix M (with zero payload). the stiffness matrix R, and
the viscous damping matrix F} are known. then a proper output may be specified
by obtaining an T such that A(Y) is guaranteed to be Hurwitz. The variation of a;l

to changes in the viscous damping matrix F, are discussed in Appendix A.

3.3 Variation of af with the Payload

In the previous section. an output redefinition approach for flexible-link manipula-

tors has been presented based on zero pavload mass. In the following. it is shown
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that using the value of o] obtained for M; = 0 ensures stability of the zero dynamics

as payvload mass increases.
Towards this end, consider the dynamics of a single flexible-link manipulator
when one flexible mode is considered. The dynamic equations of the manipulator is

given by (2.16) and is repeated here as

m115+m123+Flé = u
m125+m223+ Fg(§+ Ké = 0. (38)

[t is assumed that there is an a” = ag which ensures stability of the zero dvnamics
associated with the new output for M; = 0. When nonzero pavioad is considered in

the model, m,;. i.j € {1.2} can be obtained from (2.3) as

my = Jo+ In + M2,
{
myp = p.4/0 o1(z)zdr + Miléy.,

pA+ M2, (3.9)

ma2

and A" and F; are given by (2.9) and (2.10), respectively. Now. defining the new
output as

Yo=0+ ao%&
where ag is the value of a~ obtained for M, = 0. and following the same procedure

as in Section 2.3. the zero dynamics of the system can be expressed as

(rmgs — ao%mnﬁ? +Fé+ h6=0 (3.10]

The stability of the zero dynamics (3.10) can be investigated by specifying the sign

of the coefficient (C., = m,; — aoggimlg). Using (3.9), C:a can be expressed as

b1e l ,
Cea = pA+ M@}, — ac>%(pA /0 zé1(z)dz + Miléy.)
éle
I

éle ! 2 ,
pA(l - ao /0 zéi(z)dz) + (Mid2, — 002 Midy.).  (3.11)

{
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In (3.11). C., can be written as C., = C.o0 + C.omm where
D1e ¢
C:a0 = pA(1 — aoT/O zoi(z)dz)

represents C., when M, = 0, and

Ole
)

Ceom = 4‘/[10’;): — Q¢ M lo;. 3.0

represents the terms depending on the payload.
It is assumed that ag is the value of a* obtained for M; = 0. This implies
stability of the zero dynamics for the zero payload case, and hence C.,o > 0. Now.

Consider C.om in (3.12) which can be expressed as
Ciam = M6, — agM10}, = Mi3?,(1 — ao). (3.13)

It can be concluded from (3.13) that C.... > 0 since lag] < 1 and M, is always
positive. Consequently. C., > 0 and stability of the zero dynamics for this output
Is always ensured as M, increases. Hence. an output redefinition can be performed

without a priori knowledge about the pavload mass .

3.4 Conclusions

In this chapter. a modified output redefinition approach was proposed that requires
only a priori knowledge about the linear model of the system and no a priori knowl-
edge about the payload mass. First, the output of the flexible-link system was
redefined such that the zero dynamics related to the new output are stable. This
is done by neglecting the payload and linearizing the zero dynamics of the system.
Then, the stability of the zero dynamics associated to this new output was shown to
be ensured as payload mass M increases. This enables us to design such controllers

that remain robust to the payload variation. This is the subject of the next chapter.
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Chapter 4

Proposed Neural Network

Structures

In this chapter. different control and neural network strategies are proposed for
tip position tracking control of the flexible~link manipulators using the new output
approach discussed in the previous chapter. In Section 4.1. an introduction is pro-
vided regarding learning control using neural networks. Then. control strategies are
presented in the subsequent sections. Simulation results for two single flexible-link
manipulators and a two-link manipulator are presented in Section 4.6. Section 4.7

discusses design and training issues for neural networks.

4.1 Introduction

4.1.1 Function Approximation for Neural Networks

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R". by finite linear com-

binations of the form

N
d_vi(wix+ x;),

=1
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where w, € R" and v;,x, € R are fixed. Here the univariate function ¢ depends
heavily on the context of the application. The major concern is with so—called

sigmoidal ¢'s:

1 ast— +oc. :
s(t) — (1.l
0 ast — —x

Such functions arise naturally in neural network theories as the activation function
of a neural node.

Neural network capability to approximate nonlinear functions has been inves-
tigated by several researchers [16. 25. 40. 102]. They have shown that a wide range of
nonlinear functions can be approximated arbitrarily closely by a feedforward neural

network. Cybenko [16] has shown the following

Theorem 4.1 Let I, denote the n-dimensional unit cube, [0,1]*. The space of
continuous functions on I, is denoted by C(I,,). Let ¢ be any continuous sigmoidal

function of the form (4.1). Then finite sums of the form
N
G(x) =Y ve(wlx+x,).
1=1

are dense in C(1,). In other words. given any f € C([,.) and ¢ > 0. there is a ~un.
G(x). of the above form. for which

| G(x) - f(x)|< e forall xe¢€ ..

Various neural network methods have been proposed in recent years, but the one
most relevant to control is the well-known backpropagation method. Although many
interpretations have been given to backpropagation networks such as “perception”,
“recognition”. “internal representation”, “encoding”. and so on, neural network con-
trol schemes are mostly based on interpreting the backpropagation network as a

method of function approximation. This interpretation not only demonstrates the
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sound mathematical foundation of the backpropagation network. but also allows a
simple intuitive understanding of its capabilities. Hecht-Nielsen [40] has shown the

following

Theorem 4.2 Given any ¢ > 0 and any L; function f : [0,1]* € R* — R™,
there erists a three-layer backpropagation network that can approrimate f to within

€ mean-squared error accuracy.

Although a three-layer backpropagation network has been shown to be capable
of approximating any arbitrary function. the important questions that remain to be
answered deals with how many neural nodes are required to vield an approximation
of a given function? What properties of the function being approximated play a role
in determining the number of neurons? As a first trv. one can use Kolmogoruv's

theorem [53]:

Theorem 4.3 Given any continuous function f : [0.1]> € R* — R™. there
erists a three-layer feedforward network having n fan-out neurons in the first layer.
(2n + 1) neurons in the hidden layer. and m neurons in the output layer which can

approrimate f to any desired degree of accuracy.

However. this theorem does not say how to obtain the activation functions for which
the function can be approximated by (2n + 1) neurons in the hidden layer. Con-
sequently. this theorem cannot be considered as a generic rule and the size of the

network has to be decided depending on the problem.

4.1.2 Learning Control using Neural network

A number of techniques can be used to design controllers for unknown linear systems.
Typically, a standard model structure is used and then the parameters of controllers
or plant models are adapted based on stability theory. On the other hand. the

control of uncertain nonlinear systems is difficult for a number of reasons. First,
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Figure 4.1: Schematic of the direct neural adaptive controller

it is not easy to find a suitable model structure for the nonlinear dynamics unlike
linear systems where a standard form of the transfer function is available for an
unknown system of a given order. Secondly. there is no standard way of generating
adaptation laws for nonlinear systems.

The nonlinear mapping properties of neural networks are central to their use
in control engineering. Feedforward networks. such as the Multilayer Perceptron
can be readily thought of as performing an adaptive nonlinear vector mappineg.
Adaptive neural controllers can be roughly categorized according to the means I
which the controller parameters are adjusted. The two common strategies are direct
and indirect adaptive controllers. In indirect adaptive controllers [75. 76, 77]. a
network is first trained to identify input-output behavior of the plant. Using the
resulting identification model, the controller is designed based on a cancellation
scheme.

The general structure for a direct adaptive controller is shown in Figure 4.1
[59]. For this adaptive control problem formulation, it is necessary to adjust the
weights of the neural network during learning phase to produce a nonlinear controller
that can control the nonlinear plant in such a manner that a cost function of the plant

output and the desired response is minimized. Due to the nonlinearities present in
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both the plant and the controller. stability based adaptation laws which are widely
used in linear adaptive control. have not as yet been proposed for the neural adaptive
controller. The initial research on neural adaptive control is based on gradient
descent techniques in which the cost function can be minimized by the adaptation
of the network weights in the negative direction of the gradient of the cost with
respect to these weights. A common algorithm is the backpropagation rule that
provides the necessary gradient of the cost function with respect to each weight.

In Figure 4.1, the plant is situated between the neural network and the error.
Hence. this error cannot be directly used to adjust the controller parameters and
it is necessary to find some method by which the error at the output of the plant
can be fed back to produce a suitable descent direction at the output of the neural
network. Psaltis and Sideris [86]. introduced the concept of using the plant Jacobian
to allow errors at the plant output to be fed back to the network. If the cost function
is defined as J(w) where w is the matrix of the weights of the neural network. then
by knowing the Jacobian of the plant. the gradient of the cost function with respect
to the jth input u, can be readily determined with y, being the ith plant output
that is

aJ(w) L aJ(w) dy;

Ou, - i=1 Oy; a—uj
The plant is considered as an additional unmodifiable layer. Therefore, the error
signal at the system output can be propagated back through the plant using the
partial derivatives of the plant at its operating point. Then the backpropagation
rule can be used to adjust the weights in all layers except the virtual output layver (the
plant). However. since it is to be assumed that little knowledge of the nonlinear plant
is available, it is difficult to obtain an analytical expression for the plant Jacobian.
There are a number of methods by which the problem of backpropagating the error
through the plant to the controller can be solved.

Saerens and Soquet [89], suggested to use the sign of the Jacobian instead
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of its real value for the training of neural adaptive controllers. This is often avail-
able simply from qualitative knowledge of the system. The plant backpropagation

equation then becomes:

aJ(w) . aJ (w) Jdy;
~ \Y
Ou, "y, G du,

It should be noted that the scalar product between the gradient produced by the

=) (4.2)

true method and that produced by the approximation is always positive and will
hence ensure error minimization.

Nguyen and Widrow [81] and Jordan and Jacobs [46] proposed using a neural
forward model of the plant as a channel for the backpropagation of errors to the
neural controller. A neural network is first trained to provide a model of the nonlin-
ear plant. This can then be used in parallel with the plant with errors at the plant
output backpropagated through the model to form the necessary gradients at the

output of the neural controller. hence avoiding the need to know the plant Jacobian.

