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Abstract

A Finite Element Segregated Method for
Hypersonic Thermo-Chemical Equilibrium and Nonequilibrium Flows
Using Adapted Grids

Djaffar Ait-Ali-Yahia, Ph.D.
Concordia University, 1996

This dissertation concerns the development of a loosely coupled, finite element method
for the numerical simulation of 2-D hypersonic, thermo-chemical equilibrium and nonequi-
librium flows, with an emphasis on resolving directional flow features, such as shocks, by
an anisotropic mesh adaptation procedure. Since the flow field of such problems is chemi-
cally reacting and molecular species are vibrationally excited, numerical analyses based on
an ideal gas assumption result in inaccurate if not erroneous solutions. Instead, hypersonic
flows must be computed by solving the gasdynamic equations in conjunction with species

transport and vibrational energy equations.

The number of species transport equations could be very high but is drastically re-
duced by neglecting the ionization, thus leaving one to represent the air by only five neutral
species: O, N, NO, O, and N,. This system of equations is further simplified by consider-
ing an algebraic equation for conservation of the fixed nitrogen to oxygen ratio in air. The
chemical source terms are computed according to kinetic models, with reaction rate coeffi-
cients given by Park’s reaction models. All molecular species are characterized by a single
vibrational temperature, yielding the well-known two-temperature thermal model which

requires the solution of a single conservation equation for the total vibrational energy.
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In this thesis, the governing equations are decoupied into three systems of PDEs —
gasdynamic, chemical and vibrational systems— which are integrated by an implicit time-
marching technique and discretized in space by a Galerkin-finite element method. This
loosely-coupled formulation maintains the robustness of implicit techniques, while keeping
the memory requirements to a manageable level. It also allows each system of PDEs to be
integrated by the most appropriate algorithm to achieve the best global convergence. This
particular feature makes a partially-decoupled formulation attractive for the extension of
existing gasdynamic codes to hypersonic nonequilibrium flow problems, as well as for

other applications having stiff source terms.

The hypersonic shocks are resolved in a cost-effective manner by coupling the flow
solver to a directionally mesh adaptive scheme using an edge-based error estimate and an
efficient mesh movement strategy. The accuracy of the numerical solution is continuously
evaluated using a bound available from finite element theory. The Hessian (matrix of
second derivatives) of a selected variable is numerically computed and then modified by
taking the absolute value of its eigenvalues to finally produce a Riemannian metric. Using
elementary differential geometry, the edge-based error estimate is thus defined as the length
of the element edges in this Riemannian metric. This error is then equidistributed over the
mesh edges by applying a mesh movement scheme made efficient by removing the usual
constraints on grid orthogonality. The construction of an anisotropic mesh may thus be

interpreted as seeking a uniform mesh in the defined metric.

The overall methodology is validated on various relevant benchmarks, ranging from su-
personic frozen flows to hypersonic thermo-chemical nonequilibrium flows, and the results
are compared against experimental data and, when not possible, to other computational

approaches.
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Chapter 1

Introduction

1.1 Motivation

In 1946, Tsien became the first researcher to introduce the words ‘Hypersonic Flows’ in a
landmark paper titled: Similarity Laws of Hypersonic Flows [117]. Tsien clearly mentioned
that a very high speed flow was being studied without specifically define the term, nor focus

special attention to the fact that he was coining a new flow regime which contains some

particular phenomena.

More than decade later, Hayes and Probstein described in their textbook [58] the ex-
istence of very high-speed flows, labeled hypersonic flows, which behave differently from

supersonic flows. To justify the creation of this new category of flows, the authors stated:

Within recent years, the development of aircraft and guided missiles has
brought a number of new aerodynamic problems into prominence. Most of
these problems arise because of extremely high flight velocities, and are char-
acteristically different in some way from the problems which arise in super-
sonic flight. The term hypersonic is used to distinguish flow fields, phenomena,

and problems appearing at flight speeds far greater then the speed of sound

1



from their counterparts appearing at flight speeds which are at most moder-
ately supersonic. The appearance of new characteristic features in hypersonic
flow fields justifies the use of a new term different from the well established

term supersonic.

Thus, the major reason for studying hypersonic flows independently of other supersonic
flows is that at very high Mach numbers, a flow field is dominated by certain physical

phenomena that do not exist, or are not as significant, at supersonic speeds.

The first interest in the study of hypersonic flow problems can be traced back to the
1950’s and early 1960’s, during the design of intercontinental ballistic missiles. After a
period of inactivity in the 1970’s, research in the field of hypersonic flows resumed to
technically support the development of American space shuttles. This emergence was also
supported by the need for advanced aerothermal design tools for the Hermes program in
France [56], and both the AOTV (Aero-assisted Orbital Transfer Vehicle) {126, 127] and
NASP (National Aero-Space Plane) {116, 129] in the USA. These design tools were mainly
used for devising thermal protection, propulsion and control systems, but their development
depends on accurate predictions of severe aerothermal loadings that the hypersonic vehicles

experience during their flight and the reentry phase.

For typical hypersonic flows over blunt bodies, there is always a formation of a strong
detached shock; the flow is compressed and then decelerated to subsonic speed in the nose
region. The massive amount of kinetic energy that is stored in the free-stream flow is trans-
formed, after the shock, into internal energy. Therefore, the flow field between the shock
wave and the body, also called the shock layer, is dominated by high temperatures. The
numerical simulation of such flows, using a calorically ideal gas assumption, usually yields
extremely high temperature distributions in the shock layer. The measured temperature

values are, however, much lower than the predicted results from a perfect gas model. This



inadequacy can be explained by hypersonic thermo-chemical nonequilibrium phenomena,

whose theory represents a basis for the modeling of this type of flows.

Gas mixtures are principally composed of atoms and molecules. Each molecule is a
collection of atoms bound together by rather complex intermolecular forces. According
to statistical mechanics, these molecules have four modes of energy. The first mode is the
translational energy resulting from the translation of the molecule center of mass. Secondly,
a molecule can also rotate around its center of mass, and hence it has a rotational energy.
The third mode results from the vibration of the atoms with respect to an equilibrium
location within the molecule. The last mode, the so-called electronic energy, is due to

the electrons’ motion around the nucleus.

Results from quantum mechanics have shown that each of the above energies is quan-
tified, i.e. the energies can only have certain discrete values. The total energy stored in a
molecule is the sum of these four energies mentioned above, namely, translational, rota-
tional, vibrational, and electronic energies. However, for a monatomic species, the vibra-
tional mode does not exist, and the rotational mode can be excited by collisions only with

difficulty, and hence is negligible.

As the temperature of a gas is increased above a certain value, the vibrational motion of
molecules will become important, absorbing some of the energy which otherwise would go
into the translational and rotational molecular motions. As the gas temperature is further
increased, the molecules will begin to dissociate and even ionize. Under these conditions,
the gas becomes vibrationally excited and chemically reacting. These physical effects are
the major reasons that cause a high-temperature gas to deviate from calorically perfect gas

behavior.

The thermo-chemical phenomena described above are termed high-temperature effects,

but are frequently referred to in the literature as real gas effects. The major consequence of



real gas effects is a high heat transfer rate to the surface body. Thus, aerodynamic heating
largely dominates the design of all hypersonic systems, be it that of a flight vehicle or of a

hypersonic wind tunnel.

The design of hypersonic vehicles must therefore call upon theoretical, experimental
and numerical tools. Traditionally, the wind tunnel has been the principal tool for de-
sign advancement, with shapes selected, tested and then optimized through careful anal-
ysis of measured data and flow visualization results. However, wind tunnel experiments
are expensive, time consuming and may not be possible at very high Mach numbers. In
addition, experimental studies are still limited due to the difficulty of reproducing high at-
mospheric equilibrium conditions in ground-based test facilities. In fact, hypersonic wind
tunnel working flows are usually produced by a rapid expansion through a divergent duct
which serves as an accelerator device. Therefore, the resulting gas flows are in a highly
thermo-chemical nonequilibrium state with non-uniform velocity profiles due to the devel-

opment of a boundary layer on the duct walls.

This situation has led to an increasing interest in the development of Computational
Fluid Dynamics (CFD) codes (“‘numerical wind tunnels™) for predicting aero-thermal loads
over hypersonic vehicles. This is made feasible by the constant advances in computer hard-
ware and algorithms which make the use of more realistic mathematical models possible.
Among the approximations that were made in the modeling of hypersonic flows, a lot of
them are no longer justified or necessary in the era of supercomputing. A more compre-
hensive analysis of many physical aspects of the flow are now within reach of researchers,

permitting substantial improvements in the prediction of high-temperature effects.



1.2 High-Temperature Phenomena

1.2.1 Thermal Nonequilibrium Gas

All rotational and vibrational excitation processes take place by molecular collisions and/or
radiative interactions, but the present work is restricted to molecular collisions. In equilib-
rium systems, the gas is assumed to have sufficient time for the necessary collisions to
occur, and the properties of the system at a fixed pressure and temperature are assumed
constant, independent of time. However, there are many situations in high-speed flows
where the gas may not be given the required time to reach an equilibrium state. A typical

example is hypersonic flow across a shock wave.

When a fluid element passes through a shock front, its thermal equilibrium properties
will change. The fluid element starts to seek its new equilibrium properties, but this requires
the occurrence of molecular collisions, and hence time. By the time a sufficient number
of collisions have taken place and equilibrium properties are approached, the fluid element
would have moved a certain distance downstream of the shock front. Thus, there is a cer-
tain region immediately behind the shock wave where thermal nonequilibrium conditions

prevail.

The temperature characterizing the rotational population distribution of molecular
species s during this nonequilibrium transient period can be identified as the rozational
temperature, T.;. Experimental data [103] reveal that rotational relaxation occurs very
rapidly for heavy molecules and since rotational constants differ only slightly among the
three neutral molecules of air (NO, O,, N5), one expects their rotational relaxation to take
place almost equally as fast. The rotational excitation process of all species may be, there-
fore, accurately modeled by a single rotational temperature, T;,. In addition, rotational
equilibration requires approximately the same number of collisions as translational equili-

bration, permitting the rotational and translational relaxations to occur simultaneously. It is



therefore common to assume that these two modes are in equilibrium at the translational-

rotational temperature 7.

In contrast to the rotational mode, the vibrational relaxation of air species is usually
characterized by multiple vibrational temperatures, 7, resulting in what is referred to as a
multi-temperature model. This is mainly due to significant differences in excitation rates of
the three neutral molecules. Indeed, the rates for NO are faster than those of O, by several
orders of magnitude, while those of N, are several orders of magnitude slower than those

of 02.

A multi-temperature model requires the solution of a vibration energy equation for each
molecular species, yielding a prohibitively large system of partial differential equations
(PDEs) for a gas mixture with high number of molecular species. Although this model
has been adopted in numerous studies [22, 56, 72], the large uncertainty in the modeling
of chemistry-vibration coupling [73] often eclipses the advantages of this more complete

model.

For temperatures above 3000 K, coupling among the vibrational modes of the molec-
ular species are strong forcing the vibrational temperatures of the three neutral molecules
to be nearly identical. In such a simpler two-temperature model [101, 102}, the vibra-
tional relaxation of all species may be characterized by a single vibrational temperature,
T,. This model is widely used in the numerical simulation of thermo-chemical nonequilib-
rium flows [2, 3, 8, 38, 104] since it only requires the solution of a single PDE for the total

vibrational energy.

1.2.2 Chemical Nonequilibrium Gas

Many reacting flow problems may be adequately approximated by assuming an equilib-
rium real gas model. In this case, all time scales of chemical reactions are assumed to be

small enough relative to the fluid motion time scale, so that the gas everywhere is in local
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chemical equilibrium. At this state, both thermal and chemical properties of the gas can
be completely defined by two thermodynamic variables such as temperature and pressure.
This assumption (chemical equilibrium) is usually used in the simulation of low altitude

flow problems.

At the other extreme, reactions can be so slow that the gas can be considered frozen in a
particular chemical state. In this regime, the time scale of chemical reactions is quite large
compared to the fluid dynamic time scale. Such a flow typically occurs in regions of rapid
expansion such as jets or base regions of hypersonic bodies and is usually modeled by a

perfect gas.

Finally, when the chemical time scale is of the same order as the fluid dynamic time
scale, finite rate chemical (chemical nonequilibrium) processes must be considered. This is
accomplished by adding species transport equations to the governing equations where the

source terms represent the species rate of production/destruction.

The rate at which equilibration occurs is essentially dependent on the free-stream den-
sity and speed, or altitude and Mach number. The degree of chemical nonequilibrium is

usually quantified by a dimensionless parameter known as the Damkéhler number, that is

LS®
Da = oV (1.1)

where S¢ is the production rate due to chemical reactions, V., is the free-stream velocity,
and £ is a geometrical length scale. It should be noted that a different Damkéhler number

may be derived for the vibrational relaxation of each molecular species.

The Damkéhler number is defined as the ratio of the chemical reaction rate to the fluid
SC
(Poc Vs /L)’

time scales, Da = p—ﬁ%. In the case of chemical equilibrium, the chemical rates are

motion rate, Da = or the ratio of the fluid dynamic to the chemical reaction

infinitely fast, and hence Da tends to infinity. At the other extreme, when Da tends to zero,
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chemical reactions are very slow and frozen flow becomes the appropriate assumption.
For conditions between these two limits, the flow is, to a proportional degree, in chemical

nonequilibrium.

1.2.3 Chemical Models

At high temperatures, chemical reactions occur in a gas flow resulting in changes of
each chemical species concentration. The modeling of this mass transfer process depends
strongly on the selected chemical species as well as chemical reactions [11]. Indeed, a
chemical model with a few species may lead to inaccurate results if a neglected species
acts as a catalyst element which enhances certain chemical reactions. On the other hand,
a chemical model with a large number of species complicates the mathematical model and

requires a large computing time.

For air reacting flows which involve only dissociation phenomena, it is common to con-
sider only atomic nitrogen N, atomic oxygen O, nitrogen monoxide NO, diatomic nitrogen
N. and diatomic oxygen O, while neglecting argon, carbon dioxide and water-vapor. This
five species model is valid for temperatures below 9000 K and has been also used by
Park er al. [105] for the calculation of real-gas effects on blunt-body trim angles in a
suborbital flight-speed range. This choice is justified by the fact that the maximum molar
concentration of NO* so produced is below 0.1, and consequently it has a minor effect on
the chemical reaction rates. For this type of studies, dissociation and shuffle reactions are

usually considered.

As the flow velocity increases, the ionization process becomes more important. For
reentry problems up to 6000 m/s, the nitrogen monoxide produces the major part of elec-
trons and, the ionized nitrogen monoxide and the electron (NO*,e™) should thus be added
to the above species set. For flow velocities larger than 9000 m/s, the ionization is mainly

due to atomic nitrogen and oxygen. Moreover, the molecular nitrogen ion, N7, is involved
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in extremely fast reactions and must be taken into account, even at very low concentrations.

A more sophisticated model can then be constructed by considering all the single
charged ions corresponding to the dissociation model, to arrive at an eleven species model
(O, N, NO, 0,, Np, O*, N*, NO*, OF, NI, 7). In this chemical model, the reaction set
for the dissociation phenomenon should be completed by charge exchange and associative

ionization reactions.

1.3 Low-Density Effects

Most aerodynamic problems are properly addressed by assuming a continuous medium.
There are however certain hypersonic applications which involve densities low enough that
the continuum assumption breaks down. For altitudes above 92 km, flow in the nose region
of the Space Shuttle cannot be properly treated by purely continuum assumptions [88].
As the Space Shuttle flies above this altitude, the standard no-slip conditions at the wall,
i.e. zero velocity at the wall and continuity of the temperature at the gas-wall interface,
no longer holds. These boundary conditions should be replaced by slip effects, in which

velocity and temperature jumps should be assumed at the wall.

With increasing altitude, there will be a certain limit beyond which the continuum flow
equations themselves are no longer valid, and kinetic theory should be used in the flow
analysis. The air density can be low enough that the mean free path of molecules, A, can
become as large as the scale of the body itself and the probability of collisions between

molecules is extremely weak. This regime is termed free molecular flow.

The similarity parameter that governs these different regimes is the Knudsen number.
This parameter is defined as Kn = A/L, where L represents a geometrical length scale
of the body. The continuum Euler and Navier-Stokes (N-S) equations hold in the region
limited by Kn < 0.2. However, slip effects should be included in the N-S equations when

Kn > 0.03. Free molecular flow begins around a value of K'n = 1.0 and the transitional
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regime is thus essentially contained within 0.03 < Kn < 1.0.

It should be noted that low-density effects should be not considered as a consequence of
high-temperature effects, but rather as high-altitude effects. However, they are introduced
in this chapter since some classes of hypersonic vehicles fly at, or through, the outer regions

of the atmosphere, and therefore may experience such high-altitude effects.

1.4 Review of Numerical Methods for Hypersonic Flows

The history of modern numerical methods for hypersonic flows with a complete modeling
of thermo-chemical nonequilibrium phenomena goes only back to the late 1980’s, with the
first adapted version of the Steger and Warming scheme by Candler and MacCormack [23].
Since that time, a very large number of classical schemes [67, 111, 114, 120], which were
primarily designed for frozen flows of perfect gases, have been extended to include high-

temperature effects.

These achievements were made through several steps of physical modeling advance-
ments. Chemical equilibrium flows [27, 31, 43, 51, 123] were first tackled by including
additional procedures for the calculation of species concentration. With the emergence
of supercomputers, approximations in the physical modeling were gradually eliminated
leading to the numerical simulation of chemical nonequilibrium flows [19, 30, 37, 124]
by solving the gasdynamic equations (Euler or Navier-Stokes) in conjunction with species

transport equations.

CFD schemes are principally distinct in their manner of spatially discretizing the invis-
cid fluxes which represent the convective terms of the governing equations. They may be
classified into two major types of spatial discretizations: central and upwind differencing

methods.

Central differencing methods are based on purely mathematical concepts (Taylor expan-

sions), while the upwind differencing methods utilize information on signal propagations
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provided by the theory of characteristics. Although other information, such as the local
direction of the flow in the finite-element Streamline Upwinding Petrov-Galerkin (SUPG)
method [61] could be used in the differencing, all upwind schemes have at least one feature
in common and that is to include some physical flow information in the spatial discretiza-

tion operation.

Until the early 1980°s, most work in computational fluid dynamics on the Euler equa-
tions involved central differencing of the inviscid fluxes and dissipation operators to damp
numerical oscillations. Some early Euler solutions were obtained by Magnus and Yoshi-
hara [85] and Grossman and Moretti [50]. In 1981, Jameson et al. [67] introduced a
four step Runge-Kutta solver using a finite-volume formulation. The artificial dissipation
was constructed as a blend of second and fourth order differences of the conservative vari-
ables. The first dissipation operator acts as a high frequency damping term and prevents
odd-even point decoupling, while the second operator is used as a shock capturing term,
necessary to suppress numerical oscillations produced by shock waves. The convergence of
this solver was greatly enhanced, first by Ni [90] and later by Jameson [64], by introducing

a multi-grid acceleration technique, leading to a very efficient inviscid flow solver.

Although, this solver gained a lot of confidence among the CFD community and it is
widely used in the aeronautic industry, the extension of this scheme to hypersonic react-
ing flows has only been made by few authors [104, 113]. One reason given by Yoon and
Kwak [130] is that the classical Jameson scheme becomes unstable for hypersonic flow
problems and a flux limited dissipation model should be introduced to overcome this draw-

back.

In the early 1980’s, characteristics-based schemes for the Euler equations became
prevalent. This covers the flux-vector splitting methods and the flux-difference splitting
methods which are also known as Godunov-type schemes. In contrast to central differ-

encings which damp numerical oscillations by adding artificial dissipation terms, upwind

11



schemes introduce essential physical properties of the governing equations in the spatial

discretization, preventing the occurrence of such oscillations [59].

In 1981, Steger and Warming [114] introduced the first flux-vector splitting scheme
which is based on the sign of the Jacobian eigenvalues. Physically, these eigenvalues rep-
resent both the speed and direction of propagation of a perturbation. This scheme uses the
homogeneous feature of the inviscid fluxes to split each one of them into two components

that are upwinded according to the sign of the associated propagation speeds.

One version of this scheme was extended by MacCormack and his co-workers to the
computation of weakly ionized [20] and low density [49] hypersonic flows in thermo-
chemical nonequilibrium. In the MacCormack method, originally developed for the
Navier-Stokes equations [84], less dissipation is introduced in smooth regions by evalu-
ating the upwind and downwind Jacobian matrices at the same point, while the original
Steger and Warming scheme is used in strong pressure gradient regions. Such a method
yields better boundary layer predictions and maintains numerical stability near physical
discontinuities. This method was recently applied by Zeitoun eral. [131] for investigating

the vibration-dissociation coupling in hypersonic thermo-chemical nonequilibrium flows.

The Steger and Warming splitting, however, gives rise to fluxes that are not continu-
ously differentiable at sonic points in the flow causing the occurrence of a discontinuity
in the slope of a computed solution at a sonic’ point. In 1982, Van Leer [120] removed
this drawback by imposing the split fluxes to be continuous functions of Mach number and

expressed as polynomials of the lowest order possible.

