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Abstract

Formal Methods For Reuse Of Design Patterns And
Micro-Architectures

Sridhar Narayanan

Software reuse is recognized to have the potential for improved productivity of quality
software. Class reuse, micro-architecture reuse, and reuse of application frameworks
are the three distinct levels of software reuse. This thesis examines the critical issues in
providing support for different levels of reuse through formal specifications of reusable
components.

The formal specification language Larch/C++ has been used in reuse research
projects and has been found to be adequate for specifying the behavior of class inter-
faces. We strengthen this claim by applying this methodology to several classes chosen
from Rogue Wave library. We then provide extensions to the language for specifying
object collaborations in a micro-architecture. We then illustrate this specification
methodology for a micro-architecture chosen from a design pattern repository. In
this context, we have also discussed the need to formally document design patterns
and provided a formal framework within which design patterns can be formalized.
Finally, we present the conceptual schema for a design pattern repository and discuss

the query language features for storage and retrieval of design patterns.
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Chapter 1
Introduction

The concept of software reuse was introduced in a seminal paper by Mcllroy [47]
at the 1968 Nato Software Conference - the founding date of Software Engineering
discipline. Recognizing the most obvious benefits of software reuse, such as productiv-
ity gain and improved software quality, many commercial, government and industrial
organizations in the USA, Japan, and Europe have recently instituted systematic soft-
ware reuse programs [42]. There are numerous diverse technical and non-technical
issues challenging the wider practice of software reuse. Among them, the most im-
portant technical issue is the use of specification languages for creating, labelling and

retrieving software components for error-free reuse.

1.1 Benefits of Reuse

Software Development is becoming increasingly capital-intensive, tool dependent, co-
operative, and requires greater early investment of capital in return for reduced cost
at later stages. Thus reusable software is to be viewed as a capital good whose in-
vestment cost is recoverable amortized over a number of years from its large pool of

users. The additional expected benefits of reuse are:
e [t can lead to improved reliability and performance.
¢ Reuse promotes interoperability between systems.

e [t supports rapid prototyping.



e It provides a transparent uniformity among systems constructed with the same

components.

Recent reports from industries such as Hewlett-Packard[42], NEC and Fujitsu
[8, 23], Digital[19] and IBM[24] also suggest that there is a reduction in defective
software, increase in return on investment, improved efficiency in product delivery
and in general, a corporate-wide acceptance of reuse. Hence it can be argued that
systematic application of reuse to prototyping, development, and maintenance during
software development process is an effective way to reduce cost and improve software

reliability and productivity.

1.2 Object-Oriented Systems and Reuse

Object-oriented (OO) approaches to design of software systems have proven to sig-
nificantly improve software quality and the underlying development effort.

Object-Oriented programs are made up of objects. An object packages both data
and procedures that operate on the data. The procedures are typically called meth-
ods or operations. An object performs an operation when it receives a request (or
message) from a client. Requests are the only way to get an object to execute an
operation. Operations are the only way to change an ob ject’s internal data. Because
of these restrictions the object’s internal state is said to be encapsulated; it cannot be
accessed directly, and its representation is invisible from outside the ob ject. Every
operation declared by an object specifies the operation’s name, the objects it takes as
parameters, and the operation’s return value. This is known as operation’s signature.
The set of all signatures defined by an object is called interface of the object. An
object’s interface characterizes the complete set of requests that can be sent to the
object. Any request that matches a signature in the object’s interface may be sent
to the object. The sender of a message does not need to know how the message is
processed internally by the object, only that it responds to particular message in a
well-defined way. Thus, from the point of view of an ob ject’s clients only the object’s
interface behavior is important.

An object’s implementation is defined by its class. Classes are the basic software
modules in an object-oriented design. Objects are created by instantiating a class. The

object is said to be an instance of a class. The process of instantiating a class allocates



storage for the object’s internal data (made up of instance variables) and associates
operations with these data. One of the cornerstones of object-oriented programming is
data abstraction and refers to the fact that a class’s interface is completely independent
from its implementation. Classes implemented by one programmer (the producer or
implementor) can be used by other programmers (the clients) without these clients
having to concern themselves with understanding a class’s implementation details.
The client of a class needs only to understand the behavior of the class as specified by
the method interfaces and may view the method implementations as being contained
in a black-bor hidden from view. This approach is conducive to reuse, because a
module can be used by a client without concern for the implementation details of this
module. There is a considerable amount of saving of time and cost — much less effort
is required than to write a module from scratch or to reuse an existing module after
understanding its implementation details. .

New classes can be defined in terms of existing ones using class inheritance. When a
subclass inherits from a parent class it includes the definition of all data and operations
that the parent class defines. Subclasses can refine and redefine behaviors of their
parent classes. More specifically a class may override an operation defined by its
parent class. Overriding gives subclasses a chance to handle requests instead of their
parent classes (for e.g., virtual functions in C++). Class inheritance lets the designer
define classes simply by extending other classes, making it easy to define families of
objects having related functionality. Yet, there is no agreement among the object-
oriented community on the notion of inheritance, it seems to encompass the following
distinct concepts [25, 61, 44].

¢ Implementation Inheritance: This is a mechanism for the incremental defi-
nition of new classes based on existing ones. It can be defined as the carrying of
features (methods and instance variables) from a parent class definition to its
child class and the possible overriding of methods in the child class. By sharing
implementation code which describes the internal representation of classes, the
total amount of code in a system can be reduced drastically. In general, this
form of inheritance does not provide any guarantees that the newly derived class
will be a specialization of its parent class. This is because a method may be
overridden in the derived class in a way that is not consistent with the parent

class, or a subclass may even hide certain signatures provided in the superclass.



¢ Subtype Inheritance: This form of inheritance is of two types:

— Interface Inheritance: In this form of inheritance the subclass inher-
its the interface of the parent class. An object’s type refers here to its
interface- the set of requests to which it can respond. An object can have
many types, and objects of different classes can have the same type. There
is a close relationship between the class and type. Because a class defines
the operations an object can perform, it also defines the object’s type.
When we say an object is an instance of a class, we imply that the object
supports the interface defined by a class. In this form of inheritance, an
object of the subclass provides the interface of the parent class and can
therefore be substituted for a parent class object in a program. However
reliability of such a substitution cannot be assured because a method may
be overridden in a derived class in a way which is not consistent with the
parent class. The subclass is referred to as a weak subtype of the parent

class supertype.

— Behavior Inheritance: This is a relationship between the specification
of two classes. This form of inheritance includes interface inheritance but
requires that the behavior of the inherited signatures in a subclass stay
consistent with the behavior in the superclass. This subtyping property
captures the notion of behavior compatibility between two classes by re-
quiring that members of a subtype are also members of supertype. The
subtyping property ensures that a subtype can be reliably substituted for

a supertype in a specification or a program.

One of the key features of object-oriented programming (OOP) which facilitates
software reuse is the support for polymorphism, as provided by its message passing
(or late binding) paradigm. The type of polymorphism provided in OOP has been
extensively studied and characterized as inclusion polymorphism [9] or subtype poly-
morphism (40, 41]. It has been shown that this type of polymorphism, popularized
by its ability to support code reuse in Smalltalk-80 (28], is fundamentally different
from the universal parametric polymorphism found in functional languages such as
ML [9, 39, 20].

Subtype polymorphism is distinguished from other kinds of polymorphism by two



features: (i) the dynamic binding of operation names to operations based on the run-
time types of their arguments, and (ii) the possibility that a given expression may
denote objects with different types (ie. different subtypes) at run-time [41]. These
properties allow programs which make use of subtype polymorphism to abstract over
a set of heterogeneous objects that have similar behavior. This makes it possible
to extend, or customize, an existing program by introducing new types of objects
on which the program can operate. In turn, this ability to easily extend a program
is very conducive to software reuse. When such an extension is made the existing
program is entirely reused, without modification, and only implementations of new
types need to be added.

Polymorphic code in OOP can manipulate objects of several different types, pro-
vided the actual (dynamic) type of an object conforms to the the static (or nominal)
type of the expression that denotes it. This capability has important consequences
on the ability to support reuse. It means that new subtypes can be easily be added
to a system without modifying existing generic (polymorphic) modules. This is to
be contrasted with non-polymorphic typed languages (eg. C, Pascal, Modula) where
the addition of new types typically involves the addition of a “type tag” on the new
data type, and the verification of this type tag in a “case” statement. This latter
approach is very dangerous and error-prone, as it is easy to forget updating one of
the potentially many case statements. This leads to software that is difficult to reuse
and maintain [17]

In fact, it has been argued very convincingly that subtype polymorphism is essen-
tial for the development of extensible, reusable software components [17, 18, 48]. The
non-polymorphic approach to code reuse make black-box reuse of code impossible,
since to make an extension to a system (ie. to add a new type) it is necessary to
modify existing code as well as add new code [17]. In the subtype polymorphic OO
approach, existing polymorphic code can be left intact since it is sufficiently generic
to accommodate extensions.

The two most common techniques for reusing functionality in object-oriented sys-
tems are class inheritance and object composition. Class inheritance allows one to
define the implementation of a class by reusing the implementation and functionality
of existing classes. Thus, the time and effort needed to define new kinds of objects
are drastically reduced. However implementation reuse is only half the story. Inheri-

tance’s ability to define families of objects with identical interfaces is also important,
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since polymorphism depends on it. In subtype inheritance all classes derived from an
abstract class will share its interface. All subclasses can then respond to requests in
the interface of an abstract class, making them all subtypes of abstract class. Object
composition is an alternative to class inheritance. Here, new functionality is obtained
by assembling or composing objects to get more complex functionality. Because, ob-
Jects are accessed solely through their interfaces, we do not violate encapsulation.
Further, due to polymorphism an object can be replaced at run-time by another as
long as it has the same type. Since, an object’s implementation is written in terms
of object interfaces, there are substantially fewer implementation dependencies.

It is thus clear that OO design concepts and 00 programming languages offer a
high potential for reuse.

1.3 Scope of the Thesis

The thesis makes four distinct contributions to reusing software designed by OO

principles:

® Building on the seminal work of Colagrosso [16], Larch/C++ specifications for
some more Rogue Wave library tools.h++ classes are given and our experiences

are summarized. This work is presented in Chapter 3.

e Larch/C++ language is extended with constructs for expressing object col-
laborations. This extended three-tiered language is used to specify micro-

architectures. This work, the first of its kind, appears in Chapter 4.

® A critique on existing design pattern documentations, a rationale for a new
documentation, and a formalism for essential features of design patterns are
given in Chapter 5. Once again, this is the first time any research is directed

at formalizing design pattern documentations.

® Software reuse in large scale is feasible when software artifacts are stored and
retrieved from a database. The thesis presents an object-oriented database
schema, and possible queries that can be posed on the database of design pat-

terns in Chapter 6. There is no published work addressing this issue.



A brief summary of basic concepts on design patterns, micro-architectures, levels of

reuse are discussed in Chapter 2. The thesis concludes with a summary and directions
for future research in Chapter 7.



Chapter 2

Basic Concepts - Design Patterns,
Micro-architectures and Levels of

Reuse

[n this chapter we provide a brief summary of basic concepts on design patterns,
micro-architectures, levels of reuse that can be practised in developing OO software

systems.

2.1 Design Patterns

In spite of the high potential of reuse offered by object-oriented design concepts,
designing reusable object-oriented software is an extremely challenging task. The
designers must find pertinent objects, factor them into classes at the right granular-
ity, define class interfaces and inheritance hierarchies, and establish key relationship
among them. The design should be specific to the problem at hand, but also general
enough to address future problems and requirements [33, 25]. The designers want to
avoid redesign or at least minimize it. A reusable and flexible design is difficult if not
impossible to get right the first time. So, expert designers often reuse solutions to
design problems that they have discovered in the past instead of solving the problem
from scratch. In fact, many object-oriented software systems contain such recurring

patterns of classes and communicating objects that solve specific design problems and



make such designs more flexible, elegant, and ultimately reusable. They help design-
ers reuse successful designs by basing new designs on prior experience. A designer
who is familiar with such patterns can apply them immediately to design problems
without having to rediscover them. Such patterns are called design patterns.

Object-oriented software community is still divided on offering a precise definition
of what constitutes a design pattern. Several definitions have been proposed. Gamma
et al. [25] define them as descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context. It is clear that
design patterns are abstract representation of solutions applied repeatedly to prob-
lems that arise when developing object-oriented software within a particular context.
Besides, capturing the static and dynamic structure and collaborations among the key
participants in software designs, design patterns also document the intent, rationale,
and consequences of applying the abstract design in warious contexts. Each design
pattern focuses on a particular object -oriented design problem or issue. It describes
where it can be applied, whether it can be applied in view of other design constraints,
and the consequences and trade-offs of its use [25].

According to Gamma. et al. [25] a design pattern has four essential elements:

¢ The pattern name is used as a handle to describe a design problem, its so-
lutions, and consequences in a word or two. Naming a pattern immediately
increases our design vocabulary and makes it easier to think about designs and

to comminicate them and their trade-offs to others.

¢ The problem describes when to apply the pattern. It explains the problem
and its context. It might describe specific design problems such as how to
represent algorithms as objects. It might describe class or ob ject structures that
are symptomatic of an inflexible design. Sometimes the problem will include a

list of conditions that must be met before it makes sense to apply the pattern.

¢ The solution describes the elements that make up the design, their relation-
ships, responsibilities, and collaborations. The solution doesn’t describe a par-
ticular design or implementation, because a pattern is like a template that
can be applied in many different situations. Instead, the pattern provides an
abstract description of the design solution and how a general arrangement of

classes and objects solve.



e The consequences are the results and trade-offs of applying the pattern. Con-
sequences are often unvoiced when we describe design decisions. The conse-
quences for software often concern space and time trade-offs. They may ad-
dress language and implementation issues as well. Since reuse is often a factor
in object-oriented design, the consequences of a pattern include its impact on
a system’s flexibility, extensibility, or portability. Listing these consequences

explicitly helps one understand and evaluate them.

The documentation style used in [25] uses textual description and graphical notations
for describing patterns. We discuss these in detail in Chapter 5.

As an example, let us consider the Model/View/Controller (MVQC) triad of classes
[36], which is used to build user interfaces in Smalltalk-80. MVC contains three kinds
of objects. The Model is the application object, the View is its screen presentation,
and the Controller defines the way the user interface reacts to its user input. Before
MVC, user interface designs tended to lump these objects together. MVC decouples
them to increase flexibility and reuse. The MVC contains design pattern Observer
that decouples model and views in such a way that multiple views can be attached
to a model to provide different interpretations. One can also create new views for a
model without rewriting it. MVC contains Composite pattern that represents nested
views structures in such a way that Composite view ob jects act just like view objects;
a composite view can be used wherever a view can be used, but it also contains and
manages nested views. MVC also contains Strategy pattern that represents the View-
Controller relationship. MVC encapsulates the response mechanism (to user input in
the view) in the Controller object. A view uses an instance of the Controller subclass
to implement a particular response strategy; to implement a different strategy, simply
replace the instance with a different kind of controller.

Design patterns thus offer a very high potential of reuse and have the following

advantages over the reuse of stand alone classes [54]):

 Design patterns enable large-scale reuse of software architecture. Instead of
building an object model from class templates, the designer is able to use pre-

defined groupings (patterns) of class templates.

e Design patterns explicitly capture the expert knowledge and design trade-offs.
They help the designer choose design alternatives that make a system more

reusable and avoid alternatives that compromise reusability.
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e They help improve developer communication because they provide developers

with a shared vocabulary and concepts.

e Expressing proven techniques as design patterns makes them more accessible to

developers of new systems.

e Design patterns can even improve documentation and maintenance of existing
systems by providing explicit specification of class and object interactions and

their underlying intent.

® Design patterns help solve many of the common problems object oriented de-
signer face by helping [25]:
— identify less obvious abstractions and objects that can capture them
— determine object granularity

— define an interface by identifying what must and must not be part of

interface, the kinds of data that gets sent across the interface
— determine the type of inheritance required in a problem
e Design patterns emphasize the use of sound object-oriented concepts. All the
patterns in Gamma et al [25] have been designed using the principles:
— program to an interface, not to an implementation and

— [avoring object composition over inheritance
The reasons for such design principles are:

— Manipulating the objects solely in terms of the interfaces of abstract classes
results in clients remaining unaware of the specific types of ob jects they
use, as long as the objects adhere to interfaces the clients expect and clients
also remain unaware of the classes that implement these ob Jects. Clients

only know about the classes defining the interface.

— Unlike object composition, implementations inherited from parent classes
cannot be changed at run-time, because inheritance is defined at compile
time. Secondly, parent classes would define at least part of their subclass’

physical representation. Because inheritance exposes a subclass to details

11



of its parent’s implementation, it is often said that “inheritance breaks

encapsulation” [58].

2.2 Frameworks

Frameworks represent generative architectures designed for reuse. They exist in a
certain application domain, and provide implementation of an architecture from which
a family of applications in that domain can be derived. The main architectural
components of a framework are abstract classes, which define the role and protocol of
the components, and their behavior as defined by their collaborations. Frameworks
not only provide all the basic functionality required for a given application domain,
but also the flexibility of being able to customize and refine most of this functionality
to suit the needs of a particular application. Examples of popular frameworks are the
ET++ - a graphical user interface application framework [60] and HotDraw [34].

The potential for reuse of frameworks greatly exceeds that of class libraries.
Whereas class library components are used individually, frameworks allow reuse of
the abstract design of an entire application.

Frameworks and design patterns are both meant to be reused. However, in spite

of their similarities they differ in the following ways [25]:

¢ Since, frameworks are embodied in code, they can be reused as is, but design
patterns represent abstract designs and must be implemented each time they

are used.

¢ Unlike frameworks, design patterns explain the intent, trade-offs and conse-

quences of design.

¢ Design patterns are smaller architectural elements than frameworks. A typical
framework consists of several design patterns but the reverse is not true. In-

stantiations of patterns within frameworks are referred to as micro-architectures.

¢ Frameworks always have a particular application domain. A graphical editor
framework might be used in a factory simulation, but may not be mistaken
for simulation framework. However design patterns can be reused in several

applications.
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e Unlike design patterns, a framework dictates an application’s architecture.

Frameworks and design patterns are exciting developments in the ob ject-oriented

technology and hold the potential for making large scale software reuse a reality.

2.3 Levels of Reuse

Object-oriented software components can be reused at three different levels of ab-

stractions [37].

2.3.1 Reuse-In-The-Small

The first level is reuse-in-the-small, which involves the reuse of a class or a method,
and/or a code fragment. In this thesis we are interested in the black-box reuse of
classes. A class serves as a reusable component in an object-oriented system that
can be reused either through inheritance or through object composition. In either
case, black-box reuse is the preferred way of reusing a class since in this form of
reuse clients manipulate the objects in the class only through its interface and are
not dependent on the implementation provided by the class. The black-box approach
to reuse assumes that a class’s behavior can be succinctly described without having
to refer to an implementation. QO programming languages offer no support for this
ability. Instead, programmers must rely on the informal comments in class interface
files to understand the semantics of a class. However, their imprecise, verbose, and
potentially ambiguous and incomplete nature often prevents them from being of much
help [48, 63, 31]. A natural language description is not sufficiently precise to describe
the exact functioning of a software module as a black-box, and leads to ambiguities
and differences of interpretation from one programmer to the other. What appears
obvious to the implementor of a class may not be so obvious to a client that is
supposed to rely on nothing more than the class’s method signatures and informal
comments on how to use it.

The result of this inability to adequately specify the behavior of reusable com-
ponents is that programmers are forced to turn to the implementation to fully un-
derstand its behavior. However, the sheer volume of existing classes, their complex
interactions, and their implementation details frustrate programmers who by inspect-

ing the code, must try to understand the behavior of potentially useful classes.
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The net effect of all this is that the client may ultimately make improper use of a
class, resulting in a defective program. The client’s only avenue to solve the program
defect is then often to “debug” the code by tracing it execution to try to determine
the cause of the interfacing (ie. usage) problem. As a result, a substantial amount
of time is spent trying to learn how to use a class correctly. All this wasted efforts
offsets part or all of the productivity increases which should have resulted by reusing
the module rather than rewriting it.

The above observations indicate the need for a formal semantic definition of
reusable class interfaces. Because of its precision and correctness, a formal speci-
fication language has the potential of overcoming the problems associated with the
use of natural languages for specifying the semantics of reusable OO components.

Formal specifications also have another advantage over natural language in that
they can be automatically processed. This opens the door for such things as auto-
matic searching in component libraries, specification syntax checkers, and partially
automated semantic analysis of specifications [57, 63, 21]. Because formal specifi-
cations are mathematical objects, it is also possible to develop formal criteria and
algorithms to evaluate properties of these specifications such as completeness and
consistency.

The formal specification can be used as basis for organizing the classes according
to a specification hierarchy. The specification language itself can incorporate the
concept of hierarchy in such a way that specifications of the supertype are inherited
by a subtype and need not be repeated in the subtype. This allows reuse at the level
of specifications, in addition to reuse at the level of code, so that new specifications
can be developed incrementally based on existing specifications.

Polymorphic programs that use message passing can be difficult to reason about,
because the effect of a message send depends upon the type of the receiving object.
There may be many different operations that could be executed by a message send
and the same piece of code may result in the execution of different method implemen-
tations during different executions. One approach to reasoning about polymorphic
programs would be to perform an exhaustive case analysis by considering all possible
object types that a message selector can involve. However, this approach is impracti-
cal in large systems. This approach also has a severe disadvantage that adding a new
type of object to a system can require additional case analysis of message invocations

in existing polymorphic code. To obtain the advantage of extensibility promised by
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object-oriented methods, unchanged program modules should not have to respecified
or reverified when new types of objects are added to a program. Since one does not
have to update the code (because of late binding), it would be tiresome if one had
to reverify the implementation of existing polymorphic code. Leavens [39, 40, 41]
has done work in this direction and has arrived at a modular specification and ver-
ification technique for OO programs which makes it unnecessary to respecify and
reverify unchanged polymorphic code when new types are added. His verification
technique is sound and complete and can be used to formally verify the correctness
of implementation involving polymorphic code with respect to its specification.

In this thesis we build on the work of Collogrosso [16] and illustrate the use of
formal specification language Larch/C++ to specify C++ classes from the Rogue
Wave Library tools.h++ [51].

2.3.2 Reuse-In-The-Medium

The next level of reuse is reuse-in-the-medium, the reuse of classes and their interac-
tions. We shall refer to this type of reuse as the micro-architecture! reuse. This level
of reuse itself can occur at two levels of abstraction viz. the reuse of design patterns in
the design of frameworks and applications and reuse of frameworks and applications
themselves. We shall refer to the former as design pattern reuse and the latter as
micro-architecture reuse (even though it is not necessary that every grouping of class
and their interactions represents an instantiation of a design pattern).

An application or framework is composed of more than just classes. A complex
system requires many levels of abstraction one nested within another. Classes are a
way of partitioning and structuring an application for reuse. But designs often have
groups of classes that collaborate to fulfill a larger purpose. A micro-architecture is
a set of such classes that collaborate to fulfill a larger purpose. From the point of
view of reuse, they represent an attractive concept since they represent a higher level
of reuse than class reuse. Reusing a micro-architecture implies reusing the design
and implementation of a group of classes and their interactions, rather than just
reusing the implementation of a single class. Due to central importance of groups of

cooperating objects in OO systems it can be argued that a class, in general, represents

The term micro-architecture was introduced by Gamma in [25]
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too fine grained a construct to adequately serve the purposes of reusable object-
oriented component [64]. Interobject interactions between the classes in the micro-
architecture must be fully understood before a micro-architecture can be reused.

Using a framework is typically composed of two activities [64]:

e defining any new classes that are needed as subclasses of existing classes in the

framework

e configuring a set of objects by providing parameters to each object and con-

necting them.

It is clear that reusing a framework would necessarily involve the reuse of one or more
micro-architectures in the framework. Further, reuse of frameworks introduces new
complications not associated with the reuse of micro-architectures. To obtain a given

behavior it is necessary to determine the answer to the following questions:

o From which existing classes should new classes be derived?
¢ Which methods should be overridden in those new classes?
e Which new objects should be created?

e How should objects be initially interconnected?

For effective reuse of frameworks, it is necessary to be able to answer such questions
with minimal effort without having to inspect the source code. A summary of the
state-of-the-art design pattern approaches in [50] shows that existing approaches for
documentation and specification of design patterns, framework cookbooks and micro-
architectures provide for most part an informal textual notation, graphic notation or
use programming language notations. Current OO programming languages provide
no support for specification and abstraction of interaction between objects; they only
provide syntactic mechanism for implementing them. The existence of inter-object
behavior in the system, and in particular the behavioral dependencies [30] which they
imply cannot be easily inferred.