4.2 Feedback—Error-Learning

Feedback-error-learning was first introduced in [69] and later was modified in 33

Two adaptive learning control schemes were proposed using feedback-error-learning
for neural network controllers. In both schemes. the error signal for the ueural
network is the output of the feedback controller. The advantage of this learning
scheme is that the target signal or the desired output signal for the neural network
is not required. Also. back propagation of the error (training) signal through the
controlled system or through the model of the controlled system is not required.
Since the feedback torque is chosen as the error signal for this learning strategy, the
feedback torque is expected to decrease with learning. This implies that the error
between the desired trajectory and the actual trajectory is required to tend to zero
as learning evolves. The learning scheme is designated as “feedback—error-learning”™

to emphasize the importance of using the feedback torque as the error signal.
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The idea of feedback-error-learning has been applied to control a rigid-link
robot manipulator in [33, 69] where the system has no zero dynamics and all the state
variables are available. For a flexible-link manipulator, however, the zero dynamics
related to the tip are unstable and full state feedback is not available. As mentioned
earlier, a certain output can be defined so that the zero dynamics corresponding to
this new output are stable. This output can be defined as the joint variable, but
it will not yield an acceptable tip response for a relatively flexible robot. In this
section, it is shown that by using the new output that was defined in the previous
chapter. the concept of feedback-error-learning may be invoked to control the tip

position of a flexible-link manipulator.

4.2.1 The First Neural Network-Based Strategy: Inverse
Dynamics Model Learning (IDML)

The structure of the first scheme is referred to as Inverse Dynamics Model Learn-
ing (IDML) and is shown in Figure 4.2. The system dynamics are assumed to be

governed by
f(6.6.6.6.4.) =u

In this scheme. a conventional feedback controller (CFC) and a neural network
controller are connected as depicted in Figure 4.2. The CFC is used both as an
ordinary feedback controller to guarantee asymptotic stability of the system during
the learning period and as a “reference model” for the response of the controlled

system. For example, a linear controller can be expressed by the following equation
ue = Ko = §a) + K1(9r = 5a) + Ko(yr — ya) (4.3)

where y., y..J. denotes the desired trajectories (i.e. position, velocity and accel-

eration. respectively). The goal of the neural network feedback controller is to
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Figure 4.2: Structure of Inverse Dynamic Model Learning (IDML).

ultimately represent the inverse dvnamics model of the controlled system. The out-
put of the CFC is fed to the network for the error signal. The neural network also

receives 6.6. 6. 4. Ya as ordinary inputs. The output of the network is
u, = (6.6.6.5. j,. w)

where w is the matrix of the weights of the neural network. The neural network can
be one of several types of neural network models in which the error of the output
vector will decrease by changing the internal adaptive parameters (the weights). The
assumption about the network is that the nonlinear function of the controlled object,
can be arbitrary modeled closely by & with an appropriate w within a compact set.

The learning rule specified for the feedback-error-learning scheme is given by

ad

W = r)a—wuc (4.4)

where 7 is the learning rate. After learning. the neural network acquires an “ar-
bitrarily” close model of the inverse dynamics of the controlled system. and the

response of the controlled system is now governed by
K6+ Kié+ Kge=0
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Figure 4.3: Structure of Nonlinear Regulator Learning (NRL).

where e = y, — y,. That is to say. the output tracking error. e. converges to zero in

accordance with the above reference model.

4.2.2 The Second Neural Network-Based Strategy: Non-
linear Regulator Learning (NRL)

The configuration of the second learning scheme. Nonlinear Regulator Learning
(NRL) is shown in Figure 4.3. Consider the dynamics of the flexible-link svstem

(3.3). Multiplving (3.3) by B~!(6.6). we get
R(6.8)y. + N(0.6.8.6) = u (4.5]

where

R(8,8) = B7(4,6)
N(0,6,5,8) = —B~Y(6,6)A(6,6.5,5).

As with the IDML method the CFC in Figure 4.3 serves the same two purposes.
In comparison with the IDML case, the actual acceleration is not used as an input

to the neural network in the NRL scheme. Instead, the reference trajectories (i.e.
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position. velocity. and acceleration) are fed to the neural network in order to generate
the feedforward term so that better transient response is obtained at the early stage
of the learning when the tracking error and hence u. is large. The output of the

neural network may be expressed as
n = QJr: Yo Yr-Yr ~ Yo ¥r — ¥a,60,0.6.8, W) = ®(§,.5r,y,.0.6.5.5.w)

for some nonlinear functions @ and ®. The weights of the neural network are
updated according to w = r]%uc. The closed-loup equation is obtained by appivine

u=u.+ u, to(4.3) to vield
(R(6.5) + K2)(Jr — ¥a) + K1(gr — ¥a) + Ko(yr — ya) + @ — N(8.6.6.8) — R(6.8)§. = 0
If ¢ can be made equivalent to &, defined as
®; = N(8.6.6.5)+ R(6.8)i- + R(6.8) K7 (K, (g — ya) + Kolyr — ya)).
then the closed-loop dynamics may be expressed as

( R(6.9) + R2)(Jr — ¥a) + A1(gr — Ya) + Bo(yr — ya)
-+ R(O.é')[\'{l(l{l(!)r - y.a) + A’O(yr e ya)) =0
This gives
(1 + R(0-8)K7T)(A2(4r = Ya) + Ki(gr — 4) + Koy — y.) =0

Consequently, provided that 7+ R(§)A;" is nonsingular in the above equation.

then the tracking error dynamics become

Now by finding a proper a; that ensures stability of the zero dynamics corre-
sponding to the new output and by using full state feedback, then the inverse dy-

namics strategy may be applied by utilizing the above two feedback-error-learning
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schemes. However. it can be shown that for a single flexible-link manipulator these

strategies require only measurements from the tip and the joint variables. Therefore

the output y, = 6 + aw(,[‘” can be constructed from available measurements. Note

that the tip position is given by y, = 6 + Mf—‘l therefore W({.t) and W (/.t} may
be obtained directly from y,, 6, y, and 6. Furthermore, it may also be shown that
the nonlinear terms in the mass matrix M(J) and in the Coriolis and the centrifugal
forces h;(6.8,8) and ho (8. 8) may be expressed as functions of §, W, and W. To
wards this end. consider the terms in the dynamic equations of a single flexible-link

manipulator given by (2.7) and (2.8)

Muaxn(8) Mizaxn
4"21(71)(1) -‘[22(nxn)
Miu(8) = mo + M(076)?

Hh =0
fo =0
71 (6.8.8) = 2MB(oT8) (0TS

M) =

ha(6.8) = —AM6%(00T)s.

Now. using the definition of W ([,¢). M;; and h(6.6.4) may be expressed as

My = mo+ MW(Lt)
. 2MOW (I YW (I, t
h(6,6.6.5) = | SOWLHW(LY)
— MW (L.1)

Hence. except for the term K§ + F34 in (2.12) which is linear in § and 4. all the
nonlinearities may be expressed as functions of 4.1, and W. In other words. ap-
proximate inverse dynamics may be achieved by providing 6.W. and W to the neural

networks.
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4.3 Deflection Control for IDML and NRL Schemes

One of the main limitations of the output redefinition strategy is that the solution
to a] may become << 1. In other words, the point (output) under control could get
too far away from the tip and too close to the hub. In this case, controlling the new
output does not necessarily guarantee satisfactory response for the tip position due
to the fact that there is no direct way to effectively damp out the elastic vibrations
of the flexible modes at the tip. In [60]. a linear stabilizer was emploved that uses
full state feedback and furthermore assumes linearity of the system dynamics close
to the terminal phase of the desired trajectory. Our proposed approach attempts
to overcome the above difficulty. Towards this end. we proposed to include the tip
deflection directly in the objective function of the neural network. In other words.
the error to the network is modified from uc to U, = u. + A3 (L, ¢t). where U,
is given by (4.3) and IW(/,t) is the vector of deflection variables at the tip of each
link. This amounts to modifying the objective function of the neural network to J =
%(571\’06+é71\’1é+é'T1\"2é'+l'V(l, t)TK3W(l.t)) from J = %(erl(oe-i»éTKlé-&-éTKgé).
Consequently, direct control over the elastic vibrations of the flexible modes becomes
feasible through A73. The gain A3 specifies the weight for controlling the vibrations
where the tracking ability is specified by choosing u.. Experimental results shown
in Chapter 5 reveal that good control of the tip position can be obtained even when

a; is very small (i.e. close to and even equal to zero) and the link is “very” flexible.

4.4 The Third Neural Network-Based Strategy:
Joint—-Based Control

In this section, the control structures developed in the previous section will be
generalized by relaxing the a priori knowledge about the linear model of the flexible

manipulator. Since a linear model of the system is not available, a PD-type control
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Figure 4.4: Joint-based neural controller.

law cannot be designed to stabilize the system, and a suitable output for feedback
cannot be determined as before. In other words, the feedback-error-learning scheme
cannot be applied directly. Instead. we adopt the general structure of an adaptive
neural network which is shown in Figure 4.1.

The proposed control structure is shown in Figure 4.4. The key to designing
this controller is to define the natural choice of joint position as the output for
control which ensures the minimum phase property of the input-ontput map die
to its colocated actuator/sensor pair and to damp out the tip elastic deformarion.
by adding H'({.t) in the cost function of the neural network. Consequently. the
objective function for training the neural network is selected as J = %(eTI\'le +
eTRaé + W(L, t)TI\'3I'V(l, t)), where € := y, — 6, and W({,t) is introduced to reduce
the vibrations of the flexible modes of the system. The objective function J is a
weighted function of e, é and W((, t) where the corresponding weights are specified by
K. K; and K3. Note that higher order derivatives of the error can also be included
in the objective function. The inputs to the network are 4, §, and W(l,t), and the
output of the network is the control signal u. The weight adjustment mechanism is

based on the steepest descent method, namely

aJ
: T
W=-—mn(—})",
( aw)
where w is the vector of the weights of the network and 1 is the learning rate. Now
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aJ : :
7 15 computed according to

6J_Q£_6_e+y6é+6J3W . ,
dw ~ e dw | Jé Ow | OW ow ow 2w aw

Since € = y, — 6. we get

aJ r, 0 ;. . 08 .. OW
aw = ¢ Mgy T Ragg W RGD
and by using :Tf, = _a_zéa_u’ g—é = g—i%‘;—, %—:% = %%g—; and u = ®(e, e, W, w), we may
write % as
aJ T, 00 .1 a6 T, OW 0
— — /{/’ Ed
aw (T Mgy e K + W K ) g

where a:, can be computed using the backpropagation method. and g%, g%. %% are

computed as suggested in [59] by using the sign of the gradient instead of its real

value for training the neural controller.

