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ABSTRACT

Symbolic Computation of Electron-Proton to Slepton-Squark Scattering Cross Sections
Based on a Left-Right Supersymmetric Extension of the Standard Model

Mark R. A. Adcock

The calculation of the cross section of supersymmetric processes based on a left-right
supersymmetric extension of the standard model is presented. The Feynman diagrams for
the neutralino-quark-squark and chargino-quark-squark are written down, and the
production of sleptons and squarks resulting from the t-channel exchange of neutralinos
and charginos in electron-proton scattering is analyzed. The symbolic programming
language Mathematica®, is used to develop a program to generate a symbolic
representation of the invariant amplitude for these processes. Differential cross sections,
based on numerical values of the free parameters of the left-right supersymmetric model,

are generated.
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INTRODUCTION

The standard model represents one of mankind’s greatest achievements in describing the
workings of nature. The model however has some fundamental flaws that indicate it is a
low energy approximation of a more fundamental theory. But what is the nature of these
higher energy unifying theories? Supersymmetry offers a tantalizing insight into such
questions. The supersymmetric theories are based upon a wider range of particles than
have actually been observed in nature. The reasoning behind the need for these “super”
particles is so compelling that the theory has reached an impressive level of acceptance
by the worldwide physics community despite no experimental evidence of their existence
to date. If the universe is indeed supersymmetric and as the energy scales achievable by
modermn particle accelerators increases, there is more likelihood that we will be able to

acquire such experimental evidence. But how will such evidence be uncovered ?

The nature of particles and how they interact with each other have historically been
explored by probing the interaction through scattering experiments. Evidence of
supersymmetry will most likely be uncovered in the same manner. It is widely believed
that electron-proton scattering experiments will provide the environment in which the
production of supersymmetric particles can be studied. Supersymmetric theories predict
that the supersymmetric products in such experiments will either be undetectable or decay
into undetectable by-products. Nevertheless, undetectable particles may be characterized
by high missing transverse momentum. If we know the signature of the process, it is
possible to extract the evidence from the background noise. The signature of the process

is characterized by its cross section which can be calculated from the model.

Development of techniques to estimate the scattering cross section of the supersymmetric

interaction have already been established, but the calculations are long and tedious, and

1



the number of free parameters in the model are many. It is desirable to develop computer-
based techniques to assist in these calculations. With the advent of algebraic
programming Languages such as Mathematica®, symbolic calculators have been
developed to assist in calculations of interactions based on the standard model. It is only

natural to extend these techniques to the calculations of supersymmetric interactions.

In this thesis in order to gain an appreciation of the techniques employed in developing
such a supersymmetric calculator, we will first review the nature of the standard model
and how scattering cross sections are calculated using the theory of quantum
electrodynamics (QED). This leads naturally to the modifications to the standard model
needed to make it left-right supersymmetric and to the modification to the Feynman rules
governing the production of supersymmetric particles in electron-proton collisions.
Finally, the design of the calculator is presented and the results of the calculation of

supersymmetric process are discussed.



CALCULATING CROSS SECTIONS

1.1 Overview of Particle Physics

Figure 1 is a simplified road map of the major concepts ir: particle physics which lead to
the development of the supersymmetric theories. The Dirac equation is a natural starting

point because it provides a natural way of introducing internal and external symmetry

groups that can only be merged by the principle of supersymmetry.

Weak Analogy td
QED
Dirac Left—nght
Equation Symmetric
Electrdp Spin
SUQ2) Left-Right
\ SuperSymmetric
Strong Analogy Supersymmetric [
to QED
Isospin
SUQ@3)

FIG. 1 Particle physics road map

From the Dirac equation we proceed to a discussion of local gauge invariance and the
concept of symmetry breaking. The concepts of internal symmetries and local gauge

invariance provide the framework on which the supersymmetry is built..



1.1.1 The Dirac Equation

The Dirac equation was discovered because of the need for an equation invariant under a
Lorentz transformation. The Dirac equation may be derived from the requirements that
the equation be linear in the gradient operator and satisfy the relativistic energy

momentum relation:

Hy =(a-P+ pm)y  Linearity Requirement

2 2 2 . (1.1
Hy= (P +m )n// Energy / Momentum Requirement

These two equations lead to the realization that the a's and the f's are not simply numbers
but that they are hermitian traceless matrices of at least 4 dimensionality. The Pauli

matrices are most frequently used to represent them:

0 o) r 03y
“‘z(a. 0)’ 'B=(o _1) (1-2)

:

Thus the Dirac equation is represented:

iﬂ%—= —ifa-Vy +my
with y* = (,B,ﬂa) this may be re — written: (1.3)
(i}"‘ o, — m)t// =0
The ¥'s represent the 4x4 Dirac gamma matrices. The Dirac-Pauli representation of the
gamma matrices are used throughout this thesis. The wave function solutions to this

equation are typically of the form:



v= u(p,s)e""‘” (1.9)

where the first term in equation 1.4 represents four-component entities called spinors.
Further insight can be gained by noting the different symmetries inherent in the Dirac
equation. Equations 1.1 result from the requirement that the Dirac equation be invariant
under Lorentz transformations. The Lorentz transformation consists of Lorentz boosts
and ordinary rotations and is an external symmetry of the Dirac equation. The algebraic
entities represented by the o’s and B’s in equations 1.1 obey the algebra of SU(2) and
represent an internal symmetry. It has long been known that the Lorentz subgroup of
ordinary rotations O(3) and the group SU(2) are isomorphic, but all attempts to unify
these external and internal symmetries into one symmetry group failed until the
supersymmetric theories were put forth. Another key concept to understanding

supersymmetry is that of local gauge invariance.

1.1.2 Local Gauge Transformations

Invariance under external group transformations leads to the conservation of energy,
linear momentum etc., but what is conserved under internal group transformations? That
is: what conserved current is required to ensure that the different internal fields do not
mix with different space-time properties? In order to answer this question, an important
first step is to understand the concept of gauge transformations. The Dirac equation may

be defined by the following Lagrangian:

L =iyy, 0y —myy (1.5)



This Lagrangian is invariant under global gauge transformations, but is not invariant

under the local gauge transformation:

w(x)—> e““yp(x), (1.6)

because of the presence of J,,:
o,y — V38 y(x)+e" " y(x)d,a (L.7)

If we insist that this Lagrangian be invariant under local gauge transformations, we must
introduce a vector field A4, .to cancel the extra term. Careful analysis of this vector field
demonstrates that it satisfies Maxwell's equations, and indeed these famous equations can
be derived from this principle of gauge invariance alone'. It is illuminating to observe that
Maxwell's equations, which were the crowning unification of more than two hundred
years of empirical work, can be derived by requiring this basic invariance of the Dirac

Lagrangian. Thus the vector field 4,, is interpreted as the photon field, and its

introduction leads to the famous Lagrangian of quantum electrodynamics (QED):

. — 1 Y
L=lir ,0° ~m)y +ePy* A,y - F, F* (1.8)

The imposition of the natural requirement of local phase invariance on the free fermion
Lagrangian leads to an interacting Lagrangian of two fields each which transform
according to two different groups. The photon field is invariant under Poincaré

transformations while the Dirac spinors of the fermion field are invariant under SU(2)



transformations. As mentioned above, supersymmetric theories offer a means of unifying
these two groups. Armed with the concept of the QED Lagrangian we can now embrace

the unification of the electromagnetic and the weak interactions through the concept of

spontaneous symmetry breaking.
1.1.3 The Weak Interaction
The weak interaction can be classified into three categories

N AR

1) leptonic decays e.g
ii) semileptonic decays eg 'C»"B*+e" +v, (p—>ne‘v)
iii) non-leptonic decays eg K »rn'x°

The famous B decay involves the transformation of a proton into a neutron (or vice
versa), and it is an example of a semi-leptonic decay. When it was discovered that weak
interactions exhibit parity violation, it necessitated describing the invariant amplitude of
a weak process in a vector-axial (V-A) form. This form is realized by replacing the
bilinear covariant »* found in the electromagnetic invariant amplitude with »*(1 — ys).
This V-A form automatically violates parity conservation. The V-A structure of the weak
current is directly exposed by scattering neutrinos off electrons. This process always
selects a left-handed neutrino (or a right-handed antineutrino) and indeed there is no
empirical evidence for the existence of right-handed neutrinos (or left-handed

antineutrinos). The last is only true if the neutrino mass is strictly zero otherwise a



Lorentz transformation could transfer one into the other. The zero mass neutrino mass
prediction of the standard model is considered a problem and will be discussed in chapter

2 when we investigate a left-right symmetric model.

The weak current was at first observed to have a charge-raising or charge-lowering
structure. Extending the electromagnetic analogy, it was postulated that the weak
interactions are generated by the emission and absorption of weak bosons called #* .The
existence of an electrically neutral weak current was not revealed until 1973. The
observation that weak neutral current effects occurred at a much higher rate than could be
explained by combined electromagnetic and weak charged currents resulted in the
definition of weak neutral currents. This current was defined as a four-vector current-
current form to fit the experimental data. In general, the weak neutral currents are not
pure V-A currents because they have right-handed currents. The weak neutral currents are
associated with the weak neutral boson Z,. It was the existence of the right-handed
components of the neutral currents that led to the unification of the weak and

electromagnetic forces as will be discussed.

1.1.4 Electroweak Unification

The principle question asked in the quest for electroweak unification is whether the two
charged currents and the weak current form a symmetry group of weak interactions. An
isospin triplet of weak currents should generate an SU(2)L. algebra, but the neutral current

can’t complete the triplet because it has a right-handed component. However, the



electromagnetic current is neutral with right-handed as well as left-handed components.
Neither the neutral nor the electromagnetic current respect the SU(2)L. symmetry, but the
idea is to form two orthogonal combinations which do have definite transformation

properties under SU(2)L.

One of these combinations completes the isospin triplet; the other, called the weak
hypercharge current, is unchanged by SU(2); operations. In order to complete the

unification, the current-current form of the weak interaction is modified:

In QED, the em current is coupled to the photon:
~ie(j™)" A, (1.9)

In the electroweak interaction we assume a similar interaction:
2(/) W —i& (;")"B 1.10)
~ig()" W, ~ i< ()8, (1.
The electromagnetic interaction is embedded in this expression. The W;, is an isotriplet

of vector fields coupled with strength g to the weak isospin current J, , together with a

single vector field B, coupled to the weak hypercharge current j: with strength 24.
When the masses of the weak bosons are generated by symmetry breaking, the neutral

3 . - -
fields W, and B, mix in such a way to produce the physical states:

A, = B, cos@,+W,sinf, (massless) (L1
Z,=-B,sin6, + W,cos6, (massive) ’



Oy is called the weak mixing angle, and is expressed as:
gsinf, =g'cosf =e (1.12)

This mixing angle is given by the ratio of the two independent group coupling constants
which are determined by experiment. Finally, the observed neutral currents are expressed
as:

cem _ 1 ;¥
J;m _'113‘+-2-Ill

NC in2 g jem (1.13)
JY =T, —sin® 0, j;

The right-handed component of the weak neutral current is canceled by the correct
projection (through the weak mixing angle) of the electromagnetic current leaving Jj ,a
pure left-handed current belonging to the symmetry group SU(2)L. Similarly, the electron
magnetic current is made up of the weak neutral current and the hypercharge current.
Electroweak unification is achieved through these definitions. In order for the standard
model to be successful, sin Oy must be the same for all weak interactions. As noted
above, the physical states result from the breaking of a symmetry. In order to introduce

the masses of the weak bosons we investigate this process.
1.1.5 Gauge Boson Masses

The Goldstone theorem® states that massless scalars occur whenever a continuous
symmetry of a system is spontaneously broken. The Higgs mechanism is a way of turning

this massless Goldstone boson into a longitudinal polarization of a massive gauge

10



particle. The Higgs mechanism is a choice of a particular gauge.

Spontaneous breaking of a local SU(2) symmetry provides a way of viewing how the
weak bosons acquire mass. We want to formulate the Higgs mechanism so that the & *
and Z° become massive and the photon remains massless. The Weinberg-Salam model
achieves this by starting with an SU(2) invariant Lagrangian for example, of the electron-

neutrino lepton pair:

L =Z,7"lid,—-g+t-W,—ig'(-1)B,1x,

R e\ (1.14)
+eyy*“[id, —g'(-3)B,le, — W, W -38,B

An SU(2) X U(1) invariant Lagrangian, Ly, for the 4 scalar fields ¢; (i = 1,2,3,4) is

added, and the gauge boson masses are generated by the Higgs Mechanism.

L =|g,-eT-W,-ig ()B4 -V (9) (1.15)

To keep L, gauge invariant the ¢; must belong to the SU(2) X U(1) gauge group. The
most economical choice is to arrange ¢ in an isospin doublet. It is this minimal choice of

the Higgs doublet that is the comerstone of the Weinburg Salam model:

$, +ig,)

b, +ig,) (1.16)

¢=)’.rz(

To generate the gauge boson masses, we use the Higgs potential and choose a vacuum

expectation value for one of the fields; the standard choice is to set :

11



Higgs potential:
V(g)=—-u’¢ ¢+ A(¢"9)’, 4’ >0
minumum of V occurs at:

0
¢0 =}/J'2-(v) where V=:/%

Due to gauge invariance, we can substitute (1. 17)

RN N

back into the Lagrangian to generate the boson masses.

Any choice of ¢¢ will break a symmetry operation and will generate a mass for the
corresponding gauge boson. Indeed, different choices of the Higgs potential itself result
in different interpretations of the vacuum as we shall see when we discuss left-right
symmetric models. If the vacuum ¢¢ is still left invariant by a subgroup of gauge
transformations, the gauge boson associated with that subgroup will remain massless.
Hence, we choose a doublet of complex scalar fields (that will leave U(1)em intact) about
which we expand the Lagrangian. The resulting expansion of the vacuum breaks the
SU(2) and U(1)y symmetries but leaves the U(1)em symmetry intact. Thus the vacuum
remains invariant under U(1)emy transformations and the photon remains massless. The

weak gauge boson masses are identified by substituting this vacuum expectation of ¢o

into the Lagrangian Lj. The charged weak bosons are predicted to have mass M,, = %vg .