For, the same reasons discussed earlier, it is desirable to use formal specifications,
rather than informal specifications or the implementation code itself, to provide formal
representation for frameworks and describe the inter-object behavior within micro-
architectures. It is also important that the interactions be described in a black-

box manner, for the same reasons as it is necessary to describe class behavior in a
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black-box manner. The work presented in [30] shows how this can be accomplished.
Contracts are introduced to specify inter-object behavior by specifying behavioral
compositions and obligations on participating objects. Conformance declarations are
used to specify how specific classes, and thus their instances support the role and
obligations of participants in the contract. Further, Contracts provide constructs for
the refinement and inclusion of behavior defined in other contracts. Refinement allows
for the specialization of contractual obligations and invariants of other contracts.
Inclusion allows contracts to be composed from similar contracts. These constructs
provide two distinct means to specify complex behavioral compositions in terms of
simpler ones.

Nevertheless contracts have several limitations too. No formal syntax and seman-
tics has been given for the specification language used to specify contracts. The work
does not consider the specification of the behavior of individual classes, but only class
interactions. Contracts have been found to be difficult to apply in certain situations
especially specifying subclass relationships [50]. The abstraction level of the formal
notation seems to be too close to OO programming languages.

In this thesis we address the issue of specifying inter-object interactions within a
micro-architecture. Our approach identifies the issues involved in such collaborations
and provides a three-tiered specification framework. The language we propose is an
extension of Larch/C++

2.3.3 Design Pattern Reuse

Design patterns are employed by two kinds of designers. Framework designers use pat-
terns as an aid in the construction of frameworks. They create frameworks for other
designers to use and can be viewed as suppliers of design patterns and frameworks.
The software designer can be viewed as a user of design patterns and frameworks.
Framework users identify a general solution design pattern and use the appropriate
micro-architecture to solve a specific design problem. Frameworks are thus designed
for reuse and with reuse.

Employing design patterns within software reuse poses two fundamental problems
(66]:

¢ how to produce design patterns with maximum potential for reuse - design for

reuse
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e how to design new systems making the most cost effective use of such compo-

nents — design with reuse

Recent research at many industries have focussed on mining object-oriented systems
for design patterns. Design patterns are discovered by mining existing applications
and frameworks. However, finding patterns is much easier than describing them [25].
It is clear that from the point of view of reuse, describing patterns is very important,
for in the absence of proper documentation pattern reuse is not possible. Several
documentation styles have been proposed for describing patterns. Notable among
them are GOF style [25], [54], AG Communication Systems HTML template, Peter
Coad’s style [14] and scores of other documentation styles found in [56].

Many pattern writers follow the paradigm of satiating their intellectual urges akin
to poets composing poems. This poses the danger of reducing patterns to literary
pieces than software components that can be reduced. It is clear that standardizing
documentation styles for pattern descriptions is a mandatory first step to promoting
their large scale reuse as well as for facilitating formal approaches to their documen-
tation. Object-oriented software community is also divided on the abstraction level of
design patterns. The patterns presented by Peter Coad [14] seem to be analysis level
pattern, patterns in [25] are at a detailed design level patterns which use low level
features available in C++ and SmallTalk. Coding patterns solve specific tasks [50] ef-
fectively in the realm of particular object-oriented programming language. SmallTalk
and C++ coding patterns are quite popular in the industry. The patterns presented
in Gamma et al. [25] are in the spirit of matured object-oriented designs and we shall
focus on these type of patterns in this thesis.

Currently, the documentation styles for design patterns consist of informal textual
notation, and/or graphic notation. Besides, the reasons mentioned in earlier sections
for using formal specifications rather than informal specifications we believe that

formal language for pattern description is necessary due to the following reasons:

e Case studies in industries have revealed [55], that developers encounter great
amount of difficulty in understanding and implementing design patterns when
they were described using only object diagrams and structured prose. This is
due to the inherent limitations of the informal language, and lack of formal

semantics for notations such as OMT and Object Collaboration Graphs.

® Design patterns tend to be difficult to understand in isolation due to lack of
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detail in their high-level descriptions. This high level of description is however
intentional and indeed is required to ensure wide applicability. Informal lan-
guage is inadequate to document and communicate abstractions. There is more
than one layer of abstraction encountered in design pattern descriptions and

such abstractions can be captured precisely only by the use of formal methods.

e Patterns explicitly capture design knowledge that experienced developers only
understand implicitly. For example, many developers intuitively understand the
forces that cause certain solutions to be preferred over alternatives. However,
these non-functional forces are not adequately captured by existing design meth-
ods and notations. A formal approach can aid in the documentation of such
non-functional forces, design decisions and trade-offs and also help evaluate the

design.

-

e Successful patterns capture both structure and behavior. Patterns that do not
clearly describe dynamic behavior are difficult to understand and apply. One
goal of formalism is to precisely specify these class and object relationships, and

behavioral dependencies between objects in the pattern.

o Although each pattern addresses a particular, isolated design issue, in reality
it is always part of a larger structure. So, a pattern may contain, be contained
in, or be interlocked with other patterns, and will also interact with them [55].
Framework users typically use one or more patterns in conjunction in their
architecture. Designing a formal language is a pre-requisite to formalizing the
semantics of different kinds of relationships between patterns. These can further

help in studying the concepts of completeness of a set of patterns.

e Johnson [34] introduced an informal pattern language that can be used for doc-
umenting a framework using the design patterns in the framework. Formal
documentations of design patterns coupled with specification of inter-object
collaborations within the corresponding micro-architecture in a framework can
significantly lower the learning curve associated with frameworks and contribute

to their reuse.

In addition to the above mentioned advantages, we believe that the most impor-

tant motivating factor for ushering in formal methods is to reduce the design pattern
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understanding time. Case studies in industries have revealed that the learning curve
associated with design patterns is quite steep [25, 55|. Some studies suggest that
program understanding time may be the dominant time in the entire software life
cycle and thus the dominant cost [59]. In view of this, it might be construed that
software reuse will be effective in increasing productivity only so far as it will be
effective in reducing or eliminating the need for designers to read through verbose
and voluminous descriptions of design patterns which they reuse.

Having thus motivated the need for a formal approach to documenting design
patierns, we caution that such approaches will have certain limitations. These issues
are dealt with in detail in Chapter 4. In this thesis we study the applicability of formal
approaches to documenting design patterns and also provide outlines of a language
that can be used to formalize certain aspects of design patterns that are essential to
their reuse. It must be noted, that currently no formal decumentation approaches

exist.

2.3.4 Pattern Repositories

Besides the need for formal documentations, there is a need felt in the software com-
munity to create libraries of reusable components that reusers can use to retrieve
information from such components. The Aesop system [49] developed at Carnegie
Mellon University is an experimental platform that minimizes the cost of building
systems by providing a generic infrastructure of common tools (design database, GUI,
editors, protocol consistency checkers, Software Shelf etc.). This system uses a repos-
ttory of design elements called Software Shelf that support the classification, storage
and retrieval of architectural elements. The ITHACA project is an Espirit II project
involving a number of European companies, research organizations, and universities
to design and build an integrated application development and support environment
based on object-oriented programming approach. However, not many details are
available on the status of this project.

To promote large scale reuse of design patterns, the software community must be
provided with a design pattern repository. This would enable designer to retrieve in-
formation from the pattern repository which can significantly lower the time involved
in picking the right pattern for reuse and understanding it. In this thesis we address

this problem and propose a conceptual schema of such a repository. The motivation
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and the problem are discussed in detail in Chapter 5.

2.3.5 Other Levels of Reuse

Reuse-in-the-medium besides involving the reuse of such micro-architectures, involves
an additional level of reuse, which comprises of the interaction of micro-architectures.
At this level, the objects of reuse are no longer classes, but are themselves micro-
architectures. This is in fact the reuse of system architectures (framework applica-
tions) that have been instantiated from the underlying framework.

The highest level of reuse, reuse-in-the-large, is the reuse of application objects,
which are themselves independent systems and which are reused as they are, without

being modified or extended in any way. We do not address these issues in this thesis.

-
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Chapter 3

Specifying C++ classes in
Larch/C+4+

Reuse in the small is concerned with the reuse of classes, methods and code fragments.
The benefits of this reuse are maximized if classes are reused in a black-box fashion.
[n this chapter we motivate the choice of a specification language for specifying C++
classes to promote black-box reuse. We give a brief review of Larch/C++ and show
the interface specification of a C++ class chosen from the Rogue Wave Library.

C++ has become one of the most popular object oriented languages used in in-
dustries. Several software development groups reuse class libraries, such as the Rogue
Wave Tools.h++ and the Microsoft Foundation class library, in developing applica-
tion software. For error free reuse the classes in the reuse library must be shown to be
complete and correct. In our research [1, 2] we have applied the completeness criteria
to many of these classes. In doing so we have written the interface specification of the
classes in the formal specification language Larch/C++. In this section we discuss
the features of Larch/C++ that led us to choose it over other specification languages
for specifying C++ class interfaces.

Larch is a family of formal specification languages geared towards the specification
of the observable effects of program modules, particularly modules which implement

abstract data types. It provides a two-tiered approach to specification:

¢ In one tier, a Larch Interface Language (LIL) is used to describe the seman-
tics of a program module written in a particular programming language. LIL

specifications provide the information needed to understand and use a module
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interface. LIL doesn’t refer to a single specification language but to a fam-
ily of specification languages. Each specification language in the LIL family
is designed for a specific programming language. The LIL for C++ is called
Larch/C++. LIL specifications specify the interface of a procedure and its be-
havior. To formally specify the behavior of a function, Larch provides some
clauses that assist the specifier to describe the states that the function is de-
fined, what the function is allowed to change (modifies clause), the restrictions
on the states and the arguments with which the client is allowed to call the
function (requires clause), and the constraints on the function’s behavior, when
the function is called properly, which relate the pre-state and the post-state
of the function (ensures clause). The pre-condition, expressed in the requires
clause, and the post-condition, expressed in the ensures clause, are expressed
in predicate logic, using logical assertions that contain terms of which formal

meaning is specified in the other tier of Larch (LSL tier).

In the other tier, the Larch Shared Language (LSL) is used to specify state-
independent, mathematical abstractions which can be referred to in LIL speci-
fications. LSL is programming language independent and is shared by all LILs.
These abstractions are called traits and are written in the style of an equational
algebraic specification using the Larch Shared Language (LSL). Strictly speak-
ing, Larch is a definitional language with equational axioms in the LSL-tier and
Hoare-style axiomatic specifications in the interface tier. These specifications,
written in LSL, are programming language independent and they can be used by
any member of the LIL family. The abstractions defined by traits play the same
role as the abstract models (e.g. sets, maps) in Z and VDM. From this point of
view, the interface tier of Larch is very similar to a model-oriented specification
such as VDM. This is a desirable property, as experience in the formal methods
community suggests that model-oriented specifications are easier to read and

write than other types of specifications.

Larch’s two-tiered approach makes it possible to express module properties which

are programming language dependent using a syntax and semantics which reflects

the underlying programming language. This is achieved by providing constructs for

expressing module properties such as parameter passing, side effects, exceptions, and

concurrency using the syntax and semantics of the underlying programming language.
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The syntax and semantics of each LIL also takes into account the syntax and
semantics of the type system and the memory model of the underlying programming
language.

For example, the syntax and semantics of C pointers, arrays, structs and other
basic data types are built into Larch/C++. Similarly, C operators such as "’ and '—’
are also built in. This built-in support facilitates the task of writing formal module
specifications. Formal parameters in the formal specification can be referenced using
the same syntax and semantics as in the underlying language.

In contrast to Larch, other specification languages such as Z and VDM, do not
offer many of the capabilities described above. The result of this is that Larch module
interface specification descriptions have the potential of being shorter than specifi-
cations written in other languages. In addition, they can also be clearer and more
natural to developers who are accustomed o the syntax and semantics of the under-
lying programming language. Larch’s two-tiered approach makes it as intuitive and
expressive as other model-oriented specification languages such as Z and VDM.

In addition to Larch/C++, a few other languages have been proposed for the
formal specification of object-oriented program modules. These include A++ (12, 13],
Anna [45], Fresco [62] and the assertion language in Eiffel [48]. Larch/C++ differs
from these languages in two important respects: (i) It provides built-in support for
semantic constructs which are specific to C++ (e.g. pointers, built-in types, memory
model) (ii) It provides the ability to write implementation independent specifications.
Larch/C++ interface specifications can be implementation independent because they
do not need to refer to the instance variables of a class to specify the semantics of its
interface. Instead, the interface specifications refer to abstract sorts whose properties
are defined axiomatically in traits.

Eiffel’s assertion language and A4+ also provide the ability to write specifications
which do not refer to the instance variables of the class. Such specifications must
refer only to the class’s operations, permitting an algebraic-like specification style.
Because specifications written in this style lack the ability to use abstract model vari-
ables, they are not nearly as expressive or intuitive as specifications written in Larch’s
two-tiered model-oriented style. In the case of Eiffel, the situation is even worse since
the assertion language does not make it possible to express universally or existen-
tially qualified assertions. Fresco methodology can be used to write implementation

independent specifications of the behavior of software modules. However, Fresco is
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geared towards the specification of Smalltalk classes. It does not provide any built-in
support for C++ semantic constructs like Larch/C++ does.

In view of the above considerations, Larch/C++ is the most suitable specification
language for specifying the behavior of C++ class interfaces for software reuse. In this
chapter we shall present an overview of Larch/C++, summarizes the recent additions
and improvements to Larch/C++ specification language and also present our work in
using Larch/C++ to specify and evaluate the black-box behavior of the C++ classes
from the Rogue Wave Library Tools.h++.

3.1 Larch/C++4 - A Quick Overview

Larch/C++ is a Larch-style interface specification language tailored to the C++

programming language. Its main objective is the formal specification of C++ program
modules.

3.1.1 Larch Shared Language - LSL

The unit of specification in LSL is the trait. A trait contains a set of operator decla-
rations, or signatures, which follows the introduces keyword, and a set of equational
axioms, which follows the asserts keyword. A signature consists of operators whose
domain and range are represented by sorts. An equational axiom specifies a set of
constraints on the defined operators.

The semantics of LSL traits is based on multisorted first—order logic with equality
rather than on an initial, final or loose algebra semantics used by other specification
languages [7, 22, 27, 53]. Each trait denotes a theory! in multisorted first—order logic
with equality. The theory contains each of that trait’s equations, the conventional
axioms of first-order logic with equality, everything which follows from them and
nothing else. This means that the formulas in the theory follow only from the presence
of assertions in the trait — never from their absence.

A trait definition need not correspond to an abstract date type (ADT) definition
since an LSL trait can define any arbitrary theory of multisorted first-order equational
logic. For example, a trait can be used to define theory of mathematical abstractions

such as equivalence relations, which do not correspond to abstract data types. For

1A theory is a set of logic formulas having no free variables.
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LSL traits that define an ADT, there is a sort referred to as the distinguished sort,
sometimes also called the principal sort or data sort.

The semantics of = and == in LSL are exactly the same as in conventional
algebraic specification languages, except that the operator = binds more tightly than
does the operator ==. LSL traits can be augmented with checkable redundancies
in order to verify whether intended consequences actually follow from the axioms of
the trait. The checkable redundancies are specified in the form of assertions that are
included in the implies clause of a trait and can be verified using LP [29].

LSL also provides a way of putting traits together, one of which is through an
includes clause. A trait that includes another trait is textually expanded to contain
all operator declarations, generated by clauses, and axioms of the included trait.
Boolean operators (true, false, not, V, A, —, and «) as well as some heavily over-
loaded operators (if-then-else, =) are built into the language; that is, traits defining
these operators are implicitly included in every trait.

The theory of a trait can also be strengthened by adding a generated by or a
partitioned by clause. The generated by clause states the operator symbols that
can generate all values of a sort. The partitioned by clause provides additional
equivalences between terms. It states that two terms are equal if they cannot be

distinguished by any of the functions listed in the clause.

3.1.2 Larch/C++

The Larch/C++ specification of a C++ function specifies not only the behavior of
the function, but exactly how that function is called from the C++ code. The details
of how to call a C++ function, the name, return type, and argument types, are called
are part of the specification of the interface function.

Functions are specified in Larch/C++ using Hoare-style pre- and post-conditions.
The header of a function specification is the same as that of a C++ function defini-
tion. The body describes the effect of function invocation using a pair of predicates
following the keywords requires and ensures. The predicate following requires is
a pre-condition that must be satisfied to invoke the specified function. The predicate
following ensures is a post-condition that the specified function establishes upon

termination. The semantics of function specification is that the pre-condition of the
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state transformation must logically imply the post-condition of the state transforma-
tion. For functions that change the values of the objects, the body of the function
specification must include the modifies clause. Only objects listed in the modifies
clause are allowed to change their values as the result of function invocation. In a
function that mutates an object or a variable, there are two different values for the
same object; the value in the pre-state and the one in the post-state. The value of
the object in the pre-state is denoted by a hat-ed( ") identifier, while the post-state
value is represented by a primed( / ) identifier. If neither of (") nor (/) is used with
the object name then the object itself is considered as a memory location and not the
object value.

The syntax for data members and member functions in interface specifications
are almost the same as in a C++ program. The Larch/C++ reserved word this (or
self) is used in member function specifications and means the same thing as the C++
reserved word this, a pointer to the object of the specified class. The Larch/C++
reserved word self is a shorthand for *(this \ any). The suffix any is like (7)or ("),
and extracts the value of this in some visible state. As in C++, Larch/C++ member
functions can be public, protected, and private.

The trait SetTrait defines the terms used to denote the abstract values of the
set as well as the mathematical properties of the set. The SetTrait defines the
distinguished sort C to denote the abstract values of the Set. The generated by
clause indicates that all the abstract values of the sort Set are generated by operator
symbols {} and insert. The partitioned by clause indicates that the operator
symbol € partitions the abstract values of Set objects into equivalence classes of LSL

terms of sort C.

LSL specification for the Set
SetTrait(E,C) : trait

% Essential finite-set operators

introduces
{}=C
wnsert : E,C — C
delete : E,C — C
—€_:E,C — Bool
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isEmpty : C — Bool
asserts
C generated by {}, insert

C partitioned by €
Vs:C,ee,er: E

~(ee{})

e1 € insert(ez,8) ==e;, =e; Ve, € s
isEmpty({})

—isEmpty(insert(e, s))

e € s = ~isEmpty(s)

delete(e, {}) == {}

delete(e;, insert(ez,s)) == if e; = e, then s else
insert (e, delete(e,, s))

In the Larch/C++ specification for the class Set, the uses clause indicates that
the Larch/C++ interface is expressed with the vocabulary of the LSL trait SetTrait.
All the terms in the pre- and post- conditions of the function specifications come from
this trait. The type-to-sort mapping, which is given between the parenthesis following
the names of the used trait, says that the abstract values of the C++ Set objects are
specified to be those of the LSL sort C in SetTrait. (In LSL a sort is the type of
an LSL term; the word type is used only to refer to C++ types). The type to sort
mapping makes the connection between the C++ world and the LSL (mathematical)

world.

Larch/C++ specification for the Set
class Set

{ uses SetTrait(IntSet for C, int for E);

public:
IntSet()
{

modifies self;

ensures self' = empty;
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—IntSet()
{
modifies self;

ensures trashed(self);

IntSet& insert(int i)
{
modifies self;

ensures self' = insert(self", 1) A result = sel f;

IntSet& delete (int i)
{
modifies self;

ensures delete(self", i) = sel f' A result = sel f;

Bool isEmpty()
{
ensures if isEmpty(self”) then result = TRUE
else result = FALSE;

¥

The Larch/C++ specification for the Set specifies a constructor, a destructor, and
three public member functions: insert, delete, and isEmpty. The destructor uses the
Larch/C++ reserved word trashed (whose semantics is provided in the LSL layer)
to state that the object self is no longer available. The terms insert, isEmpty and
delete which appear in the pre- and post-conditions refer to the LSL operators, not
to the member functions having the same name. All C++ declarations are legal in

Larch/C++ interface specifications; for example, member functions can be virtual,
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static, friend or inline; they all have their C++ meaning. The Larch/C++ keyword
result can only be used in post-conditions and it denotes the function return value.
The sort of result is the sort associated with the return type specified for the function.
For example, in the interface specification for the class Set the member function

isEmpty returns sort Bool.

3.2 Improvements on Larch/C++

Larch/C++ is still in the process of development. Not all features have been imple-
mented. Currently only the parser is available, some parts of which are still in the
development stage. Many versions and upgrades have been created with numerous
changes in the syntax and the semantics of the language. The Larch/C++ manual
[38] is a very fast changing document describing the language as the changes take
place. In this section a summary of the most important new features is given. These
new features have been added recently to the language and are extensively analyzed
in the Larch/C++ reference manual [38].

3.2.1 Composite Sorts

Composite sort names have been added only recently to Larch/C++. In the absence
of any documentation, several users of the Larch/C++ community were consulted.
The consensus is that composite sort names are to be treated exactly as atomic sort
names except that when it comes to renaming. The rule is that the rename binding
is propagated through the components. For example, if Loc[E] is a composite sort

and FE'is an atomic sort, with the renaming E to F, the bindings

e— E
f:— Loc[E]

become
ee— F
f:— Loc[F]

Composite sorts are not parameterized sorts: ‘Loc(E] is a sort name that has ‘Lo¢’
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My_Lit | append(19, append(, append(89, mpiy))

Figure 1: Larch/C++ Model of a List Object

and ‘E’ as components; ‘E’ does not have any special status. In particular £ is not a

parameter.

Composite sort names are used in order to be able to distinguish between T values
and T objects. In the past, an object of type T was denoted by Obj_T. One problem
with this approach is that while renaming T, the specifier had to rename 0b;_T. With
the composite sort names, as shown in the example above, the renaming of the object
sort (Loc[E] in the example) is done implicitly. Also, ObjT did not have any fixed
semantics. The specifier had to explicitly specify the semantics of an ob ject in an LSL
trait. The new version of Larch/C++ has provided a few LSL traits that generally
specify the behavior of objects (mutable, immutable, typed and untyped), and the

semantics of states [38].

3.2.2 The Formal Model of Objects, Values, and States

According to the designers of C++, “an object is a region of storage.” All objects
have an address, or location. They store values, which in the context of a specification
are called abstract values. Figure 1 illustrates the concept of objects and values by
showing the Larch/C++ model of a list object in a certain state. A state associates
each object with an abstract value. In this example the object My_List is associ-
ated with the abstract value append(19, append(7, append(89, empty))). Objects in
Larch/C++ are modelled using several traits. The main trait is TypedObj, which
handles the translation between typed objects and values and the untyped objects
and values used in the trait State. Objects can be either mutable or constant (im-
mutable). Mutable objects are modelled by sorts with names of the form Obj[T],
which is the sort of an object containing an abstract value of sort 7.

The trait MutableObj gives the formal model of mutable objects by adding the
capability of mutation to the trait TypedObj. Constant objects are modelled by
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sorts with names of the form ConstObj[T], which is the sort of a constant object
containing abstract values of sort T. The trait ConstObj gives the formal model of
constant objects. A state is a mapping from objects to values. During the course of
execution, a program creates objects and binds values to objects. A state captures
the set of objects that exist at a particular time and their bindings. The trait State
gives the formal model of states used by Larch/C++. It defines the state (sort State)
as a mapping between untyped objects (sort Obj) and abstract values (sort Val).

3.2.3 Declarations and Declarators

C++ provides numerous kinds of declarators for every possible declaration. Larch/C++
has incorporated these declarators both in syntax and semantics. In Larch/C++, a
declaration is needed to specify that the C++ module that implements the specifi-
cation must have the same declaration, and to give information about the declared
construct’s type, and other attributes. Although Larch/C++ syntax for the declara-
tors tries to be identical to the C++ one, there are some minor differences which were
created purposely in Larch/C++ in order to resolve some ambiguities in the C++

grammar.

In a declaration, a declarator defines a single object, function or type, along with
its name. The semantics of each declarator is defined using LSL traits which are built
in Larch/C++. For instance when declaring an integer global variable, Larch/C++
implicitly uses the int LSL trait. Using the following operators a declarator may
refine an object’s type : * (pointer), ::* (pointer to member), & (reference), [ | (array),
() (function). A variable declared globally, or a formal parameter passed to function
using one of these declarators, has a particular sort. Pointers have the Ptr sort
generator as part of the sort name of the term. References use the Ob J sort generator,
and arrays use the Arr sort generator. ConstObj [cpp-function) is the sort of a non-
member function and ConstObj[cpp_member function] is the sort of a member
function. The semantics of these sorts are described using the LSL traits discussed
previously. In Tables 1 and 2 there is a summary of the sorts that global variables,
and formal parameters take when declared with the various declarators:

Tables 1, 2 assume that IntList is a structure of the following type:
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struct IntList{
int val;
IntList *next;

}

In these tables a term z of sort Ptr[Obj[T]] is a pointer that points to an object
that contains an abstract value of sort 7. To obtain the object that the pointer
points to, the operator * must be used. Therefore, *z would be of sort Obj[T]. A
term z of sort Arr{Obj[T7]] is an array of objects that contain abstract values of sort
T. To obtain any of these objects, the operator [ ] and the integer index of the par-
ticular object are used. A structure or a union declared globally is an object. Since
C++ parameters are passed by value (except for reference parameters), a structure
or a union passed as a parameter to a function is not an object but simply a tuple of
the respective fields. That is the reason why in the first table the sort of the global
variable of type IntList is ConstObj[IntList] and in the second table the sort of the
formal parameter of type IntList is Val[IntList].

