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ABSTRACT

BUFFER OPTIMIZATION AND ROBUST DESIGN STUDIES
IN ASYNCHRONOUS ASSEMBLY SYSTEMS
USING DESIGN OF EXPERIMENTS APPROACH

YASEMIN TARAKCI

This research concentrates on the buffer specification problem of the design of
asynchronous assembly systems (AAS). The objectives of the research are to determine
an optimal area of buffers and to design AAS that are robust to noise factors. In order to
determine an optimal area of buffers in which the throughput yields to maximum, the
design of experiments (DoE) approach and discrete-event simulation are used, and
appropriate buffer levels are identified accordingly. Studies indicated that determining an
optimal area provided the design engineer the much needed flexibility to choose the
buffer sizes within a range. The DoE approach also offered substantial information on
the AAS that can serve the design engineer as an invaluable guideline and enable one to
design the AAS with a better understanding. Furthermore, the use of DoE approach as an
optimization tool is proposed, principally in cases where little known on the AAS that
will be designed. Case studies using the DoE approach as a heuristic optimization
method are presented. Additionally, in an attempt to study its effect, in some studies, the
number of pallets has been considered as a decision variable. Studies conducted
throughout this research indicated that the DoE approach to be an effective methodology.

Robust design study is essential to design AAS that are insensitive to
uncontrollable factors. Several systems have been investigated and analyses revealed the

necessity of robust design study in AAS. Future research areas are suggested.
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NOMENCLATURE

AAS : Asynchronous Assembly Systems

DoE : Design of Experiments

FAS : Flexible Assembly Systems

FMS : Flexible Manufacturing Systems

GA Genetic Algorithms

SQG : Stochastic Quasigradient Methods

™ Throughput
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b; : buffer between station i and i+/
varianceyrns variance with respect to noise factors
APPENDICES:

I; : the effect of buffer i

m : mean

14 : variance

r : replications of each run

z: : number of units produced for particular buffer at given replication r
o : level of significance

df : degree of freedom
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CHAPTER 1

INTRODUCTION

1.1. ASSEMBLY

1.1.1. THE HISTORY OF ASSEMBLY

The history of assembly is almost as long as the history of crafts. Thousand years
ago, people started assembling parts in order to make a serviceable item. Yet, the modern
assembly differs from the ancient assembly mainly by its goal. The modern assembly
process aims to produce products that are high in quality and low in cost.

Throughout its history, the assembly process was modernized mainly by two
ideas. The first one was the principle of interchangeability. The principle of
interchangeability, which was developed in the 1800s, introduced the idea that the parts
that are used to make a finished product must be interchangeable between product
units[4]. Standardization of parts, in other words, interchangeability, simplified the
assembly process by bringing the same specifications for assembly parts.

Division of labor was the second major idea for modern assembly systems [22].
Work simplification, standardization, and specialization are the philosophies behind the
idea of division of labor. Briefly, complex or long assembly tasks can be divided into a
number of smaller tasks. Each task builds a part of the assembly and performs
independently. Since each task is given to different operator, operators can quickly

develop their skills for these repetitive operations.



Combining these two ideas, the assembly process improved its facility, speed and
quality. Mass production became easier and replacement parts could be used for more
durable products. Using these improvements, Henry Ford and other innovators developed
assembly lines in the 1900s. Although assembly lines did not change the total processing
time, they drastically reduced the cost of production and increased the production volume.
As a result of these developments, high-priced objects became affordable to most. This
obvious advantage made assembly lines embraced and in the first half of the century,
most of the efforts were on increasing the applications on assembly lines.

It is almost in the second half of this century that the idea of replacing operators
by machines appealed designers. Initially, machines are used for basic and too repetitive
tasks. Technological improvements and recently the rapid progression of computers

made possible to produce more complex machines and robots.

1.1.2. ASSEMBLY TYPES

Today, there are two types of assembly; manual and automatic. Manual assembly
is the traditional assembly where human operators work. Manual assembly may be
preferred in the case of low production volume and complex operation.

On the other hand, automatic assembly is necessary for high production volume.
Automatic assembly is composed of workstations that automatically perform the easy or
otherwise uneconomical tasks, and a transfer system which moves the assemblies from
one workstation to another. Automatic assembly is also divided into two; hard and

flexible automation.



In hard automation, the line is designed for a single product. Even minor changes
in product design can cause the line to be outmoded. Recent advances in automation and
the development of low-cost controllers have resulted in programmable workstations and
flexible flow lines. In a flexible assembly system a workstation can perform alternative
tasks. Flexibility is becoming more important as rapid technological innovation and
intense competition shorten product life cycles [4].

Another classification of the assembly systems is:

1. Synchronous Assembly Systems

2. Asynchronous Assembly Systems

In synchronous assembly systems, each workstation has exactly the same amount
of time to operate on each unit of product. At the end of this cycle time C, the transfer
system automatically moves each unit to the next station. Although synchronous lines
can exactly balance production, unless slack time is built into each station, the
randomness of performance occasionally will cause some items not to be completed.
Extra time must be allowed in the fixed cycle time to cushion against task time
variability.

On the contrary, asynchronous assembly systems allow some measure of
autonomy from workstation to workstation [55]. In asynchronous lines, the station
removes a new unit from the handling systems as soon as it has completed the previous
unit, performs the required tasks, and then forwards the unit on to the next station. Parts
need not be passed on incomplete. Likewise, when two adjacent workers finish early, the
second worker can begin the next part early and increase the chance of finishing on

time[4]. Obviously, asynchronous assembly systems have advantage over synchronous



assembly systems. When a stoppage occurs at individual stations in an asynchronous
system, the rest of the system continues to operate, while in a synchronous system would

stop entirely [55] .

1.1.3. ASSEMBLY LINES

An assembly line is a set of sequential workstations, typically connected by a
continuous material handling system. The line is designed to assemble component parts
and perform any related operations necessary to produce a finished product. The product
is passed down the line, visiting each station in sequence. Upon exiting the final station,
the product is complete. The line is operated such that the stations are simultaneously
busy. Upon completion of its assigned tasks on an item, the station passes the item to the
next station, obtains a new item from its predecessor station, and repeats its tasks [4] .

An assembly line may consist of one or more components. The total assembly
time equals to the sum of the separate operation process times. The number of operations
and operation contents are basically determined by the structure of the assembly and the
complexity of the assembly work. An assembly is usually composed of a number of
components or subassemblies. If the total assembly work is too complex, engineers tend
to break the entire assembly work into a number of operations, making each operation
responsible for one or more subassemblies. Depending on its complexity, a subassembly
may further be broken into components, and then operations may be defined for one or
more components. The question is how to determine the level of complexity at each

operation [22].



1.2. DEVELOPMENT OF ASSEMBLY SYSTEMS

Engineers and scientists have engaged in multidisciplinary analyses, learning that
proper work conditions (i.e., job content, tooling and fixtures, workstations, etc.) provide
operators with safer and more productive jobs. Time and motion study, analysis of
human performance and ergonomics have been introduced to industry. At this stage,
assembly job design begins to integrate human behavior into workstation design.
Consequently, efficiency at the workstation level is greatly improved [22].

As more and more components are included, line efficiency eventually becomes a
problem. Efficiency improvement at the component level does not guarantee overall
performance efficiency. Line-integration concept therefore are introduced. The line
designer must take a system view and a structural approach. First, a cost objective must
be defined based on both market analysis and manufacturing conditions. Then the
product cost structure must be understood. Usually, this is defined by the product
characteristics and the manufacturing environment. By comparing the cost objective and
the cost structure, the line designer may conduct a study for production feasibility and
affordability. At this stage, questions such as resource availability, production capacity,
the speed of the scale-up, and engineering skills must be answered. Derived from this
study is a line design concept that involves a number of interrelated subjects (i.e., tooling
strategy, material handling system, line size, line configuration, flexibility needed for
future engineering changes or line-capacity adjustment, and space strategy.) The mission

of line design is then to convert the design concept into a physical line [22] .



1.3. DESIGN PROBLEMS OF FLEXIBLE MANUFACTURING / ASSEMBLY
SYSTEMS (FMS/FAS)

FMS/ FAS design problems are very important regarding the complexity of these
problems. However, the major FMS / FAS research has been oriented towards operation
problems of these systems [49]. FMS design problems are difficult to model, because the
number of trade-offs that have to be incorporated into the models is very large.

In FMS design problems, another important issue is the dynamic structure of the
system. We can use some analytical tools to determine a parameter of the system, but
input to these tools is quite dynamic and an optimal solution for the current part mix may
become a suboptimal one for the next part mix. Therefore, in analytical solutions, we can
see that the decomposition technique is applied (i.e., type of product mix is assumed
constant at any given time).

Stecke [79] presents a through discussion of FMS design problems. She partitions
design problems into initial specification and subsequent implementation decisions. The

initial specification decisions are given as follows.

* Specification of the part types to be produced in the system,

® Determination of the process plans for parts and specification of the numbers and
types of machines,

* Specification of the flexibilities that are required,

e Determination of the type of FMS,



® Specification of the material handling system and its capacity,
® Specification of the sizes of buffers
® Specification of the computer hierarchy,

e Determination of the vendors.

The subsequent implementation decisions are given as follows.
e Specification of the FMS layout,
¢ Determination of the number of the pallets,
e Specifications of the fixtures’ design and their numbers,
e Determination of the general planning and control objectives,

e Development of the necessary software.

Stecke presents these problems in a sequential manner. Although some of these
problems can be addressed simultaneously, the whole design problem cannot be solved in

one step. Therefore, a sequential and iterative solution method has to be developed.

1.4. OBJECTIVES AND CONTRIBUTIONS OF THIS RESEARCH

In this research, we will concentrate on the specification of the buffer sizes in the
asynchronous assembly systems. We have two objectives:

1. determining an optimal area in AAS where the throughput is maximum or near

maximum,

2. studying the robustness and finding the robust designs in AAS.



The first objective addresses a weakness of optimization studies. Previous studies
in optimization of buffer sizes found an optimal solution and terminated the optimization
at that point [55,54,79,27,77]. However, our consultations with the design engineers
indicated that in many cases, these optimal solutions may not be implemented as
proposed, due to restrictions that may occur, such as cost, space, etc. Thus, many
applications in the industry need the flexibility to choose the buffer sizes within the range
that leads to the maximum or near maximum throughput. For this purpose, we use the
DoE approach to determine the buffer ranges that give the maximum or near maximum
throughput, hence determine an optimal area in AAS.

Robust design study in AAS is essential to eliminate the undesired effects of the
uncontrollable factors on the throughput. Previous studies entirely ignored these effects
[55.54,79,27,77]. So far, the uncontrollable factors such as Jjam rates and jam clear times
are assumed to be constant factors (i.e., unchanging) and optimization was conducted
accordingly. However, our experiences and consultations also indicated that such factors
may affect the throughput considerably. Consequently, the optimal solution(s) proposed
may not give the anticipated efficiency or improvement. Thus, a study on the effects of
the uncontrollable factors is the key to have robust AAS designs.

In addition, we propose the use of DoE approach as the practical optimization tool
especially when little information on the system is available. We also study the
optimization problem where number of pallets is not fixed and also considered as a

decision variable in an attempt to study its effect on the throughput.



Concisely, the main contributions of this research are as follows.

e determines an optimal area where almost all solutions are optimum or near optimum;
hence gives the design engineer the flexibility of choosing buffer specifications within
the proposed buffer ranges,

® design the system that is robust to uncontrollable factors by determining the buffer
ranges that give insensitive throughput against uncontrollable changes in the noise

(uncontrollable) factors.

Furthermore, this research
* extends the applications of the design of experiments (DoE) approach to the design
phase of the AAS,
* suggests that the DoE approach may be used as a practical optimization tool and
provides case studies where the DoE approach is used for the optimization,

e studies the effects of the number of pallets in the system.

LS. ORGANIZATION OF THE FOLLOWING CHAPTERS

Chapter 2 lists the previous studies in the assembly systems and transfer lines as
well as the studies using the design of experiments approach with a concentration on the
robust design studies.

Chapter 3 explains the DoE approach, robust design, and the techniques used in
this research, in addition to detailed reasons of why it is the DoE approach that satisfies

our objectives.



Chapter 4 first defines the problem studied (i.e., determining an optimal area in
AAS), then discusses the systems and the conclusions of the analyses. Mainly, the
systems and the optimal solutions that are proposed in previous studies[55] are
considered and the buffer ranges that define an optimal area are determined. The studies
where the DoE is used as a proposed practical optimization tool are also presented.

Chapter 5 also defines the problem investigated in this chapter (i.e., robust design
of AAS) and presents the systems and the conclusions of the analyses of the studies
conducted.

Chapter 6 reviews the studies conducted in this research and suggests what can be

done in further study.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the literature in two main groups, namely (1) studies in
assembly systems or assembly-like systems, and (2) studies using the design of
experiments (DoE) approach and robust design studies. The first two sections address to
the first group where assembly systems or assembly-like systems are studied, and the next
two sections review the second group where DoE is used and/or robust systems are
designed.

There are numerous studies in the area of assembly systems. In this chapter, we
will present the studies involving modeling, design, and analysis of assembly systems,
with a concentration on buffer allocations and studies using similar modeling ideas. First,
we will review the studies in transfer lines (2.1.). Then, we will review the studies in
assembly systems (2.2.).

The DoE approach exists since early 1920s. Consequently, there are several
applications of the DoE approach in literature. In the section 2.3., we will review studies
using the DoE approach in manufacturing systems as well as studies concentrated on
improving the DoE techniques and extending its applications.

The robust design is a special application of the DoE approach which gained
popularity in the last two decades. Consequently, there is limited literature available on
robust design. In section 2.4. we will review the robust design studies in several

industries.

11



2.1. TRANSFER LINES

Conway et. al. [24] examine serial production systems. Several scenarios are
investigated. Simulation is used except for a few simple cases that could be solved
analytically. Cases where workstations do not fail and cases with unreliable workstations
are considered. Altiok and Stidham [2] consider allocation of buffer capacity to systems
with more general service time distributions. Altiok and Perros [3] consider splitting and
merging into parallel stations as units pass down the line. Masso and Smith [57]
determine the minimal total buffer capacity required for a three-stage line to reach its
maximum level of system performance. Their technique allocates the given quantity of
total buffer capacity among the individual buffer storage areas. Okamura and Yamashina
[64] study the allocation of buffer stock in two-stage automatic transfer lines for balanced
and unbalanced cases. Hollier and Satir [40] maintain the balance of a series production
system with different numbers of parallel machines at each stage by controlling inter-
stage stocks. Ho et. al. [38,39] use perturbation analysis and gradient method to study
the effect of cycle times and buffer sizes on the throughput of open transfer lines.

Okamura and Yamashina [65] analyze buffer storage for multistage transfer line systems.
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2.2. MODELING, DESIGN, AND ANALYSIS OF ASSEMBLY SYSTEMS

The literature of design problems in assembly systems is very broad. Since this
research deals with the buffer allocation part of the design problems of assembly systems,
we have concentrated on the studies in buffer allocation. In addition, we have reviewed
the assembly systems studies that use similar modeling and/or analysis ideas to that of
this research as well as studies using simulation. Section 2.2.1. reviews studies dealing
with the buffer allocation problem. Section 2.2.2. covers studies using simulation.

Section 2.2.3. covers other studies in assembly systems or assembly-like systems.

2.2.1. BUFFER ALLOCATION

The buffer optimization study using the Stochastic Quasigradient methods (SQG)
approach [55] has special importance in this research, since we have investigated the
systems and the optimal solutions determined in this paper. Liu and Sanders study a
variety of assembly systems that are subject to blocking and starvation effects. They use
a hybrid algorithm which applies a queuing network model to set the number of pallets in
the system and then an SQG algorithm to set the buffer spacings to obtain optimal
systems throughput. They remark that the combined Queuing Network-SQG method
appears to perform well in obtaining a near optimal solution in this discrete optimization
example, even though the SQG method was primarily designed for application to
differentiable performance functionals. They finally conclude that while a number of
both theoretical and practical problems remain to be resolved, a heuristic version of the
SQG method appears to be a reasonable technique for analyzing optimization problems

for certain complex manufacturing systems.
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Simon and Hopp [76] study the availability of inventory in an assembly-like flow
system. The system is balanced and assembly machine is fed from two storage buffers of
two input machine that are subject to random failures. They compute the system’s
average throughput and average inventories and formulate the sum of inventory costs as
well as shortage cost. They then optimize the buffer sizes accordingly.

Diwan [27] applies the Genetic Algorithms (GA) approach for buffer optimization
in AAS. The systems are subject to starvation and blocking and several systems with one
single loop, with inspections stations and repair loops are studied. In addition, the cost
modeling methodology for such systems with repair loops is developed in order to
simultaneously optimize system parameters, cost functions, and quality control issues.

So [77] determines buffer capacities for general flexible manufacturing systems
with multiple products. He uses an approximation scheme to determine buffer capacities
and simulation experiments to study the validity of the approximation scheme under

various situations.

2.2.2. SIMULATION

Doydum and Perreira [28] present a Monte Carlo modeling, simulation, and
inferencing method to take the methodology applicable to the designs of assemblies with
irregular and complex cross sections. Ketcham and Watt [47] review a parametric
simulation system called SIMBED. SIMBED has been developed to represent the
characteristics of flexible manufacturing systems with multiple products and flexible
parts routings. Buzacott and Hanifin [18] develop a simulation model for transfer lines

and review early results with the results of their simulation models. Bullinger and Sauer
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[17] use a simulation model for planning progress of a system designed for the assembly
of fork lifts in assembly modules and automated guided vehicles. The application of this

simulation model allows them to evaluate different solutions and layouts.

2.2.3. OTHER STUDIES

Dallery and Gershwin [25] review the flow line systems. They classify the
models as asynchronous, synchronous, and continuous; the major features as blocking,
processing times, failures, and repairs; and the major properties as conservation of flow,
flow rate-idle time, reversibility. The relationships among different models are also
included in the review of models. Exact and approximate methods for obtaining
quantitative measures of performance are surveyed. The exact methods are used for small
systems. The approximate methods that are used for large systems are generally based on
decomposition and apply the exact methods for small systems.

Di Mascolo et. al. [26] study the assembly lines with fixed and same cycle times
at all machines, random breakdowns, and buffers with finite capacity. They approximate
the behavior of such systems by a continuous flow model, then analyze the behavior using
a decomposition technique. They also develop an algorithm to calculate the production
rate and average buffer sizes. Gershwin [31] develops an efficient approximate
decomposition method for the evaluation of performance measures for the Assembly /
Disassembly Networks (i.e., networks of queues in which assembly or disassembly takes
place). This decomposition approach is based on system characteristics such as

unreliable machines, finite buffers, blocking and starvation exist.
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Johri [43] studies the engineering a printed circuit board assembly line of AT&T
with unreliable machines for a desired capacity and flow time. For this purpose, the
number of machines needed, buffer sizes, the input lot sizes, and loading sequence are
determined. This study shows that proper lot sizing and sequencing can increase the
capacity of the line by more than 10%.

Kamath and Sanders [46] develop an analytical approximation method that can
be used to determine the steady-state performance of automatic assembly systems for a
given assignment of operators. The analytical method involves the simultaneous solution
of two coupled queuing models; one of the models calculates the waiting time for an
operator resource, while the other computes the waiting time for a workstation resource.
Blumenfeld [12] develops an analytical model for comparing the throughputs of
assembly systems with fixed cycle times and flexible cycle times that vary from job to
job. Results indicate that an assembly system with variable cycle times can operate at a
significantly higher throughput than one with fixed cycle times, provided there is
sufficient buffer storage space between workstations to accommodate queuing.