The neutral fields are described by a 2x2 matrix whose eigenvalues are the neutral boson
masses. This matrix is diagonalized to obtain the mass of the neutral boson. Upon

normalizing the fields this process results in:

12



A, =" with M, =0
gZ +gr2
1. 18
gn,:-g'Bﬂ - 1 2 ’2 ( )
Z“:—;Tz_ with MZ=3V‘/g +g
g +g

The ratio 2 = cos 8, . is a prediction of the standard model. In 1983, CERN collider

¥4

results were used to measure these boson masses, and the results were found to be in

impressive agreement with the standard model®.
1.1.6 Fermion Masses

The gauge boson masses were generated by adding an SU(2) X U(1) gauge invariant
Lagrangian for the scalar fields ¢. Similarly, to generate the electron masses we include

the following SU(2) X U(1) gauge invariant term:
I—- - (¢+ - - %o Ve\ 1
L, _—.—Gcl.(ve,e)l_ ¢o) < te(97.0 e) | (1. 19)

Conveniently, the same Higgs doublet that generates the boson masses also give masses
to the fermions. For example, the Higgs doublet has the required SU(2) X U(1) quantum
numbers to couple the electrons &,e,. We spontaneously break the symmetry with the
same expansion and on substitution of ¢, we can generate the electron mass. The

Lagrangian now becomes:

13



G - G - -
L= —T£ WE ez +eReL)—725h(eLeR +8ge;)
if m, = % (1.20)

- m .
Li=-mee——eeh
v

Note that since the electron coupling is arbitrary the electron mass is not predicted. The
Lagrangian also contains an interaction term coupling the Higgs scalar h to the electron.
This coupling is very small and so far has not produced a detectable result. The Higgs
particle has never been observed and any evidence of its existence is eagerly awaited.
Before proceeding to a discussion of the Higgs sector in supersymmetry, we provide a
detailed example of the powerful techniques developed to calculate particle interactions
within the standard model. Calculation of the scattering cross section of an electron off a
static nucleus provides a simple, straightforward example in which these sophisticated

techniques can be presented.
1.2 Scattering Cross Section Calculations

Scattering experiments involve directing a beam of particles at a target and observing
how the incident particles become scattered by the target. Using scattering experiments to
explore the relationship between incident particle energy and the interaction between
target and incident beam has a wide range of applicability. The quantity measured in such
experiments is called the scattering cross section and has units of area. The most likely
means of gaining experimental evidence of supersymmetry will be through scattering

experiments. In order to get an understanding of the calculation techniques

14



required to obtain a theoretical prediction of scattering cross sections, we will proceed
with a discussion of the relativistic generalization of classical Rutherford cross section
using the theory of QED and Feynman rules. The cross section discussion will end with a
generalization of these techniques for the purpose of supersymmetric cross section

calculations.
1.2.1 S Matrix Treatment of Coulomb Scattering

In quantum mechanics we cannot speak in terms of certainties, only in terms of
probabilities. Thus quantum mechanical cross section calculations are based upon the
transition probability per particle into the number of final states within the range of

momentum uncertainty of the measuring apparatus.

The number of final states within in the range of the final momentum is given by:

L, dpf
dN, = V—(M)s (1.21)

where V denotes the normalization volume. The square of the S matrix element gives us
the probability of particle transition. The transition probability per particle into the final

states is thus written:

> Vd’p
aw =|s, a—i (1.22)

7y
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The transition probability per particle per unit time is denoted:

_4dw _ |Sﬁf Vd'p,

T T @no (1.23)

dR

Finally, the scattering cross section is defined as the transition probability per particle per

unit time divided by the magnitude of the incoming current of particles:

3
d0=ﬂ=ﬁ=ﬁw£ (1.24)
Vv 14

Noting that:

d’p, = pidp |dQ, (1.25)
the differential cross section per unit solid angle is expressed:

e

do _|sd” vpjlp| (1. 26)

d@ vl Q=)
7

All of the physics lies in the square of the S matrix element. To calculate the Rutherford
scattering cross section for an electron scattercd by a fixed Coulomb potential, we start

with the S matrix to the lowest order based on the covariant electromagnetic potential :

S, = —ie [d*x¥ () A(x) y(x) (1.27)
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For Coulomb scattering the potential is static, so the covariant potential is simply the

coulomb potential times »°:

Ax) = A, 7" = 4,(x)y° =—|Z| (1.28)

We can write the S matrix element as:

S, = izé [d* xw,(x)L Jy/(x) (1.29)

Now we have to insert the expressions for the fermion fieids. We approximate the
incoming electron as a plane wave with its initial momentum and spin and the outgoing

electron with its final momentum and spin:

m —ip,-X
= JE{T,”(P/’Sf i

V denotes the normalization volume over which the fields are normalized to probability

(1. 30)

1. The Dirac spinors u and # are normalized for Lorentz boosts®. With the proceeding

definitions, the S matrix element now reads:

iZez 'n2 - 0 i(p —p,)t_]:.
Sp=" " £ £ 7 upns) Ja'se"mr (1.31)
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Details of the integration may be found in reference [2]. Inserting the results of the

integration, the S Matrix becomes:

sﬁ—_--?ez ’E #(p,,s,)7 u(p, s)—27z6(E -E) (1.32)
f

where g =(p, —p;) is the transferred momentum. Squaring the magnitude of this

expression and inserting it into the differential cross section we arrive at:

da‘
dQ

ZZ 4

Iu(pf,s/)y u(p,,sj |5(15 Ef ﬂvkzz)’ (1.33)
In order to further simplify this expression, it can be shown that:
|5(EI—E"}2 =EE5(EI‘E}) (1. 34)

Inserting this into the expression for the S matrix, we arrive at the expression for the

differential cross section per unit of solid angle.

aQ

2 2
dg _ 42 A2 o5 3 ups X [ S(E, - gy2ded (1. 35)
E[E.'I"il

In order to complete this last integration we have to change variables:

2
E=£——->dE=£dp
2m m

pm*dE (1.36)

j 5(E, E)-mi =1
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This results in the following expression for the differential cross section per solid angle:
= @5 s (1.37)

Now the tricky part of this calculation is to calculate the contributions form the spinor
sums. To calculate this entity we rely on the Trace theorems of the products of gamma
matrices. Explanations of why we can replace them are well detailed in the literature’.
Application of trace theorems results in the relativistic Rutherford cross section also

known as the Mott cross section:

do [ 2 6]
- Msmgl_s ~ BE’sin® > ] (1.38)

In the non-relativistic limit E> - m® and f* — 0 this reduces to the classical cross
section :

do _ Z*a? -m?

[

= (1.39)
Q  4pf sin‘;

The additional term in the relativistic cross section results from the magnetic moment of
the Dirac electron interacting with the magnetic field of the scattering centre. This effect
is negligible at small velocities. This rather torturous calculation can be treated in a more
natural way by expressing the cross section in terms of the invariant amplitude. This

amplitude can be read right off the Feynman diagram for the interaction.
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1.2.2 Feynman Rules for Coulomb Scattering

The Feynman rules for scattering of electrons off a static charge are presented in the

following figure:

-i(Ze,0)

FIG. 2. Feynman rules for Rutherford scattering

The invariant amplitude can be read directly off the diagram:
. . - —i47zg v ..V
—iM = (ieit fy“u,.{—qTL ) @) (1.40)

Equating the electromagnetic current to the static coulomb potential the invariant

amplitude now reads:
i - —idr), .
—iM = (zatfy°u‘.{—qz— ) (~iZe) (1.41)
In order to express the scattering cross section in terms of the invariant amplitude we rely
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on the techniques of De Wit and Smith®. For a scattering process in the laboratory frame

we have the following geometry:

FIG. 3. The reaction 1+2 -> 3+4 defining the scattering angle 6

The Mandelstam variables t and s represent the transferred momentum. The cross section
in terms of t and s and the invariant amplitude M may be expressed:

do 1 IM

& 16nAmm) (1.42)

where l(s‘,m,z,mf)=(9‘(ml *'mz)zxg-(m' —mz)z)

The subscripts 1 and 2 refer to Figure 1.4. In the case of Coulomb scattering | represents
the incoming electron, 3 represents the outgoing electron, 2 and 4 represent the nucleus.
For Coulomb scattering the nucleus does not recoil hence p, is zero. Making this
substitution and simplifying by noting energy conservation lead to the following

representation of the differential cross section in the laboratory frame:
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2
do __IM’ (1.43)

dQ  ar’

Squaring the invariant amplitude and inserting it into the expression for the differential

cross section results in the same expression as 1.40.

do Z'¢' -m*|_

E =—HI_IM(P/',S/)}’O“(P:’»5£)IZ (1.44)
We see that using the Feynman rules and the invariant amplitude is a straight forward
way to arrive at the scattering cross section. We will employ these techniques in the

calculation of supersymmetric cross sections

1.2.3 Looking Ahead - SUSY Cross Sections

In this chapter we have noted several important points about the standard model,

supersymmetry and the calculation of cross sections:

i) The masses of the gauge bosons and the fermions in the standard model are generated
by the process of symmetry breaking. The mechanism for breaking the symmetry is
the Higgs potential. Often referred to as the Higgs sector, the choice of the Higgs
potential is a degree of freedom in the standard model, and the particular choice of the

potential affects the form of the particles.

ii) The GHP of the standard model could be improved by choosing different Higgs

potentials for the generation of boson masses. We explore this in the next chapter in
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our discussion of supersymmetry.

iii) Scattering experiments are a powerful means by which particles and their interactions
can be studied. Physical evidence of supersymmetry, if indeed the universe is
supersymmetric, will most likely be found in scattering experiments’. The heart of the
scattering calculation lies in the invariant amplitude which is derived from the
Feynman rules for the interaction. In the next chapter we will present the Feynman

rules for two specific supersymmetric cross section calculations.
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CHAPTER 2: SUPERSYMMETRY

Attempts to determine a general group that encompasses external symmetry groups such
as the Lorentz group with internal symmetry groups such as SU(2) using Lie algebras
have not been successful. Theorems called No-Go theorems show that a connected group
that contains both groups is at best a simple product of the external group and any one of
the internal groups®. This is not a satisfactory solution since generality is a requirement.
The commutation relationships of a group's generators form a Lie algebra that defines
certain symmetries; these symmetries are related by Neether's theorem to conserved
currents’. It follows that the field operators which quantize these fields have commutation
rules that are directly related to the group generators. Since we require a field theoretical
formulation that encompasses supersymmetry, we require a way out of the No-Go

theorems. The only way out is to extend the concept of a Lie algebra.

A superalgebra is a type of Lie algebra that includes both commutators and anti-
commutators in its definition. Supersymmetry is such a superalgebra. The anti
commutation relations transform bosons into fermions and vice versa. If one allows these
relations, then a unification of the external and the internal symmetries can be achieved.
Supersymmetry requires that all fermions have boson partners and vice versa. Since this
spectrum of particles has not been observed, it is assumed that the symmetry is badly
broken at the currently available energies. Future high-energy experiments may confirm

that Supersymmetry does indeed exist in nature.
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2.1 Unifying the External and internal Symmetries

The Lorentz group is the group of rotations and boosts in 4-dimensional Minkowski
space. The restricted Lorentz group, also referred to as the proper orthochronous Lorentz
group, does not contain time or space reflections. The generators of the restricted Lorentz
group are the K; which are the generators of the Lorentz boost and the J; which are the
generators of the Lorentz rotations. A non-unitary representation of the Lorentz group
may be formed by changing the basis of Kj and Jj by introducing a complex
transformation. The intriguing result of this operation is a pair of generators that obey the
commutation relations of the Lie algebra of SU(2) which as noted in chapter 1, is an
internal symmetry of the Dirac equation. Although the act of complexifying the group
doubles the group size, it can be seen that the close relationship between the imposition
of external symmetries of the Lorentz group and the internal symmetries that result from

such an imposition hints of the possibility of unification.

The Poincaré Group is an extension of the Lorentz group. It is a semi-direct product of
the Lorentz group and the translation group. The commutation relations of the Poincaré
Group represent a 10 dimensional Lie algebra. There are 6 infinitesimal parameters
leading to a Lorentz transformation and 4 infinitesimal parameters leading to an

infinitesimal translation.

Internal symmetry groups are representative of internal degrees of freedom of a particle.

In particular the SU(2) group is the lowest-dimensional nontrivial representation of the
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rotation group. This group describes the spin angular momentum of the electron and
arises in a natural way in the solution of the Dirac equation. There are other important
internal symmetry groups such as SU(3) which is represented by, among other things, the
colour charges of a quark. There is a connection between the spinor algebra of the SU(2)
group and the restricted Lorentz group. This connection can be seen by looking from

either the internal or the external points of view.

As noted in chapter 1, the Dirac gamma matrices result from the algebra necessary for
non-trivial solutions of the Dirac equation presented in equation 1.1. These four-
dimensional matrices are usually represented in either the Dirac-Pauli or the Weyl forms.
Both forms use the 2-dimensional Pauli matrices. In order to investigate the connection
between SU(2) and the restricted Lorentz group from the point of view of the Dirac
equation, it is instructive to study the extreme relativistic limit of the Dirac equation in
the Weyl representation. This limit decouples the 4x4 matrix equation into two 2x2
matrix equations which are wave equations for spin Y particles. Since this is the massless
limit, these equations describe massless neutrinos. The result of this limit is the result that
the equations are no longer invariant under the parity transformation. Thus we have left
and right handed Weyl spinors. These Weyl spinors are related to the helicity eigenstates.
The helicity is a Poincaré invariant quantity. It is defined as the projection of total angular
momentum onto the momentum directions. The invariance of the helicity operator under
Lorentz transformations implies that left-handed neutrinos are left-handed in any inertial

system. Thus we see that the two groups are implicitly related. It is the Lorentz group
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which defines the Dirac equation, but this equation can only be solved by turning to the

internal symmetries (SU(2)) implicit in the Dirac algebra®.

The No-Go theorems prove that a connected symmetry group of the external and internal

groups is only realizable if the following requirements are met by the connected group®:
1) Contains a sub-group that is Lorentz invariant.

i1) Has a finite number of particles.

ii1) Elastic scattering functions are analytic.

iv) Scattering for two particle state occurs at (almost) any energy.

v) Generators of this group have distributions for their kemnels.

The Coleman - Mandula theorem'® proves that there are Lie groups that contain the
Poincaré group and internal symmetry groups in a non-trivial manner; however, these
groups lead to trivial physics. In this spirit, if one were to use such a group, then the S-
matrix for all processes would be zero. Clearly if genuine unification is to be achieved, a

different type of algebra is required.

Supersymmetries avoid the restriction of the Coleman-Mandula Theorem by relaxing one
condition, they include anti-commutators in the definitions of the algebra. This is
achieved through a generalization of the notion of a Lie algebra. The defining relations of

these super algebras involve both commutators and anti-commutators. Superalgebras are
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also know as graded Lie algebras.

In order to generalize the Poincaré algebra to a superalgebra, a Majorana spinor charge
(also derived from the Dirac representation) is added to the algebra. Since these are
spinors under the Lorentz Group, very strong constraints are placed on the resulting
algebra. The theorem of Haag, Lopuszanski and Sohnius'' now states that there is a
symmetry that includes the Poincaré group and an internal symmetry group in a non-
trivial way. The super algebra contains commutating and anti-commutating relations
between this spinor and the generators of the Lorentz transformations. Since the
Majorana is in the spin - 2 representation of the Lorentz group, its action on a state of
spin j will result in a state of spin j +/- 2. Hence we have a symmetry which mixes

particles of different spins - that is it mixes fermions and bosons.
2.2 The Supersymmetry Aigebra

The Supersymmetric algebra has the following 14 generators:
4 Translation generators Py - The Energy Momentum Operator
6 Lorentz generators My, - The Lorentz Rotation Generator
4 Spinor charges Q, - The Majorana Spinor Operator

The algebra is defined by the following commutation and anti-commutation relationships
between the generators which includes the algebra of the Poincaré group. It is apparent

that the algebra will transform spin states.
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[~..P.]=0

[M”,,Pp]z—i(nﬂva— r]va”)

MM, )= i@, M. + 1M, ~ 0, M, - 1,M,.)