4.5 The Fourth Neural Network-Based Strategy:
Output Redefinition Through Online Learn-
ing (ORTOL)

In this section. the assumption of a priori knowledge about the linear model of the
system is relaxed through online learning. The proposed control structure is shown
in Figure 4.5.

In this structure, two neural networks are employed. The first neural network
(NN1) is trained to function as a feedback controller and the second neural network
(NN2) is trained to provide a proper output for feedback. In other words, NN1 is
trained to produce a control action so that the error between the output defined by
NN2 and the desired reference trajectory is minimized. The objective function that

is used for training NN1 is written as J; = %(erl\'le + TR é + WL )TRSW (L. 1)).
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Figure 4.5: Structure of the neural network based controller using output redefini-
tion. The block EC performs the linear combination of e, é, and W (l.t) for specific
learning schemes to be used in NN1 and NN2.

where € := y, — ya. yo is constructed by measuring 6 and adding to the output of
NN2. and W(l.t}) is introduced to reduce the vibrations of the flexible modes of
the system in the output. The objective function J, is a weighted function of . ¢
and 1°({.t) where the corresponding weights are specified by Ay. A, and A, The
inputs to the NN1 network are €. ¢ and 117({.¢). and the output of the network is
the control signal u. The weight adjustment mechanism is based on the steepest

descent gradient method. namely

W oJ
= —771( l)T
aJ, 9J, Oe aJ, 9¢  8J, W T.- O€ T, O€ T, OW
= = —_— + W
dw  Dedw T Bcow oW aw ~ ¢ Mgy tE Kgy + Wi Ksp
Using € = y,. — y,. we get
3J1 _ T ¢- aya aya T 6W
Gw = ¢ Bigy — € Kapl + Wikam
Now. using 3 é-'& = %ﬂfg—;, %{5 = %%53—"—, %; = %‘:’f‘: and u = ®(e.é. . w). we may
write —"1 as
aJ, 7.-0Ya  p,. 0¥, .. OW
—_— = (= =2 - + W _—
ow = (€ Mgy m e Ragn + WA o )dw



, Fry . . : Oya 3dys W
where sw can be computed using the backpropagation method, and 52, e, 5~ are

computed as suggested in [59] by using the sign of the gradient instead of its real

value for training the neural controller.

An approximation to the gradient was also suggested in [86] as

Oy _ y(u+ du) — y(u) -
du du ) (4.7)

This approximate derivative can be determined by changing each input to the plant
slightly at the operating point and measuring the changes with previous iterations.
Using the sign of gradient. the error of differentiation can be avoided.

The objective of the NN2 network is to generate an output of the furm ¢, =

0, +a . Since 0, can be measured and W (/,.¢) can be computed from y,, ani

W, (U .t)
t 7

f.. a neural network can be trained to obtain an appropriate estimate for a,. Using
a network whose weights are limited to the range [—1. 1], an objective function that

can be minimized is selected as J, = %(eTe). This leads to

aJ, Oe; ayai
= —1s - ; = e =2 = noe;Wi(l;. t
Q 77.9 ‘_ € S m2€ S e (L. t)

The input to the network is W(l.t) and the output vector elements are computed
as a;Wi(/;.t). The new output that is used for feedback is now constructed as

13 “’l I"
Ya: = 9: - Qx_%l-

4.6 Simulation Results

4.6.1 A Single Flexible-Link Manipulator

In this section. simulation results for the proposed neural network controllers are
presented. For comparing the performance of the new output with that of the RTP.
two single flexible-link systems namely System I and II, with different flexibilities
are considered in the simulations. The link parameters for System I are given in

Table B.1 and those for System II are given in Table 2.1. Numerical models for the
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two systems are given in Appendix B. The first two frequencies for System I are at

16 and 100 rad/s while those for System II are at 3 and 19 rad/s.

Conventional PD Control

Figure 4.6 shows the step response of System Il by using conventional PD coniru!
for @ = 0.7. As can be seen (Figure 4.6-c and 4.6-d) when Coulomb friction is

included in the model. the PD control fails to give an acceptable response.

The IDML Scheme

The feedback-error-learning methods were successfully tested in performing inverse
dynamics control based on the new output. A three-layer neural network was used
with 4 neurons in the input layer. 5 neurons in the hidden laver, and 1 neuron in the
output layer. The inputs to the network are . W. W, y,. The hidden layer neurons
have sigmoidal transfer functions and the output neuron uses a linear activation
function. The conventional controller is given by (4.3). The following results are

obtained with A, = I. A = 2 and Ky = 1. Figure 4.7 shows the simulation results

for System Il obtained by using the new output (a = 0.7) when no friction is
included in the model and the payload mass is M, = .05 Ag. but is assumed to be

unknown. As can be seen from Figure 4.7 the tip position tracking is considerably
improved compared to that obtained using PD control (Figure 4.6). To show the
robustness of the neural network controller when hub friction is included in the
model, simulation results were obtained as shown in Figure 4.8. As can be seen, the

neural network-based controller still yields excellent response.

The NRL Scheme

For implementing NRL scheme, a three-layer neural network was used with 8 neurons
in the input layer, 5 neurons in the hidden layer. and 1 neuron in the output layver.

The inputs to the network are 6. W, W . e. é. Yr.Yr. and y.. where € = y, — y,. The
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hidden layer neurons have sigmoidal transfer functions and the output neuron uses
a linear activation function. The conventional controller is given by (4.3). The
following results are obtained with K; = 1, K; =2 and Ky = 1.

Figures 4.9 and 4.10 show the simulation results obtained by using the RTP for
System I and II, respectively. As can be seen from Figure 4.9, the RTP control works
well for a less flexible system (System I) with a low speed desired trajectory namely,
sin(t). However. as Figure 4.10 reveals, for a more flexible system (System II), while
RTP tracks the desired trajectory (top figure), there is significant tracking error in
the tip position response (middle figure). Figure 4.11 shows the simulation results for
System 1l obtained by using the new output (a = 0.7) when no friction is included
in the model and the payload mass is M; = .05 A'g. but is assumed to be unknuw:.
In Figure 4.11. the results obtained by the conventional inverse dvnamics control
when all the nonlinearities are known and all the states are available are compared
to the result obtained by using the new output with a neural network controller.
As can be seen the neural network has successfully learned the inverse dynamics of
the system. The robustness of NRL scheme is also examined by including the hub
friction in the model. Figure 4.12 demonstrate the results.

In Figure 4.13. the effects of the modification of the learning rule of the neural
network for controlling System II are shown. This modification was done by adding
W (l.t) to the error signal to control the vibrations of the flexible modes of the
system. Specifically when a = 0, the hub response is very smooth whereas the
response of the tip is quite oscillatory (top figure). Now by adding W (/. ¢) to the
error signal. the response of the tip and hub positions (shown in the bottom figure)

reveals that the vibrations of the flexible modes are considerably reduced.

The Joint—Based Control Scheme

Joint-based controller was implemented using a three-layer neural network with 20

hidden neurons 3 input neurons and 1 output neuron. The inputs to the network are
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e. €. W(l,t) where e = y,—6. The activation function used for the input and hidden
layers is the tan-sigmoid function and for the output layer is a linear function.

Figure 4.14 shows the simulation result for System II obtained by using the
Joint-based control when no friction is included in the model and the payload mass
is M; = .05 Kg. but is assumed to be unknown. As can be seen from Figure 4.11 a
while joint position tracks the reference trajectory. the tip position tracks the desired
trajectory with small tracking errors (Figure 4.14-b).

The effects of modifving the learning rule for controlling System II are shown
in Figure 4.15. This modification was done by adding W (l.t) to the error signal
to control the vibrations of the flexible modes of the system. As can be observed.
when the objective function is not modified, even though that the joint response is
very smooth. the response of the tip is quite oscillatory (Figure 4.15-a). Now by
adding 1(/. t) to the error signal. the response of the tip and joint positions (Figure
4.15-b) reveals that the vibrations of the flexible modes are considerably reduced.

To show the robustness of the neural network controller when hub friction is
included in the model. simulation results are shown in Figure 4.16. As can be seen.

the actual tip response does not change when Coulomb friction is included in the

model.

The ORTOL Scheme

Simulations are performed using the fourth scheme in which the a priori knowledge
about the system dynamics has been relaxed through online learning. A three-layer
neural network was employed for NN1 with 3 input neurons, 20 hidden neurons and
1 output neuron. The activation function used for the input and hidden layers is
the tan-sigmoid function and for the output layer is a linear function. Figure 4.17
shows the simulation results for System il with a sin(t) reference trajectory. Figure
4.17-a shows the response of the output defined by NN2. This clearly shows exact

tracking of the desired trajectory. Figure 4.17-b is the response of the actual tip
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showing a small steady-state tracking error. Figure 4.17-c shows the evolution of
a. These results demonstrate that very good response is obtained even when no a
priori knowledge about the system dynamics is incorporated in designing the neural

network-based controller.