This improved flux-vector splitting was extended to hypersonic chemical nonequilib-
rium by the group of Désideri [30, 31, 44] at INRIA, France. Their work consists of solving
the 2-D Euler equations augmented by chemical species equations in a decoupled manner

over structured and unstructured meshes. This scheme was further extended by Gross-
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man and co-workers [25, 26, 128] to include thermal nonequilibrium effects in 3-D hyper-
sonic flows. Recently, the Van Leer flux-splitting was also used by Edwards [39] and by
Drouin et al. [33], where the second order accuracy in space is achieved by a Monotonic

Upwind Scheme of Conservation Laws (MUSCL) algorithm.

Introducing more physical properties into upwind schemes can be achieved through
the pioneering work of Godunov {48]. In Godunov’s method, the solution is considered
piecewise constant over each mesh cell and the evolution of the flow to the next time step
results from the solution of a local, exact Riemann (shock tube) problem at each cell in-
terface. Since this scheme required the resolution of a nonlinear algebraic equation at
each time step, which can be quite time consuming, Roe [110] developed an approximate
Riemann solver by linearizing the Riemann problem. This scheme has Secome quite pop-
ular due to its shock capturing capability and has been first extended to real gas flows
in equilibrium [43, 51], and then to hypersonic nonequilibrium flows, by numerous au-

thors [26, 34, 38, 46, 69, 128].

Overall, hypersonic reacting flow prediction procedures have almost been exclusively
based on finite difference methods (FDMs) or finite volume methods (FVMs). In fact, all
the schemes cited above were developed in the context of finite difference or finite volume
formulations. Finite element methods (FEMs), however, have the ability to accurately
represent complex domains and offer a strong mathematical basis for the development
of a wide variety of error estimates [15, 96]. They also provide a natural and unique
environment for implementing advanced adaptive strategies such as h-p methods [29, 109].
In addition, they have been successfully used for Euler and Navier-Stokes solutions [61,

81, 106, 118].

Similarly to other numerical formulations, research in the application of FEMs to CFD
problems leads to a wide variety of methods which differ essentially through their stabi-

lization techniques. Among the most used finite element formulations we can cite:
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e Galerkin formulation [17, 82, 118] results in central differencing form that is usually

stabilized by adding Laplacian operators of flow variables to the governing equations.

e SUPG formulation [18, 61, 62] produces an upwind effect by adding a perturbation

term, that depends on the numerical solution, to the standard Galerkin test functions.

e Least-squares formulation [40, 68, 77] contains inherent dissipative terms and leads

to symmetric and positive-definite matrices.

Most numerical solutions for hypersonic reacting flows are computed by marching the
unsteady governing equations in pseudo-time until a steady state is reached. The use of
time-dependent equations for steady-state computations is mainly driven by the fact that
the initial-boundary value problem remains hyperbolic or parabolic in the time-space plane,
independently from the flow regime (Mach number). This feature makes an appropriate

numerical solution valid for a broad range of applications.

Basically, the steady-state solution of unsteady governing equations may be achieved

by the two principal time-marching techniques: explicit and implicit.

The most used explicit techniques include Forward Euler and multi-step Runge-Kutta
schemes. In the mid 80’s, these time-marching approaches were quite popular in the field of
nonequilibrium hypersonic flows, due to their moderate demands on computer resources.
In addition, these techniques decouple the governing equations at each node/cell mesh
and therefore led to highly vectorizable and parallelizable algorithms. For steady-state
applications, however, the stiffness of the chemical source terms may limit the permissible

time step to very small values, resulting in large computational times.

Bussing and Murman [19] have improved this numerical stability limitation by treating
the chemical source terms in an implicit manner, and the convective terms by an explicit

scheme. It has been shown that this has the effect of rescaling the governing equations
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in time such that all gasdynamic and chemical phenomena evolve at comparable pseudo-
time scales. This formulation leads to a point-implicit scheme where block matrices must
be inverted at each point. Later, Eberhardt and Imlay [38] eliminate the matrix inversion
operation by replacing the chemical Jacobian matrix by an approximate diagonal form

which results from taking the L,-norm of the Jacobian coefficients along each row.

Among modem alternatives, implicit methods have achieved significant success due to
their robustness [22, 69, 104, 128]. In these types of schemes, the gasdynamic, species
transport and vibrational energy equations are assembled over the domain or part of it and
solved in a coupled fashion. For typical hypersonic reacting problems, such a formulation
allows a much larger time-step than an explicit technique, but usually results in a larger

system of equations that is more demanding in terms of memory.

1.5 Grid Adaptation Methods

1.5.1 Introduction

The field of CFD has seen many milestones achieved since it was first introduced by Von
Neumann. From a specialty niche, it has inched its way into the design process to finally
flourish as an independent science that has become well embedded in the modeling of a vast
number of processes as a major design tool. Convinced by the potential of CFD, aerospace
companies have played a major role in stimulating the emergence of commercial codes,

believing that they could ultimately be used in a black-box manner.

Code developers, by necessity, have first to address the production of bug-free codes,
while other sources of inaccuracy were left in. Such software do not provide any user
error-control tools, but rather let him rely only on his experience. If one considers the
arbitrariness of most generated meshes (e.g. grid size, mesh distribution, ...), the number

of tuning parameters (e.g. artificial dissipation coefficients, relaxation factors, time step,
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...) and the various hidden assumptions of mathematical modeling, it is no surprising that
“similar” codes may yield different answers and that even different users of the the same

code may get slightly different solutions.

Analyzing the role of the CFD in a design process, Habashi [55] stated during the World
User Association in Applied CFD meeting (1996) that;

... before CFD can be more widely accepted as the design tool (for flow prob-
lems), a few key questions must still be answered, namely those of accuracy
control (level and distribution) and repeatability (solutions are dependent on
grids, dissipation parameters and limiters, as well as users’ preferences and

biases) ...

The answer to the first question depends on the development of error indicators [91,
96] capable of giving consistent estimates of the accuracy of the solution. The second
question is mostly answered by the introduction of grid adaptation [91, 96], which consists
of adjusting the domain discretization to the requirements of the evolving solution. The
combination of these two techniques is slowly becoming the basis of the development of
modern CFD codes and may also lead to the definition of new concepts in CFD, namely
those of grid-independent and scheme-independent solutions and, hence indirectly user-

independent solutions [41].

The basic idea underlying most adaptive methods is to assess the quality of an ini-
tial numerical solution by employing some form of a posteriori error estimate and to then
dynamically change the mesh and/or the interpolation space, in a systematic manner, to
improve the quality of the solution. The ultimate goal of mesh adaptation methods is the
production of the best numerical simulation of a given problem, for the least computational
cost. Adaptation methods usually make the difference between being or not being able to

solve a certain problem to an acceptable accuracy, in a reasonable time. Without them,
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one would be forced to use much coarser grids, with lower accuracy, for the same expense.
Furthermore, they free the user from the tedious task of intuitively constructing a suitable
mesh, which would give an accurate and efficient solution of a given problem. With adap-
tation, any initial grid may systematically be transformed into a near-optimal mesh for the

solved problem.

Most grid adaptation methods are composed of an error estimate, an adaptive strategy

and an optimal-mesh criterion.

1.5.2 Error Estimates

The aim of an error estimate is to give an indication of the accuracy of the solution. In
the general case, the only data available for the derivation of such estimates is, however,
the approximate solution itself. Therefore, the challenge is to develop a posteriori error

estimates, that is, after an initial approximate solution has been computed.

The different techniques, which are used in a posteriori error estimation, may be clas-

sified into three major groups:

e Interpolation methods
e Post-processing methods

e Element residual methods

Interpolation Methods

These methods are directly derived from the interpolation theory of finite elements and
aim to produce inexpensive estimates of the local error over individual elements. They
consist of estimating the highest derivative dropped from the solution when expanded as a
Taylor series and the highest order terms neglected [5, 79, 108]. These terms are generally

computed by various recovery methods.
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Interpolation methods are popular among developers of grid adaptation methods due to
their ease of implementation and low cost of their evaluation. They are essentially operator-
independent (i.e. independent of the governing equations of the solved problem) and their
computational algorithms are characterized by a high portability among solvers. In fact,
such error estimates depend only on the calculated solution and the interpolation functions

used to obtain it, and therefore, can be applied to a large variety of CFD problems.

Post-Processing Methods

In this approach, an estimate of the érror is obtained by comparing an enhanced post-
processed approximate solution with the regularly calculated solution. The construc-
tion of an enhanced version of an approximate solution is essentially based on projec-
tion [133, 134, 135] or extraction methods [12, 13, 14]. For instance, the solution of a
second order PDE by finite element methods with linear interpolation functions results in a
solution with discontinuous first derivatives. The jump in the first derivatives, at element in-
terfaces, may thus serve as an error indicator. More accurate derivatives may be recovered
using various projections techniques and an error estimate can be defined as a norm of the
difference between the approximate derivative and the corresponding recovered one. Since
the projection operation is not usually performed on an element basis, the post-processing

approach often requires more computer resources than the interpolation methods .

Element Residual Methods

The residual of a numerical solution is defined as the measure of how much the approximate
solutions fails to satisfy the governing differential equations and their associated boundary
conditions. This property represents a quality indicator of an approximate solution and can
be used as an error estimate by evaluating the upper bound of the residual over each ele-
ment [16, 93]. This is usually done by solving local boundary-value problems. The residual

methods are always operator-dependent and generally lead to very accurate error estimates.
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On the other hand, this accuracy means that a significant amount of computational time is

required in the evaluation of these estimates.

1.5.3 Adaptive Strategies

An adaptive strategy is a mechanism to enrich the grid and/or the interpolation space
under the guidance of an error estimate, in order to improve the quality of a numeri-
cal solution. The adaptive strategies can be classified into four categories: node-moving
schemes (r-methods), mesh refinement/coarsening schemes (h-methods), subspace enrich-
ment schemes (p-methods), remeshing methods, and hybrid techniques combining these
four methods. In order to describe each strategy, let us illustrate them through a 2-D in-
viscid shock-tube problem, where the normal shock resolution is to be improved by the

application of the above strategies on the initial grid, Fig. 1.1.
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Figure 1.1: Initial grid

r-Method

In this method, also called node redistribution, a new adapted mesh is produced by moving

the nodes of an initial grid. The grid nodes are relocated so that the grid is dense in
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regions of high error and coarser in regions of smoother solution (see Fig. 1.2). Node-
moving schemes are easy to implement and do not require any elaborate data-structure
management. However, the quality of the adapted solution could be highly dependent on
the density of the initial mesh. In fact, for any grid with a fixed number of points and fixed
order of interpolation within each element, there is an inherent threshold under which the
error cannot be further reduced. A detailed review of such methods can be found in the

paper by Hawken etal. [57].

Figure 1.2: Adapted grid produced by an r-method

h-Method

This method automatically refines/coarsens a mesh whenever the local error indicator ex-
ceeds a user-prescribed tolerance (as illustrated in Fig. 1.3). Such schemes modify the
connectivity table after each adaptation process and therefore demand an elaborate data
management. In addition, the hanging nodes (i.e. nodes that are extraneous to the inter-
polation level) that are generated during the refinement process of a structured grid require
special treatment. However, an ~A-method can be very effective in producing nearly optimal

meshes [81, 95].
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Figure 1.3: Adapted grid produced by an h-method

p-Method

The p-method attempts to reduce the error by enriching the interpolation space [52, 109].
As shown in Fig. 1.4, the order of interpolation of each element is increased wherever
the local error indicator exceeds a preassigned tolerance. Such approach requires the im-
plementation of an imposing data structure in order to manage the degrees of freedom of
each element. Although the concept of hierarchical elements were developed to facilitate
the construction and the management of the necessary shape functions, the satisfaction of
the Ladyzenskhaya, Babuska and Brezzi (LBB) stability condition, in certain formulations,

significantly restricts the use of this method.
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Figure 1.4: Adapted grid produced by a p-method

21



Remeshing Method

This method possesses several common points with h-methods and may be viewed as
a combination of several techniques such as refinement, coarsening, edge-swapping and
smoothing. A new mesh is regenerated using the error indicator that is provided on a
background mesh (see the Fig. 1.5). The new grid will contain more nodes in regions
with high error, while regions with smooth solution will be meshed with relatively coarse
elements. Such schemes are tightly coupled to certain grid generators and consequently
may not be portable. A description of some versions of this method can be found in

references [80, 107, 108].
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Figure 1.5: Adapted grid produced by a remeshing method

Combined Methods

Although the above methods were initially designed to be applied in a separate manner,
the combination of such strategies may lead to very effective schemes. For instance, a
hybrid h-p method may result in an exponential rate of convergence [53, 54, 52], for certain
type of problems, by optimally decreasing the mesh size h and increasing polynomial
degree p. This method was successfully used in the solution of incompressible viscous
flows [92, 94, 97] but one may encounter serious difficulties in predicting compressible

flows with shocks.

22



Another combined method consists of coupling an r-method with an h-method. The
resulting r-h scheme might be used effectively in problems involving the resolution of
some directional flow features (shocks, contact discontinuities and boundary layers) where
the r-method is first introduced to align and stretch the mesh along those directions prior

to a mesh refinement {42, 99].

1.5.4 Optimal-Mesh Criterion

The definition of an optimal mesh is not necessarily unique [107]. It can be defined as a
mesh with a minimum number of degrees of freedom required to achieve a specified level
of error, or it can be interpreted as the mesh in which a given number of degrees of freedom
are distributed in such a manner that the error is minimal. It is obvious that both definitions
can be achieved by k- or p-methods where a certain tolerance may be prescribed. For an
r-method, where no additional degrees of freedom are introduced, the second definition is

usually adopted.

It should be noted that the concept of optimality is intimately linked to that of accuracy,
which is also not uniquely defined [107]. In fact, optimality of a mesh should be defined
with respect to a certain norm of the error. For elliptic problems, the development of a
posteriori error estimates has already reached a high level of maturity. Detailed theoretical
basis have been derived and error indicators for such problems have been shown to be
bounded and to converge asymptotically with successive refinements. For gasdynamic
problems with shocks, most of these developments are, however, not applicable and a more

heuristic approach is usually adopted.

1.6 Directionally-Adaptive Methods

An accurate prediction of a typical hypersonic flow includes the resolution of very strong

shocks, followed by extremely fast vibrational relaxations and intense chemical reactions.
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The regions containing these important phenomena are characterized by steep directional
gradients of flow variables and are a priori unknown and embedded in regions where the so-
lution varies more smoothly. Hence, an accurate numerical simulation of such flows should
theoretically requires a fine meshing of the whole computational domain, compounding the
complexity of the problem. One efficient alternative would consist of seeking solutions on

directionally-adapted grids.

Even when the same error estimate is used to assess the accuracy of a solution, the
resulting adapted grid strongly depends on the selected adaptation strategy. Classical tech-
niques such as standard h-methods [83, 95] produce isotropic meshes in which the length-
scales of each element are essentially the same. These techniques are optimal only for those
flow field regions possessing nearly equal variations in all spatial directions. As a result,
directional flow features are not necessarily adapted efficiently and the number of elements

needed to represent those may increase disproportionately with each isotropic refinement.

An alternative approach would be to build anisotropic meshes where selective resolu-
tion is introduced along those directions with rapidly changing flow variables. This idea
was introduced by Peraire er al. [108], who used an adaptive remeshing procedure that
incorporated directional stretching for the solution of the 2-D Euler equations on triangu-
lar grids. Anisotropic grids may also be produced by coupling a mesh movement strategy
with local isotropic refinement (r-h method) [99]. Komhuber er al. [74] proposed an
anisotropic strategy based on directed refinement of pairs of triangular elements to resolve
boundary layers. Recently, Fortin ef al. [42] used a metric as a measure of error, cou-
pled to an r-h strategy, to achieve directionally adapted unstructured grids with high aspect

ratios.

The above approaches have primarily been used on unstructured meshes because of
the intrinsic ability of triangular elements in 2-D and tetrahedral elements in 3-D to deal

with arbitrary complex geometries. In addition, such meshes provide a natural setting for
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the implementation of adaptive grid techniques. Unstructured adaptation algorithms can
yield highly stretched grids, as well as locally refined/coarsened meshes. In contrast, most
refinement techniques for structured grids [28, 70, 95] avoid propagating the refinement to

the boundaries by allowing sides to have hanging nodes.

Despite these advantages for unstructured meshes, structured grids of quadrilateral
elements in 2-D and hexahedral elements in 3-D are still used with great success in
CFD [10, 28, 65]. One reason is their ability to include multigrid acceleration techniques
in a straightforward manner, while unstructured grids may encounter some difficulties in
generating multi-level grids [75, 86]. Moreover, integration of PDEs on a structured grid
requires less CPU time than on an unstructured one, for the same number of nodes. Struc-
tured grids are also more suitable for turbulence modeling, particularly near solid walls

where normals to walls may be necessary.

Furthermore, a certain degree of grid anisotropy [5, 6] may also be introduced for struc-
tured grids through an improved mesh movement scheme to be presented in Chapter 3. The
classical mesh movement technique was originally introduced by Gnoffo [47], generalized
by Nakahashi [89] in the context of finite volume methods and applied to a finite element
method by Lohner [83]. All these mesh movement schemes are based on a spring anal-
ogy where the grid is viewed as a network of springs whose stiffness constants represent a
measure of error. The grid vertices are displaced until the equilibrium state of the spring
forces is reached. Such classical techniques are characterized by their low cost and the
conservation of nodal connectivity, but can often stall or diverge and tolerate only a limited

range of nodal movement.

1.7 Objectives and Thesis Overview

In this thesis, a finite element, segregated, implicit method is developed for two-

dimensional, inviscid, hypersonic, thermo-chemical equilibrium and nonequilibrium flows,
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with an emphasis on resolving directional flow features such as shocks by an anisotropic

mesh adaptation technique.

This methodology is valid for a large variety of CFD problems including frozen, chem-
ical equilibrium/nonequilibrium and thermal equilibrium/nonequilibrium flows, and also
covers a wide range of speeds, from subsonic internal flows to hypersonic external flows.
All these CFD problems are efficiently tackled by a unified code in which easy deletion or
addition of chemical species or extra physical modeling is possible. This was made feasi-
ble by adopting a segregated approach which decouples the governing equations to several

systems of PDEs according to their physical category.

The second chapter of this thesis deals with the numerical discretization of the Eu-
ler equations in the case of thermo-chemical equilibrium flows. A finite element weak-
Galerkin formulation is derived using two different approaches for computing the flux Ja-
cobian matrices. The first approach assumes that the equation of state is given by a general
analytical form for a divariant gas and leads to an exact evaluation of the Jacobian matrices.
In the second approach, an equivalent ratio of specific heats (equivalent-7) is introduced in
the perfect gas law to reproduce the behavior of the considered thermo-chemical equilib-
rium gas. Such a formulation is widely adopted in the extension of existing gasdynamic

codes to reacting flows as it requires no modification of the flux Jacobian matrices.

The computational domain is subdivided into quadrilateral elements on which the flow
variables are approximated by bilinear shape functions. An artificial dissipation, necessary
to prevent instabilities, is added in the form of Laplacians of conservative variables, but the
isoenthalpic steady flow solutions is recovered by substituting the total internal energy by

the total enthalpy in the dissipative terms of the energy equation.

Chapter three describes the two major ingredients of a directionally-adaptive method,

namely edge-based error estimate and mesh movement scheme, with validations on several
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relevant benchmarks. The quality of the numerical solution is assessed through its Hessian
(matrix of second derivatives) which is then modified by taking the absolute value of its
eigenvalues to finally produce a Riemannian metric. Using elementary differential geome-
try, the edge-based error estimate is thus defined as the length of the element edges in this
Riemannian metric. This error is then equidistributed over the mesh edges by applying a
mesh movement scheme similar to [89], but made vastly more efficient by removing the

constraints on grid orthogonality.

Chapter four is devoted to the mathematical modeling of hypersonic thermo-chemical
nonequilibrium flows. The chemical phenomena are modeled by a set of coupled species
transport equations, wherein the source terms represent the rate of mass transfer among
species (production or destruction of any species) during chemical reactions. Thermal
effects are introduced by considering a set of coupled PDEs for the conservation of vibra-

tional energy for every molecular species.

The number of species transport equations is drastically reduced by neglecting the ion-
ization phenomenon, thus leaving one to represent the air by the five neutral species: O, N,
NO, O, and N. This system of equations is further simplified by considering an algebraic
equation for conservation of elemental nitrogen to oxygen ratio in air. The chemical source
terms are computed according to kinetic models where reaction rate coefficients are given

by Park’s reaction models [100, 105].

In the present study, the translational and rotational modes are assumed to be in equilib-
rium and, they can, hence, be characterized by a single temperature. All molecular species
are also characterized by a unique vibrational temperature yielding a two-temperature ther-
mal model which requires the solution of a single conservation equation for the total vibra-

tional energy.

