INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bieedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
conﬁmxingﬁ'omlefttorightinequalsectionswithsmalloverlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell information Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313:761-4700 800.521-0600






Flexible Dynamic Modeling and Control
for the Remote Manipulator System

Xie Haipeng

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

December 1996

© Xie Haipeng, 1996



i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliotheque nationale
du Canada

Acquisitions et )
services bibliographiques
395, rue Wellington

Ottawa ON K1A ON4

Canada
Your file Votre référence

Our file Notre réfdrence

The author has granted a non- L’auteur a accordé une licence non

exclusive licence allowing the exclusive permettant a la

National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
¢lectronique.

The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-26007-0



Abstract

Flexible Dynamic Modeling and Control
Jor the Remote Manipulator System

Xie Haipeng
Master of Applied Science (Electrical Engineering)
Concordia University, 1996

This thesis focuses on modeling and controller design for the Space Shuttle Remote
Manipulator System (RMS). A dynamic model of the RMS is derived using Book’s recur-
sive Lagrangian method. This model has six degree-of-freedom rigid dynamics, joint flex-
ibility dynamics, link transverse elastic dynamics and torsional elastic dynamics. A
computationally efficient control approach for addressing joint and boom flexibility of the
RMS is investigated. The control strategy consists essentially of four parts. The first part
involves pre-shaping the joint trajectories in order to reduce the excitation of link flexibil-
ity. The second part is a rigid model based inverse dynamics control which is used to
obtain the desired joint torque. The third part is a flexible-joint control loop which is based
on a perturbation technique. The last part is a pulse active damping (PAD) control loop
which is applied to damp out the system residual vibrations in a fast manner. The inte-
grated control strategy leads to fast end-effector trajectory tracking with less end-effector

vibration and fast damping of residual vibrations.
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“In-plane” 2D plane which is perpendicular to the motion joint axis
“Out-of-plane” 2D plane on which the motion joint lies

RMS Remote Manipulator System
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Chapter 1

Introduction

1.1 The Remote Manipulator System (RMS)

Canada designed and developed the Remote Manipulator System (RMS) as part of the
Canadian contribution to the NASA Space Shuttle Program in 1974. The project is being
undertaken by Canadian industry under contract from the National Research Council of
Canada. The RMS is designed for a 10 year, 100 mission operational life. The RMS itself
comprises the main portion of the payload deployment and retrieval system of the orbiter.
With it, payloads may be extracted from the cargo bay, maneuvered to an appropriate
release position and deployed, either automatically or by an operator. Similarly, payloads
that have already been deployed in space may be captured and replaced in the cargo bay
for servicing or for their subsequent return to earth. Special purpose end-effectors which
may be attached to the RMS, also allow the RMS to be utilized in a variety of ancillary
functions. RMS can reach and manipulate payloads with masses of up to 65,0001b (29,500
Kg) within a maximum range of 50 feet (15.2 m) from the attach point of the manipulator

arm to the orbiter.
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END EFFECTOR

Figure 1.1 Remote manipulator system

As the manipulator arm is only to be operated in the zero-gravity (0-g) environment of
Space, many of the structural strength requirements which, in a l-g environment, would
need to be imposed to allow the arm to withstand loads due to gravitational forces, can be
relaxed. Indeed, the arm cannot support its own weight in a 1-g environment let alone that
of a 65,000 Ib. (29,500 Kg) mass. Such reductions in strength requirements are, however,
accompanied by the generation of unique demands on the manipulator arm control system,

which arise from the ensuing, widely-varying dynamic characteristics.

Figure 1.1 shows the schematic of the SRMS. As can be seen there are two long booms
from the shoulder pitch to elbow pitch, and from the elbow pitch to the wrist pitch.

The RMS is an electromechanical system. In essence, its mechanical arm assembly con-
sists of two long, hollow links, with circular cross sections, manufactured from a carbon
composite material. These links are connected to the orbiter structure through three joints.
One is the manipulator positioning mechanism which configures the arm for operation,

and the others consist of the shoulder yaw and pitch joints which are controlled during arm




manipulation. The links are connected through the elbow pitch joint and are attached,

through the wrist pitch, yaw and roll joints to the end-effector with which the target is

grasped.

All six orthogonally oriented joints, namely, shoulder yaw, shoulder pitch, elbow pitch,
wrist pitch, wrist yaw, and wrist roll are controlled through six D.C. electric servo motors.
The motor output-shaft speed is geared down to levels appropriate for the control task by
an epicyclic gear train. (The maximum gear ratio, which is that of the shoulder joints, is
1842:1). The control of the manipulator arm is normally through an orbiter general pur-

pose computer in which the control laws reside and which has full control authority.

The light-weight construction used in the design of the Joints and the booms cause greater
mechanical compliance than typical industrial manipulators. Modal analysis of the vibra-
tional properties of this arm indicates that joint flexibility contributes low frequency modes
while higher frequency modes are due to bending of the booms [1].

1.2 Joint and Link Flexibility

Modeling and control of flexible manipulators have received more attention in recent years
[41[51(81(25](23]. Most of the work is still at the academic research and/or laboratory
experimentation level. The RMS is one of the better known practical examples. Due to its
light weight (around 360Kg) and its capability to carry a heavy payload (29,500Kg), there
are significant amounts of joint flexibility and link flexibility. This leads to degradation of
end-effector tracking.

The methods for modeling flexible-link manipulators can be grouped into a number of cat-

egories [12]:

(1) Lagrange's equation and modal expansion
(2) Lagrange’s equation and finite elements
(3) Newton-Euler equation and modal expansion



(4) Newton-Euler equation and finite elements
(5) Singular perturbation and frequency domain techniques

An accurate finite element model [56], [57], [58] requires an appropriately large number of
elements. For multi-link flexible manipulator, the system order of the resulting model can
be very high.

The Lagrangian/modal expansion, or Ritz-Kantorovitch method, appears to be the most
widely used. In this approach, the deflection of a link is represented as a summation of
modes. The modes are products of two terms, a function of the distance along the beam

and a function of time

wix, t) = Y 6,(x)8,(¢) (1.2.1)

where x denotes the position along the beam, ¢; the mode shape function of position x,

d; the normal coordinate which is a function of time, ¢.

Strictly speaking, the summation is infinite (i=1,...,00). In practice, however, a small num-
ber of modes is used, typically i < 10. Introducing higher order modes into a model does

not necessarily lead to an improvement in accuracy [12].

Various sets of mode shapes ¢ i{(x) can be chosen. However, they must all satisfy the fol-

lowing conditions [33]:

(1) They must form a complete coordinate basis, that is it must be possible to express any
link profile in terms of the assumed modes.

(2) They must satisfy the geometric boundary conditions of the system. For flexural vibra-
tions, these boundary conditions correspond to the slope and deflection at the ends of the
link.

(3) They must be differentiable over the domain of definition, at least to the degree of the



partial differential equation modeling the flexible arm dynamics.

Functions satisfying these conditions are referred to as admissible functions. In addition to
the properties mentioned above, practical mode shapes almost invariably possess certain
orthogonality properties with respect to one another which can be used to reduce the num-

ber of cross-terms (between the modes) in the model.

Using n modes effectively reduces the distributed parameter system to an nth order dis-
crete system. The total kinetic and potential energies for the arm can be expressed in terms

of the mode shapes and modal coordinates. Inserting these terms in Lagrange’s equation
(1.2.2) and taking the modal coordinates 3;(t) as the set of generalized coordinates,

leads to a set of coupled differential equations relating the modal responses to the applied

forces.
dt aq,. aq,. t (1.2.2)

where, L = Kinetic Energy - Potential Energy and g; is the generalized coordinate.

Euler-Bernoulli beam theory is used almost universally as the starting point for analytic
modal models. The assumed modes method can also be applied to multi-link flexible arms.

The cantilever modes of the links together with the Joint angles, ©;, provide a suitable set

of generalized coordinates. This coordinate basis has the additional advantage of partition-
ing the rigid-body and flexible dynamics, and the model can be expressed in the form:

e s 4

where T is the vector of joint torques. The off-diagonal sub-matrices represent the cou-
pling effects between the rigid-body and elastic dynamics. The elements of the M and C
matrices are nonlinear functions of the generalized coordinates and velocities. In general,

therefore, the dynamics of a multi-link arm are not only coupled but highly nonlinear.

Book and Cetinkunt [7] provided a recursive algorithm which derives the full nonlinear

dynamic equations of multi-link flexible manipulators based on the assumed modes



method. The purpose of our model is to simulate the major characteristics of the RMS.

However our controller design will not base on this model.

Most controller designs for flexible-link manipulators are based on:

(1) Independent Joint Control under the assumption of rigid links. At present, the RMS
basically use independent joint PID control. It is designed based on the fact that the RMS

operates in a relatively slow maneuvering motion.

(2) General Rigid Control again assuming rigid links but this time including dynamic
interactions between the links. This gives a simple controller design [23] but may not be
effective in handling large link flexibility.

(3) Flexible Feedback Control involving feedback of the flexible state variables as well as
the joint variables. Some advanced and adaptive control algorithms have been developed
[27], [48], [49], [53] and have good control performance. However, these methods have

complicate control laws and are computationally expensive.

(4) Signal Pre-Shaping of the trajectory or the control command to reduce the excitation of
vibrations. While this approach [39], [43], [44], 29], [30], [34] is highly efficient in reduc-
ing excitation of vibrations and is easy implement, the major drawback is its open loop
characteristic. The performance depends on a knowledge of the system’s natural frequency
and damping ratio. Complete filtering can not be achieved for motion with large variations

in configuration.

Joint flexibility mostly comes from the gearbox, and is especially serious for harmonic
drives which are generally used on systems with high gear ratio requirements such as the
RMS. This flexibility is usually modeled as a spring with a stiffness constant K. Nonlinear
joint flexibility is not addressed in our model, however, its impact is an open area for

research.

Several advanced schemes for controlling joint flexibility have been developed [22] [46].
Some simple and efficient algorithms [14] [9] have also been proposed to control less flex-
ible joints.



1.3 Design Objectives and Motivation

The RMS has been used extensively by the shuttle crew for such tasks as deployment and
retrieval of satellites, inspection and servicing of spacecraft and transfer of men and equip-
ment. While the RMS has performed reliably for all of these tasks, because of the presence
of flexibility, these operations are sometimes delayed while operators wait for oscillations
to die out. In the future, the RMS and similar lightweight flexible arms are likely to play an
important role in a variety of demanding on-orbit assembly and maintenance tasks includ-
ing the construction of the Space Station. In a recent study, it was estimated that the initial
phases of space station assembly would require about 47 hours of RMS operation time. Of
this total, it was estimated the 30 percent of the cumulative time would be expended to
allow the oscillation in the RMS’s to die out. Therefore, a controller design which ensures
fast and accurate end-point tracking, while exciting less vibration, involving less waiting
time, and providing fast damping of residual vibrations is necessary for efficient operation
of the RMS.

There are some physical limitations existing for the RMS:

(1) Limit on servo generated torques due to the small size of the servo and limited power
supply in space operations, which results in a limit on the motion speed and the use of

some “chattering like” control methods.

(2) The small servo and high gear ratios also introduce serious joint flexibility, especially

at the shoulder pitch and shoulder yaw joints.

(3) The highly coupled, nonlinear system limits the use of any complicated advanced con-
trol method such as adaptive control. Complicated online system identification may not be

practical from the point of view of safety and reliability.

All these limitations lead to a requirement that the control should have low computational
cost, be continuous and smooth. Several techniques such as signal pre-shaping [39] and
perturbation control for flexible joint manipulators [9] are adapted to our design because of

their simple implementation and high efficiency. A so called pulse active damping control



method which is presently under research for solar panel control is implemented here to

rapidly damped out the residual vibrations.

The integrated controller design in this thesis leads to lower end-effector vibrations, and
fast damping of residual vibrations. The pulse active damping control approach itself can
help the astronaut in damping out the residual vibrations of the RMS and eventually reduce
the waiting time in RMS operations.

1.4 Contribution of the Thesis

This thesis addresses a practical problem arising from the need to control vibrations in the
RMS as a result of its link and joint elasticity. The main contribution of the thesis are as

follow:

(1) In order to accomplish the main objectives of this research, we developed an extensive
simulation of the dynamic behavior of the RMS. This simulation models the in--plane, out-
of-plane and torsional elasticity of the two long links of the RMS. It is based on the

assumed mode approach and uses Book’s recursive algorithm.

(2) The control of vibrations in the RMS was achieved by application of control strategies
developed using:

% Signal pre-shaping and pulse active damping for reducing / eliminating vibrations due to
link flexibility.
# A perturbation technique for controlling the effect of joint flexibility.

1.5 Organization of the Thesis

In Chapter 2, the RMS dynamic model is derived by applying Book’s Lagrangian Recur-

sive method. The RMS is modeled with three in-plane, three out-of-plane transverse elastic



modes and three torsional elastic modes for each of two long RMS links. Then, some
impulse response simulations are done on this dynamic model to demonstrate the effect of
link flexibility. In Chapter 3, a control architecture is introduced to handle link flexibility. It
consists of two parts, signal pre-shaping on the desired trajectories, and rigid body based
inverse dynamics control. Small range movement simulations are carried out at the end of
this chapter to verify the proposed control ideas. Chapter 4 introduces the flexible-joint
perturbation control algorithm to address RMS’s joint flexibility. This control approach is
verified by small motion range simulations at the end of Chapter 4. In Chapter 5, a new
control algorithm, called Pulse Active Damping control is developed. This attempts to
quickly damp out residual vibrations. Some small range movement simulations are also
carried out to demonstrate the efficiency and robustness of the proposed control approach.
In Chapter 6, a 5000Kg payload transportation task is simulated with the integrated control
approach developed previously. The RMS starts from a typical payload retrieval grasping
configuration with a 5000Kg payload and transports it back to the cargo bay. For compari-

son, simulations without Pulse Active Damping are also carried out for the same task.



Chapter 2

A Dynamic Model of the RMS

In modeling the dynamics of the RMS, we adopt Book’s recursive Lagrangian method
which uses homogeneous transformation matrices to generate full coupled non-linear
dynamics of a multi-link flexible manipulator. It models the RMS rigid dynamics, in-
plane, out-of-plane transverse link elastic dynamics and torsional elastic dynamics. Some

derivation details of the dynamic equations are given in Appendices A-C.

Figure 2.1 shows a block diagram of our model of the RMS. This includes link level and

motor shaft level dynamics.

In the following sections, 2.1-2.5, we will apply the Euler-Lagrangian method to derive
the RMS link dynamic equations. Euler-Lagrangian equation is given by

d(dL\ JL _
Hoq) 5 @D
where L = System Kinetic Energy - System Potential Energy

and T; denotes the generalized force, q; the generalized coordinate of the system.
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Link Friction

@_, Ji=R ' I

tl + I el
d,] RMS Link Dynamics
| —®
+
Linear GearBox Model
T + - Motor Shaft Dynamics 0

g
&
A
=

Figure 2.1 RMS dynamic model

Before deriving the system dynamics, we define the system kinematics.

