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ABSTRACT

A New Approach in the Transient Analysis of ATM Multiplexers
with Bursty Sources

Faouzi Kamoun. Ph.D.

Concordia University, 1995,

In this dissertation, we propose a new approach for the queueing analysis of
discrete-time queues with correlated arrivals, arising in the ATM environment. In
the first part of this work, we focus on the discrete-time transient analysis of a
single server ATM multiplexer, where the arrival process consists of the super-
position of the traffic generated by a homogeneous as well 25 by a heteroge-
neous set of independent Sinary Markov sources. We propose a new approach
in the derivation of the transient joint probability generating function of the buffer
content and the number of active sources. From this, time-dependent perfor-
mance measures such as mean, variance and distribution of the queue length
can be derivad. Further, the transient analysis allows us to derive closed form
expressions for the steady-state probability generating functions of the queue
length, packet delay, as well as their corresponding first moments. We also
present the idle and busy period analysis of the system. In the second pan of
this dissentation, we extend the approach to the transient and steady-state anal-
ysis of a multiserver ATM multiplexer and finally, in the third part, we demon-
strate the applicability of the proposed approach in the steady-state analysis of a
tandem queuing network with correlated arrivals. First we derive the steady-
state joint generating function of the contents of the queues and the number of
active sources. From this any moment of the queue length at each node can be
extracted. In addition we derive explicit expressions for the average delay at
each node as well as for the total average delay in the network.The main contri-

bution of the first two parts of this work is to show how to extend the queueing



analysis of the GI/D/c queue in order to handle the correlation in the arrival pro-
cess. The advantage behind the proposed approach is that it places the ATM
multiplexer analysis on the same piatform as that of the GI/D/c queue. The main
contribution of the third part of this work is to establish a general framework,
under which an exact performance analysis can be carried cut, at the network

level, in an ATM environment.
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N, : Average gueue length at the end of the k! siot.

Oy,  Variance of the queue length distribution at the end of the k™" slot.

P(2) : Steady-state PGF of the queue length.
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T : Total average delay.

p; : Total arrival rate to node /.
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Introduction

Today's telecommunication networks are evolving very fast in response to
increasing numbers of users and the emergence of new telecommunication ser-
vices like High Definition TV (HDTV), high quality video-phony, high speed data
transfer and multimedia. To support these new services, the network must acquire
remarkable networking capabilities so as to deliver multi-gigahit bandwidth in an

efficient, integrated and cost-effective manner.

To respond to these new challenges, the telecommunication industry has
opted for the Asynchronous Transfer Mode (ATM) as the potential transfer tech-
nique which will support the multimedia applications of today and tomorrow. ATM
replaces the basic variable-length packet units, used in many current operating
networks and which are difficult and slow to transport, with fixed-length packets,
known also as cells. In this sense, ATM provides a means of developing a single,
very fast network that will enable the multiplexing, transport, and switching of all
types of traffic, end-to-end, at very high speeds. This will also reduce the total cost
since there will not be separate telecommunication networks for different types ot

traffic.

Although ATM is being viewed today as a very promising solution to the
recent issues of network bandwidth and service integration, it has also created
new challenges for network designers, who must ensure that the industry will sat-

isfy its customers’ requirements for a good quality of service.

This thesis examines some of the important aspects in the design and perfor-

mance analysis of ATM systems. In particular, this thesis is concerned with the
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performance analysis of discrete-time queues whose arrival process consists of
the traffic yenerated by a special type of bursty sources, which is frequently
encountered in the source characterization in the ATM environment. But first, we
give a brief survey on how ATM ariginated and on the main features which made it
possible for the ATM to be the transfer mode of choice for future telecommunica-

tions networks.
1.1 The Evolution Towards ATM

During the early 1980s, the Consultative Committee on International Tele-
phone and Telegraphy (CCITT) has developed standards for the Narrowband
Integrated Services Digital Network (N-ISDN), which will give public networks
some capabilities to carry digital data traffic. The standard specified two types of

interfaces:

- A Basic rate access at 144 Kbps, which consists of two 64 Kbps channels

and one 16 Kbps signaling channel.

- A Primary rate access at 1.544 Mbps (T1 bandwidth) and 2.048 Mbps (E1
bandwidth), which includes a 64 Kbps signaling channel. The remaining band-
width of each of these two primary rate interfaces is partitioned into many combi-

nations of the basic 64 Kbps channels [1].

In the mid-1980's, and in response to higher bandwidth demands from the
public telecommunication industry, the CCITT has begun examining the Broad-
band ISDN (B-ISDN} as the ultimate choice which will allow all types of traffic to
be carried on the same all-digital network. In 1988, the CCITT adopted ATM as

the transport mechanism for future Broadband iraffic.