4.6.2 A Two-Link Planar Manipulator

Simulation results for a two-link planar manipulator are presented in this section.
The manipulator consists of one rigid arm (first link) and one flexible arm (second

link) with the following numerical data [70]

I, = 20cm.l; =60cm. A, = 5cm x 0.9mm. A, = 3.14cm x 1.3cm.
p1 = 2700kg/m>(6061 Aluminum).p, = 7981 (StainlessSteel).
My = lkg.M; =0.251kg.ml = 0.236kg.m, = 0.216kg.
E = 194 x10°N/m?. J; = 0.11 x 1073%kgm?®. J; = 0.11 x 10~%. J, = 3.8 x 10~°

where [, and [; are link lengths. 4; and A, are cross sectional areas. £ and p are
modulus of elasticity and mass density. J, is the hub inertia and A, M,. J; and J;
are masses and mass moment of inertia at the end points of the two links. The first
two natural frequencies of the second link are 5.6 and 27.6 H =

First. based on the procedure given in Chapter 3 the value of a* is found to be
a” = [1 0.6]7. Consequently, a value of a; = 0.5 is used in the simulations. Figures
4.18-a to 4.18-d show the system responses to a sin(t) reference trajectory for both
links. These responses are obtained by using a conventional PD controller for the
new output (az = 0.5). As can be seen from Figures 4.18-a to 4.18-d. considerable
amounts of tracking errors are present in the responses of 0;.y,.60, and y.2. As
a comparison, the responses of the system to the same reference trajectory which
were obtained by using neural network controllers are shown in Figure 4.19 (IDML
scheme), Figure 4.20 (NRL scheme), Figure 4.21 (joint-based control scheme), and

Figure 4.22 (ORTOL scheme).
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The structures of the neural networks employed for these simulations are sim-
ilar to those of neural networks explained in Section 4.6.1. The differences are that
2 neurons are used in the output layer of each network for all proposed schemes and
the number of hidden neurons has been increased to 10 for IDML and NRL schemes.
This is due to the increased complexity in the dynamics of a two-link manipnlaior
as compared to those of a single-link manipulator.

These figures demonstrate significant improvement in the responses of the
system (61.yn.02 and yap). As Figures 4.19 and 4.20 display. the IDML and the
NRL schemes yield similar results for this system since both schemes use the same
learning rule. that is feedback-error-learning. As compared to the results obtained
by using the joint-based control and the ORTOL schemes (see Figures 4.21 and 4.22)
more accurate result can be obtained by using the IDML and the NRL schemes. This
is due to the fact that the IDML and the NRL schemes use some a priori knowledge
about the system dynamics (a linear model of the system).

Having no a priori knowledge about the system dyvnamics also leads to an
increase in the sizes of the neural networks. For instance. the IDML and the NRL
schemes are able to obtain good tracking performance with 10 hidden neurons while
good result for the joint-based control and the ORTOL schemes are ohtained b

using 20 hidden neurons.

4.7 The Limitations of and Design Issues for Neu-
ral Networks

Multilayer neural networks are capable of performing about any linear or nonlinear
computation and can approximate any reasonable function arbitrarily well. How-
ever. while the trained network is theoretically capable of performing a map. the
backpropagation algorithm may not always provide a solution. There are several

criteria that must be considered when designing a net. In this section. these issues
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are discussed to some extent.

4.7.1 Local Minima and Network Paralysis

As pointed out in [117], there are two major problems in training a backpropagation
network. namely the problem of local minima and network paralysis. The error
surface of a nonlinear network is more complex than the error surface of a linear
network. The problem is that nonlinear transfer functions in multilayer networks
introduce many local minima in the error surface. As gradient descent is performed
on the error surface. it is possible for the network solution to be trapped in one of
these local minima depending on the initial conditions. Settling in a local minima
may be good or bad depending on how close the local minimum is to the global
minimum and how low an error is required. The other problem is related to the
saturation of the weights. As the network trains. the weights can become very
large. This causes the derivative of the activation function to become very small.
Since the weight adjustment is proportional to the derivative. those weights do not
contribute to the learning process anymore. This problem is usually solved by using

a small learning rate n with the price of increasing the learning time.

4.7.2 Learning Rate

The effectiveness and convergence of the error backpropagation algorithm depend
significantly on the value of the learning rate n. In general however. the optimum
value of n depends on the problem being solved and there is no single learning rate
value suitable for different problems. This problem seems to be common for all
gradient based optimization schemes.

When flat minima yield small gradient values, then a large value of n will result
in more rapid convergence. However, for problems with steep and narrow minima. a

small value of 7 must be chosen to avoid oscillation around the minima. This leads



to the conclusion that n should indeed be chosen experimentally for each problem.
One should also remember that only small learning rates guarantee a true gradient
descent. The price of this guarantee is an increased total number of learning steps.
Although the choice of the learning rate depends strongly on the class of the learning
problem and on the network architecture. the values ranging from 107} ta 10 have
been reported [119].

For large learning rates. the learning speed can be drastically increased: how-
ever. the learning may not be exact, with tendencies for fluctuations or it may never
stabilize at any minima. One solution is to choose a large value of n at the early
stage of the learning when error is large and decrease it as learning evolves and error
is decreased. Even though the simple gradient descent can be efficient. there are

some methods for improving the rate of convergence.

Momentum Method

The purpose of the momentum method is to accelerate the convergence of the error
backpropagation algorithm. This method involves adding a fraction of the most
recent weight adjustment to the current weight adjustment. For the discrete-tine

neural network this is done by setting

aJ;
AWL- = —naT'k + O.AWL-_l

where Ji is the objective function to be minimized, Aw; and Aw,_, represent the
current and previous weight adjustment respectively and o is a positive momentum
constant. The second term, indicating a scaled most recent adjustment of weights
is called the momentum term which tends to keep the weight changes going in the

same direction.

=1
[AV]



Adaptive Learning Rate

In this method. the ratio of the current output error to the previous one is checked
at every step to determine whether the training shows a convergent or divergent
trend. Based on this, the current learning rate is increased or decreased by specified
factors. This method increases the learning rate at times to speed up the trainiue
only to extent that the network can learn without large error increases 7217 Whe,
a larger learning rate could result in stable learning. the learning rate is increased.
When the learning rate is too high to guarantee a decrease in error, it gets reduced
automatically until stable learning resumes. For our problem. we chose a fixed
value of n for the first three learning schemes. but for the fourth learning scheme.
an adaptive learning rate has been used for both neural networks (output neural

network NN2, and neural controller NN1).

4.7.3 Slope of the Activation Function

The neuron’s continuous activation function is characterized by its steepness. Also.
the derivative of the activation function in the backpropagation algorithm [119]
serves as a multiplying factor in building components of the error signal. Thu~ bhotl
the choice and the slope of the activation function would strongly affect the <pecd

of the network learning. A tvpical activation function can be written as

= — -1, >0
f@) === -1 a

and its derivative can be computed as

—az
fz)= %T,)z

and it reaches a maximum value of la at £ = 0. Since weights are adjusted in
proportion to the value of f'(z), the weights that are connected to units responding
in their mid-range are changed the most. The weights of the uncommitted neurons

are thus affected more strongly than of those neurons that are already turned on
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or turned off. The other feature of this derivative is that for a fixed learning rate
all adjustments of weights are in proportion to the steepness coefficient a. This
particular observation leads to the conclusion that using an activation function with
large a may yield results similar to those for a large learning rate n. It thus seems
advisable to keep a at a fixed value and to control the learning speed using only the
learning rate n rather than controlling both n and a. In our experiments, we fixed
the slope of the activation function as suggested in the Neural Network Toolbox [21]

(a = 2) in all cases.

4.7.4 Initial Weights Selection

The choice of initial weights and biases plays a significant role in the training of
the network. Typically. the weights of the network are initialized at smali random
values. The initialization strongly affects the final solution. If all weights start
with equal values. and if the solution requires unequal weights. the network may
not train properly. Unless the network is disturbed by random factors. the internal
representation may continuously result in symmetric weights. Small initial values.
however. make the speed of convergence very slow. In [80], the authors proposed
a method of selecting initial weights and biases. This method of initialization is
formulated based on the range of inputs and outputs. The random initial weights
between [—.5,.5] and zero biases are used for all of the neural network structures
mentioned in the previous sections. For the experiment, however, we added a small

bias to the network.

4.8 Conclusions

In this chapter, four neural network-based control schemes were proposed for tip
position tracking of a flexible manipulator. The first two schemes were developed

by using a modified version of the “feedback-error-learning” approach to learn the

74



inverse dynamics of the flexible manipulator. Both schemes assume some a priori
knowledge of the linear model of the system. This assumption was relaxed in the
third and fourth schemes. In the third scheme, the controller was designed based
on tracking the hub position while controlling the elastic deflection at the tip. The
fourth scheme employed two neural networks. one of the neural networks define~
an appropriate output for feedback and the other neural network acts as an invere
dynamics controller. Simulation results for two single flexible-link manipulators and
a two-link manipulator were presented to illustrate the advantages and improved
performance of the proposed tip position tracking controllers over the conventional

PD-type controllers.
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Figure 4.6: Actual tip responses to step and sin(t) reference trajectory for System
II using PD control of the new output with and without friction at the hub: (a) step
response without friction, (b) response without friction for sin(t). (c) step response
with friction, (d) response with friction for sin(t). (dashed lines correspond to the
desired trajectories).
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Figure 4.7: Output responses for System II to sin(t) reference trajectory using the
IDML neural network controller: (a) Redefined output y,, (b) Actual tip position
Y, (c) Joint position 6 and (d) Tip deflection W(l.t). (dashed lines correspond to
the desired trajectories).
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Figure 4.8: Actual tip responses to step input for System II using the IDML neural
network controller: (dashed line corresponds to model with Coulomb friction at the

hub).
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Figure 4.9: Output responses to reference trajectory sin(t) for System I using the
RTP output: RTP (top). actual tip position (middle), total deflection (bottom)
(dashed line corresponds to the desired trajectory).
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Figure 4.10: Output responses to reference trajectory sin(t) for System II using