3.2.4 State Functions

An object can be in an infinite number of states through out its entire life. Not all
states are visible to the client of a class interface. In particular, only a very limited
number of states are visible. The states that are not visible to a client are called
internal object states. Therefore, the states that are of particular interest to the class

interface are:

o the pre-state, which maps objects to their values Just before the function body

is run, but after parameter passing,

e the post-state, which maps objects to their values at the point of returning from
the call (or signalling an exception), but before the function parameters go out

of scope.

To obtain an object’s abstract value in a particular state (provided that the object is
assigned in that state), a state function must be used. There are four state functions
in Larch/C++ :

e \pre or " : it obtains the abstract value of an object in the pre-state,
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e \post or ’ : it obtains the abstract value of an object in the post-state,

e \any : it obtains the abstract value of an object in no particular state. This
state function is usually used when the object is immutable (not modifiable)

and therefore, its abstract value is the same in both pre-state and post-state.

e \obj : it is used to explicitly refer to an object itself, instead of its abstract

value. It is only used for emphasis.

The state functions can only be applied to terms that denote objects and their sort
is either Obj[T’] or ConstObj[T] for some type T. The sort of any object of type T
that has been applied one of the first three state functions (\pre,\post, \any) is the
same as that of the object’s but without the leading Obj or ConstObj sort generator.
When the \any state function is applied to an object, the sort of the term with the
state function®is the same as the sort of the object. For example, if the sort of z is
Obj[int] then the sort of z’ is int and the sort of z\any is Obj [int].

3.2.5 New features in Function Specifications

Several new clauses have been added lately to the syntax and semantics of Larch/C++.

e The constructs clause is an equivalent of the modifies clause. Larch/C++
provides this clause for the added convenience of the reader/specifier. This
clause is used in constructor functions in order to express that an object is
not only modified but there is memory allocated for it, and its attributes are

initialized.

e The trashes clause is used for any function that trashes objects. In Larch/C++
the trashing of an object is done whenever the object was assigned in the pre-
state and not assigned in the post-state, or when the object was allocated in
the pre-state and not allocated in the post-state. The trashes clause lists a set

of objects that may be trashed from the function.

o The claims clause, as in LCL, contains a predicate which does not affect the
meaning of a function specification, but rather describes redundant properties
which can be checked by a theorem prover. The following example illustrates

the use of the trashes and claims clauses.
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void dec_ref(char *cp, int & ref_count)
{
requires allocated(cp, pre) A assigned(ref_count, pre)A
ref_count” >=1;
modifies re f_count;
trashes * cp;
ensures ref_count’ = ref_count” — LA
(if re f_count’ = 0 then trashed(*cp)
else ~isTrashed(xcp, pre, post));
claims ref_count’ > 0 = —isTrashed(*cp, pre, post);

¢ Thelet clause can appear in any function specification. It can be used in order
to abbreviate expressions that will be used many times in the function speci-
fication (requires, ensures, example clauses). The following example illustrates

the use of this clause.

imports BankAccount;
void transfer(BankAccount& source, BankAccount& sink, long int cts)
{
let amt:Q be dollars(cts),
presrc:Q be source’, presink:Q be sink’,
oldsrc:Q be presrc.credit, oldsink:Q be presink.credit;
requires source! = sink A assigned(source, pre) A assigned(sink, pre)
Noldsre >= amt A amt >=0;
modifies source, sink;
ensures sink’ = set.credit(presink, oldsink + amt)

Asource’ = set_credit(presrc, oldsre — amt);
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¢ The example clause can be used to give the reader/specifier a concrete ex-
ample of the function behavior. Examples do not change the meaning of a

specification.
The new keywords that have been recently added in the language are the following:

¢ The keyword allocated can be used in a predicate (requires, ensures clauses)
in order to specify that an object is allocated at a certain state. An object can

exist without being allocated.

¢ The keyword assigned can be used in a predicate (requires, ensures clauses) in
order to specify that an object has a well-defined value (15]. In other words an

object is assigned if its value is initialized.

¢ The keyword fresh can only appear within an ensures clause predicate and it
is used to specify that an object was not allocated in the pre-state, and it is
allocated in the post-state. The following example illustrates the use of fresh in

function specifications.

typedef int *ratl;
ratl make_ratl(int n, int d)
{
requires d > 0;
ensures assigned(result, post) A size(locs(result)) = 2
A(result[0])' = n A (result[1]) = d
Afresh(result(0], result[1]);

® The keyword unchanged is used within predicates when there is the need to

express that a modifiable object is not modified.

e The keyword reach can be used with an object to denote the set of all objects

reachable from that object.
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® The keyword liberally can be used in an ensures or claims clause when the
predicate gives a partial-correctness specification. 1ia any partial-correctness
or total-correctness specification, if the pre-condition is true, and if the func-
tion terminates normally, then the post-condition must be true. In partial-
correctness specifications normal termination is not guaranteed, even when the
pre-condition is true. Therefore a specification that does not use the keyword
liberally is a total correctness specification and a specification that uses the

keyword liberally is a partial-correctness specification.
Following are some more new constructs recently built in Larch/C++.

¢ In C+4, a default value can be given for a formal argument. This means that
when calling the particular function without supplying a value for the particular
formal argument, then that argument takes the specified default value. This is
also the case in Larch/C++. The syntax is identical.

¢ Many times functions are specified better in several different cases. Larch /C++
provides the specifier with the ability to specify a function using many cases.
For every case, the specifier is able to specify a different requires, modifies,
trashes, ensures, let, and claims clause. The predicates in the requires clauses

should be exclusively disjoint.

e In C++, the interface of a function can declare what exceptions the function
can throw. The same is also true in Larch/C++ which specifies a function that
throws an exception by considering its result to be either the normal result or
an exception result. The following example illustrates the specification of ex-

ceptions, and the use of cases in a function specification.

imports Overflow;
void inc2(int& i) throw(Overflow)
{
requires assigned(z,pre) Ai"+2 <= INT_MAX;
modifies z;
ensures result = theVoid A7’ =i + 2;
requires assigned(i,pre) Ai"+2 > INT_MAX;
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ensures thrown(Over flow) = theEzception;

3.2.6 New Features in Class Specifications

e C++ implicitly defines several member functions for the user if they are not
explicitly defined. These are a default constructor, a copy constructor, a de-
structor, and an assignment operator, provided that they are not explicitly
declared. Larch/C++ implicitly provides an appropriate specification for these

implicitly defined functions. These are called implicit specifications.

e Larch/C+4 provides the simulation clause where the user may specify the
* relationship between super-type and sub-type. As will be seen in Chapter 7,
the specification of the super-type might be expressed in a different mathemat-
ical domain. The use of the simulation function gives valid meaning to the
super-type’s specifications in the context of the sub-type. The behavior of the

simulation function is specified using an LSL trait.

o Larch/C++ allows the specifier to specify history constraints on the values
that an object may take. It specifies a relationship between each pair of visible
states ordered in time. An object may remain immutable through its entire
life. As an example, in a Person object with fields Name and Age, the Age
field may only be increasing. These cases can be specified using the history
constraint clause. A history constraint is syntactic sugar in Larch/C++. The
same behavior can be specified in the predicate of every member and friend

function’s postcondition, except for the constructors.

® Larch/C++ provides an invariant clause which allows the user to specify an
invariant property that must be true during the entire life time of an ob ject of
the particular specified class. There are two equivalent ways of thinking about
invariants. The first is that the invariant is conjoined to each pre and post-
condition of each member function in the specification. The second is that the
invariant is true in all visible states. Within an implementation of a member
function, an invariant may be temporally violated. This is acceptable, since any

intermediate state of the class variable is invisible to any clients.
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e Larch/C++ can also specify friendship relationships. A friendship specifi-
cation records information that may be needed in the implementation phase of
a class. As in C++, friendship grants access to the private interface of a class

to particular functions or to all member functions in some class.

The following is a class interface specification that includes many of the features

mentioned in this section.

class Person
{
uses PersonTrait, cpp_string; // age interpreted as number of years old
invariant len(self\any.name) > 0 A self\any.age >=0;
constraint self".age <= self’.age; [/ age can only increase
public:
Person(const char *moniker, int years)
{
requires nullTerminated(moniker, pre) A lengthToNull(moniker, pre) >0
Ayears >= 0;
modifies self;
ensures sel f'.name = uptoNull(moniker, pre) A sel f'.age = years;

}

virtual —Person()

{

ensures lrue;

}

virtual void change_name(const char *moniker)

{

requires nullT erminated(moniker, pre) A lengthToNull(moniker, pre) > 0;
modifies sel f;
ensures sel f'.name = uptoNull(moniker, pre)
Aself'.age = sel f".age;
}

virtual char * name() const
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ensures nullT'erminated(result, post) A fresh(objectsToNull (result, post))
AuptoNull(result, post) = sel f\any.name;

}

virtual make_year_older()

{
requires self".age < INT_MAX;
modifies self;
ensures self' = set_age(self", self .age + 1);
example self".age = 29 A self'.age = 30;
claims self'.name = sel f".name;

}

virtual int years_old() const

{

ensures result = sel f\any.age;

3.3 Motivation for using Rogue Wave Software

The Rogue Wave Tools.h++ [51] is a rich, robust and versatile C++ foundation class
library. Virtually any programming chore can be done using classes from the library.
Tools.h++ is an industry standard. The Rogue Wave Tools.h++ library is used by
developers in several industries. Moreover, the library classes are well structured, well
documented and are usable in isolation.

Tools.h++ consists mostly of a large and rich set of concrete classes that are usable
in isolation and do not depend on other classes for their implementation or seman-
tics. The concrete classes consist of a set of simple classes(such as date, time, string),
and three different families of collection classes(collection classes based on templates,
collection classes that use preprocessor <generic.h> facilities, "Smalltalk-like” classes

for heterogeneous collection). The library also includes a set of abstract data, types
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(ADTs), and corresponding specializing classes that provide a framework for per-
sistence, localization, and other issues. All collection classes have a corresponding
iterator.

It is claimed [51] that the Rogue Wave Tools.h+4 class library is built to achieve
five basic goals: efficiency, simplicity, compactness, and predictability. This perfectly
fits in with the criteria for black-box reuse. Because of these reasons, the Rogue Wave

Library tools.h++ was chosen for formal specification.

3.4 Interface Specifications of Rogue Wave Classes

There are two main goals in developing interface specifications for Tools.h++, the
Rogue Wave Library of C++ classes: to identify and remove ambiguities in the
informal descriptions [51] and evaluate the advantages and disadvantages of using
Larch/C++- for specifying an industry standard tool set.

The Rogue Wave library contains more than 100 C++ classes and they have
been ported to many operating systems, compilers, and application frameworks.
These classes can be classified into simple classes, Smalltalk like collections, tem-
plates, and "generic” collection classes. The classes for which specifications were
completed include simple classes RWDate, RWTime, RWZone, RWFile RWB-
TreeOnDisk, RWCSubString, RWCString, RWCRegexp, RWBag, and RW-
BinaryTree, representatives of Smalltalk-like collection classes RWCollectable,
RWHashTable, RWSListCollectable, RWSequenceable, RWSListCollecta-
blesIterator and RWOrdered. The template classes for which we have written
specifications include RWTPtrVector, RWTPtrOrdered Vector, RWTIsvDlist,
RWTIsvDlistIterator, and RWTIsVSlistIterator. All the specifications and
their LSL traits are given in reports [1] [2]. They have been checked for their syntactic
and semantic correctness. No representatives of generic collection classes was chosen,
the rationale being that once a suitable mechanism for formal specifications for all
required groups of classes, the remaining classes from the library can be specified by
importing class specifications that we have completed and by reusing the LSL traits
created by us in writing the specification of the above classes. For example, Figure 2
shows the subset of classes for which specifications have been created. In this figure

X — Y means that X imports Y. Since imports relation is transitive, in order to
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RWHashDictionary

RWSet
RWHashTable
RWBeg RWSequenceable
RWCollection
RWHashTable{terator RWHashDictionarylterstor RWBagiterator RWOrdered
RWiterator RWSaiterator RWiteratar RWlterator
RWiterastar

Figure 2: Import List Specification of a few classes

specify X, we need to create the specification of classes in the transitive closure of
its import list. In particular, the specification of RWDIistCollectablesIterator
requires the specification of seven other classes in Figure 2. In addition, we also need
to create the LSL traits necessary to capture the abstractions in these classes. By
judiciously choosing the classes, we minimize redundancy and maximize reuse of LSL
traits.

As part of this project I have developed interface specifications for Smalltalk-like
collection classes RWBag, RWBaglterator RWHashTableIterator, RWHash-
Dictionary, RWHashDictionaryIterator, RWOrdered and RWOrderedIter-
ator. Below the specification of RWOrdered is discussed.

3.4.1 Interface Specification of RWOrdered

We discuss in this section the interface specification of the class RWOrdered, which
represents a group of ordered items accessible by an index (not necessarily an external
key). The inheritance hierarchy for this class is that RWOrdered inherits from
RWSequenceable which in turn from RWCollectable. The LSL traits created for

supporting the abstractions of these classes are shown in Figure 3.
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Figure 3: LSL Traits in the Specification of Ordered Vector

The ordering of elements in RWOrdered is determined by the order of insertion
and removal of elements with duplicates allowed. An object stored by this class
must inherit from the abstract base class RWCollectable. Class RWOrdered is
implemented as a vector of pointers, allowing for more efficient traversing of the
collection than the linked list classes in the library.

Class RWOrdered has one constructor and 29 member functions. The basic
notion to be formalized here is that of “ordering” for any finite collection of ob jects.
The ordering of elements in RWOrdered objects is determined by the order of in-
sertion and removal of elements (with duplicates allowed). So, we wrote the LSL
trait Ordered Vec, which models such a collection. This trait reuses the Array and
List traits from the LSL library and models the behavior of the collection as a finite
sequence of elements with the given ordering. The library traits MutableObj and
contained_objects specify respectively that the OrderedVec objects are mutable
and each abstract value of OrderedVec object is in fact a container of ob jects. The
traits MutableObj and contained_objects are reused from the interface specifica-
tions of RWSequenceable and RWCollectable. The specification of RWOrdered
is imported by RWOrderedIterator and is inherited by RWSortedVector.
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OrderVec - LSL Specification
OrderedVec(S, Obj[E]) : trait
includes List(Obj[E] for E, S for C), Array( Obj[E], S),
MutableObj(E), contained _objects(S)

introduces
nitem : S — int
isEmpty : S — Bool
NumEqualObjects : S, Obj[E], State — int
— € __: Obj[E],S — Bool
asserts
Vs:S5,n:int e e : Obj[E], st : State

nitem(create(n)) == 0

nitem((s I e)) == nitem(s) + 1

isEmpty(s) == (s = create(n))

NumEqualObjects(create(n), e, st) == 0

NumEqualObjects((create(n) & e;), e, st) == if ((e!st) = (e1!st))
then 1 else 0

NumEqualObjects((s - ey), e, st) == if ((elst) = (e1!st)) then
(NumEqualObjects(s, e, st) + 1)
else NumEqualObjects(s, e, st)

—(e € create(n))

(e€(ste))

RWOrdered - Larch/C++ Interface Specification
imports RWSequenceable;

class RWOrdered : public RWSequenceable

{

uses Ordered Vec(RWCollectable for E, RWOrdered for S);
RWOrdered(size.t size = RWDEFAULT_CAPACITY)

{



contructs self;
ensures self' = create(size);

}
RWBoolean operator==(const RWOrdered& od) const

{
ensures result = ((nitem(sel f\any) = nitem(od\any))A
Viiintz >=0A1 <=
nitems A Num EqualObjects(sel f\any, od[3], any)));

}
virtual RWCollectable* append(RW Collectable* a)

{
modifies self;
ensures ifnitem(self”) < mazIndes(self")
then result = a A sel f' = sel f*\postcat(a*)\any
else result = NULL;

}
virtual RWCollectable*& at(size_t i) throw(int)

{
requires ¢ >= 0 A ¢ < nitem(self\any);
ensures ((result’)x)\post = sel f\any[i];
requires ¢ < 0V i >= nitem(self\any);
ensures thrown(int) = RW BoundsErr;

}

virtual const RWCollectable* at(size_t i) const throw(int)
{
requires : >= 0 A ¢ < nitem(self\any);
ensures (result+)\post = sel f\any[i];
requires : < 0V ¢ >= nitem(self\any);
ensures thrown(int) = RW BoundsErr;

}

virtual void clear()

{
modifies self;

ensures self’ = empty;
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}

virtual size_t entries() const

{

ensures result = nitemn(sel f\any);
}
virtual RWCollectable* find(const RWCollectable* a) const
{
requires ~(a = NULL);
ensures result+ = (if(3i : Int((sel f\any)[i]lany = (a*)\anyA
Vj : Int(j < i = =((self\any)[j]'any = (a%)\any))))
then (sel f\any)[{]
else NULL);
} virtual RWCollectable* first() const
{
ensures ifsel f\any = empty
then result = NULL
else result+ = self\any|0];

}

virtual size_t index(const RWCollectable* a) const

{
requires —~(a = NULL);
ensures result+ = (if(3: : Int((self\any)[i)lany = (ax)\anyA
Vj : Int(j < i = ~((sel f\any)[jllany = (ax)\any))))
then :
else result = RW_NPQOS);
}
virtual RWCollectable* insertAt(size_t indx, RWCollectable* e) throw(int)
{
requires ~(e = NULL) A indz >=0 A indz <= nitem(sel f\any);
modifies self;
ensures nitern(self') = nitem(self") + 1 A self'[i] = (ex)\anyA
Vj : Int(j >=indz A j <= nitem(self') A self'l[j+1] =
self°[j]) Aresult = ¢;
requires ~(e = NULL) A (indz < 0V indz >= nitems(sel f\any));
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ensures thrown(int) = RW BoundsErr;

}

virtual RWBoolean isEmpty() const

{

ensures result = isEmpty(sel f\any);

}

virtual RWCollectable* last() const
{
ensures ifsel f\any = empty
then result = NULL
else (resultx) = sel f\any[nitem(sel f\any) — 1];

}

virtual size_t occurrencesOf(const RWCollectable* a) const

{

ensures result = NumEqualObjects(sel f\any, (*a), any);

}
virtual RWCollectable* prepend(RWCollectable* a)

{
requires ~(a = VULL);
modifies self;
ensures ifnitem(self”) < mazIndez(self")
then self’ = (ax)\any\precatself* A result = a
else result = NULL;

}
RWCollectable® remove(const RWCollectable* a)

{

modifies self;
ensures if (32 : Int((self\any)[i]'any = (ax)\anyA
Vj : Int(j < i = ~((self\any)[j]!any = (a%)\any))))
then (resultx = sel fi] A self' = remove(sel f*, sel f[1]))
else (result = NULL A unchanged(sel f));
}

virtual resize(size_t N)

{
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modifies self;

ensures if (N >= nitem)
then self’' = create(N)
else unchanged(sel f);

3.5 Experience in formalizing Rogue Wave library

classes

Our experience in this project can be classified into two categories — the first kind
arose while detecting and fixing the ambiguities and inconsistencies in the informal de-
scriptions of tools.h++ [51]; the second kind arose while creating Larch specifications
for reuse and with reuse. The project helped us to understand the usefulness and sig-
nificance of using Larch/C++ in providing unambiguous specifications of black-box
behavior of C++ modules (in contrast to the inherent ambiguities and inconsistencies
found in the informal descriptions provided). Methodologies have aiso been developed
to test and evaluate the specifications that were written. LSL provides the facility to
specify abstractions by reusing existing abstractions and we exploited this feature to

create reusable LSL traits and reuse previously specified traits.

3.5.1 Ambiguities and Inconsistencies

During the process of writing formal specifications for the selected classes it was nec-
essary to write test programs in order to resolve the ambiguities and incompleteness
in the informal descriptions. One of the most common ambiguity that we found in
the informal description is in the description of functions that take a pointer as a
parameter. It is required that the parameter is not NULL before the execution of the
function. The informal description does not restrict the use of the function with a
NULL parameter. This ambiguity in the informal specification resulted in the crash-
ing of the test drivers written to test the class. A careful walk-through the code
showed us the need there was need for a pre-condition in the function which stated

that the pointer parameter should not be NULL before the execution of the function.
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In some cases we specified in the post condition the kind of exception thrown. Some

functions that have the above ambiguity in the class RWOrdered are:
e virtual RWCollectable* find(const RWCollectable* a) const
e virtual size_t index(const RWCollectable* a) const
o virtual RWCollectable* insertAt(size_t indx, RWCollectable* e)
e virtual RWCollectable* prepend(RWCollectable* a)

For more details on the ambiguities and inconsistencies found in the RWOrdered
Class description we refer the reader to the reports [1, 2].

Another ambiguity is in the informal description for the copy constructor and the
assignment operator. From the statement that a “shallow copy of the formal pa-
rameter is made”, it sounds as though both the copy and assignment have the same
behavior. However, it is clear from an examination of the code that in the case of the
copy constructor, the self object is created and a shallow copy of the formal parameter
is made, while in the case of the assignment the self already exists and is assigned to
the contents of the formal parameter. This is clear from the constructs clause of our
instance specifications (see for instance RWHashDictionary, RWBag. Inheritance
in Rogue Wave often means code redefinition and not strict subtype inheritance since
we often find inherited functions being redefined to have a different behavior in the
subclass than the behavior in the superclass. Our interface specifications are quite
useful in such situations since it is easier to identify the inconsistency in the behavior
of an interface function in the subclass and the superclass using a formal specification
than an informal one. We also found ambiguities arising due to lack of clarity in
describing state changes. For example, the informal description of the remove opera-
tion in classes RWHashDictionaryIterator and RWHashTablelterator merely
states that the item at the current iterator position is removed from the collection;
but fails to mention the state of the collection after the removal. However, according
to the implementation of this class, after the removal of an item the iterator points
to the position that immediately precedes the position of the removed item. This

behavior is specified in the Iterator LSL trait.
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Figure 4: Reuse of LSL traits

3.5.2 Reuse of LSL Traits

Several traits from the LSL library [29] were reused in writing specifications of simple
classes. However, the abstractions to be created for completely capturing the behavior
of new classes required either minor modifications to library traits or new traits. The
LSL traits Iterator and IteratorObj are generic iterators for respectively specifying
a list of values and a list of objects. Hence, the iterator for each collection class need
only specify a mapping function which would map the collection on to the list. Thus,
the traits HashMap, HashDictMap, and OrderedMap were specified and used in
conjunction with the Iterator for specifying RWHashTableIterator, RWHash-
DictionaryIterator and RWOrderedIterator. See Figure 4 for the hierarchy of
trait inclusions in creating HashDictIterObj and OrderedIterOb j traits used in
the specifications of RWHashDictionaryIterator and RWOrderedIterator re-
spectively.

Similarly, the abstraction for RWHashDictionary specified in the trait Hash-
Dict was reused in specifying the abstraction for the RWBag (please refer to trait

Bag_hashdict in [2]). There are situations when either a direct reuse or an indirect
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reuse through mapping functions are not possible. The case in point is the require-
ment for the class RWHashDictionaryIterator where an iterator for a list of tuples
(key object, value object) iterating only on key objects has to be abstracted in the
LSL tier. We cannot reuse IteratorObj here, and so we created a new LSL trait
called DictIterObj to fully capture the semantics of RWHashDictionaryIterator

class. For further details on the reuse of LSL traits we refer the reader to the reports

1, 2].
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Declaration | Sort of x (x is global)
T x Obj[T]

const T x ConstObj[T]

T & x Obj[T]

const T & x | ConstObj[T]

T & const x | Obj[T]

T *x Obj[Ptc[Obj[T]]]

const T * x
T * const x

Obj[Ptr{ConstObj[T}]]]
ConstObj[Ptr[Obj[T]]]

T x[3] Arr[Obj[T]]

const T x[3] | Arr[ConstObj[T]]
IntList x ConstObj[IntList]

int x(int i) ConstObjfcpp_function]

Table 1: Sorts of Global Variables

Declaration

Sort of x (x is formal parameter)

T x T

const T x T

T & x Obj[T]

const T & x | ConstObj[T]

T & const x | ConstObj|[T]
T*x Ptr{Obj[T]]
const T * x | Ptr[ConstObj[T]]
T * const x | Ptr[Obj[T]]

T x[] Ptr{Obj[T]]
const T x]] Ptr[ConstObj[T]]
IntList x Val[IntList]

Table 2: Sorts of Formal Parameters
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Chapter 4

Specifying Object Colloborations -
A Formal Approach

The OMT notation [52] uses object diagrams to model the static structure of entities
in the design, and describes the collaborations using event traces or Object Collab-
oration graphs (OCGs). Specification of object interfaces are given in psuedocode.
These approaches are not formal, and do not provide a clear description of object
dependencies and the inter-object behaviors that are maintained in the collaboration.
Limitations of the Contract approach were discussed in Chapter 2.