[F..2.]=0

[Myv’Qa]= —(i[}’p’vaabe

{Qa’éb }= 2(7”)‘,51);‘

{Qa’Qb}= —Z(y”C)abP”

@mé{,}= —Z(C-lrﬂ)abpﬂ 2.1

Since the commutator bracket for the spinor charge and the momentum shows that Q
commutes with the Hamiltonian, it can be concluded that states of non-zero energy are
paired by the action of Q. This implies that supersymmetric multiplets contain an equal

number of bosonic and fermionic particles of the same mass.

The Wess-Zumino model® is a field theoretical realization of the Super-Poincaré algebra.
The lowest dimensional representation of the supersymmetric algebra corresponds to a
system of two spin-0 fields (1 scalar and the other pseudo-scalar) and one spin-/; field.

Symbolically we present this as :

A is a scalar field

B is a pseudo scalar field

Y is a spin-1/2 Majorana field

In the Supersymmetric Lagrangian all three fields couple with the same mass m and the

29



same coupling constant The defined spinor charges and charge density that necessarily
result from the conserved current can be shown to satisfy the commutation and anti-
commutation relations of the Super symmetric algebra; thus the Wess-Zumino model is
indeed a valid field theoretical realization of such an algebra. The Supersymmetry
transformations transform the scalar and pseudo scalar fields into spin-Y; fields and the

spin-Y: fields into linear combinations of the scalar and pseudo scalar fields.
2.2.1 Breaking Supersymmetry

Since the supersymmetric partners have never been observed, it is assumed that
supersymmetry is broken at the currently available energies. Theoretical mechanisms for
breaking of supersymmetry have proven cumbersome, so it is preferred practice to break
the symmetry by manually introducing explicit mass terms into the Lagrangian®.
Although the introduction of these “soft-breaking’ terms remove some of aesthetic appeal
of supersymmetry, it enables techniques to be developed to facilitate the analysis of
interactions at energies where the supersymmetry is broken. The addition of the extra
mass terms must not destroy the renormalizability of the model. Before writing down a

left-right, supersymmetric Lagrangian, we will discuss the implications of left-right

symmetry.
2.3 Left-Right Symmetry

One of the unsolved problems of the standard model is understanding the origin of parity

violation in low-energy physics. An interesting approach' is to assume that the
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interaction Lagrangian is both left-right (L-R) symmetric but that this parity symmetry is
broken at low energies. This formulation produces all the effects of the SM, but as we
move up in energies, new effects associated with parity invariance of the Lagrangian are
observed. Another important reason to consider a L-R symmetric model is the question of

neutrino mass. We do not know whether the neutrino has mass or not.

The L-R symmetric model considered here is based on the gauge group SU(2). x SUQ2)r

x U(1)p-L. For the first generation leptons an quarks these doublets are:

oo =0 05 s 0=(3);

The L-R Symmetry can be broken in three steps:

i) Parity symmetry breaking the equality between g, and g,

ii) Breaks SU(2)Rr. This is chosen to break at the same scale as the parity symmetry.
iii) By the non-zero expectation of a Higgs bi-doublet.

This L-R symmetric model offers a refinement of the standard electroweak theory; most
notably it predicts a small mass for the neutrino. This symmetry will be considered in

conjunction with supersymmetry in the next section.
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2.4 Left-Right Supersymmetry

In this section a supersymmetric version of SU(2), x SU(2); x U(1)g is presented. The
fields are listed and the Lagrangian is written down. Only a very sketchy outline of the
fields and the symmetry breaking is given. For a more complete discussion see Francis

[13]. Table 1 is a summary of the fields, the quantum numbers and their names.

Table 1. Supersymmetry particle suite

Superfield Component Fields |Quantum Numbers |Name
SU(2) xSUQR)exU(1)g 1
Matter Fields
or u ) . L-h up quark
d,) =0 20 L-h down quark
OR u, 0 % ' R-h up quark
d. )= Ok R-h down quark
R
Lr (v, Y, 0 -1 L-h electron
e =L, L-h neutrino
L
LR (v, R-h electron
L ef) =L: 0 % -l R-h neutrino
R
or (i, A L-h up squark
\d ) =0, L-h down squark
L
OR (i, 0 % '/ R-h up squark
\d =0 R-h down squark
R
Lt v, ~ Y 0 -1 L-h up selectron
s-)=L. L-h down sneutrino
L
LR Vel ~ 2 0 -1 R-h up selectron
=)= L. R-h down sneutrino

Gauge Fields
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Table 1. Supersymmetry particle suite

Superfield Component Fields | Quantum Numbers |Name
SU(2) xSU(2)pxU(1)g..
W W W, W Triplet Singlet Singlet | Gauge boson
Wgr Wy W W: Singlet Triplet Singlet | Gauge boson
vV v Singlet Singlet Singlet Gauge boson
+. 9. Triplet Si inglet i
’lL lL : 'lL . 12 riplet Singlet Single Gaugino
Aq 5.0 Singlet Triplet Singlet | Gaugino
A A, Singlet Singlet Singlet | Gaugino
Higgs
o, 3 ﬂo ﬂj v, % 0 Higgs Boson
\g &
A, (Lo s ) 1 % 2 Higgs Boson
V2
o L.
L Y,
A, ( % o A ) o 1 2 Higgs Boson
o l -
L& "7Z%) .
o, (Ls s ) 10 -2 Higgs Boson
V2
— L
\ 27/,
Or (L5 & ) o 1 -2 Higgs Boson
s
\ 2o ) ®
3 (;n 3~) o 1 2 Higgsino
u.d ¢” - 3"’ »
=~ (1~ <. 1 0 -2 Higgsino
A, +5 & } 2424
\ & &),
P (1~ . o 1 =22 Higgsino
A, 55 3 ] gg
\ A° a N
= (1~ = ) “ % 0 Higgsino
S, 70 -
S
= (1 = o ) v Y% 0 Higgsino
r NN 5
LT 7/,
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The breaking of the L-R supersymmetry follows that of section 2.1.2 with the addition of

the SSBT (Soft supersymmetry breaking terms):

{0, ,$=0.&s5BT

(SUSY)-SU(2), xU(1), »UQ),, (2.3)

The resulting Lagrangian consists of five pieces: the gauge Lagrangian which contains
the kinetic and self interaction terms for the vector field and the Dirac Lagrangian for the
gaugino fields; the matter Lagrangian which contains the kinetic terms for the fermionic
and bosonic matter fields; the Yukawa Lagrangian which involves the self interactions of

the matter multiplets, the scalar potential and the soft-breaking Lagrangian.

The aim of this thesis is to develop the techniques to enable us to actually calculate
supersymmetric interactions. In order to be able to do this, we need to have a procedure
that permits us to write down the invanant amplitude for a process. The most natural way
of doing this is to have the Feynman rules for the process. In order to arrive at the
Feynman rules for a supersymmetric process we start with the interaction Lagrangian.
After the breaking of supersymmetry, we determine the mass states of the Lagrangian
that results from the mixing of the supersymmetric gauge particles. Armed with the
definitions of the mass states, the Lagrangian for a given interaction may be written in
terms of them, and the Feynman rules are read directly from the resulting expression.

This procedure is further detailed in the following section.

34



2.4.1 Mass Eigenstates of the L-R SUSY Model

Analogously to the mechanism in the electroweak standard model discussed in section
1.1.5, after the spontaneous breaking of supersymmetry, all the gauge bosons acquire
mass. Diagonalization of the mass matrix then yields the mass eigenstates of the bosons.
However in the breaking of supersymmetry in parallel to the rearrangement of the vector
fields after the breaking of the gauge symmetries, the gauginos interact with the Higgs
bosons and the higgsinos to produce new particles referred to as neutralinos and
charginos. The neutralinos and charginos are of interest because these are the states that
interact with the sleptons, squarks and leptons, quarks in the low energy production of

sleptons in the interaction:

ep — sleptons (2.4)

The physical neutralino states are determined by a rather convoluted procedure the
outline of which is given here. The Lagrangian for the light neutralinos is shown by

Francis' to be:
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) 1 ~
133:72' 8.8k, D},
1
(& +420)
. 1 ~
1}-33 3‘ 8.8r Kuq)gd

@ +48)

0 40 0 10
e a1 + e | Mg e
g +4g g +4g

+214,O°D) +h.c. 2.5)

. 1 ~
Ly = "’1(2 7‘5 8 ’Cu(D?u +

1 -~
+il‘27-'2-'guf..¢§4 -

The mass eigenstates are identified by finding and diagonalizing the mass matrix M"

defined by:

Ly, = —%(Q°)TM"Q° +h.c.

where (Q°)" = (- 148 ,-143,®?,.®3,) (2.6)

The mass matrix may be read directly off the Lagrangian and is in general a complex

symmetric matrix given by:

_ i { -
M, 0 -ﬁgLK-u J’z_ngu
4MRg|2/ + Mvglzl Jz—gvgkxu _ﬁgng’cd
2
8 4 &
M" = 2.7
1 2 K
L £s’_g§__ o Y
1
l —Jz—gvgkxd 2 O
ﬁgLKu g, — U

The diagonalizing procedure results in the physical neutralino states:
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Z? = M:I'Qg’ Gj = 1,..,4) (2.8)
whose masses are the positive square roots of:
M} =MM"M"M™ 2.9)

The values of M and M ,, are unknown and will be determined by assuming values for the
couplings and through variation of the higgsino mass parameter p, in the computer model
developed in chapter 3. The Feynman rules will be written in terms of these parameters.
The Feynman rules for the neutralino-lepton-siepton and the neutralino-quark-squark
interactions are required to calculate the cross section for the interaction represented by

equation 2.4 above, but first we determine the chargino mass states.

In a similar manner, the physical chargino mass states are determined. The Lagrangian for

the charged gaugino-higgsino mixing is:

i e q- . T+ 4= . T+ -
Ley = ﬁgRVRARlR +igeK, Py Ay +I8 K405 A,
+ g oK, By Ay +ig K By Ar + M AL ]
+ Moy + ud & +ud, 4
+h.c. (2.10)

The mass eigenstates are identified by finding and diagonalizing the mass matrix M°¢

defined by:



1 +
Ly = —E(V/*w’)M‘(Z:_) +h.c.
where y* = (— i ,—ilz,i‘,@*)
v =(—il; ~i2. 8, .8) @.11)

The mass matrix is read directly off the Lagrangian and is given by:

M, 0 0 J2M, cosd,
. 0 M, 0 V2M, cosd,
M= . .
\/EMW siné, \/2—M,,,sm€,r 0 -u
0 0 —H 0 (2.12)
where

gK, = \/EM,,, sind,
gK, = 2Mm, cosf.

Since M° is an asymmetric matrix, we require two matrices U and V to diagonalize the

elements of M ,. The diagonalizing procedure results in the physical chargino states
given by:

=Vl a =Uzpy (G o= 1,...4) (2.13)
whose masses are the positive square roots of:

2 c+ cy-1 _ c c+rr-1
M} =VM“ MV =UM MU (2.14)

The values of V, U and M, are unknown and will be determined by assuming values for
the gauge boson masses, the couplings and through variation of the higgsino mass

parameter y, in the computer model developed in chapter 3. The Feynman rules will be
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written in terms of these parameters. The Feynman rules for the chargino-lepton-slepton
and the chargino-quark-squark interactions are required to calculate the cross section for

the interaction represented by equation 2.4 above.

2.4.2 Derivation of the Feynman Rules

The neutralino-lepton-slepton rules have been defined by Francis"” and are listed in
Figure 5 as rules 18-26. The neutralino-quark-squark rules are determined in a similar
manner: The piece of the Lagrangian that determines this interaction is called L, defined

as:

i
= (gLﬂ.(L)-*-—g:;L o)u,‘—ﬁd ( /10 g3y )dL

T

+ (ggﬂw ) R‘%JZ(&!A:‘&' "-)dL
+ h2(@, foup +d, Body + Ui, +drdiid, )

+h2(

W, fiu +d, hady + T uy +d, gdl) 2.15)

The conversion to Neutralino mass states requires the conversion to four-component
notation and the recognition that weak interaction eigenstates can be represented in terms

of the mass eigenstates as follows:
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. A _ A
2 = (::] ; D: = (2:)
A, Ay, (2.16)

2P, = (M 77 + M, 70+ M, T + M TP,
WP, = (M50 + My 22 + My 70 + M, 20 )P,
P =P (ML +MLZ] + M5 + M, 77)
P = P M +MLZ + M 72 + MY
FoP, = (M 70 + MuZ2 + Mo + MU T2 )P,

PRy, =P (M) + M 73 + Mo 77 + ML)

L” 2d

Fop, = (M2 + Myz3 + My 3 + M 72 P, @2.17)

where M are defined in equation 2.9. Substituting equation 2.16 and 2.17 into the

4

interaction Lagrangian 2.15 permits the Feynman rules to be read directly. These rules are
graphically presented in figures 4 and 5. The next step is to derive the rules for the

chargino interactions.

The chargino-lepton-slepton rules have been defined by Francis" and are listed in figure
7 as rules 26-30. The chargino-quark-slepton rules are determined in a similar manner to

the neutralino rules. The piece of the Lagrangian that determines this interaction is called

L s defined as:
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Lo = {8, (Azu,d; - &7, d, + 27d @, - 2,7,
(Apupdy — A5 lipdy + And giy — And o, )
(B uad; + 8 wed; + 8doE; + 8, d,0;)

+ 2 upd; + 8, Tpd] + 8, d i, +¢;d u;)

+hf(5' d, ¢-l_‘.l.d +¢d d uk+¢d L4 )} (2.18)

The conversion to chargino mass states requires the conversion to four-component
notation and the recognition that weak interaction eigenstates can be represented in terms

of the mass eigenstates as follows:

= =(§2J . B =(§.’:) = 5(5.1‘)
R = Z— 3 L= Z_- s R Z.-
L £ L (2.19)
WP, =(UpZ+UnZs +Us s + Us 2P,
WP, =(ViZe +VaZs + Vo +VaZi )P,
P = P(Vo T Voo + Va5 +VaZo)
P = PULZe +UnZs +UnZi +UnZs)
Wi Py = (UnZe +UnZs +UnZi +UnZ0 )P
PW, = P(VoZ +Vads +Vads +VaZ.)
WePo =(VoZ + Vi + VT + VT P 2.20)
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where ¥; and U; are defined in equation 2.14. Substituting equation 2.19 and 2.20 into

the interaction Lagrangian 2.18 permits the Feynman rules to be read directly. These rules

are graphically represented in figures 6 and 7.

2.4.3 The Feynman Rules

The Lagrangian presented by equation 2.15 may be translated into the neutralino states by
the application of the equations 2.16 and 2.17. The Feynman rules for neutralino
interactions may be read directly off the transformed Lagrangian. The transformed
Lagrangian is presented here as a collection of Feynman diagrams with the corresponding
Feynman rules written directly underneath each diagram. Figures 4 and 5 each present 13
diagrams numbered sequentially from 1 to 26. These numbers will employed as an index

into the list of rules in the calculator developed in chapter 3.