the RTP output: RTP (top), actual tip position (middle), total deflection (bottom)
(dashed line corresponds to the desired trajectory).
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Figure 4.11: Output responses to reference trajectory sin(t) for System II using
the new output y,, a = 0.7: (al) actual tip position (NN), (a2) redefined output
(NN). (bl) actual tip position (inverse dynamics), (b2) redefined output (inverse
dynamics) (dashed line corresponds to the desired trajectory).
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Figure 4.12: Actual tip responses to step input for System II using the NRL neural
network controller: (dashed line corresponds to the model with Coulomb friction at
the hub).
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Figure 4.13: Output responses to step input for System II using the NRL neural
network controller: Actual tip position (solid lines), hub position (dashed lines)
(bottom figure corresponds to the modified version of the neural network controller).
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Figure 4.14: Output responses to sin(t) reference trajectory for System II using
the joint-based neural network controller: (a) Joint position. (b) actual tip position
(middle) and (c) total deflection (bottom) (dashed line corresponds to the desired
trajectory). 32
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Figure 4.15: Output responses to step input for System II using the joint-based
neural network controller: Actual tip position (solid lines). hub position (dashed
lines) (bottom figure corresponds to the modified version of the neural network
controller).
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Figure 4.16: Actual tip responses to step input for System II using the joint-based
neural network controller: (dashed line corresponds to the model with Coulomb
friction at the hub).
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Figure 4.17: System responses to reference trajectory sin(t) for System II using the
ORTOL neural network controller: (2) Redefined output y,, (b) actual tip position
y: and (c) evolution of a (dashed line corresponds to the desired trajectory).
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Figure 4.18: System responses to reference trajectory sin(t) using a PD controller
for the redefined output y, (a = 0.5): (a) Joint position (first link). (b) actual tip
position (second link). (c) Joint position (second link), and (d) redefined output
(second link) (dashed lines correspond to the desired trajectories).
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Figure 4.19: System responses to reference trajectory sin(t) using the IDML neural
network controller for the redefined output y, (a

link). (b) actual tip position (second link). (c) Joint position {second link}. and (d}
redefined output (second link) (dashed lines correspond to the desired trajectories).
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Figure 4.20: System responses to reference trajectory sin(t) using the NRL neural
network controller for the redefined output y, (a = 0.5): (a) Joint position (first
link), (b) actual tip position (second link), (c) Joint position (second link), and (d)
redefined output (second link) (dashed lines correspond to the desired trajectories)
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Figure 4.21: System responses to reference trajectory sin(t) using the joint-based
neural network controller: (a) Joint position (first link), (b) actual tip position

(second link), (c) Joint position (second link), and (d) Total tip deflection (second
link) (dashed lines correspond to the desired trajectories).
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Figure 4.22: System responses to reference trajectory sin(t) using the ORTOL neural
network controller: (a) Joint position (first link), (b) actual tip position (second
link), (c) redefind output (second link), and (d) evolution of a (second link) (dashed
lines correspond to the desired trajectories).
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Chapter 5

Experimental Results

This chapter presents some experimental results obtained for a single flexible-link
manipulator test-bed [30] constructed in our Robotics and Control Laboratory. [n
Section 5.1. the experimental test-bed will be described. Section 5.2 discusses some
implementation issues and finally in Section 5.3 some experimental results will be

presented.

5.1 The Test-Bed

The experimental system [30] consists of a highly flexible link whose parameters are
shown in Table 2.1. A schematic of the experimental test-bed is shown in Figure 5.1
The beam consists of a central stainless steel tube with annular surface corrugations.
Aluminum blocks are bolted to the tube and two thin parallel spring steel strips slide
within slots cut into the blocks. A high performance drive was assembled consisting
of a pulse-width-modulated amplifier that operates in current feedback mode. a
DC servo motor with an optical encoder and a harmonic drive speed reducer. An
infrared emitting diode is used to sense the position of the tip. The detector consists
of a UDT camera consisting of a lens and an infrared- sensitive planar diode, and is

mounted at the link’s hub. The digital controller consists of a Spectrum C30 system
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Figure 5.1: Block diagram of the experimental test bed.

Constant
Current
Source

card. based on the Texas Instruments TMS320C30 digital signal processing chip

that operates from a 33.3 M H= clock and achieves a performance of 16.7 million

instruction per second. Two channels of 16 bit A/D and D/A are also provided.

An interface system was designed and built to connect the Spectrum card 1o the

current amplifier. infrared emitting diode. optical encoder and infrared detector.

The maximum torque range generated by the motor is £0.705 N.m. The speed

reducer amplifies the motor torque by a factor of 50 and yields an output torque

range of 35.25 N.m. The maximum tip deflection of = +0.25 m can be measured

using the infrared emitting diode, UDT camera and UDT amplifier. More details

about the test-bed are given in Appendix C.
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5.2 Implementation Issues

5.2.1 Selection of the Output

In earlier experiments on this test-bed [30], the author designed a linear controller
based on transmission zero assignment to control the flexible-link system. In [30], the
model of the manipulator was derived and except for the hub friction and viscous
damping., good agreement between the experiment and the model was reported.
The required parameters for the linear model of the manipulator has been taken
from [30]. First. based on the reported values for the viscous damping parameters.
Le.. fi = 0.4 and f, = 4, the value of a° is found to be a® = 0.75. However.
experimental results show that controlling the system using this output leads to
instability. The source of this problem is the uncertainty in the coefficients f; and
f2. As the analysis in Appendix A shows a value of a” = 0.6 is robust to variations
in fi and f, coefficients. However. in controlling the system using this output. the
flexible modes of the svstem actually vibrate with such high amplitudes that in some
situations the tip deflections exceed the feasible range of the sensor measurements.
Consequently. a value of a = 0.48 is used to ensure that the deflections in the arm

are within the range of the sensor.

5.2.2 Estimation of the Higher Order Derivatives of the
Output

As stated earlier, with the available sensors, we can only measure the joint position
and the tip deflection while in our proposed control scheme we need first and second-
order derivatives of the output. Towards this end. an observer has been designed to

estimate the higher-order derivatives of the output y, according to [108]:

ln—l
€

E.l = &+ (ya_fl)-,
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where the /;,7 = 1,...,n — 1 are chosen such that the polynomial H(s) = s* +
lnoys™ P+ ...+ L1s + g is Hurwitz, and ¢ is a sufficiently small positive number.
The states &;.....£, asymptotically estimate y, and its higher order derivatives up

to order n — 1. For details refer to [108].

5.2.3 Neural Network Structure

The proposed controllers have been implemented on a spectrum TMS320C30 real-
time system board. Because of the discrete-time nature of the controller. continuous-
time neural networks described in Chapter 4 were converted to discrete-time neural
networks. The weights of this neural network are updated as Aw; = —r;%”—’.
The conventional controller used is u. = A5 (§, — &) + Ay (Y. — £2) = Raly. — y. .
where &; and &3 are obtained from (5.1). Two sampling frequencies were used . i.e.
200 A= and 500 H:. These values were selected to satisfv the time requirements
for computing the feedforward stage as well as back propagation stage of the neural
networks. The following results for the neural networks were obtained with f =

200 H=. The results for the PD controllers were obtained with f = 500 Hz. Note

that the 200 H= sampling frequency for the PD controller leads to instability.

5.3 Discussion of Results

In this section. experimental results for different control strategies are presented.

Conventional PD Control

In the first experiment using the new output y, (o = 0.48). a PD control with

relatively large gains (K, = 100, K, = 100) was implemented. The responses of
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the actual tip and the new output are shown in Figure 5.2. As can be seen, there is
a considerable amount of steady state—error in tracking tip position as well as the
new output y,. The errors are mainly caused by the presence of friction and stiction
at the hub whose amplitude varies with the hub position. The only way that PD
control can overcome the effects of the friction and stiction at the hub is to increase
its gains. Increasing the velocity gain K, leads to the instability of the system. As
the PD gain K, is increased. smaller steady-state errors are obtained however at
the expense of a considerable oscillatory transient response at the tip. The resnlrs
are shown in Figure 5.3. Note that the use of high gains may also lead 1o instability
of the closed-loop system caused by saturation of the amplifier and large amplitude
vibrations of the flexible modes. Using the gains K, = 200 and A, = 100. the
system becomes unstable for a step input that is greater than 0.2 rad.

Next. M, was increased to 850 g from 30 g and the responses of the system to
a 0.2 rad step input are displayed in Figure 5.4. As can be observed. the responses
exhibit less oscillation but greater steady—-state error as compared to the M, = 30 g

case (see Figure 5.3).

The IDML Scheme

The IDML scheme was implemented based on the new output y, (a = 0.48) and
by using a three-layer neural network with 4 neurons in the input laver. 5 neurons
in the hidden layer. and 1 neuron in the output layer. The inputs to the network
are 0. W.IW.3j,. The hidden layer neurons have sigmoidal transfer functions and the
output neuron uses a linear activation function. The conventional controller is given
by equation (4.3). The responses of the actual tip and the new output to a 0.1 rad
step input for M; = 30 g case are shown in Figure 5.5, which clearly illustrates the
improvements in the tracking performance as compared to Figures 5.2 and 5.3.
Next, W (l,t) was incorporated to modify the learning rule of the neural net-

work as in Section 4.3 to further improve the transient response of the system. The
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responses of the system are shown in Figure 5.6. This figure shows the improvement
of the responses by using this modification. Figure 5.7 shows the responses of the
actual tip and the new output to a 0.3 sin(t) reference trajectory. [t follows that
the tip also tracks the desired trajectory with a small tracking error. Note that the
PD control with the gains A, = 200 and A, = 100 leads to an unstable response
for this desired trajectory.

Finally the robustness of the IDML scheme was examined by increasing the
payload mass M, from 30 g to 850 g. The responses of the system are shown in
Figure 5.8. As Figures 5.6 and 5.8 demonstrate, the neural network controller is

robust to the payload variation.

The NRL Scheme

By using the new output y, (o = .48). the NRL scheme was employed to control the
syvstem. A three-layer neural network was used with 8 neurons in the input laver. 5
neurons in the hidden layer. and I neuron in the output laver. The inputs to the
network are 6. . 1 . e. ¢. Yr-Yr. and y,. where € = y, — y,. The hidden laver neurons
have sigmoidal activation functions and the output neuron uses a linear activation
function. The conventional controller used is given by (4.3). The responses of the
actual tip and the new output to a 0.1 rad step input are shown in Figure 5.9 which
shows an improvement in tracking performance as compared to Figures 5.3 and 5.5.