A formal approach to specifying object collaborations must include the following:

® A specification of the structural and integrity constraints among the collabo-

rating objects.

® A specification of the roles of the collaborating objects in a black-box fashion.

This would also implicitly specify the interob ject behavior of the collaboration.

¢ A specification of the interactive behavior in terms of the operation sequences
and flow of control. This describes the manner in which objects collaborate to

provide the interobject behavior.

It is clear that the specification of roles depends on the specification of structural
aspects of the collaboration. Specifying the interaction between objects in the col-
laboration requires the services provided in the role specifications of objects in the
collaboration. We have captured these details in a three-tiered, layered specification

language.

53



4.1 Layer 1 — LSL Traits

The first layer specifies the structural aspects of the collaboration. Besides specifying
the data models for the objects in the collaboration, it also specifies the states of
interest of each object, and the cardinality constraints of the relationships among the
collaborating objects. We use the Larch Shared Language LSL for specification of
this layer.

4.2 Layer 2 — Role Specification

The second layer uses the constructs defined in Layer 1, and identifies the services
required to specify the roles of the collaborating objects to specify their externally
observable (interobject) behavior. The role specification for an object includes thgse
services in the interface of the object which take part and are pertinent to the collab-
oration between the object and its collaborators. For each operation in the object’s
role specification, the specification consists of a header and a body. The header spec-
ifies the name of the operation, the names and types of parameters, as well as the
return type, and uses exactly the same notation as in Larch/C++. The body of the
specification consists of an ensures clause as well as optional requires and modifies
clauses.

The requires and ensures clauses specify the pre- and post-condition of func-
tions in the role specifications. The identifier self in the pre- and post-condition
assertions denotes the object that receives the message corresponding to the specified
method. The modifies clause lists those objects whose value may change as a result
of executing the operation. An omitted requires clause is interpreted to mean that
no object is modified by the corresponding method (neither self nor any parameter
objects).

The link between an object’s role specification and the trait specification is in-
dicated by the clause uses. The used trait provides the names and meanings of the
operators referred to in the pre- and post-conditions of an object’s role specifica-
tion. The uses clause also specifies the role to sort mapping and indicates the trait
that specifies the abstract values of the objects involved in the role specification (for

example, self and parameter objects).
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4.2.1 V-action, S-action, O-action.

We can categorize the possible actions of a method in the role specifications of an

object as follows:
® V-action: A method which returns a value belongs to this category.

® S-action: A method which changes the abstract state of an ob ject’s environment.
By an object’s environment, we shall mean any object other than the given

object (which is related in some way to the given object).

o O-action: A method which changes the abstract state of that particular object
belongs to this category.

Our V-action and O-action categories correspond to the V-function and O-function
categories of [5]. However, the characterization differs from that of [5] in many impor-
tant ways: (i) We use this characterization as a means to define what the behavior of
a module is rather than to write a specification of the behavior of a particular mod-
ule. (ii) We use abstract values to denote the values of method parameters and return
values. This makes it possible to consider methods that takes as parameter or return
values of complex objects rather than just basic values like integer and floating point
numbers. (iii) In addition to considering methods which modify the internal state of
an object, we also consider methods which modify the state of external environment.
This makes it possible to provide a more precise definition of the role behavior.

We use the above category to classify the methods of a class. For example, a
method which belongs to the O-action and V-action categories is referred to as an
OV-method. We assume that a method which belongs to the S-category must always
also belong to the O-category, so that any change in the environmental state of an
object is reflected by a change in the abstract state of an object in the environment.
Therefore, there can be no S-methods, only OS-methods or OSV-methods. The
possible combinations for a method are O, O-V, O-S, V, and O-S-V. Intuitively, it
is clear that these can be reduced to canonical combinations 0, 0-S, and V. This is
because, it can be shown that any method which belongs to any other combination
(ie. 0-V, 0-5-V) can be reduced to two methods each belonging to a canonical
combination. That is, any method which belongs to the V category and to some

other category can be split into two methods one of which is a pure function (V
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portion) and another which is a procedure (the remaining O or O-S portion). Details
of formal proofs of this would require defining the semantics of the ob ject-oriented
programming language being considered. To circumvent this and to avoid having to
commit to a specific programming language, we choose to accept the validity of our
assumption as an axiom.

Unlike Larch/C++ interface specifications it is not necessary for the documenter
to specify all the services (including the constructor, destructor or copy constructor)
but only those services that characterize the role of the object in the collaboration
must be stated. For instance, role specifications of a document class collaborating
with a file system would include only those services that participate and are relevant
to the collaboration e.g. save and load a file. The document may also be interacting
with a view object, but this has no relevance to the collaboration with the file system.
In view of the discussions in the last section, we assert that it is possible for the role
specifications to be presented only with pure O-actions, OS-actions and V-actions. We
further make it mandatory that the role specifications specify all the pure O-actions,
OS-actions and V-actions that are necessary for describing the ob ject collaborations.
Though this might introduce redundancy in role specifications when the same object

plays several roles, we shall soon see how this helps in formalising object interactions.

4.3 Layer 3 — Collaboration Specification

The third layer uses the constructs specified in Layer 1 and Layer 2 to provide a
specification of the interaction among the collaborating objects.

The interaction specifications for Layer 3 are provided by defining composition op-
erators for pure O-action, V-action and OS-actions. Let O, and O, be two ob jects for
which specification in Layer 1 and Layer 2 have been written. The collaboration of 0,
and O, can be described by a sequence of steps where in each step an interface action
P of O, and an interface action Q of O, interact. The interface action interactions

are the following:

e A - Parallel Operation:
R A P AQ defines an “independent collaboration™. The action of P on 0,

and the action of Q on O, can proceed independently. The semantics is:
pre(R) = pre(P) A pre(Q)
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post(P) A post(Q) = post(R).

We extend the above to distributed parallel operation: B A A P; and
conditional parallel operation: B A A {A(0O;) : P:}. The semantics of
R A A P:is as follows:

pre(R) = pre(Py) A pre(B) A ...
The semanticsof R A A {A(O;) : P} is given by:
pre(R) = pre(Py) A pre(P) A ...

where each P, is an interface action on an ob ject O; and O; satisfies the predicate

A(0)).

e ; - Sequential Composition:
R A P;Q defines a sequential collaboration. That is, the action Q of O,

follows the completion of action P of O,. The semantics is
pre(R) = pre(P)

post(P) = pre(Q).

The following scenarios determine the post-condition of R. These are:

— case(i) P = 0, Q = OS: post(P) A post(Q) = post(R)

— case(ii) P = 0S, Q = O: post(P) A post(Q) = post(R)

— case(iii) P = O or OS, Q = V : post(P) A post(Q) = post(R), and the
value returned by V action is also the value returned by R.

— case(iv) P = V, Q = O or OS: post(Q) => post(R) and value returned by
V-action is passed to the formal parameter of the method Q. In this case
we denote R as R A P; Q@par, where par represent the result of P.

— case(v) P = 0, Q = O: post(Q) = post(R). However, in this case the
post-condition of Q must be evaluated by substituting the post-state of
P for pre-state of Q (ie. self* in post-condition of Q is actually self” of

post-condition of P).

One can similarly specify the case for OS.
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e [] - Choice Operator:
R A P[]Q defines the choice operator. That is, the choice of action P of
O, or action @ of O, depends upon which pre-condition evaluates to true. The

semantics is:
(pre(R) = pre(P)) = (Post(P) = Post(R))

V. (pre(R) = pre(Q)) = (Post(Q) = Post(R)).

o A?[] Not A? - if then else Operator:
R A A? P[] Not A?Q defines the if then else operator. A denotes an
assertion defined in Layer 1 which is evaluated on the visible states of the object
O: and O,. Informally the semantics is that, if the assertion A evaluates to

true, then action P on O, is taken, else Q on O, is taken. Formally,
((pre(R) A A = pre(P)) = (Post(P) = Post(R)))

or,

((pre(R) A NotA = pre(Q)) = (Post(Q) = Post(R))).

In cases where else condition is not required, we specify R A A? P[]. In
this case, if the assertion A evaluates to true, then action P on O, is taken,
otherwise action P on O, is not taken.

Note that an operation of the form R1 A O; R, where O stands for a pure

O-action, would mean that the assertion A is evaluated in the post-state of O.

o While A do - lterator
R A While A do P defines the repeat until operator. That is the action P
on an object O, is repeated until the assertion A is false in the post-state of P.
The semantics is:
pre(R) A A = pre(P)
Post(P) = pre(R)

pre(R) A Not A= TRUE

To summarise, the form of interaction specification is the name of ob ject followed
by a colon, and expressions of the form R A P Op Q. The semantics of this

expression is that the invocation of an interface method R in the role specification of

58



Figure 5. MasterClock — ZonalClock Micro-Architecture

the given object results in the invocation of interface action P, and interface action Q
as per the semantics of Op operator. If method P is invoked on an object O different
from the self, then P is denoted as O.P.

4.4 A Clock Example

In this section we provide a brief description of a micro-architecture that is a concrete

instance of the Observer pattern [25] (p. 293).

4.4.1 Problem Description

Figure 5 illustrates the relationship between the master clock and zonal clock objects
in this micro-architecture. The master clock object is responsible for maintaining
the Greenwich Meridian Time, while the zonal clock objects display the time in their
respective zones. The master clock object can exist independently of the zonal clocks,
but each zonal clock depends on the master clock to maintain its zonal time. We thus
have a one-to-many conditional relationship between master and zonal clocks. The
master and zonal clocks together maintain an invariant that states that the zonal
clock displaying the time in its zone is consistent with the master clock time.

In figure 6, we show an OMT [52] design diagram of the micro-architecture. This
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design can be enhanced to include object references and Psuedocode. Figure 7 il-
lustrates a collaboration scenario using an interaction diagram [6]. The interface of
the participants in the micro-architecture relevant to this collaboration is described
below:

MasterClock: This object provides an interface for attaching and detaching
ZonalClock objects. The services include SetSecond method to update itself every
second, SetZonalClocks to send notification to its ZonalClocks when its time changes,
SetChange method to update its time and notify its ZonalClocks of time change,
GetTime method to query the current time and maintain the Greenwich Meridian
Time.

ZonalClock: This object provides an interface for creating a ZonalClock instance
and attaching it to a MasterClock object, and provides an updating interface to keep
its state consistent-with the MasterClock’s state. SetZonalTime() method modifies
the state of the ZonalClock to make it consistent with the MasterClock’s time, and
UpdateZonalClock method updates the ZonalClock object depending on whether an
update is necessary.

The MasterClock notifies its ZonalClocks whenever a time change occurs, that is
whenever its time is updated. After being informed of a change in the MasterClock,
the ZonalClock object queries the MasterClock for the current time. If the ZonalClock
object observes a time change then it updates itself to make its state (the zonal time)
consistent with the MasterClock’s time. Each ZonalClock object attaches itself to a
MasterClock object upon its creation.

We have specified all the interface methods that are sufficient to describe the

object collaborations in the micro-architecture.

4.4.2 Documenting a Solution

A micro-architecture specification involves the specification of the collaborations among

the objects within the architecture. This must include three components:

1) Specification of the one-to-many relationship: There exists a one-to-many rela-
tionship between master clock object and the zonal clock ob jects. The integrity
constraint on this relationship is that the zonal clock time must be consistent
with the master clock time in its zone. Also, note that a zonal clock object

cannot exist independently, and must be attached to master clock, while the
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converse is not true. The integrity constraint characterizes the states of inter-
est of the participating object in the collaboration. For instance, the name of a
zonal clock (which is the name of the zone) does not affect the invariant between

the zonal clock and the master clock to which it is attached.

2) Communication protocol: The services provided by the master clock object and
the zonal clock objects relevant to their collaboration are part of the communi-
cation protocol. These services characterize the roles played by the master clock
and zonal clock objects participating in the collaboration. These include the
services that the master clock object invokes on itself to carry out a request, as
well as services requested from other objects in the collaboration. For instance,
the service that creates a zonal clock object forms part of role specification of
the zonal clock object since it interacts with the master clock to attach itself to
the master clock. Similarly, methods to modify the states of interest also form

part of the roles.

3) Service interactions: The interaction between services provided in their roles,
must be specified in terms of operation sequences, and flow of control. These

specify the state transformations of the object collaboration.

4.5 Specification of the Case Study

We now illustrate the specification of the Clock example in our three-tiered specifi-

cation language.

4.5.1 Layer 1 Specification

In this layer we specify the abstract states of MasterClock object and ZonalClock
objects using LSL traits, the language of Layer 1. Since both MasterClock and Zonal-
Clock maintain time, we first specify the Time sort. This is followed by a specification
of the abstract values of the ZonalClock object, a specification of the relationship be-
tween the MasterClock and ZonalClock objects and the invariant properties of this

relationship.
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Time Specification.

The Time trait includes the traits TotalOrder(Time) and Integer. This is shown in
the includes clause. The TotalOrder trait specifies formally the total ordering of the
abstract values of Time. Similarly, the tuple specifies Time as a record structure. The

signature of the Time trait introduces the following functions:
e current_time: Returns the current time.
o convert: Converts the given time into an integer.
¢ reconvert: Converts the given integer to time.
e suc: Given a time unit, returns the next time.
e pred: (siven a time unit, returns the previous time.

e inc: Given a time and an integer, increments the time by the given number of

seconds, and returns the new time.

e dec: Given a time and an integer, decrements the time by the given number of

seconds, and returns the new time.
¢ max: Given two values of time, returns the maximum of the two.
e min: Given two values of time, returns the minimum of the two.

e < : Given two values of time, returns true if one precedes another and false

otherwise.

e > : Given two values of time, returns true if one succeeds another and false

otherwise.

e isValid: Given a value of time, returns true if the value is a valid time and false

otherwise.
Time : trait

includes TotalOrder( Time), Integer

Time tuple of hour, minute, second : Int

introduces
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current_time :— Time
convert : Time — Int
reconvert : Int — Time
suc : Time — Time

pred : Time — Time

inc : Time, Int — Time
dec : Time, Int — Time
maz : Time, Ttme — Time
min : Time, Ttme — Time
— < _: Ttme, Time — Bool
— 2 —: Time, Time — Bool
isValid : Time — Bool

asserts
Time partitioned by convert
Vit : Time hym,s: Int,i: Int
isValid(current_time)
isValid(t) == convert(t) > 0
isValid(t) == (t.hour > 0 A t.hour < 24)A
(t.minute > 0 A t.minute < 60)A
(t.second > 0 A t.second > 60)
convert(t) == (3600 * ¢.hour)
+(60 * t.minute) + t.second
reconvert(convert(t)) ==
suc(t) == reconvert((convert(t) + 1))
pred(t) == reconvert((convert(t) — 1))
inc(t, i) == reconvert((convert(t) + 7))
dec(t, i) == reconvert(convert(t) — i)
t 2ty == convert(t) > convert(t,)
t <ty == convert(t) < convert(t,)
maz(t, b)) =t ==t > ¢,
min(t, b)) =t ==t < ¢,
implies
VY t: Time
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suc(pred(t)) == ¢

ZonalClock Specification.

This trait specifies the abstract values of the ZonalClock ob Jject. Since the ZonalClock
object also maintains time, the abstract value of the ZonalClock ob ject’s time contains
an abstract value ZonalTime specified by the Time sort. Further, the abstract value
of the ZonalClock also includes its name and the standardOffset of the zone. A brief

explanation of its signature follows:

e Convert: Given Time and ZonalClock, returns a ZonalClock value whose Zon-
alTime is equal to the given Time incremented by the standardOffset of the
given ZonalClock.

o isConsistent: Given Time and ZonalClock, returns true if the ZonalTime and

given Time are consistent and false otherwise.

ZonalClock : trait
includes Integer, String, Time
ZonalClock tuple of standardName : String,
standardOffset : Int, ZonalTime : Time

introduces
Convert : Time, ZonalClock — ZonalClock
isConsistent : Time, ZonalClock — Bool
asserts
V z : ZonalClock,t : Time
Convert(t, z).standardName = z.standardName

Convert(t, z).standardOffset = z.standardOffset

Convert(t, z).ZonalTime = reconvert(convert(t) + z.standard Offset)

isConsistent(t, z) == if (z.ZonalTime = reconvert(convert(t)
+2.standardOffset)) then true
else false
implies

Y z : ZonalClock,t : Time
isConsistent(t, Convert(t, z))
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MasterZonal Specification.

This trait specifies the MasterClock object, ZonalClock objects and the structural and

invariant properties of their relationship. A brief description of the signature follows:

e Displays ZonalTime Of: Given a ZonalClock object, returns the MasterClock
object to which it is attached. The ZonalClock object depends on the Master-
Clock object for its current ZonalTime. The totality of this function specifies
the constraint that a ZonalClock object cannot exist independently of the Mas-
terClock.

® Dept_ZonalClocks: Given a MasterClock object, returns the possibly empty set
of attached ZonalClock objects that depend on the MasterClock object for their
ZonalTime.

® ReflectsZonalTime: Returns true if in the given state, an invariant holds among
the given MasterClock and ZonalClock objects and false otherwise.

The MutableObj trait specifies the sort of mutable objects. MutableObj(ZonalClock)
thus specifies the sort of mutable ZonalClock objects viz. Ob i[ZonalClock].

MutableObj(Time, MasterClock for Obj[Time]) specifies the sort Obj [Time], which
is the sort of objects whose abstract values are specified by the Time sort. Note that
MasterClock for Obj[Time] renames Obj[Time] to MasterClock. Thus the sort of
MasterClock objects is MasterClock.

MasterZonal : trait

includes MutableObj(ZonalClock),
MutableObj ( Time, MasterClock for Obj[Time]),
Set(Obj[ZonalClock], Set[ Obj[ZonalClock]])

introduces

Displays_ZonalTime_Of : Obj[ZonalClock] — MasterClock
Dept_ZonalClocks : MasterClock — Set[Obj[ZonalClock]]
ReflectsZonalTime : MasterClock, Obj [ZonalClock], State — Bool

asserts

V m : MasterClock, z : Obj[ZonalClock], st : State
Dept_ZonalClocks(m) > 0
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Displays_ZonalTime_Of (z) =m ==z € Dept_ZonalClocks(m)

ReflectsZonalTime(m, z, st) == (Displays_ZonalTime_Of (z) = m)A

isConsistent(m!st, zist)

4.5.2 Layer 2 Specification

We now specify the roles of the MasterClock object and ZonalClock object in the

micro-architecture using the specification language of Layer 2 of our language.

MasterClock Role Specification.

MasterClock Role Spec:
uses: MasterZonal

Attach(z: ZonalClock)

{
modifies Dept_ZonalClocks(self);

ensures z € Dept_ZonalClocks(self);

Detach(z: ZonalClock)
{

requires z € Dept_ZonalClocks(self);
modifies Dept_ZonalClocks(self);
ensures z ¢ Dept_ZonalClocks(self);

int GetTime()

{

ensures result = convert(current_time(sel f\any));
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SetSecond()
{

modifies self;

ensures sel f’ = suc(self");

}
SetZonalClocks()
{
requires Dept_ZonalClocks(self) <> {};
modifies contained_objects(Dept_ZonalClocks(self), pre);
ensures Vz : Obj[ZonalClock](z € Dept_ZonalClocks(self) =
Re flectsZonalTime(z, post));
} -
SetChange()
{
requires Dept_ZonalClocks(self) <> {};
modifies self A contained_objects(Dept_ZonalClocks(sel f),pre);
ensures sel f' = suc(self*) AVz : Obj[ZonalClock]
(2 € Dept_ZonalClocks(self) = ReflectsZonalTime(z, post));
}

ZonalClock Role Specification.

ZonalClock Role Spec:
uses: MasterZonal
ZonalClock(m: MasterClock)

{

contructs self;

ensures Displays_ZonalTime O f(self) = m;
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UpdateZonalClock()

{ modifies self;
ensures ReflectsZonalTime(Display_ZonalTime.Of(seIf), self,post);
}
SetZonalTime(i:Int)
{
modifies self;
ensures self' = Convert(reconvert(i), sel f°);
}

4.5.3 Layer 3 Specification

MasterClock:

SetZonalClocks() A A {V z : Obj[ZonalClock] z € Dept_ZonalClocks(self) :
z.UpdateZonalClock()}

SetChange() A {SetSecond(); SetZonalClocks()}

ZonalClock:

ZonalClock(m: MasterClock) A {m.Attach(sel f)}
UpdateZonalClock() A {Displays_ZonalTime O f (self).GetTime();
ReflectsZonalTime(self, Displays ZonalTime O f(sel f), st)?SetZonalTime(i : Int)@Int|
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Chapter 5

Formalizing Design Pattern

Documentations

The goal of this chapter is to study the applicability of formal approaches in docu-
menting design patterns. We intend to study the extent to which formal approaches
can improve the understandability, evaluation, and reuse of such documentation, by
making design patterns easily comprehensible and provide a means to evaluate the
design pattern. The basic concepts and the motivation for formalizing design pattern
documentations was discussed in Chapter 1. In this chapter we first critically review
certain existing documentation styles for describing design patterns. We then evaluate
these approaches both for their style as well as for their content from the standpoint of
formalizing them. The first step towards formalizing design pattern documentations,
is to identify essential components of such documentation that should be formalized

in order that design patterns may be reused.

5.1 Describing Design Patterns - An overview

There is yet no consensus on a documentation style for describing design patterns.
We shall present in this section the documentation styles of Gamma et. al [25] (also
called GOF style) and Schmidt’s style [54].
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5.1.1 Describing Patterns - GOF Style

Design patterns in the catalog of Gamma et al. [25] are described in a consistent

format. Each pattern is divided into sections according to the following template.

o Pattern Name and Classification: The pattern’s name conveys succinctly
the essence of pattern. A good name is vital because it will become part of
your design vocabulary. The design patterns are classified according to two
criteria. The first criterion, called purpose, reflects what a pattern does. Pat-
terns can have either creational, structural, or behavioral purpose. Creational
patterns concern the process of object creation. Structural patterns deal with
the compositions of objects or classes. Behavioral patterns characterize the way

in which classes or objects interact and distribute responsibility.

The second criterion is called scope, which specifies whether the pattern applies
primarily to classes or to objects. Class patterns deal with relationships be-
tween classes and their subclasses. These relationships are established through
inheritance, so they are static — fixed at compile time. Ob ject patterns deal with
object relationships, which can be changed at run-time and are more dynamic.
Creational class patterns defer some part of object creation to the subclasses,
while creational object patterns defer it to another object. The structural class
patterns use inheritance to compose classes, while the structural ob ject patterns
describe ways to assemble objects. The behavioral class patterns use inheritance
to describe algorithms and flow of control, whereas behavioral object patterns
describe how a group of objects cooperate to perform a task that no single

object can carry out alone.

o Intent: A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular design

issue or problem it addresses?
e Also Known As: Other names known for the pattern, if any.

¢ Motivation: A scenario that illustrates a design problem and how the class
and object structures in the pattern solve the problem. The scenario will help

the user understand the more abstract description that follows.
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o Applicability: What are the design situations in which the design pattern
can be applied? What are the examples of poor designs that the pattern can

address? How can you recognise these situations?

e Structure: A graphical presentation of the classes in the pattern using the no-
tation based on Object Modelling Technique (OMT) [52]. Interaction diagrams
[6] are used to illustrate sequences of requests and collaborations between ob-

jects.

¢ Participants: The classes and/or objects participating in the design pattern

and their responsibilities.

¢ Collaborations: How the participants collaborate to carry out their responsi-

bilities.

¢ Consequences: How does the pattern support its objectives? What are the
trade-offs and results of using the pattern? What aspect of system structure

does it let you vary independently?

¢ Implementation Code: What pitfalls, hints, or techniques should you be

aware of when implementing the pattern? Are there language specific issues?

¢ Sample Code: Code fragments that illustrate how the pattern might be im-
plemented in C++ or Smalltalk.

e Known Uses: Examples of patterns found in real systems. At least two ex-

amples are provided from different domains.

* Related Patterns: What design patterns are closely related to this one? What
are the important differences? With which other patterns should this one be
used?

An Example

We present below the GOF style description of Abstract Factory pattern [25, 26]:

¢ Pattern Name and Classification: The name of the design pattern is Ab-

stract Factory, it has object scope and creational purpose.
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Figure 8: AbstractFactory - Contextual Example

e Intent: Provide an interface for creating families of related or dependent objects

without specifying their concrete classes.
e Also Known As: Kit

e Motivation: User interface toolkits supports multiple look-and-feel standards,
such as Motif and Presentation Manager. Different look-and-feel standards
support different appearances and behaviors for user interface “widgets” such
as scroll bars, windows and buttons. To be portable across multiple look-and-
feel standards, an application should not hard-code its widgets for a particular
look-and-feel. Instantiating look-and-feel-specific classes of widgets throughout

the application makes it harder to change the look and feel later.