The Lagrangian presented by equation 2.18 may be translated into the chargino states by
the application of the equations 2.19 and 2.20. The Feynman rules for chargino
interactions may be read directly off the transformed Lagrangian. The transformed
Lagrangian is presented here as a collection of Feynman diagrams with the corresponding
Feynman rules written directly underneath each diagram. Figures 6 and 7 each present 15
diagrams numbered sequentially from 1 to 30. These numbers will be used as an index

into the chargino rules by the calculator presented in chapter 3.
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FIG. 4. Feynman rules Neutralino -> Quark Squark (1-13)
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FIG. 5. Feynman rules Neutralino -> Quark Squark (14-26)
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FIG. 6. Feynman rules Chargino -> Quark Squark (1-13)

45



u Xi
16 17 3
- *
mUS S
18 19
P . P *x
o
WU N & e Y
+
20
22
24
26
28

FIG. 7. Feynman rules Chargino -> Quark Squark (14-26) and Chargino -> Lepton
Slepton (26-30)
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2.5 Calculation of ep -> slepton Cross Sections

As discussed in chapter 1, the key part of a calculation of a scattering cross section, is
determining an expression for the square of the invariant amplitude M. The reaction ep ->
sleptons can be broken into two portions - the first dealing with neutralino exchange; the
second with chargino exchange.

2.5.1 Neutralino Contribution to Invariant Amplitude

The neutralino portion of M consists of contributions from 8 separate Feynman diagrams

so that amplitude may be written:

i=8
MNeu!ralilw = Mi
= 2:21)

The 8 diagrams correspond to the permutations of electrons interacting with either up or
down quarks to produce the sleptons and squarks of different handedness. The diagrams

are:

e eL e R
—>|_ —_—T— - —'»T- —_ - -
| ~ Mae .
M= Y 0 2- Y e
N
—u_>l— —uL— -_— -;—bl— -— ui -—
o
[ 'ZL € R
—_— - - —_ - - -
M3= K s 1%
d | q. d : PN
—_— -~ —_— - - -

FIG. 8. Neutralino contribution to ep->sleptons invariant amplitude
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FIG. 9. Neutralino contribution to ep->sleptons invariant amplitude (cont’d)

Treating the neutralino as a standard fermion propagator, the invariant amplitude for each
of the contributions to the neutralino invariant amplitude can be written down in terms of

the Feynman rules acting at each of the vertices of the above diagrams:

g +m,
M, = {J_(gLMl+g’M;’)PR+_M4P }lq_’)
q —m
1 ( g ih§
——=\ &M+ T M, )P +_M3P}"
{ 22\ 3 2 (2.22)
i ih? i(q+m,)
M, = {"\/—gM.zP +5 2 M"'P}qz—mf
{—7 'MP+.hQMP}u
- My i3
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ig+m,)

i h
M, =e{—2ﬁ(gL +g'M,2)P +—2—'M‘4P }—mz

q* —m;
g Q

L ( )
e e M. -
{zﬁg‘ o=y Ma P+2M“P}d

i ih? i(g+m,)
M J—ngZP += 2 M14P 2 2

q —m
> M. P + QM P d
5/ g £2 2 3

E 4

-7 d

1(q+m )

—"lx

] ih;
M {2J'_(gLMll+g’M12)P +—2_M14P}q- 2

hQ

7 »
{-mg'MiZPR +7Mi3PL}u

3 ih? ilg+m,
M6=e{ ’ g'M, P, +l_LMi4PL} (q’ 2)

22 2 2
Q

q —m
-—1——( M +g—,M )P +h M P,
Zﬁ gL il 3 2 i3

X

5
ql_m-

X

ih? } i(q + mx)

i
M, = e{m—(& M, +g'M,)P, + - M.P,
O _o'M.P +££M P, ¥
Gﬁg 24 R 2 adL

M, M, P, 'hd M, P, ____z(q+m)
= ! +—
e , g i2 2 i$ q _mx

—1-—( M g’M)P-i-h"QMP d
ZﬁgL T3 > s L p

49

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



Hand calculation of the expectation of the square of the magnitude of the full expression
for M is a daunting task. This type of calculation is very well suited to being performed
using an algebraic program language such as Mathematica®. After squaring M and

calculating the expectation via application of trace theorems and other simplifications,

(IMi2 ) is simply written here for comparison with later program output:

-mxmzj (Pe . Pu)

(gLMil '*'g'Miz)z

(
()~ e )QIM.-Z|=(gLM,.,+-§—’M,.2)2( 2 (e 2)
(
<

(2.30)

The equations for each of the invariant amplitudes listed above are actually expressed in
shorthand. For example the portion of the second component Af,, written in terms of the

ith neutralino, is fully expressed:
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2 2
49 m .o me
<|Mz|2>=7(g’)4 IMur(;;—_—;zo—J +|Mn|4[qz—_;xz;-] +

Xy

4 m,;’ i 4 m," :
M| pr— +|M,,] e P.-P)

Xs

(2.31)

where M are the elements of the diagonalizing matrix of eigenvectors and m . are the

positive square roots of the eigenvalues defined in equation 2.9. Some word on the
algebra involved in arriving at the full expression for the expectation of the square of the
invariant amplitude is in order. The trace theorems for gamma matrices, the spinor
completeness relationships and the projection operator identities have been used

extensively. The projection operator identities are summarized as follows:

P,=1+ }'5

P, =1-%

PP, = 2P,

P P, =2P,

PP, =P,Py=0

PrgPr =P qP, =0

PrgP, =2qP,

P gP,=2qP, (2.32)

In addition, some order of magnitude approximations have been made; these are:
e ~he =h =mm, ~0 (2.33)

e q

A similar approach is used to arrive at expressions for the chargino invariant amplitude..
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2.5.2 Chargino Contribution to Invariant Amplitude

The chargino portion of M also consists of contributions from 8 separate Feynman

diagrams so that amplitude may be written:

= (2.34)

The 8 diagrams correspond to the permutations of electrons interacting with either up or

down quarks to produce the sleptons and squarks of different handedness. The diagrams

are:
e v e V.
—_— = — —_— - -
| ~ . Ma= | e
Ml— xl 2~ Y Xl-
u l R u l 'HL
— . - — — e . — — —
e ’;R [ '\‘;R
—_—— - - — —_—— - - —
l ~o 4+ M= I o 4+
M3— ‘ Xi 4 A Xi
| - | .
u I 'HR u [ 'H[_

FIG. 10 Chargino contribution to ep->sleptons invariant amplitude
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FIG. 11. Neutralino contribution to ep->sleptons invariant amplitude (cont’d)

Treating the chargino as a standard fermion propagator, the invariant amplitude for each
of the contributions to the neutralino invariant amplitude can be written down in terms of

the Feynman rules acting at each of the vertices of the above diagrams:

1 . i\g+m, 1 .
M, =e{—l—g'VnPL} ‘Eqv 2){—5gRUi2PR}u

o (2.35)
1 . iN\g+m_)[1 1
M, =e{—ig'Vn PL}'(qT——_z')'{Eh:?UmPR +5thUi4PR}u
2 q - —m; (2.36)
z(q+mx) 1 .
M3=e{—5gRVl"PR} 7 _ 2{—'2— LUnPL}'"
s (2.37)
i(q+ x) 1 .
M =e{ gRVuPR} 2 2 {—thUuPL}“
! 2 q —m; |2 (2.38)
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1 1 z(q+m ){
M, =el=h'V, Ly, P, p——=2d_ L }u
{2 © I3P +2hd i4 }q.._ 2gLU1|P

m; (2.39)
1 i 1 1
M, = { hEVP, +~hiV P, }i"—){ eU., PL+—h,,QU.4PL}u
2 277 q 2 274
(2.40)
1 L L (q ) l Q
M,=e Zh,, VP, +5th,,P EhMU P, +3hdU,.4PR
9 (2.41)
1 1 \g +m,_ [
M, {zhanP +2hLVP}_(Z_2){—§gRUi2PR}u
q°- —m; (2.42)

After squaring M and calculating the expectation via application of trace theorems, (IMI2 )

is simply written here for comparison with later program output:

(et e

(166 )= 2 Wl @ il (2] (222

(90.) = (0.5 ) = () = 0 )= (") = () < 0 @.43)

illz(gk

<,Mxl2> ~2(g, W,

02

)lu;

where U, and V; are the elements of the diagonalizing matrices of eigenvectors and

Mr‘, are the positive square roots of the eigenvalues defined in equation 2.14. We now

proceed with writing down the expression for the cross section.
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2.5.3 Supersymmetric Cross Section

The calculation for the cross section is performed in the centre of mass frame. Figure 12
is a graphical representation of the incoming and outgoing particles defining the centre of

mass scattering angle.

FIG. 12. The reaction 1+2->3+4 in the centre-of-mass frame

The expression for the cross section is shown by De Wit and Smith® to be:

do L1 |A(sm,m
dcos B, T 32rxs l(sml, )|M|'

(2.44)

where A(s, m,.z,mf.) is defined in equation 1.42. Since we are really interested in

calculating the cross section for ep -> sleptons and because M is an expression for eq ->
sleptons, we must integrate over an empirical distribution for the quarks known as quark
structure functions. The relationship between the two cross sections is expressed as

follows:
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do do _——
—2Z—(ep > &7) = [dxF(x, )———(eq > &)
dcos .,

dcos Oy,

where F(x,q) are the quark structure functions'’:

F(x—- u}_178x-05(1 151)".5
F{x = '_;: ,d) — 0.67x'°'6(1 _ x,_ﬂ)ts

S

, and

a6 _ 1 1 |Memmimi)
= - 2 2 M-
dcosb., 327msx l(s‘x,m, ,mq)

(2.45)

(2.46)

(2.47)

takes into consideration the requirement that the total energy, s be integrated over the

quark spatial distributions. In this expression, we have defined the incoming particles as

the electron and quark and outgoing the particles as the slepton and squark. In order to

perform the integration specified in 2.45, we must express the invariant amplitude in

terms of the integration variable x. This is achieved by recognizing that the momentum

transferred is the difference between the incoming and outgoing momenta which in the

centre-of-mass frame, is written:

t =g =2 plplcos Oy — 2 (' +m2 Y+ (p* + m2 )+ m} +m}

(2.48)

where the magnitudes of the momenta are expressed in terms of the product sx:
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l 2
<L o)

L 2( 2 >
Ip'l = m A° (xs, m, ,mq)

(2.49)

Inserting the expression for the transferred momentum into the invariant amplitude for the
process, results in an expression that can be numerically integrated. The form of this
equation can be readily written down by contracting the many constant terms in the

invariant amplitude into two constants:

<IMP>=CI(M~&>(Z—S)(,7;,5)Z*C( s 5 )(, :y

(2.50)
The complete expression for the differential cross section is thus:
do L (A€ me,m ) )(xs ( J *]
= dxF 1
dcosb,, 327 "- (x, q) /l(sx )iC]( o8 j
]
sx,m2,m’
sl fE w2 i)
(’ My ) (2.51)

This expression may be numerically integrated over the range of cosfcy from -1 to 1 and
the resulting differential cross section plotted. It is valid for both the neutralino and the
chargino cross sections with the appropriate expectation of the square of the invariant
amplitude. Since it is desirable to parametrically vary the total energy and other constants
in this expression, the calculation is best performed by computer. The implementation of
an algebraic calculator and numerical integrator to solve this expression is the subject of

chapter 3.
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CHAPTER 3: SUSY CROSS SECTION CALCULATOR

As noted in chapters 1 and 2, the calculation of supersymmetric interactions are long,
tedious and thus subject to errors at many stages. For this reason alone, it is sensible to
implement the calculations in a computer program. Using a symbolic programming
language provides the added benefit of making the program easier to write and
understand since many of the symbols employed in the calculations represent complex
algebraic entities such as Dirac gamma matrices or iterated sums that are more difficult to
implement in standard languages such as Fortran or C. There is a trade off between
simplicity and speed when comparing symbolic program and standard program
performance. The approach adopted in this thesis is compromise between generality and
speed within the confines of a symbolic language. Compromises are discussed in the

sections describing the detailed design as the need arises.

The SUSY calculator is a program implemented in the symbolic programming language
Mathematica®. The calculator performs the algebraic operations to determine the
invariant amplitudes for the neutralino and chargino exchanges in the interaction
ep — sleptons based on the Feynman rules derived in chapter 2. The final output of the
calculator is plots of the differential cross sections for the interaction. An overview of

Mathematica® and the calculator design is detailed in the following sections.
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3.1 Description of Mathematica®

Mathematica® is a powerful programming language as well as an interactive
mathematical workshop. Mathematica® performs numerical, symbolic and graphical
computation all of which are employed in the SUSY calculator. The calculator employs
custom programs called packages that are stored in appropriately named files with a .m
extension. These packages must be loaded in order to access the functions they contain.
The SUSY calculator utilizes many features of the programming language; some of the
design features are the result of the peculiarities of Mathematica®. Mathematica®
references'® give excellent examples of using Mathematica®, but some detail of some the

languages features are given here because of their effect on the design.
3.1.1 Symbolic Capabilities

The symbolic capability of Mathematica® is used extensively in determining the
expression for the invariant amplitude of an interaction. The algebraic manipulations are
fairly straightforward and easy to follow with one or two exceptions - one of them being
that it is necessary to deal with what Mathematica® terms the standard form.
Mathematica® always stores and displays output in the standard form which is essentially

alphabetical order. For example if the expression:
In[1]:=ba G.1)

is entered into Mathematica® (a space represents multiplication), the output will read:
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Out[1]=ab. (3.2)

This creates a problem when a and b represent entities which don’t commute. There are

several ways around this idiosyncratic feature. The standard approach is to employ the

non-commutative operator “..” or the matrix multiplication operator “.”, but with either

of theses approaches, long expressions cannot be simplified until the symbols are defined.
This is not surprising since Mathematica® has no way of “knowing” if a symbol
represents a scalar, a vector or a matrix. For computational efficiency, it is not desirable
to define matrices until as late as possible (or not at all) since repeated matrix
multiplication is costly in terms of performance. Sophisticated techniques can be
employed to change the Mathematica® output form's, but these are not necessary if the
program employs specific symbol labeling techniques that work in concert with the
standard output to preserve the order of multiplication. This technique is further explored

in the detailed design section.

Another obtuse but necessary feature of Mathematica® involves the use of logic tests.
Consider the following dialogue from a Mathematica® session:

In[2]:=2==2

Out[2]=True

In[3]:=3=2

Out[3]=False

In{4]:=a=—a 3.3)
Out[4]=True

In[4]:=a==b

Out{4]=a=b

We see that while Mathematica® can determine that the statement a==a is True, it cannot
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determine that a=b is False. The Mathematica® test a==b returns the desired result
since it tests the structure of the expression as opposed to mathematical equality. Since it
is desirable to test for equality, the SUSY calculator uses the unusual If construction

provided by Mathematica®:
[f[statement, True body, False body, Neither body] (3.4)

When performing conditional tests against undefined symbols as is the case that is
required to access the list of Feynman rules, it is necessary to execute either the True
body or the Neither body since the False body can only be reached be if numbers are

tested. This feature is employed in the package susyrule.m detailed in section 3.2.2.5.
3.1.2 Replacement Rules

Replacement rules are a powerful feature of Mathematica® that permit, among other
things, identities to be implemented in an efficient manner. Replacement rules are used
frequently in the calculator to avoid the overhead of lengthy matrix calculations. For

example the matrix operation:
A=P,P, =([+r5)([+y5), 3.5)

can be calculated by brute force:
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1 000][00T10 10000010
0100|0001 0100/ /0001
A={0010+1000"0010+1ooo
0001|0100 0001|0100

2 02 0

020 2

12 0 2 0 (3:6)
020 2

=2PR

Alternatively, the same equation can be much more efficiently implemented in

Mathematica® using replacement rules:
A= Py* P, /.{P,*P,—>2%P,} 3.7

where /. is the Mathematica® replacement operator which is read as given that. In
English, the above expression reads A equals Py times Py given that P, times Py is
replaced with 2 times P; . In this expression, no matrix muitiplication is performed and
indeed Py is not even defined. Replacement rules permit symbols to be carried through a
lengthy calculation and only converted into a matrix or indexed sum when necessary.
This ensures that intermediate program output is readable and that unnecessary
calculations are kept to a minimum. This approach does however represent a trade-off

between generality and speed and complexity of the code.
3.2 Calculator Design

In order to assist in the ability for the reader to understand the file printouts of the
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Mathematica® packages included in Appendix A, the high-level design description and
execution flow is given. This is followed by a detailed design of each of the packages.