Chapter five presents a numerical solution of the thermo-chemical nonequilibrium gov-
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eming equations with validation against experimental results. The present numerical ap-
proach is also based on a Galerkin-finite element method coupled to the mesh adaptation

procedure described for Chapter 3.

In the entire work, the governing equations are subdivided into three systems of PDEs
-gasdynamic, chemical and vibrational systems— and marched in pseudo-time to steady-
state by an implicit technique. This loosely coupled approach enjoys the robustness of an
implicit formulation while keeping the memory requirements to a manageable level. It also
allows each system of PDEs to be integrated by the appropriate algorithm in an attempt
to achieve the best global convergence. This particular feature makes the present approach
quite attractive for the extension of existing gasdynamic codes to hypersonic flow problems,

as well as for applications having stiff source terms, such as reacting flows.

Finally, Chapter 6 states the major conclusions and briefly presents an outline of poten-

tial future research themes.
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Chapter 2

Numerical Discretization of Euler

Equations for Divariant Gases

2.1 Introduction

Many of numerical techniques for the Euler and Navier-Stokes equations are stabilized by
algorithms that fall into the category of upwind schemes. These schemes, which include
SAux-vector splitting [114, 120] and flux-difference splitting [48, 111}, relate numerical space
differencings to the physical propagation properties of the solutions. The flux-vector split-
ting is totally dependent on the homogeneous feature of the inviscid fluxes and discretize
these fluxes with respect to the sign of the associated propagation speeds. More physical
properties are, however, introduced in the definition of the second splitting where the exact
solution of the exact/approximate Riemann problem is used in the calculation of the fluxes

at cell interfaces.

These two type of splittings were primarily developed for perfect gases and do not
directly extend to general divariant gases [43, 51]. In this case, equivalent-y approxima-

tion [45] is usually used to recover the homogeneity feature of the inviscid fluxes in the
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Steger and Warming scheme and to facilitate the computation of the Roe flux upwinding at

the intermediate states [51].

On the other hand, central differencing schemes [17, 66, 82], including Galerkin-finite
element methods, are fully independent of the direction of disturbance propagations. As
matter of fact, these schemes are usually stabilized by adding dissipative operators, such
as Laplacians of conservative variables, to the governing equations and assume no approx-

imation on the equation of state.

This Chapter describes an implicit Galerkin-finite element method for the Euler equa-
tions within the context of divariant gases. This approach permits real gas effects to be
included in several ways and results in a very flexible and portable code. It is also valid for
a large variety of CFD problems ranging from subsonic to hypersonic flows of frozen and

thermo-chemical equilibrium gases.

An analytical divariant gas law or a curve fit to thermodynamic data may be used as
a closure equation for frozen flows. For reacting flow problems, however, an equilibrium
procedure should be included in order to update the species concentration and the remaining
thermodynamic variables such as pressure, temperature or the ratio of the specific heats.
This procedure may be in the form of curve fits or a free-energy minimization routine for

general gas mixtures.

Here, two formulations based on an exact and an approximate (equivalent-¥) flux Ja-
cobian matrix are presented. In the first approach, an exact form of the Jacobian matrix
is developed by assuming that the equation of state is given by a general function for a
divariant gas. Although, this formulation yields a robust solution method, the evaluation of

the Jacobian matrices prohibitively expensive.

In the second approach, the perfect gas law with an equivalent ratio of specific heats,

%, is used to reproduce the behavior of the considered real gas. Such a formulation, also
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called variable-effective-gamma, has been introduced by Gnoffo [45] and is highly suitable
for extending the existing gasdynamic codes due to the rather minor modifications involved

in its computer implementation.

2.2 Governing Equations

The conservation form of the mass, momentum and energy equations describing an inviscid

compressible flow may be written as
Q,+F;; =S, 2.1)

where Q represents the vector of the conservative variables, F'; is the vector of convective
fluxes and S is the vector of source terms. Indices 7 in the above formula refer to the axes
of Cartesian coordinate system, a comma denotes partial differentiation and the Einstein

summation convention is applied. In 2-D problems, the components of vectors Q and F;

are given by
p i pY; ]
pu1 puLY; + pdy;
Q= , F= U 2.2)
Pr2 p2v; + pla;
pe L (pe+plui |

where p is the density, v; the two components of the velocity vector v, p the pressure, d;;
the Kronecker delta symbol and e the specific total internal energy per unit mass. Here,
the source vector S is identically zero and is only introduced in the governing equations to

keep the numerical formulation as general as possible.

The solution of the conservation laws (2.1) requires an additional closure relation,
namely the equation of state, to ‘express the thermodynamic state of the fluid. The ex-
pression of this equation depends on the type of flow, namely, perfect gases (frozen flow),

mixtures of perfect gases in chemical equilibrium/ nonequilibrium or mixtures of perfect

31



gases in thermo-chemical non-equilibrium.

We recall that all the thermodynamic properties of a divariant gas including its chemical
composition in the case of a reacting gas-mixture, are completely defined in terms of two
thermodynamic quantities [132], such as temperature, 7', and density, p. A gas flow can be

described by as divariant gas under the following conditions:

(i) The gas is in a thermal equilibrium state.

(ii) The gas mixture is either frozen or in a chemical equilibrium.

For a general divariant gas, the pressure function may be expressed as

p = p(& p), (23)
where ¢ denotes the internal energy per unit mass and is given by

E=¢e— :,lz-v,-v,-. 2.4)

In the case of an ideal gas, the equation of state (2.3) takes the simple following form

p = (v —1ere, (2.5)
where v denotes the ratio of specific heats of the fluid.

2.3 Non-Dimensional Form

The Euler equations (2.1) are presented in dimensional form. In order to minimize
the roundoff errors that are generated by differences in flow-variable scales, a non-

dimensionalization of those variables is introduced. In addition, the use of non-dimensional
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variables eliminates the problem of units and makes the resulting code applicable for gen-

eral problems. In the present study, the flow variables are non-dimensionalized as follows

2 =2 b= - 5=_2
= C, it I;—_l, - p_vz-r
- p - €
p= 7 €=
poo vw

where the tilde symbol “refers to non-dimensional variables, the subscript oo denotes the

freestream state and L is a characteristic length of the problem.

In contrast to Navier-Stokes equations, the Euler equations have a particular feature
of remaining invariant after a non-dimensionalization operation. For simplicity, the tilde

symbol will be omitted in the rest of the numerical formulation.

2.4 Weak-Galerkin Formulation

The weak formulation is obtained by minimizing the residuals of equation (2.1) over the
solution domain. The system (2.1) is multiplied by a weight function and integrated over
the domain, yielding

[(@Q+Fii—S)W a2 =0, @.7)

where the weight functions W are identical, in a Galerkin finite element formulation, to the
interpolation functions of the variables. By making use of the Gauss-divergence theorem,

the following weak statement is obtained
[@.w da- /Q FW,;dQ+ [ Fin,W dT - /n SW dQ =0, 2.8)
where I denotes the boundary of the domain  and n; is the i** component of the outward

unit normal to the boundary I.
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2.5 Temporal Discretization

The steady-state solution of system (2.8) is obtained by an implicit time-marching tech-
nique, with the discretization of the time-dependent term based on a backward first-order

difference. Accordingly, equation (2.8) is expressed as

AQ _ n+lyxr . n+l_ - +1 =
[ W i@ /QF,. W,,dQ+/rF,- n;W dl /Qs" Wdo=0 (29)

where AQ denotes the increment of the solution after a period of time At.

To solve the nonlinear semi-discrete form (2.9), a linearization in time about the time

level n is applied [4], yielding

Qn+1 o Qn-i-LnAU,
FM! > FT 4 ATAU, (2.10)
S*tl = §" 4 B"AU,

where U = [p, vy, vo, €]” represents the vector of primitive variables. The Jacobian matri-
ces defined by
oF; as

B=_— (2.11)

_9Q oF;
ou i

L=3u:

A=

are derived in the next section.

Upon the substitution of the linearization given by equations (2.10), the equation (2.9)

can be expressed as follows:

/L£de-/(AiAUW,i+BAUW) dQ+/A,-n.-AUWdF=
a At Q r

/ﬂ (F; W, +SW) dQ - /F Fn; W dl. (2.12)

where the superscript n is dropped for simplicity.
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2.6 Derivation of Jacobian Matrices

2.6.1 Exact Form

The Jacobian matrix of the inviscid flux may be derived as

I Ui PO po2; 0 1

nY; +p,0u  p(vi +vi61) + p, b pu1da; + Pl 01 Pou
— ,  (2.13)
VoU; + 7,00 pu2dy; + p%,, 02 p(vi +v202i) + Pl 02 Pl

| vile+p),) (pe+p)ou+up,, (pe+p)oai+uvip,, vi(p+p,) ]

where the complete derivation of the inviscid flux Jacobian requires the knowledge of the

following pressure derivatives

. _|0Op . _[op . [op
T [ap] vv" P = I:avi]p,vj,e, Pe= [ae]p,v. (2.14)
By the chain rule for partial derivatives, however, we have:
B - B
-ap V,e _apj € aE p ap 'U,e’
[ Op _ [op] [oe
-3vi]p,vj_e T 8l _av,-]p,vj,e’ (2.15)
E ‘@]
_36 Py .6E.Jp -ae p’v,

where ¢ derivatives are computed from the general equation for a divariant gas (2.3) as

[3_5] —0, [25_] - [@] =1 (2.16)
Op Ve dv; oy de o0

35



Substituting the equation (2.16) into the equation (2.15) leads to

'5"2] Op
.ap V,e .ap- €
'a_p] _ -a—p.
L7 puje 0] P
-ap _ -ap.
.a—e] A - _%_ P

Do

—Y; p.sa

De-

(2.17)

By substituting the derivatives given by (2.17) into Jacobian matrix (2.17), one obtains

N ;i + P o1

| vile+p,)

Ui

VUi + P 02

pvi + v1(p — pc)oui
pu2d1i — 1P 02

P

p62i

pu102i — V2P 0y;
pv; +v2(p — P )02
(pe + )0 —viipe  (pe + p)ba; — vivep, vi(p + pe) |

For the particular case of a perfect gas, the equation of state is

giving

Y;
VU + 71601

VaU; + 11E02;

L vi(e + ’)‘15)

where v, = v — 1.

p=(y-1)pe,

{ Pe = (y—1)p
Pp = (vy—1)e

and thus, the Jacobian (2.18) becomes

po1i
pvi + (1 = m)pvidy
pu2d1; — M1 pv102;
(pe + p)dii — mpuin,

36

Pl
pu102; — 11pv201;

pi + (1 —m)puady
(pe + p)bai — y1pviv2

0 -
p,e(sli
P,e52i

O -
Y101
Y1002

YpU;

(2.18)

(2.19)

(2.20)

, (2.21)



2.6.2 Approximate Form

Another easy alternative to include real gas effects into a perfect gas solver is based on the
equivalent-y concept. In this formulation, the equation of state of a real gas is cast into the

ideal gas form

p= (- 1)pe, (2.22)

permitting the reuse of the Jacobian matrices that were developed for a perfect gas (2.21).
Here ¥ = %(e, p) is a function that varies more slowly than the other thermodynamic
variables and its value remains between 1 and 5/3 even when the values of e and p vary

over several orders of magnitude [27].

The value of ¥ is deduced from equation (2.22) as
F=1+2, (2.23)
pE

so the value of the pressure matches the one given by the real gas. In practical situations, the
pressure is determined from an equilibrium curve fit p = p(p, €) and then the equivalent-v

is evaluated according to equation (2.23).

It must be pointed out that the influence of Jacobian matrices is limited to the left-hand-
side (LHS) of the semi-discrete system (2.12), independently of the approach used in their
evaluations. This LHS term is viewed as a preconditioning operator that have no influence
on the steady solution as far as accuracy is concerned. For upwind schemes, however, the
flux splitting depends highly on the equivalent-y approximation and so it will be for the

resulting solutions.

2.7 Finite Element Space Discretization

In finite element methods, the computational domain is subdivided into a number of el-

ements, Q = UN:,Q,, where the solution vector U is approximated by shape functions,
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usually polynomials, leading to

Nn
U2U"=Y U,t) ®;(z). (2.24)
J=1

Here, U ; represents nodal values of the approximate solution U", ®; is the shape function

associated with node J and NV, is the total number of nodes.

Substituting equation (2.24) into the variational statement (2.12), one obtains the fol-

lowing algebraic system of equations:
(M + K)AU = —-R, (2.25)

where the mass matrix M, the stiffness matrix K and the residual vector R are given by

M, = [q3;:L9:9;4dQ,
Ki; = [An®®;dT — [,[A;®r; + B®|®; dQ, (2.26)
R; = frF,-n,-<I>1 dl’ — fQ[Fi(I)[,i + SQ[] dsd.

In the present formulation, the computational domain is subdivided into isoparametric
quadrilateral elements with four nodes. Isoparametric elements are those defined as having

equivalent variation of both the geometry and the solution variables.

In order to facilitate the computation of the coefficients of the global matrix and the
residual vector (2.26), the surface integrals are broken up at the element level and then
mapped to a master element ) of simple shape. These integrals are then evaluated numer-
ically by applying the Gauss quadrature technique. As shown in Figure 2.1, the master

element is a square whose coordinates vary from -1 to +1. For 2-D bilinear interpolation,
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the polynomial shape functions in the master element are given by

[ ¢1=;(1-€)(1—n),
¢ = (1 - €)1 +n),
¢ = (1 +€)(1 +n),
| $a= (1 +€)(1 —n).

(2.27)

yA My

TNt
L]

Figure 2.1: Quadrilateral element in the global coordinates (left) and the corresponding master
element in the natural coordinates (right).

2.8 Artificial Dissipation

X

A Galerkin-FEM gives rise to central difference approximations of differential operators,
which are nondissipative by themselves. In order to suppress the tendency for odd-even
decoupling of the solution, and to prevent unphysical oscillations near discontinuities, ar-
tificial dissipation operators are added to the governing equations. These dissipative terms
have no physical meaning, but are merely used as a tool to control numerical oscillations.
The governing equations (2.1) are modified to include artificial dissipation as additional
fluxes in the form

Q,+F;;=8+G;;, (2.28)

where G';; denote dissipative terms.
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The terms G; should be constructed in such a manner that it be successful in eliminat-
ing all physically meaningless oscillations, but must remain small enough in order to not
pollute the approximate solution. Since the dissipative operator is calculated at each time-
step iteration, along with the convective operator, the dissipative term should, furthermore,
be constructed to be as inexpensive as possible. The dissipative terms are usually added in
the form of Laplacians of conservative variables where the artificial dissipation fluxes G;

are defined as in references [82, 98, 118] by:
Gi=<Q, (2:29)

where ¢ is a positive coefficient.

A desirable feature of a numerical scheme for the solution of the Euler equations is its
capability to reproduce an isoenthalpic steady-state flow. That is, the value of the predicted
total enthalpy should remain constant over the entire flow field if conditions dictate it. This
property is an essential condition in order to obtain accurate stagnation temperatures. It
is obvious that the use of the above artificial dissipation fluxes does not guaranty such

property. To recover this feature, we introduce instead the following dissipative fluxes

P

puL
Gi=c¢ , (2.30)
pu2

ph

where h represents the specific total enthalpy.

By comparing the above equation with standard dissipative terms that are given
by (2.29), one may observe that only the total internal energy is replaced by the total
enthalpy in the energy equation. With this modification, the energy equation reduces to

the continuity equation multiplied by h, in the case of an isoenthalpic steady-state flow.
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Therefore, h = hy, may be admitted as a solution for the energy equation.

For the general case in which the artificial dissipation fluxes depend on both solution

variables and their gradients, one can expand these fluxes as

G*' =G} + CT AU + D, AU 4,

where the artificial dissipation Jacobians are defined by

Ci=

26,
ou

dG;

: D"’:aUJ-‘

(2.31)

(2.32)

In the present approach, the artificial dissipation coefficient ¢ is lagged at the previous

time step and hence, the Jacobian matrices C; and D;; may be expressed as

and

[

0
L

v

V2,i

hi+ piD,pp + €Pep— Pe(v1i—
| Hpapp+Eipe) + 0

Dij - 66,']'

0 0
P 0
0 Py
Piy) Pe(vei—pi2) pi(ppe+1)
+E D gc
i 1 0 0 0 i
v; p 0 0
Up 0 p 0
| h+p,—p/p ~Peti —Dev2 (p+D) |

For a perfect gas the above Jacobian matrices simplify to
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r 0 0 0 0 1

V1 P 0 0
Ci=c¢ (2.35)
X 0 P 0

L ks (v —1)(pv1i — piv1) (v = 1)(pvai — pive) vp,i

and
F 1 0 0 0 ]
Dy=eby| P ° o1 (2.36)
Us 0 p 0
Lh —(v=Dpuu —(v—1)pv2 7p |

The Galerkin-finite element formulation of equation (2.28) is obtained by modifying

the discrete form (2.25) in the following manner,
(M +K) AU = -R, (2.37)

where

M;; =M,
K1y =K+ [L(C:i®; + D;;®;:)®;; dQ — [(Ci®; + D;;®;;)n;®; dT,

R, = R;+ fQGi(pjyi dQ — er,-n,-q)[ dr.
(2.38)

2.9 Boundary Conditions

A typical computational domain for hypersonic flow problems around a blunt-body is
shown in Figure 2.2. It is bounded by three types of boundaries: inflow [;,, outflow I,
and bociy surface I',. Along the inflow boundary (i.e. freestream), [';,, all the proper-
ties of the flow should be known by specifying four variables such as (p,v;,v3, T) or

(p, Mach,a,T). At a supersonic outflow boundary, I',,, no specifications are made.
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Figure 2.2: Computational domain for a blunt-body problem

Along the body surface, I's, the no-penetration condition is imposed, that is

v-n=0. (2.39)

This condition is enforced by neglecting the line integral of mass flux in the continuity

equation.
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Chapter 3

Grid Adaptation

3.1 Introduction

In this chapter, a directionally-adaptive method, using an edge-based error estimate, is pre-
sented and implemented for quadrilateral grids. The use of an appropriate error estimate
(directional estimate), combined with the vector nature (magnitude and direction) of spring
forces in the mesh movement scheme, permits one to design a convergent adaptive proce-
dure capable of achieving wide nodal movement and a high degree of grid anisotropy even

on structured grids.

The quality of the numerical solution is evaluated using finite element interpolation
theory. The error indicator is first derived for 1-D problems and then extended to the 2-D
cases by introducing the Hessian matrix. The 4-component Hessian of a selected solution
variable is computed and then modified to produce a positive-definite matrix, allowing one
to define a measure of error, namely a Riemannian metric. The edge-based error estimate
is thus expressed as the length of the edges of the elements in this Riemannian metric. The
construction of an anisotropic mesh may thus be interpreted as seeking a uniform mesh

in the defined metric. This metric introduces and controls the magnitude, as well as the
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direction of the grid anisotropy.

Once the error estimate is evaluated, a nearly optimal mesh is sought by equidistributing
this error. Following the classical approach, the optimal mesh for a fixed number of ele-
ments may be defined as one in which the error is equidistributed over each element [91].
The adaptive strategy presented in this work aims specifically to equidistribute the error
over the edges of the elements. A mesh movement scheme is applied as the adaptive strat-
egy. which in contrast to Nakahashi spring-analogy technique [89], forces no constraints
on grid orthogonality. The scheme is also based on an explicit (node by node) approach,
rather than line-relaxation, and hence requires no sophisticated relaxation technique to pre-
vent degenerate elements [99]. This leads to a simple and efficient nodal redistribution

algorithm, offering a greater range of grid point displacements.

This work is part of an ongoing research at the CFD Lab-GIREF groups to develop
a library of routines [S5, 6, 7, 32, 41, 42, 115, 119] for the optimization of 2-D and 3-D,
structured and unstructured grids. To achieve this goal efficiently, the three principal com-
ponents of the adaptive procedure should be characterized by a high degree of portability.
For this purpose, the error estimate, adaptation criterion and grid operations were based on
element edges which represent the elementary common feature to all considered meshes in
FDMs, FVMs and FEMs. In the current study, we restrict ourselves to the application of
an r-method on structured meshes although, it can be easily combined with any standard

h-method, to satisfy a prescribed tolerance.

3.2 Edge-Based Error Estimate

Ideally, one would like to use a sharp estimate of the error during an adaptation process.
Such error estimates, with an effectivity index close to unity, are usullay difficult to derive
for highly complex problems and quite costly to evaluate. Thus, it is not uncommon to use

less precise, but easily computable, estimates as a basis for adaptive improvements. It is
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important to keep in mind that an error estimate serves only to give a correct indication
of relative error between successive meshes or approximations orders and its calculation

should only take a small percentage of the global resolution time.

In the present section, an efficient and simple error estimate is derived using finite
element interpolation theory. The solution is expanded in Taylor series and the higher-
order terms, which have been neglected in the interpolation functions, are retained as an
error indicator. For linear elements, these terms afe proportional to second derivatives, as
it will be shown later. For the sake of simplicity, the derivation of the error estimate is first

carried out for the one-dimensional case and then extended to two-dimensional cases.