This problem can be solved by defining an abstract WidgetFactory class that
declares an interface for creating each basic kind of widget. There’s also an ab-
stract class for each kind of widget, and concrete subclasses implement widgets
for specific look-and-feel standards. WidgetFactory’s interface has an operation
that returns a new widget object for each abstract widget class. Clients call
these operations to obtain widget instances, but clients are not aware of the con-
crete classes they are using. Thus clients stay independent of the prevailing look
and feel. There is a concrete subclass of WidgetFactory for each look-and-feel

standard. Each subclass implements the operations to create the appropriate
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widget for the look and feel. For example, the CreateScrollBar operation on
the MotifWidgetFactory instantiates and returns a Motif scroll bar, while the
corresponding operation on the PMWidgetFactory returns a scroll bar for the
Presentation Manager. Clients create widgets solely through the WidgetFac-
tory interface, and have no knowledge of the classes that implement widgets for
a particular look and feel. In other words, the clients only have to commit to

an interface defined by an abstract class, not a particular concrete class.

A widget factory also enforces dependencies between the concrete widget classes.
A Motif scroll bar should be used with a Motif button and a Motif text edi-
tor, and that constraint is enforced automatically as a consequence of using a
MotifWidgetFactory.

o Applicability: Uge the Abstract Factory when
— a system should be independent of how its products are created, composed
and represented.

— asystem should be configured with one of the multiple families of products.

— a family of related product objects is designed to be used together, and

the user should enforce this constraint.
— the user may want to provide a class library of products, and want to reveal
just their interfaces and not their implementations.
¢ Structure: Please refer to Figure 9.

o Participants:

— AbstractFactory (Widget Factory)

* declares an interface for operations that create abstract product ob-

jects.
— ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)
* implements the operations to create concrete product objects.
— AbstractProduct (Window, ScrollBar)
* declares an interface for a type of product object.

— ConcreteProduct (MotifWindow, MotifScrollBar)
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Figure 9: OMT Diagram For Abstract Factory Structure .

* defines a product object to be created by the corresponding concrete
factory.

* implements the AbstractProduct interface.
— Client

* uses only interfaces declared by AbstractFactory and AbstractProduct

classes.
e Collaborations:

— Normally a single instance of a ConcreteFactory class is created at run-
time. This concrete factory creates product objects having a particular
implementation. To create different product objects, clients should use a

different concrete factory.
— AbstractFactory defers creation of product objects to its ConcreteFactory
subclass.
e Consequences: The Abstract Factory Pattern has the following benefits and
liabilities:

1. [t isolates concrete classes. The Abstract Factory pattern helps to control
the classes of objects that an application creates. Because a factory encap-

sulates the responsibility and the process of creating product objects, it
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isolates clients from implementation classes. Clients manipulate instances
through their abstract interfaces. Product class names are isolated in the

implementation of the concrete factory; they do not appear in client code.

2. It makes exchanging product families easy. The class of a concrete factory
appears only once in an application - that is, where it’s instantiated. This
makes it easy to change the concrete factory used by an application. It
can use different product configurations simply by changing the concrete
factory. Because an abstract factory creates a complete family of products,
the whole product family changes at once. In our user interface example,
we can switch from Motif widgets to Presentation Manager widgets simply

by switching the corresponding factory objects and recreating the interface.

3. [t promotes consistency among products. When product objects in a fam-
ily are designed to work together, it’s important that an application use
objects from only one family at a time. AbstractF: actory makes this easy

to enforce.

4. Supporting new kinds of products is difficult. Extending abstract facto-
ries to produce new kinds of Products isn’t easy. That’s because the
AbstractFactory interface fixes the set of products that can be created.
Supporting new kinds of products requires extending the factory interface,
which involves changing the AbstractFactory class and all its subclasses.

We discuss one solution to this problem in the implementation section.

¢ Implementation: A novel implementation is possible in Smalltalk. Because
classes are first class objects, it is not necessary to have distinct ConcreteFactory
subclasses to create variations in the products. Instead, it is possible to store
classes that create these products in variables inside a concrete factory. These
classes create new instances instead of the concrete factory. This technique
presents variations in product objects at finer levels of granularity than by
using distinct concrete factories. Only the classes kept in the variables need be

changed.

We refer the reader to several other implementation issues discussed in detail
in [25].
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e Sample Code: An example to build a maze for a computer game is presented.
A maze is defined as a set of rooms. A room knows its neighbors; possible

neighbors are another room, a wall, or a door to another room.

The classes Room, Door and Wall define the components of the maze. Abstract
Factory pattern can be applied for creating such mazes. The class MazeFactory
can create components of the mazes. It builds rooms, walls, and doors between
the rooms. It might be used by a program that reads plans for mazes from a
file and builds the corresponding maze. Or it might be used by a program that
builds mazes randomly. Programs that build mazes take a MazeFactory as an
argument so that the programmer can specify the classes of rooms, walls, and

doors to construct.

class MazeFactory {

public:

MazeFactory();

virtual Maze* MakeMaze() const

{return new maze;}

virtual Wall* Make Wall() const

{return new Wall;}

virtual Room* MakeRoom (int n) const

{return new Room(n); }

virtual Door* MakeDoor(Room* r1, Room* r2) const

{return new Door(r1, r2); } }

The class MazeGame creates the maze. The member function CreateMaze in
this class builds a small maze consisting of two rooms with a door between

them.

Maze* MazeGame::CreateMaze (MazeFactory& factory) {
Maze* aMaze = factory. MakeMaze();

Room* r1 = factory. MakeRoom(1);

Room* r2 = factory. MakeRoom(2);

Door* aDoor = factory. MakeDoor(r1, r2);

aMaze— AddRoom(r1);

aMaze— AddRoom (r2);

r1—SetSide(North, factory. Make Wall());
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rl—SetSide(East, aDoor);
ri—SetSide(South, factory.MakeWall());
rl—SetSide(West, factory.MakeWall());
r2—SetSide(North, factory.MakeWall());
r2—SetSide(East, factory.MakeWall());
r2—SetSide(South, factory.MakeWall());
r2—SetSide(West, aDoor);

return aMaze;

Similarly, one can create EnchantedMazeFactory, a factory for enchanted mazes,
by subclassing MazeFactory. EnchantedMazeFactory will override different mem-
ber functions and return different subclasses of Room, Wall, etc. Due to space

considerations, we refer the reader to [25] for more details on this example.

Known Uses: InterViews uses the “Kit” suffix [43] to denote abstract factory
classes. It defines WidgetKit and DialogKit abstract factories for generating
look-and-feel-specific user interface objects. InterViews also includes a Lay-
outKit that generates different composition objects depending upon the layout

desired.

ET++ [60] employs the Abstract Factory pattern to achieve portability across
different window systems (X Windows and SunView, for example). The Win-
dowSystem abstract base class defines the interface for creating objects repre-
senting window system resources (for example MakeWindow, MakeFont, Make-
Color). Concrete subclasses implement the interfaces for a specific window
system. At run-time ET++ creates an instance of a concrete WindowSystem

subclass that creates system resource objects.

Related Patterns:

Abstract Factories are often implemented using factory methods (please refer
factory Method pattern in [25]), but they can also be implemented using Pro-
totype pattern [25].

A concrete factory is often a singleton (please refer Singleton pattern in [25]).
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5.1.2 Describing Patterns - Doug Schmidt’s Style

Schmidt’s style [54] emphasizes on articulation of non-functional forces that a design

pattern resolves, besides recording the static and dynamic among the participants in

the software design. We first present the style followed by an example in this style

[54].

The main parts of this documentation style are the following:

Name: Represents the name of the pattern.

Problem and context: A brief description of the problem is provided. This

is followed by a description of the context in which the pattern is used.

Force(s) addressed: Describes a set of design issues that force the solution

(ie. motivate the solution) proposed by the design pattern. .

Solution: An abstract description of structure and collaborations in solution.
These are presented typically using class diagrams, object diagrams and object
interaction graphs in Booch style [6] and in informal textual notation. The
solution solves the described problem in the given context by resolving the

forces stated.

Consequences: The positive and negative consequences of using the pattern

are provided.

This description may be supplemented with sample code and examples of the design

pattern usage in various systems.

An Example

We present below the Abstract Factory pattern [25] in the documentation style pre-

sented above.

Name: Abstract Factory
Problem and Context:
— Problem: Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.
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— Context: Same as in Motivation section in 5.1.1.
o Forces:

— Clients use objects from only one family at any time.
— Client of the families must not depend on an ob ject’s representation.

— There may be more than one family of objects being used by a client.

e Solution: This is similar to the Structure, Participants and Collabora-
tions sections in 5.1.1, with the exception that instead of an OMT diagram a

Booch style [6] class diagram is presented.

e Consequences: These are also similar to the Consequences section in 5.1.1.
5.1.1

-

Besides the above two documentation styles, several other styles have also been
proposed and we refer the reader to series of conference proceedings devoted to Pattern
languages of program design [56]. Also, see the Patterns Home Page at url:http://st-
wwuw.cs. uiuc.edu/users/patterns/patterns.html. Among the documentation styles, the

GOF style is the most popular and we shall be discussing this in detail in later sections.

5.1.3 Comparison of the Two Styles

In this section, our goal is to compare and contrast the two styles of documenta-
tion presented above, and identify the key components of a documentation style that
are essential to reuse. These key components will then serve as a basis for a formal
approach. We observe that the notable difference between the two styles is the ar-
ticulation of the so called forces. The problem and context aspects of the two styles
are identical. Schmidt’s style emphasizes on forces that motivate the design solution
provided by the design pattern. These forces characterize the additional requirements
that the design pattern’s solution must satisfy besides those stated in its problem.
It is also clear that these forces arise in the context described in the Problem and
context section in 5.1.2.

GOF style, on the other hand outlines these forces within the context of motivating
example, and also as part of applicability conditions (see Motivation and Appli-

cability sections in 5.1.1). For instance, in the Abstract Factory design pattern, the
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Motivation section brings out a force that each WidgetFactory must enforce de-
pendencies between the concrete widget classes (please refer section 5.1.1). However,
this force is stated within the context of a specific example, which in this case is the
creation of user interface widgets. The same force in Doug’s style (please refer 5.1.2)
is presented distinctly under Forces section and is stated abstractly (ie. in a general
context). For the following reasons we believe the latter approach is more useful to a

reuser:

e Since, the problem and solution aspects of a design pattern are highly abstract
it is important to present the design issues also in abstract fashion. Obscuring
them within a specific example leaves the reuser with the additional task of

reading lengthy examples to identifying them.

o The forces represent some aspects of the design rationale underlying a design

pattern.

e Stating the forces abstractly and distinct from the context does not confuse the
reuser with irrelevant details he might otherwise encounter in the description of

the specific example in the context.

Schmidt’s style does not present applicability conditions. An analysis of the appli-
cability conditions described in the Applicability section of patterns in [25] reveals
that such conditions typically deal with :

1) situations that can cause changes to existing requirements or introduce new

requirements.

2) situations other than those stated in the problem statement in which the pattern

may still be used.

3) reiteration of the design issues considered in the design of the design pattern’s
solution (these are stated in the context of a specific example within the Mo-

tivation section of 5.1.1).

To a reuser 1) and 3) are more important since they describe aspects of design
rationale. Situations in 2) are derived from the pattern writer’s experience or the
experience of other pattern users. To a user interested in understanding a design

pattern in order to reuse it, knowing the rationale of pattern is more important than
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seeing the situations in which it can be applied; in particular for novice users these
situations may be difficult to understand and may appear speculative. We therefore
believe that such issues can be presented as useful comments rather than form core
of a pattern documentation. We shall therefore not deal with such situations in our
approach.

The Intent section in 5.1.1 and Problem section in 5.1.2 describes the intent
of the pattern. According to Gamma et al [25] the Intent must describe briefly the
problem and how the problem is solved. We believe that it is easier to understand a
problem when the solution details are not provided.

The Consequences aspects of both styles state the benefits and liabilities of
using the design pattern. They state how the design pattern solution satisfies the
design issues mentioned in the Problem, Motivation, and Applicablity sections.
Similarly, those in-Schmidt’s style mention how the Forces stated are resolved. In
both cases, the resolution of design issues already stated are reiterated as positive
consequences of the design. Sometimes, newer requirements are mentioned in the
consequences. We believe that all the advantages of using a pattern can be stated
as motivating forces for the design. However, it is important to mention how certain
forces are resolved as part of consequences. For instance, in the Abstract Factory
pattern, the Consequence section reiterates that it must be possible to exchange
the product families. This is redundant since, the Forces section mentions that
solution must make it easy to change between the families of product objects. Such
redundancies must be avoided since a reuser who understands the forces motivating
a design can be rest assured that these forces are indeed met by the solution. What
is important however is to understand how the forces are met. This is at times
clear from the description of the solution, while at times additional information on
how the design pattern can be customized to meet new requirements needs to be
provided in the Consequence section. Thus the consequences should only deal with
customization of design pattern solution to meet new requirements or changes to
existing ones and drawbacks of using the pattern.

It is clear from our discussion that documenting the problem solved by a pattern is
at least as important, if not more as describing the pattern’s solution itself. Though it
is easier to see a pattern as a solution, as a technique that can be reused and adapted,
it’s harder to see when it is appropriate - to characterize the problem it solves and

the context in which it is the best solution [25]. Characterizing the design problem
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involves clearly outlining the design rationale underlying the pattern. Understanding
the design rationale is crucial to understand and choose a right pattern to apply.
Various documentation styles including those discussed above attempt to describe
the rationale in various ways. From our discussion above, it follows that in GOF
style this is spread over Motivation, Applicability and Consequences sections,
and Schmidt’s style, this is present in Context, Forces and Consequences. It is
also clear from patterns in [25] that the design rationale underlying a pattern can be

further classified as follows:

e design choices and assumptions made about the problem’s context: we will
call them constraints since they constrain the solution space for the problem
addressed by the pattern. For example, the constraints in the Singleton pattern
[25], can be stated as:

A global variable cannot be used to represent a singleton‘object since although it
makes objects accessible, it does not prevent clients from instantiating multiple

objects.

® requirements that are anticipated to arise in future. Often, the constraints
considered in a design pattern imply certain anticipatory requirements. Still,
it is better to state these requirements explicitly as Reuse Requirements. For
example, the reuse requirements in Observer [25] can be stated as:
It should be possible to vary the type of observer objects without varying the

subject in the design.

5.2 Template - A New Documentation Style

Based on these discussions we propose a template style for documenting design pat-
terns. This template is motivated by our discussions, and the need to spell out in
a non-redundant, and abstract fashion the aspects of the design pattern documenta-
tions that are crucial to their reuse. Qur template will have a Problem section that
describes briefly the problem statement without providing any details of the design
pattern solution. The properties of the desired solution may be stated as Constraints
which also describe design issues considered. Reuse Requirements explicitly state
that the design should be customizable to meet new needs. Besides, the design ratio-

nale as described above, the pattern should explain how the Reuse Requirements
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will be satisfied by the design pattern’s solution. These are described under Reuse

Requirement Resolution section following the Solution. As already discussed,

we do not see the need for reiterating the advantages of the design pattern solution in

terms of design constraints and reuse requirements it satisfies since these are already

stated before the Solution and the reuser can expect these to be satisfied. We re-

place the positive consequences with the Reuse Requirement Resolution section.

Then a section on Drawbacks is added. Each section in the proposed template is

annotated with an example thereby making it easier to understand the pattern. The

template we propose has the following format:

Name: Represents the name of the pattern.

Problem: A brief description of the problem.

Ezxample Problem:

Constraints: Description of design constraints (as explained above).

Example Constraints

Reuse Requirements: Description of the reuse requirements as explained
above.

Ezample Reuse Requirements

Solution: A description of the solution in GOF style.

Ezample Solution

Reuse Requirement Resolution: Description of the reuse requirements and

how they are resolved by the solution.
Drawbacks: The negative consequences of using the design pattern.

Implementation issues and Sample Code: A description similar to the
GOF or Schmidt style.

We consider our template approach to remain flexible so as to represent evolving

concepts in design patterns. We believe this approach is also a better way of orga-

nizing the information towards a clear understanding of the design pattern notions.

We now present a few examples to illustrate this approach. The reader is requested

to refer to [25] to compare our style with GOF and also to understand the relevant
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sections. In these examples we shall omit details on implementation issues and sample

code.

3.2.1 Abstract Factory

e Name: Abstract Factory.

e Problem: Clients want to create families of related or dependent product ob-
jects. Further, clients use product objects from only one family at any time.
Ezample: An application wants to create user interface widgets such as win-
dows, scrollbars, and buttons belonging to various look-and-feel standards such

as Motif and Presentation Manager.

e Constraints:

— The clients of the families must not depend on the product object’s repre-

sentation. The clients should not create product objects from the families
by specifying their class explicitly. For, doing so would make it harder for
the client to change the product family later.
Ezample: To be portable across look-and-feel standards, an application
should not hard code its widgets for a particular look-and-feel. [nstan-
tiating look-and-feel-specific classes of widgets throughout the application
makes it harder to change the look and feel better.

¢ Reuse Requirements:

— It should be possible to vary the family being used by a client.
Ezample: It should be possible for the application to vary the look-and-feel

ie. switch between look-and-feel standards.

~ It should be possible to add new families of products.

It should be possible to port the application to new look-and-feel standards.

e Solution: This is identical to the Structure, Participants and Collabora-
tions sections in 5.1.1.
Ezample: This is identical to the OMT diagram and illustration of the ezample
in the Motivation section of 5.1.1
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¢ Reuse Requirements Resolution:

— The class of the concrete factory appears only once in the application viz.
where it is instantiated. The clients can be configured either statically
or dynamically with the desired ConcreteFactory. In either cases, the
clients require little or no modification. Changing the concrete factory
automatically changes the product objects that will be used by clients. It
is thus easy to vary the family of product objects being used by the clients.

— To add a new family of product objects, one has to define new factory
class (representing the new family) and define product classes in the new
family (representing the product objects of the family) and make them as
sub-classes of AbstractFactory and Product classes respectively. Of course,
this is possible only if the product objects in the new family are “related”

to those in the existing family(or families).

¢ Drawbacks: Only the negative consequences of the pattern as described in

5.1.1 are provided.

5.2.2 Composite
¢ Name: Composite

e Problem: Compose objects into tree structures to represent part-whole hier-
archies.
Ezample: Graphic applications such as drawing editors build compler diagrams

by composing simple components.
e Constraints:

— Clients must be programmed to an uniform interface of primitive and com-
posite structures and not to their individual implementations. This con-
straint is based on the assumption that clients treat primitive and com-
posite structures uniformly most of the time. So, if the application is
configured with their implementations, the application becomes unneces-
sarily complex. This constraint makes the client code simple.

Ezample: If the drawing editor application treats primitive and container

86



o Composent

Operation)

Add(Component)

Remowe{ Compnent)

CeChid)

]
Lo Compde )|tk
Operation() j

Operaton]) o foralgin chikdren
Add(Congooent) 3 0pentim)
Bemnove( Component)
GaChildh)

Figure 10: OMT Diagram For Composite Structure

objects differently, even if most of the time they are used identically, the

application becomes unnecessarily complez.
e Reuse Requirements:

— It should be easy to define new types of primitive and composite objects
without altering the code of existing classes or clients.
Ezample: It should be possible to add to new types of simple and complex

drawing components without altering the code of the rest of the application.

— It should be easy to vary the structure and composition of a primitive or
composite object in the design.
Ezample: It should be easy to vary the implementation of a complez/simple

component and vary the components within a complezr component.

e Solution: This can be described similar to the Structure, Participants and

Collaborations sections in 5.1.1. Please see Figure 10 (25].

Ezample: This can be described similar to the OMT diagram and illustration of
the ezample in the Motivation section of 5.1.1. Please refer to Figure 11 [25].

e Reuse Requirements Resolution:
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— To add a new types of primitive and composite objects, one has to define
new leaf class (representing the new family) and define composite classes in
the new family (representing the product objects of the family) and make
these classes sub-classes of Component and Composite classes respectively.
Of course, this may require that the interface of Composite is class be
modified and the objects in the newly defined classes satisfy the constraints
already stated.

— Since the Composite class defines all child-related operations in the Compo-
nent interface, it is easy to vary its structure at run-time. Also, since clients
only know the interface of Component they are unaffected by changes in

implementation of Primitive and Composite.

e Drawbacks: The design pattern can make the design general. The disadvan-
tage of making it easy to add new components is that it makes it harder to
restrict the components of a composite. Sometimes the user may want a com-
posite to have only certain components. With Composite, one has to perform

run-time checks to enfore these constraints [25].

5.2.3 Observer

e Name: Observer
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¢ Problem: Define a one-to-many dependency between objects such that when
one object changes its state all its dependents are notified and their states are
updated automatically.
Ezample: Consider a spreadsheet and barchart object depicting information in
the same application data object using different presentations. When a user
changes information in the spreadsheet, the barchart reflects the change imme-
diately, and vice versa. The spreadsheet and barchart object are dependent on

the data object and therefore should be notified of any change in its state.
e Constraints:

— The object and its dependents should not be tightly coupled since, doing so
will not enable them to be reused independently. Loose coupling increases
the chances of the two being reused independently. .

Ezample: The application data object must not be tightly coupled with bar-

chart and spreadsheet objects.
¢ Reuse Requirements:

— It should be possible to vary the number and type of dependent objects
(type refers to the way they react to an update event).
Ezample: It should be easy to vary the number and type of user interfaces

to the same data.

e Solution: This can be described similar to the Structure, Participants and

Collaborations sections in 5.1.1. Please refer to Figure 12 [25].

Ezample: This is identical to the OMT diagram and illustration of the ezample
in the Motivation section of 5.1.1. Please refer to Figure 13 [25].

¢ Reuse Requirement Resolution:

— To add new types of observers objects, define the new observer class with
the Update operation and make it a subclass of the Abstract Observer
Class. The abstract coupling between subject and observer ensures that
no change in the Subject class is required. Thus, it is easy to define new
types of Observer objects that can subscribe to the notification from the
Subject.
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Figure 12: OMT Diagram For Observer Structure
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Figure 13: Observer - Contextual Example
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— The interface of Subject has the Notify operation that broadcasts the noti-
fication to all the dependent observers (ie. observers that have subscribed
to the notification). This gives one the freedom to add and remove ob-

servers at any time.

e Drawbacks: Unezpected Updates. Because observers have no knowledge of
each other’s presence, they can be blind to the cost of ultimately changing the
subject. A seemingly innocuous operation on the sub ject may cause a cascade
of updates to observers and their dependent objects. Moreover, dependency
criteria that are not well-defined or maintained usually lead to spurious updates,
which can be hard to crack down. This problem is aggravated by the fact that
the simple update protocol provides no details on the causes that changed in
the subject. Without additional protocol to help observers discover the causes
of change, they may be forced to work hard to deduce the reasons for changes
[25].

5.3 Towards A Formal Approach

One of the biggest challenges facing widespread reuse of design patterns is the ability
to document them unambiguously. Design patterns, by virtue of their level of use,
must be kept at a high level of abstraction. From the experience gained in reading
the design patterns in [25] and producing the template style, we are lead to the
next natural step wherein we address the two key issues: (1) what aspects of design
patterns should not be formalized? and (2) what aspects of design patterns must be
formalized?

The template documentation presented in the last section makes a clear distinction
between the abstract aspects of the design pattern and its instantiation in a, specific
context. This distinction is crucial for reuse. However, the level of informality in
template descriptions may give rise to ambiguities and inconsistencies. We discuss

below these issues for each section of the informal template in 5.2.

5.3.1 Problem Section

The template provides a high-level description of the Problem and Constraint

sections. This is done with a view of ensuring wide applicability of the pattern.
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For instance, the Problem of Abstract Factory states that clients want to create
families of related or dependent objects. This description does not specify the nature
of relationship or dependency among the objects. Similarly, the notion of “family” of
objects is also not clear. These notions can be understood only from an examination of
abstractions present in the context (the motivating example in Motivation section of
5.1.1). However, the context captures these abstractions in the context of a specific
example. So, there is a danger that a reuser may be caught in irrelevant details
specific to the contextual example, and lose track of abstractions that are relevant to
the design issue described in Problem.

For instance, it is clear from the contextual example of the Abstract Factory pat-
tern that the abstractions MotifWindow, MotifScrollbar, PMWindow, PMScrollbar
are relevant to the design issue described in the Problem. However the abstraction
for MotifFactory is irrelevant since this pertains to the instantiation of the design
pattern solution. If the abstractions that characterize the design problem addressed
by a pattern are not discernible from the context, then the user has to rely on the
abstract solution provided to understand the design problem. This is worse, since the
problem and solution are at different levels of detail and abstraction. For instance, in
the Abstract Factory pattern, a user can infer from the Solution that the product
objects are partitioned in two types viz. AbstractProductA, and AbstractProductB.
Further, they are related in the sense, that product objects in classes ProductAl
and ProductBl can be created only by an instance of ConcreteFactoryl. Similarly,
the product objects in the classes ProductA2, ProductB2 can be created only by an
instance of ConcreteFactory2. Further, the Solution makes it clear that clients can
use objects from only one factory at any time. It is clear from the solution, that each
ConcreteFactory class represents a family of objects. Suppose, that the Problem
section describes a design issue which does not specify that product objects can be
partitioned into such types and that the clients can use only one family of products
at any time, the solution proposed is not a valid solution. For, if problem domain
does not state that Products ProductAl, and ProductA2 have the same type, and
yet the solution provides an inheritance hierarchy where ProductAl and ProductA2
inherit from the abstract class ProductA, then this would be a violation of 0O design
principles.