2.1 RMS Kinematic Coordinates

The Denavit-Hartenberg convention [10] is used to describe the kinematics of the RMS.
Frame {i} is attached to link i and has its origin lying on joint axis i as shown in Figure
2.2.

The following is a summary of the link frame attachment procedure [10]:

(1) Identify the joint axes and imagine (or draw) infinite lines along them. For steps 2

through 5 below, consider two of these neighboring lines (at axes / and i+1).

(2) Identify the common perpendicular between them, or point of intersection. At the point

of intersection, or at the point where the common perpendicular meets the ith axis, assign

11



the link frame origin.

(3) Assign the Z; axis pointing along the ith joint axis.

(4) Assign the X; axis pointing along the common perpendicular,

assign X; to be normal to the plane containing the two axes.

(5) Assign the Y; axis to complete a right-hand coordinate system.

or if the axes intersect,

(6) Assign {0} to match {1} when the first joint variable is zero. For {N} choose an origin

location and X, direction freely, but generally so as to cause as many linkage param-

eters as possible to become zero.

Inertial Frame
Z Z1.Y2
LXO Y3
9, Link 2 ~\93 Link 3
e @ @ 1
S‘t(x:;ﬂder 49, Elbov\’/ Pitch
L4
RMS Attach Point
To Space Shuttle

Figure 2.2 RMS kinematic coordinates

End I‘Effector
Ya Zs
) 0
65 t I'Ys
Link4 Link$s

With this convention, a table of Denavit Hartenberg parameters is obtained by defining:

;_;: Theanglebetween Z;_, and Z; measured along X;_1s

a;_;: Thedistance fromZ;_, to Z; measured along X; _,;

0;: The angle between X;_, and X; measuredalong Z; ;

?

d;:  Thedistance from X;_; to X; measured along Z; ;

’
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Table 2.1 D-H table

B S SR D

2 T 0 0 8,
2

3 0 1,=6.378 0 05

4 0 13=7.062 0 8,

5 T [,=0.4572 0 05
2

6 = 0 15=0.7620 B¢
2

7 0 0 1 =0.6604 0

Note: The configuration shown in Figure 2.2 is not at the so called “zero” configuration,

instead, 65 is equal to —g at the configuration shown.

2.2 Vibration Mode Functions for Elastic Links

The dynamic model developed here is intended to explore the flexible dynamics which
result from the light weight arm structure and heavy payload. The assumed mode
approach for modeling link flexibilities is adopted here. The two long and less rigid links
of RMS (numbered as Link 2 and Link 3 here) are modeled as flexible links. Referring to
Figure 2.3, each of these two elastic links is modeled with one rigid, three in-plane, three

out-of-plane and three torsional modes, i.e. 9 vibration modes will be used in modeling the

13



elasticity of one flexible link in this model.

By assuming small deflections of the arm, which is valid for the RMS operations, the
transverse vibrations can be decoupled into 2 vibration planes, in-plane and out-of-plane,

which are perpendicular to each other.

orsional Vibration 4 Y, Y;
@xi’ 9.:3
A\{

| Deflection of
Put-of-Plane Vibratign

Pz2 03  [W—

Shoulder Pitch
or Elbow Pitch

%0,

%J Joint Axis

Figure 2.3 Model of elastic deflections
(viewed from end of the link to the joint)

Given that the Z direction is defined to be coincident with the Jjoint axis, we define in-

plane vibrations lying in the plane XOY, out-of-plane vibrations lying in the plane XOZ.
Three vibration modes will be modeled in each plane for the transverse deflection in our

simulation.

Torsional vibrations along X (given the small deflection assumption) is modeled by

another three clamped-free vibration modes.

By applying the assumed mode approach to model the link flexibilities[12], [33], [15], the
elastic deflection along the link is a function of time and position along the X axis. Refer-

ring to Figure 2.3, they are defined in our model as

14



3
In-plane: Pyi(x) = Z 0;;(x)8;,(¢) (2.2.1)

i=1
6
Out-of-plane: Q,;(x) = Z 0;(x)5;;() (2.2.2)
j=4
9
Torsional: 0,:(x) = Y ¢,;(x)5(¢) (2.2.3)
i=7

where 8,»1- denotes the jth generalized coordinate of link i and ¢;; is the jth mode shape

function (admissible function) of link i.

Note: Here, we assign the in-plane vibration modes as the first 3 modes (j=1,2,3), out-of
plane vibration modes as the second 3 modes (j=4,5,6), and torsional vibration modes as

the last 3 modes (j=7,8,9). This convention applies to the elastic links, i.e., links 2 and 3.

There are several different kinds of admissible functions that can be used in modeling link
flexibility [71, [13]. Theoretically, the only constraint on the assumed mode shapes is that
they must satisfy the geometric boundary conditions, but not neccessarily the natural
boundary conditions nor the governing differential equations. The controlled end of each
link, driven by a high gain feedback controller, behaves more like a clamped end. The
other end condition of the intermediate links should be approximated by a mass with
rotary inertia due to other links of the serial structure and payload. However, for different
structures and even for different payloads the resultant simple beam analysis will give dif-
ferent mode shapes. Given the fact that these are natural boundary conditions and will be
approximately satisfied even if the assumed mode shapes do not satisfy them, a clamped-
free simple beam mode shape would be appropriate for the assumed modes used in the
model. “Clamped-free” vibration mode functions assume that the beam vibrates with one

end being clamped and the other end free, which gives the following boundary condition
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atx =0

;=0

=
I
o

Therefore, we have the transverse vibration “clamped-free” mode functions (for a cantile-

ver beam) as [12], [13]
¢;7(x) = ;(cosh L cosA;x — k;j(sinh),;.x — sin A;x)) (2.2.4)

where

_ coshyl; + coshA/; (2.2.5)

97 sin, jli + sinh AL,

and A;; ’s are the roots of

1 + cosAl;coshA;l; = 0 (2.2.6)

This gives the following natural frequencies for link i

= (Aylp? / = (Al)? / j=1.3 (27
mg,;

where |; = l_ denotes the mass per unit length of link i, m,; the mass of link i, /; the

length of link i, E,; Young’s modulus of link i.
Mode shape functions also satisfy the orthogonality condition
1k 1 b i=
5 J; ¢;7(X) 0 (xX)p;dx = iu,-l? C Cix = {O itk (22.8)

By assuming that the structural characteristics of each elastic link are identical in the Y

16



and Z directions, we choose identical mode shape function sets for in-plane and out-of-

plane vibrations for one link, i.e., ¢;; = ¢4, 9;, = 0;s, 03 = ¢s6-

Torsional vibration mode shape functions have the form

¢,-j = sinm,-jt{A,-jsin(m,-jx ’%)+ B,-jcos(m,-jx‘ C—‘;LJ} 2.2.9)

m..
—= is the mass volume density, G; the shear modulus of material of link i.

Vi

where p; =

With the “clamped-free” assumption, we have

,P . 1
mljll G, = (j—7+§)’[ Jj=7..9 2.2.10)
1

Therefore, the torsional deflections in (2.2.3) can be described as

9
Z ")Sm( Gsi) Bisin(57 )+ Suasin( 37 ) Bosin(37)

2.2.11)

2.3 Extended D-H 4X4 Homogeneous Transformations

The kinematics described by the conventional Denavit and Hartenberg 4X4 homogeneous
transformation matrices do not involve the link deflection caused by bending. We need to
extend the conventional D-H 4X4 homogeneous transformation matrix notation to defor-
mational kinematics of flexible links connected by rotary joints. The transformation due to
the joint is separated from the one due to the flexible link as shown in Figure 2.4.

The position of a point on link { is given by

17



%ni(x) = “w.'h(x)
o o 2.3.1)

w; = w;_E; 1A;

where:

A is the joint transformation matrix for joint j;

E j—1 1s the link transformation matrix for link J—1 between joints j—1 and j;

W;_, is the cumulative transformation from base coordinates to O j-1 at the distal end of
link /-1;

Wiy is the cumulative transformation from base coordinates to O j-1 at the joint of link
L

The origin O; of coordinate system [X, ¥, 2] is fixed to the distal end of link i

The origin O jof coordinate system [X 2 4Y ;1 1s fixed to the joint of link j, and with no

deflection,[X ;, ¥ ;, Z;] is parallel to [X , ¥ , Z j1» with X ; coincident with £ ;.

w.
- — ~
! = ! Fixed to link j
r Ot !
' Wiy Fixed to link j-1 o
' _
rOj_1 \
Fix
RN

g&;
I}
5-
-
o
—

- {‘j—_c— 1
ToBdse (ointj-1) (Joint j+1)

Base Reference To End-Effector

Figure 2.4 Joint transformation and flexible-link transformation
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Incorporating the deflection,

X . rxi](x)-

e = O+ 3 8005 (23.2)
0 j=1 Zij(x)
1 | 0

where
X;j» Yij» 2;; denote the displacement components of mode j of link i in the X , Y, Z direc-

tions respectively;

8,—1- denotes the elastic coordinate of mode j of link i

m; is the number of modes used to describe the elastic deflection of link i, i.e., m ; =9in
our modelfori = 2,3

Assuming small deflections, here we only model the two long links as flexible links, i.e.,

i=2,3. The transverse deflections are modeled as in-plane and out-of-plane vibrations, so

that the displacement component of mode j of link i can be described as

x,-j(x) =0
yii(x) = ¢;;(x) J=1273
The link transformation E; incorporates the link deflection of link i
R [ 0 0.5 Oy x;
E;= (0100, 35O O —Ouyy
0001 L0 0 0 0]

where all variables in bracket are evaluated at x = l; and ©,;;, © ©,;; are rotational

yij
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components along X, Y, Z of link i, respectively.

In our model

3 3
3 ,
0,(l) = awyz(x)|x= = E.l by (], _, %) = Z.l ©.419;(1) 2.3.5)

6 6
0,,(f) = —aa_xwzi(x)l 1 =-) ¢ij'(x)|x= ,,Sij(t) =- ©y10;;(1) (2.3.6)
X = i j =4 ! j =4

9 9
Oull) = X, 40| _ 8;0) = 3, 0,;8,() @3.7)
Jj=17 ' i=7 o

Links 1,4,5 and 6 are assumed to be rigid. Therefore, for these joints, we have link trans-

formations
1000 100/, 1000 1000
0100 =(0100 _|010! 0100
0010 0010 0010 001
0001 0001 0001 0001
For all joints, we have joint transformations
[- cos®; —sin®; 0 0
A; = sin6;coso;_; cos8;cosa;_; —sinc;_; 0 23.9)
sin@;sina;_; cos®;sina;_; cosa;_; O
i 0 0 0 1]

The overall forward kinematics can be written as

0 6
hdx)=‘AMQAQETQ#%A4E“%E3A6hdx)
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2.4 Kinetic & Potential Energy

In order to apply Lagrange’s equation (2.1) to derive the RMS dynamic equations, we
need to find out the kinetic and potential energy of the system first.

Kinetic Energy

The system kinetic energy consists of translational kinetic energy and rotational kinetic

energy, i.e.,

K total = K translational +K rotational

The derivation details of the equations are given in Appendix A. From Appendix A, we
obtain the total kinetic energy of the system in the form

n
Krowar = Y, T AWB3wT +2wB, wT +wB 1iwF} (2.4.1)

i=1

where T, denotes “trace” of matrix. For the flexible links, (links 2 and 3)

m; m;
By = Y Y 8;duCy; (2.4.2)
j=lk=1
1 ¢ T
Cigj = 5_,[; My [0 Xik Yik zik] [0 Xix Yir Zig| 4X (2.4.3)
m; m, m
By = Y 8;C;+ >y 0:40:iC i (2.4.4)
j=1 k=1j=1
1¢i T
Cy = §J-:,”i[1 x0 0] [0 Xik Vik Zig) XX (2.4.5)
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m;

By, = C;+ 2 8;C;+CT1+ Z Z 8:¢8;/Cij (2.4.6)
=1 =1j=1

and for all rigid links (links 1,4,5 and 6), we have

BBy =0
x2 xy xz x
. 2
= %J'pi‘hi‘h‘fdv IP; [x yz l]dV = I WYYy (2.47)
xz yz 22 2
1 | x ¥y z 1

Potential Energy

The system potential energy is derived in Appendix B, from where, we have

3 9
1
Ve=33 3Kt 248
i=2j=1
where
Ky = [ Edu0/Updx = 1,2,3 2.49)
K= JJ Eyily(957(U)dx [ =456 (2.4.10)
Ku = J’gGs: XI(q)lj (l ))de ;=189 (2.4.11)

2.5 Dynamic Equations

By applying the Euler-Lagrangian equation (2.1), we finally obtain the RMS link dynamic
equations. Details of the derivation are given in Appendix C.
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d aKw al JK otal " awi - i
d_t( = } 5 = Z-ZTr 30, (|Cit 2 8{Cy +CT+25szka Wi +
ae_] J { J J=1

y k=1

[Z 8,{c + 2 a,kc,,q)]w +[2Z 8,,(C + Z a,kc,,q)] T]}

=1 k=1 1 k=1

z {89 [Gw + Z 8,lekw +2 2 S,kD,kw ]}

=1 k=1 (2.5.1)
where
m;
D;=Cy+ Y §,Cy (2.5.2)
k=1
and
m; m;
G;=C;+ Z 3; (C +CE+ Yy S,kC,,qJ 2.5.3)
j=1 k=1
and
d aKtotal) amel {a [
~ - =2 T Gw + S,lekw +2 S,kD,kw
W) B2 =2 3 rfgfonrs 3 P

m; m;
k=1 k:]_

2.549
The part contributed by potential energy in (2.1) is
oV .
5 = Kindim i=23 (2.5.5)

im

Next, we apply the Euler Lagrange equation(2.1) where L = K total — Ve - If we separate
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(2.1) into two groups according to the type of coordinates on which the differentiation is

applied, we can have one group of equations where the differentiation is applied on rigid

coordinates 0 ; and the other group of equations where the differentiation is applied on

elastic coordinates & if -

Joint Equations ¢

Where the differentiation is applied on rigid coordinates 0 j» RMS is a six joint robot, we

have j = 1...6

i(aK total) _ dK total ave _

i\ 36, ) "%, ‘38, =i 2.5.6)

Deflection Equations <jf
where the differentiation is applied on elastic & if -

Since link 2 and link 3 are the only flexible links in our model, j = 2, 3 and f = 1...9

d aKtotal _aKtotal+ aVe =0
& 35, ) 95, 3, 2.5.7)

We can re-write (2.5.6) and (2.5.7) by collecting all the 6,8 terms so that (2.5.6)
becomes