Packages are written in the style recommended by the developers of Mathematica®"".

3.2.1 Design Overview

The SUSY calculator consists of nine Mathematica® packages. These are called
susycalc.m, susycons.m, susyamp.m, susykine.m susyexp.m, susyrule.m, susymass.m
cfr.m and nfr.m. The names are based upon the unfortunate, eight character limitation of
the MS-DOS operating system only for the sake of portability. Figure 13 is a pictorial

representation of the packages making up the calculator.

susycalc.m

susykine.m

susycons.m susyamp.m

susyexp.m susyrule.m susymass.m

cfrm nfr.m

FIG. 13. Pictorial representation of the packages comprising the SUSY calculator

The arrows between the rectangles represent the calling of functions contained in the

packages. The called functions are contained in packages represented by the
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lower of two rectangles joined by a double-headed arrow. The functions are called from
within the packages represented by the upper rectangles, and the result is returned directly
to that package before further instructions are executed. The main package is susycalc.m.
It loads all the other packages and calls functions from the indicated packages in the
process of calculating the cross sections. The calculator output consists of a graphical
object that is a plot of the differential cross section as well as algebraic expressions of the

invariant amplitude and its expectation value.
3.2.2 Detailed Design

This section supplements the source code listings provided in Appendix A. Every
statement in the program is not explained; only those that are germane to understanding
the essence of how the program works are discussed in detail. More information on the
built-in functions supplied with Mathematica® can be found in the appropriate sections in
Mathematica 2™ Edition. It is recommended that a copy of this text be handy when

reading this section or the program listings in Appendix A.
3.2.2.1 susycalc.m

This is the main package of the SUSY calculator. It loads the three topmost packages and
then calls functions from them as the calculation progresses. Figure 14 presents the
execution flow of this package. After loading the packages, a call is made to the function
CrossSection[] found in the package susyamp.m. The function call passes the argument

Neutralino or Chargino depending on the process to be calculated. The function returns a
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list of the expectation of the square of each of the amplitudes contributing to the cross
section. Details of these calculations are provided in section 3.2.2.2 describing the

package susyamp.m
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[ e | u |[Neutralino | sel | sul
Load packages e | u [Neutralino | ser | sur
nfr.m & cfr.m e | d |Neutralino | sel | sdl
susyrule.m -
) susysimp.m e | d |Neutralino | ser | sdr
Load packages (] e | u |Neutralino | sel | sur
;:Sy:";&: e | u |Neutralino | ser | sul
su:yykiae, m Make %’Lg‘";em list e [ d |Neutralino [ sel | sdr
e | d {Neutralino | ser | sdl
i i . e | u | Chargino- | snl | sdr
Make table of expectation of [ i e | u | Chargino- | snl | sdl
square of invariant amplitudes Mabke table of invariant e [ u [Chargino+ | snr [ sdi
amplitudes e | u | Chargino+ | sor | sdr
e | u | Chargino+ | snl | sdl
e | u | Chargino+ | sni | sdr
Calculate transferred ,, m . e | u | Chargino- | snr | sd!
momentum Create table of expectation e | u | Chargino- | snr | sdr
t of square of invariant
' amplitude Mexp
Apply rule to express Msusy in '
terms of t MassStates[ ]
M : . .
Expresss expectation value in
] terms of the mass states
SN A pplyConst] [N Msusy
Express Mt in terms of
numerical constants
Ms +
] Use Mathematic Nintegrate( |

Generate table of symbolic to integrate between limits for

g ach value
cross section in terms of Mt e p of cos(6)
and quark structure functions iffxsec

xsecsymlist 1

]

Sum table elements and muliply

by kinematics factor to obtain Use Mathematica LislPIat[_ ]
cross section integrand to plot differential cross section
xsec

[

Calculate integration limits
and generate a list of cos(6)
values between -1 and |

FIG. 14.SUSY calculator execution flow

The next step is a call to the function kinematics[] found in the package susykine.m to
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determine the value of the transferred momentum t defined in equation 2.48. We then

apply the rule which replaces the symbol ¢* in the expectation of the invariant amplitude
with the expression for t. The function ApplyConst[] found in susycons.m applies the

rules converting the mass symbols and other symbols into numerical values.

The final step prior to integration is to make a table corresponding to the product of each
of the eight expectation values of the invariant amplitude and its respective quark
structure function (equation. 2.46); sum these together and multiply by the factors
defining the kinematics. This results in the integrand of the expression representing the
differential cross section expressed by equation 2.51. The differential cross section is
calculated using the Mathematica® supplied function that performs numerical
integration, Nintegrate[]. This is implemented in the following complex expression that
requires some explanation:

diffxsec = Table[NIntegrate[xsec/. {Cos[thetacm] —» costheta[[i]]}, {x, [ntLimit,1}], 38
{i, Length[costheta]}]; (3.8)

The arguments of the NIntegrate[] function are enclosed in square brackets. These
arguments state that the expression for the integrand of the differential cross section,
xsec, with the symbol Cos[thetacm] (t is expressed in terms of this angle - see equation
2.48) replaced by the elements of costheta[i] be integrated from IntLimit to 1. This is all
embedded in the Mathematica Table[] function which will create a list consisting of the
integration result for each of the elements of the list costheta[i]. This list varies

Cos[thetacm] from -1.0 to 1.0 in variable increments. This expression shows the

67



power of the Mathematica® programming language in which one expression replaces
what, in most programming languages, would require a while or a for loop with attendant
loop counters and tests. The resulting list of integration results is plotted against the
values of Cos[thetacm]. Example plots are presented in section 3.3. Before presenting
details of the program output, we will discuss the details of each of the packages invoked

in the process of calculating the cross section.
3.2.2.2 susyamp.m

Susyamp.m contains the function CrossSection[] which rcturns a list of the expectation of
the square of the amplitude. It generates this list by first creating a list of eight arguments
of the function call VertexFactor[]. These arguments are the input, exchange and output
particles of either of the eight Feynman diagrams comprising the neutralino contribution
to the invariant amplitude listed in figure 11 or the chargino invariant amplitude listed in
figure 12. The function VertexFactor[] resides in the package susyrule.m. The function
call is embedded in the Mathematica Table[] function and returns a table listing each of

the eight algebraic expressions of the corresponding invariant amplitudes.

The next step determines the expectation of the square of the amplitude. This is achieved
by the function call Simp[] which resides in the package susysimp.m. This is followed by
a call to either NMassM[] for the Neutralino case or ChMassM[] which both reside in the
package susymass.m. The argument passed in this function call is the higgsino mass

parameter discussed in section 2.4.1. These functions return the neutralino or chargino
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mass matrices and mass vectors corresponding to the diagonalization of the matrices
represented by equations 2.9 and 2.15. The final step is to apply the mass states to the
symbolic expectation Mexp by a call to the function AppMStates[] which also resides in
the package susymass.m The details of this final calculation are provided in the

susymass.m section below.
3.2.2.3 susycons.m

The package susycons.m is used to replace algebraic symbols with numerical values so
that the cross section can be calculated. The function ApplyConst[] replaces each symbol
with its numerical value in a straightforward and easy to follow manner. In some cases
this value is well known as is the case of the electron mass and the weak mixing angle,
but in other cases it may be desirable to vary the parameter in a parametric manner. It is
difficult to foresee, at this time exactly which parameters are desirable to vary
automatically and over what range. The total energy symbol s represents the square of the

collider energy making the currently available collider energy an obvious candidate for

variation. Frank, Kalman and Saif'® have performed calculations for Js =314 GeV
(HERA), 410 GeV (HERA upgrade) and 1400 GeV (future LEP/LHC collider). Since the
cross section varies in a non-trivial manner with this parameter, it is included as an
automatically varied parameter. If in the future it is desirable to vary any other parameter

in a similar manner, the collider energy variation can be used as a prototype.
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3.2.2.4 susykine.m

The package susykine.m contains the kinematics of the interaction. It provides two
functions KalKin{] and Lam[]. The function KalKin[] simply returns the transferred
momentum in terms of momenta of the incoming and outgoing particles. It is a
straightforward implementation of equation 2.48. The function Lam[] 1is an

implementation of equation 1.42. This function is also called directly from susycalc.m
3.2.2.5 susyrule.m

The package susyrule.m performs the key algebraic manipulations required to arrive at
an expression for the invariant amplitude. The package consists of two functions
VertexFactor{] and ExpandVF[]. Each of these functions are further detailed below. The
first step is to load the Feynman rules for neutralino (nfrm) and chargino (cfr.m)
interactions. These files contain indexed lists whose numbering cormresponds to the

Feynman rules presented in figures 4 and 5 and figures 6 and 7 respectively.

The function VertexFactor[] is implemented using the Mathematica® If construction
discussed in section 3.1.1. Several If statements are nested. Successful termination of
these nested tests results when the input arguments of the function call match the
combination of particles needed to point to the correct indices in the list of Feynman

rules.

Each set of five correct input arguments will result in four separate Feynman rules being
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selected. Two of these will reside on the left-hand side of the fermion propagator, and
two will reside on the right. Since each of these terms contains a projection operator that
does not commute with the Dirac slash component of the fermion propagator, steps are
taken to avoid the problems with Mathematica Standard Form discussed in section 3.1.1.
This is achieved by suffixing the projection operators with the letter a for the operators on
the left-hand side of the propagator and the letter z for the operators on the right-hand
side. This ensures that after expanding and simplifying expressions through successive
Mathematica® operations, the order of multiplication can still be discerned. Once the
four Feynman rule components have been selected, the fermion propagator is introduced
and the expression is simplified. Since this operation is common to all components of the

invariant amplitude, it is carried out in a separate function ExpandVF([].

The function ExpandVF([] employs the Mathematica® function Expand[]. This powerful
function carries out the multiplication of the sum of the two pairs of Feynman rules and
the fermion propagator. The resulting expression is simplified by the application of the
replacement rules for the projection operator identities shown in equations 2.32 and 3.7.
The simplified expression is returned as the result of the function call. Note that in
susyamp.m this function call is embedded in a table command causing all eight of the
neutralino or chargino components to be generated. This function can also be called

directly by the user when it is desirable to generate a single component of an interaction.
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3.2.2.6 susyexp.m

The package susysimp.m calculates the expectation of the square of the invariant
amplitude. It contains the function Simp{]. This function first simply squares and expands
the amplitude. Note that the only hermitian conjugate symbol noted is for the Dirac slash
matrix. The other terms can be carried as squares until it comes time to apply rules
defining individual mass terms. This is carried out later in the package susycnst.m. The
expression is simplified by further application of projection operator identities. Note that
conjugation ensures that the Dirac slash matrix does not come in between the projection

operators, so the precautions taken in ExpandVF[] are not required.

The expectation is calculated by application of trace theorems and the spinor
completeness relations implemented as replacement rules. No matrix calculations are
required which greatly improves performance. There is however, a penalty paid in
generality. If matrix equations are used, the result is always right; where symbols are
used, the rules must always be tailored for the symbols. Symbolic calculators developed
for calculations in the standard model” *°use the matrix equations for simplifying
expressions and tend to be very slow. Resolution of this tradeoff could be the subject of
future research. Further simplification is achieved by order of magnitude simplification.
These simplifications are made here in keeping with the assumptions made by Kalman®'.
[t must be noted that it may be desirable to parametrically vary the supersymmetric
coupling constants in the future. This can be easily implemented using the construction

employed in susyplot.m The resulting expression for the expectation of the square of the
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invariant amplitude is returned in response to the function call.
3.2.2.7 susymass.m

This package contains four functions: NMassM[], ChMassM[], GetEV[] and

AppMStates[]. These functions implement the techniques presented in section 2.4.1. The
function NMassM[] generates the matrix M" presented in equation 2.7 while

ChMassM[] generates the matrix M° presented in equation 2.12. These functions both
terminate with a call to the function GetEV[] which uses the Mathematica® functions
Eigenvalues{] and Eigenvectors[] to diagonalize the neutralino or chargino mass matrices.
This function returns the matrices of eigenvectors and the eigenvalues. Since both
function NMassM[] and ChMassM[] are invoked with the higgsino mass parameter, u,
they can be used to plot the variation of the neutralino and chargino masses with this

parameter. Plots are presented in sections 3.3.1 and 3.3.6 below.

The function AppMStates[] implements the techniques discussed in section 2. Each of the
Feynman rules listed in figures 4 through 7 are written in terms of the neutralino and
chargino mass states. These equations require summing over the relevant indices of the
matrix solutions to equations 2.9 and 2.14. This summing of indices is implemented as a

replacement rule exchanging a symbol for a summed table. For example, it replaces the

2
mZ

(¢ ~m)

matrix components and masses:

product of symbols M, with the sum of the indexed products of neutralino
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,
m? m> m?’ m?

Mll (qz—mi) +M21(qz_mi) +M3| (qz_mi) -l-A/{41 ; (3.9)

It makes a similar replacement of the chargino symbols.

3.2.2.8 cfrm

This package contains the list of the chargino Feynman rules presented in figures 6 and 7
in Mathematica® symbolic notation. The rules are accessed by reference to the

numbering presented in the figures. For example, typing ChargFeynRule[[1]] returns:
((-I/2)*HoldForm[gL*Uil1Conj]*PLz (3.10)

which is the Mathematica® representation of the first rule of figure 6. Feynman rules can
be readily added to this list for easy access by the package susyrule.m for the calculation

of other interactions.

3.2.2.9 nfr.m

This package contains the list of the neutralino Feynman rules presented in figures 4 and
5 in Mathematica® symbolic notation. The rules are accessed by reference to the

numbering presented in the figures. For example, typing NeutFeynRule[[5]] returns:
((-7/6)*HoldForm[gp*Mi2]*PRz (3.11)

which is the Mathematica® representation of the fifth rule of figure 4.
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3.3 Program Output

Key parts of the actual output from the Mathematica® sessions used to demonstrate the

program are presented here.