Similarly, the Problem section in Composite pattern [25] states that the pattern

composes objects into tree structures to represent part-whole hierarchies. Again, from
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the abstract problem statement the meaning of “composes” is not clear. Does it mean
that the pattern must define a representation of a complex object, or does it mean
that it should provide a procedure for composing objects. It is also not clear how an
object and its composition are related. These became clear only from the context.
The context section outlines that users for most part request the same set of services
from an object and its composition. It is also clear that the goal of the pattern is to
provides a representation for the complex object in terms of its components.

The Problem of Observer pattern states that there is a one-to-many dependency
between certain objects. The nature of dependency is not specified. However, the
contextual example and collaboration sections under the Solution clearly spell out
that there is a state dependency between such objects. Similar criticism applies to
all patterns found in [25].

In summary, the informal description in the Problem section in any design pat-
tern (25] does not identify the abstractions present in the problem. Such discrepancies
can be identified by the reuser only through an analysis of the context and the so-
lution. Sometimes, the motivating example is itself difficult to understand requires
considerable amount of time to understanding. Identifying abstractions pertaining
to the Problem from the solution might bias the reader with details pertaining to
the solution. Besides, the Problem and Solution are at different levels of abstrac-
tions and detail. A formal approach can identify essential abstractions relevant to
the design issue at hand without confusing the reader with irrelevant details in the
context and also not biasing the reader with solution level details. We shall call such

abstractions as “problem domain entities”.

5.3.2 Constraints Section

We have already stated that the Problem section of the formal documentation must
specify the problem domain entities, their relationships and the task that should be
achieved by the pattern in terms of these entities. The Constraints in our informal
template describe the design choices and their rationale. The design choices constrain
possible solutions of the design issue outlined in the Problem. Thus they specify
the manner in which problem domain entities must be represented in the solution.
For instance, the Abstract Factory pattern’s constraint makes a design choice that

the clients must not be configured with the concrete classes of product objects they
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may create at run-time. The problem domain entities identified in the Problem
would include the concrete classes of such product objects. Then the design choice
states that though clients may use objects from these classes, the clients do not create
these objects statically by explicitly specifying that they are instances of the concrete
classes. Similarly, the Composite pattern’s constraint states that clients which use
primitive and composite objects do so by assuming that they have the same interface.
Since the primitive and composite classes have already been identified in the problem
domain, this constraint can be stated in terms of these entities. Stating such design
choices informally introduces several ambiguities. For instance, the design choice for
Composite pattern states that clients assume the same interface. Again, the meaning
of “assume” is not clear. Similarly, the Observer design pattern states that Subject
and Observer classes must not be tightly coupled. Though, the meaning of coupling is
still not clear innOO community (Gamma et al. define it as the degree to which objects
“know” about each other), formalism can provide a more precise interpretation of this
design choice: formally, it can be stated that the subject does not have a reference
to an object of observer class.

It is thus clear that a formal approach to stating the design choices in the con-
straints is desirable. Further, since the design choices may be stated in terms of
problem domain entities the constraints formalism can incorporate the formalism for
the Problem. It is also clear that abstractions in the Problem and the design choices
in the Constraint pertain to the problem domain of the design pattern. Though the
design choices may be stated formally, the rationale for such choices cannot be stated
formally as these are often descriptive and subjective. Thus formalizing constraints
involves formalizing design choices made, in terms of the problem domain entities.

The rationale for making such design choices cannot be formalized.

5.3.3 Reuse Requirement Section

Now, consider the Reuse Requirements stated in our template 5.2. These charac-
terize the anticipatory requirements and aspects that should or should not vary in the
proposed design. Consider for instance, such reuse requirements for the Composite
pattern. One of them states that, it should be easy to vary the structure and com-
position of the composite object. Another states that it should be easy to add new

primitive and composite objects to the proposed without altering the clients or other.
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objects in the proposed design structure. These statements cannot be formalized
using the abstractions introduced in the Problem and Constraint sections since
the informal semantics of varying the structure of a composite object or adding new
types of primitive objects to the structure describe properties that are too vague and
ambiguous to be formally stated. For instance, for a reader interested in understand-
ing the design issue, the term varying can mean several things. It could mean that
the solution allows us to vary composition of composite object at run-time or the
implementation of the composite object at run-time. The semantics of vary is clear
only from the specification of the Solution. It is clear that since the Composite class
implements child-related operations in the Component interface, the composition of
composite objects can be easily changed at run-time. Similarly, in the Observer pat-
tern, the reuse requirement states that it should be easy to vary the type of observers.
At the level of problem domain abstractions this is difficult-to specify. However, the
meaning of vary can be understood from the Solution aspects of the pattern viz.
that new types may be added by subclassing the Observer class independent of the
Subject class and types of dependent observers to an ob ject of the Subject class may
also be varied at run-time. In summary, though the reuse requirements given in [25]
can be stated informally before stating the Solution, their meaning can be deduced
unambiguously only from the formal specification of the solution since they are stated
in terms of the abstraction present in the solution domain of a design pattern. There-
fore, in the formal template we state the reuse requirements not as part of Reuse
Requirements section but as part of the Solution section. At the problem domain
level, they for most part seem ambiguous. Therefore, we believe that formalism can-
not be applied to this section. However, as we explain formal specification of the
design pattern solution can help a reuser to deduce how the reuse requirements are
met by the solution. In summary, therefore we state that the formalism provided
for the Problem and Constraints completely characterize the problem domain of

a design pattern.

5.3.4 Solution Section

The Solution section of the informal template 5.2 is identical to the description in
[25]. We found several inconsistencies and ambiguities with these descriptions. For

instance, the Reuse Requirements Resolution section of Abstract Factory pattern
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mentions that the class of product objects appears only once in the application viz.
where it is instantiated. Thus, product objects used by clients can be varied by con-
figuring the clients with the desired concrete factory. This makes it easier for clients
to switch between families. However, the Participants section of the Solution
only states “that clients manipulate product objects through the AbstractFactory’s
interface”. Similarly the Collaborations section under Solution also states that
“normally a single instance of concrete factory is created at run-time”. There is an
inconsistency in the Solution in that the solution does not specify how the clients
know about or create the product objects. Thus, it is not clear how the product
objects are created through the AbstractFactory’s interface, and also why it is easier
to interchange families by just choosing a desired factory.

The Solution section of Composite pattern uses several ambiguous terms and
phrases sueh as children of a composite, child related operations are implemented in
the interface of component which need to be formally stated. It is also clear from
the solution that Composite class is a subtype of the Component class while the Leaf
class is a subclass. The collaborations in the Solution of Composite pattern are also
stated informally. The Collaborations section in Observer design pattern states that
a ConcreteSubject notifies its observers whenever a change occurs that could make
its observer’s state inconsistent with its own. This statement is ambiguous in that it
is not clear who is responsible for notifying the observer. The sub ject can change its
state and notify its observers by invoking Notify() on itself. Instead, the responsibility
of notifying observers can lie with the client that invokes SetState() on the subject.
This ambiguity is intentional; however, the informal statement seems to imply the
former scenario even though neither the OMT diagram nor the Participants section
states this. The contextual example and collaboration sections under the Solution
clearly spell out that there is a state dependency between such objects. We have found
that similar criticisms apply to all patterns found in [25]. Due to space considerations,

we do not discuss them.

5.3.5 Reuse Requirements Resolution Section

The Reuse Requirements Resolution section describes how the reuse require-
ments can be met by customizing the solution. It is difficult to deduce them from

informal descriptions of the design pattern solution. However, they can be deduced
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from the formal representation provided for the Problem, Constraints and Solu-
tion. Thus we have two levels of abstractions in design patterns (1) the Problem
and Constraints pertaining to the problem domain of a design pattern; (2) the So-
lution, Reuse Requirements and Reuse Requirement Resolution pertaining

to the context of abstractions described in the Solution.

5.3.6 Drawbacks Section

Similarly, we do not want to specify the Drawbacks aspects formally, since these
can also be deduced from the formal representation of the Problem, Constraints
and Solution. Sometimes they also seem to be derived from the pattern writer’s
experience and often describe specific instances where the pattern was not applicable.

So, we prefer to describe these aspects only informally.

5.3.7 Summary

We believe that a formal approach to documenting patterns can specify the following:

o Problem - This is achieved by identifying and specifying the problem domain
entities and their characteristics. The specification also specify the entities
and their properties that must be provided by the design pattern solution. A
specification of the task to be achieved by the pattern may also be provided (if

required).
e Constraints — This is achieved by specifying the design choices made.
e Solution - by specifying the participants, their interfaces and relationships.

¢ A formal specification of the collaborations in the Solution. These specify the
collaboration among the objects within the pattern as well the manner in which

the clients must configure or collaborate with objects within the pattern.

The rationale behind the design choices made in Constraints must not be formally
specified. Similarly, the Reuse Requirements section can either be informally
stated or omitted from the formal template. The Reuse Requirement Resolu-
tion section can be deduced from the formal representation of the Solution. The

Drawbacks section is also informally stated.
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Finally we point out some limitations and caution that formal approaches to design
pattern documentation are an extremely tricky and difficult affair. By their very
definition, design patterns are intended to have certain ambiguities and vagueness in
order to ensure their wide applicability. On the other hand, formal methods are used
to bring in certain degree of precision in describing problems. It can be argued that
the degree of precision promised by formal methods comes at the risk of sacrificing
the high-abstraction level and wide applicability of the pattern. However this is not
valid. A design pattern is not merely a design product, but rather a documentation of
design knowledge. So, applying formal methods to such documentation only improve
the understanding and reuse of the product.

The formal approach that we present identifies the contours of such a formalism
and sets the tone for a full-fledged investigation of designing a formal pattern language

of the future. -

5.4 A Formal Approach

We shall use multisorted first-order logic to specify the abstractions needed. Unlike
set-theoretic first order language, this language enables us to specify properties of the
sorts. Further, the use of a multi-sorted first order language enables us to specify
abstractions which can reuse the traits from the LSL library. We shall also use
Larch/C++ style specifications to specify the interface of the classes within a design

pattern description. Thus, our notations follow closely the principles of Larch/C++.

5.4.1 Sorts

o Class: A class defines an object’s interface and implementation. It specifies
the object’s internal representation and defines the operations the object can

perform. The sort Class represents the sort of all classes.

e Signature: An operation’s signature defines its name, parameters, and return

value. The sort Signature represents the sort of all signatures.

o Interface: The set of all signatures defined by an object’s operations. Formally,

Set[Signature] represents the sort of an interface.
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® Method: The implementation of a signature is referred to as a method. The

sort Method represents the sort of all such methods.

e Instance Variables: A piece of data that defines part of an object’s representa-
tion is called an instance variable. The sort Attribute represents the sort of all

such instance variables.

e Instance variables can either represent a relationship (in which case they are
references to some class or classes) or they represent a state variable of the
object. The sort StateVar represents such state variables, and sort Relation-
shipVar represents the relationship variables. The sort Attribute represents the
sort of all instance variables. Thus we may specify Attribute: tuple of [Value:
Set[StateVar], Reference: Set[RelationshipVar]] (where tuple is an abstraction
specified in the LSL tier). .

e Every instance variable in a class implementing an acquaintance or aggregation
relationship establishes a relationship between the owner class and another class
with a certain cardinality. The sort Cardinality represents the cardinality of
such a relationship. We thus have, Cardinality: Enum of one, one-many, zero-
many, at-most one. We also introduce a sort Token such that Token: tuple of
[RelatedTo: Class, WithCardinality: Cardinality].

e Since each instance variable representing a relationship in a class is either an
acquaintance or an aggregation we introduce sorts AggregationVar and Acquain-
tanceVar to represent the aggregation and acquaintance instance variables in a
class respectively. We thus have: RelationshipVar: union of {AggregationVar,

AcquaintanceVar}.

e Object: A run-time entity that packages both data and procedures operating
on that data. The sort Object represents the sort of ob jects.

® The sort Obj[Class] represents the sort of objects that are instances of the pa-

rameter class.

e Type: A type is simply the name of a particular interface. The sort Type

represents the sort of types.
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Having introduced these basic sorts we introduce several function and predicate sym-

bols on these sorts and also introduce axioms.

5.4.2 Class Level Predicates

Simple Predicates

An abstract class is a class that cannot be instantiated while concrete classes are
classes that can be instantiated. We introduce predicates which state that any object
of the sort Class is either abstract or concrete but not both.

Signatures:

isAbstract: Class — Bool - {check whether a class is abstract}

isConcrete: Class — Bool - {check whether a class is concrete}

Axioms:

Vc: C (isAbstract(c) == ~ isConcrete(c))

Class Interface Predicates

In this section we describe properties of a class and its interface. We need notions
of abstract operations and class operations: a abstract operation is an operation
that defines a signature but does not implement it; a class operation is an operation
targeted to a class and not to an individual object.

Signature:

HasInterface: Class — Interface - {every class has a unique interface}

€ : Signature, Class — Bool - {check whether the signature is defined by the class’

interface}

AbstractOp: Signature, Class — Bool - {check whether an operation defined in

the inlerface of a class is an abstract operation}

ClassOp: Signature, Class — Bool - {check whether an operation defined in the

interface of a class is a class operation in class.}

ImplementsAs: Class, Signature, Method — Bool {The class c implements the

signature s by method m.}
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Axioms:
Ve C,s: S, m: Method
(s € c == s € HaslInterface(c))
(AbstractOp(s, c) = s € c)
(ClassOp(s, c) = s € c)

ImplementsAs(c,s,m) = s € c.

Class Instance Variable Predicates

In this section we describe certain relations and properties of a class and its attributes.
Signatures:
HasAttributes: Class — Attribute — {for each class returns its attributes}

HasType: StateVar — Class - {for each state variable returns the class that rep-

resents the type of the state variable}
OwnedBy: StateVar — Class - {for each state variable returns its owner class}
OwnedBy: RelationshipVar — Class — {is owned by the class}

AssociatedWith: RelationshipVar — Token — {instance variable contains reference

or references to a class with a certain cardinality.}
HasRelationship : Class, AggregationVar, Class — Bool

AbstractCoupling: Class, Class — Bool

Axioms:
V s: StateVar, c, cl: C, r: RelationshipVar
(OwnedBy(s) = ¢ == s € HasAttributes(c).Value)

(OwnedBy(r) =c==r¢€ HasAttributes(c).Reference)

HasRelationship(c, r, c1) == OwnedBy(r) = c A (AssociatedWith(r).Related To
=cl)

(AbstractCoupling(c, c1) == isAbstract(cl) At € HasAttributes(c).Reference A
AssociatedWith(r).RelatedTo = cl
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Class Inheritance Predicates

In this section we introduce the signatures and axioms to describe the inheritance re-
lationships. The Interface Inheritance and Implementation Inheritance are described
by the InheritsInterface and InheritsImplemenation operations.

Signature:
InheritsInterface:Class, Class — Bool —{check whether a class inherits the interface
of another class}

Inheritsimplementation: Class, Class — Bool — {check whether a class inherits

the implementation of another class}

InheritsAttributes: Class, Class — Bool — {check whether a class inherits the

attributes of another class}

Parent_Of: Class, Class — Bool - {check whether a class is a parent of another

class}

Subclass_Of: Class, Class — Bool - { check whether a class is a subclass of another

class}

Subtype: Class, Class — Bool - {check whether a class is a subtype of another
class}

Axioms:
Ve, cl: C
Parent_Of(c, cl) == Subclass_Of(cl, c)
Parent_Of(c,cl) == InheritsInterface(cl,c) V InheritsImplementation(cl, c).
Subclass_Of(c, c1) == InheritsInterface(cl,c) V InheritsImplementation(cl, c).
InheritsInterface(c, c1) = HasInterface(cl) C HaslInterface(c)

Subtype(c, c1) == InheritsInterface(c, cl)

5.4.3 Object Level Predicates

In this section we describe the notion of an object.

Signatures:
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in: Object, Class — Bool —{check whether given object is an instance of the given

class}

incarnation: Object — Class — {for each object return the class from where it is

tnstantiated}

InstanceSet: C — Set[Object] — {for each class return the the set of instances of
that class}

creation_time: Object — Nat — {denotes the time during the program ezecution
when the object o is created}

Axioms:

V 0:0, ¢, cl: C, s: Set[Object]

in(o,c) == The object is an instance of the class c.
in(o, ¢) Ain(o, cl) == c =cl
in(o, ¢) == incarnation(o) = ¢

InstanceSet(c) = s == V o: Object (in(o,c) & o € s)

[nstanceSet(c,s) = InstanceSet(cl,s) == (c = cl)

Aggregate Object and Object Reference

In this section we introduce the notions of aggregate object, its parts and object
relationships. We assume that any reference stored in a object must be an instance
of an acquaintance or aggregation relationship. We are not concerned with how the
acquaintance or aggregation relationship is implemented (ie. whether an object stores
a reference to another object or a list of references to another ob ject).

Signatures:

Aggregate: Object — Bool - {an object is aggregate or not}

Part_Of: Object, Object — Bool —{an object is part of another.}
HasReferenceTo: Object, RelationshipVar, Object — Bool - {object o has a ref-

erence to ol and this object reference is an instance of relationship instance variable
r.}
V o, ol: Object, r: RelationshipVar, c,cl: Class, a:AggregationVar
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Axioms:

Part_Of(o, ol) => Aggregate_Of(ol) - {if o is part of 0!, ol must be aggregate
object.}
HasReferenceTo(o, r, 01) => incarnation(o) = c A incarnation(ol) = cl A HasRe-

lationship(c, r, c1)

HasReferenceTo(o, a, ol) => Aggregate(o) A Part_Of(o0,01)

5.4.4 Type Predicates

In this section we describe the notion of a type. A type is name denoting an interface,
and every class has a unique type associated with its interface.

Signatures:

Denotes: Interface — Type — {Interface denotes a type}

HasType: Class — Type
Axioms: Y i,il:Interface, c: C, t: Type

Denotes(i) = Denotes(il) == i =il

HasType(c) = t == Denotes(HasInterface(c)) = t

5.4.5 Other Predicates

In this section we introduce predicates that express the notion of object creation,
and usage. We assume that there is a distinguished object in the system that creates
every other object. The creation of every object in the system can be traced back to
this object.

Signatures:

create: Object, Object — Bool ~ {object o creates the object ol (creation here

means that the constructor of the incarnation(ol) is called and initialized with ol )}

CreatesObjectFrom: Object, Class, Class — Bool — {o is an instance of ¢ which

instantiates cl by calling new}

CreatesObjectFrom: Object, Class, Object, Class — Bool - {0 is an instance of

¢ and o creates ol which is an instance of cl}
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Specifies: Class, Object, Class — Bool — }class c specifies statically that instance

variable ol is created as instance of class c1}

SpecifiesInitialization: Class, Object, Class, Object, Signature — Bool - { SpecifiesInitiali:
ol, cl, f, CreateProductA(})):The class c specifies that the object ol is an instance
variable of class c1 and o1 is constructed by initializing with f.CreateProductA ()}

SpecifiesType:Class, Object, Class — Bool — {class c specifies statically that in-

stance variable ol is to be used as having type of class cl }

UsesObjectFrom: Object, Class, Object, Class — Bool — {o is an instance of ¢
and o requests services from ol which is an instance of cl}

Axioms:
VY o, ol:Object, c, cl: Class
CreatesObjectFrom(o,c,cl) = in{o,c)
CreatesObjectFrom(o, ¢, o1, c1) = in(o,c) A in(ol, cl)
Specifies(c, ol, cl) A Specifies(c, ol, c2) == cl == 2
Specifieslnitialization(c, ol, cl, f, CreateProductA()) = Specifies(c, ol, cl)

SpecifiesType(c, o1, cl) A SpecifiesType(c, ol, c2) ==cl ==c2

5.4.6 Interface and Interaction Specifications

Given, foo(ArgType): Signature, c, ArgType: Class such that foo € ¢, an interface
specification may be provided. Such a specification can either be completely or par-
tially specify the behavior of the interface function foo. We follow Larch/C++ style
syntax; however we provide only requires and ensures clauses. The modifies clause is
omitted since, design pattern descriptions are highly abstract and objects within such
design patterns do not have a data model.

foo(o:Argtype){requires pre-cond; ensures post-cond} where pre-cond and post-
cond are predicates defined over the vocabulary of LSL, primitive predicates intro-
duced and predicates introduced in the specification of each design pattern. The
semantics is that the before the execution of the operation foo, the pre-condition

must be true and after the execution the post-condition holds.
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For each class within the pattern whose objects collaborate with other objects
in the pattern by method delegation, we use the following notation to describe this
collaboration:

ClassName Package:

Operationl(): Collaboration_Specification
Operation2(): Collaboration_Specification?
End Package

The semantics is that the listed operations in the package result in a collabora-
tion as specified by the collaboration specification following the colon. Only those
operations that participate in a collaboration are listed in the package. Note, that
the design patterns descriptions in [25] only provide psuedocode and at times ob-
ject interaction graphs [6] to describe the collaborations. Also, the description of
the interface operations are incomplete and only the method delegations pertinent to
the pattern are provided. For instance, in a pattern such as Adapter, the Adapter
class forwards requests to the Adaptee, but it may provide some behavior before or
after forwarding this request. Due to these reasons, we cannot use the collaboration
specification introduced in Chapter 4. For, the purposes of describing the collabo-
rations within pattern in [25], it seems sufficient to provide notations to capture the
method delegations and sequential composition. We therefore introduce the following

operators:

e o.Operation: This indicates the invocation of Operation on ob ject o. When the
object on which Operation is invoked is clear from the context we only write

Operation instead of o.Operation.

® A(o): o.Operation: This indicates the invocation of Operation on all objects
that satisfy the predicate A(o).

e P;@Q: This indicates the sequential composition of P and Q where P and Q are

the operators specified earlier.

Thus, the expression Operation: CollaborationSpecification in the package specifi-
cation given above has the semantics that the invocation of the Operation on an
object of the Class (whose name is provided by the package name) results in a series

of invocations or method delegations as defined by the above operators.
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Similarly, in design pattern descriptions we often encounter constraints that a
client must respect in configuring the objects in the pattern or in requesting a service
from an object in the pattern. In such cases, we have to specify the order in which
client requests services from objects in the pattern. For instance, in the Observer
design pattern 5.2.3, a client is expected to follow up a SetState request on an instance
of Subject with an Update on all its dependents (that are instances of the Observer).
In the examples from [25] that we considered we have felt the need for the following
constraints:

Collaboration Constraints: Given o1:0bj[C1], 02:0bj[C2]: {o1.Operationl; 02.0peration:

The semantics is that if o and ol are instances of Cl and C2 respectively, then the
invocation of Operationl on ol is always followed by the invocation of Operation2 on
o2.

Collaboration Constraints: Given 01:0bj[Cl1], V02: Obj[C2]: A(o) {ol.Operationl;
02.0peration2}

The semantics is that if ol is in instance of C1 and 02 is an instance of C2 satisfying
the given predicate A(o) then the invocation of Operationl on ol is always followed

by the invocation of Operation2 on 02.

5.5 Applying the Formalism

We have chosen three design patterns from [25] to apply the formalism discussed in
the section 5.4. Our experience suggests that the formalism is sufficiently applicable
to other design patterns described in [25] as well. The patterns chosen to apply
our formalism are Abstract Factory, Composite and Observer. We shall follow the

following template and the reader may refer to the figures provided earlier:

5.3.1 Formal Template

¢ Name: Represents the name of the pattern.

¢ Problem: A brief informal description of the problem.
Ezample Problem:

Formal Representation:
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e Constraints: Informal description of design constraints (as explained above).
Ezample Constraints:

Constraint Formalism:

* Reuse Requirements:Informal description of the reuse requirements.

Erample Reuse Requirements:

¢ Solution: A formal description of the solution. These may be supplemented
with informal descriptions as required.
Structure:
Collaborations:

Ezample Solution:

* Reuse Requirements Resolution: Description of the reuse requirements and
how they are resolved. These requirements are resolved by the Solution subject

to the fact that they meet the specification of the Problem and Constraints.

e Drawbacks: The negative consequences of using the design pattern.

Implementation issues and Sample Code.

Since, the reuse requirements stated in Reuse Requirements section are re-
peated in Reuse Requirement Resolution section (except that the latter also
explains how they are resolved by the design pattern solution) and we have already
explained that the reuse requirements are only understood in the context of abstrac-
tions of Solution, we suggest that Reuse Requirements section be optional. In
the following examples we omit the Reuse Requirement section. We also do not
annotate the section with example or figures and refer the reader to earlier sections
for the same. Similarly we have also omitted providing informal description of the
Constraints, Solution and Collaboration but these can supplement the formal
description as indicated in the above formal template. We refer the reader to the
informal descriptions of the patterns provided in 5.2.1, 5.2.2 and 5.2.3.