The private communication sector was also interested in the application and

standardization of ATM and this led to the creation of the ATM forum in 1291.
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Today, the ATM forum includes more than 160 major public and private telecom-
munication companies and its growing activities have contributed, so far, in the

specification of many standards related to ATM network interfaces and signaling,

among others.
1.2 The Advantages of ATM

ATM came as the solution to two new emerging telecommunication problems,
namely the requirement for an integrated interface for the support of multiple

types of traffic, including data, voice and video and the need for higher speed net-

works.
1.2.1 The Integration Capability

Until very recently, voice and data have been carried through almost two sep-

arate networks:

Typically, voice traffic is carried on synchronous links, using Time Division
Multiplexing (TDM) techniques, which switch messages in accordance to their
position in the frame. TDM is well suited for applications which deal with traffic that
is being generated regularly, at a fixed rate and which is time sensitive. However,

TDM is not appropriate for bursty traffic since bandwidth may be allocated to a

channel, even though the channel does not need it.

On the other hand, data traffic is often carried on asynchronous links, using
packet switching techniques. The user's information is segmented into variable-
length packets, which are identified either by an address or a connection identifier.
Even though packet switching has the advantage of using bandwidth on demand,
it is not suitable for carrying delay-sensitive traffic such as voice. This is due to the
iact that a node which generates very long packets might adversely affect the

operation of the other nodes in the netwark.
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In addition, dedicating one TDM-based network for voice traffic (ex. a Private
Branch Exchange (PBX)) and another packet-switched based network for data
traffic (ex. a Wide Area Network (WAN)) can be very costly. Hence one of the
objectives of using ATM is to integrate all types of traffic in the same switching and
transmission facility. In particular, ATM was designed to carry four classes of traf-

fic:

- Class A: Constant Bit Rate (CBR), connection oriented, synchronous traffic

(ex. uncompressed voice or video}.

- Class B: Variable Bit Rate (VBR), connection oriented, synchronous traffic

(ex. compressed voice and video).

- Class C: variable bit rate, conneciion oriented, asynchronous traffic (ex.

X.25, frame relay services).
- Class D: connectionless packet data (ex. LAN traffic).

One of the key factors behind the success of ATM in supporting integrated
traffic is the use of fixed-length packets (each consisting of a 48-octet payload and
a 5-octet header), which are very suitable for delay sensitive traffic. In fact, the
fixed size of ATM cells reduces the uncertainty of delay, a problem which is

encountered in packet-switched networks, due to the variable length packets.
1.2.2 The Bandwidth Scalabilty

One of the advantages of ATM is that it is capable of scaling to the huge
bandwidth demand which has been created by the introduction of new multimedia
applications and by the increase in the number of users. This capability of ATM to
scale to high speeds makes the implementation of B-ISDNs a reality and this is
mainly due to the fact that ATM is a connection-oriented technology. In fact, in an

ATM network, a connection has to be established between the users before the
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cells are routed to their destinations. To identify the connection to which it
belongs, each ATM cell contains a Virtual Path Identifier (VPI) and a Virtual Circuit
Identifier (VCI) which reside in the ATM header. The key advantage of ATM is that
it is based on the concept virtual circuit, where bandwidth reservation is both flexi-
ble and dynamic, unlike TDM which uses static bandwidth reservation. In fact in
an ATM network, an based on the connection VPI/VC! information, bandwidth is
reserved over a certain duration but, unlike TDM, there is no specific reservation
for particular slots in the frame. In addition ATM incorporates the advantage of
packet switching in allocating bandwidth on demand and whenever needed. It
exploits the statistical variations (bit rate fluctuations) in the users’ traffic to per-
form statistical muitiplexing, which eventually leads to a better use of the network
resources. In this sense, sources may share a link capacity whose value is less

than the sum of their individual peak bit rates.

Recent technological developments in electronics and optics have also
helped ATM networks to scale to high speeds, ata reasonable cost. For instance,
during the past few years, there has been a lot of progress in upgrading optical
transmission systems. Today, single mode and multimode fibers are available for

multi-gigabit rates, very long distances and very low Bit Error Ratios (BERs).

1.3 Statistical Multiplexing in ATM

One can view an ATM network as a coliection of nodes which are connected
by a set of transmission links. Based on their VPI/VCI, ATM cells are routed from
a scurce node to a destination node, following the store and forward principle.
When a cell reaches the nearby node, it is temporarily stored there until the trans-
mission channel to the next node becomes available. For this purpose, and at
each node, switching elements are installed to route the incoming cells to the

appropriate output link. For those cells which cannot be transmitted immediately,
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buffer space has been provisioned at each switching element. Therefore, in an
ATM network, several sources will be accessing a single link, such as a trunk line,
carrying hundreds of connections. As mentioned bsfore, ATM achieves high
bandwidth gain by performing statistical multiplexing on the incoming packet
streams. However, this multiplexing gain is often counteibalanced by the very
stringent Quality of Service (QoS) requirements of users, which are often
expressed in terms of packet loss, delay and delay jitter. For instance, voice traffic
has a transmission rate of several kilebits per second and is delay sensitive, while
high speed data traffic, used for instance in file transfers or LAN interconnections,
is of hundreds of megabits per second and is loss sensitive. Therefore, in order to
provide and maintain the QoS, not only does the ATM network have to be
designed with the correct buffer sizes, but it should also monitor the traffic sources
through the implementation of efficient admission, bandwidth allocation and fiow
control policies. The goal is to ensure that for each new accepted call, there will
be enough bandwidth available along the corresponding virtual path. This will
guarantee not only the QoS of the accepted call but aiso the QoS of all the virtual

connections already established along parts of the virtual path.