Bulgak and Sanders [16] present the implementation of hybrid procedures
involving the use of analytical performance evaluation techniques, discrete event
simulation, and Monte Carlo optimization methods for the stochastic design optimization
of asynchronous flexible assembly systems (AFAS) with statistical process control (SPC)
and repair loops. They develop an approach simultaneously analyzing the interactions
between product quality and optimal/near optimal system design.

Graves and Redfield [33] discuss an optimization procedure to assign tasks to

workstations and select assembly equipment for each workstation for a multiproduct
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assembly system. Venkateshwar and Sanders [85] develop an approximation algorithm
for closed asynchronous automatic assembly systems with multiple products. They
discuss the pallet optimization, buffer allocation, and pallet allocation. Winters and
Burstein [91] discuss a tool for estimation of the impact of various product and process
options on the maximal level of system output. The study is conducted with an actual
flexible assembly system (FAS) using the discrete-event simulation.

Yano [92] develops an algorithm to find optimal planned lead-times for two-level
assembly systems. Planned lead-times are determined with the objective of minimizing
the sum of inventory holding costs and tardiness costs. Yoosufani et. al. [93] study the
effect of symmetry of parts of the time taken to handle parts during manual assembly,
which can be used by design engineers when considering design for ease of assembly.
Toczylowski and Hindi [84] discuss the formulation and solution of an aggregate
multistage capacitated scheduling problem. They consider production systems whose set
of end products has a flat component structure and group these end products into families
of items having similar component structures, similar productivity factors and inventory
costs, and sharing common major setups. Ghosh and Gagnon [32] study extensively the
assembly line balancing. Quantitative developments and qualitative issues are addressed
at both the strategic and tactical levels. They also assess our progress in assembly system
design and operation. Chan et. al. [21] develop a reconfigurable fixturing system for
robotic assembly. Such fixtures can reduce the lead times and manufacturing costs in
small batch production, which is common in today’s flexible automation. Carter [20]

describes the robot assembly task time that is derived from laboratory tests and industrial
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experience. He further explains the use of data sheet for estimating part assembly times
at a two-arm robotic assembly station.

McCormick et. al. [59] study the transient behavior (the correlation between
certain operation finish times) in a flexible assembly line with multiple products. They
consider an assembly line with m stations and finite-capacity buffers and calculate how
long it takes such a system to reach steady state for a given cyclic schedule. Saboo and
Wilhelm [74] develop a model to estimate the transient performance of assembly
networks. In another study, Wilhelm et. al. [89] introduce an approach for capacity
planning and material flow management in small-lot assembly lines. Wilhelm and Wang
[90] study component accumulation (kitting) for more effective material flow
management. Mathematical models are presented to describe kit earliness, kit tardiness,
and in-process time for component inventory and a sensitivity analysis is also used.

McGinnis et. al. [60] discuss the main problems for printed circuit card assembly
process and review the models and solution methods. Srinisvan and Sanii [78] study the
process planning for electronic assembly with Artificial Intelligence (AI) approach.
Lacksonen and Joshi [51] develop an algorithm based on graph theory to minimize the
number of printed circuit board components that must be inserted manually. The
algorithm, which handles the parts that can be gripped in two possible directions, aims to
improve process planning. Ahmadi et. al. [1] study concurrency through experimental
analysis of the system’s functional operations. They analyze an extremely complex
workcell with a high degree of concurrency. Khwaja and Radhakrishnan [48] develop a
design for odd-form components whose handling poses significant constraints on the

flexibility of the systems.
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2.3. DESIGN OF EXPERIMENTS (DoE) APPROACH AND ITS APPLICATIONS
Section 2.3.1. presents the recent papers on the use of DoE approach as well as
some texts that provide substantial information on DoE. Section 2.3.2. discusses

applications of DoE approach in industry.

2.3.1. RECENT STUDIES ON THE USE OF DoE APPROACH

The DoE approach is a powerful method in designing for value (i.e., cost and
quality.) Consequently, there are many studies and texts written covering several areas.
Texts on the DoE are excellent handbooks for the experimenter [56,62,61,14,37,71].

Recent studies on the DoE approach concentrate on explaining the DoE as well as
expanding its applications. The work by Coleman and Montgomery [23] discusses the
DoE approach in general and give valuable information. In his recent article in Quality
Process, Gunter [35] discusses the DoE at a basic level and compares it to the traditional
experimental approach, which can be called “one-factor-at-a-time” approach. Blake et.
al. [11] discuss the key issues of the 1990s that have to be considered when applying the
DoE approach in quality improvement.

In the area of developing new strategies and designs for the DoE approach, Vining
and Schaub [86] propose a methodology for estimation of both mean and variance
functions. They pursue two distinct approaches: a one-step approach which, in absence
of any information about the process variance, initially assumes that the process variance

is constant over the region of the interest; and a one-step, semi-Bayesian approach which
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attempts to develop an appropriate experimental plan in light of prior information about
the nature of the variance function. Then they compare these two approaches in a
simulation study to illuminate their relative advantages and disadvantages. Nguyen [63]
discusses the construction of near-orthogonal arrays for the situations where orthogonal

array design cannot be applied.

2.3.2. APPLICATIONS OF THE DoE APPROACH

The DoE approach exists since 1920s. It was originally developed for agricultural
studies and its applications were extended eventually. In this section, we mention some
studies in manufacturing systems using DoE approach.

One of the early applications on the assembly systems or assembly-like systems is
developed by Law [52]. He uses a 2° full factorial design to study the effects of the
system configuration, relative stage position, and buffer capacity allocation in automatic
transfer lines. He conducts the experiments using a discrete-time computer model
simulation. In this study, he states that second and third-order interactions can be
important.

Hubele et. al. [41] apply the DoE approach to the task of characterizing the
inspection capability of the machine vision component of an automated laser hole-drilling
and inspection system for gas turbine engine manufacturing. The machine is designed
with a closed loop algorithm. The authors state that “this study provided a better
understanding of the system’s capabilities and the user’s design requirements, which has

yielded system improvements.”

20



Leung and Sanders [54] use a factorial experimental design based on the discrete
event simulation results to discuss the effects of different design factors on the
performance of automatic assembly systems with tunnel-gated stations. These design
factors are the jam probability of the stations, the repair time of the stations, the balance
of the line, the buffer size between adjacent stations, and the position of the tunnel-gated
station in the combined buffer.

Jim Quinlan et. al. [72] use a modified DoE approach to identify the factors with
important effects on the shrinkage of the speedometer casing. Using an orthogonal array,
they determine that eight factors as important and design the casing accordingly.

One of the recent studies using DoE approach is conducted by Schaub and
Montgomery [75]. They apply the DoE approach to the stereolithography (SL) of turbine
engine airfoils. The process of rapid prototyping is a valuable asset to the aerospace
industry in that model engine parts may be produced in a solid form within a week of
developing the design. This replaces the older technique of producing a casting mold and
making a traditional model, which can take up to six months. Schaub and Montgomery
study the variables that will allow holding tighter tolerances. They state that the use of
statistically designed experiments resulted in increased process knowledge not only for

the particular test situation, but also indirectly for the overall operation of the SL process.
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2.4. ROBUST DESIGN AND ITS APPLICATIONS

Robust design is introduced and made popular by Taguchi. Therefore, the first
applications and still most of the applications are from Japan, although in the last two
decades it gained popularity in the North America and Europe. Consequently, we have
covered some studies on Taguchi’s contributions to robust design, as well as the recent
studies on the robust design. Section 2.4.1. presents the studies on the use of robust
design and Taguchi’s contributions. Section 2.4.2. discusses the application of robust

design in industry.

24.1. RECENT STUDIES ON THE USE OF ROBUST DESIGN AND
TAGUCHI’S CONTRIBUTIONS

Belegundu and Zhang [7] discuss the robustness of the designing mechanical
systems or components under uncertainty is considered. The basic idea is to ensure
quality control at the design stage by minimizing sensitivity of the response to uncertain
variables by proper selection of design variables. Parkinson et. al. (68] describe a general
approach for robust optimal design. The method allows a designer to explicitly consider
and control, as an integrated part of the optimization process, the effects of variability in
design variables and parameters on a design. Kusiak and Feng [50] discuss the robust
design at the tolerance design phase of the design of a product or a process.

Using a parametric approach reduces simulation development time for evaluating
system interactions in a FMS or FAS environment. Benjamin et. al. [10] develop an
approach to design robust systems using discrete-event simulation. Mayer and Benjamin

[58] study robustness in manufacturing systems using simulation. Wild [88] proposes a
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strategy for the use of design of experiments and simulation for robust design studies.
Literature on the Taguchi’s contribution is divided into two, as the supporters and
the critics. While supporters like Byrne et. al. [19] suggest that the techniques developed
by Taguchi should be applied as they are, the critics, among whom Box is the most
referred, argue that some of the techniques introduced by Taguchi are inefficient, if not
misleading. Box et. al. [14] reviewed the Taguchi’s contributions extensively. A brief
article by Hendrix [36] is a recent example on the critique of the techniques introduced by
Taguchi. Itano [42] deals with and uses only a small part of the Taguchi’s contribution.
He states that in applying Taguchi methodology the sensible user must only pick and use
those elements which are relevant to the problem in hand. Contrary to what the literature
seems to be saying there is no virtue in striving to include an Orthogonal Array or to look
for different types of noise every time unless there is a good reason to do so. There are
texts written on the Taguchi’s contributions and robust design and they provide

substantial information [6,30,69,70,73,80,81,83].

2.4.2. APPLICATIONS OF ROBUST DESIGN IN INDUSTRY

Among the leading pioneers of robust design in the USA is the AT&T Bell
Laboratories [8]. Many papers of AT&T co-authored by Kacker (from National Bureau
of Standards) and engineers from the AT&T Bell Laboratories.

The study by Kacker and Shoemaker [45] is important in this research, since we
follow a sequence that is similar to that is described in this paper. Kacker and Shoemaker
apply the robust design principles to improve the process of multiplexers where the major

problem is the variability in the index of refraction in manufacture and in the field, which
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is caused largely by changes in relative humidity. Since the control of humidity is
difficult and expensive, the experiment is designed to make the filter-making process to
be less sensitive to humidity changes by reducing the variance.

Another paper by Kacker and et. al. [44] describes one of the earlier experiments
at AT&T to optimize the process of forming contact windows in 3.5 um complementary
metal-oxide semiconductor (CMOS) circuits. As a large scale integrated circuit chip has
many thousand such windows, it is vitally important to produce windows with target
dimensions. The application of the robust design shows the variance of the window size
being reduced four-fold with a substantial reduction in the process time. From ITT
Cannon, White [87] uses a modified sequential approach to reduce the variance in gold
plating thickness on pin contacts by over 60%. Bandurek, Disney, and Bendell [5]
applied the robust design approach to the placement of surface mounted components on a
printed circuit board. The robust design techniques are slightly modified in order to
identify the critical noise factors which it may be possible to control at some other date.
Steve Orr et. al. [66] apply robust design approach to better understand and design a new
product. For an investment of $1,140 they claim a calculated saving by the plating source

of $300,000 per annum and an improvement in yield from 0% to 86.7%.
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CHAPTER 3
METHODOLOGY:

DESIGN OF EXPERIMENTS (DoE) AND ROBUST DESIGN

3.1. INTRODUCTION
In the last decades, several optimization methods such as Stochastic Quasigradient
methods (SQG) have been used to solve design problems in flexible assembly systems.
However, these methods have important weaknesses that are discussed below.
® They aim to find the optimal solution, not to search an optimal area. In other words,
they do not provide the flexibility of choosing the buffers within a range which in fact
is essential in many cases in practice.
® They completely ignore the changes in uncontrollable factors in the system, thus their
possible effect on the throughput. Consequently, the solution(s) they propose may

not give the expected efficiency and improvement.

In view of this, we propose the use of design of experiments (DoE) approach to
overcome such shortcomings of these optimization methods. The DoE approach is
chosen for the following reasons:
® Because it allows us to study the factors in different levels, the effects of the factors

and their interactions as a total, and most importantly to identify the important effects,
the DoE approach suits best for determining the buffer ranges that determine an

optimal area where throughput is maximum or near maximum.



e The robust design enables the system response (throughput) to be robust (i.e., stable,
unchanging) to uncontrollable factors. Clearly, robust design is the unique method to
determine the ranges of buffers in which the throughput is unchanging even though
the uncontrollable factors change in a small range. The DoE approach and the
statistical techniques that are discussed in next sections constitute the core of the

robust design.

The following sections (3.2. and 3.3.) discuss the DoE approach and the
techniques we will use in this research. The sections 3.4. and 3.5. review the robust
design and its techniques. Although the robust design is a specific case of the
applications of the DoE approach, we considered that it is more applicable to present it in
a different section. The section 3.5 summarizes the methodology and techniques we will

use in this research.

3.2. DoE APPROACH

The DoE approach covers many important topics. In the following sections,
however, we will mention the definitions and the arguments that are used throughout this
research. First, we will describe the approach generally, then discuss the strategies for the

designing phase and the comprehensive steps of the DoE approach.
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3.2.1. INTRODUCTION

The design of experiments (DoE) approach enables one to study the factors and
their interactions and to recognize how they affect the response. In other words, the DoE
approach is basically a set of experiments in which purposeful changes are made to the
input variables of a process or system so that one may observe and identify the reasons
for changes in the output of the response [62]. Consequently, the DoE approach provides
substantial information on the system in addition to suggesting the solutions to the
problem.

In the DoE approach, the factors have two or more levels. In this research, we
will define two levels (i.e., low and high levels) for each factor and choose the

appropriate design among the strategies discussed in the following section, accordingly.

3.2.2. THE STRATEGIES FOR CHOOSING THE EXPERIMENTAL DESIGN

There are three main design strategies for the DoE approach: full factorial
designs, fractional factorial designs, and orthogonal arrays. The full factorial design
(see Figure 3.1.) enables the experimenter to study all the factors and their interactions.
When the interaction effects are considered as potentially important and if it is
economically or timely feasible, the full factorial design is recommended. The
nomenclature definition of the full factorial design is a® where

a : number of levels of each factor  (which is 2, in all cases of this research)

b : number of factors
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An example of the full factorial designs, a 2* design, is illustrated in Figure 3.1.
The design of sixteen experimental runs provides information on the four main factors
and all of their interactions.

On the contrary, the fractional factorial design (see Figure 3.2.) offers more
economical and less time-consuming designs where the experimenter can study most of
the factors and their interactions. However, the trade-off is that we lose some of the
information on the effects of the main factors and/or their interactions, due to
confounding.

In order to reduce the number of the experimental runs required, some of the
interactions and/or main factors are assigned to the same column, i.e. confounded. In
other words, the confounded factors’ and/or interactions’ effects are not distinguishable
from one another. However, there are several types of design resolutions available that
confound the main effects with interactions of different number of factors (see Appendix
I, section 1.1.)

The nomenclature definition of the fractional factorial design is a,”¢ where

a : number of levels of each factor  (which is 2, in all cases of this research)

b : number of factors

c : the fraction level; i.e., the a° experiments will not be conducted, comparing to

the full factorial design of a®

d : the resolution level (see Appendix 1, section 1.1.)

The 2p,%* design is disclosed in Figure 3.2. as an example of the fractional

factorial designs with IV resolution. In this design, eight factors can be examined as well
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as their interactions of three and less factors in sixteen runs, instead of 256-run full
factorial alternative.

The third design strategy is using the orthogonal arrays (see Figure 3.3.). They
are, in fact, fractional factorial designs based on using symmetrical subsets of all the
combinations of factor levels in the corresponding full factorials. Although they were
discovered considerably earlier, it is only in the last two decades that they became popular
and associated with Taguchi methodology. Taguchi, a renown J apanese expert on
quality, modified the orthogonal arrays in such a way that they now are easy to use and
provide an important practical alternative for the experimenters who want to study many
factors in a very small number of experimental runs. Orthogonal arrays emphasize the
investigation of the main factors with a small design, while ignoring most of the
interactions [9].

The nomenclature definition of orthogonal arrays is L, (b°) where

a : number of experimental runs

b : number of levels of each factor (which is 2, in all cases of this research)

¢ : number of columns in the array

Arrays can have factors with many levels, although two and three level factors are
most commonly encountered. An L (2'5 ) array, as illustrated in Figure 3.3., for
example, can handle up to fifteen factors at two levels each, under sixteen experimental
conditions.

Li2, Lig, Lss and Lss arrays are among a group of specifically designed arrays that
enable the designer to focus on the main effects. Such an approach helps to increase the

efficiency and reproducibility of small scale experimentation. Among them, the L5 is the
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most widely used array for DoE applications of AT&T Bell Laboratories, Xerox

Corporation, ITT, and other corporations [82].

3.2.3. THE COMPREHENSIVE STEPS OF THE DoE APPROACH
We follow the basic DoE steps as suggested by Montgomery [62]:
1. Recognition and statement of the problem.
2. Choice of factors (decision variables) and levels. (the levels are chosen as two
for all factors)
3. Selection of the response variable. (our response variable is the throughput)
4. Choice of the experimental design. (the design alternatives are discussed in the
section 3.2.2. ; in addition, the replications for all cases are determined as ten for
each experimental run)
5. Performing the experiment. (discrete-event simulation is used)
6. Data analysis. (discussed in the next section)
7. Conclusions and recommendations. (follow-up runs and confirmation testing

should also be performed to validate the conclusions from the experiment)

The objective of the DoE approach is to improve the system by selecting the
appropriate levels of the factors. If, for example, the system can be improved by the
increase in the system response , then the conclusion phase will propose choosing the
high levels for the factors that have important positive effects and the low levels for the
factors that have important negative effects. In other words, in the DoE approach, the

important effects are determined and then the appropriate levels of these factors that have

30



important effects are suggested. Finding which factors have important effects is the

analysis phase which is discussed in the following section.

3.3. DATA ANALYSIS PHASE OF THE DoE APPROACH AND THE
STATISTICAL TECHNIQUES USED FOR DATA ANALYSIS
Data analysis step combines several techniques such as F-test, t-test, normal
probability plotting, and residual analysis to analyze the results (throughputs) obtained
from the experimental runs of the DoE using discrete-event simulation. The analyses are
used to identify the important effects on the response and to verify that results and
conclusions are objective rather than judgmental in nature. If the experiment has been
designed correctly and if it has been performed according to the design, then the
statistical techniques required are not elaborate [62].
Briefly, the steps of the analysis phase of the DoE approach and techniques used
can be outlined as follows.
e apply the F-test and t-test to the results of the experimental runs to verify the
experimenting and the results obtained (see Appendix 1, section 1.2.2.),
e calculate the effects of the decision variables (see Appendix 1, 1.2.3.),
e plot the effects on the normal probability paper by applying the normal probability
data plotting techniques (see Appendix 1, 1.2.4.),
¢ determine the important effects and make conclusions accordingly,
e calculate the residuals and plot the residuals (residual analysis) to verify the

conclusions made above,
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® make final conclusions accordingly.

The complete steps of the analysis phase of the design of experiments (DoE)
approach are demonstrated in a flow-chart in Figure 3.4. The statistical techniques used

in this phase are explained in the Appendix 1, section 1.2.