6 9

9
h=1 =1 =1
(2.5.8)

and (2.5.7) becomes



6 9 9
ijfhéh"" 2"2f2182[+ ZJ2f3183l = sz f = 1“.9

h=1 =1 =1
6 9 9 )
2J3ﬂ,9h+ Zj3f2182[+ Z.’3f3183[=R3f f =1...9
h=1 [=1 =1
2.5.9
We write the complete dynamics equations in the form
JZ =R
where the inertial matrix
i1 T1 - 16 Jin Jiz o T [Tt T e J139
I I J221 I 31
/61 Jeo) /621 Je9|  |Je31 J 639
- - - 14 r 1| (2.5.10)
Tor Ja12 -+ Jote| o121 To122 -+ Jore| |T2131 T2132 - Ja130
J = |V J 221 J 2231
/291 J296] |/2921 J2929] [ 2931 S 2939
- - T r -
T311 J312 -+ T316| (3121 T3122 -~ S3109| |T3131 T3132 -+ T3130
I321 J321 J3231
| [/391 T396] 13921 T3929] /3931 3039]|

and z is the vector of the generalized coordinates

2 = 184,005, 84, 05,86, 851, 83y, -, 839, 83y, 835, ..., 8317

T.he term R iS Of the form R = [Rl’ R2, R3, R4, Rs, R6’ R21, R22, ooy R29, R31, ceny R39]T

which contains the remaining dynamics.
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Inertia coefficients of joint variables in the Jjoint equations

The coefficients of 6 in joint equation */” are

T = 2T {w; _\U/FUTWE_} 2.5.11)
= C i k- 0A ;
where 'Fy = ¥ (G and U=
i = max(h, j) J

Inertial coefficients of the deflection variables in the Jjoint equations

[ ¥-2]

The coefficients of §,, in joint equation

1) h=2,3,j=1...h

Tjn= 2T, {W;_ U;CFME, +7%,D, )Wl } (2.5.12)

n

where 'F = Z (jﬁ’,-G,-hW,-T)

i=max(h+1,J)

Q) h=23,j=h+1..n

n
aw; kR w \T . ;
S =2 > Tr{%fGi(thhl w;On1) } = 2T {w;_\U,[’F,MEwl1}

i=max(h+1, j) J

(2.5.13)

Note: The inertia coefficients for joint variables 6 j in the deflection equation “A/” are the

same as the inertia coefficients for 8;; in the joint equation j due to the symmetry property

of inerﬁal matl'ix J, i.e., thl = Jhlj"
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Inertia coefficients of the deflection variables in the deflection equations
The coefficients of 5, in deflection equation “jf’

MDj=h=273

J c Jj h T
where '®, = z w,G;"'w;

i=max(h+1, j+1)

@Jj=2,h=3

Timme = 2T {w;M ; (C®MT, +'w,D, )wT} (2.5.15)

Due to the symmetry property of inertial matrix J, we have J ime = kif -
The remaining dynamics in (2.5.9)

Ry = —2T {u,0,}+F, (2.5.16)
Rj=-2T {W; \wu;0;}+F; j=2 6 (2.5.17)
with
mll
Q,=Gwl +2| ¥ anank}w,{ (2.5.18)
=1
m;
0; = Gwh+2 ¥ ajijk}«a,T+EjA,-+1Q,-+1 (2.5.19)
=1
and
m;
ij = -2Tr{ijijj+le+1 +[wijjf+2wj Z kacjkf]wjy‘}—allef
k=1

j=123 f=1..9 (2520
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2.6 Demonstration of the RMS Link Flexibility

To demonstrate the effect of link flexibility, we apply an impulse torque signal at the
shoulder yaw while locking all other joints of the RMS in two of the three typical configu-
rations of the RMS (as shown in Figure 2.5, 2.6 and 2.7) without payload, with 500Kg
payload and with 29,500Kg payload. The same simulation is repeated for shoulder pitch
and elbow pitch. We consider three typical configurations of the RMS:

Configuration A: All links are extended, the distance from the arm attachment point to the

end-effector is at its maximum.

Configuration A: g _ [() 0.0.0.-% 0]
? VY ’ ? 2’

Figure 2.5 RMS Configuration A

Configuration B: The arm is in a typical payload grappling configuration with the effector

positioned over the orbiter cockpit overhead window.
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onB: 6 < [E2T 21 0 =
ConﬁguratmnB.e-[z, 3 3,0, 2,0]

Figure 2.6 RMS Configuration B

Configuration C: The end-effector is at the point corresponding to where the payload
would be placed in the cargo bay.

; -9 =|F% T, T
Configuration C: @ = [4, 3302, 0]

Figure 2.7 RMS Configuration C

29



At Configuration A, without payload and with the Shoulder Yaw being excited, the simula-
tion results are plotted in Figure 2.8.a showing the end-effector displacement (with respect
to the inertial frame) in the Y direction, and in Figure 2.8.b showing the first “out-of-

plane” transverse vibration coordinates for elastic links, i.e.,5,,, 8, which are excited by

the Shoulder Yaw joint motion.

YV Y

9 1 zI’ime (ssecond)4 5 s 0 1 ZI’itm: (?econdf 5 &
Figure 2.8.a Without payload, Shoulder Yaw excited, Figure 2.8.b Without payload, Shoulder Yaw excited,
end-effector displacements in Y direction “out-of- plane” first vibration mode
coordinates for links 2 and 3

The simulation results in configuration A without payload with Shoulder Pitch being
excited are plotted in Figure 2.9.a showing the end-effector displacement (with respect to
the inertial frame) in the Z direction, and in Figure 2.9.b showing the first “in-plane” trans-

verse vibrations coordinates for elastic links, i.e.,8,;, 85, , which are excited by the Shoul-

der Pitch joint motion.

(m)

a 1 3 3 4 s 5

Time (second)
Figure 2.9.a Without payload, Shoulder Pitch excited, Figure 29-".?.“‘*";"‘ payload, Shoulder Pitch excited,
end-effector displacements in Z direction '"o},ﬂé"iﬁates tt'o‘l'-lli;ak?; a';:g ;
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When carrying a 500Kg payload (point mass), in Configuration A, the simulation results
are plotted in Figure 2.10.a, and Figure 2.10.b for Shoulder Yaw excitation and in Figure
2.11.a, and Figure 2.11.b for Shoulder Pitch excitation.

o~
E]
~
H

2 10

T'ufle (seco%d)

Figure 2.10.a With 500Kg payload, Shoulder Yaw
excited, end-effector displacements in Y direction

0 2 T'uge (seco%d) 8 10
Figure 2.11.a With 500K g payload, Shoulder Pitch
excited, end-effector displacements in Z direction

0 2 T‘u:e (seco?ld) 10

Figure 2.10.b With 500Kg payload, Shoulder Yaw
excited, “out-of- plane” first vibration mode

coordinates for links 2 and 3

'] 2 10

Tﬁe (seco?nd)
Figure 2.11.b With 500Kg payload, Shoulder Pitch

excited, “in- plane” first vibration mode
coordinates for links 2 and 3

When carrying a 29,500Kg payload (point mass), in Configuration A, the simulation
results are plotted in Figure 2.12.a and Figure 2.12.b for Shoulder Yaw excitation, and in
Figure 2.13.a and Figure 2.13.b for Shoulder Pitch excitation.



R WS N ° T Vo @ B
Figure 2.12.a With 500Kg payload, Shoulder Yaw Figure 2.12.b With 500Kg payload, Shoulder Yaw
excited, end-effector displacements in Y direction excited, cg::gﬁ.atp;mtl:r first Vzllf:;‘g“ mode
x107

' ' ; ; ; I 5 0 2
0 5 1'Pime (sggond) 20 = 1ﬂme (second)
Figure 2.13.a With 500K§g payload, Shoulder Pitch Figure 2.13.b With 500K¢g payload, Shoulder Pitch
excited, end-effector displacements in Z direction excited, “in- plane” first vibration mode
coordinates for links 2 and 3

The same simulations are carried out while the Elbow Pitch joint is excited. After that, all
simulations are repeated in Configuration B. The simulation results demonstrate the fact
that vibration frequencies vary with the change of configuration and payload. As expected,
a heavier payload reduces the vibration frequencies. Here we list the measured end-

effector vibration frequencies in Table 2.2, Table 2.3 and Table 2.4.
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Table 2.2 End-effector vibration frequencies
excited from shoulder yaw (unit: rad/sec)

Table 2.3 End-effector vibration frequencies
excited from sh

Table 2.4 End-effector vibration frequencies
excited from elbow pitch (unit: rad/sec)

o

A 545 242 0.356

B 8.06 L5 0.221

According to the real flight test data, the RMS tip oscillation frequency ranges from 0.5 to
2 Hz and when carrying a full payload, the oscillation frequency drops by a factor of 10-20
times. In our simulation, the tip vibration frequency is about 1 Hz and when carrying full
payload, it drops to less than 0.1 Hz. It matches the real flight data with respect to the sys-

tem oscillation frequency.
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2.7 Servo Dynamics and Gearbox Characteristics

So far, we have obtained the system dynamics of the RMS up to link level. Now we add
the servo motor shaft dynamics, gearbox dynamics and friction terms to complete the sys-

tem dynamics model as shown in Figure 2.1.

2.7.1 Servo Shaft Dynamics

The motor shaft dynamics can be written as

IOm+ Fr(0m) = T, 2.7.1)

where f m(é,,,) is the shaft friction, and is described in section 2.7.3.

2.7.2 Linear Gearbox characteristics

Referring to the model of a flexible joint shown in Figure 2.15, joint flexibility is modeled
with linear stiffness K. Table 2.5 lists the stiffness K constant on the motor side for all six

joints.

Joint Stiffness K

Figure 2.14 Flexible-joint model
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2.6162

We have the delivered torque at link side
T, = K(6,,-0,N)N (2.7.2)

where N is the gear ratio.

2.7.3 Friction Model

At this point, the friction is modeled as a continue function for simplicity, further refer-

ences can be found in [3], [6].
)

CIRS Re
Fm(Om) = F l-e{"’) ign(0m)  fi(81) = F, l—e-(") sign(6p)) (2.7.3)

where Vv, is a constant.

b r 5
Fs | — -
0.632Fs
|
- —
' Ve 91, 9,,,
- =

Figure 2.15 Friction model
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The values of v; used in link side friction models are listed in Table 2.6, and those used in

motor side friction models are listed in Table 2.7.

Table 2.6 Link side friction model parameters

f 0.0282 0.02821 | 0.02821 .02821 0.02821

v, (rad/sec) 0.1 0.1 0.1 0.1 0.1 0.1

36



Chapter 3

RMS Link Control

Figure 3.1 shows the detailed model of the existing SRMS joint rate feedback control sys-
tem of a typical joint [35]. As is evident, this is a hybrid control system with both digital
and analog rate feedback control loops. An integral mode controller is added to reduce
tracking errors in a line tracking trajectory mode. Obviously, there is no special control
strategy for addressing the effect of link or joint flexibility.

The control architecture of our proposed controller design as shown in Figure 3.2 basically

consists of four major parts:

(1) Signal pre-shaping is applied to the joint level trajectories to reduce the excitation of
link flexibility.

(2) Rigid model based inverse dynamics control is applied to obtain the desired joint

torques.

(3) The desired joint torques calculated in part 2 are generated by a motor torque com-
mand which is computed by applying a perturbation technique for compensating for joint
flexibility.

(4) Pulse active damping is used for the residual oscillations. This part of the control oper-
ates only at the end of RMS maneuver and aims to rapidly damp out the residual vibra-

tions.
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Figure 3.1 Existing servo control model of RMS [35]

38



The first two parts aim to reduce the effect of link flexibility while the third part solves the
flexible-joint problem and the last part aims to eliminate residual vibrations. The inte-
grated control architecture combining all these parts will lead to less vibration excitation

and fast damping of residual vibrations.

The first two parts will be covered in this chapter, the third part will be given in Chapter 4
and the last part will be addressed in Chapter 5.

Part 4
Pulse Active

Inverse Dynamics
\\ Control

End-Effector DisplacemenI
from Camera

Flexible-Joint
Control

e RMS DWMiCS —

e[, ély em1 ém

Figure 3.2 Integrated control architecture

3.1 Signal Pre-Shaping

This method was developed by [39] and later further improved or modified by several
authors [34], [51], [29], [30]. Basically, by pre-shaping the input signals such as torque
commands and tracking trajectories of a system using specially designed pulse filters, the
frequency components close to the natural vibration frequencies are filtered out so that less
vibration is observed at the system outputs. The design of these pulse filters is addressed
below. The derivation is based on linear system theory. The first step towards generating a

system input which results in a vibration-free system output is to specify the system
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response to an impulse input. An uncoupled, linear, vibratory system of any order can be

specified as a cascaded set of second-order poles with the decaying sinusoidal response:
y(t) = [ J__Ze‘c"’o(' ‘0’] sin(@ga/1 - E2(2 — 2)) (3.L.1)
1.0-C

where A p is the amplitude of the impulse, ®g is the undamped natural frequency of the
plant, {is the damping ratio of the plant, ¢ is time, and ¢, is the application time of the

impulse input. The impulse is usually a torque or velocity command to an actuator. Equa-
tion (3.1.1) specifies the acceleration or velocity response, y(z), at some point of interest

in the system.

Mathematically adding two impulse responses each described by (3.1.1), expressing the
result for all time greater than the duration of the input and using the trigonometric relation

Blsm(at+q)1)+82sm(at+¢2) = A, sm(at+w) (3.1.2)

where

Agmp = \(B1cOSO, +B,C050,)2 + (B, sing, + B, sing,)? (3.1.3)

v = tan_I(Blcosq)1 +Bzcos¢2)

Blsinq)1 -i-stirub2 (3.1.4)

elimination of vibration after the second input has ended requires that the expression for

(3.1.3) should equal zero at the time at which the input ends, t, . This is true if both

squared terms in (3.1.3) are independently zero, yielding:

B cos¢, +B,cos¢, = 0

Bysing; +B,sing, = 0 (3.L.5)
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where from (3.1.1)

B. = A 0.)0 e—Cmo(tz-l,-) ’j = 1’ 2 (3_1_6)

J pi II.O—CZ

with A pj the amplitude of the jth impulse, ¢ i is the time of the jth impulse, and t, is the
time at which the sequence ends (time of the last impulse).

By selecting ¢ = 0 for the time of the first impulse, i.e., t; = 0, and 1 for the sum of the
amplitudes A; and A,, ie., A +A; =1, and setting ®,(the expected natural fre-
quency), two equations (with two unknowns A, and t,) result. A, scales linearly for

other values of A;. The solution of these two equations produces the input sequence

shown in Figure 3.3.

where
r
k=e -0 (3.1.7)
T
W e G.18)
1 k
40 = 5% Ry

0 At

Figure 3.3 Two impulse sequence

The same impulse sequence can be obtained in the frequency domain by considering a
compensator that delivers only a portion of the input to a lightly damped system and then

delays the remaining portion by one-half the oscillation period to cancel the vibratory
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motion generated by the first input [29], [30]. The compensation filter can be written as:

-

T
Fy= A +(1-A)e ™% (3.1.9)

where A, is a constant that always lies between one-half and one, @ is the natural fre-

quency of the system and { is the damping ratio. Solving for the zeros of the filter, the first
pair reside at the complex conjugate pole locations of a second-order system. The resulting

value of A, is

&r
e 1-C
Ay = Tn (3.1.10)
l+e v1-8°
{n
If we define k = e Y15 asin (3.1.7) we have A = %c’ which shows that (3.1.9) is
the same as the sequence shown in Figure 3.3.
The Two-Impulse filter can be described as:
1 ke—sAt
[ETANTY G.L1D
By taking the z transform of (3.1.11) the filter can be described as:
Z+k
G,(2) = TEY)) (3.1.12)

where z = At which depends on the system natural frequency (3.1.8). If the vibration fre-

quencies are not known exactly, the vibrations will not be completely eliminated after the
input has ended. To increase the robustness to uncertainty in frequency and damping of the

system, a three or higher order impulse sequence can be used [Singer 1989]. Without hav-

42



ing to solve the extra constraint equations developed by Singer and Seering, one can derive
the higher order filter by placing multiple zeros at the assumed pole location as in [29]
F, = (F,y(s))*-1 (3.1.13)

or

Gn(2) = (Gy(2))"-1 (3.1.14)

Therefore, a three, four impulse sequence can be easily found to be

22+ 2kz + k2

- 3.1.15
37 2(1+ 2k + &9 ( )

4= 23 +3k22 + BkZZ +k3 (3.1.16)
23(1 + 3k +3k2 + £3)

A higher-order impulse filter gives greater robustness to inaccurate natural frequency and
damping ratio identification. This has been demonstrated in [39] as shown in Figure 3.4

and Figure 3.5 for robustness to uncertainty in the natural frequency.