We present below the Abstract Factory, Composite and Observer design patterns
[25].

108



5.6 Abstract Factory

In the formal approach given below for Abstract Factory design pattern, we identify
certain classes in the problem domain, and describe their properties. For instance,
we specify that the problem domain has certain product objects that have the same
type. The relationships between such objects is also made clear. The constraint is
also specified in terms of the product objects specified earlier. Note that we also
specify as part of the problem the requirement that clients use ob jects from only one
family. In [25] this is stated only as part of the contextual example. We believe
that this is part of the design issue discussed in the Problem and must therefore be
~ specified as part of the Formal Representation. The specifications of Composite

and Observer design patterns follow similar principles.

5.6.1 Problem

Clients want to create families of product objects.

Formal Representation
® ProductAl, ProductA2, ProductB1, ProductB2 : Class
e Signatures:

— InFamilyl: Object — Bool - {check whether an object is in family 1.}
— InFamily2: Object — Bool - {check whether an object is in family 2.}

— InSameFamily: Object, Object — Bool —{ check whether objects are in the

same family}
— InEitherFamily: Object — Bool ~{ckeck whether objects are in one of the
families}

¢ Axioms: ¥ o, ol, 02, 03: Object

— HasInterface(ProductAl) == HasInterface(ProductA2)
— Haslnterface(ProductB1) == HasInterface(ProductB2)
— InFamilyl(o) == in(o, ProductA1) V in(o, ProductB1)
~ InFamily2(o) == in(o, ProductA2) V in(o, ProductB2)
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— InSameFamily(o, 01) == InFamilyl(o) A InFamilyl(ol) V InFamily2(o) A
InFamily2(o1)

— InEitherFamily(o) == InFamilyl(o) V [nFamily2(o)

— create(o, ol) A create(02, 03) A InEitherFamily(ol) A [nEitherFamily(o3)
= InSameFamily(o1,03))) -{ The client objects create product objects from
the same family.}

5.6.2 Constraints

Constraint Formalism V o, ol: Object, c: Class
o ~ (CreatesObjectFrom(o,c,0l,ProductAl) A Specifies(c, o1, ProductAl))
* ~ (UsesObjectFrom(o,c,ol,ProductA1) A SpecifiesType(c, o1, ProductAl))

Similar constraints hold for instances of classes ProductA2, ProductB1, and Pro-
ductB2.

The above assertion expresses the constraint that the client does not specify stat-
ically the class of product objects it will create at run-time. The rationale is that,
specifying the class of products explicitly would make it difficult to switch between
products both statically as well as dynamically.

5.6.3 Solution

Structure

¢ AbstractFactory, ConcreteFactoryl, ConcreteFactory2, ProductA, ProductAl,
ProductA2, ProductB1, ProductB2: Class, factory: Object

e CreateProductA, CreateProductB : Signature

o {return new ProductA}, {return new ProductB} : Method

isAbstract(AbstractFactory)

isAbstract(ProductA)
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e isAbstract(ProductB)

o CreateProductA() € AbstractFactory

e CreateProductB() € AbstractFactory

o ImplementsAs(AbstractFactory,CreateProductA(), {return new ProductA})

ImplementsAs(AbstractFactory,CreateProductB(), {return new ProductB})

® Subtype(ConcreteFactoryl, AbstractFactory)

ImplementsAs(ConcreteFactoryl,CreateProductA(), {return new ProductAl})

ImplementsAs(ConcreteFactoryl,CreateProductB(), {return new ProductB1 9]

Subtype(ConcreteFactory2, AbstractFactory}

ImplementsAs(ConcreteFactory2,CreateProductA(), {return new ProductA2})

ImplementsAs(ConcreteFactory2,CreateProductB(), {return new ProductB2 3]

e Subtype(ProductAl, ProductA)
¢ Subtype(ProductA2, ProductA)
¢ Subtype(ProductB1, ProductB)
e Subtype(ProductB2, ProductB)
o The clients satisfy the following:

— V o, ol: Object c: Class (CreateObjectFrom(o, c, ol, ProductAl)
= Specifieslnitialization(c, ol, ProductA, f, CreateProductA())

— Vo, ol: Object c: Class UsesObjectFrom(o, c, ol, ProductAl) = Specifi-
esType(c, ol, ProductA)

Collaborations

o Client intializes the factory variable factory statically to an instance of class
ConcreteFactoryi (i = 1 or 2). In this case: V 0:Object (InEitherFamily(o) =

creation_time(f) < creation_time(o))
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e Client initializes the factory variable factory dyanamically to an instance of
the desired factory ConcreteFactoryi (i =1or 2). In this case: V 0:Object
(InEitherFamily(o) = creation_time(f) < creation_time(o))

5.6.4 Reuse Requirements

e Clients can easily vary the family of products being used. This is clear from
cases given above under Collaborations. It is clear that in either case the
client requires little or no modification. The clients can easily switch between

families.

e Basy to add new families of products: To add new products that satisfy the
constraints specified in the problem, we just have to subclass certain classes in

the Abstract Factory pattern.

5.7 Composite

5.7.1 Problem
Compose objects into tree structures to represent part-whole hierarchies.
Formal Representation
e Primitive: Class, Operation() € Primitive.
e Define Composite: Class such that
— Vo: Object (in(o, Composite) = Aggregate(o) A (Vol: Object (Part_Of(ol,
o) = in(o, Composite) V in(o, Primitive))))

— Further, define: Add(Primitive) € Composite, Add(Composite) € Com-
posite, Remove(Primitive) € Composite, Remove(Composite) € Compos-

ite, and Operation() € Composite such that:

Add(p: Primitive){ensures Part_Of(p, self)}

Remove(p: Primitive){ensures Part_Of(p, self) }.
Composite Package:

Operation(): V o: Object (Part_Of(o, self): 0.Operation()
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5.7.2 Constraints

Constraint Formalism
V 0,01, 02, 03: Object V c, cl, c¢2: Class (UsesObjectFrom(o, cl, ol, c2) A (c2 ==
Primitive) V (c2 == Composite) = SpecifiesType(cl, ol, c)

The above constraint states that the client uses objects from the Primitive and
Composite classes uniformly (ie. as being of the same type).
The rationale is that the clients use primitive and composite objects the same

way. So treating them differently would make the application unnecessarily complex.

5.7.3 Solution

Structure
¢ Component, Primitive, Composite: Class
e {V o: children o.Operation} : Method
¢ isAbstract(Component)
e isConcrete(Primitive)
e isConcrete(Composite)
¢ Add(Component) € Component
¢ Remove(Component) € Component
e Operation() € Component
e Subtype(Composite, Component)
e Subclass(Primitive, Component)
e Operation() € Primitive

e children: AggregationVar, OwnedBy(children, Composite), Aggregate_Of(children,
[Component, one-many}), Aggregate_Of(Composite, children, Component)
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e Composite: Add(o:Component){requires V c:Class Subclass(c, Component) A

in(o, c); ensures HasReferenceTo(self, children, o)}

e Composite: Remove(o:Component){requires V c:Class Subclass(c, Component)

A in(o, c); ensures ~HasReferenceTo(self, children, o)}
¢ Implements(Composite, Operation, {V o: children o.Operation})

® V o, ol: Object UsesObjectFrom(o, ol, Primitive) V UsesObjectFrom(o, ol,
Composite) = SpecifiesType(o, ol, Component)

The last assertion states that all clients use the interface of Component class to

manipulate the primitive and composite objects.
Collaborations:

Composite Package:
Operation() ¥ o: Object HasReferenceTo(self, children, 0)) o.Operation()
End Package

5.7.4 Reuse Requirements

® Easy to add new types of Primitive and Composite objects. This can be done

by subclassing Component and Composite classes in the design pattern.

o Basy to vary the structure and composition of the Composite object. This is
clear from the requires clause of Add(Component) and Remove(Component)

operations in the interface of Composite class.

5.8 Observer

5.8.1 Problem

Define a one-to-many dependency between objects such that when one object changes

state all its dependents are notified and updated automatically.

Formal Representation

® Subject, Observer: Class
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® Dependency: Obj[Subject] — Set[Obj[Observer]] — {I-many dependency be-

tween Subject and Observer.}

e Consistency: Obj[Subject] — Obj[Observer] — {state consistency between objects

of Subject and Observer classes.}

® SetState() € Subject, SetState{ensures V o: Obj[Observer]o € Dependency(self)
= ~ Consistent(self, o)}

e Update() € Observer, Update() {ensures ¥ s:Obj[Subject]  self € Dependency(s)
=> Consistency(s, self)}

e Given 0:0bj[Subject] V ol: Obj[Observer] ol € Dependency(o){o.SetState;
ol.Update}.

The collaboration constraint states that clients must follow up a SetState mes-
sage on an object of the Subject class with an Update message on all its depen-

dent objects.

5.8.2 Constraint Formalism

Vo:0bj[Subject], 01:0bj[Observer] (ol € Dependency(o) = ~(3 r:RelationshipVar
(RelatedTo(Subject, r, Observer) A HasReferenceTo(o, r, ol))))

The constraint states that the Subject and Observer classes should not be tightly
coupled. This means that the Subject class must not store references to the Observer

class, yet we want the subject to communicate with its dependent observers.

5.8.3 Solution

Structure
e AbstractSubject,Subject, AbstractObserver, Observer: Class
o {V o:observers o0.Update}
e isAbstract(AbstractSubject)

e isAbstract(AbstractObserver)
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isConcrete(Subject)

isConcrete(Observer)

observers:AcquaitanceVar, OwnedBy(observers, AbstractSub ject), Acquaintance_Of(c

[AbstractObserver, one-many]), Acquaintance Of( AbstractSubject, observers,
AbstractObserver)

subjectstate: StateVar, OwnedBy(subjectstate, Subject)
Attach(Observer) € AbstractSubject

AbstractSubject:Attach(o:Observer){ requires V c¢: Class Subclass(c, Compo-

nent) A in(o,c); ensures HasReferenceTo(self, observers, o)}
Detach(Observer) € AbstractSubject

AbstractSubject:Detach(o:Observer){ requires V ¢: Class Subclass(c, Compo-
nent) A in(o,c) A HasReferenceTo(self, observers, o) ; ensures ~ HasRefer-

enceTo(self, observers, 0)}

AbstractSubject:Detach(o:Observer){ ensures ~ HasReferenceTo(self, observers,

o)}

Notify() € AbstractSubject

Implements( AbstractSubject, Notify, {V o:observers o. Update})
Subtype(Subject, AbstractSubject)

SetState € Subject

Subject:SetState {ensures ¥ o: Obj[Observer] (HasReferenceTo(self, observers,
o) = ~ Consistent(self, o)}

Subject:GetState {ensures return subjectstate}
Update() € AbstractObserver

Subtype(Observer, AbstractObserver)
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e subject:AcquaintanceVar, OwnedBy(subject, Observer), Acquaintance_Of(subject,
[Subject, zero-one}), Acquaintance_Of(Observer, subject, Subject)

o Observer:Update{ensures V s:Obj[Subject] ( HasReferenceTo(self, subject, s) =
Consistency(s, self)}

Collaborations:

Subject Package:

Notify() : V 0:0bject HasReferenceTo(self, observers, o) o.Update

End Package

Observer Package:

Update(): V 0:0bject HasReferenceTo(self, subject, o) o.GetState()

End Package

Collaboration Constraint: Given 0:0bj[Subject] {o.SetState(); o.Notify()}

5.8.4 Reuse Requirements

e Easy to vary the number of observers: This is clear from the ensures clause of the
Attach(Observer) and Detach(Observer) functions in the interface of Sub ject.

¢ Easy to vary the type of observers: This is clear from the requires clause in the

specification of the Attach(Observer) in the interface of Sub ject class.
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Chapter 6
Design of a Pattern Repository

In this chapter we propose an object-oriented database schema for representing de-
sign patterns and retrieving meaningful information from design patterns towards
their reuse. A design pattern does not just represent a design, but also documents
the intent, rationale and consequences of applying the design over various contexts.
A design pattern is indeed a document with many components, each describing some
information about the design issue addressed by the pattern and the solution it pro-
poses. We therefore, will use the terms design pattern documentation and design

pattern synonymously throughout this chapter.

6.1 Motivation

The motivation for studying the above problem stems from the following:

e The design pattern community has witnessed a proliferation of design patterns
over the last few years. Existing applications are also being mined for design
patterns and we can expect large volume of patterns in the future. GOF’s design
pattern catalog [25], and Ward Cunningham’s pattern repository are some of
the popular design pattern catalogs. Recently, hundreds of design patterns have
been made public by Siemens Ltd.

e As explained in earlier Chapters, design pattern catalogs tend to follow varying
documentation styles. The documentation tends to be highly abstract and
verbose. Manually browsing through pattern documentations to select a pattern

for reuse can be an arduous and time consuming task. For instance, Gamma
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et al. [25] provide a broad set of guidelines for selecting a pattern from their
catalog. One such guideline is scanning the Infent sections of all the patterns
in the catalog. However the highly abstract nature of the Intent may not help
the reuser understand the pattern or decide whether the pattern is suitable for
his/her problem. A large catalog documented in this style may compound the
task of identifying the right pattern.

e Experienced designers often have partial specification of the desired design
structure. Manual catalogs do not distinguish between novice and experienced

users and provide no faster means for retrieving design patterns for such users.

e There is much interest in the software reuse community in the development of
tools and environments that would support large scale design reuse. The Aesop
system [49] developed at Carnegie Mellon University~s an experimental platform
that minimizes the cost of building systems by providing a generic infrastructure
of common tools (design database, GUI, editors, protocol consistency checkers,
Software Shelf etc.). This system uses a repository of design elements called
Software Shelf that supports the classification, storage and retrieval of archi-
tectural elements. However the architectural elements considered are high-level
architectural abstractions (such as pipes, event broadcast and other complex
protocols). The Software Shelf does not support the representation or retrieval

of implementation level design patterns found in [25].

e The DaVinci initiative at Massachusetts Institute of Technology seeks to de-
velop an integrated reuse environment with a database of design patterns as a
back-end. The goal is to support a collaborative development of software appli-
cations by a group of software specialists from a library of software components.
However, the project is still at the proposal stage and details about its status

are not available.

There is thus a strong motivation and need for designing a repository of design pat-

terns to support their large scale reuse.
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6.2 Problem

Our goal is to design a database for representing design patterns and to efficiently
query information from such patterns pertinent to their reuse. A first step towards
supporting large scale reuse of design patterns is for pattern users to agree on a
uniform methodology for documenting them. In Chapter 5, we proposed a uniform
methodology for documenting patterns. We shall use the same documentation style as
a basis for representing design patterns in our database. Moreover, we shall concern
ourselves with only the abstract representation of design patterns in our database.
We do not represent concrete instantiations of a design pattern or implementation
issues concerning design patterns in our database.

Database modelling of design patterns is a challenging problem. We shall discuss
some of these challenges in detail in later sections. For now, we remark that database
technology in general is relevant for structured objects. Conventional database ap-
plications deal with highly structured information that are expressible using a formal
model. Design pattern documentations are composed of various components, but each
of these components contains information that does not have pre-defined structure in
a flat (eg. relational) or nested (eg. object-oriented) manner. Some of the primary
reasons are, the wide range of design issues that each problem addresses, the kinds
of subjective information they contain, and very dynamic nature of software industry
(that affects both the intent and extent of the proposed pattern repository). Besides,
different companies may maintain their own repositories and train their employees in
the use of such repositories. Although standardizing pattern documentations styles
and type of information they contain is desired, it does seem a difficult thing to re-
alise. In spite of these difficulties inherent in designing of a repository for patterns we
believe that recent developments in database technology can be useful in the design
of such a repository.

The design of the given database is handled based on requirement analysis. Such
requirements can be expressed by a set of queries that potential users of future
database can address. In the following we provide a set of queries that will most
likely be addressed by the design pattern users to understand the content of the
repository and to retrieve relevant information. We note that we shall be addressing
these queries only to the abstract representations of patterns and not to their specific

instantiations. The rationale is that Gamma et al. [25] provide specific examples
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of patterns to motivate the context of a pattern and illustrate its use to aid in the
understanding of the abstract pattern. But, the reuser must understand the abstract
pattern representation to reuse in various contexts. Also, from the database view-
point, though the concrete instantiations can be stored passively, querying cannot be
done on them since the instantiations are provided in more than one implementation
language and it is not possible to come up with a schema to capture the instantiation
specific information.

We classify the possible set of queries that can be addressed to such a database into
queries that extract information from a specific design pattern (Intra Design Pattern
Queries) and queries which retrieve a set of design patterns from the repository with

certain common properties (Inter Design Pattern Queries).

6.2.1 Inter Design Pattern Queries .

These class of queries help the designer filter the design patterns in the repository
that are most likely related to design needs.

o What are the design patterns that address the given design issue?
e What are the design patterns that have the given design constraint?

¢ What are all the design patterns that deal with the given design issue and which

consider the given design coustraint?
e What are all the design patterns that have a Class scope?
¢ What are all the design patterns that have an Object scope?

¢ What are all the design patterns whose purpose is creational?

Similar queries can be posed for structural and behavioral patterns.

e What are all the design patterns that can be used in the given domain and in

what context within that domain?
e What are the design patterns used in designing the given framework?
e What are all the relationships between the given two design patterns?
e What are all the design patterns that are related under the given relationship?
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o What are the design patterns that are close to a partial design description
supplied by the designer?
Such a query is a generic conjunctive request on parts of a design pattern

description.

e What are the design patterns for which solution structure contains one or more
of the following structures
— the given class

— the given class with the interface (provide a partial description of the

interface)

— the structure where class A inherits class B or a structure with the given

inheritance hierarchy
— the structure where class A has an acquaintance relationship with class B.
— the structure where class A is aggregate of class B.

— the structure where class B overrides the given signature in its superclass

A.

— the structure where a class A implements one of its signature as a template
method

— the structure described as a conjunction of the above queries (for instance,
user can query to retrieve design patterns whose solution contains a recur-

sive aggregate structure or template methods etc).
— the structure where class A instantiates class B in the given signature.

— the structure where class A delegates request m to operation ml in an
object ol (that is an instance variable/argument or local variable to m) of

class B.

— the object structure where aClassA (denoting an arbitrary object of class
A) delegates request m1 to request m2 of aClassB which delegates request

to ...

— the object structure where a client requests m1 from aClassA followed with
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6.2.2 Intra Design Pattern Queries

These set of queries aim to learn more about a given design pattern.

What are the design constraints in the given pattern and what is their rationale?
What is the rationale behind a given design constraint in the given pattern?
What are all the entities in the given design pattern solution (DPS)?

What are the entities in a given design pattern solution that implement the

problem domain entities?
What is the responsibility of a given class in the given design pattern solution?

What is the interface and behavior description of the given class in the given

-

design pattern solution?

What is the static configuration between a client and classes in the given design

pattern solution?

What is the behavior description of the given operation in the given class of the

given design pattern solution?

What are the static associations in a given design? (these include inheritance

hierarchies, aggregation and inheritance relationships)

What is the nature of collaboration between a client and objects in the design
pattern solution? (what services are required by the client at run-time and how
they are handled - typically these are the services mentioned in the problem

statement)

What is the nature of collaboration between objects in the design pattern solu-
tion? (in what order, services collaborate to achieve the task mentioned in the

problem statement)
What are the reuse requirements met by the given design pattern solution?
What aspects can vary in the design pattern and why?

How can a certain aspect vary without varying some other aspect in the given

design pattern solution?
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e Can a certain aspect vary independent of another aspect in the given design

pattern?
e What are the design patterns that are related to a given design pattern?

o What are the patterns that are related to a given design pattern and what is

the nature of this relationship?

6.3 Choosing a Database Management System

Object-oriented database methodologies, tools and techniques can offer a set of facil-
ities that may be very useful and efficient for the design and implementation of the
design pattern (DP) repository.

Besides having the potential of databases in general (e.g., nonprocedural query-
ing, query optimization and processing, schema evolution), OODB technology offers
features inherent to the OO paradigm (class, object, object identity, class hierarchy,
methods, encapsulation, polymorphism) and facilities provided by OO design and
analysis methodologies such as semantic expressiveness, simplicity, modularity and
extensibility.

The motivations that lead us to use the QODB technology are:

e The complex structure of design pattern documentation,

e the natural way to express and extend the structural and behavioral description

of DPs using OO design tools,

o the facilities offered by database systems in storing and retrieving large amounts
of data.

Despite the fact that DP are by essence non-structured (both in terms of their
intent and extent) and verbose, we believe that advanced database technology can
be a good framework to describe and manage DP documentation. By advanced
database technology we mean DB technology with OO principles, deduction mecha-
nisms, induction facilities, information indexing and retrieval, or any variant of these
extensions.

We thus use object-oriented techniques (OMT) [52] to design the conceptual

schema of our database and also recommend the use of an ob ject-oriented database
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management system (OODBMS) to implement the schema. Object models in OMT
permit developers to think about a problem at a high, abstract level and yet assure
the resulting design to be easily and practically implemented. Object-oriented con-
cepts such as encapsulation and inheritance allow attributes (ie. database design)
and programs to be reused as the basis for building complex databases and programs.
They thus reduce the difficulty of developing and evolving complex software systems
and designs.

An OODBMS unites two technologies: database management and object-oriented
programming. Object-oriented programming languages are expressive but lack data
persistence (data that outlasts the execution of a single job). Conventional database
management systems (DBMS) have data persistence but lack expressibility. OODBMSs
try to provide both data persistence and expressiveness. There are a number of
commercial object-oriented database management systems such as GemStone from
GemStone Systems Inc., 02 from 02 Technology (France), Object Store from Ob ject
Design, Inc. These products all support an object-oriented data model. Specifically,
they allow the user to create a new class with attributes and methods, have the class
inherit attributes and methods from superclasses, create instances of the class each
with a unique identifier, retrieve the instances either individually or collectively, and
load and run methods. One key objective and, therefore the selling point, of most
of the recent OODBMSs is the support of a unified programming and database lan-
guage; that is, one language (eg. C++ or Smalltalk) in which to do both general
purpose programming and database management. A general purpose programming
language and a database language are very different in syntax and datamodel (data
structures and data types), and the necessity of having to learn and use two very dif-
ferent languages to write database application programs has been frequently regarded
as a nuisance.

There is a wide spread belief among the object-oriented database community that
OODBMSs can bring about a significant jump in the productivity of database ap-
plication programmers and even in the performance of application programs [65].
One source of this productivity jump is the reuse of a database design and programs
that object-oriented concepts make possible for the first time in the evolving history
of database technologies. Another source of significant improvement is the powerful
data type facilities implicit in the object-oriented concepts of encapsulation and inher-

itance. These facilities eliminate three of the most important deficiencies of relational
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database management systems (RDBs) [65]. These are:

e RDBs force the user to represent hierarchical data(or complex nested data or
compound data) such as a bill of materials in terms of tuples in multiple re-
lations. In addition to a cumbersome approach to modelling data, to retrieve
data spread out in multiple relations, RDBs must resort to joins which are rel-
atively expensive operations. The data type of an attribute of an object in
object-oriented programming languages (OOPLs) can be a primitive type of an
arbitrary user defined type (class). The fact that an object has an attribute
whose value can be another object naturally leads to a nested ob ject represen-
tation, which in turn allows hierarchical data to be naturally (ie. hierarchically)

represented.

e RDBs offer a set of primitive, built in data types for use as domains of columns
of relations but do not offer any means of adding user-defined data types. The
built-in data types are basically all number and short symbols. RDBs are not
designed to allow new data types to be added and, therefore often require a
major surgery to the system architecture and code to add a new data type.
Adding a new data type to the database system means allowing its use as the
data type of an attribute; that is, allowing storage of data of that type, querying
and updating such data. Object encapsulation in OOPLs does not impose any
restriction on the types of data that the data part of an object can hold; that
is, the types of data can be primitive types or user defined types. Further, new
data types can be treated as new classes, possibly even as subclasses of existing

classes, inheriting their attributes and methods.

e Stored procedures in RDBs are not encapsulated with data; that is they are
not associated with any relation or any tuple of a relation. And, since RDBs
do not have the inheritance mechanism, stored procedures cannot be automat-
ically reused. Object encapsulation is the basis for storage and management of

programs as well as data in the database.

In general there are two types of database queries: set-oriented and navigational.
RDBs are intended to perform parallel operations on large sets of data. In contrast,
OODBMS manipulation languages are efficient at quickly navigating from one object

to another by traversing pointers. A RDB performs navigation by using joins, which
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are several orders of magnitude slower than pointer traversal. An important feature of
OODBMSs is the implicit assumption that the system is oriented towards operations
on individual objects and the programmer can expect these to perform well. This is
notable mainly because the RDBs typically perform badly for single-object operations
and navigation between objects [10, 46].