3.4. ROBUST DESIGN

Robust design is an important application of the DoE approach that aims to reduce
the variability of the system against uncontrollable factors. Although it basically uses the
DoE approach and techniques, robust design has a special design, called “the inner-array
outer design”, and a different objective. Therefore, we present the robust design in a
different section from the DoE approach. In the following sections, the robust design
and basic definitions such as control factors and noise (uncontrollable) factors, the inner-

array outer array design, and the steps of the robust design are briefly discussed.

34.1. INTRODUCTION AND BASIC DEFINITIONS (NOISE FACTORS,
CONTROL FACTORS, AND Variance s )

Robust design is the ability to design a product or process to be resistant to
various environmental factors that change uncontrollably [73]. In other words, robustness
of a product or a process is considered as its ability to perform as expected, even when

faced with forces or conditions that tend to degrade its performance [29].
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Robust design is used to improve the performance without controlling or
eliminating causes of variation. It is the phase where certain parameters of a product or
process are set to make the performance less sensitive to causes of variation [73].

Factors can be grouped in two main groups, as control factors and noise factors.
Control factors are those factors that can be controlled in the design of a product, the
design of a process, or during a process. In this research, the control factors are the buffer
sizes in the AAS. On the contrary, noise Jactors (uncontrollable factors) are the factors
that cannot be controlled or are preferred not to be controlled for cost reasons. Noise
factors may be controlled temporarily, but on a continuous basis they are either too
expensive or impossible to control [73]. In this research, jam rates (the probability of the
Jjam occurrences at a workstation) and Jjam clear times (the time required to clear the jam
from a workstation) are considered as noise factors.

Robust design aims to lower the effect of noise, in other words to reduce variance.
In order to separate this type of variance, we will use the term variance with respect to
noise factors ( variance, . ) henceforth. The variance, s is the variance of the system
response (throughput) considering the change in control factors [45]. It measures the
variability of the throughput with the same configuration of buffers while the noise
factors change. In this research, the variance, ., is used to define the variance of the
throughput (TP) while the buffers configuration is kept fixed and noise factors change.

Robust design is used to reduce the effect of noise (reduce variance,.) by
choosing the proper level for control factors. In robust design, the major emphasis is
placed on true control factors and very little emphasis on true noise factors. Primarily,

noise factors are used in experiments to expose the robust levels of control factors [73].
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3.4.2. THE INNER-OUTER ARRAY DESIGN

The main design strategy for robust design is called as “the inner-outer array
design” (see Figure 3.5.). This design strategy separates the control factors from the
noise factors by using inner and outer arrays, respectively. The noise factors are assigned
to the outer array to find some level of a control factor that does not result in much
variation in the TPs (i.e., variance,ns) in spite of the noise factors definitely being
present.

The secondary part of the design strategy is to find the most suitable design for
both control factors and noise factors among the strategies discussed in section 3.2.2.,
namely full factorial design, fractional factorial design, and orthogonal array. The choice
must be made accordingly.

Figure 3.5. demonstrates an example of the inner-outer array design for seven
control factors and three noise factors, with the Lg (27) and L4 (23) orthogonal arrays,

respectively.

3.4.3. THE COMPREHENSIVE STEPS OF THE ROBUST DESIGN

The steps to follow for robust design are fundamentally similar to those of the
DoE. Yet, because the objectives of the DoE and robust design are different, there are
important distinctions in some steps. The DoE aims to increase the throughput. On the
contrary, robust design targets the reduction of the variance,ms. As a result, considerable
differences occur in the choice of factors, choice of experimental design, and analysis

phases between the DoE and robust design.
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In this research, we follow the basic robust design steps as Ross suggests [73]:

I. The planning phase:
1. State the problem(s) and the objective(s) of the experiment.
2. Select the response variable(s).
3. Select the factors that may influence the selected response variables.
4. Identify control and noise factors.
5. Select levels for the factors.
6. Select the appropriate design (full, fractional, or orthogonal array) for control
factors.
7. Assign control factors (and interactions) to the columns of the selected design
which occupies the inner array
8. Select the appropriate design (full, fractional, or orthogonal array) for noise
factors.

9. Assign noise factors to columns of the selected design that occupies the outer

array.

II. The conducting phase:

10. Conduct tests described by experiment runs in selected designs (i.e.,

according to the specific configurations that are described).
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II. The analysis phase:
11. Analyze and interpret results of the experimental design (aim to reduce
the variance, ).
12. Conduct confirmation experiment.

The analysis phase is discussed in detail in the following section.

3.5. THE ANALYSIS PHASE OF ROBUST DESIGN AND THE STATISTICAL
TECHNIQUES USED FOR DATA ANALYSIS

Although robust design is a special application of DoE approach, the objectives of
the DoE approach and robust design are very different. While the DoE approach aims to
increase the throughput by choosing the factors with important effects at their high levels
(low level, if the effect is negative), the robust design concentrates on reducing the
variability of the throughput by choosing the factors with important effects at their low
levels (high level, if the effect is negative).

Consequently, there are some fundamental differences in use of the techniques. In
robust design, the normal probability technique has a different results column;
varianceynyy. This column is composed by the variances of TP with respect to the noise
factors corresponding to each buffer configuration (i.e., the row of the inner-array design.)

The calculation of the variance,my is discussed in Appendix I, section 1.3.1.

The steps of the analysis phase of the robust design can be outlined as follows.
e apply the F-test and t-test to the results of the experimental runs (throughputs) to

verify the experimenting and the results obtained,
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* calculate the variance,,s for each row of the inner array as described by Kacker [45],

e calculate the effects of the varianceynn; and plot the effects on the normal probability
paper by applying the normal probability data plotting techniques,

® determine the important effects and make conclusions accordingly,

e calculate the residuals and plot the residuals (residual analysis) to verify the
conclusions made above,

¢ make final conclusions accordingly.

Complete steps of the analysis phase of the robust design are demonstrated in a
flow-chart in Figure 3.6. The statistical techniques used in this phase are explained in

the Appendix 1, section 1.3.

3.6. THE SUMMARY OF OUR METHODOLOGY

We use the design of experiments (DoE) approach to overcome the shortcomings
of the commonly used optimization methods, such as Stochastic Quasigradient methods
(SQG).

We have two objectives in this research for which the DoE approach is the most

suitable methodology:

® determining an optimal area by identifying the appropriate buffer ranges that give

maximum or near maximum throughput,

® robust design of the AAS against noise factors.
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The DoE approach allows one to study the effects of the factors and the
interactions, and the importance of these effects on the system response. Although the
robust design is a special application of the DoE approach, the goal of the robust design
differs. The DoE approach aims to improve the system by increasing the system response
(throughput). Conversely, robust design aims to improve the system by reducing the
variance of the throughput with respect to noise factors (i.e., uncontrollable factors).
Apart from this important difference in their objectives, other steps and techniques used
in the DoE approach and robust design are similar, as discussed in previous sections.

In the following chapters, the objectives of this research and studies conducted for
these purposes are discussed. Chapter 4 covers the first objective, that is the determining
an optimal area of buffer sizes that give maximum or near maximum throughput. For this
purpose, we will determine the appropriate levels of the buffer sizes. Chapter S discusses
the robust design studies. In this chapter, we will include the noise factors, which are the
jam rates and jam clear times, into the systems. Our objective is to determine the
appropriate levels of control factors (i.e., the buffer sizes) that reduce the variance of the
throughput with respect to noise factors (variancewnyy). Finally, Chapter 6 reviews the

research as a total and make suggestions for further study.
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Figure 3.1.

2* full factorial design

exp. factors (main factors and interactions)
# 1 | 23| 4 (12|13 14|23 24|34 |123]124] 134
1 - - - -+ ]+ |+ |+ )+ +] - - -
2 + - - - - - S I T O S B S 8
3 - + | - - -+ |+ - -+ + | + -
4 + [ + | - -+ ] - - | - -+ - - +
5 - -+ -+ -+ -+ -+ - +
6 + | -1+ - -+ - -+ - - + -
7 - + | + | - - - + |+ | - - - + | +
8 + 4+ + ]| -1+ + ) -]+ - -+ - -
9 - - -+ +{+] -+ - - - + | +
10 | + ) - -+ -f-1+]+1- -+ | - -
11 - + 1 -]+ -1+ -] -1+ -1+ - +
121+ +] -1+ ]+ -]+]-1+1- - + -
13 - -+ + |+ - - - -+ |+ | + -
14 | + -+ |+ -+ + | - -+ - - +
15 - + |+ + | - - -+ + |+ - - -
16 | + |+ |+ |+ |+ |+ +|+|+]+]+[+]+

- : low level of the factor, + : high level of the factor
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Figure 3.2. 2v** fractional factorial design (resolution I'V)

5=234, 6=134, 7=123, 8=124

exp factors:
run {1 (2 (3 (4 |5 |6 |7 |8
# interactions: 234 1134 (123 | 124 {12 |13 |14 |23 |24 [34 [1234
1 - - - - - - - -+ |+ |+ |+ + |+ O+
2 + | - - - -+ |+ + ] - - -+ + | + -
3 -+ - -]+ - + |+ -+ + ] - - |+ -
4 + | + | - - + | + - -+ | - - - - + +
5 - -+ | - + | + | + -+ ] - + | - | + - -
6 + | -+ - + - - + | - | + - - |+ - +
7 -+ + ] - - + - + | - - + | + | - - +
8 |+ + | + | - - - + [ - |+ |+ -+ - - -
9 - - -1+ + | + - + | + | + -+ | - - -
10 | + | - -+ + | - + - - - + | + | - - +
11} -+ | - | + -+ | + - - |+ - - |+ - +
12 | + | + | - | + | - - -+ + | -+ -]+ | - -
13 -] -1+ +| - -+ + |+ - - -1 - |+ +
14+ - | + | + - | + - - -1+ | + | - - + -
IS -+ |+ + | + | - - - - - -+ ]+ |+ -
16|+ |+ ]+ |+ |+ +|+]|+|+[+]+]+]+]+ +

- : low level of the factor, + : high level of the factor
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Fig. 3.3. Li(2'°) Orthogonal Array Design

exp factors
wn 1 2] 3 4( 5| 6 7| 8| 9| 10] 11| 12] 13| 14| 15
# a| bjab| c| ac| bc{ ab| d| ad{ bd| ab| ¢d| ac| be | ¢
d
1| - | -1 -1-1-1-T1T-T1T_-1T°2 - - - - - -
2 - - - - - - - + |+ + |+ ]+ + | + | +
3 - - - + | + | + | + - - - - + + | + | +
4 - - i e A B S N N B N I S Y S PR R - - -
5 - + | + - - + | + - - + + - - + +
6 -+ ] + | - - + [+ | + | + - - + | + - -
7 - + | + | + | + - - - - + + | + | + - -
8 - + | + | + | + - - + | + - - - - + +
9 | + | - + | - + - + - | + - + - + - +
10| + | - + | - + - + | + | - + - + - + -
11| + | - + | + ] - + - - + - + | + - + -
12 ) + | - + | + | - + - + | - + - - + - +
13 + | + | - -+ | + - - + | + - - + | + -
14 + | + | - -+ ]+ - + - - + | + - - +
IS | + | + - + - - + - + | + - + - - +
16| + |+ | - | + | - - + | + | - - + - + | + -

- : low level of the factor, + : high level of the factor
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Figure 3.4. The complete steps of the analysis phase of the DoE approach

get the throughputs(TP)
from conducted exp.runs

N

apply the F-test to them
chec.k the NO
experiments
check the NO
experiments
calculate the effects using
normal probability p[otting
N
find important effects and
make conclusions
check the validity of the
model and conclusions
with residual analysis
Check the
experiments NO
and analyses OK?

YES

make the final conclusions @
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Fig. 3.5. Robust design for 7 control factors and 3 noise factors with Ls 2") and L,

2% orthogonal arrays (Ls * Ls = 32 runs)

nomenclature: TP; : The system response (Throughput) with ith order of control
factors configuration and jith order of noise factors configuration.
- : low level of the factor, + : high level of the factor

Noise Factors

1 2 3 4 run

- + - + 2 tor
- + + - 3 s

Control Factors

factors

run / 2 3 4 5 6 7

1 - - - - - - - TPy TP TPy3; TPy

2 - - - + + + + TPu TPn TPx TPy

3 - + + - - + + TPy TPy TP3;; TPy

4 - + + + + - - TPy TPy TPy TPy

5 + - + - + - + TPsi TPs; TPs; TPsy

6 + - + + - + - TP TPs; TPe3 TPy

7 + + - - + + - TPn TPy TPy; TPy

8 + + - + - - + TPy TPgp TPg  TPgy
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Figure 3.6. The complete steps of the analysis phase of the robust design

get the throughputs(TP) from
conducted exp.runs of the
inner-outer array design

apply the F-test to the TPs

check the NO
experiments
apply the t-test to the TPs
check the NO
experiments
CALCULATE THE VARIANCE
WITH RESPECT TO NOISE FACTORS

N

calculate the effects on variance,ms
using normal probability plotting

find important effects and make
conclusions (aiming to reduce variance,,ry)

N
check the validity of the model and

conclusions with residual analysis

Check the NO
experiments OK?
and analyses

make the final conclusions @



CHAPTER 4
DETERMINING AN OPTIMAL AREA
IN ASYNCHRONOUS ASSEMBLY SYSTEMS

USING DESIGN OF EXPERIMENTS (DoE)

The design optimization of the asynchronous assembly systems is a complete task,
thus needs many assumptions to simplify the problem that results in a problem-solving-
approach focused only in one area. Consequently, the studies conducted have so far used
the stochastic optimization algorithms and terminated their studies at a particular optimal
solution. In this research, we have enlarged the optimal area by determining an optimal
area of control factors. In addition, by conducting these studies, we can also provide the
design engineer the information on the effects of the decision variables, the design
engineer can have a guideline and design the system more consciously.

For this purpose, we use the DoE approach and propose the optimal/near optimal
buffer ranges that give the maximum or near maximum throughput (TP). In other words,
we determine an optimal area of buffers by identifying the optimal ranges. The DoE
approach provides the information needed by both determining the decision variables that
affect the throughput most and optimizing the process (i.e., determining an area in which
the important factors give best possible response [62]). Therefore, by using the DoE
approach, we study the effects of decision variables (i.e., buffer sizes) and identify the
ranges of buffers that give the maximum/near maximum systems response (i.e.,

throughput), thus determine an optimal area.
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In addition to determining an optimal area, we propose that the Doe approach can
also be used as a heuristic optimization tool (see section 4.4.2.). Because of its special
design and substantial information it provides on both the variables and the system, DoE
approach can be used to determine an optimal/near optimal area for the buffer sizes.

In this chapter, we are also interested in the effect of the number of pallets in the
system. In an attempt to study its effect on the throughput, we have studied the cases
where the number of pallets is also considered as a decision variable (see section 4.4.1.).

The following section, 4.1., reviews the asynchronous assembly systems (AAS).
Section 4.2. defines the objective studied in this chapter as well as the system parameters.
Section 4.3. discusses the methodology we will use to determine an optimal area.

Section 4.4. presents the studies conducted. Several types of AAS are studied.
Section 4.4.1. discusses the studies in systems previously optimized using the Stochastic
Quasigradient Methods (SQG). Section 4.4.2. presents the studies where the DoE
approach is used as the optimization method. Finally, the conclusion of the studies

conducted and our objective are discussed in section 4.5.
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4.1. ASYNCHRONOUS ASSEMBLY SYSTEMS

Assembly systems can be classified as synchronous and asynchronous assembly
systems. In synchronous assembly systems all stations have identical cycle time (i.e.,
operation time of each product unit.) When one unit of cycle time passes, the product is
automatically moved to next station. On the contrary, in asynchronous assembly systems
(AAS) workstation can work more independently. The removal of the product unit from
the workstation may occur after the workstation completes its operation. Clearly, the
asynchronous systems ate more beneficial, because when a stoppage occurs at a
workstation, the rest of the system can continue to operate, whereas in a synchronous
system the entire assembly process also immediately stops [55].

There are two common configurations for AAS: In one configuration, there is the
single station where alternative tasks are performed by either a human operator or robot,
and transporters carry both parts and assemblies to and from one single fixed location.
The other configuration is the assembly line, where a number of assembly stations are
arranged in a series configuration joined by a transport system. Since the assembly is
usually carried on a fixtured pallet on the transporter and the pallets must be returned
from the final assembly station to the first one to receive a new assembly base, the actual
configuration of the system is most often an oval rather than a line, which is called a
closed-loop assembly system [36] (see Figure 4.1.) The closed-loop asynchronous
assembly configuration ranges in size from two or three stations in flexible robotic
assembly systems up to well over one hundred stations in certain high speed (usually hard

automated) assembly machines [55].
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Automated assembly systems are capital intensive and must be kept running to be
justifiable. Breakdowns of single workstation or the entire system are particularly
important issues in design of such systems. As the number of workstation in the system
increases, the probability of all stations being operational decreases. Buffers, though
expensive to install and maintain, provide a means for insulating workstations from
failures elsewhere in the system, thus improving station utilizations [4].

A station may not be operational for the following reasons [4]:

1. Station failure (jam)

2. Total system failure

3. Station blocked

4. Station starved

Station failures, i.e. jams, are caused by events such as a fractured tool, quality
out-of-control signal, missing/defective part program, or Jjammed mechanism. Although
the failed station must stop producing, other stations may continue provided that they are
fed product and have space for sending completed product. A total system failure occurs
if all stations are not operational, in the events such as a power outage or an error in the
central system controller. When the preceding buffer is empty or the following buffer is
full, the station is not operational either. In the former condition, the workstation is
starved; in the latter it is blocked.

In this research we are particularly interested in the blocking and starvation
effects, because they are dependent on the buffer sizes and the number of pallets in the
system. Station i is blocked if on completion of a cycle it is unable to pass the part to the

station i+/. The inability to pass the part may be due to a failure of a downstream station
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with the intermediate buffer between these stations currently being full. If station i+/ is
down, and its input buffer is full, then station i must remain idle while it waits for
downstream space for the just completed part. On the other hand, station i is starved, if
an upstream failure has halted the flow of parts into station i. In other words, even if
operational, a starved station will become idle.

In brief, material handling systems (i.e., pallets) and buffers have a great
importance on the system and the throughput, due to above mentioned effects and jams.
Buffers allow workstations to start production cycles independently and the number of
pallets affects the number of completed tasks to be carried forward. Consequently, the
design optimization of buffer sizes and the number of pallets have an important part

among the engineering design optimization problems in asynchronous assembly systems.

4.2. DEFINITION OF THE OBJECTIVE AND SYSTEM PARAMETERS

The objective of this chapter is to determine an optimal area for the buffer sizes in
asynchronous assembly systems. For this purpose, we will determine the appropriate
ranges for decision variables (i.e., buffer sizes) that give maximum system response (i.e.,
throughput: TP). In other words, our objective is to find the appropriate levels for buffers
where the TP will be maximum. In order to determine the appropriate levels, thus ranges,
we first study the effects of the buffers on the TP and choose the levels of the buffers with
important effects accordingly, then define the ranges (both levels) for other buffers.

In addition to this objective, we attempt to study the effects of the number of
pallets in the AAS as well as proposing the use the DoE approach as a heuristic

optimization tool. In order to study how the number of pallets affects the throughput, we
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add it as a decision variable in the systems discussed in section 4.4.1. (see Design 2)

Section 4.4.2. presents the cases where the DoE approach is used as the heuristic

optimization method.