Consider a 1-D problem in which the solution g(z) is approximated by g*(z), with
piecewise linear interpolation, as shown in Fig. 3.1. A local approximation error, E,, is

defined over an element e to be:
E.(z) = g(%) - g}(2), 3.1)

where Z belongs to the interval [0, ).

The approximate solution, g2, may be expressed as a function of its nodal values in the

form

_ I T
98(%) = (1 - h_e>gl + 72:91-1-1, (3.2)

where here the origin of Z is placed at node /.

By expanding g;4; into a Taylor series around node I, one obtains
1 h2 "
grr1=gr+heg + g9 +--- (3.3)

2

After substituting the equation (3.3) into (3.2) and making some simplifications, the solu-
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A — Exact solution (g)
g --— Finite element solution (gh)

Figure 3.1: Solution as approximated by a piecewise finite element method

tion g may be rewritten as

92Z) = gr + zg; + R (3.4)

Provided that the error at the nodes is zero, the exact solution may also be expanded in
the neighborhood of the node I as (Taylor series)

f2

2ﬁ+~- (3.5)

9(%) = g1 + Zg; +

The elemental error at any point Z is obtained by substituting the two expansions (3.4)

and (3.5) into the equation (3.1) and neglecting third order terms, that gives

=2 =
E.(z) = (% - ”; )g (3.6)
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which can be seen as a departure of a quadratic interpolation from a linear one.

Following the work of Peraire et al. [108], the Root-Mean-Square (RMS) interpola-

tion error over an element spanning the interval [0, k.| can then be evaluated as

he 2 1/2
eoes - ([ e)
0 3.7

1 h2 d2.qh
V120 °|dz?

;
Thus, an edge-based element measure of the interpolation error for this 1-D problem is

proportional to the product of the second derivative and the square of the length of the

element, h..

An optimal mesh can thus be defined as a mesh in which the RM S error is equidis-

tributed over the elements, that is one for

h
d’g" =C, (3.8)

hz dI2

e

over each element, where ¢ denotes a user-specified tolerance.

Extending this adaptation criterion to the 2-D case, the second derivative of g" is now

taken with respect to a given unit vector V as follows:
— H b 3.
_V V V (3.9)

where H represents the Hessian matrix of g" and is expressed as:

Bq"  Fg
dz® 0Ozdy
Hj=g"= : (3.10)
s2gh 8"
dydzr Oy’
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Since g" is linear for each element in the current formulation, the second derivatives
vanish. A weak formulation combined with mass lumping can, however, be applied to re-

cover a continuous estimate of the second derivatives. This yields the following expression

h
_/QI grUQI dQ

’ (.11
®; d2
Q

y,':-,-lr =

where ; represents the elements sharing node I. After integration by parts of equa-

tion (3.11), the nodal values of the Hessian reduce to:

h i _ h. i
B /r i@, dr /ﬂ g, d0

h
9iilr = (3.12)
o, dQ
¥
If the Hessian matrix, given by the equation (3.10), is diagonalized as
H = R(a) A RY(0), (3.13)

A would be the diagonal matrix of eigenvalues of H and R would be the corresponding
matrix of the eigenvectors. The transformation |A| can be interpreted as a scaling in the
axes directions and R as a rotation with angle o, that the eigenvector corresponding to the

smallest eigenvalue, A, makes with the z;-axis.

In order to transform it into a symmetric positive-definite matrix, the Hessian can then

be modified by taking the absolute value of its eigenvalues [119], resulting in:
H = R(a) |A| RY(a) = S(a) SY(a), (3.14)

where § = R,/|A|. The transformation S, for a unit circle for example, would be an

ellipse, rotated through an angle a, whose semi-major and -minor axes are reciprocals of
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the square roots of the eigenvalues |),| and |\, |, respectively (see figure 3.2). Therefore,
one may obtain a directionally stretched grid by mapping a uniform mesh using the trans-

formation S.

"V

M. T
N v

\\

Figure 3.2: Transformation of a unit circle by S wherea = |,\1|"1/2 and b = |A2|‘1/2.

By introducing the modified Hessian H, the above second derivative in any direction

V is bounded by:
&g
ov?

=[VITHV|<VTHV. (3.15)

Hence, the 1-D adaptation criterion may be rewritten for the 2-D problems as

RVITHV =C. (3.16)

In Peraire’s approach [108], the RM S error is equidistributed in the direction of the
eigenvectors where h = hg, with k£ = 1,2, are two local spacings and V' = V. are the
two unit eigenvectors of the H matrix. Accordingly, the optimal mesh criterion (3.16)
simplifies to:

h2 | M| =C with k=1,2. (3.17)

This equation serves to compute two local spacings, hx = /C/|A«|, in two orthogonal
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directions, at any point in the domain. Then, a new adapted grid is regenerated based on

these parameters and principal directions of H.

In the current approach the error is equidistributed over the edges of elements where
h = ||z; — x/|| represents the Euclidean length of an element edge [z;,zs] and V' =
(zs — x1)/h is the unit vector which supports the edge. The equation (3.16) takes the
following form:

(2:1 - :BJ)T-I_{ (Z[ - :BJ) =C. (318)

An optimal mesh is thus defined as the mesh in which the length of all edges, in the defined
metric H, is equal to /C.
Since H is a function of the space coordinates, the LHS term of the equation (3.18)

defines a Riemannian metric. Elementary differential geometry dictates that the length of

an edge [z, z,] in this metric is defined by:

d(:c;, .1:;) = ‘/01 \/(7$1 - :B_])Tﬁ(l) (:Bj - :DJ) dl. (319)

The matrix H is computed and stored on a background mesh, and thus the value of H
at any position of the domain can be interpolated during the adaptive process on this mesh.
The edge-based error estimate can then be numerically evaluated from equation (3.19) for

each edge of an element.

3.3 Mesh Movement Scheme

The adaptive strategy modifies the grid under the guidance of the error estimate to im-
prove the quality of the numerical solution. The proposed strategy relies on an r-method
illustrated in Figure 3.3, wherein the mesh may be viewed as a network of springs whose
stiffness constants represent the edge-based error estimate. The position of the central grid

vertex may be obtained from the solution of an energy minimization problem. For each
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vertex I:

. o _ 2
!Ial:-l,nPI = %1'112]:(31 z5)°krs, (3.20)

where P; denotes the potential energy of the four active springs sharing a node I, and k;;
are their associated stiffness constants. These constants may then be specifically written as

the scaled value of the associated edge in the Riemannian metric,

d(zr, x;)

\&r,Z1) 3.21
lzr — 2] G-2D)

kry=

where ||-|| indicates the Euclidean norm and d(z;, ) is the length of the edge [z, =] in

the Riemannian metric defined by equation (3.19).

@ Node 1

@ Node s
B Passive node

Figure 3.3: Spring analogy for a patch of elements

After simplification, equation (3.20) reduces to the system describing the equilibrium

state of a spring network

S (zptt -7 R =0, (3.22)
7

where k;; is lagged at the previous iteration m. The position of the vertex I is updated
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according to the expression:

ry(xT — =T) kTy
~ , (3.23)
> s kTy

m+1
T

= tw

where w is a relaxation factor. The convergence of this scheme can be enhanced by using a

Gauss-Seidel algorithm with the latest values of x; and k; in equation (3.23).

In this procedure, the boundary nodes are also free to move along their respective
curves. The same algorithm as for the internal nodes is applied to compute their new

positions, but they are projected back to their corresponding boundary curves.

The grid adaptation procedure may be summarized in the following steps:

eread a background mesh and the corresponding solution
ecompute H on the background mesh
ecurrent mesh is initialized by an initial mesh
emove the nodes of the current mesh as follows:
DOm =1 MAXITER
DO inod =1, NNODF
DO tedge = 1, NEDGFE
e determine H by interpolating on the background mesh
e compute spring constants by numerical integration of Eq. (3.21)
ENDDO
o find new position of inod
e check quality of resulting elements sharing inod
® move :nod to its new position
ENDDO
If (MAXDISP LE. tolerance) exit the m loop
ENDDO
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where NEDGE represents the number of edges sharing the node inod and MAXDISP

is the maximal displacement of all nodes for a particular iteration m.

In the general case, the background mesh serves only to compute and store the error
estimate and hence could be different from the initial mesh. For the first few cycles of
adaptation, one can thus develop a crude error estimate on a coarse mesh to adapt a finer
grid.

Both flow solver and grid adaptation procedures are placed in an iterative loop which
is repeated until the lowest value of a user-specified artificial dissipation coefficient is
reached. In the following, each iteration of this loop will be called an adaptive cycle or

level and is identified by an alphabetical letter.

3.4 Numerical Results

For all the test cases investigated in this section, the background mesh is taken to be iden-

tical to the adapted mesh of the previous cycle for all adaptation cycles.

3.4.1 Analytical test case

Since the grid adaptation procedure contains some new aspects, it is important to investigate
its effectiveness on an analytical test case. The aim of the first example is, therefore, to
demonstrate the capability of this procedure to equidistribute the interpolation error of a

given function over the edges. A function, with strong gradients, of the form:
g(z1,T2) = arctan [103(.7:‘{:1:2 - 0.25)] (3.24)

is chosen over the domain [0,2]x[0,1].

The initial mesh (35x20 nodes) with the corresponding iso-contours of g are presented

in Figs. 3.4-(a) and 3.4-(4). After 300 iterations of the mesh movement scheme, the adapted
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mesh shown in Fig. 3.4-(b) is obtained. This mesh is resulting form the strong migration
of nodes from smoother regions to regions with steep variations. As illustrated in Fig. 3.4-
(), the adapted mesh permits a vastly improved representation of the function g. It also
eliminates the step forms of the iso-contours that are observed in Fig. 3.4-(4) by a proper

alignment of the elements.

Fig. 3.5 represents a histogram of the number of edges versus the error over these edges.
In the ideal case, all the edges would have the same error. In practice, a nearly Gaussian
distribution is obtained where the maximum error is reduced five-fold. This demonstrates

the ability of the mesh movement scheme to equidistribute the error over the edges.

The plot of the average value and the L., norm of node displacements in Fig. 3.6 shows
that the correction of position vertices drops by 2 orders of magnitude after 700 iterations.
In contrast, the L norm of the edge error, Fig. 3.7, asymptotically stalls at the value of
0.55 after 170 iterations meaning that no additional maximum-edge-error improvement is

possible. In this test case, no relaxation operation is needed.

3.4.2 Hypersonic flow over a cylinder

In this example, the methodology is applied to a hypersonic flow over a cylinder (see
Fig. 3.8) at a freestream Mach number of 6 and zero angle of attack. The initial mesh,
shown in Fig. 3.9-(a), is composed of 33x53 nodes distributed uniformly in both radial
and circumferential directions. The Mach number contours of the corresponding partially-
converged solution are depicted in Fig. 3.9-(4). The final adapted mesh in Figs. 3.10-
(f) requires 5 levels of adaptation. The corresponding flow field contours, Fig. 3.10-(f),
demonstrate the benefits of the grid adaptation in resolving a detached bow shock. Here,

the density solution is the flow variable used for the error estimate.

Fig. 3.11 illustrates the enhancement of the Mach number distribution on the stagnation

line with grid adaptation cycles. The enhancement of the node density in the shock region
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with a more appropriate alignment of the elements along the shock, drastically diminishes

the amount of artificial dissipation needed in stabilizing the flow solver.

The present artificial dissipation model', also referred to as the conservative dissipation
model, is compared in Fig. 3.12 to the non-conservative dissipation model that is based on
Laplacians of the primitive variables [p, v, v2, €], by plotting the total enthalpy along the
stagnation line. One may clearly observe that only the conservative dissipation model can
conserve the total enthalpy and therefore have the ability of recovering isoenthalpic flow

solutions as a particular case.

The profiles of temperature and pressure along the stagnation streamline are compared
in Fig. 3.13 to the results of Wada etal. [125]. Overall, this figure reveals good agreement
between the adapted solution and Wada’s results. Slight discrepancies in pressure distri-
butions are, however, observed near the wall due to the different manner of implementing
the wall boundary conditions. It must be pointed that Wada’s solution was predicted on a
finer grid with an Advection Upwind Splitting Method (AUSM), proven superior to most

standard flux-difference splitting and flux-vector splitting schemes.

The convergence history of both flow solver and adaptation grid procedures are pre-
sented in Figs. 3.14 and 3.15, where the jumps in the curves represent the beginning of
each new artificial dissipation cycle. For a given value of the artificial dissipation coeffi-
cient, the L, norm of the flow residual, at that cycle, is lowered by three orders of magnitude
and then the mesh nodes are displaced 500 times. Fig. 3.14 shows that the use of a local
time stepping technique, with high CFL number of 350, permits to reach machine accu-
racy in relatively small number of iterations. A relaxation factor of 0.6 is used in the mesh

movement scheme.

In order to study the influence of the selected flow variable used in the error estimate

!This model is based on Laplacians of the modified conservative variables, [p, pv1, pv2, ph].
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on the quality of solutions, a comparative study is conducted for density (1), velocity (2)
and the Mach number (3). Fig. 3.16 shows that an adaptation method based on density or
velocity variable results in almost the same adapted grid while the Mach number in plot (3)
tends to concentrate less nodes in the stagnation region. The plot of the adapted solution
for the three error estimates in term of Mach number contours in Fig. 3.17 reveals almost
no differences between them, except at the exit of case (2) where tiny oscillations may be
observed. Fig. 3.18 displays the same comparison in terms of pressure contours where all

error estimates produce nearly identical solutions.

It should be noted that all these observations are valid for the Euler flows and cannot be
extended to other CFD problems such as viscous flows. For inviscid flows, an adaptation
procedure is mainly applied to permit a better resolution of shocks. Since this physical
phenomenon is felt by all flow variables, the adapted solution would be almost independent
with respect to these variables. So the selection of a flow variable is mainly motivated by

its smoothness and this justifies the use of density in most mesh adaptation literature.

Viscous flows, however, contain additional physical phenomena, such as boundary lay-
ers and vortices, that should also be efficiently resolved. It is then important that the used
flow variable should be furthermore sensitive to the presence of these phenomena and per-
mits an appropriate evaluation of the error in their regions. For these reasons, velocity or
Mach number solution is usually chosen as the key variable in the evaluation of the error

estimates.

3.4.3 Supersonic compression corner

The second test case is that of flow at Mach 3 over a 16° ramp (see Fig. 3.19). This example
tests certain features of the algorithm, including the resolution of the oblique shock and its

proper angle.
The initial coarse mesh of 44x27 nodes is shown in Fig. 3.20-(a) and the resulting den-
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sity contours are presented in Fig. 3.20-(4). After S levels of adaptations, the resulting
grid and solution are depicted in Figs. 3.21-(f) and -(f), respectively. A comparison of
Figs. 3.20-(4) and 3.21-(f') demonstrates the important role of the grid adaptation in cap-
turing a sharp shock at the correct angle. The final solution is also illustrated in the form of

pressure and Mach number contours in Figs. 3.22 and Figs. 3.23.

A magnification of the mesh in the shock region in Fig. 3.24 shows that the quadrilat-
eral elements are oriented in the direction of the shock, with aspect ratios as high as 50.
Fig. 3.25 clearly illustrates the superiority of the adapted solution in approximating the
exact solution. In fact, the use of an appropriate grid also allows the reduction of the artifi-
cial dissipation coefficient by a factor of 10. The convergence history of the flow solver is
presented in Fig. 3.26 and the node displacement convergence of the adaptive procedure is

displayed in Fig. 3.27.

3.4.4 Hypersonic flow over a double ellipse

In this test case, a double ellipse profile is placed into a Mach 8 flow at 30° angle of attack.
Since it was introduced in the Workshop on Hypersonic Flows for Reentry Problems in
1990 [1], this benchmark has proven a great challenge for testing compressible flow solvers.
As depicted in Fig. 3.28, the flow field is characterized by a strong detached shock wave
followed by a moderate canopy shock. Therefore, the use of standard flow solvers on a

uniform grid tends to produce smeared shocks.

The computations were initiated on 45x124 (5580) grid nodes, Fig. 3.29-(a), and the
corresponding solution is shown in Fig. 3.29-(4). The adapted grid, displayed in Fig. 3.30-
(g), is obtained after 6 levels of adaptations. The adapted solution is presented in Fig. 3.30-
(§) and it can be clearly seen that the detached and canopy shocks are well resolved. It can
also be observed that the canopy shock is not captured in the first cycles of adaptations due

to the inadequacy of the grid.
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The body pressure coefficient distributions, C,, of initial and adapted solutions are
compared to Chalot’s results [24] in Fig. 3.31. This plot demonstrates the important role of
the adapted grid in shock capturing through mesh alignment and the ensuing reduction of
the required artificial dissipation in the flow solver. Chalot’s computation was carried out

by a FEM on an adapted triangular mesh of 6721 nodes.

As displayed in Fig. 3.32, the full convergence of the flow solver requires 150 iterations
with a CFL number of 300. The convergence history of the adaptation procedure is depicted
in Fig. 3.33 for a relaxation factor of 0.45. In addition, 700 iterations are used for each

adaptation cycle.
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Figure 3.4: Initial (a) and adapted (b) meshes and the corresponding iso-contours, (4) and (®), of g
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Figure 3.24: Magnification of the adapted grid in the shock region
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Chapter 4

Governing Equations for Thermo-

Chemical Nonequilibrium Flows

4.1 Introduction

This chapter is devoted to the derivation of the set of partial differential equations that
governs the dynamics of inviscid thermo-chemical nonequilibrium flows. In addition to the
Euler equations, a system of species transport equations and vibrational energy equations is
required to model a gas mixture that is vibrationally excited and chemically reacting. The
models describing species production rates and vibrational relaxation rates are also derived.
This is followed by the development of an equation of state and a total internal energy
expression for the gas considered. The last section presents some modeling simplifications,

as well as the resulting governing equations.

The thermo-chemical nonequilibrium flow fields that are considered here are assumed
to conform to the particular criteria outlined below. First of all, the Knudsen number for the
flow problems at hand is assumed to be much lower than 0.1 and, therefore, the flow fields

may be accurately described by a continuum. It is also assumed that there are a sufficient
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number of collisions of gas molecules with walls so that no velocity or temperature slip

exists at the wall.

If ionization phenomena of air are neglected, there remains only five neutral species to
be considered, namely O, N, NO, N; and O,. This assumption is valid for reacting flows
with a temperature below 9000 K. Although this condition is not strictly respected in this
work, neglecting the ionization phenomena remains a reasonable assumption for practical
problems of interest. These five species are identified by the subscript s which varies from

1 through 5, respectively.

We assume all energy modes are separable and consequently can be described by sepa-
rate temperatures. We also assume that for all species the rotational mode is in equilibrium
with the translational mode, and thus, can be characterized by a single temperature 7'. This
last assumption is reasonable under conditions within the continuum regime where for air
species the rotational equilibration with the translation needs few collisions due to the low
characteristic of the rotational temperature. Thus the equilibration between the two modes

is quickly reached.

4.2 Mass Conservation Equations

The conservation equation of mass for the chemical species s may be written in the form

dps
ot

2 c
+ a—x;(p,v,i) = S,, @4.1)

as suggested in many references [9, 76, 122). Here, v,; denotes the species velocity com-

ponents and SY is the chemical rate of production of the species s.

The above equation can be expressed as a function of the mass-averaged velocity, v, by

introducing species diffusion velocities v2. The diffusion velocity of any species is defined
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as the difference between the species velocity and the mass-averaged velocity

vf,’ =V —, “4.2)

where the mass-averaged velocity is expressed as
v= Ps vV, 4.3)

Substituting these new velocities in equation (4.1) and noting that p = ¥, p,, the species

mass conservation equation is transformed to

0ps
ot

0 _ 0 d c
+ 6_3:1_(!73'01') = -3.'17,- (psvg;) + Ss- 4.4)

For an inviscid flow the diffusion contribution is neglected and the species equation simpli-

fies to

0ps
ot

% e
+ a_xi(psvi) = 5;. 4.5)

Recall that the total mass conservation (i.e. continuity) equation may be recovered by
summing the equation (4.4) over all species and noting that the overall mass production

rate and the overall mass flux owing to diffusion are zero, that is

%, 0

4.3 Chemical Source Terms

The most important chemical reactions among the five neutral species: O, N, NO, O, and

N that compose a dissociated air are written in a compact form as
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0, + X = 20 + X
N, + X & 2N + X
NO + X= N +0 + X @4.7)
NO + O = O, + N
N, + O = NO + N

where X represent any species that acts as a collision partner in the reaction and is not
altered, giving a total of 17 reactions. The first three reactions are called dissociation

reactions and the last two are shuffle reactions.

It should be noted that the direct formation reaction for the nitrogen monoxide,

O, + N, =& NO + NO, (4.8)

introduced in early models is now usually discarded as it can be obtained as a combination

of dissociation and shuffle reactions.