Figure 3.4: Residual vibration vs. system natural frequency for three systems
with { = 0,0.05,0.2 excited by a three-impulse sequence [39]
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Figure 3.5 Residual vibration vs. system natural frequency for three systems

with { = 0, 0.05, 0.2excited by a four-impulse sequence [39]
Figure 3.4 shows the residual vibration excited by a three-impulse sequence as a function
of the system natural frequency for three systems with damping ratios { =0, 0.05 and 0.2.
Figure 3.5 shows the residual vibration excited by a four-impulse sequence as a function of
the system natural frequency for three systems with damping ratios { =0, 0.05 and 0.2.

Damping ratio robustness was shown in [39] via Figure 3.6 that compares two-, three-

and four-impulse sequences.

Residusi Vibration
(% of Move Distance)
02 ’-
Two impuise Sequence
—— -Thies impuise Sequancs
Q1§ [ | e Four impulse Sequence
ol

0.05
\/ -
o — — AR X o~ - ==
Expecied

Figure 3.6 Residual vibration vs. damping ratio for two-, three- and four-impulse
inputs with { = 0.05 [39]



The most obvious shortcoming of an input shaping pre-compensation scheme alone is its
open loop nature. That is, with such a scheme there is essentially no robustness to external
disturbances, and little effective robustness to modeling uncertainties. On the other hand,
input-shaping control has been shown to be an effective method for eliminating vibrational
motion in small angle movements. In these movements, the frequencies of the vibrational
modes do not vary greatly during the course of motion, making it possible to design
impulse sequences for nominal operating point frequencies. For larger angle movements,
however, the frequencies of the modes of vibration can vary significantly, and complete

elimination of oscillations is not possible.

In our controller design, the proposed inverse dynamics control results in dynamics that
are close to those of linear system for each joint locally. The torque to tip vibration transfer
function is approximately independent of other link motion [23]. This reduces the depen-
dence on configuration and allows off-line vibration frequency identification for excitation
of each joint. The identified dominating vibration frequencies along the task trajectories
can be used to update the shaping filter along the task trajectory [SO]. Alternatively, a
higher (4th or 5th) order filter can be applied along the trajectories if the frequency varia-
tion does not exceed the robustness bandwidth (which is the case in our approach). How-
ever, zero residual oscillations will not be observed at the end of maneuver. This will be

solved by the pulse active damping algorithm described in Chapter 6.

3.2 Link Level Control with Rigid Model based Inverse

Dynamics Control

At this point, when we design the link level control to compensate for link flexibility, we
assume no joint flexibility. We apply inverse dynamics control which has been success-

fully used in rigid robot control.
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3.2.1 Inverse Dynamics Control

To control a rigid robot manipulator, by applying inverse dynamics control, one can easily
decouple the nonlinear dynamic system into a set of single-input, single-output linear sys-

tems.

Let the rigid manipulator dynamics be expressed as follows:

M(6))8,+C(0,6,)6;+ (6, = T, (3.2.1)
where 0, denotes the joint position at the link side and T, the delivered joint torque at the

link side. The idea of inverse dynamics control is to seek a nonlinear feedback control law
T, = F(8,0) (3.2.2)

which, when substituted into (3.2.1), results in a linear decoupled closed-loop system. For
general nonlinear systems such a control law may be quite difficult or impossible to find.

In the case of the manipulator dynamic equation (3.2.1), however, the problem is actually

easy. If we choose the control T; according to the equation

T = M(8)V +C(8,08)0;+ () (3.2.3)

then, since the inertia matrix M(0 1) is invertible, the combined system (3.2.1) and 3.2.3)
reduces to

6=V (3.2.4)
The term V represents a new input to the system which is yet to be chosen. (3.2.4) is
known as the “double integrator system” as it represents n uncoupled double integrators

for the n joints of the manipulator. The nonlinear control law (3.2.3) is called the “Inverse

Dynamics Control” or “Computed Torque Control” and achieves a rather remarkable

result, namely that the “new” system (3.2.4) is linear, and decoupled. This means that each

input V; can be designed to control a scalar linear system. Moreover, assuming that V; is
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a function only of 6; and 0;, then V; will affect the 8, independently of the motion of

the other links.

Since V; can now be designed to control a simple linear second order system, the obvious

choice is to set
V = 84+ky(04—61) +k,(8,-6)) (3.2.5)

where 8, is the desired tracking trajectory. Then the tracking error
e(t) = 6,-6, (3.2.6)
satisfies

é(t) +kyé(t) +kye(t) = 0 (3.2.7)

An obvious choice for the gain matrices kp. kg is

= di 2 2 2
k, = diaglof, 03, ..., 02]

kd = diag[zml, 20)2, ceoy 20.)"] (3.2.8)

which results in a closed-loop system which is globally decoupled, with each joint

response equal to the response of a critically damped linear second order system with nat-

ural frequency ;.

Practical implementation of the inverse dynamic control law (3.2.3) requires both the sys-
tem parameters in the dynamic model of the system be known precisely and the complete

equations of motion be computable in real time.

Practically speaking, there will always be inexact cancellation of the non-linearities in the

system due to model uncertainty and computational round off.
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3.2.2 Application of Inverse Dynamics Control for a Flexible-Link

Manipulator

By adding the friction term in (1.2.3), let us write the equation for a flexible-link manipu-

lator dynamic model:

Mr Mc él + Cr Cc él + 00 eI + f[(el) = Y 329
McMe 8 CcCe 8 OKB 8 0 0 (.)
where 8 denotes the elastic coordinates.

The presence of the elastic variables § makes it impossible to use exact inverse dynamics
control for flexible manipulator. However, if the elastic effects in (1.3) are small compared
to the rigid motion, (which is the case in this design because of the slow maneuvering
speed), the elastic effects can be treated as model uncertainties or disturbances. The sys-
tem can then be controlled by a rigid model based inverse dynamics controller, i.e., the
inverse dynamics corresponds to the manipulator rigid dynamics only. Some works [23],
[21] has shown successful control designs for flexible-link manipulators using inverse
dynamics control based on reduced-order or rigid dynamic models only. This approach is
adopted in this thesis.

We rewrite the upper part of (1.3) which is associated with the joint states:

M 8i+C,0+ M3 +C5+f(8) = 1, (3.2.10)

Next, we define

n(8.8,8) = MB+cC.b (3.2.11)

and design the nonlinear control law based on the manipulator rigid dynamics
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T, = MA(8)V + T8, 68, + F(6)) (3.2.12)

where, A?,, C r denote the terms corresponding to M, and C, in the rigid dynamic model.

We can define the model error as

~

AM, = Mr—M, AC, = (Cr-C,)8, Af, = Fr-f,

thus 6, can be expressed as

61 = MMV + M;\(AC, +Af,) - M;'(5, 6, §)
= V+(M;\M, —I)V + M71(AC, + Af, -1(8, 6, §)) (3.2.13)

With (3.2.5), we can write the above equation for the error e(z) = 0 -9, as

&(t) + kye(t) + ke(t) = (M;IM, -V + M7Y(AC, + Af, —1(8, 5, 5))

= (MM, - 1)[6, +k (84— 6;) + k,(8,-8,)] + M71(AC, + Af,-n(3, §, 8))

(3.2.14)

The closed-loop system (3.2.14) is still a coupled nonlinear system since the right side of
(3.2.14) is a nonlinear function of both rigid variables and elastic variables. Therefore, it is
not obvious that the system is stable. The following aspects will help to increase the stabil-

ity margin:

(1) The rigid model is accurate, i.e. AM,, AC, and Af, are sufficiently small;

(2) V is sufficiently small, which implies that 84, kp’ k4 should not be large;
p

(3) Most important, for a flexible manipulator, 1(8, 8, 8) in (3.2.11) should be suffi-
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ciently small.

The first two conditions can generally be satisfied by accurate modeling and smooth trajec-
tory planning. The last assumption will depends on the excitation level of the flexibility in
the system. There are two facts in our work which satisfy these conditions. They are:

(1) Slow maneuvering speed is required in space tasks for safety and precision;
(2) A smooth trajectory (5th order polynomial trajectory) is used in trajectory generation;

(3) A signal pre-shaping filter is applied on the desired trajectory which effectively reduces

the vibration effects as well as 1(3, 5, §).

3.3 Simulations

Three computer simulations have been done to demonstrate the design idea described

above. The proposed control structure is shown in Figure 3.7.

v-«un

0= ars¢bt‘4-a3

M(e,)[édof "4(94‘91) +kp(ed-e,)
+ L‘(er 9,)9, = tl

Figure 3.7 Rigid body based inverse dynamics control structure
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Simulation with Rigid Inverse Dynamics Link Control (no Pre-shaping)

Around configuration A (refer to Figure 2.5), a slewing motion during which the first three

joints move T rads in 12 seconds using inverse dynamic control is simulated. The com-
J 3 g

manded trajectories are not filtered.

(1) Without payload: The results are plotted in Figures 3.8.a-c for end-effector errors in the
X, Y and Z directions respectively. Figure 3.8.d shows the Joint errors, Figure 3.8.¢ gives
plots of the first “in-plane” and “out-of-plane” elastic mode coordinates for links 2 and 3.

(2) with 500K g payload. The results are plotted in Figure 3.9.a-c, for end-effector errors in
the X, Y and Z directions respectively. Figure 3.9.d shows the joint errors, Figure 3.9.¢
gives plots of the first “in-plane” and “out-of-plane” elastic mode coordinates for links 2
and 3.
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4. 2p
0

S CY S S S
1] 5 Wime (Jér’con d)ZU 25 0 5 1?_m (gtzscon d)20 25
Figure 3.8.a No pre-shaping, no payload, Figure 3.8.b No pre-shaping, no payload,
end-effector deflection along X end-effector deflection along Y
: ' x 107
(m) 0015} 5 - o o i e e (rad) T : ; T
[ \'_‘
0.005L)... .. \. ot AAEL A A
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I f :
-0.01} - R R ' : \]'Oll'lt?) . ' :
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Figure 3.8.c No pre-shaping, no payload, Figure 3.8.d No pre-shaping, no payload,
end-effector deflection along Z first three joint errors
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Figure 3.8.e No pre-shaping, no payload,
“in-plane” and *“‘out-of-plane” elastic states
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Figure 3.9.a No pre-shaping, S00Kg payload,
end-effector deflection along X

(m) 0.1
0.08
0.06} |-
0.04
0.02

=004} - e X
-0.06

0 5

i 1;5 i "
W'ime (seccmt:l)20 s

Figure 3.9.c No pre-shaping, S00Kg payload,
end-effector deflection along Z
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0 5 1Q’ime (sllescond)zo i

Figure 3.9.e No pre-shaping, 500Kg payload,
“in-plane” and “out-of-plane” elastic states

Comparing these simulation results, one can easily see that the residual vibrations for the
case with the payload are much larger than for the case without payload. A larger payload
introduces larger elastic deflection of the system, and because the structural damping of
the elasticity is very small, around 0.001, larger residual vibrations occur at the end of

slewing.

Simulation with Rigid Inverse Dynamics Link Control and Trajectory

Pre-shaping

In this simulation, with the same maneuvering task and the same link control as above for

the 500K g payload, the joint trajectories are passed through a three-impulse filter.

The filter is designed based on the vibration frequency identification results in Table2.2-
2.4. The simulation results are plotted in Figure 3.10.a-c for the end-effector errors in the
X, Y and Z directions. Figure 3.10.d shows the joint errors, Figure 3.10.e gives plots of the

first “in-plane” and “out-of-plane” elastic mode coordinates for links 2 and 3.

Clearly, by filtering the trajectories with the impulse pre-shaping filters, the most dominant
vibration frequency component is filtered out from the trajectory and therefore the vibra-
tion excitation of the system is much less than that without pre-shaping (Figures 3.8 and
3.9).
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Figure 3.10.a With pre-shaping, 500Kg payload,
end-effector deflection along X
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Figure 3.10.c With pre-shaping, S00Kg payload,
end-effector deflection along Z

Figure 3.10.e With pre-shaping, SO0K¢g payload,
“in-plane” and “out-of-plane” elastic states
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Chapter 4

Flexible-Joint Control

4.1 Perturbation Techniques

In [9], a new control methodology was developed for robotic manipulator with flexible
Joints using perturbation techniques. Considering the simplicity of this method and the
slow speed requirements of the RMS, we have adopted this approach for our controller

design.

The flexible-joint mechanism is shown in Figure 4.1 with a unity gear ratio, i.e.,, N = 1.

Later, the control design will be extended to deal with non-unity gear ratio. The joint flexi-
bility is modeled as a spring with a constant stiffness K.

Stiffness K

Motor Gear Ratio N

Gear

Figure 4.1 Flexible-joint model
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The dynamics of a rigid-link manipulator can be written as

M(8,)6,+C(8,,6)8,+ f,(6,) = K(6,,-96) (4.1.1)
and by neglecting the shaft friction, the servo shaft dynamics can be written as
Jmé,,.—K(e,-em) =1, 4.1.2)

The friction effect will be compensated by adding an extra term as shown in (4.1.29). In

(4.1.1) and (4.1.2), M denotes the manipulator inertia matrix, f ; the joint friction, K the
Joint stiffness, J,, the motor shaft inertia, 6, 0, the shaft position and link side joint posi-

tion respectively and T, the motor shaft output torque.