The effect of the deflection control on the performance of the NRL method was
also investigated. For this purpose, two experiments were performed with two values
of a for the output namely, a = 0.48 and a = 0. The results for the tip position to
0.6 rad step input for both cases are shown in Figure 5.10. The 0.6 rad step input
was chosen to demonstrate that the dynamic range of the neural network controller
is much larger than that of the PD controller. Specifically, the PD controller vields
an unstable closed-loop system. For comparison. the tip and hub responses for the

a = 0 case without any modification to the objective function are also shown. As



can be seen. even for the a = 0 case, the tip response is significantly better than
that of a no modification case in the sense that the vibrations of the flexible modes
are damped out very quickly.

The responses of the system to a 0.3 sin(t) reference trajectory are shown in
Figure 5.11. It follows that the tip also tracks the desired trajectory with a small
tracking error. The robustness of the NRL scheme to the payload variation was
examined by changing M; to 850 g. The responses of the system in this case are
depicted in Figure 5.12. As can be seen. NRL scheme is also robust to the pavioad

variations.

The Joint—Based Control Scheme

The joint-based control scheme was implemented by using a three-layver neural net-
work with 3 neurons in the input layer. 5 neurons in the hidden layer and 1 neuron
in the output layer. The inputs to the network are e.é and W, where e = yr — 6.
The hidden layer neurons have sigmoidal activation functions and the output neuron
uses a linear activation function.

The responses of the system to a 0.2 rad step input are shown in Figure 5.13.
when in the cost function of the network W({.t) is not included (Figure 5.13-a and
5.13-b) and when it is included (Figure 5.13-c and 5.13-d). As can be seen. the
tip response is significantly improved by adding W (/. ¢) to the cost function of the
neural network.

Figure 5.14 shows the responses of the system to a 0.2 + 0.1sin(t) reference
trajectory. It can be observed that the tip also tracks the desired trajectory with
small tracking errors. Next, M, was increased to 850 ¢ and the performance of the
joint-based control scheme was evaluated under this change. The responses of the
system are displayed in Figure 5.15. These figures demonstrate the robustness of

the joint-based control scheme to the payload variation.
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The ORTOL Scheme

The final set of experiments was performed using the fourth scheme in which re-
quirement for the a priori knowledge about the system dvnamics has been relaxesd
through online learning. A three-layer neural network was emploved for NN1 with
3 input neurons. 5 hidden neurons and 1 output neuron. The activation function
used for the input and hidden layers is the tan-sigmoid function and for the output
layer is a linear function. Figure 5.16 shows the system responses to a 0.2 rad step
input for M; = 30 g. In Figure 5.16-d. evolution of a is shown. The responses of
the system for M; = 850 g are shown in Figure 5.17. Finally, in Figure 5.18. the
responses of the system to a 0.2 + 0.1sin(t) are shown.

From these figure. we can conclude that good tracking performance can be ob-
tained experimentally even when no a priori knowledge about the system dyvnamics
is assumed.

As these figures demonstrate. all four proposed neural network schemes per-
form better than their conventional PD controller counterparts. This is due to the
fact that to overcome the effects of friction using PD control. the PD gain~ have
to be increased which considerably affects the transient response. dyvnamic range.
and robustness of the closed-loop system. Among the neural network controllers.
however, the IDML and the NRL schemes yield similar results (Figures 5.5 to 5.8 for
IDML and 5.9 to 5.12 for NRL) since both schemes assume some a priori knowledge
about the linear model of the system and use the same learning rule, i.e., feedback-
error learning. However, the responses obtained by using the NRL scheme are more
accurate and smoother than those obtained by using the IDML scheme. The reason
is that in the NRL scheme, the reference trajectories (i.e. position, velocity. and
acceleration) are fed to the neural network. This generates the feedforward term
which makes the transient response smoother.

When no a priori knowledge about the system dyvnamics is assumed. smooth

transient response is not guaranteed. For instance, the step responses of the system
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with M; = 850 g obtained by using the ORTOL scheme (Figure 5.17) exhibit more
oscillations than those obtained by using the IDML scheme (Figure 5.8) or the NRL
scheme (Figure 5.12). Furthermore. looking at the responses of the system to sin(t)
reference trajectories (Figures 5.7, 5.11, 5.14. 5.18), reveals that the second flexible
mode of the system (19 rad/s) vibrates with higher magnitude for the joint-based
controller (Figure 5.14) and the ORTOL scheme (Figure 5.18) as compared to the
IDML scheme (Figure 5.7) and the NRL scheme (Figure 5.11).

Table 5.1 compares the performance of the conventional PD controller to tiose

of the neural network-based controliers. In this table. ), is the pavload mass. DC

Scheme | Mi(g) T.(S) ] ESS (%) | PO (%) | PU (%)
PD 30 | A, =100, K, =100 | - 33 - -

30 | K, =200, K, = 100 | 6.69 0 34.5 48.2

850 | K, =200, K, = 100 | 3.93 10 15 7.5
DML 30 Without DC 5.56 0 8.2 12

30 With DC 2.61 0 3.7 =

850 With DC 2.96 0 2.0 .
NRL 30 Without DC 3.92 0 6.3 2.5

30 With DC 3.00 0 2.1 .

850 With DC 2.95 0 1.9 =
JBC 30 Without DC 5.46 0 126 | 362

30 With DC 3.48 0 3.6 =

850 With DC 3.28 0 3.1 -
ORTOL | 30 With DC 4.55 0 3.3 s

850 With DC 3.45 0 13 7 1

Table 5.1: Summary of the results

represents deflection control, T} is the settling time, ESS is the steady-state error.
PO is the percentage overshoot, and PU is the percentage undershoot. The results
are obtained for a 0.1 rad step input. The results given in this table lead to the
conclusion that in general the neural network controllers are more robust to payload
variations than the PD controller. The other conclusion that can be drawn is that

deflection control significantly improves the respouses in the sense that in general it
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removes the overshoot and undershoot from the responses and reduces the settling
time.

To show the robustness of the neural network controllers to disturbances. an-
other experiment was performed and the results are shown in Figure 5.19. First. a
0.3 rad step input was applied and the NRL neural controller was emploved for con-
trolling the system. After, the system reached its steady-state value, disturbances
were applied as unexpected tip deflections (see Figure 5.19-d). As these figures
show. the neural network controller can maintain a stable closed-loop system even
when the magnitude of the disturbance reaches 0.3 m.

Finally. the last experiment attempts to verify the claim stated in Chapter 3.
namely that the region of minimum phase behavior increases as the payload mass
increases. As stated in Section 5.2.1. for M, = 30 ¢ it is not possible to control
the system by using the new output y,. @ = 0.6. Figure 5.20 shows the responses
of the system to a 0.2 + 0.1sin(t) reference trajectory for M; = 850 g obtained by
using the NRL scheme (a = 0.63). It can be observed that a stable closed-ioop
system is obtained with a small tracking error for the tip position. This validates
and confirms the statement that the value of @™ increases as the payload mass M,

INCreases.

5.4 Conclusions

The proposed neural network controllers were implemented on a single flexible-link
experimental test-bed. Several experiments were performed to test the performance
of the control schemes under different conditions of loading, reference trajectories
and unmodeled dynamics. Experimental results revealed the superiority of the pro-
posed neural network controllers over model-based controllers in the presence of

unmodeled dynamics and nonlinearities such as hub friction and stiction.
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Figure 5.2: System responses to a 0.1 rad step input using 2 PD controller (a = .4~1:
(a)-actual tip position. (b)-redefined output (c)-hub position. and (d)-tip deflection
(dashed lines correspond to the reference trajectories).
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Figure 5.5: System responses to a 0.1 rad step input using the IDML neural network
controller (a = 0.48): (a) actual tip position, (b) redefined output (c) hub position,
and (d) tip deflection (dashed lines correspond to the reference trajectories).
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Figure 5.6: System responses to a 0.2 rad step input using the IDML neural net-
work controller (a = 0.48 with modified learning rule): (a) actual tip position, (b)

redefined output (c) hub position, and (d) tip deflection (dashed lines correspond to
the reference trajectories).
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Figure 5.7: System responses to an input 0.3 sin(t) using the IDML neural network

controller (a = 0.48): (a) actual tip position, (b) redefined output (c) control torque.
and (d) tip deflection (dashed lines correspond to the desired trajectories)
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Figure 5.8: System responses to a 0.2 rad step input using neural the IDML neural
network controller for M; = 850 g (a = 0.48 with modified learning rule): (a) actual
tip position. (b) redefined output (c) hub position, and (d) tip deflection (dashed
lines correspond to the reference trajectories).
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Figure 5.9: System responses to a 0.1 rad step input using the NRL neural network
controller (a = 0.48): (a) actual tip position, (b) redefined output (c) hub position.
and (d) tip deflection (dashed lines correspond to the reference trajectories).
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Figure 5.10: Actual tip responses to a 0.6 rad step input using the NRL neural
network controller for different outputs: top- @ = 0.48 (solid line) and a = 0
(dashed line) with modified learning rule; bottom- a = 0, with no modifications.
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Figure 5.12: System responses to a 0.2 rad step input using the NRL neural network
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Figure 5.14: System responses to an input 0.2+0.1 sin(t) using the Joint-based neu-
ral network controller: (a) actual tip position. (b) Hub position (c) control torque.
and (d) tip deflection (dashed lines correspond to the desired trajectories).
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Figure 5.15: System responses to a 0.2 rad step input using the Joint-based neural
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Figure 5.16: System responses to a 0.2 rad step input using the ORTOL neural
network controller: (a) actual tip position, (b) redefined output (c) tip deflection,
and (d) evolution of a. (dashed lines correspond to the reference trajectories).
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Figure 5.17: System responses to a 0.2 rad step input using the ORTOL neural
network controller for M; = 850 g: (a) actual tip position, (b) redefined output
(c) tip deflection. and (d) evolution of a. (dashed lines correspond to the reference
trajectories).
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Figure 5.18: System responses to an input 0.2 + 0.1 sin(t) using the ORTOL neural
network controller: (a) actual tip position, (b) redefined output (c) control torque,
and (d) tip deflection (dashed lines correspond to the desired trajectories).
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Figure 5.19: System responses to a 0.3 rad step input using the NRL neural network

controller: a) actual tip position, (b) redefined output (c) hub position, and (d) tip
deflection
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Figure 5.20: System responses to an input 0.2 + 0.1 sin(t) using the NRL neural
neural network controller for M; = 850 g (a = 0.65): (a) actual tip position. (b)
redefined output (c) control torque. and (d) tip deflection (dashed lines correspond

to the desired trajectories).
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Chapter 6