3.3.1 Neutralino Masses

In this section of the neutralino masses versus the higgsino mass parameter is presented.
Figure 15 is a plot of the neutralino mass states calculated by the package susymass.m as
the mass parameter is varied. This plot was generated by the package plotmass.m. This
package is not a part of the SUSY calculator but is included in Appendix A to provide the
facility for investigating the mass spectrum as the mass parameters of the L-R

supersymmetric model are varied.
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FIG. 15 Neutralino mass states
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Figure 15 has been generated for the case where M;=300 GeV, M;=50Gev, M,=91Gev

tan6,=1.6 and g = g, = g, - These values are used for all sample calculations involving
neutralino interactions presented in this thesis. The four curves in figure 15 are: 7’;

dotted, 7 ; light solid, 73 ; dashed, 7. ; heavy solid.
3.3.2 Chargino Masses

In this section of the chargino masses versus the higgsino mass parameter is presented.
Figure 16 is a plot of the chargino mass states calculated by the package susymass.m as

the mass parameter is varied. This plot was also generated by the package plotmass.m.
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FIG. 16 Chargino mass states

Figure 16 has been generated for the case where Mg=300 GeV, M, =50Gev, M, =80Gev

and tan6,=1.6. These values are used for all sample calculations involving chargino
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interactions presented in this thesis. The four curves in figure 16 are: 7" ; dotted, z;";

light solid, z,"; dashed, z*; heavy solid.

3.3.3 Solution of Electron-Proton->Selectron-Squark Cross Section

In this section the results of a sample e p — €§.X cross section calculation, based on
neutralino exchange, are presented. The key elements of this calculation are: the symbolic
representation of expectation of the invariant amplitude squared; the mass states; the
presentation of the expectation value in terms of the neutralino mass states and finally, a
plot of the differential cross section. The cross section is calculated for the same mass

parameters presented in section 3.3.1 with the higgsino mass parameter set to zero and

Js =314. GeV (HERA). Rather than listing all of the Mathematica® output here, key
portions are recreated here for comparison with equations presented in chapter 2. The
expectation of the square of the invariant amplitude has eight components, and the second
component, because it is relatively simple, is recreated here:
mf23:=

Mexp [ [2]]
Outf2]=

4 4 2
49 gp Mi2 mx Pe . Pu

2 (-mx + q ) (3.1 2)
The above expression may be compared with the second component of equation 2.30

repeated here for ease of reference:
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2\ 49, s
> = —{(g ) IMiz

(228 (;I—"{——)(P -P) (.13)

m:
Application of the rules replacing the symbols found in this expression with the
components of the diagonalizing matrix and the mass eigenstates results in the following
expression:
f16]:=

Mexpsusy[[2]]

Out{16]=

4
178475. gp Pe . Pu

+
2 2
(-12251.6 + q )
4
1779.65 gp Pe . Pu

+
2 2
(-3720.93 + q )

4
181.7 gp Pe . Pu
+

2 2
(-932.467 + q )
-48 4
1.33769 10 gp Pe . Pu

-14 2 2
(-8.81853 10 + q)
(3.14)

where the mass eigenstates are:
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hf7]:=
Mchi
Cutf7]=

0, 30.5363, 60.9994, 110.687
( ‘ . } 3.15)

As indicated in equations 2.50 and 2.51, this expression for the expectation may be
expressed in terms of the transferred momentum and numerical values and integrated.
The resulting differential cross section for the sum of all eight components of the

expectation of the square of the invariant amplitude is calculated and plotted in figure 17.

: /
E /

g st
3 [ /
[=} [
X 4
c. g /
2: /
5/
1-
ok
-1 -0.5 0 6.5 1
cos 0

FIG. 17 Differential cross section e¢”p — €3 X for Js =314 GeV

3.3.4 Solution of Electron-Proton->Sneutrino-Squark Cross Section

In this section the results of a sample e p — VX cross section calculation, based on
chargino exchange, are presented. The cross section is calculated for the same mass

parameters presented in section 3.3.2 with the higgsino mass parameter set to zero and
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Js =314. Gev (HERA). Rather than listing all of the Mathematica® output here, key

portions are listed for comparison with equations presented in chapter 3.

mf22}:=
Mexp[[1]]
Out[22}=
2 2 2 2 2
2 gL gR q Ui2Conj VilConj Pe . Pu
2 2 2
(mx + q) (3.16)

The above expression may be compared with the second component of equation 2.43

repeated here for ease of reference:

-

<|M,|2> = 2(gL)2

Va

(e al (L] (202) a1

Application of the rules replacing the symbols found in this expression with the

components of the diagonalizing matrix and the mass eigenstates results in the following

expression:
mf24]:=
Mexpsusyl[[1]]
Out[24]=
2 2 2
0.0193026 gL gR q Pe . Pu
+
2 2
(-103599. + q )
2 2 2
0.167147 gL gR q Pe . Pu
+

2 2
(-10915.5 + q )
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2 2 2
0.00112061 gL gR q Pe . Pu

+
2 2
(-3585.06 + q )
2 2 2
0. gb gR gq Pe . Pu
2 2
(0. + q )
(3.18)
where the mass eigenstates:
mf23]:=
Mchi=MStates[[3]]
Outf23]=
{0., 59.8754, 104.477, 321.869} (3.19)

have been used. As indicated in equations 2.50 and 2.51, the expression for the
expectation may be expressed in terms of the transferred momentum and numerical
values and integrated. The resulting differential cross section for the sum of all eight

components of the expectation of the square of the invariant amplitude is calculated and

plotted in figure 18.
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3.3.5 Parametric Variation of Total Energy
The cross section based on chargino is presented for here for Js =410 GeV (HERA

upgrade) and /s = 1400 GeV (future LEP/LHC collider).
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FIG. 19 Differential cross sectione™ p —» vg.X for Js =410 GeV
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3.4 Platform Matters

A brief discussion on performance is in order. All development of the SUSY calculator
was done using Mathematica® version 2.1. for Windows 95 running on a Pentium 75
machine with 8 megabytes of RAM. For this configuration, it takes approximately 40
minutes to calculate the neutralino differential cross section integration for 6 values of
cosO and approximately 10 minutes to calculate the chargino differential cross section
integration for 12 values of cos@. The reason for the difference in time is that the
neutralino cross section has 8*4 = 32 individual components to the expectation value
while the chargino cross section only has 2*4=8 . In addition the neutralino components

tend to be more complex.

The ultimate purpose of this calculator is to provide an insight into the physics of
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supersymmetric interactions. Excessive amount of time to calculate the outcome of a
variation of process is very frustrating; hence it is reccommended that a faster machine

with significantly more RAM be employed.
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FUTURE CONSIDERATIONS

Developing useful, user-friendly software is a difficult task. The development of a SUSY
calculator is no different. The version produced in this thesis is the first attempt at such a
calculator, and many lessons have been leamed that need to be included in later revisions
to increase its utility. This section consists of two parts. The first identifies the
weaknesses uncovered in the current design and provides a vision of the ultimate
calculator; the second provides detailed guidance as to how the author would implement

such improvements.

4.1 Limitations

The current calculator is an implementation of a specific problem. Although a
knowledgeable Mathematica® user should have little difficulty in tailoring the calculator
to another specific problem, the calculator is not general enough to be employed by
someone with little Mathematica® knowledge. Other standard model calculators™

investigated as a part of this thesis suffer from this problem as well.

Perhaps the ultimate vision of a useful calculator is one where the front-end of the
calculator is similar to a drawing tool interface (e.g., the picture editor in Microsoft
Word). Icons representing the various incoming, outgoing and exchanged particles may
be clicked and dragged to form a Feynman diagram of the interaction to be studied. The

diagram can be exported in various formats for later documentation. Once the interaction
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is satisfactorily entered, the tool can be directed to automatically generate the symbolic
form of the invariant amplitude and the expectation of its square. The ideal tool would
also provide a kinematics editing tool and a tool for defining the numerical value and
form (e.g., scalar or parametrically varied list) of all symbols employed. The tool could
be commanded to produce graphical output as would be case for the investigation of
scattering cross sections or to produce high precision numerical output as would be
desirable in calculating the supersymmetric effects on the anomalous magnetic moment
of the muon. This vision of the ultimate tool would be straightforward but time
consuming to implement. It could be a collaborative project for the Computer Science

and the Physics departments.

4.2 Improvements

The implementation of the vision of the ideal calculator would have Mathematica® at its
core. The front-end could be implemented in a variety of ways. Perhaps the most
straightforward being to develop a custom front-end using commercially available GUI
builders such as Visual C++ for Microsoft® Windows based machines; TeleUSE for X-
windows on UNIX based machines or Code Warrior for Macintosh machines. The
program developed by this builder would use the Mathlink feature provided by
Mathematica®. Using this capability, the GUI can send requests to Mathematica® to
evaluate expressions. The Mathematica® core would be essentially the same as presented

in this thesis.
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In the current SUSY calculator, the Feynman rules are implemented as a manually
entered list. The difference in the ideal calculator would be that the indices into the list of
Feynman rules would be based on attributes of the drawing elements rather than by hard-

coded symbols.

Another limitation of the current calculator is its lack of generality in the application of
trace theorems. It is felt that it is essential that these theorems be implemented as
symbolic replacement rules as employed here rather than by brute force multiplication
since there is a geometrical increase in the number of operations that have to be executed
when matrices are involved. In order to be able to avoid matrix multiplication, a general
set of Mathematica® symbols needs to be defined. For example, it is important to keep
track of the number of Dirac gamma matrices involved in a given product in order to
apply trace theorems. In the existing calculator, these theorems have been applied in
specific cases through an a priori knowledge of the interaction. The definition of an
appropriate Mathematica® predicate function'®'” appears to be the appropriate means for

such a set symbolic entities.

Perhaps the most challenging and interesting problem would be to implement symbolic

symmetry operators using predicate functions and the strict definitions of a Lie algebra.
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5. Conclusion

The calculation of processes involving supersymmetric particles is very complex. The
complexity arises in the algebra and from the number of free parameters in the models.
The ultimate aim is to gather experimental evidence of supersymmetry. Since the most
likely means of achieving this is by pinpointing the signatures of the production of
supersymmetric particles through the identification of missing momentum, it is desirable
to be able to estimate the predicted signatures as key model parameters are varied. In
view of the large number of possible outcomes and the complexity of each calculation, it

is advantageous to use an algebraic program such as the one developed in this thesis.

This calculator permits the invariant amplitudes of the two reactions having the highest
cross sections, ep —» égX and ep — vgX to be expressed in symbolic form based on the
Feynman rules derived form the left-right supersymmetric Lagrangian. The free
parameters in the left-right supersymmetric extension of the standard model can be
readily varied within the calculator to investigate, for example, the effect of different
gaugino-higgsino mixing scenarios or the value of the higgsino mass parameters on the
scattering cross sections calculated. This capability should prove useful for narrowing
down the number of possible signatures of the production of supersymmetric particles in

future searches at HERA and LHP/LEC, when they become operational.
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APPENDIX A: PROGRAM SOURCE CODE

(*: Title: susycalc.m ¥*)
(*: Author: M. R. Adcock *)
(*: Revision History:

Date Created: 02 March 1997
sk
)

(*: Summary:

This package is the main program for calculating
cross-sections of the ep to sleptons process.

All other packages used in the program are loaded
by this package. *)

(* Leave the package public for now 02/03/97 *)
(* We may wish to protect it later on. *)
BeginPackage["susycalc™"]

EndPackage(]

(* Load Packages *)

Print[" Loading Packages "]
t1=TimeUsed[];

<< susyamp.m;
<< susycons.m;
<< susykine.m;

Print[" Calculating Invariant Amplitude M™]
xsecvar=Neutralino;

Print[" for reaction ep-> sleptons"]

Print[" for ", xsecvar," exchange"]
Mexpsusy=CrossSection[xsecvar];
t2=TimeUsed[];

Print[ " Expectation of M2 Done "]

Print[" Session Elapsed Time =", t2-t1," seconds"]

(* KalKin[me,mq]is found in the package susykine.m. It returns the
value of the transferred momentum t = q2 in terms of me, mq

x and s.*)

t=KalKin[me,mq];
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(* Apply the rule changing replacing q*2 with t *)
Mt=Mexpsusy/.{q"2 -> t};

(* ApplyConst[] is found in susycons.m which contains all
the constants. Constants need be changed in this file only *)

Print[ " Converting Symbols to Numerical Values "]
Ms=Table[ ApplyConst[Mt[[i]]], {i,Length{MArg]}];
Print[ " Converting Symbols Done "];
t2=TimeUsed[];

Print[" Session Elapsed Time =", t2-t1," seconds"]

Print[ " Performing 11 Numerical Integrations "]
Print[ " For range of Cos[Theta] from -1 -> 1 "]
Print[ " Plot to Follow ... (~2200 secs on Pentium 75)"]

(* These are the up and down quark structure function
found on page 14-93-24 *)

Fqu = (1.78 x*-.5) (1-x*1.51)*3.5;

Fqd =(0.67 x*-.6) (1-x*1.51)*4.5;
[f[xsecvar——=Neutralino,

QSF ={Fqu, Fqu, Fqd, Fqd, -Fqu, -Fqu, -Fqd, -Fqd},
QSF ={-Fqu, -Fqu, -Fqu, -Fqu, -Fqu, -Fqu, -Fqu, -Fqu}];

(* Xsection is calculated per 21-93-30 *)
(* Lam([] is found in prepint.m *)

y = me™2/(x s);

z=mq"2/(x s);

xsecsymlist = (.389/(32 Pi x s)) Sqrt[Lam[1,y,z]] *
Table[QSF[[i]] Mt[[i]], {i,.Length[Mt]}];

xsecsym = Apply[Plus,xsecsymlist];

xsec = ApplyConst[xsecsym];

(* Calculate the Lower Integration Limit *)

IntLimitSym = (me + mq)"2/s;
IntLimit = ApplyConst[IntLimitSym];

(* Perform Integrations for Different Values of
Cos[thetacm] and make plot *)
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(*theta=Range[-N[Pi],N[Pi],.2];*)
costheta=Range[-1,1,.1];

diffxsec=Table[NIntegrate[xsec/. {Cos[thetacm]->
costheta[[i]]}, {x,IntLimit,1}], {i,Length{costheta]}];

millitopico=10"-9
plotdata=Table{ {costheta[[i]],diffxsec{[i]]/millitopico},
{i,Length[costheta]}];

Print[ " Cross Section Integration Done "];
t2=TimeUsed[];
Print[" Session Elapsed Time =", t2-t1," seconds"]

ListPlot[plotdata, AxesLabel->{"Diff Xsection pb",
"Cos[theta]"},PlotJoined->True,Frame->True,
GridLines->Automatic])

Print[ " Type M to see invariant mplitude "]

Print[ " Type Mexp to see <|M|[*2> "]

Print[ " Type t to see transferred momentum "]

Print[ " Type Mt to see M in terms of t = q"2"]

Print[ " Type Ms to see full M numerical expression"]

Print[ " Type xsecsym to see symbolic form of Xsection Integrand "]
Print[ " Type xsec to see numerical expression "]

Print[ " "]

(* The End *)
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(*: Title: susyamp.m *)
(*: Author: M. R. Adcock *)
(*: Revision History:

Date Created: 02 March 1997
*
)

(*: Summary:

This package is the package that calls the
functions specific to either the neutralino or the
chargino invariant amplitude calculations

)

(* Leave the package public for now 02/03/97 *)
(* We may wish to protect it later on. *)
BeginPackage["susyamp™"]