The objective here is to design T,, so that the link torque K (8,,—6,) will follow the

desired torque profile (3.2.3) and (3.2.5) as designed in the previous chapter based on rigid

inverse dynamics control as repeated here:

T, = M(8)V +C(0,0,)8,+ f,(6,) (3.2.3)

where

<
]

04 +ky(84-8;) +k,(6,-8)) (3.2.5)

In [9], it was shown that if the shaft output is in the form
T = €2k1[0,—0,, +u,,.(0, 0] +e1k,[6;—6,,] (4.1.3)
where €> 0 is the so-called singular perturbation parameter which is sufficiently small

T
and u,, = 1?1 we can re-write the (4.1.1) and (4.1.2) as
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M(6,)6;+C(8,, 08+ f,(6;) = K(D,,—6)) (4.1.4)

TmOm~K(8;-86,) = e2k,[6,-0,, + uy, ] +eky[6,—0,,] (4.1.5)
Defining z = 6,—0,,, we have

T (B ~8)) + 7,8/~ Kz = &2k [z +uy,] +ehy2

T E+J01-Kz = e2k [z +uy, ] + e lkyz (4.1.6)

Equations (4.1.4) and (4.1.5) become
M(8)8;+C(8,0,)8,+ f,(6;) = Kz 4.1.7)
Im€2 2 +ekyi+kyz = —kyuy, —eX(Kz—J, 0)) (4.1.8)
The system of (4.1.7) and (4.1.8) is singularly perturbed. The variables zand 7 have the

interpretation of “fast” variables, whereas the link variables 8, 6; are “slow” variables.

Using standard results from singular perturbation theory [26], we may approximate the
system (4.1.7) and (4.1.8) by using a quasi-steady-state system and a boundary-layer sys-

temn as follows. With € — 0 (4.1.8) becomes

kiZ = kb, 4.1.9)
where the overbars indicate that the variables are defined ate —0.

The quasi-steady-state system can be expressed as
M(8))81+C(8;, 8081+ £,(Br) = —Kn,,, (4.1.10)
and the “fast” and “slow” variables can be written as functions of the slow time scale ¢ and
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fast time scale T

2(2) = 2(1) +N(T) + O(e) (4.1.11)

8,(t) = 8,(¢) + O(e) (4.1.12)
O(&) denotes terms of order € or higher, fast time scale T = é
To find the boundary layer, we have
dz _ _dz dz _ 2d z
- = a2 di2 (4.1.13)

dt dt
So that (4.1.8) becomes

ldz ldz ..
(Ezd 2)'*' S(Ed )+ klZ = kludes—ez(l{z—.lmﬂ[) (4.114)

Substituting z(¢) = z(¢) + n(T), equation (4.1.14) can be written as

(4.1.15)

31
Tns = +k2? N+ k2 = ~kyuy, —e2(Kz—J 6))

With € — 0, equation (4.1.15) yields
4.1.16)
a
Insa =1 +kzgt“ +km = 0.
Defining @4.1.17)

Y1 =My, = %,

N satisfies the following boundary layer system which is exponentially stable
o o L (4.1.18)
¥, "’;:Ikl —J;xlkz Y2
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To extend the results to systems with gear ratio N, we modify the dynamic equations

(4.1.1) and (4.1.2) to

M(8)8:+C(8,, 006, + f,(8;) = NK(0,,—0,N) (4.1.19)
JnOm = T,,—K(8,,—ON) (4.1.20)
Then we define some new variables:
-0, _
Om = < Tm = TN (4.1.21)
Jm=J,NLK = KN? (4.1.22)
Equation (4.1.20) becomes
JBmN = T, —K(NB,,—8,N)
JmNzém = 'cmN—KNZ(ém—G,) (4.1'23)
JiN%m = T, ~KN%(8,,~0))
We can now re-write the systemn dynamics (4.1.19) and (4.1.20) as
M(8))8;+C(8,6)6,+ f,(8;) = K(6,,—86)) (4.1.24)
(4.1.25)

Jbm = T~ K(6,—0))

which is in the same form as (4.1.1) and (4.1.2). Therefore, we can obtain the perturbation

flexible-joint control similar to (4.1.3) as
~ ky = T\ ky . =
T, = —(6,-9,,,-&-[?)4- -e-[e,—e,,.] (4.1.26)

where T, is defined in (3.2.3) which is the desired link joint torque at link side. Defining

ky k,
k k, = —= (4.1.27)

PP 227V T e
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and with equations (4.1.21) and (4.2.22) we have

kpp(e, i +N—2K)+k [e,-—]

Tn =

] kpp(Ne, 0, +_L NK)+ k, [0V - 6,,] 1o
- s 1.

To compensate the motor shaft friction, we add a friction compensation term in (4.1.28)

and obtain

T
(NO, o, + K)+k[91N Ol

T, = N + fm(em) 4.1.29)

4.2 Simulations

At this point, the RMS model was adjusted to incorporate joint flexibility. The simulation
was carried out around configuration A (refer to Figure 2.5) with an 800Kg payload. A

slewing motion during which the first three joints move through 18-t rads in 12 seconds is

simulated with link inverse dynamics control and fiexible-joint perturbation control.

(1) No flexible-joint control

When no flexible-joint control is involved, the control is based on the inverse dynamics
control which assumes no joint flexibility. Joint position feedback is obtained from the
motor shaft side with gear ratio factoring. With the un-pre-shaped slewing trajectories, we
simulate the maneuver and plot the results in Figure 4.2.a-c for the end-effector errors in
X, Y and Z directions respectively. Figure 4.2.d shows errors for the first three joints, Fig-

ure 4.2.¢ gives plots of the first order “in-plane” and “out-of-plane” elastic mode coordi-

nates for links 2 and 3, and Figure 4.2.f shows the gear deflection N© 1—6,,-
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(2) With flexible-joint control

This time around the same configuration and with the same link control parameters as

above, the addressed flexible-joint control algorithm is applied with k,, = 8x 107 and
k, = 5x 103 which are tuned by observing the simulation results and by noting that

larger kpp and k,lead to lower joint error but reduce the system stability margin. The

simulation results are plotted in Figure 4.3.a-c for the end-effector errors in X,Yand Z
directions respectively. Figure 4.3.d shows errors for the first three joints, Figure 4.3.e

gives plots of the first order “in-plane” and “out-of-plane” elastic mode coordinates for

links 2 and 3, and Figure 4.3.f shows the gear deflection N9, — 0,.

We find with flexible-joint control, the residual end-effector position errors were not
improved significantly because the link vibrations dominate. But clearly, with flexible-
joint control, all end-effector position errors, joint errors during maneuver have been
improved significantly. The flexible-joint control indeed isolates the joint flexibility effect
from the other control problems such as link control. The residual vibrations can be
reduced by applying pre-shaping on the trajectory as being addressed in Chapter 3 and
completely damped out by the Active Damping Control which will be addressed in Chap-

ter 5.
(m) 415 N SN - (m) 0.15
X ] S SR - 0.1
: § § 0.5
[+ 1115 S ...... O Rt -]
: ' 0
0 )f SR Y SSUURTEUU WU OO SRS SO W .
-0.05
005bcei MV 04 : ; :
0 10 15 20 :
Time (second) 0 Timé%second;s 20
Figure 4.2.a No flexible-joint control Figure 4.2.b No flexible-joint control
End-effector error in X direction End-effector error in Y direction
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Figure 4.2.c No flexible-joint control
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Figure 4.2.e No flexible-joint control
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Figure 4.3.a With flexible-joint control
End-effector error in X direction
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Figure 4.3.c With flexible-joint control
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Figure 4.3.e With flexible-joint control
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Chapter 5

Pulse Active Damping

One of the challenging control problem for RMS is that of controlling the residual
vibrations. Due to its low structural damping, a large part of the RMS operation time is
expended in waiting for the residual vibrations to die out. As we mentioned in Chapter 3,
an efficient method developed recently for handling such vibrations is the input pre-
shaping method which was developed in [39]. Several researchers [34] [30] have
improved upon this in order to overcome some restrictions and shortcomings of the
method. Two of the major restrictions are that the pre-shaping filter is mainly designed
for open loop application, and the performance of the pre-shaping filter depends on

accurate knowledge of the system’s natural frequencies.

In our flexible-link control approach, we apply Singer's pre-shaping method on the
desired trajectory in order to filter out most of its vibration exciting components.
However, for a task with large configuration variations, inevitably the system natural
frequencies will vary along the trajectory. Complete vibration filtering can therefore not

be achieved, i.e., zero residual vibrations will not be observed at the end of the motion.

In this chapter, an additional control algorithm called “Pulse Active Damping” is

developed. This control scheme is activated after the system reaches the final
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configuration and its function is to rapidly damp out the residual vibrations.

3.1 Pulse Active Damping

When the RMS reaches its final configuration with non-zero residual vibrations, one can
measure the magnitude of the end-effector tip vibrations using data from the cameras

mounted on the RMS. We can model the tip vibrations by a sinusoidal function

Xlip = 9te‘§“’°‘sin(cot—¢) = Ae=50f sin(®t) +Be‘§‘°°‘cos((ot) (5.1.1)

where @, is the undamped natural frequency and @ is the damped natural frequency

® = @yl -E2

Because the first order vibrations generally dominate and the higher order vibrations are
damped out more rapidly by the relatively larger structural damping, the second- and
higher-order vibration terms are neglected. This is especially true for a slow-motion
maneuver of a typical RMS task. However, the proposed pulse control approach is not
restricted to handling single frequency vibrations only. The same control can be designed
to handle higher frequency vibrations if the higher-order vibrations can be identified.

We can assume the damped system natural frequency ® and structural damping & at the
final configuration are available via online system identification [20] using camera data

or are known a priori via off-line computer simulation. During on-line control, we can

identify the parameters in (5.1.1) by measuring tip displacement X tip - Assuming that

the tip displacement is measured at several sample times ¢,/ = 0, 1, ..., n,and tg =0,

we have

Al _ (wTy\-1wTy
[B] = (PTY) 19y 5.12)
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where
0 1 X,;5(0)

"P= ; S ,Y:

e—émot,.sin (ot ) e—émot,.cos () Xgip(t,)

Suppose a torque impulse with magnitude P produces tip displacement

X, = Qe ~tsin((z ~t,)) t>t, (5.1.3)
Then, in order to activate an opposite cancelling vibration, we can apply an impulse at
t=1t, = n:_; ¢_ t, with magnitude equal to
K I etodt ) (5.1.4)

2+ ¢

if ¢,>1t,, otherwise we can apply an impulse at ¢ = t, = —t; with magnitude
equal to

_KS%Pe—éwo(t. +1,) (5.1.5)

where K is a gain factor which is less than 1 and is used to ensure that no over

cancellation occurs.
. T+ 0 . .
If K, =1, and we apply an impuise at ¢ = t, = —w——td , the cancelling tip

vibrations excited by the impulse can be described by

Xlip = RS0t + 'a)e-gmo(’ =l =1y) sin{(w(z - ty—14)

= SRe"i%’sin(m(t— 1—%")) = 9{e'§"’°’sin(mt—¢ —T) > t,+ td

(3.1.6)

This has 180° phase difference with the original vibrations (5.1.1), i.e., complete tip
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vibration cancellation is achieved at ¢ = ¢, +¢ 4 and thereafter.

Perfect cancellation with one impulse application will only occur if we have perfect
knowledge of the fundamental natural frequency of the system, damping ratio, transfer
function gain and perfectly accurate sensor measurements. However, in practice, we

generally do not expect the residual vibrations to be damped out with one impulse

application. Instead, we set the safety gain K s to less than 1. After the first impulse

application, we should observe decaying tip vibrations due to the cancellation of
vibrations. After a suitable time, we can repeat the above process and decide on the next

impulse application to further damp out the residual vibrations.

The transfer function gain G, = % from the input pulse to the tip displacement can be

obtained by an off-line simulation before operation and it is not required to be very

accurate since we always use a conservative control effort, i.e., K s<1 for safety

reasons.

5.2 Robustness and Two-pulse Control

To improve the robustness of the pulse control to the system natural frequency, we

modify our one pulse control algorithm to a two-pulse control algorithm. We apply the

firstimpulseat ¢ = ¢, = TL;;—q)—td with magnitude equal to
2Kf%’e-€°’o('ﬂ *ia) (5.2.1)
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2+ ¢

and the second impulse at ¢,, = —t, with magnitude equal to

nggeimo(‘a*‘a’ (5.2.2)
. . : 2n+¢ .
if t, >t, , otherwise we apply the first impulse at s = ta = —t, with
magnitude equal to
2K Ee'éwn(lal +1,) (5.2.3)
*Q
and the second impulse at ¢ = ¢, = ?’—nmlq—td with magnitude equal to
RP —Lwy(1,, + 1) (5.2.4)

K

The modification here from a one-pulse scheme to a two-pulse scheme is conceptually
equivalent to Singer’s extension of two-pulse pre-shaping to three-pulse pre-shaping
[39]. Robustness to uncertainty in the natural frequency will be verified by a simulation

shown later in this chapter.

5.3 Implementation

In practice, it is always a problem for a servo to produce discontinuous torque. To
implement the control algorithm described above, we make a modification by using
sinusoidal pulses to activate cancelling vibrations instead of impulses. In our control

design, because we apply inverse dynamics control, it is easy to produce a sinusoidal like
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continuous pulse torque profile by commanding the joint to follow an acceleration
trajectory

a = KsGi‘m(l _cos(tiZn)) (5.3.1)

w

where ¢,,is the pulse width which should be much smaller than the first-order vibration

period, but not close to any higher-order vibration period; R is the measured tip

0

vibration magnitude and G, = P is the transfer function gain from the commanded

acceleration to the tip displacement.

As mentioned above, the transfer function gain G, can be obtained off-line by a
computer simulation. In our simulation, we set up the RMS at the final configuration of
the task, i.e. Configuration C (Figure 2.7) carrying a 5000 Kg payload. Inverse dynamics
control and flexible-joint control are implemented, and we apply a commanded joint
acceleration in shoulder yaw and shoulder pitch as shown in Figure 5.1 while the other

Joints are locked.

t
a= 0.005(1 —cos(mmt))

0.012

(m/sz)
0.0

0.008f -/

0.006

0.004

0.002 - /

0

0 LY 15 2 25
Time (second)

Figure 5.1 Sinusoidal-type pulse function
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Figure 5.2 End-effector “in-plane” Figure 5.3 End-effector “out-of-plane”
displacement displacement

We observe the “in-plane” and “out-of-plane” tip displacements shown in Figure 5.2 and

Figure 5.3, and simply calculate the gain G, as:

Table 5.1 Transfer function gains

in-plane 2.78 0.36
out-of-plane 2.22 0.44

For the RMS, the link vibrations can be separated into in-plane and out-of-plane
vibrations as described in Chapter 2. Both shoulder pitch and elbow pitch joints can
excite the in-plane vibrations. It is not straightforward to design an algorithm to excite
cancellation vibrations at the end-effector by applying impulses from both joints
simultaneously. But if we only apply an impulse at the shoulder pitch joint while keeping
the elbow pitch “locked”, then the problem is simplified to that for a single link. Due to
the limitation on the brake torque of the RMS, we apply a control (servo) lock instead of
a brake lock. The elbow is “locked” by commanding zero motion, i.e. zero velocity, zero

acceleration for this joint.
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5.4 Simulations

To demonstrate the efficiency of the pulse active damping control algorithm and the
robustness of the two-pulse control scheme, several computer simulations were carried

out.

The task to be accomplished is as follows: The RMS with a 5,000 kg payload starts from

configuration C and executes a small maneuver, where the shoulder yaw, shoulder pitch

and elbow pitch joints rotate % in 2 seconds. No signal pre-shaping is applied in this

simulation.