Conclusions and Suggestions for

Future Work

6.1 Conclusions

This dissertation has addressed various issues regarding the tip position control of
flexible-link manipulators. As stated earljer. non-minimum phase behavior. struc-
tural flexibility, unmodeled dvnamics. parameter variations and coupling effects al]
contribute to make this control problem a very challenging one. Control strategies
that ignore these problems generally fail to provide satisfactory closed-loop perfor-
mance. The output re-definition approach was used to overcome the problem caused
by the non-minimum phase characteristic of the flexible-link system. In developing
the output re~definition method, only partial knowledge about the system dynamics
(i.e. the linear model) was assumed and no a priori knowledge about the payload
mass was required. Four neural network strategies were proposed for tip position
tracking of a flexible-link system to handle the nonlinearities, unmodeled dynamics
and parameter variations. The first two schemes were obtained by using the modified

version of the ‘feedback-error-learning” approach to learn the inverse dynamics for
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specified outputs. This modification was motivated based on controlling the vibra-
tions of the flexible modes. The third and fourth schemes were obtained by relaxing
the assumption of a priori knowledge about the linear model of the system. The
third scheme is based on defining the natural choice of Joint position as the output
for control which ensures the minimum phase property of the input-output map due
to its colocated actuator/sensor pair and damping out the tip elastic deformation
by adding tip deflection to the cost function of the neural network. In the fourth
scheme, the assumption of a priori knowledge about the linear model of the system
was relaxed through online learning. Two neural networks were employed in this
structure. The first neural network (NN1) was trained to function as a feedback
controller and the second neural network (NN2) was trained to provide a proper
output for feedback. However. these two control schemes require the sign of the
output signals in updating their control parameters (weights).

The proposed neura! network controllers were implemented on a single flexible-
link experimental test-bed. Experimental results revealed the superiority of the
proposed neural network controllers over model-based controllers in the presence of
unmodeled dynamics and nonlinearities such as hub friction and stiction.

Considering the inherent complexity involved with this system. and the diffi-
culties that standard techniques have in meeting all the design objective outlined in
Section 1.1, we believe that neural networks provide a valid approach for controlling

flexible-link manipulators.

6.2 Future Research

Based on the experience gained in the course of this research the following lines may

be considered for future works.
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Output Redefinition Approach

In this thesis, a new method was proposed to redefine the output of the flexible-link
manipulator in the presence of payload variations. However, as stated in Section
3.2. this choice of output is conservative. Although, stability of the zero dynamics
is guaranteed as payload mass increases, the opportunity of using an output closer
to the tip position is ignored when heavier payload is used. The ORTOL scheme
attempts to resolve this issue. however since no a priori knowledge about the <v<rem
dynamics is assumed, it arise new problems. One way to resolve these problems is
to take advantages of using a priori knowledge about the iinear model of the system
as well as using the ORTOL scheme. The payload can be classified into different
classes and a specific value of a is associated to each class that ensures stability of
the zero dynamics of the system for all payloads belong to that class. Then, a neural
network can be trained to identify the class that the current payload belongs to and

the corresponding a is used to construct the new output.

Tracking Control using Feedback—Error-Learning

Neural network-based controllers were successfully implemented on a single flexible—
link test-bed. However, the price we paid is the increase in the complexity of
the controller and the need for faster real-time computing processors. For a more
sophisticated manipulator (multi-link manipulator). it may not always be possible
to implement the proposed neural controllers online. In this situation, some off-line
training would be necessary. This begs the question: How to find an appropriate
training for the manipulator, since the robot cannot move randomly in its workspace.
One way to resolve this problem is to use a pseudo-random trajectory generating

scheme [79].



The Joint-Based Control and the ORTOL Schemes

As was mentioned earlier, the joint-based control scheme and the ORTOL scheme
do not require any a priori knowledge about the system dynamics. Consequently.
these methods do not necessarily yield a good transient response. To overcome this
problem one can use some off-line training to have a good “estimate” for the initial
weights. The problem to deal with again would be the training set for the peural
networks.

The joint-based control and ORTOL schemes also approximate the Jacobian
of the plant. Although. the approximation and numerical differentiation vield the
same results in our problem, to get better results one can use the strategies proposed
in [46. 81] to obtain a more accurate value for the Jacobian. These methods however.
increase the complexity of the algorithm and some trade—offs have to be taken into

consideration.

Stability Analysis

In this dissertation. the issue of stability of the closed-loop system during learning
has not been addressed. This is due to the fact that no a priori knowledge about the
nonlinearities of the system has been assumed and also the learning rules have been
decided a priori. To investigate this problem, one may use the control structures
proposed in this thesis and by assuming some a priori knowledge about the system

dynamics develop learning rules using standard stability theories.
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Appendix A

Uncertainty in Viscous Damping

Matrix

There has been some effort in the literature to model the viscous damping matrix F
introduced in (2.12). For instance. Moallem ef al. [72] used the Rayleigh Damping
method introduced in [107]. In [18]. the authors used fi = a/k.. where f, and k,
are the diagonal elements of the matrices F» and A’ respectively.

However. an exact model for F) is rarely known due to the uncertainty thas
is always present in the system. Therefore. some effort is required in selecting
a value of a for redefinition of the output. By considering F, as an uncertain
matrix. the variations of the roots of the characteristic polynomial of the matrix
A(T) can be investigated due to changes in F;. Several methods, mostly inspired by
Kharitonov’s result [48], have been developed in the literature for investigating the
behavior of the roots of a polynomial with respect to parametric variations. One of
the most relevant results deals with coefficients which can either be independently
perturbed or in which perturbed parameters enter multilinearly [4, 5]. However,
this result cannot be applied in a straightforward way since the coefficients of the
characteristic polynomial of A(T) do not vary independently. In fact, o/s appear

nonlinearly in the polynomial coefficients. Nevertheless. use of both numerical and
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graphical techniques will be of great use.

Towards addressing the above problems. let us analyze the single flexible-link
arm whose parameters are given in Table 2.1. Two flexible modes are considered
for this study. First using the parameters given in [{31] namely, f; = 0.4, f, = 4
the value of a” is found to be 0.75 such that the matrix A(a) is Hurwitz. However.
using numerical simulations we have found that this choice of a® is not robust to
variations in f; and f; (i.e, fi = 0.4 and f; < 3.06). Therefore, by considering f;
and f; as unknown parameters, the characteristic polynomial of 4(a) was computed
using MAPLE [87]. The Routh-Hurwitz table was then constructed to determine
the conditions under which the characteristic polynomial remains Hurwitz. We have
found that a value of a” = 0.6 yields a matrix .4(a) that is robust to variations of
parameters f; and f, ranging from 1 x 1078 to 10.

Using the o obtained for the zero payload mass ensures stability of the zero
dyvnamics of the flexible manipulator when a nonzero payvload mass is included in
the model. Specifically. using the Routh-Hurwitz criterion. the condition under
which the system is non-minimum phase was obtained using MAPLE [87]. It was
found that the system is non-minimum phase only for a “negative” payload mass.

M. Consequently. the value of a obtained for M, = 0 ensures stability of the zero

dynamics when one includes M; > 0 in the system.
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Appendix B

Numerical Models

B.1

Numerical Model for System I

The numerical model used in the simulations for System I is derived by using the

assumed modes method with clamped-free shape functions. The link parameters

are taken from [93] and are given in Table B.1.

The mass matrix M. the stiffness matrix A". and Coriolis and centrifugal terms

obtained by using M APLE [87] for two flexible modes are as follows (see Chapter

2 for the definition of the terms)

M(8)

K
hi(6,8.8)

h2(8,8)

]

[ m(6) 03476 —0.1880
0.3476  0.5648 —0.4850
—0.1880 —0.4850 1.5332

[ 80.6190 o0

|0 3166 ] ’

0.360[(51 — 62)81 — (61 — §2)82],
[ —0.1862(5, — &,)

| —0.186%(6, - §,) J

where m(d) = 1.5708 + 0.18(42 + 82) — 0.364,6,.
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{ 1.22 m

vy | 0.24 kg/m
I, | 1.35 kg.m?
EI]11.82 N.m*
wy | 16.5 rad/s
we | 103 rad/s
M, 45 ¢

Table B.1: The link parameters for System [
B.2 Numerical Model for System II

The numerical model used in the simulations for System II (experimental manip-
ulator) is derived by using the assumed modes method with clamped-free shape
functions. The link parameters are given in Table 2.1.

The mass matrix M. the stiffness matrix A". and Coriolis and centrifugal terms

for two flexible modes are as follows

.

m(8)  1.0703  —0.0282

M) = 1.0703  1.6235 —0.4241
—0.0282 —0.4241 2.5920
i 17.4561 0
K = .
0 685.5706

hy(8.6.8) = 0.246[(81 — §2)81 — (81 — 82)62],
[ _0.1202(4, — &,) }

hZ(és 6) = .
| —0.12602(8, — 81)

where m(§) = 0.9929 + 0.12(6Z + 62) — 0.248,6;. For Coulomb friction at the hub f,.
the hard nonlinearity f. = CeouSGN(8) and its approximation fe = Ceoul(

_2
I4e—106

1) were used and similar results were obtained.
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B.3 Numerical Model of the Two—Link Manip-
ulator

The dynamic model used in the simulations is derived based on the assumed modes

method with clamped-mass shape functions given by
oi(z) = cosh(Biz/l;) — cos(Biz/12) — vi(sinh(Biz[l2) — sin(Biz /1)) (B.1)

where /; is the length of the flexible link. z is the position variable along the flexible

link. and the 3;'s are obtained from
M, ] . .
1 + cosh(3;)cos(3;) + —%—Bi(sznh(ﬁ,-)cos(ﬁ,-) — cosh(3;)sin(53;)) =0 (B.2)

where m = 0.210kg is the mass of the second link , and M; = 0.251kg is the payload
mass. The first three 3;’s are: 1.2030. 4.0159. and 7.1243.
The elements of the mass and stiffness matrices and Coriolis and centrifugal

terms obtained by using M APLE [87] for two flexible modes are as follows

M(1.1) = mll0+ co(mlll + m1126, + m1138,) + si(m1146, + m1153,)
+ ml168? + m11762 + m1186,4;