System parameters:

The systems we investigate are closed-loop asynchronous assembly systems as

described in section 4.1. and in Figure 4.1. In such systems, a set of assembly stations are

arranged in tandem according to the order of assembly operations performed.

Consequently, the major parameters that will be considered throughout this

research as follows.

L.

2.

cycle time for each station; deterministic and 5 time units,

unit transport time for the pallets; deterministic and 1 time unit per buffer unit,
Jam rate (i.e., the probability of the jam occurrence at each station; see below),
jam clear time (i.e., the time needed to make the station operational again; see
below),

mix of assembly types; constant at any given time,

buffer sizes between each pair of workstations (see below),

number of pallets in the system; kept fixed in most studies (see below).

The probability of jam occurrences is expressed in percentile and kept fixed; jam

rates are determined in each study. Jam clear times are expressed with geometric

distributions with a mean of which is also determined in each study. It is assumed that

Jam rates and jam clear times are independent.
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The distance between two adjacent stations (connected by a transfer chain or
conveyor) and the pallet dimensions determine the number of pallets that can be
accommodated between these adjacent stations. The maximum amounts for these Work-
In-Process (WIP) inventories between each pair of stations in the system constitute the
buffer sizes [27].

Selecting an appropriate buffer sizes for the transport systems of automated
manufacturing systems is a complex task that must account for random fluctuations in
production rates by the individual stations as well as for transport delays that are a part of
material handling system [27]. If buffer sizes are too large, then transport delays are
excessive and more in-process inventories must be input into the system to accommodate
the large buffer sizes. If the buffer sizes are too small, then small processing delays will
cause buffer to fill, and upstream workstations will be blocked from releasing complete
work piece. With a fixed number of pallets in the system, there is always an optimal
buffer configuration capable of reducing blocking and starvation effects considerably to
yield 2 maximum possible production rate [27,6]. Therefore, in most studies, we will
keep the number of pallets fixed, with the exception of some studies presented in section

4.4.1. where we have studied the effects of the number of pallets in the system.

4.3. METHODOLOGY

In this chapter, we have followed a standard sequence of the DoE approach as
described in section 3.2.3. the methodology can be summarized as follows.
The objective described in the previous section can be generally addressed as

follows. In the given AAS parameters, find the optimal buffer levels of the AAS to yield
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a maximum or near maximum achievable production rate (i.e., throughput: TP).
Accordingly, the decision variables are the buffer sizes between the pair workstations and
the objective is to find the appropriate buffer levels that maximize the TP.

In order to accomplish this objective, the DoE approach is used. The low and
high levels of buffer sizes are chosen based on the optimal solutions previously
determined using SQG optimization methods [55] (see Table 2.1. in appendix 2). Then,
the appropriate experimental design is selected among the strategies described in section
3.2.2. (see the Design I in the table, page 55). In these designs, the buffer levels are
varied systematically for each run. Experiments are conducted using the modified
version of the discrete-event simulation program written by Diwan [27] and following the
buffer configurations for each run defined in the selected design. Expected mean value
and the variance of the TP for each run (10 replications conducted for each run) are
obtained from the simulation runs. Then, the effect of each buffer space is calculated
using the methodology described in Appendix 1, section 1.2.3. Then, by applying the
normal probability paper technique, the effects of buffers are plotted to graph and the
large effects (i.e., the ones that are distinguishable) are identified. To verify these
conclusions, residual analysis is applied for diagnostic checks and final conclusion is
made as follows. The buffers with large positive effects are chosen fixed at their high
levels and buffers with large negative effects are chosen fixed at their low levels. Other
buffers (i.e., the ones with no large effect on the TP) can be chosen within a range.
Therefore, by keeping the ones with large effects fixed, we provide the flexibility to

choose other buffers within a range. Consequently, we provide the design engineer as
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many alternatives as possible for buffer size selections. In order to verify these final
conclusions, confirmatory experiments are conducted.

In addition, in an attempt to study the effects of number of pallets, we add it as a
decision variable and select a design accordingly (see Design 2 in the table, page S5; in

section 4.4.) Then we follow the sequence described above.

DoE as the optimization method:

The initial levels of buffer sizes are chosen with two different approach. In the
first study, the initial levels are chosen considering the previous studies and engineering
knowledge (see Appendix 2, section 2.2.1.). In the second study, the initial values are
chosen without taking any previous knowledge into consideration (see Appendix 2,
section 2.2.1.)

In order to perceive that we are in the optimal area, we simultaneously check the
effects of the buffers and the variance range of the TP in that particular set of
experiments. We stop when the effects of buffers are small (or indistinguishable) as well
as the variances of the any pairs of the TPs in that particular set of experiments (i.e..
varianceapynworp) are small enough. The variances of the TPs (i.e., varianceanynyorp) are
calculated for each combination of the TPs. The variancegnynorp  is calculated as

follows.

meananyrwotr(ij) = ( TP,' +7TP ,-)/2

. 2 2 2
varianceanynorr(ij) = [ 2*(TP;* + TP;°) - mean anywoTP(iji} | 2
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where TP; and TP; are the throughputs obtained from the experimental runs i and j,
respectively.
In brief, the methodology for the buffer sizes optimization using the DoE

approach can be outlined as follows.

e choose the initial levels for the buffer sizes

e select the appropriate design (see section 3.2.2. and the table in section 44)

e conduct the set of the experiment using discrete-event simulation

e analyze the data using normal probability plotting, identify the important effects and
choose the levels accordingly

e apply the residual analysis to verify the conclusion

® make the final conclusion accordingly (determine the buffer levels)

e then, conduct the next set of experiment, analyze the data, and choose the appropriate
levels of buffers accordingly.

® continue experimenting until the effects are indistinguishable and varianceapynvorp is

small enough.

4.4. IMPLEMENTATION

We have first investigated several systems that were previously studied by using
Stochastic Quasigradient Methods (SQG) as the optimization methods and determined
the optimal area for buffer sizes using the DoE approach. In addition, we have studied
the effects of the number of pallets in such systems. Finally, we have applied the DoE
approach as the optimization tool to AAS. Following sections present the conclusions of

these studies. The following table 4.1. lists all Tables and Figures used in these studies.
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Table 4.1. Tables and Figures used in the following studies:

Section 4.4.1. 4.4.2.
system Typel | Type2 | Type3 | Typed | systems | Type5 | Type 6
Tables & Design optimization:
Figures:
designs for designs Lis
bllffel‘s 2w|0-5 2N|0-5 2wlo-5 2w10-5 for 25
(Design 1) Type ="
5&6
designs for initial | Table | Table
buffersand | 2n'"® | 2a' | 20" | 24" | ranges | 4.5.1. | 461
pallets of
(Design 2) buffers
initial Table | Table | Table | Table. | optimal | Table | Table
rangesfor | 4.1.1. | 42.1. | 43.1. | 44.1. | buffer | 452. | 462,
Design 1&2 ranges
bufferranges | Table | Table. | Table. | Table. | graphs | Fi gure | Figure
thatdefine | 413 | 4.2.2. | 432 | 442 | ofthe | 451 | 467
the analyses & &
optimal area of last
(fo" Designl) step 4.5-2. 4.6.2.
graphical | Figure | Figure | Figure | Figure | explana | App., App.,
resultsof | 41.1. | 4.2.1. | 43.1. | 44,1 | tionsof | section | section
the analyses & & & & steps 2.2.1. 2.2.2.
ofDesignl | 412 | 422 | 432 | 442
graphical App., App., App., App., | graphs | App, App.,
results of Figure Figure Figure Figure of the Figure Figure
the analyses | 2-1-1. & | 22.1.& [ 23.1.& | 2.4.1.& | analyses | 2.5.1.1. | 2.6.1.1.
of Design 2 2.1.2 2.22. 23.2. 242, of the to to
steps 2.5.3.2. | 2.6.5.2.
results of App., App., App., App., results App., App..
exp. runs Table | Table | Table | Table | ofexp. | Table Table
of Design1 | 2.1.1. | 221. | 231. | 24.1. | runsof | 25.1.1. | 26.L1.
steps to to
254.1. | 2.6.6.1.
results of App., App., App., App., | conclu- { App, App.,
exp. runs Table | Table | Table | Table | sionsof | Table Table
ofDesign2 | 2.12. | 2.22. | 232 | 242 | steps 2-5t-1-2- 2'6£l'2'
(o} (o}
2.532. | 2.6.5.2.

App. : Appendix
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4.4.1. DETERMINING THE OPTIMAL AREA FOR THE SYSTEMS
PREVIOUSLY STUDIED WITH THE SQG AS THE OPTIMIZATION METHOD

In this research, we have extended the SQG optimization study by determining the
optimal area for buffer sizes. Liu and Sanders applied the Stochastic Quasigradient
methods (SQG) to optimize the buffer allocations in the asynchronous flexible assembly
systems [55]. This research proposes the use of the DoE approach to overcome the
shortcoming of the SQG study (i.e., not being able to provide an optimal range for the
decision variables) which is necessary in most cases in practice. For this purpose, we
have determined the appropriate levels of buffers using the DoE approach.

Secondly, we studied the effect of the number of pallets in AAS by adding it as a
decision variable (Design 2 studies). Studies with four systems indicated a significant
effect of the number of pallets in AAS. In all cases it affected the TP significantly, thus
we were not able to find an optimal buffer configuration. The results and conclusion of
these studies are presented in Appendix 2, section 2.1.

Following discusses the conclusions of optimal area studies (Design 1 studies) for

each type of system, then makes final conclusions.

Type 1 Systems (Uniform Stations That Are Subject To Jam):

In their study, Liu and Sanders stated that if all stations in an AAS have the same
performance characteristics, the buffer sizes can be expected to be the same [55]. Inour
study, we have observed that the buffers may have different sizes, even though all stations
are uniform. In other words, some buffers needed large space while some could be

chosen within a range. Thus, by conducting this study, we could provide a flexibility for
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buffer size selections. The proposed optimal buffer size ranges for the engineering design
phase of the buffer sizes for Type 1 systems and results of the confirmatory experiments

are disclosed in Table 4.1.2.

Type 2 Systems (Stations 2, 3, and 7 Subject To Jam; With Same Jam Rate):

We have found that the buffer between two non-zero-jam-rate stations (b,) needs
the most buffer size, a conclusion which supports the one by Liu and Sanders (i.e., we
should allocate more buffer units to the buffer between stations 2 and 3; by; [55]). In
addition, we have discovered that all other buffers between the non-zero-jam-rate stations
also affect the TP. Our conclusions of the optimal buffer sizes in such systems and

results of the confirmatory experiments are listed in Table 4.2.2.

Type 3 (Stations 2 4, and 6 Subject To Jam; With Same Jam Rates):

Analyses showed that the buffers adjacent to any non-zero-jam-rate stations
needed the most space, with one exception; b;. Although it is between a jam free station
and a non-zero-jam-rate station and has relatively small buffer size, b; needed a small
space; a conclusion that contradicts to the statement by Liu and Sanders (i.e., we should
allocate more buffer units between any stations with high jam rates; [55]). The next two
buffers needed large space, as expected. There is another interesting result we have
gathered in this study: All buffers have somewhat considerable effect on the TP,
although the three mentioned above are the most important ones. Thus, it is advisable to

choose as many among the bg, by, bg, by, and bg as possible at low levels and for the b,
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and bs at high levels. Our conclusions for the optimal buffer sizes in Type 3 systems and

the confirmatory experiments are listed in Table 4.3.2.

Type 4 Systems (All Stations Are Subject To Jam)

This study supported the conclusion by Liu and Sanders stating that the best
buffer allocation pattern is to have larger buffer sizes before and after high-jam-rate
stations in order to decouple the interaction effects. These interaction effects at a station
can be from both high-jam-rate stations or low-jam-rate stations. The largest two effects,
namely b; and b, , represent the buffers between the stations with low-level and high-
level jam rate and have relatively broad size, yet still need the largest size possible. The
third effect, bio (also needs large space), and the effect, by (needs small space), are
between two low-level-jam-rate stations. Following this conclusion, we have suggested
the optimal buffer ranges listed in Table 4.4.2. and confirmatory experiments

corroborated with our conclusion, as seen in the same table.

Conclusion:

We have reached important conclusions in this study. We have shown the
statements made by Liu and Sanders studying the same systems do not necessarily reflect
the real character of the systems (see section 4.4.1., Type 1 and Type 3 systems). In other
words, previous studies in literature not necessarily provided enough information to make
general conclusions. However, by using the DoE approach, we have collected substantial

information on the systems and the effects of the buffers, which offers design engineer a
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considerable amount of flexibility and a better understanding in design. Furthermore, we
have studied the effect of the number of pallets in the systems.
In brief, using the DoE approach, we were able to study these systems in such

detail, thus gather information that would help one design such systems more in control.

4.4.2. DETERMINING THE OPTIMAL AREA FOR THE SYSTEMS STUDIED
WITH THE DoE APPROACH AS THE OPTIMIZATION METHOD

The following presents the conclusions of the studies using the DoE approach to
optimize the buffer sizes. Two types of systems are studied:; Type S with all stations
subject to jam and Type 6 with some stations subject to Jjam. The jam clear time is same
for all stations in both systems and modeled by a geometric distribution with a mean of
20 time units. We have chosen the mean as four times longer than the cycle time based
on the consultations with design engineers. It is widely accepted to choose the number of
pallets 3-4 per station. Hence, based on the literature such as [27], we have chosen 4
pallets per station. The detailed information on how the experiments are conducted is

presented in Appendix 2, section 2.2.

Type 5 (all stations are subject to jam):

The Type 5 systems have stations with different jam rates, as demonstrated in
Table 4.5.1. The total number of pallets is 20 for such systems with five stations.

The initial buffer ranges are selected considering the results found in section 4.4.1.
and engineering knowledge. Hence, we were able to reach the optimal buffer ranges in

the 4™ step, as listed in Table 4.5.2.
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Type 6 (some stations are subject to jam):

The Type 6 systems have some stations that are subject to jam with different jam
rates (see Table 4.6.1.). There are fifteen station in the system and the number of the
pallet is chosen as 20 pallets.

The initial buffer ranges are selected without considering the engineering
knowledge or conclusions of previous research, thus, it took six steps to reach the optimal
area (see Table 4.6.2.) However, considering the randomness of the initially selected

levels, the DoE approach again indicated to be effective optimization tool.

Conclusion:

DoE is a powerful tool to predict the optimal results by studying the effects of the
decision variables [75]. Thus, based on the previous studies of optimization of a process
or a product, such as [75,72] and our studies discussed in this chapter, we propose the
DoE approach as the practical optimization tool for the optimization of buffer sizes in
assembly systems. Because the DoE approach gives extensive information on the system
as well as the parameters, using the DoE approach for optimization will provide broad
interior information on the system to be designed. Thus, the optimization results obtained
through the DoE approach will serve the designer as not only the optimal results but also
the invaluable guidelines about the system. Therefore, it is our advice to use the DoE

approach in practice, especially when the system to be designed is not well-known.
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4.5. CONCLUSION

In this chapter, we have studied several systems to determine the optimal buffer
ranges. In the first part, we have used the optimal results previously obtained by SQG
methods and determined the optimal buffer ranges, hence defined the optimal area. For
this purpose, we have worked with four different systems. In the second part, we have
used the DoE approach as the optimization tool and determined the optimal buffer ranges
for two different types of systems.

The first part of the study showed that by using the DoE approach one can gather
the information that it is not possible by using other optimization methods, such as SQG
methods. The DoE approach not only presents the data on how the decision variables
affect the system response, but also provides invaluable information on the system.
Consequently, using the DoE approach, one can design the systems with a better
understanding as well as having flexibility to choose the buffers within the ranges
determined by the DoE approach. Thus, it is our advice to use the DoE approach to
determine the optimal area that is needed in most cases in practice.

The second part of the study showed that the DoE approach is a powerful tool for
optimization as well. Using the DoE approach as the practical optimization tool for the
optimization of buffer sizes furnishes comprehensive internal information on the system.
Consequently, the optimal buffer ranges determined by the DoE approach assist as the
invaluable guidelines about the system. Therefore, we recommend the use of the DoE

approach in practice, especially when the system to be designed is not well-known.
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Figure 4.1. Closed-loop Asynchronous Assembly Systems
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Table 4.1.1. The initial ranges for Design 1 and Design 2 of Type 1 systems

The initial ranges of buffers (for Design 1 and Design 2)

buffers bl bz b3 b4 bs b5 b7 bs b9 blo

- 2 2 2 2 2 2 2 2 2 2

+ 3 3 3 3 3 3 3 3 3 3

for Design 1:

number of pallets: 20 pallets

The ranges of pallets (for Design 2)

number of pallets in the system
- 20
+ 21
for Design 1 and Design 2:

Jam clear time: geometric distribution with a mean of 18 time units

the neutral levels of jam rates:

station 1 2 3 4 5 6 7 8 9 10

jam rate 1 1 1 1 1 1 1 1 1 1
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Table 4.1.2. The optimal buffer ranges for Type 1 systems and confirmatory

experiments

The conclusion of buffer configurations for optimal area:

buffers b1 bz b3 b4 bs bs b7 bs b9 blo

- 2 2 2 3 3 2 2 3 3 2

+ 3 3 3 3 3 3 3 3 3 3

confirmatory experiments:

buffer configurations TP variance (10™'%
2,3,2,3,3,3,3,3,3,2 .143300 125881
2,3,2,3,3,2,2,3,3,2 .143302 125625
3,2,2,3,3,2,3,3,3,2 .143307 124216




Figure 4.1.1. The effects of buffers of Type 1 systems
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Table 4.2.1. The initial ranges for Design 1 and Design 2 of Type 2 systems

The initial ranges of buffers (for Design 1 and Design 2)

buffers bl bz b3 b4 b5 b5 b-] bs b9 blo

- 5 16 5 4 4 4 5 4 4 4

+ 6 17 6 5 5 5 6 5 5 5

for Design 1:

number of pallets: 40 pallets

The ranges of pallets (for Design 2)

number of pallets in the system

- 40

+ 45

for Design 1 and Design 2:

Jam clear time: geometric distribution with a mean of 36 time units

the neutral levels of jam rates:

station 1 2 3 4 5 6 7 8 9 10

jam rate 0 3 3 0 0 0 3 0 0 0
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Table 4.2.2. The optimal buffer ranges for Type 2 systems and confirmatory

experiments

The conclusion of buffer configurations for optimal area:

buffers b, b, b3 b4 bs bg by bg bo bio

- 5 17 6 5 5 5 5 4 4 4

+ 6 17 6 5 5 5 6 5 5 5

confirmatory experiments:

buffer configurations TP variance (10™'%
5,17,6,5,5,5,6,4.4,4 .130044 195269
5,17,6,5,5,5,5.4,5,5 .130054 195253
5.17,6,5,5,5,5.5.5,5 .130054 195253
6,17,6,5,5,5,5,4,4.4 .130040 197196
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Figure 4.2.1. The effects of buffers of Type 2 systems

80

60

20 £==—=0

0

-5.0E-05 2.0E-04

0.0E+00 5.0E-05 1.0604 1.5604

L=1.69%107, I;=1,=15=0.45%10", 1,=0.39*10°*

Figure 4.2.2. The residuals of buffers of Type 2 systems

100

2.E05 4.505

0.E+00

-8.605 -6.E05 -4E05 -2E05

" pr = 100 * [(k-0.5)/k]