Without pulse active damping, the first simulation was carried out to demonstrate the
residual vibrations after the end of motion at t=2 seconds. Figures 5.4.a and b show the
“in-plane” and “out-of-plane” end-effector displacements. Due to the system structural
damping ratio (§=0.001), it is not surprising that the less damped tip oscillations last

for a long time after the maneuver has been completed.

( )sxm" (m) 5x10'°
m T T " " T Y

sL. . R v ] S
& 0 10

0
10 Time (zsgcond) 30

Time (zs?:cond)
Figure 5.4.b No pulse active damping

Fi 4.a N i i
'gure 5.4.a No pulse active damping End-effector “out-of-plane” deflection

End-effector “in-plane” deflection

Next, we are going to apply active pulse control in several situations. The gain factor K

is set to 0.75, i.e. here we apply only 75% effort in cancelling the vibration. For

comparison, pulse control is applied only once on the residual vibration. For practical

71



implementation, we can always re-measure the residual vibration, and decide the next
application of control pulse. And this repeating application approach is adopted in next

Chapter.

The second simulation was done with one-pulse control assuming that the damped
system natural frequency and damping ratio at the configuration are known to be
approximately 0.8267 rad/sec and 0.005 respectively, while the true values are

® = 0.8055 and @ = 0.8378 for shoulder yaw and shoulder pitch respectively. Figure
5.5.a and Figure 5.5.b show the “in-plane” and “out-of-plane” end-effector
displacements. Around 65-75% of residual vibrations have been damped out by single
one-pulse control application. They show the effectiveness of pulse active damping in

controlling residual vibrations.

-3

15 20 25
“?me (secona) 0 5 IHme (sect‘:rs;d) 20 25
Figure 5.5.a One pulse active damping: Figure 5.5.b One pulse active damping:
end-effector “in-plane” deflection end-effector “out-of-plane” deflection

The third simulation was done with one-pulse control, but assuming that the damped
system natural frequency and damping ratio at configuration C are not known precisely,

where the estimated damped system natural frequency and damping ratio are

® = 1.047 rad/sec and € = 0.01 respectively, i.e., there is more than 20% error in the

estimated system frequency for both joints. Figure 5.6.a and Figure 5.6.b show the “in-
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plane” and ‘“out-of-plane” end-effector displacements. With a larger error in the
estimated system frequency, the one-pulse control does not behave as well as desired,
only 30-35% of residual vibrations have been damped out.

(m) xIO-a v v v v v (m)4x10‘3. .......... e ——— r—
: : : : : 5 : : : : :
2
1
o]
-1
-2
-3
-4
Y A R e P H -50 2 = i =5 5
o] 5 ﬂpn o (se c'osn ) 20 25 'Iilme (second)
Figure 5.6.a One pulse active damping with Figure 5.6.b One pulse active damping with
20% error: End-effector “in-plane” deflection 20% error: End-effector “out-of-plane” deflection

The last simulation was done with a two-pulse control, using the same values as in the
third simulation, i.e., 20% error in the damped natural frequency. Figure 5.7.a and Figure
5.7.b show the “in-plane” and “out-of-plane” end-effector displacements. 65-70% of
residual vibrations have been damped out, which give the similar performance as the one-
pulse control without error in natural frequency. This shows the improved robustness of
the two-pulse control algorithm.
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Figure 5.7.a Two pulse active damping with Figure 5.7.b Two pulse active damping with
20% error: End-effector “in-plane” deflection 20% error: End-effector “‘out-of-plane” deflection
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5.5 Experiment

An experiment to demonstrate the one-pulse active damping control strategy was carried
out on a TITAN II manipulator holding a highly flexible beam as shown in Figure 5.8.
The wrist yaw joint is used to excite beam vibrations and to control the vibrations. The

vibrations are measured by the accelerometer attached to the end of the beam.

The beam is first excited by a horizontal motion induced by a wrist yaw pulse as shown
in Figure 5.9.a. The resulting tip acceleration is plotted in Figure 5.9.b. It shows that the
dominant first-order vibration frequency is around 3.43 rad/sec and the damping is close

to zero.

Wrist Yaw

—Hg

Accclirometer

......

TITAN II Manipulator

L |

Figure 5.8 Manipulator used for the experiment
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Figure 5.9.b Tip acceleration

Next, we performed another experiment by commanding the wrist yaw joint to produce a

cancelling joint motion pulse following the first exciting pulse as shown in Figure 5.10.a.

The two pulses are separated by one and half times the period of the natural vibration,

i.e. 2.75 seconds. The magnitude of the second pulse is about 90% of the exciting pulse.

The measured acceleration of the tip vibration is plotted in 5.10.b which shows that the

dominant tip vibration has been successfully damped out.
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Figure 5.10.a Joint pulse motion
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Figure 5.10.b Tip acceleration



Chapter 6

Design Example

In this chapter, control strategies discussed in previous chapters are applied in a controller

design example. The integrated control architecture is shown schematically in Figure 6.1.

The task is separated into two parts. Part I of the task for this design is to maneuver the
first three links of the RMS with a 500Kg payload from configuration A to configuration
B. Part I consists of transporting a 5,000Kg payload from configuration B to configura-

tion C.

Table 6.1 Task description

Joint ts,=0 topa = 18 tp =0 Lona = 18
sec sec sec sec
Shoulder Yaw 0 T yi4 T
(rad) 2 2 4
Shoulder Pitch 0 21 2% (4
(rad) 3 3 3
Elbow Pitch 0 2 2% |4
(rad) 3 3 2
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The second part of the task is intended to accelerate RMS fast enough to excite large end-
effector vibrations. Pulse active damping is applied to damp out the residual vibrations,

and its performance is demonstrated.

6.1. Trajectory Planning

A Sth-order polynomial trajectory is calculated to satisfy the desired start and end point
positions for each joint as defined in Table 6.1, in addition to the velocity and acceleration

constraints of the start and end points:

6o = 0 rad/s 6g = O rad/s?

Oena = 0 rad/s 6,,; = O rad/s?

L

The resulting trajectory is of the form ©.1.D
0(t) = at’+bth +ct3 + 8, 6.1.2)

where the coefficients a, b, ¢ are given in Table 6.2.a and b for Part I and II respectively

Table 6.2.a Part I: Sth-order polynomial trajectory coefficients

2 o

oS

Shoulder Yaw 0.4988 x 105 | -0.2245 x 103 | 0.2693 x 10-3

Shoulder Pitch 0.6650 x 105 | -0.2993x 1073 | 0.3591 x 10-3 0

Elbow Pitch -0.6650 x 107 | 0.2993 x 1073 | -0.3591 x 103 0

Table 6.2.b Part IT: 5th-order polynomial trajectory coefficients

/@ .. z .":'~ e % s ', .-.J;; R ." ':. fs.:- & At SRR, ..:f‘. ;;S».:b‘ rielalelolololele] | e
Shoulder Ya -0.2494x 107 | 0.1122x 103 | -0.1347 x 102 T
2
Shoulder Pitch -0.3325x 103 | 0.1496 x 103 | -0.1796 x 10-2 2n
3

78



6.2 Pre-Shaping Filter Design

The design of a pre-shaping filter requires knowledge of the structural natural vibration
frequency. We separate the joint work space for each part of the task into four equal
regions and measure the impulse response (as in Chapter 2) for each of the first three

Joints. The results are given in Table 6.3.a for the Part I (A to B) and in Table 6.3.b for

Part [T (B to C).

[’f x o 1.8 1.99 2.51
86 6]
[E T 1.5% 2.16 2.68
47 ’ 3J
[3_1: T 2.33 2.56 2.95
8’2" 2]
[E 2n _2_1!:] 2.24 2.96 1.5%
223’ 3
Averaged 2.22 24 2.64

* data which are dropped off when averaging because they are away from most of the
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others.

g the trajectory from B to C

R

[E 2_11: _2_,;] 1.047
2 3 2 3
xt 7t 15% 0.8976 1.142 1.186
16’6’ 24]
6T T 7T 0.8727 1.047 1.083
[ﬁ’ 2’ Tz]
ST St 131 0.8055 0.8976 1.065
[13’ 12’ 24]
T T T 0.8055 0.8378 1.030
4’3 —5]
Averaged 0.8558 1.034 1.0822

In the first part of the simulation, we use the “averaged” vibration frequency along the tra-
jectory to design the pre-shaping filter. For the second part of the task, we demonstrate the
effectiveness of the pulse active damping algorithm by taking the estimated vibration fre-
quency at the final configuration C in designing the pre-filter instead of using the aver-
aged frequencies calculated in Table 6.3.b.

Since the vibration frequency varies along the trajectory because of configuration
changes, we require the pre-shaping filter to have some degree of robustness [39], [30].
This can be achieved by increasing the filter order, i.c., the number of impulses or by
using multi-impulse filters. We use a three-impulse sequence for the first part of the task
and a four impulse sequence for the second part of the task. The filter coefficients are
listed in Table 6.4.a for Part I and Table 6.4.b for Part II.
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Table 6.4.a Three impulse filter coefficients
for Part I

.... At 1.4152 11901
A 0.2579 0.2579 0.2579
A, 0.4999 0.4999 0.4999
A, 0.2422 0.2422 0.2422

Table 6.4.b Four impulse filter coefficients
for Part IT

At 3.0501

Ag 0.1280 0.1280 0.1280

A, 0.3779 0.3779 0.3779

A, 0.3720 0.3720 0.3720

A, 0.1221 0.1221 0.1221
6.3 Link Control

In the simulation, the gain factors k, and k, in the inverse dynamics control are tuned

via simulations to obtain the final values listed in Table 6.5. The values of k. k, are kept

small in order to avoid system instability. In particular, when the flexible links start mov-
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ing, the velocity and position errors can become large when the applied joint torque is cal-
culated based on a rigid model. Therefore, an experimental approach is to increase the

gains from zero at the beginning of the motion to the final desired value through a contin-

uous curve. For example, in task part II, kp» kg were adjusted according to quadratic

interpolation:

k, = 36-0.25(t-12)2 k; = 12-0.0833(r-12)2  t<12

6.3.1)

Table 6.5 Link control gains

ky 12 12 12

6.4 Joint Control

The gains constants kpp and k£, in (4.1.28) are also tuned by sirulations to obtain

v

the values listed in Table 6.6.

Table 6.6 Parameters for the ﬂemble-;omt perturbation control scheme
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Table 6.6 Parameters for the flexible-joint perturbation control scheme

14
Task kpp 1x 107 1x 107 1x107
Part I
k, 3x10° 3x 103 3x10°

6.5 Pulse Active Damping

One-pulse control is applied at the end of the motion for Part II. In Part I, due to the
heavier payload and fast motion, larger residual vibrations can be observed. The pulse

active damping control is necessary to rapidly damp out the residual oscillations. The

K
transfer function gain G, = % and safety gain K are set so that Es = 1.8 for shoulder
4

yaw and shoulder pitch control.

6.6 Simulation Results

Simulations were performed for the RMS using SIMULINK and the above specified con-

trol parameters.

Part I: With a 500Kg payload, moving from A to B, with friction compensation and with
three impulse pre-shaping designed using the averaged frequency along the trajectory.

The simulation results are plotted in Figures 6.2.a-c for end-effector errors in the X, Y
and Z directions respectively. Figure 6.2.d shows the errors in the first three joints, Figure
6.2.¢ plots the first-order “in-plane” and “out-of-plane” elastic mode coordinates for links
2 and 3.
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The simulation results show the efficiency of the integrated controller. Due to the small
residual vibrations, pulse active damping is not needed here. But for faster motion and
with a large change in the configuration such as that in Part I, pulse active damping

becomes necessary.

Part I: A 5,000 Kg payload, moving from B to C with a four-impulse pre-shaping filter
designed using the final configuration system frequency and applied on the 5th order
polynomial trajectory.

For comparison purposes, several simulations were carried out for Part II:

Case 1: Without signal pre-shaping and without pulse active damping

Only inverse dynamics con:rol and flexible-joint control were implemented. The simula-
tion results are plotted in Figures 6.3.a-c for end-effector errors in the X, Y and Z direc-
tions respectively. Figure 6.3.d shows the errors in the first three joints, Figure 6.3.e and
Figure 6.3.f plot the first-order and second-order “in-plane” and “out-of-plane” elastic
mode coordinates for links 2 and 3 respectively. Large residual vibrations can be seen in

these figures.
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Case 2: With signal pre-shaping, but without pulse active damping

The four-impulse signal pre-shaping filter was applied on the desired joint trajectories for

the first three joints. The simulation results are plotted in Figures 6.4.a-c for end-effector

errors in the X, Y and Z directions respectively. Figure 6.4.d shows the errors in the first

three joints, Figure 6.4.e and Figure 6.4.f plot the first-order and second-order “in-plane”

and “out-of-plane” elastic mode coordinates for links 2 and 3 respectively.
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As can be seen, the residual vibrations are much smaller than in the case without signal
pre-shaping applied to the trajectories, and only 20% of the residual vibrations are
observed. This shows the effectiveness of the signal pre-shaping algorithm. The remained
residual vibrations can still be observed, these can be damped out by pulse active damp-

ing control as the next simulation shows.

Case 3: With signal pre-shaping, pulse active damping

Pulse active damping control is activated at the end of the RMS maneuver to rapidly
damp out the end effector residual oscillations. The simulation results are plotted in Fig-
ures 6.5.a-c for end-effector errors in the X, Y and Z directions respectively. Figure 6.5.d
shows the errors in the first three joints, Figure 6.5.e and Figure 6.5.f plot the first-order

and second-order “in-plane” and “out-of-plane” elastic mode coordinates for links 2 and

3 respectively.
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After pulse active damping is introduced, the residual vibrations are damped out to negli-
gible level in about 3 vibration periods. The “spike” in Figure 6.5.d is introduced by the
application of the pulse active damping at this instant.

Case 4: Without signal pre-shaping, but with pulse active damping

To demonstrate the robustness of the pulse active damping algorithm to the magnitude of
residual vibrations, we applied the same control as in Case 1 (without signal pre-shaping),

where large residual vibrations were observed.
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The simulation results are plotted in Figures 6.6.a-c for end-effector errors inthe X, Y
and Z directions respectively. Figure 6.6.d shows the errors in the first three joints, Figure
6.6.e and Figure 6.6.f plot the first-order and second-order “in-plane” and “out-of-plane”
elastic mode coordinates for links 2 and 3 respectively.
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Even though the residual vibrations are almost 5-8 times larger than those in Case 3, the
same pulse active damping scheme is effective in damping out the residual vibrations in

less than 4 vibration periods.

Remarks

We have previously found that heavier payloads and faster slewing motions excite larger
end-effector oscillations, so that larger residual vibrations are observed at the end of the
maneuver. In this section, we have show that when the payload is light, for example,
500Kg, simply applying signal pre-shaping is enough to filter out most of the system
vibrations and no pulse active damping control is necessary. However, with heavier pay-
loads and greater system uncertainty, residual vibrations become larger and it becomes
more difficult to damp them out using the system’s structural damping itself. Pulse active

damping is effective in this situation.
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6.7 Graphics Animation

To demonstrate the simulation results in a 3D graphics environment, a graphics animator
was programmed using Open Inventor running on SGI workstations. The software is able
to animate all six joint motions as well as link flexibility as illustrated by the simulation

results of the previous sections.