M(1.2) = ml20 + co(m121 + m1228; + m12368,) + si(m1246; + m1256,)
+ ml12682 + m12782 + m1284,4,

M(1,3) = ml130+ ml3lco

M(1,4) = ml40 + mldlco

M(2,2) = m220 + m22187 + m22263 + m2234,6,

M(2.3) = m230 M(2.4) = m240

M(3,3) = m330 M(3.4) = m340
M(4.4) = m440
)

A1) + k(1) = mll3cobrfy — m121sif,”° +ml115sid,6, + m112cod, 6,
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H(2) + h(2)

f2(1) + hy(1)

f2(2) + ha(2)

m114sid,6, + 2m1166,6,8;, + m118519162 + m122¢oé, 6,
m1245i8,0; + 2m12668,6,6, + m1286,6,6; + 2m1176,6,6,
m1188,8,0, + m123cody8, + m1255i620; + 2m1278,48,6,
m1286,8,0, — m122si6,°6, — m1238,5i6," + m1248;cob,”

m125¢5'2c00.22 — ml111si6,6,8, — ml 13516,6,8; + m114cob, 6,4,

+ + + + 4+ o+

m115c06,6,8; — m1316,5i8; — m1416,si6,

0.5m111si6," + m131si6,8, + m141s:6,8, + 0.5m 112516, 5,

0.5m113si6, 85 — 0.5m114cob; 8, — 0.5m1 15¢c08, 82 + m 12206, 4,

m1245i8,6, + 2m12668,6,0, + m1285,8,6, + 2m2215,6,6,

+ o+ o+

m2238,816, + m123c06,6; + m1255i826, + 2m1278,9,6,

m1288,6,0, + 2m222628,0, + m2236,6,6,

_*-

= —m1316;si6, — 0.5m112c0f,” — 0.5m114s:6," — m1166,°6,
— 0.5m1186,°8; — m122c06, 6, — m1245i6,6, — 2m 1266, 6,6,
—  m1286,6,6, — m2216,°8, — 0.5rm2236,°6,

= —ml416,si6; — 0.5m113cof,” — 0.5m115si6," — m1176,°6,
— 0.5m1186,°6, — m123cof 6, — m125si6,6, — 2m1276,6,6,

- m1286,6,6, — m2226,°8, — 5m2236,4,

33.38 0
. B3
0 1506

where M (¢, j) represents the (i, j)th element of the mass matrix and f,(j) + A.(j)

represents element j of the ith Coriolis and centrifugal terms.

The numerical values of the parameters in (B.3) are given below as

ml1l10
mll)

m120

0.2176, mlll =0.1053, mll12 =0, mi13 =0, mll4 = —.3103,
0.1936, ml116 = 1.2087, ml117 = 1.2086, ml118 = —2.0079,
0.1256, m121 =0.0527, mi122 =0, m123 =0, mi24 = —0.1552,
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ml126 = 1.2087,

ml13] = 0.1552,

m221 = 1.2087.
m240 =

ml127 = 1.2086,

ml128 = —2.0079.

ml140 = —0.2969. ml4] = —0.0968.

m222 = 1.2086.

—0.2969. m330 = 1.2090.
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Appendix C

Experimental Test—Bed

Figure C.1 shows a schematic diagram of the test-bed and control system. The

principal components of the system are as follows:

Spectrum TMS320C30 System Board

This board is employed to implement the control algorithms. It contains a TMS320C30
Digital Signal Processor (DSP) chip that contains integer and floating—point arith-
metic units. 2048 x 32 bit words of on~chip RAM, 4096 x 32 bit words of on-chip
ROM. control unit and parallel and serial interfaces. Operating from a 33.3 MH:
clock. a performance of 16.7 million instructions per second is achieved.

The board occupies a single 16-bit slot within the Compaq 386 20/¢ host com-
puter and equipped with 64K words dual-port RAM which is intended for transfer
of data between the PC and the DSP.

TMS320C30 system board also contains an analog I/O subsystem. There are
two separate analog to digital converter (A/D), digital to analog converter (D/A).
and analog filters on input and output. The A/D’s are Burr-Brown PCM787 devices
which offer 16-bit precision with up to 200 KHz sample rates. The sample/hold
amplifiers SHC5320 and D/A converters PCM56P are also Burr Brown devices and

are matched to the capabilities of the A/D. A £3 volt analog input range provides
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Figure C.1: Schematic of the experimental test-bed.

full scale operation of the A/D.

The TMS320C30 DSP board is equipped with the DSPLINK digital system
expansion interface. This expansion bus is connected to a separate interface board
that contains programmable timing circuitry and high current sources that control
the pulsed current which drives the infrared diode mounted at the manipulator’s
tip. The interface board also includes decoder circuitry that decodes motor position

information.

Compaq 386 20/e Host Computer

This Compaq 386 20/e host computer is a platform for the C30 system board. The
user can control the program implemented on the C30 system board by sending
different flags to the dual-port RAM that can be red by the DSP. Experimental
data is transfered from the C30 system board to the dual-port RAM. The PC then



reads the data and stores them for subsequent analysis.

PWM Servo Amplifier

As figure C.1 shows, a constant current i(t) needs to be delivered to the motor
armature. The Coply Control Corp. Model 215 is a transconductance pulse-width
modulated (PWM) servo amplifier designed to drive the DC motors. It recejves
the D/A voltage v(¢) and delivers the output current #(¢t) = A, v(¢). An internal
control loop senses the output current and maintains K, at the fixed value of 2.0.
Consequently. the full scale D/A voltage range of +3 volts result in a maximum
range of =6 amperes. The amplifier is switched with the rates of 22 to 26 KHz to

eliminate audible noise. The 3-db bandwidth of the amplifier is 1 KHz.

DC Servo Motor

The EG&G Torque Systems Model MH3310-055G1 permianent magnet. brush type
DC servo motor develops a constant torque 7(t) = R4i(t). where the torque constant
ke =0.1175 N.m/A. The armature current range of £6 amperes results in maximum

torque range of £0.705 N.m.

Harmonic Drive Speed Reducer

A harmonic drive is a high ratio torque transmission device with almost zero backlash
which is used in many electrically actuated robot manipulators. since DC motors
are high-speed and relatively low-torque actuators. The HD systems Inc. Model
RH20-CC harmonic drive transmits the torque generated by the DC motor to the
manipulator’s hub. A gear ratio of 50 : 1 is obtained. The speed reducer amplifies

the motor torque by a factor of 50 and vields an output torque range of +35.25 N.m.
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Incremental Encoder

Incremental encoders create a series of square waves. The number of square waves
corresponds to the shaft revolutions. The motion Control Devices Inc. Model M21
is a quadrature encoder that uses two output channels A & B in quadrature for
position sensing. This allows the user to count the transitions and to view the
state of the opposite channel during these transitions. Using this information. it
can be determined if “A™ leads “B” and thus derive the direction. An incremental
resolution of 500 cycles per revolutions of the motor shaft is obtained on each of two

quadrature (A & B) signals.

Quadrature Decoder

The Hewlett Packard HCTL-2020 consists of a 4X quadrature decoder., a binary
up/down state counter. and an 8-bit bus interface. The quadrature decoder de-
codes the incoming signals from the encoder into count information. This circuitry
multiplies the resolution of the input signals by a factor of four (4.X decoding). A
16-bit binary up/down position counter allows for software computation of absolute
position.

A resolution of 2000 cycles per revolution of the motor shaft is obraived.
This is equivalent to 50 x 2000 = 100000 cycles per revolution of the harmonic
drive output shaft. However. the decoder resolution is 16 bits. corresponding to
a maximum count of 63535 cycles. Consequently, the decoder can accommodate

16;503;027: = 1.31= radians of rotation before overflowing.

Infrared Emitting Diode

Sensing the tip deflection needs a light source, a lens that focuses the image of
the source onto a photodiode detector, a photodiode detector, and an amplifier
to condition the detected signal. The positional resolution of the tip deflection is

proportional to the signal to noise ratio (S/N) of the received signal at the output
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of the photodiode detector. The Opto Diode OD-50L Super High Power GaAlAs
infrared emitting diode supplies up to 0.6 watts of peak optical power at a wavelength
of 880 nm. An infrared light source. when used with a camera that incorporates a

visible light blocking filter. reduces the interference from ambient light.

UDT Camera

The United Detector Technology Model 274 camera consists of a wide angle lens
and a SC-10D lateral-effect photodiode detector assembly. The 12.5 mm C-mount
lens has a 55° field of view and includes a visible light blocking filter. The lens
focuses the image of the infrared diode onto the photodiode detector. The diode
appears as a light spot on the detector surface. The detector senses the centroid
of the light spot and provides continuous analog output as the spot transverses the
active area. An appropriate calibration procedure allows the user to calculate the

absolute position of the infrared diode and hence the deflection of the tip.

UDT Signal Conditioning Amplifier

The United Detector Technology Model 301DIV provides transimpedance amplifier
to condition the detector signals as well as the differential amplifiers necessary to
generate a position related analog output. It interfaces the position-sensing pho-
todiode detector to the A/D on the C30 system board. The amplifier is adjusted
such that maximum tip deflections of £0.25 m correspond to output voltages of +3
volts. The 55° field of view of the lens should allow measurement of tip deflections
in excess of £0.5 m. However, as the tip deflection increases, so does the magnitude
of the slope of the arm evaluated at the tip, 218(-:—"1 |z=:- This slope causes a rotation
of the diode when viewed from the camera’s frame of reference [30]. This increasing
slope. when coupled with the narrow bandwidth of the infrared diode results in a
reduction of the optical power received at the lens. Beyond a deflection of £0.25 m.

the diode cannot be accurately detected by the camera even though it is still within
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the lens’s field of view.

Noise and nonlinearities within the photodiode detector result in a measure-
ment error of +2.5 mm within a deflection range of +£0.01 m. As the deflection

increases to a maximum of £0.25 m, the error increases to +10 mm.
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