68

Effects of
buffers

Effects of
residuals



Table 4.3.1. The initial ranges for Design 1 and Design 2 of Type 3 systems

The initial ranges of buffers (for Design 1 and Design 2)

buffers b, b, bs by bs bg by bg bo b1o
- 4 9 10 1 11 4 4 4 4 4
+ 5 10 11 12 12 5 5 5 5 5
for Design 1:
number of pallets: 40 pallets
The ranges of pallets (for Design 2)
number of pallets in the system
- 40
+ 45
for Design 1 and Design 2:
Jjam clear time: geometric distribution with a mean of 36 time units
the neutral levels of jam rates:
station 1 2 3 4 5 6 7 8 9 10
jam rate 0 3 0 3 0 3 0 0 0 0
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Table 4.3.2. The optimal buffer ranges for Type 3 systems and confirmatory

experiments

The conclusion of buffer configurations for optimal area:

buffers bl bz b3 b4 bs b6 b7 b8 b9 b 10

- 4 10 11 11 11 4 4 4 4 4

+ 4 10 11 12 12 5 5 5 5 5

confirmatory experiments:

buffer configurations TP variance (10"'%)
4,10,11,11,11,4,4,44.4 .129004 459765
4,10,11,11,12,4,4,54.4 .129019 447259
4,10,11,12,12,5,54,4.4 .128995 444505
4,10,11,12,12,4,4,4,4.4 .129028 445386
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Figure 4.3.1. The effects of buffers of Type 3 systems
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Figure 4.3.2. The residuals of buffers of Type 3 systems
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Table 4.4.1. The initial ranges for Design 1 and Design 2 of Type 4 systems

The initial ranges of buffers (for Design 1 and Design 2)

buffers bl bz b3 b4 b5 b5 b7 bs b9 bm

- 11 14 5 6 6 11 11 5 7 3

+ 12 15 6 7 7 12 12 6 8 4

for Design 1:

number of pallets: 50 pallets

The ranges of pallets (for Design 2)

number of pallets in the system

- 50

+ 60

for Design 1 and Design 2:

Jjam clear time: geometric distribution with a mean of 18 time units

the neutral levels of jam rates:

station 1 2 3 4 5 6 7 8 9 10

jam rate 0.5 3 05 {05 ) 05| 05 3 05 { 05 | 05
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Table 4.4.2. The optimal buffer ranges for Type 4 systems and confirmatory

experiments

The conclusion of buffer configurations for optimal area:

buffers bl bz b3 b4 bs bs b7 bs b9 blo

- 12 15 5 6 6 11 11 5 7 4

+ 12 15 6 6 7 12 12 6 8 4

confirmatory experiments:

buffer configurations TP variance (10'%)
12,15,5,6,7,11,12,5,7,4 .150656 119326
12,15,6,6,6,12,11,6,8,4 .150653 120718
12,15,5,6,7,11,11,5,8,4 .150658 119135
12,15,5,6,6,12,12,5,7.4 .150665 120366
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Figure 4.4.1. The effects of buffers of Type 4 systems
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Table 4.5.1. The initial buffer ranges for Type S systems for the optimization with

DoE
buffers by b, bs b4 bs
- 2 5 4 8 4
+ 3 7 5 11 5

jam clear time: geometric distribution with a mean of 20 time units, number of pallets:20

Jjam rates:
station 1 2 3 4 5
jam rates 0.5 3 0.5 5 0.5

Table 4.5.2. The optimal buffer ranges for Type S systems for the optimization with

DoE (conclusion of 4 step)

buffers b; b, bs b4 bs
- 3 6 8 9 3
+ 4 7 9 10 4
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Figure 4.5.1. The effects of buffers of Type 5 systems (conclusion; 4 step)
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Table 4.6.1. The initial values of buffer ranges for Type 6 systems for the

optimization with DoE

buffers | 1 (2|3 |4|5]| 6 (7 |8|9|10f11|12]13]14]15

- |S5|S5|5|5|5|5|5|5|5|5|5(5]|5|5]s

+ |[6]/6|6|6|6| 6 6[6|6|6 (6| 6| 6]|6]6¢6

Jjam clear time: geometric distribution with a mean of 20 time units, number of pallets:60

jam rates:

station 1t213)14|15]6|718]9|10]11]12]13]|14]15

jamrates | 3 |3 |0]5(0|0o5({0|[3|]0|o5]0]o5|]0]|]0]oO

Table 4.6.2. The optimal buffer ranges for Type 6 systems for the optimization with

DoE (conclusion of 6" step)

buffers | 1| 2|34 (5| 6 (7819|1011 12|13]|14]15

- 1612|112 8 (8| 6 (6 (5|5 |1 |1] 3 ([3]|]2]2
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Figure 4.6.1. The effects of buffers of Type 6 systems (conclusion; 6™ step)
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Figure 4.6.2. The residuals of buffers of Type 6 systems (conclusion; 6 step)
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CHAPTER 5

ROBUST DESIGN OF ASYNCHRONOUS ASSEMBLY SYSTEMS (AAS)

The idea of making a product or process insensitive to variation is the essence of
robust design [45]. This research concentrates on manufacturing process design, which
aims to find the optimal buffer specification to make the throughput insensitive to
variation with respect to noise factors in the design phase of the asynchronous assembly
systems.

The robust design method uses an established statistical tool (i.e., the design of
experiments) to help solve an important engineering problem; reducing variability [45].

Statistically designed experiments have been used to improve industrial processes
for decades, but most applications have focused on the mean values of process’s
functional characteristics. However, the yield of a manufacturing process (i.e.,
throughput) is more closely linked to the process’s variability, and robust design is a
method for reducing that variability without increasing process cost [45].

In this chapter, we present the experiment sets conducted for different systems and
configurations. Next section (section 5.1.) discusses the need of a study for the robust
design. Section 5.2. defines the problem and the system parameters. Section 5.3.
reviews the methodology of the robust design briefly. Section 5.4. presents the studies
conducted and the conclusions of the analyses. The systems studied and presented in
sections 5.4.1. and 5.4.2. are the same systems that are discussed in sections 4.4.1. and
4.4.2., respectively. Finally, section 5.5. summarizes the studies conducted in this chapter

and the conclusions.
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5.1. THE NECESSITY OF THE ROBUST DESIGN

We propose the application of robust design to overcome one of the important
shortcomings of previous studies; studying and reducing the effect of the uncontrollable
parameters in assembly systems. The previous studies in optimization of buffer sizes in
assembly systems kept some parameters fixed, then solved the optimization problem and
proposed solutions accordingly. However, our experiences in the industry and theoretical
work showed that some of these parameters that are kept fixed in previous studies may
not be steady in reality. Yet, in previous optimization studies such as using the Stochastic
Quasigradient methods (SQG) [55], the effects of these above mentioned parameters on
the system response are ignored entirely. Consequently, the optimal results found in these
previous studies may not give the anticipated imprevement for the systems, because these
potentially important effects are ignored. Therefore, a study on the effects of these above
mentioned parameters and diminishing their effects by reducing the variance of the

system response with respect to these parameters is necessary.

5.2. DEFINITION OF THE OBJECTIVE AND SYSTEM PARAMETERS

The objective of this chapter is to design the asynchronous assembly systems that
are robust (insensitive) to noise factors (i.e., jam rates and jam clear times). For this
purpose, we will identify the appropriate levels for the control factors (i.e., buffer sizes ).
First, we will review the objective of robust design, then describe the systems and

common parameters.
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5.2.1. THE OBJECTIVE OF ROBUST DESIGN AND REVIEW OF BASIC
DEFINITIONS

In order to define the objective of the robust design more precisely, three concepts
are needed, namely functional characteristics, control parameters, and source of
noise[45].

Functional characteristics are basic, measurable quantities that determine how
well the final product or process functions. In this research, the functional characteristic
is the throughput of the asynchronous assembly systems.

Control parameters are the controllable process variables; their operating
standards can be specified by the process engineers. In this research, the buffer sizes will
be the controllable factors.

On the contrary, sources of noise are the variables that are impossible or
expensive to control. In this research, the jam rates and jam clear times are considered as
noise factors. They are assumed to be independent from each other and occur randomly.

The objective of the robust design is to find those control parameter settings
where noise has a minimal effect on the functional characteristics. The key idea is to
reduce functional characteristic sensitivity by making the process insensitive to noise
rather than by controlling the sources of noise [45]. Therefore, our objective is to find the
appropriate levels for the control factors (i.e., buffer sizes ) where the variance of the
throughput with respect to noise factors (i.e., variance s, as defined in section 3.4.) will
be minimum.

In view of the explanations above, the following section describes the systems and

the common parameters.
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5.2.2. AAS AND SYSTEMS PARAMETERS

The systems studied in this chapter are asynchronous assembly systems (AAS)
which are closed sequences of automatic assembly workstations linked by an automatic
transfer mechanism, as described in section 4.1. The type of the systems and many
parameters are same as the systems that are described in Chapter 4, section 4.1. and 4.2.
This section will describe the asynchronous assembly systems briefly and mention the
common parameters for all systems studied in this chapter. Other parameters are
described for each study independently.

In this research we consider three events that cause a station be “not operational™;
the jams, the starvation and the blocking of the station. Consequently, the buffer and
pallet specifications have important effects on the occurrences of these events.

The common parameters are as follows.

(1) The cycle time is deterministic and 5 time units (same for all systems).

(2) The transport time is | time unit per buffer unit (same for all systems).

(3) The mix of assembly types is assumed constant in any given time (same for

all systems).

(4) The number of pallets are defined in each study.

(5) Jam rates.

(6) Jam clear times.

(7) Buffer sizes.
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The jam rates and jam clear times are considered as noise Jactors in most of the
studies (except the first study with Type 5 systems where only jam rates are considered as
noise factors.) In each study, the levels of noise factors are defined accordingly. A range
of £0.5% for each jam rate and a range of * I time unit (£ 2, if indicated) of the mean
of the geometric distribution of each Jjam clear time are used for defining the levels of
noise factors. Although a change of + 0.5% or +1 time unit may seem very small, it is still
a considerable amount, when contemplating the system as a total. The buffer sizes are
the decision variables (i.e., control Jactors) in all studies and defined in two levels, as
high and low levels.

Since the optimization of the buffer sizes where noise factors have already been
studied in Chapter 4, we resume from this point and using these optimization results we

will design the system that is robust to noise factors.

5.3. METHODOLOGY

In this research, we have followed a sequence that is similar to that described by
Kacker and Shoemaker [45]. The methodology can be summarized as follows.

Our objective is to find the appropriate levels for the control factors (i.e., buffer
sizes ) where the variance of the throughput with respect to noise factors (variance ;)
will be minimum.  To attain this objective, the control factors and noise factors in an
inner-outer array design are varied systematically. Then, the effect of noise is measured
by calculating the variance of the throughput with respect to noise factors (variance qyy)
for each setting of control factors (i.e., each row of the inner array). Applying the data

analysis techniques such as normal probability plotting and residual analysis, the effects
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of the control factors on the variance s are calculated. Finally, the appropriate levels of
the control factors, hence the ranges of buffer sizes that will make the process insensitive
to noise are predicted.

Consequently, we first decide the appropriate designs (see section 3.2.2.) for the
inner-outer array design, and assign the buffer sizes as controllable factors to the inner
array and jam rates and jam clear times as noise factors to the outer array. The levels of
the buffer sizes are chosen as the optimal buffer ranges that were determined in the sub-
sections of 4.4. The levels of noise factors are chosen separately in each study, however
the change for each noise factor is considered in a small range.

Then, we conduct the experiments accordingly and analyze our results. For this
purpose, we calculate the variance of the throughput with respect to noise factors

(variance.yy) as follows.

variancewrmgi) =[ZTP; * - f(E TP;* 1/ [ £*(f-1)] i Lf
where TPj is the number of units produced by the model for particular buffer size
configuration, i (i.e., the configuration of the ith row of the inner array) , and noise factor
configuration, j, and f is the total number of noise factor configurations (i.e., the number
of columns in the outer array).

After calculating the variance,n,s for each buffer configuration defined in the
design of experiments, we calculate the effects of each buffer size on the variance ... In
other words, we determine how each buffer size affects the variance of the throughput
with respect to noise factors. Then, we find the most important effects and choose the

levels of these buffer sizes accordingly.
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Choosing the levels of buffer sizes that have important effects and keeping them
fixed at those levels allows us the freedom to choose other buffer sizes within the range.
Clearly, the ability to choose the buffer sizes that do not have important effects at any of
the two levels gives the flexibility that the design and manufacturing engineers may most
likely need in practice. Thus, not only will we design the system that is robust but also

will give the flexibility of choosing as many buffer sizes as possible within the range.

5.4. IMPLEMENTATION

We have designed systems that are robust to the noise factors. For this purpose,
we have used the optimal buffer ranges that were determined in the sub-sections of 4.4,
explored the robustness of this optimal area by using robust design approach, and finally
re-defined these buffer ranges that give minimum variance, ;. First section covers the
systems that were studied using SQG methods. The second section discusses the systems
that were studied using the DoE approach as optimization method.

Tables and Figures used in the next sections are listed in the following table 5.1.
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Table 5.1. Tables and Figures used in the following studies:

section 54.1. 5.4.2.(systems studied in
(systems studied in section 4.4.1.) | section 4.4.2.)
system Typel | Type2 | Type3 | Type4 TypeS5 | Type 5| Type 6
v ex.)
Tables &
Figures:
designs for L2 Li» L2 2° 2y Lis
buffers and | 2'*° | 2') | @) | @' and and | 2%
noise and and and and 2° 2u S and
factors 2? Ls ) | Ls @) | Ly'(2®H Lis
2"
ranges for | Table | Table | Table | Table | Table | Table | Table
buffers and | 5.1.1. | 52.1. 5.3.1. | 54.1. 5.5.1. 56.1. | 57.1.
noise
factors
buffer ranges | Table | Table Table | Table Table Table | Table
that make the | 513 | 522 | 532 | 542 | 552. | 562 | 572
stem robust
Figure | Figure | Figure | Figure | Figure | Fi gure | Figure
graphical 5.1.1 5.2.1. 53.1. | 5.4.1. | 55.1. | 5.6.1. | 5.7.1.
results of | g & & & & & &
theamalyses | 512 | 522. | 532 | 542 | 552. | 562 |572.
results of | App., | App., | App. | App., | App., | App.. | App.,
€xp. runs Table | Table Table | Table Table Table | Table
3.1.1. | 3.2.1. | 3.3.1. | 3.4.1. | 35.1. | 36.1. | 3.7.1.
mean and | App., | App., | App. | App.. | App., | App., | App.,
Variance gy Table | Table | Table | Table | Table { Table | Table
of the TP 3.1.2. | 322 | 332 | 342 | 352 | 362 | 372

App. : Appendix
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5.4.1. ROBUST DESIGN OF THE SYSTEMS PREVIOUSLY STUDIED WITH
THE SQG AS THE OPTIMIZATION METHOD

In this section, we have studied the systems that were previously examined by
using the SQG as the optimization method. We have investigated four different systems.
We have used the optimal buffer ranges that were identified in the studies discussed in
Chapter 4 (see section 4.4.1.) and investigated the robustness of this optimal area (while
the noise factors are considered as jam rates and jam clear times.) Finally, we have re-
defined the ranges of buffers that not only give an optimal area but also make the system

robust to the noise factors. Following presents the studies with these four systems.

Type 1 (Uniform Stations That Are Subject To Jam):

Because of the special configuration of these systems, that is the uniformity of the
stations, we could simplify our design by having two noise factors (i.e., the jam rate and
Jjam clear time), instead of having ten same jam rates and ten same jam clear times,
therefore having many repetitions in the outer array.

The analyses and confirmatory experiments showed that although stations are
uniform, buffers affected the variation of the TP against noise factors (i.e., variance i)
in different levels of importance. Hence, to design the system that is insensitive to noise
factors (i.e., robust), some buffers must be chosen as determined and others can be chosen
within the range. The conclusion of buffer sizes for engineering designs is presented in

Table 5.1.2.
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Type 2 (Stations 2, 3, and 7 Subject To Jam; With Same Jam Rates):

The analyses revealed that the buffers between the non-zero-jam-rate stations
(with the exception of by, which has the largest buffer size) have important effect on the
varianceumy . Thus, the buffers between non-zero-jam-rate stations with small spaces
must be chosen at the low levels in order to make the system robust to noise factors
(Table 5.2.2.). The confirmatory experiment and experiment run 1, which support our
conclusion, verified our conclusion. By following our conclusion, the variance,;ms could

be reduced to 1.17*107.

Type 3 (Stations 2, 4, and 6 Subject To Jam; With Same Jam Rates):

The analyses showed that almost all effects are distinguishable, with the exception
of by ,bg, by, and b3 . All of these buffers are adjoining to a non-zero-jam-rate stations. In
addition, among the stations adjoining to a non-zero-jam-rate station, these buffers have
relatively smaller spaces. This result also supports the one observed in previous study.
Thus, we can remark the effect of the buffers with relatively small spaces adjoining to a
non-zero-jam-rate station has important effect on the variation of the throughput.
Consequently, to make the system robust to noise factors, these buffers must be chosen as

specified in our conclusion (Table 5.3.2.).
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Type 4 (All Stations Are Subject To Jam):
Analyses revealed that although all stations are subject to jam, the buffers with
large spaces adjoining to high-jam-rate stations are more likely to affect the TP. The

confirmatory experiment following our conclusion also indicated the same (Table 5.4.2.).

5.4.2. ROBUST DESIGN OF THE SYSTEMS PREVIOUSLY STUDIED WITH
THE DoE APPROACH AS THE OPTIMIZATION METHOD

This section presents the systems that were studied in the design of experiments
(DoE) approach as the optimization method and the optimal buffer ranges were identified
accordingly (see section 4.4.2.). For the purpose of making these systems robust to noise
factors, we have re-investigated an optimal area found in section 4.4.2. and re-defined the
buffer ranges that give the minimum variance,nys for each system. Two types of AAS are
studied, namely Type 5 systems that have all stations subject to jam and Type 6 systems
that have some stations subject to jam. Type 5 systems (i.e., systems with all stations are
subject to jam) are examined in two different design; the first one includes only the jam
rates as the noise factors and uses a full-factorial design (2° by 2°), while the second one
considers the jam rates and jam clear times as noise factors and uses fractional factorial

10-6y. Type 6 systems are studied when jam rates and jam clear times

designs (2\,5'l by 2m
are considered as noise factors, with the design of Lig (2'°) orthogonal array for both

control factors and noise factors.
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Type 5 (All Stations Are Subject To Jam) And Jam Rates As Noise Factors :

In this section, we have considered the jam rates as noise factors while keeping
the jam clear times as fixed (i.e., a geometric distribution with a mean of 20 time units).

Analyses showed that four buffers had important effect on the variation of the TP
against noise factors (i.e., variance,m,f). Hence, we do not have much flexibility in
choosing buffer sizes .

As seen in Table 5.5.1., the variance,,,s of the experimental run 24, which has the
suggested configuration of the conclusion, has the smallest variance,ms , thus supports

our conclusion (Table 5.5.2.).

Type 5 (All Stations Are Subject To Jam) And Jam Rates And Jam Clear
Times As Noise Factors (2™ Study With Type6 Systems):
We have studied the Type 5 systems where jam clear times are also considered as

noise factors. For the 2y design, we have used the following generator:

[=12345 ,where, 5=1234.