At high temperatures, chemical reactions will occur in gas flows resulting in changes
in the amount of mass of each chemical species. This is represented by the term S¢ on the
right-hand-side of species mass conservation equations (4.5). In a general mixture of N,

species there will be NV, reactions taking place which can be expressed as

N, ' N "
zyerS = Zysr },3’ T=1,"',Nr (4'9)
s=1 s=1

where Y is any chemical species among the five neutral species listed above. The parame-
ters v, and v, are the stoichiometric coefficients for reactants and products of species s in

the rt* reaction, respectively.

The law of mass action is actually an empirical formulation confirmed by numerous
experimental observations [122]. The law states that the rate of appearance or disappear-

ance of chemical species is proportional to the products of the concentrations to a power
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equal to the corresponding stoichiometric coefficient. The rate of change of any species

concentration [Y;] resulting from these elementary reactions is
Nr 14 "
5S¢ =M, (v, — V) (Rsr — Ror), (4.10)
r=1
where the forward rate of reaction is given by

Na Ul
L\t
Rpr = kso(T) -—) , @.11)
fr = kg E(Ml

and similarly for the rate of the reverse chemical reaction,

n

N, Y

pl Ir
Ry, = k. (T _ ) 4.12
br o ),Lll(Mt) (4.12)

The symbol [T, denotes a product over all values of species set and, k - and ky, represent

forward and backward reaction rate coefficients.

These chemical rate coefficients are generally measured experimentally. Although
methods from kinetic theory exist for their theoretical estimation, such results are some-
times inaccurate by several order of magnitude [103]. Using the well-known Arrhenius

equation, empirical results for many reactions can be correlated in the form

E,
ki(T) = C’,exp( IcT) (4.13)

where E, is the activation energy, k the Boltzmann constant and C a constant. To cover a
wider range of reactions, equation (4.13) has been improved by including a pre-exponential

temperature factor, leading to

k(T) = C;T* exp ( (4.14)

i)
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where all the parameters: Cy, py and E, are deduced from experimental data.

Equation (4.14) is usually rewritten in the following functional form

kfr(T) = Cy TH" exp (_%&) ) 4.15)

where the rate constants Cy,, 75, and 6y s are given in Appendix A.

The backward rate coefficient is generally deduced form the equilibrium constant as

ker(T) = I%,(E% (4.16)

For a certain chemical reaction models, such as Dunn and Kang [71], the backward coef-
ficient is, however, directly computed by a formula which possesses the same form as the

forward coefficient equation (4.15).

In Park’s reaction model (1985), the equilibrium constants K., for the chemical reac-

tions are computed according to following expression:
Kegr = exp(Asy + Agr Z + A3, 2% + Ay 2% + A5 2%, 4.17)

where Z = 10,000/T and the constants A;., with [ =1-5, are provided in Appendix A.

A few years later, the same author [105] presented a revised formula that is consistent

with the two-temperature model,
Keogr = exp(A1rZ + Az + Asr In(1/Z) + Asr /2 + Asr | Z7), (4.18)

where the constants A;, are also given in Appendix A
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4.4 Conservation Equation of Species Vibrational Energy

In high temperature flows, diatomic species of the gas mixture experience violent collisions
that may result in the perturbation of their vibrational states. Then, they begin to seek
their new equilibrium properties by relaxing toward the translational temperature of the
flow. The aim of this section is to derive a set of equations that governs this thermal
nonequilibrium rate process, also referred to as vibrational relaxation. This derivation

is subject to the following principal assumptions:

- Diatomic molecules are assimilated to harmonic oscillators.
- Collisional vibration-vibration exchanges are neglected.
- Vibrational heat conduction is neglected.

- The energy of oscillators upon collision takes place only between adjacent states.

The last assumption is consistent with detailed quantum-mechanical studies of transition

probabilities during weak interactions.

Upon these assumptions the conservation equation of the vibrational energy for di-

atomic species s may be expressed as [122]

awvs

¢;s (T) - ¢vs (Tvs)
at 3

T‘US

(4.19)

0
+ 6—23: (wusvsi) =

where 7, represents the relaxation time, 1, is the vibrational energy per particle s and 9,
is the vibrational energy that the gas would have if it were in equilibrium at the translational
temperature 7. This remarkably simple equation shows that the vibrational energy of the
diatomic species will always tend toward the equilibrium value, as one might expect. It
also shows that the rate at which it so tends is linearly proportional to the amount that it

departs from equilibrium at that instant.
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The vibrational energy per particle s is given by

kbys

- €Xp (eus/ Tua) -1 ’ (4.20)

¢‘U$

where T, refers to the vibrational temperature of the molecular species s. The coefficients

6, are the vibrational characteristic temperatures and are provided in Table A.3.

The vibrational energy per unit volume is related to the vibrational energy per particle

by the relation

N
€ys = '(;bvs E (4-2 1 )

Knowing that Nk = R and R, = R/M,, the above equation may be rewritten as

_ Rs0us
evs - exp (eus/Tus) _ 1 (4.22)
and equation (4.19) becomes
66,,, 0 _ 3;3 (T) - evs(Tus)
ot + 9z (eusvsz) = Tos . (4.23)

Instead of the non-conservative form given by the equation (4.23), we are more con-
cemned, for numerical discretization purposes, with the conservative form. That is

dpseys _ deys é&

Pkl n (4.24)

where the first derivative term on the RHS is given by equation (4.23) and the last derivative
term by the species equation (4.5). After these substitutions are carried out, the vibrational

energy conservation equation may be expressed in the conservative form as

%) €y 0 c
pét - + a_:z:i(pseusvsi) =qr-ys + evss.n s= 3’ T N’ (425)
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where gr_, ; denotes the vibrational rate due to translation-vibration energy exchanges and

is given by
€ys(T) — €us(Tos)

T‘UJ

(4.26)

4qT-vs = Ps

The vibrational energy equation may be extended to include vibration-vibration energy
exchanges by adding the corresponding rate, g,_, s, to the vibrational source term. This

leads to

dpse 0
M + —(psev’v‘“-) =qgr—ys + Qu-vs + e,,,S:, §s=3,---, N;. 4.27)
ot Oz;

4.5 Vibrational Source Term

The vibrational source term, as derived in the previous section, is composed of three
energy exchange rates: translation-vibration rate, gr_,s, vibration-vibration rate, g,_, s
and chemical-vibration rate, e,;S;. Since the second source term cancels for the two-
temperature model and the third term has been already derived in Section 4.3, this section

is limited to the derivation of the translation-vibration rate.

The translation-vibration energy exchange rate is principally modeled by the Landau-
Teller equation [103]. This equation is valid unconditionally at relatively low-temperatures,
or conditionally at all temperatures immediately behind the shock wave. The extension of
this equation to a gas mixture gives
e;s(T) — eys(Tys)

us
T—vs = =
dT-vs = Ps < TsL T )

(4.28)

where < 7-~T > represents the molar averaged Landau-Teller relaxation time and is given
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by Lee [76] as
N,
Z Xi
< T>= FH5—mr (4.29)
Y x/ri T
=1
The Landau-Teller inter-species relaxation time, 7577, is correlated by Millikan and

White'’s [87] semi-empirical formula as follows:

1
T = 01:’00 exp [Aq(T/% - 0.015 ul{*) — 18.42],
Aq = 116-1073pulf* 043, (4.30)

Hst = M;M[/(M, + My).

For temperatures higher than 8000 K, the Millikan and White formula, however, results
in unrealistically small relaxation times due to an overprediction of the collision cross-
section. In order to correct this inadequacy, Park [102] suggested to add a new relaxation

time, 77, to the previous Landau-Teller relaxation time as shown

L-T _ L-T
Te =<Tg

>+ 1F, (4.31)

where the collision limited relaxation time, 77, is expressed as

1
P _
T, = Eo X, (4.32)

Here, £ = /8RT/mM, represents the average molecular speed of species s and X,
is the number density of colliding particles. The limiting collision cross-section, oy, is

approximated by the expression that was originally developed for nitrogen,

o, = 10721(50,000/T)>. (4.33)
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Vibration-dissociation coupling is introduced through a rate controlling temperature
T. = /TT, which replaces the translational temperature in the computation of species

rate of production, as proposed by Park [102].

4.6 Equation of State

In the low temperature range of aerodynamics, a gas mixture such as air is assumed to
follow the perfect gas law, that is
p=pRT, (4.34)

where the specific gas constant, R, have a value of 287m?/s2K for air. This law implies

that forces between the molecules are negligible.

At high temperatures, this relation still holds for any species of a gas mixture leading

to the definition of the total pressure by Dalton’s law

N,
pP=)_ Ps (4.35)
s=1

where p, is the partial pressure contribution of the species s.

By applying the equation (4.34) to each species and substituting the result into equa-
tion (4.35), this yields
p = pRT, (4.36)

where the average gas constant is defined as R = ¥, ¢, R,.

4.7 Total Internal Energy Expression

The total internal energy by unit mass, e, of a gas mixture is composed of several mode

contributions which may be written in the form
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N, N, N, N, N,
e= chets + chers + zcseas + chevs + cheks- (4.37)
s=1

s=1 s=1 s=1 s=1

The first energy term on the RHS of equation (4.37) represents the translation energy

for species s and is defined by
es =c., T, (4.38)

where ¢, = 3R,, are the translation specific heats at constant volume. The rotational
energy, ers, possesses a similar form as the equation (4.38), while the rotational specific

heats at constant volume are given by

r _f 0 foratoms (s=1,3)
Cos = { Rs;  for molecules (s =4,5) (4.39)

The term e,s represents the contribution of heat of formations and are expressed as
€os = hZ, (4.40)

where h? denotes the enthalpy of formation of species s and is provided in Table A.3. We

recall that the vibrational energy has the following form

_ R,0ys
Cus = exp (6ys/Tys) — 1

(4.41)

The last contribution in equation (4.37) is due to the kinetic energy and is given by

Ers = %vivi. (442)
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4.8 Summary of the Governing Equations

The mass, momentum, total internal energy, species mass fractions and vibrational energy
equations describing a 2-D thermo-chemical nonequilibrium flow may be summarized in
the conservative form as

Q:+Fi;=S, (4.43)

where Q represents the vector of the conservative variables, F'; is the vector of convective
fluxes and S the vector of sources. For a gas-mixture with the five species: O, N, NO, O,

and N,, the components of vectors Q, F'; and S, in 2-D problems, are

 p ] [ pY; [ 0 1
pu1 pu1Y; + poy; 0
pU2 puav; + pla; 0
pe (e + p)ui 0
PC pC1Y; St

Q = . ’ Fi = . ' S = . ) (4'44)
PCq PC4V; S§
PC3€Ey3 PCICy3V; qr—v3 + Qu-v3 + 556"3
[ PCs€us | L pCseysvi L gr—vs + Qu-us + Sfeys |

where c; is the mass fraction of species s and is defined by

cs = ps/p- (4.45)

In addition, the global mass conservations conditions dictates that:

e =1, (4.46)

s=1

96



and the equation of state is given by

p=pRT. 4.47)

Finally, the total internal energy may be rewritten as

N
2 1
e=¢,T + E csh? + e, + 5 Vit (4.48)
s=1

where ¢, = ¥, ¢s(ct, + cf,), represents the specific heats at constant volume for the air

mixture.

4.9 Simplification of the Governing Equations

The great complication generated by the onset of chemical and vibrational equations poses
a problem to numerical simulation efficiency. A realistic calculation of practical hypersonic
flow problems remains an onerous task even on today’s supercomputers. Extensive use
of parallel and vector capabilities is necessary, but not sufficient for tackling such large
scale CFD problems. Therefore, it is still important to perform some appropriate modeling

simplifications which render the analysis feasible without impairing its usefulness.

The number of species transport equations may be reduced, in the case of inviscid
flows, by replacing one of them by an algebraic equation for the conservation of elemental
nitrogen to oxygen ratio in air. Assuming the molar concentration of oxygen and nitrogen

in air to be 21% and 79%, respectively, the elemental conservation condition read as

Cl/M1 + C3/M3 + 264/M4 _ E._
co/ My +caf M3 +2¢cs/Ms ~— 79

(4.49)

In the present study, the two-temperature model is used meaning that all molecular

species are characterized by the same vibrational temperature T;,. This model requires the
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solution of a single conservation equation for the total vibrational energy that is defined by

N,
€y = ) CsEys. (4.50)

=3

The vibrational energy equations of the system (4.43) are thus replaced by a single vibra-

tional energy equation, resulting from their summation.

Substituting these modeling simplifications into system (4.43) leads to
Q,t+Fi'i=S, “4.51)

where the components of vectors Q, F'; and S are given by

] ] i 0 ]
[P pu;
0
pu1 purv; + poy; 0
pv2 pYav; + pla; 0
pe .
Q= F.= (pe + p)v; Ss= o  @452)
pc peLv; !
SC
pez pC2; 2
Sc
PC3 pPC3V; N, 3 N,
L pey | L PELV; | Z ar-vs + Z S:evs
L s=3 $=3 J
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Chapter 5

Numerical Simulation of Thermo-

Chemical Nonequilibrium Flows

5.1 Introduction

This chapter describes the numerical discretization of a set of a coupled partial differential
equations that governs thermo-chemical nonequilibrium flows. Using a loosely coupled
approach, the governing equations decouples into three physical systems, namely, a gas-
dynamic, chemical and vibrational systems. As discussed in Section 1.7, this segregated
approach presents several advantages and leads to highly efficient and flexible code. Each
system is integrated by an implicit time-marching technique, while a Galerkin-finite el-
ement method is used for spatial discretization. The flow solver is coupled to the mesh
adaptation procedure that was presented in Chapter 3, within an artificial dissipation loop.
The accuracy and efficiency of the overall methodology is then investigated on nitrogen

and air hypersonic benchmarks.

Although, the numerical decoupling of the governing equations to three physical sys-

tems is a pure mathematical technique to solve a large system of PDEs, the physical in-
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terpretation of this decoupling may help to devise an efficient numerical schemes for CFD
problems with multitude time scales. For instance, the species concentrations and the vibra-
tional energies are kept constant during the solution of the gasdynamic system and therefore
a pseudo thermo-chemical equilibrium can be assumed in the derivation of the gasdynamic

Jacobians, by casting the equation of state into the divariant gas form. This yields

p=p(¥-1)(e-C) (5.1)

where C = (3, ¢;h? + €,) is a constant.

The present method may be viewed as an extension to thermo-chemical nonequilib-
rium flows of the scheme that was already developed in Chapter 2 for equilibrium flows.
Although the two formulations based on the exact! and approximate? flux Jacobians are still
valid within the context of a segregated method, only the second formulation (equivalent-)
is considered in the current computations. This choice is mainly justified by the minor mod-
ifications that are needed to an existing gasdynamic code to accommodate the calculations

of thermo-chemical nonequilibrium flows.

5.2 Numerical Scheme

The governing equations (4.51) are decoupled into three systems of equations:

a gasdynamic system,
,gt + I‘F,g‘t == Sg,
p [ PU; T [ 0 7
U1 pu1Y; + poi; 0
Q= S N - e (52)
pU2 puaV; + pdy; 0
pe | (pe+p)ui | [ 0

!This formulation is based on a general equation of state for divariant gases.
2This formulation used equivalent-¥ technique.
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a chemical system,

pcy pC1Y; 5%
Q=|p2]|, Fi=|pcu|, 8=|S55], (5.3)
pcs pC3v; S3
and a vibrational system,
Qf’, +F:{i =87,
N N,
@=[re], F'=[pewi], s"=[zqr-,,,+zs:e,,,, 54)
§=3 =3

and solved in a time-lagged manner.

For the sake of simplicity, the numerical discretization will be demonstrated on one

representative system, namely,

Q,t + F,',,' =S+ Gi.i- (5.5

where G; are the dissipation fluxes that are needed for eliminating numerical oscillations.

The definition of the flux vector G; for the three systems is given by

€ le for the gasdynamic system
G:=1( Q5 for the chemical system (5.6)
Q' for the vibrational system

where the vector Q’ results from substituting the total internal energy by the total enthalpy
in Q9.
The discretization of each system is carried out by an implicit formulation in time and
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a Galerkin-FEM in space. The present numerical method is described in more details for

the Euler equations in Chapter 2 and leads to the following algebraic system of equations:
(M + K)AU = -R, (5.7

where the RHS matrices M and K, and the residual vector R are given by
(M = [oAL®,%;dQ,

) K1 = [fAin®®; dT — [,(A®1; + B®)®; dO

(5.8)
—fr(Cié_] + D,-J-<I>J‘,-)n,-<DI dal’ + fQ(Ci(I)J + DijQJ,i)QI,j ds,
| Rt = [i(Fi — Gi)ny®; dT — [o(F; — G;)®;,; dQ — [,8%; dOQ.
We recall that the Jacobians matrices are defined by
_oQ _OF; _ 08 _0G; _ 0G;
=3 4= B=ggr Ci=ap Dv=zp, ©9

where the vector U = [U?,U*€, U"] refers to any primitive variable vector of the solved

systems and it is approximated by bilinear shape functions.

For the gasdynamic system (5.2), all the above Jacobian matrices are derived using
the equivalent- technique to include the thermo-chemical nonequilibrium effects. This
formulation permits the reuse the Euler solver that was developed in Chapter 2 for frozen
and thermo-chemical equilibrium flows. The value of ¥ is computed from the following
formula,

y=1+LZ, (5.10)

pE

so the value of the pressure matches the one given by the Dalton’s law (4.47).

For both chemical and vibrational systems, the Jacobians L, A;, C; and D;; are derived
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to be
pl,

p'UiI,
ep,i17
epé}jI,

L

(5.11)

DAk~
[ T T

<

where I refers to the identity matrix.

The nonlinearity of the chemical and vibrational source terms makes the derivation of
their Jacobians a tedious task which is further complicated by the use of a controlling rate
temperature in the case of a two-temperature model. These Jacobians are intimately linked
to the thermo-chemical state of the flow which leads to consider a separate Jacobian matrix
for each regime. The derivation details of the Jacobian B* for the chemical source terms are
presented in Appendix B, in the case of chemical nonequilibrium and thermal equilibrium
flows. For thermo-chemical nonequilibrium flows, the Jacobians B and B” are described

in Appendix C.

5.3 Relaxation of Chemical Source Terms

In order to prevent unrealistic species mass fractions (i.e. ¢; & [0, 1]) that may result in the
first Newton iterations, the chemical source terms are relaxed according to the following

formula:
o SE-IsH . Sc+lsd

c —
°  2max(e,c) ° 2 max(e,1—c,)

(1--c), (5.12)

where € refers to a small constant of order of 10~1°.

For an endothermic reaction (S¢ > 0), the first term on the RHS of the equation (5.12)

vanishes and the source term expression becomes

(5.13)

S

N {S: if ¢, <(1—¢)

C —
S¢(1—cy)/e otherwise

Therefore, the source term is only corrected by a factor of (1 — ¢;)/¢ in the case when the

product concentration, c,, approaches unity (i.e. ¢; > (1 — €)).
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For an exothermic reaction (S¢ < 0), the second term on the RHS of the equation (5.12)

vanishes and the source term may be rewritten as

S =

- S¢ if cg>€
{ (5.149)

S¢eyf€ otherwise

In this case, the source term is only corrected by a factor of ¢,/e when the reactant concen-

tration, c,, approaches zero (i.e. ¢; < €).

5.4 Solution Procedure

In summary, a set of eight PDEs —gasdynamic system (4 Eqgs.) (5.2), chemical system
(3 Egs.) (5.3) and vibrational system (1 Eq.) (5.4)- and five algebraic equations —global
mass conservation (4.45), conservation of elemental nitrogen to oxygen ratio (4.49), total
vibrational energy formula (4.50), total internal energy formula (4.48) and the equation of
state (4.47)- are solved for the thirteen primitive variables —p, vy, v2, €, €1, C2, €3, C4, Cs, €v,

T‘U7 Typ_~

The primitive variable vector U? = [p, vy, v2, €] is first advanced in time by solving the
gasdynamic system (5.2) and then the chemical system (5.3) is solved for the species mass
fraction vector U = [c;, ¢z, 3], using the updated velocity field and density solutions. The
remaining mass fractions, ¢4 and cs, are deduced from the two algebraic equations (4.45)

and (4.49) that can be rewritten as:

C. 24 C 8 C
4 = Taa 1 T 7263,

103 15 5.5
5 103 ° 15°

The total vibrational energy, U” = [e,], is then calculated by integrating the vibrational

system (5.4). The vibrational temperature T, is computed from the total vibrational energy
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equation (4.50) that may be rewritten in the form

FT) =eo =S, —Teb (5.16)
Y T L e G/ Ty =1 '

Because the vibrational characteristic temperature, ,,, varies for different molecular
species, the nonlinear equation (5.16) needs to be solved by an iterative method such as
a Newton’s method. This procedure is applied for all grid nodes and at every time step and

therefore may be computationally expensive.

Since the three neutral molecules (NO, O,, N,) in air have close values of vibrational
characteristic temperatures (2817, 2239, 3395), a good initial estimate of the vibrational
temperature could be obtained by assuming that all these molecules have the same average

vibrational characteristic temperature, 8,, defined by

G.17)

An initial estimate T? can then be computed by substituting the value of §, in the

equation (5.16), yielding

Oy

T = o : (5.18)
In (1 + (O-U/e,,)Zc,R,)
$=3

This iterative method is very efficient and usually does not need more than two Newton

iterations per node to converge toward the final solution.