EndPackage[]

CrossSection::usage="CrossSection[ExchangeP] calculates cross
section for either neutralino or chargino Exchange in
ep-> slepton scattering”

CrossSection;

CrossSection[ExP_]:=(
Block[ {out},

(*Load Package containing Feynman rules *)

(*Load Package for calculating expectation *)

(*Load Package containing mass states *)

<< susyrule.m;

<< susyexp.m;

<< susymass.m;

IffExP==Neutralino,
(* Produce an Argument List for VertexFactor[] *)
MArg={{e,u,Neutralino,sel,sul}, {e,u,Neutralino,ser,sur},
{e,d,Neutralino,sel,sdl}, {e,d,Neutralino,ser,sdr},
{e,u,Neutralino,sel,sur}, {e,u,Neutralino,ser,sul},
{e,d,Neutralino,sel,sdr}, {e,d,Neutralino,ser,sdl} } ;
(* VertexFactor[] is found in susyrule.m *)
(* Generate Symbolic Invariant Amplitudes *)
(* M1 ... M8 For Neutralino Scattering *)
M=Table[VertexFactor[MArg[[i,1]],MArg[[i,2]],MArg[[i,3]],
MArg[[i,4]],MArg[[i,5]1], {i,Length[MArg]} ];
Print[ " Calculating Expectation of M"2 "];
Mexp=Table[Simp[M[[i]],MArg[[i,1]].MArg[[i.2]]],
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{i,.Length[MArg]}];
(*Apply Nuetralino Mass States

and return Mexpsusy*)

MStates=NMassM[0];

Mexpsusy=Table[ AppMStates[Mexp{[i]],MStates[[1]],

MStates[[2]],MStates[[3]]],{i,Length(MArg]}],

(*Elsel of 1st If*)

Print["Mathematica Doesn't know this"],

(*Else2 of 1st If*)

IffExP=—=Chargino,
(* Produce an Argument List for VertexFactor{] *)
MArg={{e,u,CharginoMinus,snl,sdr}, {e,u,CharginoMinus,snl,sdl},
{e,u,CharginoPlus,snr,sdl}, {e,u,CharginoPlus,snr,sdr},
{e,u,CharginoPlus,snl,sdl}, {e,u,CharginoPlus,snl,sdr},
{e,u,CharginoMinus,snr,sdl}, {e,u,CharginoMinus,snr,sdr} } ;
(* VertexFactor(] is found in susyrule.m *)
(* Generate Symbolic Invariant Amplitudes *)
(* M1 ... M8 For Chargino Scattering *)
M=Table[VertexFactorMArg[[i,1]],MArg[[i,2]],MArg([i,31],
MArg([i,4]],MArg[[i,5]]], {i,Length[MArg]} J;
Print[ " Calculating Expectation of M"2 "];
(*minus until sort out conjugate*)
Mexp=-Table[Simp[M[[i]], MArg([i,1]],MArg([i,2]]],
{1,Length[MArg]}];
(*Apply Chargino Mass States
and return Mexpsusy*)
MStates=ChMassM[0];
Mexpsusy=Table[ AppMStates[Mexp[[i]],MStates[[1]],
MStates[[2]],MStates[[3]]], {i,Length{MArg]} ],
(*Elsel of 2nd If¥)
Print["Mathematica Doesn't know this"],
(*Else2 of 2nd If*)
Print["Error: Input particle Missplelt"]

J(*End 2nd If *)

]J(*End 1st If*)
1(*End Block*)
)(*End CrossSection[]*)

(*End*)
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(*: Title: susycons.m ¥*)
(*: Author: M.R. Adcock *)
(*: Revision History:
Date Created: 02 March 1997
s’
)

(*: Summary:
This package contains the constants necessary to obtain
numerical results for the ep -> sleptons cross section.*)

(*BeginPackage["susycon " ]*)

ApplyConst::usage="ApplyConst[myexpr] applies rules to
exhange symbols to numerical values"

ApplyConst;

ApplyConst{input_J:=(
Block[ {out,alpha,elec,thetaw},
out=input;
(* These constant definitions on
page 26-93-35 *)
out = out/. {me -> 45, mq -> 130,
Pe.Pu -> x s/2};
out =out/.{s -> 314*314};
(* Data from weak interaction page 297 H&M *)
alpha=1/137;
elec = Sqrt[4 Pi alpha];
thetaw = ArcSin[{Sqrt[.25]];
out = out/. {gL -> elec/Sin[thetaw],gR ->
elec/Sin[thetaw],gp -> elec/Cos[thetaw]};
out = out/. {Pi -> N[Pi,5]}
]J(*End Block*)
)J(*End ApplyConst[]*)
(*End[]*)
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(*: Title: susykinem ¥*)
(*: Author: M. R. Adcock *)
(*: Revision History:

Date Created: 02 March 1997
*
)

(*: Summary:

This package contains the kinematics for quasi-elastic
scattering. The development of the equations is described
in Dewitt and Smith, Field Theory in Particle Physics
pages 98-100%)

BeginPackage["kinnemat "]
EndPackagef[]

KalKin::usage="KalKin{SusyKin] retums the expression
for t = q”2 in terms of the integration variable s x."

Lam::usage="Lam[s, m3"2, m4"2] is a symbolic implementation
of the Lamda functions defined in eq 3.47 on Page 99 of
DeWitt and Smith, Field Theory in Particle Physics."

Kalkin;
Lam;

KalKin[ml ,m2 J}:=(
Block[ {t,magp,magpp},

SX =S X;
magp=(1/(2 Sqrt[sx]))*Sqrt[Lam[sx,m1/2,m2"2]];
magpp=Sqrt{sx]/2;
t=2 magp magpp Cos[thetacm] - 2 magpp Sqrt{
magp”2 + m1.2] + m1~2
J(*End Block*)

)(*End KalKin[]*)

Lam{s_,mlsq_, m2sq_J:=(

Block[{l},
I=(s-(Sqrt[m1sq]+Sqrt{m2sq])*2)*
(s-(Sqrt[m1sq]-Sqrt{m2sq])"2);
I=V/.{Sqrt[x_ x_] ->x}

]J(*End Block*)
)(*End Lam(]*)

(*End([]*)
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(*: Title: susyrule.m *)
(*: Author: M.R.Adcock *)
(*: Revision History:
Date Created: 02 March 1997
*
)

(*: Summary:

This package contains the the Feynman rules for the ep ->

sleptons interaction. The rules are called from two files

cfr.m and nfr.m. The package contains the function GetVertexFactor
which returns the portion of the invariant amplitude for

a specific Feynman diagram. This function is called by the

the package susycalc.m which calculates all the components of

an ep -> sletons interaction. This function can also be called

directly called by the user for the calculation of a specific Feynman
diagram.*)

BeginPackage["susyrule™"]
EndPackage[]

VertexFactor::usage="VertexFactor{inparticle1,inparticle2,
exhangedparticle,outparticlel,outparticle2] returns the
vertexfactor derived from the Feynman rules of the
supersymmetric Lagrangian”

ExpandVF::usage="ExpandVF{f1,£2,£3,f4] is used by VertexFactor{].
It performs the portion of the calculation common to all
interactions."

VertexFactor;
ExpandVF;

VentexFactor[ipl_,ip2_,xp_,opl_,op2_]:=(

Block[{f1,£2,3,f4},
(*Load Feynman Rules*)
<< nfr.m;
<< cfr.m;
(*1st If*)
If[xp=Neutralino,
(*2nd If *)
If[ipl=—e && ip2==u,
(*31d If*)
(*sel = Susy Electron Left*)
(*sul = Susy Up quark Left *)
Iflopl==sel && op2==sul,
(*These are the Components of M1*)
(f1=NeutFeynRule{[18]];
f2= NeutFeynRule[[23]];
f3= NeutFeynRule[[2]];
f4= NeutFeynRule[[9]];
M=ip1*ExpandVF[fl,f2,f3,f4]*ip2),
(*Elsel of 3rd If*)
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(*Mathematica can not reach this because
it is unable to determine if a==b is True
or false unless a and b are numbers.
See page 93 and 288 of Mathematica 2nd
Edition*)
Print["Mathematica Doesn't know this"],
(*Else2 of 3rd If*)
(*4th If*)
(* ser = Susy Electron Right
sur = Susy Up quark Right *)
Iffopl==ser && op2==sur,
(*These are the Components of M2*)
(f1=NeutFeynRule[[20]];
f2= NeutFeynRule{[24]];
f3= NeutFeynRule[[5]};
f4= NeutFeynRule[[12]];
M=ip1*ExpandVF[f1,£2,£3,f4]*ip2),
(*Elsel of 4th If*)
Print{"Mathematica Doesn't know this"],
(*Else2 of 4th If*)
(*Sth If*)
[flopl==sel && op2==sur,
(*These are the Components of M5*)
(f1=NeutFeynRulef[18]];
f2= NeutFeynRule[[23]];
f3= NeutFeynRule[[5]];
f4= NeutFeynRule[[12]];;
M=ip1*ExpandVF[f1,f2,f3,f4]*ip2),
(*Elsel of 5th If*)
Print["Mathematica Doesn't know this"],
(*Else2 of 5th If*)
(*6th If*)
Iffopl=ser && op2==sul,
(*These are the Components of M6*)
(f1=NeutFeynRule[[20]];
2= NeutFeynRule{[24]];
f3= NeutFeynRule{{2]];
f4= NeutFeynRule{[9]];
M=ip1*ExpandVF[f1,£2,f3,f4]*ip2),
(*Elsel of 6th If*)
Print["Mathematica Doesn't know this"],
(*Else2 of 6th If*)
Print["Output Particles Dont Match e u"]
](*End 6th If*)
J(*End 5th If*)
J(*End 4th If*)

1,(*End 3rd If*)

(*Elsel of 2nd If*)

Print["Mathematica Doesn't know this"],
(*Else2 of 2nd If*)

(*7th If*)

Iflipl=—e && ip2=d,

(*8th If*)
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Iffopi==sel && op2==sd],
(*These are the Components of M3*)
(f1=NeutFeynRule[[18]];
f2= NeutFeynRule[[23]];
f3= NeutFeynRule[[4]];
f4= NeutFeynRule[[13]];
M=ip1*ExpandVF[fl,12,f3,f4]*ip2),
(*Elsel of 8th If *)
Print["Mathematica Can't Reach This"],
(*Else2 of 8th If*)
(*9th If*)
[flop1=ser && op2==sdr,
(*These are the Components of M4¥)
(f1=NeutFeynRulef[20]];
f2= NeutFeynRule[[24]];
f3= NeutFeynRule[[7]];
f4= NeutFeynRule[[16]];
M=ip | *ExpandVF[f1,£2,£3,f4]*ip2),
(*Elsel of 9th If*)
Print["Mathematica Can't Reach This"],
(*Else2 of 9th If*)
(*10th If*)
Iflopl=sel && op2==sdr,
(*These are the Components of M7%)
(f1=NeutFeynRule[[18]];
2= NeutFeynRule{[23]];
3= NeutFeynRule{[7]];
f4= NeutFeynRule[[16]];
M=ip1*ExpandVF[f1,f2,£3,f4]*ip2),
(*Elsel of 10th If*)
Print["Mathematica Can't Reach This"],
(*Else2 of 10th If*)
(*11th If*)
Iffopl==ser && op2==sdl,
(*These are the Components of M8*)
(f1=NeutFeynRule{[20]];
f2= NeutFeynRule[[24]];
£3= NeutFeynRule[[4]];
f4= NeutFeynRule[[13]];
M=ipl*ExpandVF[f1,£2,£3,f4]*ip2),
(*Elsel of 11th If*)
Print["Mathematica Can't Reach This"],
(*Else2 of 11th If*)
Print["Error - Output Particles Don't Match e d"]
J(*End 11th If*)
J(*End 10th If*)
]J(*End 9th If*)
](*End 8th If*),
(*Elsel of 7th If*)
Print{"Mathematica Can't Reach This"},
(*Else2 of 7th If*)
Print["Error - Input Particles Incorrect"]
J(*End 7th If*)
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],(*End 2nd If*)
(*Elsel of st If*)
Print["Mathematica Doesn't know this"],
(*Else2 of Ist If *}
(#**t#tttttchargino C]aculations.t“"““‘tt‘t‘&‘#““““')
(*Cminus If*)
Iflipl==e && ip2=—u && xp==CharginoMinus,
(*snl = susy neutrino left*)
(*sdr = susy down quark right *)
(* Istcm If *)
Iffopl=snl && op2==sdr,
(*These are the Components of M1*)
(f1=ChargFeynRule[[25]];
£2=0;
f3= ChargFeynRule{{6]];
f4=0;
M=ip1*ExpandVF[f1,12,3,f4]*ip2),
(*Elsel of Ist cm If*)
Print["Mathematica Doesn't know! this"],
(*Else2 of Istcm If *)
(*snl = susy neutrino left*)
(*sdl = susy down quark left *)
(*2nd cm If %)
[flopl==snl && op2=sd],
(*These are the Components of M2*)
(f1=ChargFeynRule[[25]];
2=0;
f3= ChargFeynRule[[10]];
f4= ChargFeynRule[[14]];
M=ip1*ExpandVF[f1,2,£3,f4]*ip2),
(*Elsel of 2nd cm [f*)
Print["Mathematica Doesn't know! this"],
(*Else2 of 2nd cm If *)
(*snr = susy neutrino right*)
(*sdl = susy down quark left *)
(*3rdcm If *)
Iffop1=snr && op2==sdl,
(*These are the Components of M7¥)
(f1=ChargFeynRule{[30]];
f2=ChargFeynRule[[29]];
f3=ChargFeynRule[[10]];
f4=ChargFeynRule[[14]];
M=ip1*ExpandVF{f1,£2,{3,f4]*ip2),
(*Elsel of 3rd cm If¥*)
Print["Mathematica Doesn't know1 this"],
(*Else2 of 3rd cm If *)
(*snr = susy neutrino right*)
(*sdr = susy down quark right*)
(*4thcm If*)
Iffopl==snr && op2==sdr,
(*These are the Components of M8*)
(f1=ChargFeynRule{[30]];
f2=ChargFeynRule[[29]];
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3=0;
f4=ChargFeynRule[[6]];
M=ip1*ExpandVF[f1,£2,£3,f4]*ip2),
(*Elsel of 4th cm If*)
Print["Mathematica Doesn't know! this"],
(*Else2 of 4thcm If *)
Print["Error Out Doesn't Match e u C-"]
J(*End 4th cm If*)
J(*End 3rd cm If*)
](*End 2nd cm If*)
1,(*End 1st cm If*)
(*Elsel of Cminus If*)
Print{"Mathematica Doesn't know this"],
(*Else2 of Cminus If *)
(*Cplus If*)
Iflipl=—¢ && ip2=—u && xp=—=CharginoPlus,
(*snor = susy neutrino right*)
(*sdl = susy down quark left *)
(* Istcp If *)
Iflopl==snr && op2==sdl,
(*These are the Components of M3*)
(fl=ChargFeynRule[[26]];
2=0;
f3= ChargFeynRule[[1]];
f4=0;
M=ip1*ExpandVF[f1,£2,£3,f4]*ip2),
(*Elsel of Istcp If*)
Print["Mathematica Doesn't know this"],
(*Else2 of 1stcp If *)
(*snr = susy neutrino right*)
(*sdr = susy down quark right *)
(*2ndcp If *)
Iffopl=snr && op2==sdr,
(*These are the Components of M4*)
(f1=ChargFeynRule[[26]];
2=0;
f3=ChargFeynRule[[17]];
f4=ChargFeynRule[{21]];
M=ip1*ExpandVF[f1,£2,f3,.f4]*ip2),
(*Elsel of 2nd cp If*)
Print["Mathematica Doesn't know this"],
(*Else2 of 2nd cp If *)
(*snl = susy neutrino left*)
(*sdl = susy down quark left *)
(*3rdcp If*)
Iffopl==snl && op2==sd],
(*These are the Components of M5*)
(fl1=ChargFeynRule[[27]];
f2=ChargFeynRule[[28]];
f3=ChargFeynRule[[1]];
f4=0;
M=ip1*ExpandVF[f1,12,13,f4]*ip2),
(*Elsel of 3rdcpIf*)
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Print["Mathematica Doesn't know this"],
(*Else2 of 3rd cp If *)
(*snl = susy neutrino left*)
(*sdrl = susy down quark right *)
(*4thcp If®)
Iffopl==snl && op2==sdr,
(*These are the Components of M6*)
(f1=ChargFeynRule[[27]];
f2=ChargFeynRule[[28]];
f3=ChargFeynRule{[17]];
f4=ChargFeynRule[[21]];
M-=ip1*ExpandVF[f1,£2,f3,f4]*ip2),
(*Elsel of 4th cp If*)
Print["Mathematica Doesn't know this"},
(*Else2 of 4th cp If *)
Print["Error Out Doesn't Match e u C+"]
J(*End 4thcp If *)
J(*End 3rd cp If *)
J(*End 2nd cp If *)
],(*End 1stcp If *)
(*Elsel of Cplus If*)
Print["Mathematica Doesn't know this"],
(*Else2 of Cplus If *)
Print{"Error - No particles match rules"]
J(*End Cplus If *)
]J(*End Cminus If*)
J(*End 1st If*)
J(*End Block*)
)(*End of VertexFactor*)