Analyses revealed that all effects were negative, as in the previous section.
However, only the smaller buffer size adjoining to the high-jam-rate station has the
important effect on the TP. In other words, when jam rates and jam clear times are
considered as noise factors, the flexibility of choosing buffer levels increased. However,

because all buffers have still considerable effect on the variance.»;, choosing as many
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buffers as possible at high levels is suggested. The confirmatory experiment verifies this

conclusion, where all buffers are chosen at high levels (Table 5.6.2.).

Type 6 (Some Stations Are Subject To Jam) And Jam Rates And Jam Clear

Times As Noise Factors:

Type 6 systems have some stations that are subject to jam and some stations are
jam free. For the robust design, we have considered the Jjam rates and jam clear times as
noise factors.

Analyses showed that many buffers adjoining to a non-zero-jam-rate station have
relatively important effects on the variance with respect to noise factors. Yet, one can
still choose the levels of eight buffers freely, which is a considerable amount of
flexibility. Experimental runs 3 and I, which have the configurations suggested in the
conclusion, have the smallest values of the variance,..s, hence they also verify our

conclusion (Table 5.7.2.).
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5.5. CONCLUSION

We have studied several systems and designed them to be robust (insensitive,
unchanging) to noise factors. The analyses showed that noise factors could play an
important role on the outcome of the system response. Hence, a study on the robustness
of an optimal area, i.e., making the system response (TP) unchanging to uncontrollable
system parameters, is necessary.

For instance, studies on systems with uniform stations revealed that noise factors
affect the variability of the TP considerably, thus the robustness study becomes essential.

Similar conclusions are reached in systems with some non-zero-jam-rate stations
and some jam-free stations, and with all stations subject to jam. In all cases, a
considerable number of the buffers in systems were found to be important to reduce the
variancenr. Consequently, robustness study in such systems are also needed.

Studies on systems previously optimized using the DoE approach also indicated

the need of the robust design study in such systems.
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Table 5.1.1. The levels of control factors (buffers) and noise factors (jam rates and

Jjam clear times) for the inner-outer array design of Type 1 systems

control factors (buffers) of the inner array:

buffers b1 bz b3 b4 bs b6 b7 bs b9 b 10

- 2 2 2 2 2 2 2 2 2 2

noise factors (jam rates and jam clear times) of the outer array:

noise factors jam rates (%) Jjam clear times (time)
- 0.5 17
+ 1.5 19
notation: jr; : jam rate of ith station, jcti : jam clear time of ith station

number of pallets: 20 pallets

the neutral levels of jam rates:

station 1 2 3 4 5 6 7 8 9 10

jam rate 1 | 1 1 1 1 1 1 1 1
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Table 5.1.2. The buffer ranges that minimize the variation of the TP with respect to

noise factors (variance,ns) and the confirmatory experiments of Type 1 systems

The conclusion of buffer configurations for optimal area:

buffer 1 2 3 4 5 6 7 8 9 10

- 2 3 3 3 2 3 3 3 2 3

confirmatory experiments:

buffer configuration Jam clear time | jam rate TP variance (10”°)
2,3,3,3,2,3,33,2,3 17 0.5 152733 6.8901
19 0.5 .150946 8.0481
17 1.5 137830 14.7853
19 1.5 .134158 15.8268

average TP = .143917

the variance of the TP with respect to noise factors: variance, s = 8.65 *10°5
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Figure 5.1.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,,ns) for Type 1 systems
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Figure 5.1.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance,,,) for Type 1 systems
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Table 5.2.1. The levels of control factors (buffers) and noise factors (jam rates and

Jam clear times) for the inner-outer array design of Type 2 systems

control factors (buffers) of the inner array:

buffers b; b, bs by bs b¢ b, bg bo bio
- 5 16 5 4 4 4 5 4 4 4
+ 6 17 6 5 5 5 6 5 5 5
noise factors (jam rates and jam clear times) of the outer array:
noise factors Jjr2(%) jr3(%) Jri (%) | jeta(t) | jets(t) Jjeta(t)
25 25 25 34 34 34
35 35 3.5 38 38 38
notation: jr; : jam rate of ith station, Jcti : jam clear time of ith station
number of pallets: 40 pallets
the neutral levels of jam rates:
station | 2 3 4 5 6 7 8 9 10
jam rate 0 3 3 0 0 0 3 0 0 0

96




Table 5.2.2. The buffer ranges that minimize the variation of the TP with respect to

noise factors (variance,,.s) and the confirmatory experiments of Type 2 systems

The conclusion of buffer configurations for optimal area:

buffer 1 2 3 4 5 6 7 8 9 10

- 5 16 5 4 4 4 5 4 4 4

confirmatory experiments:

buffer configurations TP variance s TP variance .,
10™) (10°)
5,17,5,4,4,4,6,4,54 136396 1.59745 .129074 2.72056
132744 1.52409 127260 2.90240
129460 1.10880 .126586 1.81434
.127865 1.51378 126707 2.02662

average TP = .129512

the variance of the TP with respect to noise factors: variance, s = 1.17*10°S
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Figure 5.2.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,,s) for Type 2 systems
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Figure 5.2.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance,as) for Type 2 systems
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Table 5.3.1. The levels of control factors (buffers) and noise factors (jam rates and

Jam clear times) for the inner-outer array design of Type 3 systems

control factors (buffers) of the inner array:

buffers bl bz b3 b4 bs bs b7 bg b9 blo

- 4 9 10 11 11 4 4 4 4 4

+ 5 10 11 12 12 5 5 5 5 5

noise factors (jam rates and jam clear times) of the outer array:

noise factors jr2(%) ira(%) | jre(%) | jeto(t) Jeta(t) | jetg(t)
- 2.5 2.5 2.5 34 34 34
+ 35 35 3.5 38 38 38
notation: jr; : jam rate of ith station, jcti : jam clear time of ith station

number of pallets: 40 pallets

the neutral levels of jam rates:

station 1 2 3 4 5 6 7 8 9 10

jam rate 0 3 0 3 0 3 0 0 0 0
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Table 5.3.2. The buffer ranges that minimize the variation of the TP with respect to

noise factors (variance,ns) and the confirmatory experiments of Type 3 systems

The conclusion of buffer configurations for optimal area:

buffer 1 2 3 4 5 6 7 8 9 10

- 4 9 10 11 11 5 4 4 4 4

+ 4 9 10 12 12 5 5 5 5 5
confirmatory experiments:
buffer configuration ™ variance s TP varianceyrng
10™) 10"

4,9,10,11,11,5,5,5,5,5 .136289 310500 .128453 394405
.132682 345064 .125865 355984
.128009 343895 127412 453523
127184 347300 127754 486531

average TP = .129206

the variance of the TP with respect to noise factors: variancems=1.21¥10"°
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Figure 5.3.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,,s) for Type 3 systems

-

Pr

Effects of
-1.5807 -1.0807 -50608 0.0E«00 5.0E08  1.0607
buffers

le=-1.12%107,1;=0.98*107, 1,=0.75%107,1;=0.75*10"

Figure 5.3.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance,n,s) for Type 3 systems
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Table 5.4.1. The levels of control factors (buffers) and noise factors (jam rates and

Jjam clear times) for the inner-outer array design of Type 4 systems

control factors (buffers) of the inner array:

buffers bl bz b3 b4 bs bs b7 bs b9 blo

- 11 14 5 6 6 11 11 5 7 3
+ 12 15 6 7 7 12 12 6 8 4

noise factors (jam rates and jam clear times) of the outer array:

noise factors | jr jra jr3 Jra jrs jTe jr7 jrs jro | jrio
- 0 25 0 0 0 0 25 0 0 0]
+ | 35 1 1 1 1 35 1 1 1

noise factors | jeti | jeta | jets | jets | jots | jets jcty | jetg | jetg | jetio
- 17 17 17 17 17 17 17 17 17 17
+ 19 19 19 19 19 19 19 19 19 19

notation: jr; : jam rate of ith station, jcti : jam clear time of ith station

number of pallets: 50 pallets

the neutral levels of jam rates:

station 1 2 3 4 5 6 7 8 9 10
jam rate 0.5 3 0.5 0.5 0.5 0.5 3 0.5 0.5 0.5
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Table 5.4.2. The buffer ranges that minimize the variation of the TP with respect to

noise factors (variance,,.ns) and the confirmatory experiments of Type 4 systems

The conclusion of buffer configurations for optimal area:

buffer 1 2 3 4 5 6 7 8 9 10

- 11 15 5 6 6 11 12 6 7 3

confirmatory experiments:

buffer configurations TP variance s TP variance,ns
(10™) (107
11,15,5,7,7,11,12,6,7,3 155105 59508 149172 141492
.153298 82239 .150649 63852
.150195 45625 .150733 62070
.150440 107713 153237 85218
.149818 132335

average TP = .151405

the variance of the TP with respect to noise factors: variance iy = 3.94*10°
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Figure 5.4.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,,s) for Type 4 systems
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Figure 5.4.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance,y) for Type 4 systems
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Table 5.5.1. The levels of control factors (buffers) and noise factors (jam rates) for

the inner-outer array design of Type 5 systems of DoE optimization

control factors (buffers) of the inner array:

buffers by b, b; b4 bs
- 3 6 8 9 3
+ 4 7 9 10 4
noise factors (jam rates) of the outer array:
noise factors in jrz jrs jrs Jjrs
- 0 2.5 0 45 0
+ 1 35 | 55 1
notation: jr; : jam rate of ith station,
number of pallets: 20 pallets
the neutral levels of jam rates:
station 1 2 3 4 5
jam rates 0.5 3 0.5 5 0.5
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Table 5.5.2. The buffer ranges that minimize the variation of the TP with respect to

noise factors (variance,.,;) and the confirmatory experiments of Type 5 systems of

DoE optimization

The conclusion of buffer configurations for optimal area:

buffers bl bz b3 b4 bs

- 4 7 9 9 4

+ 4 7 9 10 4
confirmatory experiments:
the buffer configuration: 4,7,9,9,4.

TP | variance TP variance TP variance TP variance

(10 (10°%) (10 (10°°)
0.143460 4.0817 0.139702 5.9918 0.142695 3.7975 0.139961 6.3704
0.142409 2.8156 0.138670 5.4906 0.141539 2.1499 0.137975 5.3825
0.141725 6.7110 0.138482 6.5583 0.140837 4.8476 0.137640 5.3193
0.140761 3.7580 0.137482 4.5210 0.139651 2.2305 0.136747 3.4493
0.142067 9.2902 0.138409 10.1606 0.141179 8.3020 0.137753 9.9253
0.141035 8.0694 0.137404 9.8063 0.140077 6.9506 0.136853 8.7177
0.140368 8.6717 0.137009 9.3050 0.139412 7.2895 0.136358 8.0768
0.139209 6.6558 0.136047 7.6364 0.138128 4.6102 0.135446 6.1801

average TP = 0.139265

the variance of the TP with respect to noise factors: variancey, s = 4.50 *1075
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Figure 5.5.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,ns) for Type 5 systems
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Figure 5.5.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance, ) for Type 5 systems
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Table 5.6.1. The levels of control factors (buffers) and noise factors (jam rates and
Jjam clear times) for the inner-outer array design of Type 5 systems of DoE

optimization (2" study)

control factors (buffers) of the inner array:

buffers bl bz b3 b4 bS
- 3 6 8 9 3
+ 4 7 9 10 4

noise factors (jam rates and jam clear times) of the outer array:

noise factors | jry | jr, | jrs | jrs Jrs | jctp | jetz | jots | jetg | jets

- 0 251 0 4.5 0 19 19 | 19 19 19

+ 1 3.5 1 5.5 1 21 21 | 21 21 21

notation: jr; : jam rate of ith station, Jcti : jam clear time of ith station

number of pallets: 20 pallets

the neutral levels of jam rates:

station 1 2 3 4 5

jam rates 0.5 3 0.5 5 0.5
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Table 5.6.2. The buffer configurations that minimize the variation of the TP

with respect to noise factors (variance,,,s) and the confirmatory experiments of

Type 5 of DoE optimization (2™ study)

The conclusion of buffer configurations for optimal area:

buffers 1 2 3 4 5
- 3 6 9 9 3
+ 4 7 9 10 4
confirmatory experiments:
the buffer configuration: 4,7,9,10,4
TP | variance TP | variance TP | variance TP | variance
10°) 10°) (10°) (10°)
144630 | 3.6268 | .138695 | 8.8288 |.140621 | 76509 | .137209 | 62181
139802 | 4.0753 | .139095 | 54722 |.140174 | 35657 |.136314 | 9.3330
141960 | 2.5137 | .138368 | 0.93125 | .139733 | 93594 | .138226 | 65732
-140449 | 8.7639 | .138196 | 4.6434 |.139342 | 59724 | .133893 | 64517

the average TP = .139169

the variance of the TP with respect to noise factors: Variance s = 5.71 *10°
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Figure 5.6.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,,,s) for Type § systems (2°¢ study)
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Figure 5.6.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance, ;) for Type S systems (2™ study)
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Table 5.7.1. The levels of control factors (buffers) and noise factors (jam rates and

Jjam clear times) for the inner-outer array design of Type 6 systems of DoE

optimization

control factors (buffers) of the inner array:

buffers | by | bz [ b3 { by | bs [ bs | by [ bg | by | byg | by; | by b1z | bis | bys

- |16|121121 8 86 |6 (S{5[1]1]3]13]2]2

+ (17113113799 |7|7|6|6|2]2]4]4T]3] 3

noise factors (jam rates and jam clear times) of the outer array:

noise | jry | jrz | jra | jre | jrs | jrio | jriz | jet | jets | jets Jets | jetg | detwo | jetz

- 25125145 0251 0 O [191 1919|1919 19 ] 19

+ (3535551 (35| 1 L (21 (21 (21|21 }21]21] 21

notation: jr; : jam rate of ith station, Jjct; : jam clear time of ith station
number of pallets: 60 pallets

the neutral levels of jam rates:

stations 1 2 31415 6 71819 10 11| 12 |13} 141 15

jamrates | 3 (3 (0| 5(0|0o5{0(3|o|os5|0o|l0o5]0]0]0
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Table 5.7.2. The buffer configurations that minimize the variation of the TP

with respect to noise factors (variancey,;nf) and the confirmatory experiments of

Type 6 of DoE optimization

The conclusion of buffer configurations for optimal area:

buffers 1(2]3]|4]5 6 718|910 |11|12(13[{14]15
- 161212} 8 | 8 6 6 (5|5 1 1 3 212
+ 6121121 9| 9 7 71515 1 1 4 | 4]13]3
confirmatory experiments:
the buffer configuration: 16,12, 12,8,9,7,6,5,5,1,1,4,3,2,3
TP variance TP variance TP variance TP variance
(10°6) (10 (10°%) (10°)
145754 | 7.7830 | .140511 | 6.0030 | .141319 ]| 7.2762 141323 | 7.4373
143440 | 9.3160 |.141035| 5.3492 | .139298 | 8.0830 141735 | 8.3610
142374 | 59289 |(.139747 | 4.7340 | .141288 | 6.8628 | . 141558 | 5.6608
141711 | 9.2483 | .141151 | 5.7821 139574 | 9.0611 142414 | 8.5901

average TP = .141515

the variance of the TP with respect to noise factors: variance, ,r = 2.44 *10°6
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Figure 5.7.1. The effects of the buffers on the variation of the TP with respect to

noise factors (variance,,.»s) for Type 6 systems
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Figure 5.7.2. The residuals of the buffers on the variation of the TP with respect to

noise factors (variance,,s) for Type 6 systems
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CHAPTER 6
CONCLUSION AND RECOMMENDATIONS FOR FURTHER STUDY

In this research, we have determined an optimal area of buffer sizes in AAS and
designed robust AAS against noise factors. To determine an optimal area of buffers, we
have studied the effects of buffers on the throughput and identified the important effects.
By choosing the buffers with important effects at their appropriate level, we have
provided the design engineer a flexibility to choose other buffers within a range. Studies
for robust design of AAS indicated the need for studying robustness in AAS design
phase. For these purposes we have used the DoE approach and a discrete-event
simulation program written in TURBOPASCAL code.

DoE approach proved to be an effective tool to determine an optimal area of
buffer sizes. In addition, it has also indicated that it can be used as a practical
optimization tool. Especially when little known about the system to be designed, using
the DoE approach to optimize the buffers can also provide a considerable amount of
information on the system. Moreover, in an attempt to study its effect, we have
considered the number of pallets as a decision variable and investigated a number of
systems accordingly. Analyses showed that the number of pallets had significant effect
on the throughput.

Robust design study of AAS proved to be essential. Several types of the AAS
were studied and all cases indicated the necessity of the robust design. In all cases, the

analyses revealed that a considerable number of buffers had important effect on the

114



variance of the throughput with respect to noise factors. Hence, the robustness of AAS is

necessary in order to design a more reliable system.

Consequently, our conclusion can be outlined as follows.

¢ Robust design of AAS is essential.

e Determining an optimal area of buffer sizes provides the design engineer the much
needed flexibility to choose buffers within a range.

® Use of DoE approach also provides substantial information about the system, thus
enables design engineer to design the system with a better understanding.

® Use of DoE approach to determine buffers proves to be an effective methodology.

* DokE approach can be used to optimize buffer sizes especially when little known about
the system.

® We have also integrated the number of pallets into decision variables in an attempt to

study its effect and the analyses revealed a significant effect on the throughput.

This research also revealed several interesting research issues. Some of these
issues have been partially addressed by the studies described in this research and others
are uncovered. Further study can apply the robust design to other optimization studies
and use the robust design and optimization simultaneously. In addition, by using the DoE
approach, other decision variables’ effects on the throughput as well as on other system
responses can be studied. Furthermore, the use of the DoE approach can be extended to

other design problems of AAS.
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Further study with an emphasis on the application of robust design on several
AAS design problems may also serve as informing researchers on the necessity of the
robust design and determining an optimal area to provide design engineer the flexibility
much needed. In addition, cases in industry can be studied by applying both the DoE
approach as the optimization tool and robust design simultaneously. Studying and
improving the theoretical foundations of the DoE approach and its use as the optimization

method are also research areas to be explored.
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INTRODUCTION TO APPENDICES

Appendix 1 covers the statistical techniques and definitions referred in the
research. First section describes the resolution levels in designs. Section 1.2. discusses
the statistical techniques used in the analysis phase of the design of experiments
approach.  The definitions, the hypothesis testings, the calculations of effects
demonstrated by an example, normal probability plotting, and residual analysis are
discusses in sections 1.2.1, 1.2.2, 1.2.3, 1.2.4, and 1.2.5, respectively. The statistical
techniques used in robust design are discussed in section 1.3.

Appendix 2 provides detailed information on the experiments conducted to
determine an optimal area in AAS. Section 2.1. covers the studies previously discussed
in Chapter 4, section 4.4.1. (systems previously optimized by using SQG methods). The
designs selected, the methodology followed, and the conclusion of the Design 2 studies
where the effect of the number of pallets were studied are discussed. Section 2.2. covers
the studies previously discussed in Chapter 4, section 4.4.2. (DoE optimization). The
steps of optimization studies are discussed. The results of experimental runs and
graphical results of analyses are also presented.