The translational-rotational temperature T is then deduced from the internal energy
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formula (4.48), that is

T= i(e - f:c he lv- ;) (5.19)
- E" s=1 o e 2 o .

Finally, if one assumes each individual species behaves as a perfect gas, the pressure of

the mixture may be calculated according to Dalton’s law (4.47).

It must pointed out that the computation of chemical nonequilibrium flows (with ther-
mal equilibrium, T = T,) can be easily carried out by only eliminating the vibrational
system from the flow solver loop. In fact, the segregated approach permits to recover the
thermal equilibrium flows without solving additional equations and modifying the vibra-
tional relaxation times, as it is usually done in the coupled approach. In this case, the

translational temperature is computed by a Newton method from the equation (4.48).

5.5 Numerical Results

All reacting flow computations are carried out using Park’s reaction model (1985)* unless

another reaction model is stated.

5.5.1 Hypersonic Nitrogen Flow over a Cylinder

The present numerical approach is first validated on a Mach 6 partially-dissociated nitro-
gen flow over a half-cylinder with 1 inch radius. This flow problem, that is illustrated in
Fig. 5.1, has been investigated experimentally by Hornung [60] and numerically by numer-
ous authors [21, 69, 104]. The freestream monatomic nitrogen mass fraction, temperature,

density and velocity are 0.073, 1833 K, 5.349-103kg/m?® and 5,590 m/sec, respectively.

The numerical simulation of the current problem is performed using a five-species
model by setting the mass fraction of oxygen to be 1070 in the freestream conditions.

The chemical source terms are evaluated according to Park’s reaction model (1992). In

3Rate reaction coefficients are provided in Appendix A
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the current problem, the gas-mixture contains only one molecular species and hence, the

multi-temperature model becomes equivalent to the two-temperature model.

The calculation is initiated on a coarse grid (see Fig. 5.2-(a)) with 33x53 nodes dis-
tributed uniformly in both directions. The corresponding Mach number contours of the
flow are shown in Fig. 5.2-(4), with a very smeared shock. The adapted grid, depicted in
Fig. 5.2-(f), required five cycles of adaptation and the corresponding solution, Fig. 5.2-(f),

demonstrates the benefits of the grid adaptation in resolving a detached bow shock.

In Fig. 5.3, the iso-density contours of the numerical solution is compared with the
fringe pattern of the flow field [60], which represents the gradient of the density. Although
the accurate prediction of the fringe pattern cannot be verified, one may observe that the

experimental standoff distance is well reproduced.

Fig. 5.4 shows the enhancement of the predicted Mach number distribution along the
stagnation line with the grid adaptation cycles. In fact, the use of an appropriate grid allows

a reduction of the artificial dissipation coefficient by a factor of 5.

Additional calculations are performed under two different assumptions: frozen perfect
gas and chemical nonequilibrium (thermal equilibrium) of a mixture of perfect gases. All
the calculations are made using the same initial uniform grid that is depicted in Fig. 5.2-
(a). Temperature profiles along the stagnation line resulting from these two assumptions

are compared in Fig. 5.5 to the thermo-chemical nonequilibrium case.

A comparison of these temperature profiles with the experimental shock position shows
that the standoff distance is 85% larger in the case of a frozen flow. It may also be observed
that a better prediction of the standoff distance is achieved by the chemical nonequilib-
rium or the thermo-chemical nonequilibrium assumption. As it was expected, the chemi-
cal nonequilibrium model leads to a shorter standoff distance compared with the thermo-

chemical nonequilibrium case.
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Aside from the perfect gas case which leads to unrealistically high temperatures in
the shock layer, the peak of the translational temperature behind the shock is largest in
the thermo-chemical nonequilibrium case (=~ 12,000K). This peak, theoretically, should
approach the perfect gas value [63]. However, because the computed shock thickness
is of the same order as the characteristic length of vibrational relaxation, the computed

translational temperature peak is relatively smaller.

The plot of the mass fractions of monatomic and diatomic nitrogen along the stagnation
line in Fig. 5.6 shows that the flow field is dominated by a high degree of reaction. It may
be observed that 30% of the present diatomic nitrogen is dissociated despite, the fact that
the corresponding reactions have a large activation energy. It should be noted that this
plot is obtained for the thermo-chemical nonequilibrium case, chemical nonequilibrium
calculation, however, results in similar distributions. This is mainly due to the fact that
their translational temperature profiles are identical, except in the vibrational relaxation
region where the use of a rate controlling temperature (T, = VTT,) tends to minimize the

difference between these two temperature profiles.

In all these cases, a subsonic uniform flow is assumed as an initial solution for the flow
solver and a relaxation factor of 0.6 is used in the mesh movement algorithm. Specifically
for the thermo-chemical nonequilibrium case, the convergence history of both flow solver
and adaptation grid procedures are presented in Figs. 5.7 and 5.8, where the jumps in the
curves represent the beginning of each new cycle. Similarly to the frozen flow computations
in Chapter 3, at each adaptation cycle?, the L, norm of the residual vector for each solved
system is lowered by three orders of magnitude and then the mesh nodes are displaced 250

times.

The solution times are of the order of 4.0, 2.9, 0.7 seconds per iteration for the gas-

4 An adaptation cycle is equivalent to one unload artificial dissipation cycle.
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dynamic, chemical and vibrational solvers, respectively, on two processors of a Silicon
Graphics Power Challenge computer with four 75 MHZ, MIPS R8000 processors. The
mesh adaptation requires 0.4 seconds per iteration on one processor of the same computer.
It is worth noting that only the Gauss elimination method [17] was parallelized in the flow
solver and no significant efforts were made to optimize the assembling routines in the flow
solver code as well as the error estimate and mesh movement routines in the mesh adapta-

tion code.

5.5.2 Hypersonic Air Flow over a Cylinder

In this example, the current methodology is applied to a hypersonic air flow over a half-
cylinder with 0.05 m radius (see Fig. 5.9). The freestream conditions are: ’M Ao =12.7,
T =196 K and pe =0.16-10"2 kg/m3. This test case was proposed in the workshop
on Hypersonic Flows for Reentry Problems (HFRP) [1] and experimental results were

obtained by Vetter etal. [121] for the same freestream conditions over a sphere.

The use of an adaptive procedure allows us to start the computation on the same grid as
in the previous test case, Fig. 5.10-(a), although the physics of the two flows are completely
different. The final adapted grid and the corresponding temperature contours are shown in

Fig. 5.10, for a thermo-chemical nonequilibrium calculation.

A second calculation is performed using a chemical equilibrium assumption. The tem-
perature profiles resulting from the two previous calculations are compared along the stag-
nation line in Fig. 5.11. The same behavior of the thermo-chemical models, as in the first
benchmark, can be observed with a translational temperature peak of nearly 5800 K in the

thermo-chemical nonequilibrium case.

Mass fraction plots of the five species are depicted in Fig. 5.12 along the stagnation
line. It may seen that nearly 40% of O is dissociated, while the N, concentration remains

almost constant.
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Computed pressure coefficient distributions, using thermo-chemical nonequilibrium,
chemical nonequilibrium and frozen assumptions, are compared to experimental results in
Fig. 5.13 showing a fairly good agreement. This plot also demonstrates the invariance of

the Cp values with respect to chemical and vibrational relaxation phenomena.

Similar to the first example, the present computation is initiated with a subsonic uniform
solution with a relaxation factor of 0.5 for the adaptation procedure. The steady-state
solution is obtained by marching in time with different time steps for the gasdynamic,
chemical and vibrational systems. The solver’s convergence is displayed in Fig. 5.14 and
was obtained by using the following chemical and vibrational time steps: At = 0.4 At9
and At” = 0.1 At9. Here, At9 represents a local time step for the gasdynamic system and
is computed according to a CFL number of 40. The convergence history of the adaptation
procedure is shown in Fig. 5.15 where a decrease of nearly 2 orders of magnitude in node

displacement is achieved after 6 adaptation cycles with 350 iterations by cycle.

5.5.3 Hypersonic Air Flow over a Double Ellipse

For this last example, a double ellipse profile is placed into a Mach 12.7 flow and zero
angle of attack. This benchmark was proposed in the HFRP workshop [1] and its flow
field includes a strong detached shock wave, followed by a moderate canopy shock and
shock-shock interaction. Therefore, the application of mesh adaptation is highly suitable
for efficiently resolving all these different strength shocks.

The thermo-chemical nonequilibrium calculation is carried out on a 45x124 (5580)
grid, Fig. 5.16-(a), yielding a very dissipative solution which is displayed as temperature
contours in Fig. 5.16-(4). The final adapted grid, shown in Fig. 5.16-(g), is obtained after
6 adaptation levels. The final adapted solution is presented in Fig. 5.16-(§) and it can be

clearly seen that all the main features of the flow field are well resolved.
The iso-contours of monatomic oxygen concentration are displayed in Fig. 5.17. One
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may observe that the O, is only partially dissociated due the moderate temperatures in
the flow field. The distributions of the translational and vibrational temperatures along
the stagnation line are presented in Fig. 5.18, revealing that thermal equilibrium state is
not reached at the stagnation point. This result could be explained by the short distance

between the bow shock and the nose of the double ellipse.

The pressure coefficient on the body surface is displayed in Fig. 5.19 for the initial and
final adapted grids. It can be clearly seen that the adapted mesh permits a much better

capturing of the canopy shock, as well as the stagnation properties.

The residual convergence for the gasdynamic, chemical and vibrational solvers is pre-
sented in Fig. 5.20. The steady solution is obtained by advancing the chemical and vibra-
tional solutions with time steps of At = 0.3 At? and At = 0.1 At9. The node displace-
ment convergence history is depicted in Fig. 5.21 for a relaxation factor of 0.45 and 700

iterations by cycle.
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Figure 5.1: Definition of a Mach 6 partially-dissociated nitrogen flow over a half cylinder test case.
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Figure 5.2: Initial and final adapted grids with the corresponding Mach number contours.
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Figure 5.3: Comparison between the interferogram of the flow field (top) and the computed density
contours (bottom).
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Figure 5.4: Enhancement of the Mach number distribution, along the stagnation line, with grid
adaptation cycles.
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Figure 5.16: Initial and final adapted grids with the corresponding temperature contours.

123



00263l . wvu; OO

1.Je-09 0 3048 0.0395 9 514 8.019

0.024 0.829 8.833

¢.c30

Figure 5.17: Monatomic oxygen mass-fraction contours.

6000

5000

3000

Temperatures

2000

1000

-1.5 -14

-1.2

Figure 5.18: Temperature distributions along the stagnation line.

124



Cp

Residual

2.0 T T T

LS F

Figure 5.19: Pressure coefficient on the body surface.

Gasdynan{ic Solver -

le-02 f Chemical Solver .
Vibrational Solver -

le-04

1e-06 |

1e-08 |

le-10

le-12 i3 . . , .
0 100 200 300 400 SO0

Iterations

Figure 5.20: Convergence history of the flow solver.

125



Node displacement

le-01

le-02

(®)

©

L

(d)

© o

(g)

le-03
0

1000

2000 3000

Iterations

4000

5000

Figure 5.21: Convergence history of the mesh adaptation.

126



Chapter 6

Conclusions and Future Research

6.1 Summary and Conclusions

In this dissertation, a loosely coupled, finite element method has been described for the nu-
merical simulation of two-dimensional, thermo-chemical equilibrium and nonequilibrium
hypersonic flows. An anisotropic mesh adaptation procedure is also presented for resolving
directional flow features on quadrilateral grids. The ultimate goal of this work is to produce
a flexible numerical tool capable of reproducing accurately a large variety of compressible

flow problems ranging from subsonic to hypersonic speeds in a cost-effective manner.

A finite element, weak-Galerkin formulation was first presented for the solution of the
Euler equations within the context of divariant gases, wherein two different approaches
were suggested in the derivation of the flux Jacobian matrices. The first approach utilizes
a general equation of state for a divariant gas and yields an exact form of the Jacobian
matrices, while the second alternative uses the perfect gas law, but with an equivalent ratio
of specific heats to approximate the Jacobian matrices. An artificial dissipation mecha-
nism, that permits the recovery of isoenthalpic flow solutions when needed, is added to the

governing equations for damping numerical oscillations that may appear in the solution,

127



particularly in shock regions.

The shock waves were efficiently resolved by coupling the flow solver with a mesh
adaptive procedure. The interpolation error of the numerical solution is measured by its
Hessian tensor which is then modified to be a positive definite matrix (metric) and then
projected on mesh edges to define a directional estimate of the error. An improved mesh
movement scheme is then introduced to equidistribute this error over the edges of the mesh.

The optimal mesh may therefore be interpreted as the uniform one in the metric space.

The effectiveness of the adaptive procedure to equidistribute the error on mesh edges
was proven on an analytical test case, where a nearly Gaussian distribution of the error is
obtained. This example also shows that the current mesh movement scheme is convergent,
but there is an inherent threshold below which the error cannot be further reduced. The
Euler flow solver, combined with the proposed grid adaptation method is then validated
on a supersonic compression corner, capturing the oblique shock with high resolution and
the correct angle. This is achieved by aligning and stretching the mesh elements along the
oblique shock. The methodology is also tested on hypersonic frozen flows and numerical

results using other schemes were correctly reproduced but on coarser meshes.

The Euler solver combined with the mesh adaptation were then extended to thermo-
chemical nonequilibrium flows. Such flows involve gases that are chemically reacting and
vibrationally excited and were principally represented by five neutral species: O, N, NO,
Oz and N; and a two-temperature thermal model. Following a loosely coupled approach,
the governing equations were decoupled to three systems of PDEs —gasdynamic, chemical
and vibrational- and marched to steady-state using an implicit technique. This segregated
approach has the advantage of reducing reacting flow solutions to a manageable level and
offers the possibility of integrating each system of PDEs with the most appropriate time

step that produces the best global convergence.
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The thermo-chemical equilibrium/nonequilibrium solver is validated on hypersonic,
partially-dissociated, nitrogen flow where the shock position is correctly reproduced on
a coarse adapted mesh. In addition, the methodology was tested for hypersonic air flows
and the prediction of the main flow features required only coarse grids. These test cases
also show that the use of a mesh adaptation procedure relieves the user from the tedious task
of constructing an appropriate mesh and leads to a nearly optimal mesh that substantially
reduces the amount of artificial dissipation needed in the flow solver. In summary, inclusion
of the high-temperature effects in a hypersonic flow calculation results in higher density
ratio, lower shock layer temperatures and smaller standoff distance, than the perfect gas

model. However, its influence on the surface pressure is negligible, as might be expected.

6.2 Future Research

It is evident that new horizons for technology advancements in the aerothermal field are
becoming more reachable for the aerospace community. With the steady advancement
in computer resources, more physical modeling assumptions are eliminated leading to
more realistic simulations of high-temperature effects. But before sufficient confidence
is achieved in these newly developed technologies to become a full part of the design pro-
cess, much more studies should be carried out for hypersonic flows. Specifically, several
improvements and extensions of the present work are proposed in the following major ar-

eas: physical modeling and numerical techniques.

Physical modeling extensions are essentially made to enlarge the range of applicability
of the present numerical simulation tool. For instance, the hypersonic flow field over a
double ellipse is much more complicated than it was described in Section 5.5.3. In fact, the
shock layer is highly dominated by viscous effects that may induce strong shock-boundary
layer interactions and even flow separation in the canopy shock region. These viscous

effects have a great influence on the aerothermal performances of such profiles and should
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be accounted for by including the viscous terms into the governing equations.

Another extension of the current thermo-chemical nonequilibrium model could be
achieved by considering the ionization phenomena. Those phenomena are present in hy-
personic flows with temperatures higher than 9000 K and should be taken into account for
a better prediction of related performance parameters. For example, the formation of an
ionized shock layer around a space vehicle may inhibit its communication link with satel-
lites or earth stations, during a crucial part of its reentry trajectory. Therefore, a numerical
analysis of such a plasma would allow a characterization of the flow field and be a factor in

reducing this black-out communication period.

The present mesh adaptation was used with great success in efficiently resolving di-
rectionally flow features on structured and unstructured! meshes and it is currently being
extended jointly by the CFD Lab at Concordia University, GIREF at Laval University and
Pratt & Whitney Canada [115] to 3-D structured hexahedral and unstructured tetrahedral
grids. For 2-D problems however, this anisotropic mesh adaptation procedure may further
be enhanced by adding quadrilateral refinement/coarsening techniques to the current mesh
movement scheme. This improvement will eliminate the dependence of the final adapted

solution on the choice of an initial mesh as well as the existence of a threshold error value.

Although, the segregated approach drastically reduced the memory requirements, the
use of an implicit integration in time, however, leads to large system of equations which are
quite demanding in terms of memory storage. One alternative to overcome this drawback
consists of replacing the Gauss elimination method by an iterative solver such as GMRES
(Generalized Minimal RESidual) [112]. The iterative solvers have the advantage of storing
only the non-zero coefficients and use several preconditioners, such as block diagonal in-

complete factorization (ILUO) and successive overrelaxation (SOR) method, that are highly

1See references 32, 41].
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parallelizable [35, 36].

In the current numerical method, the chemical and vibrational time steps are defined in

a heuristic manner as

Atf = oAt with o € [0,0.5]
AtY = o' Al with a’ € [0,0.2]

Other authors also used heuristic approaches to compute the permissible chemical time step

for reacting flow problems. For instance

0.1
At < — by [78]

53] d
At < O.I(min %) by [9]

The above time steps are usually very restrictive and may lead to poor convergences that
are computationally intensive. The solver convergence may considerably be enhanced by
employing more accurate permissible chemical and vibrational time steps that result from
applying stability analysis techniques to the chemical and vibrational systems. A good
estimate of those time steps may be derived from applying von Neumann stability method

to the 1-D linearized chemical and vibrational systems.
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Appendix A

Chemical Models

1.1 Park Reaction Model (1985)

¢ Forward reaction rate coefficients

kfr(Ta) = Cfr T} exp (" G;Lfr) (A.1)

where T, = /T'T, and the rate constants Cyy, 7y, and 04 s, are given in Table A.1

¢ Backward reaction rate coefficients

kor (T) = ,f’—(g?) A2)

¢ Equilibrium constants
Kegr = exp (Air + Aor Z + A3, 2% + Ay Z° + A5r Z%) (A.3)

where Z = 10,000/T and the constants A, are given in Table A.2.

132



T Reaction Cir Tfr 04, fr
1 O, + O = 20 + O 8.25 - 10 -1.00 59500
2 O, + N = 20 + N 8.25 10! -1.00 59500
3 O, + NO = 20 + NO 2.75 - 106 -1.00 59500
4 O + 0O = 20 + 0O 2.75 - 10'6 -1.00 59500
5 O, + N, & 20 + N, 2.75 - 1016 -1.00 59500
6 N + O = 2N + O 1.11-10° -1.60 113200
7 N, + N = 2N + N 1.11-10% -1.60 113200
8 N, + NO & 2N + NO 3.70- 108 -1.60 113200
9 N2 + O, & 2N + 0O, 3.70 - 108 -1.60 113200
10 No + N, = 2N + N, 3.70 - 108 -1.60 113200
11 NO + O = N + O + O 4.60 - 10 0.50 75500
12 NO + N = N + O + N 4.60 - 1014 0.50 75500
13 NO + NO & N + O + NO| 2.30-10" 0.50 75500
14 NO + O, & N + O + O] 2.30-10" 0.50 75500
15 NO + N, = N + 0O + N, | 2.30-10" 0.50 75500
16 NO + O = 02 + N 2.16 - 10° 1.29 19200
17 N. + O = NO + N 3.18 - 1010 0.10 37700
Table A.1: Arrhenius coefficients for forward rate coefficients.
T Alr Aﬂr Aar A A5r
1-3 1.335 -4.127 -0.616 0.0493L -0.005
6-10 3.898 -12.611 0.683 -0.118 0.006
11-15 1.549 -1.784 0.22% -0.043 0.002
6 0.215 -3.607/ 0.843 -0.136 0.007
7 2.349 -4.828 0.455 -0.075 0.004

Table A.2: Constants for computing equilibrium reaction constants

1.2 Park Reaction Model (1992)

e Forward reaction rate coefficients

kfr(Ta) = Cyr T exp (_ o;lr) (A4)

where T, = /T'T, and the rate constants Cy., 7y, and 8, ¢, are given in Table A.4

e Backward reaction rate coefficients

kbr(Ta) = M (A.5)

keqr(Ta)

133



" Species 0 N NO O, N, |
( Ops m— — 2817 2239 3395 |

|k 1.543119 - 107 | 3.362161 - 107 | 2.996123 - 10° 0 0 I

Table A.3: Characteristic vibrational temperatures and heats of formation.
e Equilibrium constants
Keqr = exp(Aer + Azr + A3r ln(l/Z) + A4r/Z + A5r/Z2). (A6)

where Z = 10,000/7, and the constants A;, are given in Table A.5.