ExpandVF([fl_,f2 f3 ,f4 ]:=(
Block[ {epropden,eprop,M},
(* Calculations Common to all *)

epropden=(q”2 - mx"2);
eprop=I*(gslash+mxI)/epropden;
M=(f1+f2)*eprop*(f3+£4);
M=Expand[M];

(* Apply Parity Operator Identities *)

M=M/. {PRa PRz mxI -> 2 PR mxI, PLa PLz mx] -> 2 PL mxI,
PRa PLz mxI -> 0, PLa PRz mxI -> 0};
M=M /. {PRa PRz gslash -> 0, PLa PLz gslash -> 0,
PRa PLz gslash -> 2 gslash PL, PLa PRz gslash ->
2 gslash PR}
] (* End Block *)
) (* End of ExpandVF *)

(*End[];*)
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(*: Title: susyexp.m ¥)
(*: Author: M. R. Adcock *)
(*: Revision History:
Date Created: 02 March 1997
*
)

(*: Summary:

This package contains the replacement rules
for calculating the expectation of the square of
the invariant amplitude.*)

BeginPackage["susyexp "]
EndPackage(]

Simp::usage="Simp[myexpr] simplifies the expression
by applying parity operator identities, trace theorems
and neglecting higher order terms."

Simp;
Simp[input_,ipl_,ip2_]:=(
Block[ {out,out2},
out=input/. {gslash->qdagger};
out2=Expand[input*out];
(* Parity Operator Rules *)

out2=out2/. {PR*PR ->2 PR, PL*PL ->2PL,
PR*PL -> 0, PL*PR -> 0};

(* Trace of gamma$'s vanish *)

out2=out2/. {PR -> l+gamma$, PL -> l-gamma5},
out2=out2/. {gamma$ -> 0};

(*Trace Theorem Simplification*)

out2=out2/. {mxI*2 -> 4 mx"2};
out2=out2/. {mxI qdagger -> 0};
out2=out2/. {mxI gslash -> 0};
out2=out2/.{qdagger gslash -> 4 q*2};

(* Kinematics *)
out2=out2/. {ip1"2 ip2”2 -> Pe.Pu + Me Mu};
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(* Order of Magnitude Simplificatiion*)

out2=out2/. {Me Mu ->0};

out2=ReleaseHold[out2];

out2=out2/. {hdLL.*2 -> 0, huL*2->0, huQ"2 -> 0,hdQ"2->0};
out2=out2/. {hdQ huQ -> 0, hdL huL -> 0}

J(*End Block*)

)
(*End[];*)
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(*: Title:susymass.m *)
(*: Author: M. R. Adcock *)
(*: Revision History:
Date Created: 02 March 1997
*
)

(*: Summary:

This package contains functions for determining the
nuetralino and chargino mass states and for replacing
symbols with products of mass states and eigenvectors *)

(* Leave the package public for now 02/03/97 *)
(* We may wish to protect it later on. *)
BeginPackage["susymass™"]

EndPackagef]

NMassM::usage="NMassM[mu] calculates the neutralino
mass states and the diagonalizing matrix of eigenvectors
for the Lagrangian Mass Matrix Mn. See Thesis section
3.2.2.7"

ChMassM::usage="ChMassM[mu] calculates the neutralino
mass states and the diagonalizing matrix of eigenvectors

for the Lagrangian Mass Matrix Mc. See Thesis section
3.2.2.7"

GetEV::usage="GetEV[M] uses the Mathematica functions
Eigenvalues and Eigenvectors to calulate the eigenvalues
of the product of the matrix M and its transpose. It

returns the square root of the eigenvalues thus calculated
as well as the matrices of eigenvectors. See Thesis

section 3.2.2.7"

AppMStates::usage="AppMStates[amplitude,eigenvectormatrix1,
eigenvectormatrix2,masseigenstatesvector] replaces the mass
element symbols in the amplitude with the dot product of the
appropriate row of the eigenvectormatrix and the mass eigenstate
vector. See thesis section 3.2.2.7"

NMassM;
ChMassM;
GetEV;
AppMStates;
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NMassM([input_]:=(
Block( {
(*Local Variables*)
out,muMZ ML MR MW thetak, ck,sk,tw,t,
M1IMI12,M13M14 M21 M22 M23 M24 M31,M32,
M33,M34 M41,M42 M43 M44 Mc,alpha,elec,
g.gp.eR.gL},
(*Body*)
mu=input;
(* Zeros result in very small (10*-14) eigenvalues
as a result of numerical precision *)
[ mu==0,mu=.0000001];
MZ=91.15;
=50;
MR=300;
MW=80;
thetak=ArcTan[1.6];
ck=Cos[thetak];
sk=Sin[thetak];
(* Data from weak interaction page 297 H&M *)
thetaw=ArcSin[Sqrt[.25]];
tw=Tan[thetaw];
t=Sqrt[1 + 4 tw"2];
(*Coupling Constants*)
alpha=1/137;
elec = Sqrt[4 Pi alpha];
g=elec/Sin[thetaw];
gp=elec/Cos[thetaw];
gR=g;
gl=g;
ku=(Sqrt[2] MZ sk)/t;
kd=(Sqrt{2] MZ ck)/t;
(*These are the elements of mass matrix Mn¥*)
Ml11=ML;
M12=0;
M13=-(1/Sqrt[2]) gL ku;
M14=(1/Sqrt[2]) gL kd;
M21=0;
M22=MZ;
M23=Sqrt[2] tw gR ku;
M24=-Sqrt[2] tw gR kd;
M31=-(1/Sqrt[2]) gL ku;
M32=Sqrt[2] tw gR ku;
M33=0;
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M34=-2 mu;
M41=(1/Sqrt[2]) gL kd;
M42=-Sqrt[2] tw gR kd;
M43=-2 mu;
M44=0;
Mc=N[{{M11MI12,M13M14},
{M21,M22,M23,M24},
{M31,M32,M33 .M34},
{M41,M42 M43, M44}}];
out=GetEV[Mc]
J(*End Block*)
)(*End NMassM[]*)

ChMassM[input_J:=(
Block[{
(*Local Variables*)
out,mu,MZ ML MR ,MW thetak,ck,sk,tw.t,
MIIMI2M13,M14 M21,M22 M23 M24 M31,M32,
M33,M34 M41,M42 M43 M44 Mc},
(*Body*)
mu=input;
MZ=91.15;
ML=50;
MR=300;
MW=80;
thetak=ArcTan[1.6];
ck=Cos[thetak];
sk=Sin[thetak];
(* Data from weak interaction page 297 H&M *)
thetaw=ArcSin[Sqrt{.25]];
tw=Tan[thetaw];
t=Sqrt[1 + 4 tw"2];
MI11=ML,;
M12=0;
M13=0;
M14=Sqrt[2] MW ck;
M21=0;
M22=MR;
M23=0;
M24=Sqrt[2] MW ck;
M31=Sqrt[2] MW sk;
M32=Sqrt[2] MW sk;
M33=0;
M34=-mu;
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M41=0;

M42=0;

M43=-mu;

M44=0;
Mc=N[{{M11,MI12M13M14},
{M21,M22 M23 M24},
{M31,M32,M33,M34},
{M41,M42 M43 M44}}];
out=GetEV[Mc]

]J(*End Block*)

)
GetEV[M_]:=(
Block[ {out,Mc,Mct,Mchi,U,V},
Mc=M;
Mct=Transpose[Mc];
Mchi=Sqgrt[Eigenvalues[Mct.Mc]];
V=Eigenvectors[Mct.Mc];
U=Eigenvectors{Mc.Mct];
(*Mathematica Returns the eigenvalues in descending
order; Susy analysis presents them in order of
increasing mass. Therefore, must reverse order presented*)
Mchi=Reverse[Mchi];
V=Reverse[V];
U=Reverse[U];
out={U,V,Mchi}
](*End Block¥*)
)

AppMStates[input_,U_,V_,Mchi_J:=(

Block[ {out},
out=input/. {VilConj->Vil,Vi2Conj->Vi2,Vi3Conj->Vi3,
Vi4Conj->Vi4,Ui1 Conj->Uil,Ui2Conj->Ui2,Ui3Conj->Ui3,
Uid4Conj->Vid};
out=Table[out/. {Vil->V[[i,1]],Vi2->V[[i,2]],
Vi3->V([[i,3]],Vi4->V[[i,4]],Ui1->U[[i, 11},Ui2->U[[1,2]],
Ui3->U[[i,3]],Ui4->U[[i,4]],Mi1->U[[i, 1]],Mi2->U[[1,2]],
Mi3->U[[i,3]],Mi4->U[[1,4]1},{1,4}];
out=Table[out[[i]]/. {mx->Mchi[[i]]}, {1,4}];
out=Apply[Plus,out]

]J(*End Block*)

)
(*End([];*)
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(*: Title:cfrm  *)
(*: Author: M.R. Adcock *)
(*: Revision History:
Date Created: 02 March 1997
*
)

(*: Summary:

This package contains the list of Feynman rules

for the chargino/quark/squark and chargino/lepton/splepton
Feynman diagrams defined in section 2.4.3 of thesis.

Note that only those used in the calculations have been
defined.*)

ChargFeynRule={((-I/2)*HoldForm[gL*Uil Conj]*PLz),
(2),(3),(4),(5),
((-I/2)*HoldForm[gR*Ui2Conj]*PRz),
(7),(8),09),
((1/2)*HoldForm[huQ*Ui3]*PRz),
(11),(12),(13),
((1/2)*HoldForm[hdQ*Ui4]*PRz),
(15),(16),
((1/2)*HoldForm[huQ*Ui3Conj]*PLZz),
(18),(19),(20),
((1/2)*HoldForm[hdQ*Ui4Conj]*PLz),
(22),(23),(24),
((-I/2)*HoldForm[gL*VilConj}*PLa),
((-I/2)*HoldForm[gR*Vi2]*PRa),
((1/2)*HoldForm[huL*Vi3]*PRa),
((1/2)*HoldForm[hdL*Vi4]*PRa),
((1/2)*HoldForm[hdL*Vi4Conj]*PLa),
((1/2)*HoldForm[huL*Vi3Conj]*PLa)};
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(*: Title:nfrm  *)
(*: Author: M. R. Adcock *)
(*: Revision History:
Date Created: 02 March 1997
s’
)

(*: Summary:

This package contains the list of Feynman rules

for the neutralino/quark/squark and neutralino/lepton/splepton
Feynman diagrams defined in section 2.4.3 of thesis.

Note that only those used in the calculations have been
defined.*)

NeutFeynRule={(1),
(-(1/(2*Sqrt[2]))*HoldForm[(gL*Mi1+(gp/3)*Mi2)]*PLz),
(3),((1/(2*Sqrt[2]))*HoldForm[(gL*Mi1-(gp/3)*Mi2)]*PL2),
(-(7/(6*Sqrt[2]))*HoldForm[gp*Mi2]*PRz),(6),
((5/(6*Sqrt[2]))*HoldForm[gp*Mi2]*PRz),
(8),((1/2)*HoldForm[huQ*Mi3Conj]*PRz),
(10),(11),((1/2)*HoldForm{huQ*Mi3]*PLz),
((172)*HoldForm[hdQ*Mi4]*PRz),(14),(15),
((1/2)*HoldForm[hdQ*Mi4]*PLz),(17),
((I/(2*Sqrt[2]))*HoldForm[(gL*Mil+gp*Mi2)]*PLa),
(19),((3 I/(2*Sqrt[2]))*HoldForm[gp*Mi2]*PRa),(21),(22),
((I/2)*HoldForm[hdL*Mi4]*PRa),((I/2)*HoldForm[hdL.*Mi4]*PLa),
(25),(26)};
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(*: Title:plotmass.m *)
(*: Author: M. R. Adcock *)
(*: Revision History:
Date Created: 02 March 1997
*
)

(*: Summary:

This package calls the functions in susymass.m and

makes a plot of the mass eigenstates versus the

higgsino mass parameter. Change the call form ChmMassM[]
to NMassM[] to change plot from charginos to neutralinos. *)

<< susymass.m

r=Range[-200,200,1];

Print["Generating Mass State Plot Data"];

m=Table[NMassM[r{[i]]], {i,1,Length{r]}];

plotdata=r;

For[j=1,j<54+t,

plotdata[[j]]=Table[ {r[[i]].m[[i,3,j]]},

{i,Length[r]}]];

pl=ListPlot[plotdataf[1]],PlotJoined->True,
PlotStyle->Dashing[ {.01,.01}],
DisplayFunction->Identity];

p2=ListPlot[plotdata[[2]],PlotJoined->True,
DisplayFunction->Identity];

p3=ListPlot[plotdataf[3]],PlotJoined->True,
PlotStyle->Dashing[ {.01,.04,.01,.04}],
DisplayFunction->Identity];

p4=ListPlot[plotdata[[4]],PlotJoined->True,
PlotStyle->Thickness[.005],
DisplayFunction->Identity];

Show[ {pl,p2,p3,p4},AxesLabel->{"Neutralino Mass GeV",

"Higgsino Mass Parameter GeV"},Frame->True,

GridLines->Automatic,
DisplayFunction->$DisplayFunction]
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