Appendix 3 covers the robust design studies in AAS. The results of experimental

runs and calculated mean and variance,n,s are presented.
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APPENDIX 1

STATISTICAL TECHNIQUES USED IN DoE AND ROBUST DESIGN

1.1. RESOLUTION LEVELS

There are mainly three alternatives for the level of the interactions chosen to be
confounded with the main factors and/or the interaction of the fewer factors: the
resolutions V, IV, and II. If an economical design with the most information possible is
desired, the resolution V is recommended. In resolution V designs, the interactions of the
four or more factors are confounded with some of the main factors. Hence, the effects of
these columns can easily be attributed to the effects of the main factors. When more
economical design with less information is required, the resolution IV may be a better
alternative. The resolution IV designs have the interactions of three or more factors
confounded with some of the main factors. Also in this case it is most likely that the
importance comes from the main factors. If the economical and time concerns are the
most important or some information on the interactions and/or main factors are available,
then the resolution HI can be chosen. In such design, the interactions of two or more
factors are confounded with some of the main factors. Hence, it may not be as easy as in
other resolutions to attribute the importance directly to the main factors. The main factors

involved in the interactions should be studied carefully before reaching to a conclusion.



1.2. STATISTICAL TECHNIQUES USED FOR DATA ANALYSIS IN DoE
Following sections present the techniques used to analyze the results
(throughputs) obtained from the experimental runs of the DoE. The first section presents
some basic definitions. The second section discusses the hypothesis testings that are used
to verify the results and the experimenting. The third section explains the normal
probability technique to calculate the effects of the decision variables and to identify the
important ones. The fourth section presents the residual analysis to verify the conclusion

based on the normal probability plotting.

1.2.1. THE STATISTICAL INFERENCE (BASIC DEFINITIONS AND
CONFIDENCE LEVELS)

A main purpose of the statistical methods we will use is to try to estimate or make
statements about the parent population which is considered to be stable. The sample
itself is not stable in the sense that if we sampled again we could obtain a different set of
values.

As Logothesis and Wynn [56] describe, the most important characteristics of a
population are the ones that describe the population’s central tendency and dispersion,
i.e., the variability. For this purpose, two measures are commonly used; the arithmetic
mean and the variance. With respect to the sample, which is the throughput of the
assembly systems we will study throughout this research, “the sample mean” and “the

sample variance” are given by
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mean throughput: m=3Xz /n ,r:l.n

variance : v=[nZz?-(Zz)* 1/ [n(n-1)] ,r:l.n
where z; is the number of units produced by the model for particular buffer configuration
at the given replication r and n is the total number of replications.

Discrete event simulation is used to estimate the value of the production rate as a
function of buffer sizes (and number of pallets, in certain cases). The expected value of
each function estimate, F(z, ) : the throughput, is obtained by simulating the system
around 10,000 time units, with 10 independent replications. For each replication, a
warm-up time of 500 time units is set in order to remove the initial transient effects.
Literature available [16,27,46] indicates that with the above mentioned sample size,
warm-up time, and a number of replications, the estimates of the value of the objective
function are reliable for engineering applications. The confidence interval (CIs) for the

mean throughput obtained from the simulation results are determined as follows.

CI =m+ [ ((dfior) * (vin)'? ]
where 7 =¢(df;a) is a value depending on the degrees of freedom (df=n-1) and on the
“level of significance” a (i.e., o0 is taken as 5 per cent in this research) ; these ¢ values
can be found from the r-tables. However, while calculating the ¢ values, we should also
complete the F-test (see next section) to ensure that the variability of throughput is the
same (i.e., the variance is homogeneous) in all populations representing the same parent

population.
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1.2.2. THE HYPOTHESIS TESTINGS

In order to be certain that the samples that we collect through the simulation and
DoE approach are statistically valid, we have to do some hypothesis testings. First, we
will ensure that the variability of the throughputs are same in all populations representing
the same parent population by carrying out a significance test for the homogeneity of
variance, called the F-test. Then, we will do the z-test to check if they really represent the
same parent population. In other words, by doing these two significance tests, we will
assure that the data we gather through the experiments are statistically reliable for the data

analyses that are described in the next sections.

The F-test: Comparing variances
The F-test is conducted prior to calculation of the ¢ values to assure their validity.
The technique is very simple and concerns the variability in different sample groups that

represent the same parent population. The hypothesizes are as follows.

Null hypothesis (Hp) : v = v;”

Alternative hypothesis (H;) : viz # vjz

The F (observed) value is calculated as follows.
F = (larger sample variance) / (smaller sample variance) =v; / Vi
where v; and v; are the estimates of the variance of the results obtained in the

runs { and j, respectively and v; >v;.
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The critical value can be founded in the F-tables, depending on the degrees of
freedom (df) of the larger sample variance as the numerator and the df of the smaller
sample variance as the denominator, with the significance level, o, at the 5%. If

F (observed) < F (critical)
then, we cannot reject the null hypothesis of equal population variances at the 5%

significance level, a. Hence, the assumption (i.e., the homogeneity of the variance) that

is necessary for the calculation of the ¢ values is satisfied.

The t-test

The validation of the results of experimental runs by t-test is necessary, in order to
verify the interpretations we will make based on the normal probability plotting. The t-
test enables us to be certain of the accuracy of the data we obtain from the experimental
runs.

The t-test technique is a simple procedure that investigates the means of two
different populations representing the same parent population. We use a standard
hypothesis testing procedure. In order to check the validity of the results of runs, we test
the equality of different runs’ results. Since each run is replicated R times, we obtain a

mean and a variance for each run. Our hypotheses are as follows.

Ho:mi=m;

H; tmipEm;
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Since the estimates of mean and variance of both runs are based on the same
number, r replications, the pooled variance, and the standard error of the difference

between the estimates of the means are calculated as:

pooled variance = (v; + vi)/2

standard error of (m; - m; ) =[ (2 * pooled variance) /r] ~/?
where v; and v; are the estimates of the variance of the results obtained in the runs i
and j, and m; and m; are the estimates of the mean of the results obtained in the runs

i and j, respectively.

Hence, ¢ (observed) can be calculated as follows.
t (observed) = (m; - m;)/ standard error of (m; - m;), and

degrees of freedom =2 * r-2 , r : replications

Depending on the significance level a,which is assumed as 5%, we compare the ¢
(observed) to the value found in the z-test tables corresponding to this confidence level, t
(critical). If

t (observed) < ¢ (critical)
then, we cannot reject the null hypothesis (Hp) of equal population means at the 0:=5%
level of significance. In other words, there is no evidence that there is a significant

difference observed between the two estimates.
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1.2.3. CALCULATION OF EFFECTS

The effect of a factor is the change in the response as we move from - to + version
of that factor, which in this research is the low level of buffers (or number of pallets, or
noise factors) to high level of buffers (or number of pallets, or noise factors) [13].
Consider the following example where the response and the sign columns of factors A,

B, and their interaction AXB are given.

run A B | AxB | response
1 - - + 43
2 + - - 39
3 - + - 47
4 + + + 38

Consider the effect of factor A. In runs [ and 3, A is at the low level and in runs 2
and 4, A is at the high level. Thus, we can calculate the effect of the factor A as follows.
effects = Y2 [(A *response )+ (Ax*responsea)+ (Az*responses)+ (A4 * responsey)]
=Y2 [(-1)*43 + (+1)*39 + (-1)*47 + (+1)*38] = -6.5
Similarly, the effect of B is calculated as:
effectg = Y5 [(B*response )+ (B2*response;)+ (Bs*responses)+ (B, * response,)]
=% [(-1)*43 + (-1)*39 + (+1)*47 + (+1)*38] =1.5
The effect of interaction of AxB is calculated by following the same method:
effectss = V2 [(AXB, *responsel)+(AxB2*response1)+(AxB3*response3)+(AxB4*response4)]

=V2 [(+1)*43 + (-1)*39 + (-1)*47 + (+1)*38] =-2.5
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1.2.4. THE NORMAL PROBABILITY PLOTTING

The normal probability plotting, developed by Daniel (1959), is a very effective
technique to accurately analyze data. The steps of normal probability plotting are
follows[13].
1. calculate the effect of the factor i:

1.1. find the sign column that corresponds to the factor i,

1.2. multiply each row of this sign column by each row of results column, get

lirowj) for each row, where rowyj :1..n (n :total number of experimental runs),

1.3. calculate the effect of the factor i, /; such as:

li =Z lirowjy/ (n/2) , where n: total number of experimental runs

2. plot these effects in order of magnitude along the horizontal scale and then refer to the
vertical axis which has a normal probability scale.

The calculation of the interval values, Dk, for the vertical axis:

pe= 100 * [(k-0.5) / k]

where,

k : the order number; k: 1..(n-1) , n: total number of experimental runs

P« : the probability of k.

The normal probability plotting technique is very effective because we can see the
main effects as well as the interactions effects at the same time and more importantly, we
can point out the important effects simply by looking at the graphics. Because the
technique adjusts the effects such that they roughly plot a straight line, the effects that do

not plot a line are considered as not easily explained chance occurrences, i.e., these
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effects can be explained by noise. However, to be certain that of this conclusion,
conducting the residual analysis is necessary. When used with residual analysis, the

normal probability plotting technique gives accurate and satisfactory information.

1.2.5. THE RESIDUAL ANALYSIS

In order the verify the validity of the system responses (throughput) obtained from
the experimental runs and conclusions reached using normal probability plotting, which is
described above, we use residual analysis. In other words, normal probability plotting of
residuals provides a diagnostic check for any tentatively entertained model [13].

After plotting the effects of factors into normal probability paper and finding the
most important effects, we now need to verify our results by diagnostic check. For
example, let us assume that we found the effects of a, ¢, e, and the interaction of cxe
important, using normal probability plotting data. In this case, the estimated result for the

data are given at the vertices of the design by

Y= Yavg + (Ual2)*xa + (2 + ([f2)*%e + (Lo 20X x2)

where ya, : the mean of response, [ the effect of factor i, and x,, x., x. take the value (-
I) or (+1) according to the columns of signs that correspond to factors.

Then, the values of y and y' are calculated. Following, the residuals are calculated such

as:

137



residualy = y, - yi*,

where k: the order, k:l.n, n: the total number of experimental runs

After these calculations are done, the model is checked by the normal probability plotting
technique using the following equation for the calculation of the intervals, p*, on the
vertical axis.

P = 100 * [(k -0.5) / k]

where,

k : the order number; k: 1..n, n: total number of experimental runs

P : the probability of k.

Unlike the original plot of the effects, all the points from this residual plot are
expected to lie down close to a line, in order to confirm the conjecture that the effects that
are not considered important can be explained by random noise. Hence, the residual
analysis can provide assurance for both the validity of the data collected through the
experimental runs and the accuracy of the interpretations of analysis of the normal

probability plotting of the effects.

1.3. STATISTICAL TECHNIQUES USED IN ROBUST DESIGN

The following sections discuss the calculation of the variance,ms and the

modified normal probability plotting and other techniques.
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1.3.1. CALCULATION OF THE VARIANCE WITH RESPECT TO NOISE

FACTORS (variance, )

We follow the methodology described in the study by Kacker and Shoemaker
[45]. The variance with respect to noise factors (variance, ) is the measure of the
variability of the throughput (TP) in the case of the changing noise factors (jam rates
and/or jam clear times) and unchanging control factors (buffer sizes). In other words, the
varianceyn,s measures the variability of the TP along the row of the inner-array which

corresponds to the configuration of buffer sizes.

We will explain the calculation of the variance..my with a demonstration.
Considering the example of the inner-array design shown in Figure 3.5., we will calculate
the variance,,,yy..

Let us calculate the variance,,q;) which measures the variability of the TP when

case, the variance, g is:

variancewmgry = [ TPy - (TP, ) 1/ [F*(F-1)] oL f

where TP;; is the system response (the throughput) for the configuration of control

noise factor configurations, which is four, in this example.

Hence, in general, the variance,mg;) is calculated as follows.
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varianceunmyi) =[fZ TPy * - (E TPy)* 1/ [f *(£-1)] Jrlf
where TPj; is the number of units produced by the model for particular buffer
configuration, i (i.e., the configuration of the ith row of the inner array) , and noise factor
configuration, j, and f is the total number of noise factor configurations (i.e., the number

of columns in the outer array).

1.3.2. THE MODIFIED NORMAL PROBABILITY PLOTTING

The normal plotting calculations and steps are fundamentally same as discussed in
section Appendix, 1.2.4. However, the results column and the considered number of runs
differ in this modified normal probability plotting. Instead of the throughputs (TP) which
we obtain from the experimental runs, in the robust design we will use the variance,,yins
as the results column. The variancewm,y columns is obtained by calculating the
variance,,s for each buffer configuration specified in the inner array. After obtaining
the variance, ., column as the results column, the remainder of the normal probability

plotting process is conducted accordingly. Hence, the steps are as follows.

1. calculate the effect of the factor i:
1.1. find the sign column that corresponds to the factor i,
1.2. multiply each row of this sign column by each row of results column (i.e., the
variance,,s), get lirowjy  for each row, where rowj :1..n (n :total number of
experimental runs of only the inner array; in other words, the total number of rows

of the inner array),
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1.3. calculate the effect of the factor i, /; such as:
L =X livowjy/ (n/2)  , where n: total number of experimental runs of
the inner array.

2. plot these effects in order of magnitude along the horizontal scale and then refer to the
vertical axis which has a normal probability scale.

The calculation of the interval values, p,, for the vertical axis:

Pr= 100 * [(k-0.5) / k]

where,

k : the order number; k: l..(n-1), n: total number of experimental runs of the

inner array,

P« : the probability of k.

1.3.3. OTHER TECHNIQUES

The residual analysis is also modified accordingly. In robust design, the residual
analysis is used to verify the validity of the calculated variance, s and the conclusions
about the important effects on the variance,.,.. However, the calculations and steps are
same as discussed in section 1.2.5.

The F-test and the t-test are applied to the throughput in order to verify the
validity of the system responses. Therefore, there is no modification in the application of

these tests.
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APPENDIX 2

Section 2.1. first describes the methodology followed in section 4.4.1. in detail,
then discusses the conclusions of the studies on the effect of the number of pallets in
AAS for each system (Design 2 studies). Finally, it lists the results of experimental runs
conducted in section 4.4.1. Similarly, section 2.2. lists the experimental runs conducted

in section 4.4.2. In addition, section 2.2. discusses the optimization steps briefly.

2.1. STUDIES CONDUCTED IN SECTION 4.4.1.

Methodology:

Our primary goal is to define the ranges, thus an optimal area, for buffer sizes
between the stations. The decision variables are buffer sizes given a fixed number of
pallets (Design 1). For studying the effect of the number of pallets in AAS, the decision
variables are buffer sizes and number of pallets (Design 2).

Hence, we have two DoE settings for each system type. The first one (Design 1)
studies only the effects of buffer configurations, while the second one (Design 2) studies

the effects of both buffer configurations and number of pallets in the system.

For Design 1, we use a 2v'®® fractional factorial design of experiments. The

generator of the 2rv'>® DOoE is as follows.
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[=12346=12357=12458=13459=234510
where, 6=1234, 7=1235, 8=1245, 9=1345, 10=2345,
the effects and buffer allocations assignments are:
bi: 11, ba: Iy, bst I3, byt Ly, bs: Is, bg: Ig (9=345), by : 17, bg: 13 (10=2345), by : lg (6=1234),

b[o . l[o (8 =1245)

For Design 2, we use a 2y''® fractional factorial design of experiments. The

generator of the 2[;['“5 DoE is as follows.

= 1236 = 2347 = 3458 =1349 =34510=24511
where, 6=123, 7=234, 8=345, 9=134, 10=345, 11=245,

the assignments effects and buffer allocations are:
by : 11, ba: 15 (6=123),bs: I3, ba: Ly (7=234), bs: Is (column 2), bg: Is (9=134),
b7: 17 (column 4), bg : Ig (10=145), by : Iy (11=245), byg: 1,0 (8=345),
effect of pallets (column 5) .

Before conducting the experiments, we have first verified the results of iterations
listed in SQG approach by using these parameters in our simulation program. Then, we
have applied the t-test for our results. We have found that all iterations are statistically
not different at 95% confidence level for all systems. Next, we have chosen the buffer
levels for the experiments according to the configurations that gave high TP among those
iterations. We have then conducted the experiments and reached conclusions, as

mentioned in section 4.4.1.
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Conclusion of Design 2 studies (effects of number of pallets and buffers are

studied for four type of systems):

We have found out that even a slightest change in the number of pallets in all
types of systems affects the TP significantly. Because the effect of the number of pallets
in the system is very large, the effects of buffers are ignored, when compared to the effect
of number of pallets. The graphical results of the analyses of Design 2 studies are

demonstrated in Figures 2.1.2. to 2.4.2.

Tables:

Table 2.1. compares the results obtained by SQG optimization approach and
simulation program we use in this research. Tables 2.1.1. to 2.4.1. list the results of the
experimental runs of Design 1 (only effects of buffers studied) of systems discussed in
section 4.4.1. Similarly, Table 2.1.2. to 2.4.2. list the results of experimental runs of

Design 2 (effects of buffers and number of pallets studied) of same systems.

2.2. STUDIES CONDUCTED IN SECTION 4.4.2. (DoE OPTIMIZATION)

Two types of systems studied for the optimization using the DoE approach. The
methodology is as follows.

Initial buffer ranges are chosen and experiments are conducted, accordingly.
Then, using the data analysis techniques (see Appendix 1, section 1.2.), the results of the
experimental runs are investigated. The effects of buffers are calculated and results are
plotted to the normal probability papers. Important effects (the ones that are

distinguishable from other effects) are identified. Then, the buffer ranges are determined
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as follows. The buffer sizes for buffers with positive important effects on the throughput
are increased and for buffers with negative important effects on the throughput are
decreased (if there is not an important interaction effect; if there are important interaction
effects, then their effects and signs are also considered when choosing the new buffer
ranges). The buffer sizes for buffers with no important effects on the throughput are kept
unchanged. Also, the variances of each pair of TPs (variancegymorp) are calculated for
verification.  If buffers seem to have important effects, the next experimenting step is
conducted by using the determined buffer ranges in this step as the initial buffer ranges.
The optimization steps are terminated based on the satisfaction of the stopping criteria.
The main stopping criterion is having small effects of buffers such that they are
indistinguishable and/or small. In addition, we want the variancegnynvorp to be small
enough. We reach an optimal area when these criteria are satisfied simultaneously.

Following is a brief discussion of steps conducted for the optimization of each system.

2.2.1. Type 5 Systems (All Stations Are Subject to Jam)

The initial buffer ranges are chosen considering the conclusions of buffer

allocations studies of section 4.4.1. Four steps are conducted to reach an optimal area.
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Step I:

The initial buffers are as follows.

Buffer bl bz b3 b4 bs
- 2 5 4 8 4
+ 3 7 5 11 5

The results of the experimental runs of this step are listed in Appendix 2, Table
2.5.1.1. The effects of the buffers and residual analysis are calculated and shown in
Appendix 2, Figure 2.5.1.1. and 2.5.1.2. The largest varianceanynorp is calculated as
6.54%107 and all of the varianceanynorp found in a range of 6.54*107 to 7.94*107.
Since the effects are large enough, we will conduct a new set of experiments by using the
conclusion of this set to choose the new levels of buffers (see Appendix 2, Table

2.5.1.2.).