Figure 6.7 and 6.8 show the front and rear camera views in Configuration C. The link
flexibility is of the order of 0.5 meter, in comparison with the link lengths of 15 meters:
its effect is invisible in the snapshots shown in Figures 6.7 and 6.8. It is visible, however,

in the actual animation.

Figure 6.7 Front camera view
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Figure 6.8 Rear camera view
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Chapter 7

Conclusions and Future Research

In this thesis, a dynamic model has been constructed incorporating the rigid dynamics,
servo dynamics, linear flexible-joint dynamics and flexible-link dynamics of the Remote
Manipulator System. In particular, the flexible-link dynamic model includes the coupling
effects of the link transverse and torsional vibrations between the two long links of the
RMS. The constructed model enable us to model and study the following major character-

istics of the RMS dynamics:
(1) Link flexibility and coupling effects of link vibrations.

(2) Low system natural frequencies.

(3) Varying system natural frequencies with varying payload and/or varying configura-

tions.

(4) Joint flexibility.
This model was used to propose a controller design for RMS and provide validation for it.

The aim of the controller design was to design a highly effective controller with low com-
putational cost for handling the vibrations in RMS motions. Three major components of

the controller are:

(1) Pre-shaping of the planned trajectories: It was shown that this approach successfully

filters out most of the vibration components from the planned trajectories, and as a result,
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residual vibrations are reduced significantly.

(2) Rigid body based inverse dynamics control: This control approach gives an “almost”
decoupled system, when the assumptions of good rigid model and low flexibility are satis-

fied.

(3) Pulse active damping control: This activates “opposing” vibrations to cancel out the
observed residual vibrations. As verified by experimental results and computer simula-

tions, this control approach can quickly damp out residual vibrations.

The essential characteristics of the dynamics agree with real test data obtained fro the
RMS.

The integrated control architecture was successfully tested on the RMS model. This con-
troller design which is efficient and easy to implement, leads to a lower end-effector vibra-
tions and rapid damping of residual vibrations. An experiment was carried out on a Titan IT
manipulator to test the control efficiency of pulse active damping. Our simulation results
for the RMS indicate that pulse active damping control can be applied to the RMS to sig-
nificantly reduce the waiting time for the residual vibrations to die out. A 3D graphics ani-
mator was also developed using Open Inventor on an SGI workstation to visually

demonstrate the simulation results.

There are a number of issues that were not addressed in this thesis or were addressed in a

limited way. These are as follow:

(1) The controller consists of a rigid-body based inverse dynamics control with additional
features to reduce / eliminate the effect of flexibility. In other words, flexibility effects have
been regarded as disturbance acting on an essentially rigid system. For the case of larger
link elasticity, such a approach will need to be modified.

(2) Application of PAD while damping out the low frequency vibration, may excite higher
order vibrations. Therefore, a variation of the PAD approach may be necessary which

applies band-limited pulses.

(3) Robustness of the PAD approach can be improved by incorporating an online scheme
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for estimating the system vibration frequencies.

(4) We have used linear models for joint flexibility. For greater accuracy, it would be nec-

essary to use nonlinear models.

The above issues are interesting and practically useful topics for further research in this

area.
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Appendix A

Kinetic Energy

In order to apply Lagrange’s equation (2.1) to derive the RMS link dynamic equations, we
need to determine the kinetic and potential energies of the system. The system kinetic
energy consists of translational kinetic energy and rotational kinetic energy, i.e.

Kroml =K

rotational +K translational

A.1 Translational Kinetic Energy

First, we are going to derive the translational kinetic energy.

With (2.3.1) the wanslational kinetic energy of a point mass on link i can be described as

dk; = 1me,{°h,.°h,.T} = %me,{ W h BT + 2% R T+ wih R wT }

2 U Bk A } [ 2 S ]

(a.1.1)
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In our case, with (2.3.2) and (2.3.3), for link i=2,3 we have

i

h; = |x, Zcpu(x)ﬁ,](t), Z¢,,(x)8,,(t), J (a.1.2)
L j=1

% = [o, Zlq;u(x)&,(t) Z¢,,(x)8.,(t), J @13)
b ]—

Ktranslauonal = ZJJ dk ZT {WB31W +2'WB21W1 +WB11wT}
i=1 i=1 (a.1.4)

where

I i, T
_ . ]
3
| li glq’u(x)slj(t) 3 6
=3l g 0 T ;080 X 0,080 ofar
: Jj=1 Jj=4
2 0;08;(0)
j=4
L 0 .
0 0 0 0
3 . 3 . 3 . 6 )
0 Y 0,5 095 X, 0,85 ) 0;;9; 0
=&‘JJ‘ j=1 j=1 ji=1 j=4 dx
2% : : . . (a.1.5)
0 > ;853 0,85 X 6,55 6,850 '
j=4 =1 ji=4 j=4
0 0 0 0

using the orthogonality relation
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1 1 1 i=
5]:¢c;(x)¢cj(x)uidr = i“-iI? ij Cij = {O oy

(a.1.6)
we re-write (a.1.5) as
0 0 0 0
3 ] .
0 Z 5 135,'2]' 2“”[ (8i16is + 0i20i5 + 6;30;6) O
Bi; = B 5 | @a.1.7)
2“-, (8iadiy + Bisdiz + 816813) Z i 138:'2j 0
0 0 0 0]
In Book’s notation
m, m
Bi;=YY 0ij8ikC iy
j=lk=1 (a.1.8)
where
1 T
Cuj = ijgui[o Xik Vit Zik] [0 Xig Vi Zig) % (a.1.9)

Let us define FMI; = %p‘-l‘?’; in our model, we have
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0 0 00
0FMI; 00

0 0 00 @.1.10)
0 0 00

Citt = Cip = Ciz3 =

00 0 o
00 0 O
00 FMI; 0 (a.1.11)

00 0 O

Cisa = Ciss = Cigg

00 0 o
00FMI; 0
00 0 0 (a.1.12)
00 0 o

Citg = Cigs

Ci36

0 0 00
0 0 00
0 FMI; 00 (@.1.13)

0 0 00

Ciug = Cis;=C 63 =

In (a.1.4)

1 i 7 'T
le- = ijiuilhilhi dx

i X 1
3
14 z q)ij(x)aij(t) 3 ' ] |
= i 0 i ":1 0 z q)xj(x)au([) 2 ¢lj(x)81_](t) 0 dx
2 ¢ij(x)8,-j(t) J=1 j=4
ji=4
L 1 J
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[ 3 6 ]
0 Y x4, (0)8;;(1) Y, x¢; 08() 0
j=1 j=4
( 3 3 3 6
L0 | X emm Y, ¢,-j(x)8,-,-(t)) 2 408,00 Y, ¢,,(x)8,,<r)J 0
=l‘[iu, \j=l i=1 \j—l ji=4
2)o™ /6 3 /6 6
0 | X 68,1 Y ¢,J(x)8,,(z)) D 08,0 Y, ¢,.j(x)8,-,-<r)J 0
\j=4 j=1 \j=4 j=4
6
0 Z 9;(0)8;(0) 2, 608 0
N j=1 j=4 i
(a.1.14)
Next, we define
1 ¢
= EJJ w0, (x)dx m=1..6
0 (a.1.15)
Fl;y =FligFl;y = Fli5,Fl;3 = Flg
1 ¢4
(a.1.16)
Using Book’s notation, we can write
2 azjcu + Z z Slksljcth (a.1.17)
ji=1 =lj=1
and find
0 Fx1,, 0 0] [0 Fx1,, 0 0] 0 FXI, 0 0]
0 0 00O 0 0 00
Ci1=0 0 00 Cip = Ciz =
0 0 00O 0 0 00O 0 0 00
0 FI; 00) 0 FI,; 00 0 Fljz 00
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0 0 FxI,, 0] 0 0 Fx1I,5 0] 0 0 FXI,4 0
00 0 0
Cu=[00 0 0 o _[00 0 o o _

00 0 of “ oo o o 00 0 0
00 Fr, 0 00 Fr;5 0] 00 FI, 0
In (a.1.4)
i ]
X
3
r o1 li .§1¢fj5u 3 6
Bs; = zj h h B ijo Hi 16 21¢ifaif ,Z 030
Jj= j=
Z q’ijszj
j=4
A S
[ 3 6 ]
x? 2 x0;8; 2 x0,8; x
i=1 i=4
u_ : Z xq)‘/s‘! 2 q)‘.l if Z q)’] g z q)‘ls’l Z ¢‘] i Z ¢’I i
- Hifili=1 —1 _1
- 2-‘-(,) 6 d !
X, x0;8; Z 9,9 Z 99 2 %SiiE 9,9 Z 09
j=4 j=4  j=1 = j=4
3
x Y 08 Z 9;;8; L
R j=1 J

Using Book’s notation, we can write (a.1.19) as

=C;+ Z 8,;[C;i+CE1+ z z R o
ji=1 k=1j=1

109

(a.1.18)

(a.1.19)

(a.1.20)



where for beam like links, i.e., the elastic links 2 and 3 of the RMS, we obtain

[- ] 13 12 Fm 12 m, ..

‘2 JJ' i Taiti aiti

J:xdeOOxdx 3oo2 —5— 00—~
c.=tl 0 00 o (_Hfoooo|/_| o0 00 o L1
2 0 00 o 2looo00 0 00 0 (a.1.21)

i i [.2 m_.l. m,_.

dx 1 i ai’i ai

-j;x Ooj;d{ _200"] 72 00 2

C; is the generalized moment of inertia. Equation (a.1.21) is only valid for long elastic

links such as links 2 and 3 of the RMS. For all other links which are assumed rigid, we

have
Fx-’- Xy xz x
P; 2
.= C. Tdy = = = [|XY Y- yzy
B3t x szl i h dv jpz [x yz l]dv zv xz yz 22 5 dv (a.1.22)
1 | x y z 1
Since

Lo = p; f (y2+2z3)dv, I, = p; f (2 +22)dv, I, = p; f (x2+y%)dv (a.1.23)
v v v

from (a.1.22), we get

_[ : ;‘yy i Iy Iir, m X,
C, = % Iiry Lise Igy i Iy, My, iz
Iy, Iy, e ['5 T Myz; ;
| M giX; myy; mgiz; Mg; |
Next, we use the parallel axis theorem (a.1.25),
Ty = Iippo +my ;P2 (a.1.25)

where m,; is the mass of link i and P is the distance from the center of mass to the coor-
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dinate origin. This procedure is described as below:

Z,
Link 1
Xl lex = llnc +ma1Pc2'1’ Ilyy = Ilyyc + mach%l’ Ilzz = [lzzc
(a.1.26)
Z
Link 4 “ X 1410\: = [4xxc’ [4yy = [4yyc + ma4Pg4’ 14zz = [4zzc + ma4P§4
4
&2@ (@.1.27)
Zs
Link 5 t YS [5.\:: =15xxc+ma5pc‘:25’[5yy = [5yyc’ISzz =[522c+ma5P35
(a.1.28)

Ys

Link 6t ZG 16xx =I6xxc+ma6P36’ [6yy =16yyc+ma6pr.%6’ 1622 = [6220
(a.1.29)

Using the parallel axis theorem, we can convert /;,__, iyyer Lizzc Which are given in RMS

master data set [35] and are relative to the center of mass to the set we need where they

would be relative to the “Frame origin”.

A.2 Rotational Kinetic Energy

The rotational kinetic energy comes from the torsional deflection of the two elastic links.

For links 2 and 3, define Q;(x) as angular displacement for a point on link i, which is

equal to ©,,(x) in (2.2.3) as shown in Figure 2.3.
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Lo ..
dK Vixer 16007 Yl @2.1)

rotational = 277
i

where T, denotes “trace” of a matrix.

~dk; = %;—‘“T,{ w; QQIWT +2w,QQF wl +w, Q' QFwT }dl (a2.2)
i
where

- 9 - T

Q= 3 60 000] 80 (@2.3)
i=1"

i S T

Q= 3 [0;00) 00 0] 8;50) (@.2.4)
j=1

We can find the total rotational kinetic energy of the system

n n
K, orational = ZJ.;'dki = Y T {wB3;wl +2wB,/wl +wB  wl'} @.2.5)

i=1 i=1

where

[ 9
Y 0285000
. pat

I/

o Aomghi i ixx (i <2 <2 <2
By = 22 ) Q; Qi dx = 21)o 0 00 0| & = Ci778;7 + Ciggdlg + Cig90.,
0 000
L 0 000 (a.2.6)
using the orthorgonality relation
.- 0 %k
fl%(x)(l?ik(x)dx = {1 .
0 5 J =

we obtain
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g -
xx
e 000
Cim=Ciss=Ci9=10 000 (@2.7)
0 000
| 0 000
In (a.2.5), we have
[ 9
2 9 o
B, = i "Qndx i‘f’” ; dx
2 21 = 0 Z ¢ijaij 000
0 =
| 0
. | -
Y. 0,808,000
= {ﬁ" (=1 dx
20o] 0 oo0o0
0 000
. 0 000
Ci118:78i7 + C 38,9818 + C 19985819 (a.2.8)
Itiseasytofind C;, = 0 fork = 7,8,9.
In (a.2.5), we also have
9
. 2 05
o g iaT, ij" j=T
By = 57 Qde 0 [z%s oooJ
0
[ 0|
[ 9 ]
D, 6352000
[' il7j=17
=350’ 0 oo 0|®* = CimB + Cigg8% + Cig98% @2.9)
]
0 000
| 0 o000
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While recognizing the similar format of (a.2.5) and (a.1.4) which represents the transla-
tional kinetic energy, we can combine the equations together into one equation with

n
K ta = Z T {wB3,w‘ "‘ZWBz,W; +wBl,w }
i=1 (a.2.10)
where

9
= Z z Sijsikc,'kj (a.2.10)

j=lk=1

z 8,1 it z z S,kS,JC,,q

= it (@.2.11)

=C;+ Z 8,1[C +CT] + z Z SlkS‘jC,,q (a.2.12)
j=1 =1j=1
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Appendix B

Potential Energy

The potential energy of the system comes from the beam deflection. It can be described as

LR LR ) R ) P

where 8., 0,,,0,; are rotational components of the neutral axis at x about X, Y and Z

axes.
In our case
39 ; 3 ae { 6 ’” aexi > ’
a_x“ = Y 0,;78;(1) a—; =, 6;8;(t) Fri Y, 68,0
j=1 ji=4 j=1
(b.2)

where [;, denotes the polar area moment of inertia of the link’s cross section about the
neutral axis of link i; / iy and I, denotes the area moment of inertia of the link’s cross

section about the ¥; and Z; axes of link i respectively.
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Let us define

Ky = [[Galu0dx [ =1,8,9

Ky = [EduoPds =123

Ky = [ Edo0 e [ =456

V, =

S e

Using the orthogonality relations

1 i " "
e B, (D0 e = Rt

1 ¢t " "
2Jo Byl 29" (003" (x)dx = pl}ef

weE have

and using the orthogonality relation

1 ' , I.
EI;Gilixq’,-j (x)0;/'(x)dx = %xo)g ik

we have
I.