It is clear from our documentation style, that we can consider each design pat-
tern as a complex object that has a nested structure consisting of components that
represent the Problem, Constraints, Solution, Reuse Requirements, and Drawbacks as-
pects of the pattern. It is also clear that modelling entities in the Solution aspects
of design pattern requires meta-modelling techniques since entities to be modelled are
themselves classes, attributes, methods, inheritance, aggregation and acquaintance re-
lationships, object collaborations etc. We therefore believe that the expressive power
of object-oriented modelling techniques and OODBMSs and the querying mechanism
they provide would be very helpful in the design of such a repository. We do note
that OODBMSs do have many limitations and still lack many of the features found
in RDBs such as a full non-procedural query language, automatic query optimiza-
tion and processing, automatic concurrency control, authorization, dynamic schema

changes and parametrized performance tuning [65].

6.4 Towards the Design

In general there are two approaches to database design [52]. The first approach (bot-
tom up) is attribute driven: Compile a list of attributes relevant to the application and
synthesize groups of attributes that preserve the functional dependencies. The other
approach is entity driven: Discover entities that are meaningful to the application and
describe them. In a typical design there are ten times fewer entities than attributes,
so entity design is much more tractable. Object modelling (OMT) [52] is a form of
entity design. We shall confine ourselves to designing the conceptual schema of our
database using OMT techniques. The conceptual schema is a high-level description
of the structure of the database, independent of the particular OODBMS software
that will be used to implement the database. The focus in the conceptual schema
is essentially on the logical structure of data within the repository, their abstract

representation and relationships without concern for efficiency and implementation
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issues. The object model used to describe the conceptual schema is also called as
conceptual model. In databases designed using OMT techniques the object model
forms the most important part of the development life cycle. We thus consider our
work to be good step in the direction of full fledged design and implementation of
this repository in OODBMS.

6.5 The Conceptual Schema

In this section we present the conceptual schema of our database. The conceptual
schema is motivated by the query set provided in sections 6.2.1, 6.2.2 and the discus-
sion in section 6.2. We also confine our discussion to patterns found in Gamma et al
[25]. Figures 14 and 15 provide an object model of the schema. In order to preserve
clarity in the figures, we have not provided details on representation of the objects
and relationships. For these we refer the reader to the next section.

Since the queries are posed over either a collection of patterns or a specific design
pattern we represent each design pattern as a nested object with components Problem,
Solution, Drawbacks (Please refer to Figure 14). The class Meta Design Pattern models
design pattern objects. The Meta Design Pattern class has therefore an aggregation
relationship with the classes that model the Problem, Solution and Drawbacks of a
design pattern object. Each instance of the Meta Design Pattern class is related to one
or more instances of Meta Design Pattern class in one or more ways. For instance, the
Decorator pattern is often used with a Composite pattern and their structures are also
related (a Decorator can be viewed as a degenerate composite with only one component
[25]). Similarly, a design pattern may be used to implement another. For instance,
the Factory Method pattern is often used to implement CreateProduct methods in
the Abstract Factory pattern, a Builder pattern may be used to construct Composite
objects in the Composite pattern and so on. Besides, new pattern relationships can
be discovered by designers who use them. Thus, we associate with each relationship
between patterns, an attribute that represents the various ways in which they are
related. Since, it is not possible to enumerate all possible ways in which patterns
may be related we represent this attribute as a set of strings. Each instance of
Meta Design Pattern class further has a name, aliases, its scope, purpose [25], a set

of tuples where each tuple consists of a problem domain (such as GUI, Distributed
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Processing, Relational Database Design) and a set of contexts within that domain
where the pattern is used, and a similar set of tuples that represent the frameworks
and contexts within such framework where the pattern is used.

Each instance of the Problem class further consists of Core Problem and Constraints
which model the design problem addressed by the design pattern and the constraints
associated with each design pattern (these have been discussed in detail in Chapter 5).
For reasons given in earlier sections we cannot have a formal model for representing
the problem and constraints associated with a design pattern. In Chapter 5 we
have provided a formal specification of certain aspects of pattern documentation
but this formal specification does not provide a formal representation. [deally we
would like the user to provide a specification of the design issue in terms of the
language introduced in Chapter 5 and the query engine can map the specification
to a specification in the database schema. Some possible extensions of this work
will provide this facility with deductive capabilities. In this thesis, we represent the
problem and constraints by means of a set of key words and full text. Key words will
help in quick retrieval of design patterns that have common key words, and full text
description will enable the reuser to learn more details about design pattern attributes.
We require our repository to provide full-text search capabilities to query patterns
based on their problem or constraints. These key words are selected so that they
best represent the intent of the design pattern. We do not elaborate on this aspect as
there is currently lot of progress in the area of information retrieval. Besides the key
words meant to provide a full-text search facility every instance of the Constraint is a
tuple of a design choice made in the pattern and the rationale for the design choice.
The Drawbacks component of a design pattern represents the drawbacks of using the
pattern and this is represented as text. We believe that the user can be provided
with information retrieval tools for indexing and retrieving relevant data. Since our
focus is essentially on querying aspects that are crucial to reuse ,viz. retrieval and
understanding of a design pattern, we have not tried to elaborate more on this aspect.

Figure 15 provides a high-level description of the Solution schema. We now de-
scribe the conceptual schema associated with each design pattern solution. A design
pattern solution represents an object-oriented design. It therefore has a static struc-
ture as well as certain dynamic properties described in terms of collaboration between
the objects. Further, the design pattern solution is a reusable design in the sense that

it is designed in anticipation of certain requirements that might arise in future. The
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design pattern solution is robust to handle such future requirements. We can therefore
consider each instance of the Solution class as being an aggregate of a static structure
modelled by the Structure class, dynamic aspects of the design pattern solution mod-
elled by the Collaborations and future requirements that the design pattern solution
can meet are modelled by the Reuse Requirement.

The static structure of design pattern solution represents the participant classes
in the pattern, the relationship between these classes, description of their interfaces,
inheritance hierarchies, information about which methods are overridden. It is clear
that modelling the structure requires meta-modelling such concepts as a class, in-
terface, instance variables, acquaintance and aggregation relationships, inheritance
hierarchies. Qur metamodel for the Structure represents a description of the intersec-
tion of concepts, and abstractions found in the set of design pattern structures found
in [25]. Our meta-modelling efforts are motivated to a certain extent by the formalism
that was discussed in Chapter 5. In meta-modelling these entities we shall confine
ourselves to the design pattern solution’ structures found in [25]. It is clear that the
structure of design pattern solution can be thought of as a set of classes with certain
relationships between them. We therefore model the Structure as an aggregation of
one or more instances of MetaClass where each instance of MetaClass represents an
abstract or concrete class. Each such instance of MetaClass has a name and a flag
indicating whether the class is an abstract or concrete class. Besides each instance of
MetaClass also represents a field that indicates the problem domain entity that it rep-
resents (for instance in the Observer design pattern, the Observer class implements
the dependent objects). This information is useful to a designer in understanding
the relationship between the abstract design pattern solution and the corresponding
abstract problem statement. Each instance of the MetaClass is also an aggregate of
its subtypes. This is indicated by the aggregation relationship Subtype shown in the
Figure 15.

Each instance of the MetaClass consists of an interface and attributes. We there-
fore model MetaClass as an aggregate of classes Metalnterface and MetaAttributes that
model abstractly the interface and attributes of an instance of MetaClass. Every at-
tribute of a class in the design patterns found in [25]) represents instance variables
that characterize the state of objects in the class or represents object reference that
implement the relationship of the class with other classes in the design pattern so-

lution. For instance, the Memento pattern [25] denotes the instance variables which
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characterize the state of the objects of the Memento class as MementoState. In the
same pattern the Originator class is responsible for creating and knowing its Me-
mento. This is thus captured in our model by the inheritance relationship between
the MetaAttribute class and MetaState class and MetaRelationship class. The class
MetaRelationship represents an acquaintance or aggregation relationship. Either of
these relationships will have an associated cardinality. Though both relationships are
usually implemented as pointers, there is a semantic difference. In particular, one-to-
many acquaintance relationships are often confused with aggregation. However, the
two are different. In the former case, objects within the relationship can have inde-
pendent existence while in the latter an object in the relationship is responsible for
other objects. For instance, the one-to-many relationship between a subject instance
and an observer instance in the Observer design pattern is not an aggregation. The
acquaintance and aggregation relatiosships are therefore modelled as separate classes
and they are subclasses of the MetaRelationship class. Though relationships are owned
by an instance of the MetaClass (ie. implemented as reference in a class), each such
relationship relates the owner instance to one or more instances of MetaClass. This
is represented in our schema by the Related_To relationship. Similarly each attribute
in a class may be inherited from an instance of the MetaClass and this is indicated
in the object model by means of the relation Inherited_from.

The Metalnterface class is modelled as an aggregate of signatures. This follows
from the very definition of the interface as a set of signatures [25]. Also, many of
the design patterns in [25] consist of abstract classes that only represent interfaces
(abstract classes with pure virtual functions in C++). Each instance of the Metaln-
terface class represents a set of signatures. We model a signature as an instance of
MetaSignature class. A class within a design pattern solution may or may not define
an implementation for a signature. Further, the class can inherit the method from
a superclass or override the method in the superclass. For this reason the methods
are modelled as distinct entities that are instances of the MetaMethod class and each
signature of a class can have at most one method implementing it. This is indicated
by the ImplementedBy relationship in the Figure 15. A class can inherit the interface
of a superclass, and it can either inherit the method associated with the signature or
override it. This is indicated in the figure by the Inkerited_from relationship between

the MetaSignature class and MetaClass. Each instance of the MetaSignature class has
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a name, certain arguments and a return type. Further, it may have an informal de-
scription associated with it. This is due to the fact that often in design pattern found
in [25] the operations within a class have a highly abstract description and are not
accompanied with a precise specification of their behavior ~ hence there is a need for
this information to be associated with each signature.

The class MetaMethod models the methods implementing a signature in a given
class. The instances of this class are represented in [25] as psuedocode. It is therefore
not possible to have a formal model to characterize them. However, it would be useful
to the reuser to query the database for design patterns that employ call delegation or
class instantiation in a method. For instance, most of the Structural patterns in [25]
use object composition and delegation. A reuser who is not aware of the particular
category (in this case Structural) can still pose a query based on the object composition
and delegation structure required. Typically a method in a class would delegate
implementation to an instance variable, or to an argument of the signature with
which the method is associated, or to local variables. In fact, the same information
can be exploited to answer call delegation at the object level. Creational patterns in
[25] usually employ methods that instantiate a class. We represent this information
also in the MetaMethod class.

The class Collaborations models the collaboration among the participating classes
in the design pattern as well as with a client object (an object that require the
services of objects in the pattern). In Chapter 5 we provided a formal specification
for collaboration aspects of a few design patterns in [25]. The formal specification
provided us with a means for specifying collaborations in two dimensions: one dealt
with collaboration occurring as a result of invocation of service from an ob ject in the
pattern (ie. an object that is an instance of a class from the design pattern), and
another occurs when a client requests certain services from objects in the pattern
(may be in a certain order) or configures objects in the pattern so that they can
communicate. However, the collaborative aspects of design patterns are often too
vague and in general cannot be represented as a formal model. For this reason we
represent the Collaborations only by means of keywords and full-text and require the
database system to provide querying facilities for a full-text search.

The class ReuseRequirement represents a reuse requirement. Each reuse require-
ment addresses a requirement that can arise in future. Each such requirement enables

the designer to vary some aspect of the design without varying many other aspects
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of the design. This essentially means that the changes to the design are minimal
and local. The ReuseRequirement also provides the rationale for being able to vary
an aspect without varying other aspects in the design. We therefore represent each
ReuseRequirement as consisting of three components viz. a component that models
the aspect that varies, a component that models the related aspects that do not vary
and a component that provides the rationale. Each of these component can again be

represented by means of key words and full-text.

6.6 Schema Definitions

In this section we provide more detailed representation for the entities described in
the object models shown in Figures 14 and 15. We provide all the class definitions
and each class definition is followed by a few method definitions. The list of method

definitions provided for each class is not exhaustive.

class MetaDesignPattern

type tuple (Name: string, OtherNames: set(string), scope: enum {class, object}, pur-
pose: enum{creational, structural, behavioral}, domains: set(tuple(domain:string,
domain_contexts:Text)), frameworks: set(tuple(framework: string, framework_contexts:
Text)), designproblem: Problem, designsolution: Solution, patterndrawbacks: Draw-
backs, RelatedTo: set(tuple(pattern: MetaDesignPattern, underrelationship: Text))
);

method get_name in class MetaDesignPattern: string

method get_scope in class MetaDesignPattern: scope

method RelatedUnder in class MetaDesignPattern:string

method IsClassScope() in class MetaDesignPattern:bool

method IsCreational() in class MetaDesignPattern:bool

method IsFoundInDomain(string) in class MetaDesignPattern:bool

method GetContextInDomain(string) in class MetaDesignPattern:bool

method IsFoundInFramework(string) in class MetaDesignPattern:bool

method RelatedToBy(MetaDesignPattern) in class MetaDesignPattern:string

class Problem

type tuple (core_problem: CoreProblem, constraints: set(Constraint));
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class CoreProblem
type tuple (keywords: set[string], problem_text: text);
method foundkeyword(string) in class CoreProblem: bool

method getproblemtext in class CoreProblem: bool

class Constraint

type tuple (keywords: set[string], Designchoice: text, Rationale: text, constraint_text:
text);

method getdesignchoice in class Constraint:string

method getrationale in class Constraint:string

class Drawback
type drawback_text: text;

method getdrawbacks in class Drawback: string

class Solution

type tuple (static: Structure, dynamic: Collaborations, reusereqs: set(ReuseRequirement));

class Structure

type set(class:MetaClass);

method ContainsClass in class Structure: bool

method InheritsFrom(MetaClass, MetaClass) in class Structure: bool

method HasRecursiveAggregates in class Structure: bool

class MetaClass

type tuple(Name: string, ClassType: enum{Abstract, Concrete}, Represents: string,
class_interface: Metalnterface (opt), class_attributes:set(MetaAttribute), Subtype:
set(MetaClass));

method get_classtype in class MetaClass: ClassType

method get_responsibility in class MetaClass: string

method has_signature(string) in class MetaClass: bool

method has_subtype(MetaClass) in class MetaClass: bool

method has_acquaintance_with(string) in class MetaClass: bool

method DoesInstantiate(MetaClass) in class MetaClass: bool
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class MetaAttribute

type tuple (owned_by: MetaClass, AttributeName: string, Inherited_from: MetaClass
(opt));

method get_name in class MetaAttribute: string

method IsInheritedFrom in class MetaAttribute: MetaClass

class MetaState inherit MetaAttribute

class MetaRelationship inherit MetaAttribute

type tuple(cardinality: enum {zero-one, zero-many, one-one, one-many }, Related_To:
MetaClass);

method hascardinality in class MetaRelationship: cardinality

method IsRelatedTo in class MetaRelationship: MetaClass

class MetaAggregation inherit MetaAttribute, MetaRelationship
class MetaAcquaintance inherit MetaAttribute, MetaRelationship

class Metalnterface
type tuple(owned_by: MetaClass, set(MetaSignature));
method has_signature(MetaSignature) in class MetaRelationship: bool

class MetaSignature

type tuple(Name: string, Arguments: List(MetaClass), ReturnType:MetaClass (opt),
Description:string, ImplementedBy: MetaMethod (opt),

InheritedFrom: tuple(superclass:MetaClass, over-riddenflag: enum{true, false}) (opt));
method getdescription in class MetaSignature : string

method isfoundindescription(string) in class MetaSignature : string

class MetaMethod

type tuple(Psudocode: string, DelgatesTo:set(tuple(Name:string,

TypeOfObject: enum{Reference, Argument, NotKnown}, OfClass:MetaClass)), In-
stantiatesClass: MetaClass (opt));

method DoesDelegateTo(string, MetaClass) in class MetaMethod: bool

method Doesinstantiate(MetaClass) in class MetaMethod: bool
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class Collaborations
type tuple(keywords:set(string), collaboration_text:text );

method get_collabs in class Collaborations: string

class ReuseRequirement

type tuple(VaryingAspect:string, NonVaryingAspect:string, Rationale:text, reuse_requireme
text);

method CanVary(string) in class ReuseRequirement : bool

method get_rationale in class ReuseRequirement : bool

6.6.1 Integrity Constraints

Integrity constraints provide a means for ensuring that changes made to the database
by authorized users do not result in a loss of data consistency. They thus guard against
accidental damage to the database. For instance, cardinality constraints restrict the
number of objects that are related to a given object. Domain constraints restrict the
values of an attribute. Cardinality constraints are also examples of domain constraints.
Implication constraints relate the values taken by attributes in a single object or related
objects. Disjointness constraints express the constraint an instance of a subclass cannot
move to another subclass in the same hierarchy. Here are a few examples of such

integrity constraints found in our data model.

e Cardinality Constraints: These constraints are shown in the object models given
in Figures 14 and 15. For instance, from Figure 15 we see that every design

attern solution’s structure is composed of one of more instances of MetaClass.
p P

e Implication Constraints: In the class MetaMethod, an implication constraint is
found in the attribute DelegatesTo. This attribute has a Name field and Of-
Class field. The OfClass field refers to a class and the Name field refers to the
name of a signature in this class to which an instance of MetaMethod is dele-
gated. For example, if an instance of MetaMethod, has DelegatesTo attribute :
(foo, Reference, ArbitaryClass), then foo must be a signature in the interface of
ArbitraryClass. Similarly, the RelatedTo attribute of Meta DesignPattern has an
integrity constraint: if the RelatedTo attribute of design pattern A contains a
tuple : (pattern B, Relationship_AB) (ie. A is related to B under a relationship
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AB) then the RelatedTo attribute of design pattern B also has the tuple : (pat-
tern A, Relationship_AB) (ie. B is related to A under the reverse relationship).
For instance, the Abstract Factory pattern is related to the Factory Method pat-
tern since the latter is often used to implement the former. This relationship

appears in the Related attributes of both patterns.

e Disjoint Constraints: Object models capture some constraints through their very
structure. For instance, the single inheritance hierarchy for Meta Relationship in
the object model 15 implies that the subclasses MetaAggregation and MetaAc-

quaintance are mutually exclusive.

6.6.2 An Example

The Observer design pattern [25] is one of the most popular and non-trivial design
patterns. As has been explained in earlier chapters, the pattern is found in many
GUI applications for decoupling the model from the presentation. In this section we
consider the Observer design pattern as an example to illustrate the instantiation of
the OO schema.

In our schema, the Observer pattern is an instance of MetaDesignPattern class.
Its scope and purpose are Object and Behavioral respectively. It is usually found in
GUI domains in the context of decoupling the representation of the model from the
presentation. It is also found in the MVC framework [36] where Model class plays
the role of the Subject and View is the base class for observers, Unidraw framework
where graphical objects are split into View (for observers) and Subject parts [25].
The Observer pattern is related to Mediator and Singleton patterns and the nature of
this relationship is specified in [25]. These details are described by the attributes of
the Observer instance (which is an instance of Meta DesignPattern). The CoreProblem
can be represented by means of a set of keywords such as dependency, one-to-many
which capture the essence of the problem. The full-text of the problem can also be
represented. The Observer pattern has a single design constraint specified in Chapter
5 and this states that the design pattern solution must avoid tightly coupling the
objects. The rationale for the constraint is that tightly coupling the objects would
prevent them from being reused independently. These details are represented by
attributes of an instance of Constraint class.

The Structure part of the Solution instance has four instances of the MetaClass.
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These are Subject, ConcreteSubject, Observer and ConcreteObserver. Sub ject and
Observer are abstract classes, while ConcreteSubject and ConcreteObserver are con-
crete classes. The Subject class represents the interface of subject. An informal de-
scription of its responsibilities is provided by the attribute Represents. It has only one
attribute, viz. an one-many acquaintance relationship with Observer Class and this is
represented by an instance of MetaAcquaintance with attributes: owned_by: Subject,
AttributeName:observers, cardinality:zero-many, Related_To: Observer. Its interface
provides the signatures Attach(Observer), Detach(Observer) and Notify which are
instances of MetaSignature class. A psuedocode is provided only for Notify and this is
represented in Notify instance by the attribute:ImplementedBy. This psuedocode will
be an instance of MetaMethod class and its attributes are: Pseudocode which repre-
sents the psuedocode, DelegatesTo: {tuple(Update(), ObjectReference, Observer)}.
Similerly, ConcreteSubject, Observer and ConcreteObserver are represented. The
collaborations in the Observer pattern is an instance of Collaborations class and this
instance has attributes representing the colloborations in terms of key-words and
free-text.

The Observer pattern has two reuse requirements as explained in Chapter 5. One
of these is that the type of observer objects can be varied independent of the subject.
The rationale for this is that, the subject and observers are abstractly coupled, hence
new types of observers can be introduced by subclassing Observer class and without
affecting the Subject. For the same reason, the type of observer objects dependent
on a subject can be varied at run-time. This reuse requirement is thus an instance
of Reuse Requirement and has attributes: VaryingAspect: Type of observer, Non-
VaryingAspect: Subject. This instance also has a Rationale attribute that represents

the rationale (provided above) for the reuse requirement as free-text.
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Chapter 7
Conclusions

In this thesis we have emphasized the need for a formal approach to documenting
classes, micro-architectures and design patterns which arise.n the QOO framework
for developing software systems. After reviewing the levels of reuse and existing
documentation styles for design patterns, we introduced formal specification styles for
C++ classes, micro-architectures, design patterns and a schema for a design pattern
repository.

The thesis has made the following contributions for reusing software designed

using QO principles:

¢ Building on the seminal work of Colagrosso [16], Larch/C++ language is ex-
tended with constructs for expressing object-collaborations. This extended

three-tiered language is used to specify micro-architectures.

e A critique on existing design pattern documentations, a rationale for a new
documentation, and a formalism for essential features of design patterns has

been provided.

e Software reuse in large scale is feasible when software artifacts are stored and
retrieved from a database. The thesis presents an object-oriented database
schema, and possible queries that can be posed on the database of design pat-
terns.

The design of our design pattern repository has addressed the following key

issues:
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— Classification: Design patterns are classified across more than one dimen-

sion. Besides the classification provided by Gamma et al, the patterns
are also classified under the domains in which they occur and the frame-
works that use them. Besides, retrieval of patterns related under different

criterias is also possible.

Storage: Each design pattern is stored as an ob ject in a persistent object-
oriented database. The components of such a design pattern are all stored
as objects, thereby providing a finer representation of such components
and making use of object-oriented concepts such as encapsulation and in-

heritance.

Retrieval: The informal documentation of pattern is provided in a high-level
forma.l structure in our schema. Further, the information is organized in a
loglca.l and intuitive fashion. It is possible to provide a query language that
allows users to perform queries based on design pattern attributes, as well
as traditional string and keyword matching. The query language should
enable users to pose conjunctive and disjunctive queries as described in
sections 6.2.1 and 6.2.2. We believe that our schema is rich enough to
handle all the queries outlined in sections 6.2.1 and 6.2.2. Besides, query
languages can be designed to query information using methods attached

to the classes in the schema.

The following areas of future work arise from this thesis:

(1) The notion of class behavior and completeness evaluation of C++ classes was

(2)

addressed in [16]. If micro-architecture is to be treated as a unit, then the
specifier should have a complete understanding of the behavior of the micro-
architecture. To ensure this, one has to define the notion of behavior of a
micro-architecture, define completeness and provide an evaluation methodology

for evaluating the completeness of micro-architecture specifications.

A methodology for conformance testing of C++ classes with respect to their
Larch/C++ specifications was provided in [11]. This methodology needs to be
extended to perform conformance test on micro-architecture implementations

against their specifications.
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

More research is required in evaluating the adequacy of the formal methodology

given for design patterns.

We believe that the conceptual schema provided for the design pattern repos-
itory can be implemented as is in an object-oriented database management
system (OODBMS), suitably modifying it to suit a specific OODBMS and con-

sidering query optimization and efficiency issues in such a system.

A major interesting work would be the design of a query language with deductive
capabilities for retrieving design patterns from the database designed according

to our schema.

In this thesis we have confined ourselves to the conceptual aspects of the
database design. It would be interesting to go further and look at the logi-
cal and physical design of such a repository. Further, it would be possible to
use the design patterns in [25] in the physical design. The recursive nested
structure of data points to feasibility of using the Composite pattern. Similarly

the navigation type of queries may require the use of Iterator pattern.

In the description of the OO schema, we gave some examples of semantic in-
tegrity constraints associated with design patterns without indicating how they
can be exploited for data and knowledge retrieval. A possible extension to this
research consists of studying the way integrity constraints can be used as a sup-
port for intelligent retrieval of relevant data, and as background knowledge to
discover clusters and relationships between design patterns using documentation
components as input. Such mining techniques can help the designer discover
links between design patterns and retrieve more easily the ones that are most

relevant to his needs.

Designing a web interface as a front-end to such a repository would make the
retrieval of information from design patterns all the more interesting and at-

tractive.

Since design pattern documentation includes attributes in a full-text form, ap-
propriate techniques for indexing and retrieving information from such data
types can be exploited using well-spread tools such as those provided by some

database management systems (e.g. Oracle).
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