T Reaction Cyr Nir Od.fr

1 O, + O = 20 + O 1.00-10°  -1.50 59500
2 O, + N =& 20 + N 1.00-10° -1.50 59500
3 O, + NO # 20 + NO 2.00-10'%  -1.50 59500
4 O, + O & 20 + 0O, 2.00-10%  -1.50 59500
5 O, + N = 20 + N, 2.00-10  -1.50 59500
6 N, + O = 2N + O 3.00-10% -1.60 113200
7 N, + N = 2N + N 3.00-10" -1.60 113200
8 N, + NO # 2N + NO 7.00-10%  -1.60 113200
9 N, + O, & 2N + O, 7.00-10%  -1.60 113200
10 No + No = 2N + N, 7.00-10%  -1.60 113200
11 NO + O = 0O, + N 2.20-10° 1.00 19000
12 N, + O = NO + N 1.80 - 101! 0.00 76000

Table A.4: Arrhenius coefficients for forward rate coefficients.

r A Ao, Aa,- A Az, I
1-d 0.053880 6.2/551 .1/630 -6.5/200 | 0. S
6-10 1.535100 5.42160 29930 -11.4940 | -0.006980 |

1 0.004515 | -1.74430 [.22270 -0.95824 1 -0.045545
12 0.976460 .89043 14572 -3.96420 .

Table A.5: Constants for computing equilibrium reaction constants
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Species (@] N NO Os Ny
s — —— 2740 2273 3393
h? 1.5425625 - 10’ | 3.3609425 - 107 | 2.992501 - 10° 0 0

Table A.6: Characteristic vibrational temperatures and heats of formation.
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Appendix B

Jacobian Matrices for Chemical

Nonequilibrium Flow Solver

In the case of chemical nonequilibrium flows, the two systems of PDEs —gasdynamics and

chemical- are solved in a decoupled manner for the following primitive variables:
U = {U U}
or
U = {[pu(i=12)€,[c(s =1,3)]}

The translational-rotational temperature T is deduced from the total internal energy e and

the pressure p is given by the Dalton’s law.

The remaining mass fractions, ¢4 and cs, are computed from the following two algebraic
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equations:

€4 = 24— -6 - i63
103 15

C; = E—62—;7"03.
103 15

2.1 Jacobian Matrix of the Chemical Source Vector

We recall that for the species s, the chemical rate of production is given by

Ny
5:(C,T) = MY (v, = V) Rr(C, T)

r=1

where
C = {[p,vi(i =1,2),€],[cs(s = 1,3)], [es(s = 4,5)]} ,
R.(C,T) = Rs(C,T) — R:r(C,T),
and N ,
RL(C.T) = k. (DT(2L)™
#(CT) = kpl ),;Hl<Mz),,
Rw(C.T) = ku(T) H(%'l) "

=1

The Jacobian matrix of the chemical source vector is defined as

. 08°
B'= au*
or
3S° Nr " [ aR, . .
S — — — =1
3e; M, ;(u,r v,,) 3, withi=1,3
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Using the chain rule for partial derivatives, we have

- [
o ly,,... LOG]U, .cest LO4Ur LOGIU. 4oer
2, (2]
des | e T | 9ci Ucse;icaT
5., 5]
or U cacs  dci U.,sc; a5

The above equation can also be rewritten in a more compact form as

[ai] -5 [_3_@:] [QC_J]
aC; Uc.ﬂéci J=1 aCJ cca#‘j’T aCl cCa#"i‘T

- a7l [F
or |e d¢; Crte,

Derivation of a—R"-]
_aCj cc,#t:jvT
OR, 9 |Ns pcy Yy 9 | N pct Vir
.. a2l
[acj_ e, T e [,1}1 M, e | \M,

After simplifications, we obtain

[aRr

1 ' "
55,-_]0 = g Corfar = v )
c,#cjr

Derivation of [%]
9c; Ceose, T

For j = N, and ¢ = 1, 3, the equations (B.1) gives

I
% _ |3 & 1
dc; -1 0 -8/15
0 -1 -7/15

(B.8)

(B.9)

(B.10)

B.11)

(B.12)



If the dependence between the mass fractions variables, c;, is neglected, i.e.
—: = dij, (B.13)

the first term of the RHS of the equation (B.9) reduces to

A/ a a y 1 ’ "
Z [aﬁ] l:a—cj] = _(uier" - Vierf)' (B.14)
=1L9% e, .. rloGlC, .71 G

Derivation of [6_&]
T |e

In the following derivations, some subscripts will be omitted for simplicity. Using the

equation (B.4), one obtains

OR.| _ Oks 1% (Pcz )"fr Oker 12 ( pey )";'r
— - = = .15)
[ or ] oT ,]';‘E M, or ,I=]1: M, ®
where the forward rate of reaction is given by:
ks (T) = Cf T exp (—O“Tf) (B.16)
and therefore
akfr Nfr 6a fr
== _ irid ST} 1
ar =k ( T * 77 ®.17
The backward rate of reaction is given by
kfr(T)
ke (T) = , (B.18)
) = e @)
and therefore
6kb1' 1 akfr aKeqr
= - . .1
T ~ K.or ( ar ~ " (®.19)
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For instance, the equilibrium constant for Park’s reaction model (1985) is given by
Keyr(Z) = exp (A1 + Age Z + A3 2% + Ay 28 + A5, Z%), (B.20)

where Z = 10,000/T.

The derivative of K4, with respect to T' may be expressed as

OKeyr  OKeqr 82

T ~ 9z oT’ ®20
with SK
_% = (Agr + 243, Z + 3A4; 2% + 445, Z%) K.y,
2 72 (B.22)
8T 10,000
Equation (B.21) becomes
%%L = —107%(A2r 2% + 245, Z° + 3A4, Z* + 445:2°) Kogr-  (B.23)

After substituting equations (B.17) and (B.23) into (B.19), one obtains

% = kg (”1{ + %—;ﬁ—’ +107%(A2, 2% + 243, 2% + 344, 2% + 4A5,zs)), (B.24)

and finally

[QE'-] = (% + 9“—£) R, — 1074 (A2, 2% + 243, Z° + 3A4; Z* + 4A5r Z°) Ry (B.25)
arT |c T T
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Derivation of [BT]
ac‘ cc.#ci

Recall that the total internal energy of a gas mixture is given by

N, N, N,
[ [ L] 1
e=3 cic,iT+ Y chI+ Y cieyj + §v2, (B.26)
j=1 =1 3=3
where
R;6,;

7 = &b (8,;/T) — 1 ®.27)

By taking the derivative of equation (B.26) with respect to T and solve for Q we obtain

dc;
Ns dc; N dc; N, Jc;j
> (5) =+ 2 (@) + 5 (5o

BT Jj=1
— = — . 8
[ il ®
Gy + Z —'—'—633'
Jj=3 R;T?
If Oc; /Oc; = éy; is assumed, the equation (B.28) simplifies to
[BT] coiT + hY + ey B.29)
£ By . .
de; L, KA Gexp (_TJ') 2

+S =Tl
GT LT RTT Cu

j=3
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Appendix C

Jacobian Matrices for Thermo-Chemical

Nonequilibrium Flow Solver

Recalling that for thermo-chemical nonequilibrium flows, three systems of PDEs —
gasdynamics, chemical and vibrational— are solved in a segregated fashion for the three

primitive vectors,
U = {U%,U4U"}
or
U = {lo,u(i=1,2),¢],[cs(s =1,3)], [es]}-

The vibrational temperature T, is deduced from the vibrational energy of the mixture e,,
the translational-rotational temperature T" from the total internal energy e and the pressure

pis given by the Dalton’s law.
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The mass fractions, c4 and cs, are given by the two algebraic equations:

G = ﬁ —a- '8—03
103 15

Cs = E—62-‘163.
103 15

3.1 Jacobian Matrix of the Chemical Source Vector

We recall that for the species s, the chemical rate of production is given by

N,
Si(C.To) = MSZ(V;'r - I/;r)R,.(c, Ta)

r=1

h
e C = {[pv(i=1,2),€,[cs(s =1,3)], [er] [cs(s = 4,5)]},
{Ta = \/T_T;Ja
RY(C, Ta) = Rfr(c7 Ta) - Rbr(c1 Ta) )
" R,(C.T,) = k (T)ﬁ(ﬂ)""'
fr\&.4da fr\ta l;l Ml )
Ry (C.T)) = k() TI(2L)™
W€ T) = k(@) I(57)

The Jacobian matrix of the chemical source vector is defined as

. 08°
B =30
or
c N;
aai: = M,rgl(u;', - u;,)%—if- withi=1,3
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(C.5)
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Using the chain rule for partial derivatives, we have

OR, OR, OR, Jcy
ey, o * % 7
G Uc.#c‘- G Uc.;&c,- +€4,65,Ta C4 U 1C5yda - G U cs#e; +¢5,Ta
5y (52
+ R, —
aC5 UeaT _ac'i Uc.#c‘- 4.
+ [g?] ‘ZT] (C8)
a U.a,cs - Gi Uc.#c,- 1C4,C5
The above equation can also be written in the form
o P R L A
ac’- Uc,#c,- j=1 ac] cc.#cJ- Te ac‘ cc,,ec‘. Ta
wle |5
+ (C.9)
[3’-” ale dei e

CaFc;

All terms that appeared in the RHS of the equation (C.9), except [%‘-], were already

derived in Appendix B, where the translational-rotational temperature T" should be replaced

by the rate controlling temperature 7T5,.

The chain rule for partial derivatives gives

5l-(&) &) @) ()

(C.10)

where

(C.1D)

144



Derivation of (Q)
dc;

Recall that the total internal energy of a mixture is given by

N N,
3 s 1
e=Y cjc,iT + Y ocihd + e, + 502 (C.12)
j=1 i=l1

By taking the derivative of equation (C.12) with respect to T and solving for (_31) , one

dc;
obtains
or 1 &% dc;
— == T + h9) —ZL. .
7 a.,,._§(°w +h9) 5 (C.13)
Derivation of ( aT”)
dc;
The vibrational energy for a gas mixture is expressed by
N,
e = Y ciey
—
- i ¢ R;fy; €19
j=3 €Xp (gvj/Tv) -1

Taking the derivative of the equation (C.14) with respect to T, and solving for (667;:’)

yields to
M, (dc;
3 (EZJ) €v;
_ _ (C.15)
dc; %‘2 c; exp (6y;/ T")e2-
R;T? “

7j=3
3.2 Jacobian Matrix of the Vibrational Source Term

The source term of the conservation equation for the vibrational energy of a mixture is
given by
S*(C, T, T,,p) = St—(C,T,Tv,p) + Sc—,(C, T, Tv) (C.16)
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where

N,
ZQT—v s (c$ T‘) T‘U, p)
s=3

N,
> S:(C, T, Tv)ews(To)
$=3

St—(C,T,Tv,p) =

Se—w(C, T, Tv) =
The Jacobian matrix of the vibrational source term is defined as

o0S”
ou’

)52,
8e,, Us’c ae,, Uy,c ae,, U’,c

B¢ =

or

(C.17)

(C.18)

(C.19)

3.2.1 Translational-Vibrational Exchange Contribution

Ns

aS’T—v] —
[ dev |y C g
€ (T) — eys(Ty)

QT—va(ca T: Ttnp) = pCs L )

Tus

[aQT-v s ]
ae,, U’, c

where

and 1,y =< LT > +7F.

Using the chain rule for partial derivatives leads to

[aQT—vs] — [aQT—us] + laQT—vs]
des Jyse de, |y CT.Tu.p T ys CTu.p

146

(C.20)

(C.21)




Derivation of [%]
de. |y CT.Top

From equation (C.21), one may deduce that

aQT—v si
[a—] =0

aQT—v s]
or U g,C,T',,p

Derivation of [

[—aQa’;“] =22l (52) - - ) (52)}

where
de,, _ e,‘,f exp (8ys/T)
T |~ R,T?
Knowing that
r Z Xt
<t T> = ——4t——0
¢ : Z Xt Tfi_T
1
10130
TsIZ-T = 0 7 0 exp (.As[(T‘l/3 —0.015u
\
and ) 1
P _
Ts fsavxs

It results in

[ [ OTys -’islT-Us
oT 3
$ > xi Aq
A = T—
l Z Xt
\ {
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| & = BRT/7M,

o, = 10-2(50,000/T)>

1/4
sl

3
= ——< 'rf"T > +—T,

) - 18.42)

P

2T *

(C.23)

(C.249)

(C.25)

(C.26)

(C.27)

(C.28)



Substituting the equations (C.25) and (C.28) into the equation (C.24) yields to

-2 A —4/3
[aQT_,,,] _ Pea€ys P (6,s/T) (A,,T < b Ts _3 P) Qr-ss (c2g)

aT R.TT,. 3 s T ) 1
Derivation of [QZ]
3e,, Ug‘c

Recall that the total internal energy may be written as

N, 1
e=2aT+3 ah +e,+ 5v”. (C.30)
=1

By taking the derivative with respect to e,, one obtains

[BT] = —_i-. (C.31)
de, G
Derivation of [a—QL_—'ﬁ}
T, UfeTy
aQT—vs _ PCs aevs
[ oT, } B Tus (aTv ’ 32
and therefore
0QT_vs _ pcse?;s exp (8us/Ty)
[ aTv ] - TvsRsTvz . (C33)
Derivation of [ "]
Be,, Ug,C

The vibrational energy for a gas mixture is defined as

N,
& = ) Ceu
=3

N,
_ 2 Rlovl
- ch exp (6u/Ty) — 1

=3

(C.34)
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By taking the derivative with respect to T, of the above equation, one finds

[ar.,} _ {%Czegzexp (o,,,/T,,)}“

66" =3 RlTvz
Derivation of [aQT""’]
9 luierr,
aQT—v s| _ _ QT—v s aTsL-T
ap - Tus ap ]

From the equation (C.26), we have

(61',’"‘7'> _ <t
o | P

?

and the equation (C.36) becomes

aQT—us < TsL_T >
= QT—v s-
dp PTus
dp
ae,, U’, c
Writing the total intemal energy in terms of the pressure variable results in

Derivation of [

P, 1
e=(y-1)=+) ahf +e, + v
P =1 2

Then differentiating this expression for p with respect to e, yields

[g:] =-(y-1)p.

3.2.2 Chemical-Vibrational Exchange Contribution

6S'c—v _ S asc—us
6e,, Uy’c - s=3 ae,, U’,c’
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(C.37)

(C.38)
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where

Sc—us(cy T, T;n p) = Sf(C, T, T‘U) €ys (Tv)
N » , (C.42)
S{C,T,Tv) = M, z(u‘,r -, )R.(C,T,T,) ’
r=1
Using the chain rule for partial derivatives, one may write
[asc_,,,} _ [asc_.,,] +[asc_v,} [ar}
Oey s e Oey |Userm, T |yser, l9ealyse
+ [asc—us] [aTu] (C.43)
0, |yser LO&lyse
Derivation of [%J
Oev JUserm,
From the equation (C.42), we deduce that
OSc—vs| _
2] o ca
Derivation of [65}-,,,]
o |y ‘T,
Introducing the derivative with respect to the rate controlling temperature 7}, as an interme-
diate step gives
(4
25 = (22)(2),
where all partial derivatives of the RHS were already derived in Section 3.1.
Derivation of [%}
oL, |yser
Using the same approach as in the previous derivation yields to
0Sc—vs| _ 0Ss\ (0T, o[ O€us
[ aT, | = €us a7, |\ T, + S, aT, )’ (C.46)
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where the first two-derivatives of the RHS were already derived in Section 3.1 and the third

derivative (e, /0Ty) is given by the equation (C.33).

151



Bibliography

[1] R. Abgrall, J.-A. Désidéri, R. Glowinski, M. Mallet, and J. Périaux, editors. Hyper-

sonic Flows for Reentry Problems, volume 3. Springer-Verlag, 1991.

[2] D. Ait-Ali-Yahia and W. G. Habashi. A directionally-adaptive finite element method
for hypersonic thermo-chemical nonequilibrium flows. In 15th International Con-

Jference on Numerical Methods in Fluid Dynamics, Monterey, CA, USA, 1996.

[3] D. Ait-Ali-Yahia and W. G. Habashi. A segregated finite element method for thermo-
chemical nonequilibrium hypersonic flows on adaptive grids. AJAA Paper 97-0981,
1997.

[4] D. Ait-Ali-Yahia, W. G. Habashi, and G. S. Baruzzi. A finite element method for hy-
personic reacting flows. In Dhaubhadel, Habashi, and Engelman, editors, Advances
in Finite Element Analysis in Fluid Dynamics, FED-Vol. 200, pages 11-19. ASME,
1994.

[5] D. Ait-Ali-Yahia, W. G. Habashi, A. Tam, M.-G. Vallet, and M. Fortin. A direction-
ally adaptive methodology using an edge-based error estimate on quadrilateral grids.

Int. J. Num. Meths. Fluids, 23:673—690, 1996.

152



[6] D. Ait-Ali-Yahia, W. G. Habashi, A. Tam, M.-G. Vallet, and M. Fortin. A

(7]

(8]

(9]

[10]

(1]

[12]

[13]

directionally-adaptive finite element method for high-speed flows. AIAA Paper 96-

2553, 1996.

D. Ait-Ali-Yahia, A. Tam, W. G. Habashi, M.-G. Vallet, and M. Fortin. An adaptive
moving-node scheme for compressible flows on structured meshes. In 6th Interna-
tional Symposium on Computational Fluid Dynamics, Lake Tahoe, USA, September
1995.

P. Alavilli, C. Lacor, and C. Hirsch. New high-order semi-implicit Runge-Kutta for
computing transient nonequilibrium hypersonic flow. AIAA Paper 95-2007, 1995.

J. D. Anderson. Hypersonic and High Temperature Gas Dynamics. McGraw-Hill

Series in Aeronautical and Aerospace Engineering, New York, 1989.

A. Amone. Multigrid methods for turbomachinery Navier-Stokes calculations. In
W. Habashi, editor, Solution Techniques for Large-Scale CFD Problems, pages 294—
332, 199s5.

B. Aupoix. An introduction to real gas effects. In Special Course on Aerothermody-

namics of Hypersonic Vehicles, number AGARD-R-761, pages 3—1-3-56, 1990.

L. Babu3ka and A. Miller. The post-processing approach in the finite element method
- Part 1: Calculation of displacements, stresses and other high derivatives of the

displacements. Int. J. Num. Meth. Engng, 20:1085-1109, 1984.

I. Babu3ka and A. Miller. The post-processing approach in the finite element method
- Part 2: The calculation of stress intensity factors. Int. J. Num. Meth. Engng,

20:1111-1129, 1984.

153



[14] I. Babu3ka and A. Miller. The post-processing approach in the finite element method

- Part 3: A posteriori error estimates and adaptive mesh selection. Int. J. Num. Meth.

Engng, 20:2311-2324, 1984.

[15] I. Babuska, O. C. Zienkiewicz, J. Gago, and A. de Oliveira, editors. Accuracy

[16]

[17]

(18]

[19]

[20]

211

[22]

Estimates and Adaptive Refinements in Finite Element Computations, London, 1986.

John Wiley & Sons.

R. E. Bank and A. Weiser. Some a posteriori error estimator for elliptic partial

differential equations. Math. of Comp., 44:283-301, 1985.

G. S. Baruzzi, W. G. Habashi, G. Guévremont, and M. M. Hafez. A second or-
der finite element method for the solution of the transonic Euler and Navier-Stokes

equations. Int. J. Num. Meths. Fluids, 20(8/9):671-693, 1995.

A. L. Brooks and T. J. R. Hughes. Streamline upwind Petrov-Galerkin formula-
tions for convection dominated flows with particular emphasis on the incompressible

Navier-Stokes equations. Comp. Meth. Appl. Mech. and Engng, 32:199-259, 1982.

T. R. A. Bussing and E. M. Murman. Finite volume method for the calculation of

compressible chemically reacting flows. AIAA Paper 85-0331, 1985.

G. V. Candler. The Computation of Weakly Ionized Hypersonic Flows in Thermo-
Chemical Nonequilibrium. PhD thesis, Department of Aeronautics and Astronautics,

Stanford University, CA, USA, 1988.

G. V. Candler. On the computation of shock shapes in nonequilibrium hypersonic
flows. AIAA Paper 89-0312, 1989.

G. V. Candler and R. W. MacCormack. The computation of hypersonic flows in
chemical and thermal nonequilibrium. AIAA Paper 88-0511, 1988.

154



[23] G. V. Candler and R. W. MacCormack. The computation of hypersonic flows in
chemical and thermal nonequilibrium. In The Third National Aero-Space Plane
Technology Symposium, NASA Ames, Moffet Field, Mountain View, CA, USA,
1988.

[24] F. Chalot, T. J. R. Hughes, Z. Johan, and F. Shakib. 6.1-1 test case. In Workshop on

Hypersonic Flows for Reentry Problems, 1990.

[25] P. Cinnella. Flux-Split for Flows with Non-Equilibrium Chemistry and Thermody-
namics. PhD thesis, Aerospace Engineering, Virginia Polytechnic Institute, Blacks-

burg, VA, USA, 1989.