Step 2:

The buffer levels are chosen accordingly (Appendix 2, Table 2.5.1.2.) The results
of the experimental runs of this step are listed in Appendix 2, Table 2.5.2.1. The effects
of the buffers and residual analysis are shown in Appendix 2, Figure 2.5.2.1. and 2.5.2.2.
The largest varianceanynorp is calculated as 6.14*10° and all of the varianceanyrworp
found in a the range of 6.14*10° to 2*10™%.  Although the variancemymorr is
considerably smaller, the effects are still important. Hence, we will continue

experimenting. The conclusion of this step is listed in Appendix 2, Table 2.5.2.2.
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Step 3:

The buffer levels are chosen following the conclusion of the previous step
(Appendix 2, Table 2.5.2.2.) The results of the experimental runs of this step are listed in
Appendix 2, Table 2.5.3.1. The effects of the buffers and residual analysis are
demonstrated in Appendix 2, Figure 2.5.3.1. and 2.5.3.2. The largest variancenynvorp 1S
calculated as 3.89*10° and all of the varianceanyworp found in a the range of 3.89*107°
to 2*107'2 Although the varianceanynworp is considerably smaller, the effects may still
be important. Hence, we will continue experimenting by using the conclusion of this step

as listed in Appendix 2, Table 2.5.3.2.

Step 4:

The buffer levels are chosen accordingly (Appendix 2, Table 2.5.3.2.) The results
of the experimental runs of this step are listed in Appendix 2, Table 2.5.4.1. The largest
variancenynorp is calculated as 2.31*10° and all of the varianceanymore found in a the
range of 2.31*10° to 5%107'3. At this step, we have found that the effects are almost
indistinguishable. In addition, considering the smaller variancegpynyorp values calculated
in this step and confirmatory experiments conducted, we have terminated the
experimenting at this step. The effects of the buffers and residual analysis are
demonstrated in Chapter 4, Figure 4.5.1. and 4.5.2. The conclusion of this step is listed

in Chapter 4, Table 4.5.2.
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2.2.2. Type 6 Systems (Some Stations Are Subject to Jam)
In this study, we have chosen the initial levels of the buffers randomly. Six steps

are conducted to reach an optimal area.

Step 1:

The initial buffers are as follows.

buffers123456789101112131415

The results of the experimental runs of this step are listed in Appendix 2, Table
2.6.1.1. The effects of the buffers and residual analysis are calculated and shown in
Appendix 2, Figure 2.6.1.1. and 2.6.1.2. The largest variancesyworp is calculated as
1.37*107 and all of the varianceaymorr found in a the range of 1.37+10°7 to 3.47*10"'%,
Since the effects are large, we will conduct a new set of experiments by using the
conclusion of this set to choose the new levels of buffers (see Appendix 2, Table

2.6.1.2.)

Step 2:
The buffer levels are chosen accordingly (Appendix 2, Table 2.6.2.1.) The results
of the experimental runs of this step are listed in Appendix 2, Table 2.6.2.1. The effects

of the buffers and residual analysis are shown in Appendix 2, Figure 2.6.2.1. and 2.6.2.2.
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The largest varianceanymorp is calculated as 1.1*10®% and all of the variancenyoworp
found in a the range of 1.1¥10® to 4.5%107'2. Since effects of buffers are large, we will

conduct the next step. The conclusion of this step is listed in Appendix 2, Table 2.6.2.2.

Step 3:

The buffer levels are chosen following the conclusion of the previous step
(Appendix 2, Table 2.6.2.2.) The results of the experimental runs of this step are listed in
Appendix 2, Table 2.6.3.1. The effects of the buffers and residual analysis are
demonstrated in Appendix 2, Figure 2.6.3.1. and 2.6.3.2. The largest varianceanynworp 1S
calculated as 1.1*10® and all of the varianceanynore found in a the range of 1.1*10%®
to 3.47*10'%. The effects may seem important. Hence, we will continue experimenting

by using the conclusion of this step as listed in Appendix 2, Table 2.6.3.2.

Step 4:

The buffer levels are chosen accordingly (Appendix 2, Table 2.6.3.2.). The
results of the experimental runs of this step are listed in Appendix 2, Table 2.6.4.1. The
effects of the buffers and residual analysis are shown in Appendix 2, Figure 2.6.4.1. and
2.6.4.2. The largest variancegnyworp is  calculated as 1.01*10%  and all of the
varianceaaymore found in a the range of 1.01*108 to 2.78*10'%. Some effects may still
seem important, thus we will conduct the next step. The conclusion of this step is listed

in Appendix 2, Table 2.6.4.2.
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Step 5:

The buffer levels are chosen following the conclusion of the previous step
(Appendix 2, Table 2.6.4.2.) The results of the experimental runs of this step are listed in
Appendix 2, Table 2.6.1.5. The largest varianceanynorp is calculated as 2.66*%10° and
all of the varianceanymore found in a the range of 2.66*10° to 1.52*10°°. The effects
of the buffers and residual analysis are demonstrated in Appendix 2, Figure 2.6.5.1. and
2.6.5.2. We have found that some effects had large values.. Hence, we will continue

experimenting by using the conclusion of this step as listed in Appendix 2, Table 2.6.5.2.

Step 6:

The buffer levels are chosen accordingly (Appendix 2, Table 2.6.5.2.) The results
of the experimental runs of this step are listed in Appendix 2, Table 2.6.1.6. The largest
variancegnynorp is calculated as 6.13*107'° and all of the varianceunynorp found in a the
range of 6.13*107'% to 2.78*10°'8. At this step, we have found that the effects may be
considered as indistinguishable. To verify that, we have run some confirmatory
experiments and concluded that the effects are indeed indistinguishable, thus we have
terminated the experimenting at this step. The effects of the buffers and residual analysis
are demonstrated in Chapter 4, Figure 4.6.1. and 4.6.2. The conclusion of this step is

listed in Chapter 4, Table 4.6.2.
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Table 2.1. The comparison of the results of SQG optimization approach and the
discrete-event simulation program used in this research

nomenclature:

iter : iteration number of the SQG optimization approach,

bi : the size of the buffer between station i and station i+1,i:1..10,

TP : Throughput (production rate),

TP, : TP of SQG optimization approach,

TP, : TP of the experimental runs obtained from the simulation program we used,
var,: variance of experimental runs obtained from the simulation program we used,
Jjr: jam rate at station i, i:1..10,

jet: jam clear time

repl. : replications
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Table 2.1.1. The results of experimental runs of Design 1 of Type 1 systems
bufferrange: (-):2 and (+):3 for all stations

number of pallets: 20, 10 replications for each run

.142858

YRR I 1.
FAIERIN S

- PERn - o
SR ACTEIAS

ARG
143121
B 1S (IS

129511
LT
127571
st 0 EE
.143056 126871
SRS ORI B
143114
.143167
CULARGT

.143261

Rt (T K
143121

) AR IR LT
R

120883

120633

G

123599

143226 118020

.143172

A e
AN
: ‘."‘7‘ BB

120003

153



Table 2.1.2. The results of experimental runs of Design 2 of Type 1 systems
bufferrange: (-):2 and (+):3 for all stations

pallet range: (-): 20 and (+): 21, 10 replications for each run
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Figure 2.1.1. The effects of buffers and number of pallets of Type 1 systems

(Design 2)
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Table 2.2.1. The results of experimental runs of Design 1 of Type 2 systems
buffer range: (-) : 5, 16,5,4,44,54,4,4 and (+) : 6, 17,6,5,5,5,6,5,5,5

number of pallets: 40, 10 replications for each run
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Table 2.2.2. The results of experimental runs of Design 2 of Type 2 systems
buffer range: (-) : 5,16,5,4,4,4,5,4,4,4 and (+):6,17,6,5,5,5,6,5,5,5

pallet range: (-): 40 and (+): 45, 10 replications for each run
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Figure 2.2.1. The effects of buffers and number of pallets of Type 2 systems

(Design 2)
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Figure 2.2.2. The residuals of Type 2 systems (Design 2)
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Table 2.3.1. The results of experimental runs of Design 1 of Type 3 systems
buffer range: (-) : 4,9,10,11,11,4,4,4.4,4 and (+):5,10,11,12,12,5,5,5,5,5

number of pallets: 40, 10 replications for each run
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Table 2.3.2. The results of experimental runs of Design 2 of Type 3 systems
buffer range: (-) : 4,9,10,11,11,4,4,4,4,4 and (+) : 5,10,11,12, 12,5,5,5,5,5

pallet range: (-): 40 and (+): 45, 10 replications for each run
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Figure 2.3.1. The effects of buffers and number of pallets of Type 3 systems

(Design 2)
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Table 2.4.1. The results of experimental runs of Design 1 of Type 4 systems
buffer range: (-) : 11,14,56,6,11,11,5,7,3 and (+) : 12,15,6,7,7,12,12,6,8.4

number of pallets: 50, 10 replications for each run
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Table 2.4.2. The results of experimental runs of Design 2 of Type 4 systems

buffer range: (-) : 11,14,56,6,11,11,5,7,3 and (+):12,15,6,7,7,12,12,6,8,4

pallet range: (-): 50 and (+): 60, 10 replications for each run
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Figure 2.4.1. The effects of buffers and number of pallets of Type 4 systems

(Design 2)
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Figure 2.4.2. The residuals of Type 4 systems (Design 2)
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Table 2.5.1.1. The results of experimental runs of optimization of AAS (Type 5)
using DoE approach, 1¥ experiment set (1* step)

buffer range: (-) : 2,5,4,8,4 and (+):3,7,5,11,5; number of pallets: 20; 10 replications
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Figure 2.5.1.1. The effects of buffers of Type 5 systems using DoE optimization

method (1* step)
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Figure 2.5.1.2. The residuals of buffers of Type 5 systems using DoE optimization

method (1% step)
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Table 2.5.2.1. The results of experimental runs of optimization of AAS (Type 5)
using DoE approach, 2™ experiment set ( 2°¢ step)

buffer range: (-) : 3,7,6,9,4 and (+) : 4,8,8, 12,5; number of pallets: 20; 10 replications
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Figure 2.5.2.1. The effects of buffers of Type S systems using DoE optimization

method (2" step)
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Figure 2.5.2.2. The residuals of buffers of Type 5 systems using DoE optimization

method (2" step)
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Table 2.5.3.1. The results of experimental runs of optimization of AAS (Type 5)
using DoE approach, 3™ experiment set ( 3™ step)

buffer range: (-) : 3,6,7,8,3 and (+) :4,7,9,10,4; number of pallets: 20; 10 replications
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Figure 2.5.3.1. The effects of buffers of Type S systems using DoE optimization

method (3™ step)
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Figure 2.5.3.2. The residuals of buffers of Type S systems using DoE optimization

method (3™ step)
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Table 2.5.4.1. The results of experimental runs of optimization of AAS (Type 5)
using DoE approach, 4" experiment set ( 4" step)

buffer range: (-) : 3,6,8,9,3 and (+) : 4,7,9,10,4;: number of pallets: 20; 10 replications
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Table 2.6.1.1. The results of experimental runs of optimization of AAS (Type 6)
using DoE approach, 1% experiment set (1" step)

initial levels of buffers:

buffers |1 |2 |3 |4 |56 |7 |8 |9 |10 |11 ]12 |13 |14 |15
- 5 IS 15 5155 515515 |5 |5 [5 15 |5
+ 6 |6 |16 |6 |66 |6i6(6|6 |6 |6 [6 |6 |6
jamrate [3 |3 [0 [5 |0 |0o5(|0 |3 [0 [0o5]0 (050 |o |o
number of pallets : 60, jam clear time : 20 time units, cycle time : 5 time units
R
137165 110175
137533 108821
IR TOGEa .
: 103891
O PR
.138016 100915
D RRLG 008 E
.138109 106214
SR RO
.138109 106214
i COEERT4 T e
.138109 106214
L GRS F T R
.138109 106214
RSO
Table 2.6.1.2. The conclusion of 1% step
buffers |1 [2 |3 14 (5 (6 [7 18 |9 |10 |11 |12 [13 |14 |15
- T 8 18 17 7151515 |5 |5 |5 |5 |s
+ 12 110 |10 |9 |9 |8 [8 |6 |6 |6 (6 |6 |6 |6 [6
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Figure 2.6.1.1. The effects of buffers of Type 6 systems using DoE optimization

method (1% step)
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Figure 2.6.1.2. The residuals of buffers of Type 6 systems using DoE optimization

method (1% step)
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Table 2.6.2.1. The results of experimental runs of optimization of AAS (Type 6)

using DoE approach, 2™ experiment set ( 2™ step)

initial levels of buffers:
buffers 2 3 (4 |S5]6 17 |8 |9 |10 {11 |12 |13 |14 |15
- 11 |9 8 1817 1715 |5 |5 5 5 |5 5 5
+ 12 110 |10 |9 |9 |8 8 |16 |6 |16 |6 6 |6 6 6
jam rate 5101]05]0 (3 |O0o|o5](0 051|0 0 0
number of pallets : 60, jam clear time : 20 time units, cycle time : 5 time units
141107 - 68020
RN =
.141107
.141107
.141107
BT GROSET -
Table 2.6.2.2. The conclusion of 2™ step
buffers |1 2 3 (4|56 |7 |8 |9 (10 |11 {12 |13 |14 |15
- 13 110 |10 [8 (8 |6 |6 |5 |5 |4 |4 4 (4 4 4
+ 14 {11 |11 |9 |9 |7 |7 |6 |6 |5 5 5 5 5 5
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Figure 2.6.2.1. The effects of buffers of Type 6 systems using DoE optimization

method (2™ step)
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Figure 2.6.2.2. The residuals of buffers of Type 6 systems using DoE optimization

method (2™ step)
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Table 2.6.3.1. The results of experimental runs of optimization of AAS (Type 6)
using DoE approach, 3™ experiment set ( 3™ step)

initial levels of buffers:
buffers
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Figure 2.6.3.1. The effects of buffers of Type 6 systems using DoE optimization

method (3™ step)
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Figure 2.6.3.2. The residuals of buffers of Type 6 systems using DoE optimization

method (3™ step)
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Table 2.6.4.1. The results of experimental runs of optimization of AAS (Type 6)
using DoE approach, 4" experiment set (4™ step)

initial levels of buffers:

buffers (1 |2 |3 |4 |5 |6 |7 |8 [9 |10 |11 |12 |13 |14 |15
- 14 110 J10 |8 |8 [6 |6 [S |5 (3 |3 |4 |4 |3 |3
+ I5 |11 J1t |9 19 17 (716 |l6 |4 |4 [5 |5 [4 |4
Jjam rate 5 /010510 |3 |0 (05|0 [o05]0 0 |0
number of pallets : 60, jam clear time : 20 time units, cycle time : 5 time units
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141547

141547

.141547

L RAUSAT
Table 2.6.4.2. The conclusion of 4" step
buffers ({1 |2 |3 (4 [5 (6 |7 |8 |9 |10 |11 |12 |13 |14 |15
- IS |11 j11 (8 (816 |6 [51I5 12 |2 I3 |3 |2 |2
+ 16 [12 112 |9 [9 |7 |7 |6 |6 [3 [3 [4 [4 [3 [3
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Figure 2.6.4.1. The effects of buffers of Type 6 systems using DoE optimization

method (4" step)
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Figure 2.6.4.2. The residuals of buffers of Type 6 systems using DoE optimization

method (4" step)
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Table 2.6.5.1. The results of experimental runs of optimization of AAS (Type 6)

using DoE approach, 5 experiment set ( 5 step)

initial levels of buffers:
buffers 4 |5 1]6 7 18 (9 |10 |11 |12 |13 |14 |15
- 15 [I1 [11 |8 |8 |6 6 [5 [5 |2 2 3 3 2 2
+ 16 |12 9 19 |7 7 16 |6 |3 3 4 4 3 3
jam rate 5/]0]05|0 (3 |0 |05]0 0510 0 0

number of pallets : 60, jam clear time : 20 time units, cycle time : 5 time units
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Figure 2.6.5.1. The effects of buffers of Type 6 systems using DoE optimization

method (5" step)
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Figure 2.6.5.2. The residuals of buffers of Type 6 systems using DoE optimization

method (5th step)

P 100

80

60 |
40

20 -

0 o~ Sl i : 2 { 5 g ) et
-2.0E-05 -1.0E-05 0.0E+00 1.0E-05 2.0E05 Eff .ects of
residuals

" pi= 100 * [(k-0.5)/k]

181



Table 2.6.6.1. The results of experimental runs of optimization of AAS (Type 6)

using DoE approach, 6" experiment set ( 6 step)

buffers 2 4 |5 1|6 7 18 |19 |10 {11 |12 |13 |14 |15
- 12 8 [8 |6 6 (S |51 | 3 3 2 2
+ 13 |1 9 |9 |7 7 16 |6 |2 2 4 4 3 3
jam 3 5 [0 ]05]0 |3 {0 1(05]0 0510 0 0
rates

number of pallets : 60, jam clear time : 20 time units, cycle time : 5 time units
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Table 3.1.1. The experimental runs for the Type 1 systems and jam rates and jam

clear times as noise factors
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Table 3.1.2. The mean of the TP and variancey.ms for each buffer configuration

(i.e., the row of inner array) of Type 1 systems
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Table 3.2.1. The experimental runs for the Type 2 systems and jam rates and jam

clear times as noise factors
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Table 3.2.2. The mean of the TP and variancewn,s for each buffer configuration

(i.e., the row of inner array) of Type 2 systems
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Table 3.3.1. The experimental runs for the Type 3 systems and jam rates and jam

clear times as noise factors

136479 30103
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Table 3.3.2. The mean of the TP and variance,n,s for each buffer confi

(i.e., the row of inner array) of Type 3 systems
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Table 3.4.1. The experimental runs for the Type 4 systems and jam rates and jam

clear times as noise factors
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Table 3.4.2. The mean of the TP and variance .,y for each buffer configuration

(i.e., the row of inner array) of Type 4 systems
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (sets 1 to 4)
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (continued; sets 5 to 8)
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (continued; sets 9 to 12)
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (continued; sets 13 to 16)
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (continued; sets 17 to 20)
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Table 3.5.1. The experimental runs for the Type S systems and jam rates as noise

factors (continued; sets 21 to 24)
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (continued; sets 25 to 28)
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Table 3.5.1. The experimental runs for the Type 5 systems and jam rates as noise

factors (continued; sets 29 to 32)

0.13775[ - 99360

ii’—"‘» 864 0136355 7
0.137768° - '101682° - (0.i36791 85030 - ‘0=136402 _ggs; 0.135358 59680 _
0137609 _ 113669 _ 0136672 95072 0136270 . 83637 - OJ352‘77 62116

27 0137644 109983 - 0.136702 - -91514: ", _8S3E ou3siL 6276

0137709 - 104181 036744 .

100102 0.136772 8485 SR )

198



Table 3.5.2. The mean of the TP and variance,.ms for each buffer configuration

(i.e., the row of inner array) of Type § systems
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Table 3.6.1. The experimental runs for the Type S systems and jam rates and jam

clear times as noise factors (2 study)
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Table 3.6.1. The experimental runs for the Type 5 systems and jam rates and jam

clear times as noise factors (2™ study) (continued)
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Table 3.6.2. The mean of the TP and variance,n,s for each buffer configuration

(i.e., the row of inner array) of Type 5 systems (2™ study)
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Table 3.7.1. The experimental runs for the Type 6 systems and jam rates and jam

clear times as noise factors
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Table 3.7.1. The experimental runs for the Type 6 systems and jam rates and jam

clear times as noise factors (continued)
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Table 3.7.2. The mean of the TP and varianceynns for each buffer configuration

(i.e., the row of inner array) of Type 6 systems
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