= XXn2
K,.j— Zm‘f

3 9
Y X K82
i=2j=1

if>jk

Jj=178,9

where /;,, is the moment of inertia of link i . Therefore, we have

1%
03;,,

im

e - K

im8im
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k=0 k=j

(b.3)

(b.4)

(b.5)

(b.6)

(®.7)

(b.8)

(b.9)

(b.10)

(b.11)



Appendix C

Dynamic Equations

Here, we use the Euler-Lagrange equation (2.1) to derive the RMS link dynamics.
First, we recognize that

a_"i" = a_w‘ d %J _ a“;i

36; 96; 36, 39 (c.1)
and

ow; _ dw d(3w;) ow,

T at as_f) "%y ©2

In order to find —( "”al) - “"“1 in (2.1), from (a.2.10) we calculate

- T, a' wl o,
“"“ ZT{ B3,w ae ==—B,wl +2w32,ae ae =—Bw ,} (c.3)

and

n ' ow,
wml 2 { B3 Wi T4 256—'.le-wi7} (c.4)
i=j 0 j

This gives
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d aKtolal a“. a” a”
—_fotat 21
_t( a_j ) E Tr{ 89 B3,wl +2— B3,w + 39 B w

i=j J
2ip 2Mig 1 Mg LT
ae 21w ae 2i Wi + ae 2iW; (c.5)
Then (c.3) and (c.5) give

d (9K 1oral aKl tal _ T
d_t( a(;,-a) > ZT ae (B3lw, +(B3;+By; ~BL)w,” + Byw])

(c.6)
where
By; = C; + Z 8,[C;;+CEl+ 2 Z 8:40;Ciy; ©.7)
j=1 =1lj=1
Z 5,,[c,j+cT] + Z Z ska,,c,,q+ Z 2 aka,j i (c.8)
j= =1lj=1 =1lj=1
and

Z S'JCU + Z z alkauclkj + 2 z Slkallclkj z Z 8‘18'kctkj

ji=1 k=1j=1 k=1j=1 j=lk=1
m.

= z Sij(cij*' z aikcikj]
j=1

k=1 (c.9)

Therefore, (c.6) becomes

d aKloml aKtolaI _ z aw,‘ o T -
d_t( 38, )‘ 36, ‘E’-T’ 3, C:+1_§18,,C i+ C] +25,kC,k, wi +

[éil 5,,(c + 2 5,kC.k,J]W +[2 Z 8,,(C + 2 a,kc,,q)] T]}

Jj=1 k=1
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= ZZT {g:[Gw + ZS,kaw +2281kD,kW ]}

i=j k=1 k=1 (c.10)

Here we define

m;
Dij = Cij+ Z Sikcikj- (C.Il)
k=1

and

m; m;
G;=Ci+ ) 8,-,-(C,~,—+C5+ > aikcikj) (c.12)
k=1

Note that

1) w; (i =j+1...) are functions of 8, but not for i < j;

2) By j» B3 ; are functions of § -, not forBy;;
3) B3 are not functions of & ¢ ;

4) w; are not functions of §;

in (2.1), we calculate

oK ok
On the other hand, in order to find i{ “’“"J_ 5 8""“1
if

de 351

Kyppar & a' T aB,..T aw; - 3B,; o
asjf = ZT 288 lew‘ +2W‘85]f +

- ow! a 0B,;
B.. 1T (c.13)
ZW’BZ‘BS 88 Bh +w,aajfw, }

and
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3K n ow. ): 3 ow
.total = r{z-_‘B3,WiT + W,.—&W,T + 2—32,W;T
3y & "L 9y 0jf if
T  owT 0B,;
+2wimmw] + 2By —= +2— B, wl + w,— I‘W‘T}
P g by CLYs

therefore

d aszalJ c { a“;i ‘T Wi, -7 0w, g a“"i
—{_— = X T{255=Byw; +25—Byw; +2=Byw, +2-<'B, wl
dt aaj:f i§1 r aajf e aﬁjf b aajf b asjf bt

aw- . aw. . = aB N . aS' aB -
+238_‘BZiW‘I+288—‘Bziwir+2wi~_2‘“’ir+ Wi de wl + 2w, 2w,
i if 38 t 35,
- 9By; 35 f
T
J

d aKtolal _aKtolal =
i\ 3dy ) 9By

n
ow: . - T “T . T - T
Z T'{288_-]i[33iwi +Byw; +Bywl +Byw; -BLw; -B,wl]
J

i=j+1
T ,{aizzj {aij '
. 9B,. . \9§; . 9B, . 95 ; . OB..
+T, 2wj ,21+2wj l +2wj—,—1’+wi—jf— wj—zj w‘-T
387 dt 38 dt dd
3B ) }
: : B, .
+2w; 2w~T—w —dw; }
J ’ J Jasjf i (c.15)
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Here, with (a.1.17) and (a.1.20), we have

m.

k=1

m; m; m; m; m; m; m; )
By;—-By; = z 5ijCij + Zzsfkaifcikj + zzaiksiicikj - zzaiiaikcikj
Jj=1 k j k j k j

m; m; m;
=2 Sﬁ(cii" ) S;kC,-ij = X oD €17)
dt 38,'f 20 if
m;
a(cl:f + z ajkcﬂ‘f ) m; m; m;
k= :
k=1 =1 [=1
m;
=42 8iCy (c.18)
k=1
0B,. oB ™ i i
J 3j _
*%, %, " Z(CJT > Sjkc,-,‘f)—(cjf +Cr+ X 8y Cus+ 3, 8yCip
if ir k=1 k=1 k=1
m;
= Ciyy=Cl+ ¥, 8,(Cjur—Cj)
k=1 (c.19)

We can rewrite (c.15) as
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d aKtotal aKlotal aw -
_( - )— aajf =2 2 T, 38 Gw +28,kD,kw +225,kD‘kw

dt aa-’:f i=j+1 k=1 .
T,{Z[ﬁ;,-Djf+2w z 8xC W Z Slkclkf] } (c.20)

Using Book’s notation:

'—Az+lEz+1 AjEj Jj2i+1 (c.21)
W= W = AEAE,. AL, (c.22)
W= A Epy . Aj B Ap i+ (c.23)
®w; = A\E,...A;_,E;_,A, (c.24)
Wi = EA; \EiyyoAE; jRi+ iz (c.25)
1_
w; = E|AyE,...A;E; (c.26)
Wi = A Eror A E; A jRit Lz (c.27)
1-
w; = EIAZEZ‘"Ai—lEi—IAi (c.28)

We also note that:

W; = Wj-lAj+2Wj_1Aj+Wj_1Aj (c.29)

w.=w.E. ‘:'= v .E . E - ::'= v.E . v .E - c.30
Wi=wiE;=Wj=wE +wE;=w; WE;+2wEj+wE; (c.30)
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Alternatively, we can write

- . h_ ko
Wi = A\ E ARy AREy. AE; = Wy AW, = wuE,W; (c.31)
= i h o h ~
wp= 3y (ﬁ’h-luh WO+ Y WMy, ﬁ’ishk)"' Wyi (c.32)
h = I k = l

N h h
Wi = AE\AYEy ARy B (A; = WAy W = wiE, W,

(c.33)
i i-1 m;
w = 2 Wy _ Ky we,. z 2 w,M,, wﬁhk+w (c.34)
h= =lk=1
From (c.29) and (c.30), v;i;vi and w,; can be calculated recursively as
. . c.36
where
d A -
Usj = aez

With the “camped-free” mode assumption ¢’(0) = 0, the generalized force for deflection

variables will be zero. Considering equation (2.1) where L = K -V, . If we separate

total
(2.1) into two groups according to the type of coordinates on which the differentiation is
applied, we can have one group of equations where the differentiation is applied on rigid
coordinates and the other group of equations where the differentiation is applied on elastic

coordinates.
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Joint Equation 5’

Where the differentiation is applied on rigid coordinates 0 i» RMS is a six joint robot, we

have j = 1...6

3, ‘98, i ©.37)

i(aK tolal) _ oK total + ave
J

30,

Deflection Equations “jf’

d aKtoml _aKlotal + ave =0
dr 38 3; 3B (c.38)

We can re-write (c.37) and (c.38) by collecting all the 6, 8 terms so that (c.37) becomes

6
h=1 I=1 =1

and (c.38) becomes

9 9

Z szheh'f‘ 212f21821+ 212f3183[ sz f = I...g
=1 I=1

9 9

Z T3pbn+ X Japau+ 3 J3p83 = Ryp f = 1.9
=1 I=1 1=1

We write the complete dynamics equations in the form

J5 =R (C.41)

where z is the vector of the generalized coordinates

Z = [04,85,85,8,, 05,66, 85, 85, -, 839, 83y, B3, ..., ST

The term R is of the form R = [R,,R,, Ry, R,, Rs, Rg, Ryj, Ry, ..., Ryg, Ry, ..oy Rog]T

124



which contains the remaining dynamics. The inertial matrix J is of the form

Tud - Tigl T o Tg| s s - T 139
J21 I J221 I 1
61 Jes| |Js2u Je29|  |Te31 J639)
1T - [. 1| (c.42)
Ta11 J212 - Ja16] 2121 To122 -+ Tonz9| 2131 o132 -+ o139
J = M Ja221 I 9231
/291 J296] |S2921 J2029] V2931 S 2939
i [ ]
311 T312 -« T316] 3121 T3122 -+ J3129| (J3131 T3132 - T3139
I321 J3221 J3231
/391 J396] | 3921 J3929] |/3031 3939

Inertia coefficients of joint variables in the Jjoint equations
Note that all occurrences of 6 j in (c.10) are in the expression for v;,-T

i.e., in the term w1thw which is 2 E T { ,-T}. Using (c.33) and (c.34), this term

89
i=j
becomes
n a T
ZZT{ Wj- 139 th 1UhW§hJ } (c.43)
i=j

h U JdA i
whnere = ﬁ
Since
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n

5 Y - s 3 (et

Jj h=1 i = max(h, j)
(c.43) becomes

E(zr,{wj_luj[ 2 (’i»,.G,."w,-T )]U},‘w,{_léh}) (c.45)
\ i

h= =max(h, j)

The coefficients of 8, in equation */” are

T = 2T {%;_\U;/FUTWE_,} (c.46)
where
] ‘ ] h~T
g J~ -~
i = max(h, j)

Inertial coefficients of the deflection variables in the Jjoint equations

The defection variables appear both in the expression for w! and explicitly in (c.20)

Notice that

i n

n-1
= Z Z (0.48)
1 h=1

i = max(h+1, j)

n -
i=j k=
For equation “/, the terms contain & are:

S S
z.z.Tr{Ej[Gisz +y 5«'1%%’]} (c.49)

i=j I=1

which can be written as
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"l = ow; (& ioe Y T (ow 2
=2) Y T,{?fG{/Z o w,.a,,,] }+2Z T,{ T’[’Z duD;wl J}

h=1 i=max(h+1,))

n-1 n awi m; . T n ow m; .
= 2;;2 Y T,{EG{'gl w,,M,,,"w,.a,,,) }+ 2h2 T,{a—e"‘(g‘ sh,D,,,w,{)}

=1 i=max(h+1,}))

Note that

lLh=nj=1...n

2 h=j..n—1,j=1..n-1

" ow;, (& Wy,
thl =2 Z {ae (,Z w,M,, wahlJ}+2T {a—('z Sthhlth}

i =max(h+1, j) J
n -
-~ J~
= 2T,{ E w;_U; wG w Mh,wh +w;_U; whDh,w[}

i=max(h+1, j)

= 2T {w;_U,(’F, ML, +’%,D, )wl'} (c.52)
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where

n

j je ~h T
JF n = Z (JwiGi w; )

(c.53)

i = max(h + 1, f)

3. h=1.j-1,j=2..n

n
aW' h o e T R ;
Tjm = 2 z T’{ﬁfGi(Wthl w;Sh1) } = 2Tr{wj—lUj[JFhMI{lWI{]}

i=max(h+1,j) J (c.54)

Note: The inertia coefficients for joint variables 8, in the deflection equation “h/l” are the

same as the inertia coefficients for &;; in the joint equation j due to the symmetry property

Ofincrtial matl‘ix J, i.c., thl = Jhlj'

Inertia coefficients of the deflection variables in the deflection equations

Noting that

T,{ABC} = T,{CAB} = T,{BCA} (c.55)

we have:

)j=h=n

Only ﬁ;i has contribution of &, (h =1...i = 1). Therefore, the coefficient

Jnfnk = 2T,{wnanfw,{} = ZTr{CnkaZWn} = ZT,{anf} (c.56)

2)j=h=1...n—1 terms with § in the deflection equation for equation *“jf’ are of the

form
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" aw o 2
3 1

k=1 k=1
(c.57)
Substituting terms with § in wj, we have
aw i-1 my
2 Z T{ [G Y Y WM, WS + 2 i D ;W] ]}
i=j+1 Bjr h=1lk=1 k=1
j-1 my
=lk=1 k- 1 (c.58)

Since
n-1 n

=y Y (c.59)
h=1 {

=max(h+1,j+1)

we can write (c.58) as

n-1 n ow- my .
23 T,{ ) 5511.}[Gi > (wM hkhwishk)TJ} +
h=1

i=max(h+1,j+1) k=1

j=1 my
2 z T{ ZS,kD‘kWT}-FZT{Z ththWShk-i-wJZSJkCkaw }
i=j+1 -’k—l h=1lk=1

(c.60)

The first part and the last part which satisfy j = h = 1...n—1 can be written as
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n
aw; h T
i=max(h+1,j+1)

z 3E;;
= 2T, > !asjf "G wIMIwT L+ oT AC s}

i=max(h+1,j+1)
= 2T {w;M ;' ® MEwT +C .} (c.61)

where

n

) T
J(Dh = 2 JwiGi w; (c.62)

i=max(th+1,j+1)

Nh=nj=1...n-1
MW T (c.63)
2T, 88 D wlb = 2T {w Mf w,D, wl} .
4)j=1...n-1,h = J+l...n-1

c ow; h T dw
2T,{ Y 55 [GilwpMy w)) ]}+2T,{%—;thw,{}

i=max(h+1,j+1) I

n
I h T J
i=max(j+1,h+1)

= 2T {w;M J-f’d),,M},'kw,{ }+2T {w;M jf’w,,D R

= 2T {w;M ,,('®,M], +w,D, )wI} (c.64)
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Remaining Dynamics

where

R

/A

R, = —2T {u;0,} +F, (c.65)
Rj=-2T {#W;,_wQ;}+F; j=2_¢ (c.66)
mﬂ
0, =Gwl +2| Y 5nank}4"Z (€.67)
=1
m
Q = GJW{, +2(kz SJijk}V +E AJ+1QJ+1 (C.68)

s . T
2T {W Mijj+1Q]+l+l:wa]f+2ijSjkcjkf]wj} ijKf
k=1

(c.69)
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