[26] P. Cinnella and B. Grossman. Upwind techniques for flows with multiple transla-

tional temperatures. AIAA Paper 90-1660, 1990.

[27] P. Colella and P. M. Glaz. Efficient solution algorithms for the Riemann problems
for real gases. J. Comp. Phy., 59:264-289, 1985.

[28] R. L. Davis and J. F. Dannenhoffer. 3-D adaptive grid-embedding Euler technique.
AIAA Paper 93-0330, 1993.

[29] L. Demkowicz, J. T. Oden, and W. Rachowicz. A new finite element method for
solving compressible Navier-Stokes equations based on an operator splitting method

and h—p adaptivity. Comp. Meth. Appl. Mech. and Engng, 84:257-326, 1990.

[30] J. Désidéri. The computational over unstructured grids of inviscid hypersonic re-
active flows by upwind finite-volume schemes. In T. K. S. Murthy, editor, Compu-
tational Methods in Hypersonic Aerodynamics, pages 387-446. Klumer Academic

Publishers, 1991.

155



[31]

[32]

(33]

(34]

[35]

[36]

[37]

[38]

J. Désidéri, N. Glinsky, E. Hettena, J. Périaux, and B. Stouffiet. Hypersonic reac-
tive flow computations around space-shuttle-like geometries by 3-D upwind finite

elements. AIAA Paper 89-0657, 1989.

J. Dompiere, M.-G. Vallet, M. Fortin, W. G. Habashi, D. Ait-Ali-Yahia, and
S. Boivin. Edge based mesh adaptation for cfd. In International Conference on

Numerical Methods for the Euler and Navier-Stokes Equations, 1995.

N. Drouin, F. Coron, D. L. H. Hollanders, and G. Moules. Calculations of
non-equilibrium real gas flows with the finite-volume Euler/Navier-Stokes solver

flu3neqv. AIAA Paper 94-0761, 1994.

B. Dubroca. An extension of Roe’s Riemann solver applied to reactive viscous flows
for the computation of laminar hypersonic wake. In C. Taylor, editor, Numerical

Methods in Laminar and Turbulent Flows, pages 1168-1179, Swansea, UK, 1993.

L. C. Dutto, W. G. Habashi, M. P. Robichaud, and M. Fortin. A method for finite
element parallel viscous compressible flow calculations. Int. J. Num. Meths. Fluids,

19:275-294, 1994.

L. C. Dutto, W. G. Habashi, M. P. Robichaud, and M. Fortin. Parallelizable block di-
agonal preconditioners for the compressible Navier-Stokes equations. Comp. Meth.

Appl. Mech. and Engng, 117:15-47, 1994.

S. Eberhardt and K. Brown. A shock capturing technique for hypersonic, chemically
relaxing flows. AIAA Paper 86-0231, 1986.

S. Eberhardt and S. Imlay. A diagonal implicit scheme for computing flows with
finite-rate chemistry. AIAA Paper 90-1577, 1990.

156



[39] J. R. Edwards. A diagonal implicit/nonlinear multigrid algorithm for computing
hypersonic, chemically-reacting viscous flows. AIAA Paper 94-0762, 1994.

[40] C. A. J. Fletcher. A primitive variable finite element formulation for inviscid com-

pressible flow. J. Comp. Phy., 33:301-312, 1979.

[41] M. Fortin, W. G. Habashi, D. Ait-Ali-Yahia, S. Boivin, Y. Bourgault, J. Dompiere,
and M.-G. Vallet. Anisotropic mesh optimization: Towards a solver-independent and
mesh-independent cfd. In Lecture Notes for VKI Short Course, Montreal, August
1996.

[42] M. Fortin, M.-G. Vallet, D. Poirier, and W. G. Habashi. Error estimation and direc-
tionally adaptive meshing. AIAA Paper 94-2221, 1994.

[43] P. Glaister. An approximate linearised Riemann solver for the Euler equations for

real gases. J. Comp. Phy., 74:382—408, 1988.

[44] N. Glinsky. Simulation Numérique d’Ecoulements Hypersoniques Réactifs Hors-

Equilibre Chimique. PhD thesis, Université de Nice-Sophia Antipolis, France, 1990.

[45] A. P. Gnoffo. Hypersonic flows over biconics using a Variable-Effective-Gamma

Parabolized-Navier-Stokes code. AIAA Paper 83-1666, 1983.

[46] A.P. Gnoffo. Point-implicit relaxation strategies for viscous hypersonic flows. In
T. K. S. Murthy, editor, Computational Methods in Hypersonic Aerodynamics, pages
115-152. Klumer Academic Publishers, 1991.

[47] P. A. Gnoffo. A finite-volume, adaptive grid algorithm applied to planetary entry
flowfields. AIAA J., 21(9):1249-1254, 1983.

157



(48]

[49]

{501

[51]

[52]

[53]

[54]

[55]

S. Godunov. Finite-difference method for numerical computation of discontinuous
solutions of the equations of fluid dynamics. Matema. Shornik., 47(3):271-306,
1959.

T. Gokcen. Computation of Hypersonic Low Density Flows with Thermo-Chemical
Nonequilibrium. PhD thesis, Department of Aeronautics and Astronautics, Stanford

University, CA, USA, 1989.

B. Grossman and G. Moretti. Time-dependent computation of transonic flow. AIAA

Paper 70-1322, 1970.

B. Grossman and R. Walters. Analysis of flux-split algorithms for Euler’s equations

with real gases. AIAA J., 27(5):524-531, 1989.

W. Gui and I. Babuska. The A, p and h—p version of the finite element method
in one dimension. Part III: The adaptive h—p version. Nimerische Mathematik,

48:658—683, 1986.

W. Gui and 1. BabuSka. The k, p and h—p version of the finite element method in
one dimension. Part I: The error analysis of the p version. Nimerische Mathematik,

48:557-612, 1986.

W. Gui and I. Babu$ka. The k, p and h—p version of the finite element method in
one dimension. Part II: The error analysis of the A and h—p version. Niimerische

Mathematik, 48:613-657, 1986.

G. W. Habashi and M. Fortin. Anisotropic mesh adaptation: Towards a grid-
independent, scheme-independent and user-independent cfd. In Basel World CFD
User Days 1996, Third World Conference in Applied Computational Fluid Dynam-
ics, pages 13.1-13.4, 1996.

158



[56] J. Hauser, J. Muylaert, H. Wong, and W. Berry. Computational aerothermodynamics
for 2D and 3D space vehicles. In T. K. S. Murthy, editor, Computational Methods in
Hypersonic Aerodynamics, pages 447-490. Klumer Academic Publishers, 1991.

[57] D. F. Hawken, J. J. Gottlieb, and J. S. Hansen. Review of some adaptive node-
movement techniques in finite-element and finite-difference solutions of partial dif-

ferential equations. J. Comp. Phy., 95(2):254-302, 1991.

[58] W.D. Hayes and R. F. Probstein. Hypersonic Flow Theory. Academic Press, New
York, 1959.

[59] C. Hirsh. Numerical Computation of Internal and External Flows. Volume 2: Com-
putational Methods for Inviscid and Viscous Flows. John Wiley & Sons, 1990.

[60] H. G. Hornung. Non-equilibrium dissociating nitrogen flow over spheres and cylin-

ders. J. Fluid Mech., 53(1):149-176, 1972.

[61] T. J. R. Hughes. Recent progress in the development and understanding of SUPG
methods with special reference to the compressible euler and Navier-stokes equa-

tions. Int. J. Num. Meths. Fluids, 7:1261-1275, 1987.

[62] T.J. R. Hughes and T. E. Tezduyar. Finite element method for first-order hyperbolic
systems with particular emphasis on the compressible Euler equations. Comp. Meth.

Appl. Mech. and Engng, 45:217-284, 1984.

[63] S.T.Imlay, D. W. Roberts, M. Soertrisno, and S. Eberhardt. Nonequilibrium thermo-

chemical calculations using a diagonal implicit scheme. AIAA Paper 91-0468, 1991.

[64] A.Jameson. Solution of the Euler equations by a multi-grid method. Appl. Math.
Comp., 13:327-356, 1983.

159



[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

A. Jameson. Artificial diffusion, upwind biasing, limiters and their effect on ac-
curacy and multigrid convergence in transonic and hypersonic flows. AIAA Paper,

93-3359, 1993.

A. Jameson and D. Mavriplis. Finite volume solution of two-dimensional Euler

equations on a regular triangular mesh. AIAA J., 24(4):611-618, 1986.

A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the Euler equations
by finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper

81-1259, 1981.

B.-N. Jiang and G. F. Carey. Least-squares finite element methods for compressible

euler equations. Int. J. Num. Meths. Fluids, 10:557-568, 1990.

S. Jonas, H.-H. Fruhauf, and O. Knab. Fully coupled approach to the calculation of
nonequilibrium hypersonic flows using a Godunov-type method. In C. Hirsh, editor,

Computational Fluid Dynamics '92, volume 1, pages 305-314, 1992.

Y. G. Kallinderis and J. R. Baron. Adaptation methods for a new Navier-Stokes

algorithm. AJAA J., 27(1):37—43, 1989.

S. W. Kang and M. G. Dunn. Theoritical and measured electron density distributions

for the RAM vehicle at high altitudes. AIAA Paper 72-689, 1972.

O. Knab, T. H. Gogel, H.-H. Fruhauf, and E. W. Messerschmid. CVCV-model
validation by means of radiative heating calculations. AIAA Paper 95-0623, 1995.

O. Knab and S. J. H.-H. Fruhauf. Multiple temperature descriptions of reaction
rate constants with regard to consistent chemical-vibrational coupling. AIAA Paper

92-2947, 1992.

160



[74] R. Kornhuber and R. Roitzsch. On adaptive grid refinement in the presence of

internal or boundary layers. Impact Comp. Sc. Engng, 2:40~72, 1990.

[75] M. H. Lallemend, H. Steve, and A. Dervieux. Unstructured multigridding by volume
agglomeration: Current status. Comp. and Fluids, 21:397-433, 1992.

[76] J. H. Lee. Basic governing equations for the flight regimes of aeroassisted orbital
transfer vehicles. In Thermal Design of Aeroassisted Orbital Transfer Vehicles,

volume 96, pages 3—53. Progress in Aeronautics and Astronautics, 1985.

[77] D. Lefebvre and J - Peraire. Finite element least squares solution of the euler equa-
tions using linear and quadratic approximations. Int. J. Comp. Fluid Dyn., 1:1-23,

1993.

(78] C.P.Li. Time-dependent solutions of nonequilibrium dissociating flow past a blunt

body. J. Spacecraft and Rockets, 8(7):812-814, 1971.

[79]1 R. L&hner. An adaptive finite element scheme for transient problem in CFD. Comp.

Meth. Appl. Mech. and Engng, 61:323-338, 1987.

[80] R. Lohner. Adaptive remeshing for transient problems. Comp. Meth. Appl. Mech.
and Engng, 75:195-214, 1989.

[81] R. Lohner. Finite element methods in CFD: Grid generation, adaptivity and paral-
lelization. Technical Report 787 NATO, AGARD, 1992.

[82] R. Lohner, K. Morgan, and J.Peraire. A simple extension to multidimensional prob-
lems of the artificial viscosity due to Lapidus. Comm. Appl. Numer. Meth., 1:141-
147, 1985.

[83] R.Léhner, K. Morgan, and O. C. Zienkiewicz. Adaptive grid refinement for the com-
pressible Euler equation. In I. Babugka, O. C. Zienkiewicz, J. Gago, and A. Oliveira,

161



editors, Accuracy Estimates and Adaptive Refinements in Finite Element Computa-

tion. John Wiley & Sons, 1986.

[84] R. W. MacCormack. Current status of the numerical solutions of the Navier-Stokes

equations. AIAA Paper 85-0032, 1985.

[85] R. Magnus and H. Yashihara. Inviscid transonic flow over airfoils. AIAA J., 8:2157—
2162, 1970.

[86] D. J. Mavriplis. Three-dimensional unstructured multigrid for the Euler equations.

AIAA J., 30(7):1753-1761, 1992.

[871 R. C. Millikan and D. R. White. Systematics of vibrational relaxation. J. Chem.
Phy., 39(12):3209-3213, 1963.

(88] J. N. Moss and G. A. Bird. Direct simulation of transitional flow for hypersonic

reentry conditions. AIAA Paper 84-0233, 1984.

[89] K. Nakahashi and G. S. Deiwert. Self-adaptive grid method with application to
airfoil flow. AIAA J., 25(4):513-520, 1987.

[90] R. H. Ni. A multiple-grid scheme for solving the Euler equations. AIAA J.,
20(11):1565-1571, 1982.

[91] J. T. Oden and L. Demkowicz. A survey of adaptive finite element methods in
computational mechanics. In A. K. Noor and J. T. Oden, editors, State-of-the-Art

Surveys on Computational Mechanics, pages 441-467. ASME, 1989.

[92] J. T. Oden and L. Demkowicz. h—p adaptive finite element methods in computa-

tional fluid dynamics. Comp. Meth. Appl. Mech. and Engng, 89:11-40, 1991.

162



(93] 1. T. Oden, L. Demkowicz, W. Rachowicz, and W. Westermann. Toward a universal
h—p adaptive finite element strategy, Part 2. A posteriori error estimation. Comp.

Meth. Appl. Mech. and Engng, 77:113—180, 1989.

[(94] J. T. Oden, T. Liszka, and W. Wu. An h—p adaptive finite element method for in-
compressible viscous flows. In The Mathematics of Finite Elements and Applications

VII. Academic Press, 1991.

[95] J. T. Oden, T. Strouboulis, and P. Devloo. Adaptive finite element methods for high-
speed compressible flows. Int. J. Num. Meths. Fluids, 7:1211-1228, 1987.

[96] J.T. Oden, T. Strouboulis, P. Devlioo, and M. Howe. Recent advances in error estima-
tion and adaptive improvement of finite element calculations. In I. Babugka, O. C.
Zienkiewicz, J. Gago, and A. Oliveira, editors, Accuracy Estimates and Adaptive

Refinements in Finite Element Computation. John Wiley & Sons, 1986.

[97] J. T. Oden and W. Wu. An hp adaptive strategy for finite element approximations of
the Navier-Stokes equations. Int. J. Num. Meths. Fluids, 7:831-851, 1995.

[98] E. Onate, F. Quintana, and J. Miquel. Numerical simulation of hypersonic flow over
a double ellipse using a Taylor-Galerkin finite element formulation with adaptive
grids. In Workshop on Hypersonic Flows for Reentry Problems, volume 2, pages
635-653, 1990.

[99] B. Palmerio. A two-dimensional FEM adaptive moving-node method for steady
Euler flow simulation. Comp. Meth. Appl. Mech. and Engng, 71:315-340, 1988.

{100] C. Park. On convergence of computation of chemically reacting flows. AIAA Paper

85-0247, 1985.

163



[101] C. Park. Assessment of two-temperature kinetic model for dissociating and weakly-

ionizing nitrogen. J. Thermo. Heat Trans., 2(1):8-16, 1989.

[102] C. Park. Assessment of two-temperature kinetic model for ionizing air. J. Thermo.

Heat Trans., 3(13):233-244, 1989.

[103] C. Park. Nonequilibrium Hypersonic Aerothermodynamics. John Wiley & Sons,
New York, 1990.

[104] C. Park and S. Yoon. Fully coupled implicit method for thermo-chemical nonequi-
librium air at suborbital flight speeds. J. Spacecraft, 28(1):31-39, 1991.

[105] C. Park and S. Yoon. Calculations of real-gas effects on blunt-body trim angles.

AIAA J., 30(4):999-1007, 1992.

[106] M. F. Peeters, W. G. Habashi, B. Q. Nguyen, and P. L. Kottiuga. Finite element
solutions of the Navier-Stokes equations for compressible internal flows. J. Prop.

Power, 8(1):192-198, 1992.

[107] J. Peraire, J. Perié, and K. Morgan. Adaptive remeshing for three-dimensional com-

pressible flow computations. J. Comp. Phy., 103:269-285, 1992.

[108] J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. Adaptive remeshing for
compressible flow computations. J. Comp. Phy., 72:449-466, 1987.

[109] W. Rachowicz, J. T. Oden, and L. Demkowicz. Toward a universal A—p adaptive
finite element strategy, Part 3. Design of h—p meshes. Comp. Meth. Appl. Mech.
and Engng, 77:181-212, 1989.

[110] P. Roe. Approximated riemann solvers, parameter vectors and difference scheme. J.

Comp. Phy., 43:357-372, 1981.

164



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

P. L. Roe. Characteristic based schemes for the Euler equations. Annual Review of

Fluid Mechanics, 18:337-365, 1986.

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856-869,
1986.

J. S. Shuen and S. Yoon. Numerical study of chemically reacting flows using an lu

scheme. AIAA Paper 88-0436, 1988.

J. Steger and R. Warming. Flux-vector splitting of the inviscid gas dynamics equa-
tions with applications to finite difference methods. J. Comp. Phy., 40:263-293,
1981.

A. Tam, W. G. Habashi, D. Ait-Ali-Yahia, M. Robichaud, and M.-G. Vallet. A 3-d

adaptive finite element method for turbomachinery. AIAA Paper 96-2659, 1996.

J. L. Thomas, D. L. Dwoyer, and A. Kumar. computational fluid dynamics for
hypersonic airbreathing aircraft. In J.-A. Désidéri, R. Glowinski, and J. Périaux,
editors, Hypersonic Flows for Reentry Problems, volume 1, pages 55-71. Springer-

Verlag, 1990.

H. S. Tsien. Similarity laws of hypersonic flows. J. Math. and Phy., 25:247-251,
1946.

W. W. Tworzydlo, J. T. Oden, and E. A. Thornton. Adaptive implicit/explicit finite
element method for compressible viscous flows. Comp. Meth. Appl. Mech. and

Engng, 95:397-440, 1992.

M.-G. Vallet. Génération de maillages éléments finis anisotropes et adaptatifs. PhD

thesis, Université Pierre et Marie Curie, Paris VI, 1992.

165



[120] B. Van Leer. Flux-vector splitting for the Euler equations. Lecture Notes in Physics,

170, 1982.

[121] M. Vetter, H. Olivier, and H. Grénig. Flow over double ellipsoid and sphere - Ex-
perimental results. In R. Abgrall, J.-A. Désidéri, R. Glowinski, M. Mallet, and
J. Périaux, editors, Hypersonic Flows for Reentry Problems, volume 3, pages 489—

500. Springer-Verlag, 1991.

[122] W. G. Vincenti and C. H. Kruger. Introduction to Physical Gas Dynamics. Krieger
Publishing Company, Malabar, FL, 1986.

[123] M. Vinkour and Y. Liu. Equilibrium gas flow computations. II. An analysis of

numerical formulations of conservation laws. AIAA Paper 88-0127, 1988.

[124] Y. Wada, H. Kubota, S. Ogawa, and T. Ishiguro. A generalized Roe’s approximate
Riemann solver for chemically flows. AIAA Paper 89-0202, 1989.

[125] Y. Wadaand M. S. Liou. A flux-splitting scheme with high-resolution and robustness
for discontinuities. AJAA Paper 94-0083, 1994.

[126] G.D. Walberg. A review of aero-assisted orbit transfer. AJAA Paper 82-1378, 1982.

[127] G.D. Walberg. Aero-assisted orbit transfer window opens on missions. volume 21,

pages 36-43. Progress in Aeronautics and Astronautics, 1983.

[128] R. W. Walters, P. Cinnella, D. C. Slack, and D. Halt. Characteristic-based algorithms
for flows in thermo-chemical nonequilibrium. AJAA J., 30(5):1304-1313, 1992.

[129] R. M. Williams. National aero-space plane. Aerospace America, pages 18-22,
November 1987.

[130] S. Yoon and D. Kwak. Artificial dissipation models for hypersonic external flow.
AJAA Paper 88-3708, 1988.

166



[131] D. Zeitoun, E. Schall, Y. Burtschell, and M. C. Druguet. Vibration-dissociaton

coupling in nonequilibrium hypersonic viscous flows. AIAA J., 33(1):79-84, 1995.

[132] M. W. Zemansky and R. H. Dittman. Heat and Thermodynamics. McGraw-Hill
Book Company, New York, 1979.

[133] J. Z. Zhu and O. C. Zienkiewicz. Adaptive techniques in the finite element method.
Comm. Appl. Numer. Meth., 4:197-204, 1988.

[134] O. C. Zienkiewicz, Y. C. LIU, and G. G. Huang. Error estimation and adaptivity in

flow fonﬁulaﬁon for forming problems. Int. J. Num. Meth. Engng, 25:23-42, 1988.

[135] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure

for practical engineering analysis. Int. J. Num. Meth. Engng, 24:337-357, 1987.

167



TEST TARGET (QA-3)
1.8
1.6

¥ S ¥ B0

150mm

125

716/288-5989

one: 716/482-0300

~—ow

© 1993, Applied image, Inc., All Rights Reserved