It turns out, however, that in order to implement efficient admission and flow
control strategies, one needs to acquire a very good understanding of the statisti-
cal multiplexing of the aggregate traffic generated by multimedia sources (with

possibly different characteristics) on the ATM links.

From a modeling point of view, the choice of a connection-oriented fast-
packet switching (with fixed-length packets) technique in a B-ISDN leads naturally
to the choice of a slotted time axis with synchronized message transmission in the
modeling of an ATM system [2]. In addition, the multiplexing of voice, data and
video sources on high capacity ATM links gives rise to a very interesting discrete-

time queuing problem, at the multiplexer's level, which involves a deterministic
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server and a special correlated discrete-time arrival process. Most often, the
quantities of interest are the buffer occupancy (number of packets stored in the
system) and the cell delays (or waiting times) experienced by the packets in the
butfer. In discrete-time models, cell delay at a multiplexer is defined as the num-
ber of slots between the end of the slot during which the cell arrives and the end of

the slot when the cell leaves the system.

The performance evaluation of statistical multiplexers with correlated arrivals
has been a major field of research and investigation for the past few years. In
addition, the performance analysis of ATM multiplexers has introduced a signifi-
cant change in the way uncorrelated traffic (such as Poisson or Bernoulli) domi-
nated the traditional performance evaluation methods. In fact when dealing with
the traffic generated by multimedia sources like Variable Bit Rate (VBR) video
codecs or with the traffic volume emitted from a sporadic data transfer between
two computer terminals, the uncorrelated random arrival process assumption
becomes inadequate because of the dependency which characterizes the cell

stream. In particular the traffic generated by the superposition of VBR sources is

characterized by:

- A positive correlation (characterized by a positive auto-correlation coefficient
in the number of arrivals) at the burst scale: this means that if many cells arrive
during the time interval (t,z+ Ar),where Ar is greater than a source cell inter-
arrival time, then most likely many cells will follow during the time interval

(¢t + At,1+2At) due to the slow change in the traffic intensity within a burst.

- A negative correlation at the cell scale: this means that if many cells arrive
during a time interval which is shorter than the source inter-cell time, then most
likely fewer and fewer cells will arrive during the next interval due to the periodic

emission of cells within each burst [3].
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For these reasons, source characterization in ATM networks has also been a
major field of research during the past years due to its direct impact on the perfor-
mance evaluation of ATM systems. In addition while the traffic characteristics of
some services (ex. voice) are generally well understood, the source behavior of
other services (ex. VBR video) is still being investigated. For an excellent review

on the various traffic source models for ATM networks, the reader is referred to

[4].
1.4 The Binary Markov On/Off Model and its Time Scales

Among the most versatile traffic models which has been used for the charac-
terization of ATM sources, is the binary (On/Off) Markov model. This model con-
sists of a sporadic source (also known as a Burst-Silence source) which
alternates between periods of active bursts and periods of silences, where no

cells are generated.

Even though more complicated sources, such as the three-state modei [5],
have been proposed for more accurate modeling of services like video confer-
ence, these have rarely been applied since they are not very suitable for use in

analytical studies.

On the other hand, the On/Off model is very popular and has often been used
for the modeling of ATM traffic. For instance a binary Markov source has been
successfully applied for the modeling of a voice source (ex. [6],[7]). In addition, in
[8], a video source is modeled as a birth-death process, which consists of the
superposition of a number of independent and identical On/Off sources. Nguyen
and Mark [9] have also proposed an analytical source model for VBR coded video
sources, where the output bit stream from each video source is modeled as the

superposition of L independent and identical two-state Markov processes. The
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CCITT has also provided parameter values for the On/Off sources that are to be
used as traffic models for typical ATM sources. This is illustrated in Table 1.1 [10].
TABLE 1.1 Parameter Values for Typical VBR Tratfic Sources, as

Proposed by CCITT (inter-burst and burst length, exponentially
distributed)

Mean burst

length in
. . number of Average cel}
Representative service cells arrival rate
Connectionless Data ' 700 Kbits/sec
VBR Video 2 25 Mbits/sec
Connection-oriented Data 20 25 Mbits/sec |
Background data/video 3 1 Mbit/sec |
| VBR video/data 30 21 Mbits/sec I
Slow video 3 6 Mbits/sec

Because of its versatility and flexibility, the binary Markov source has been cho-
sen, throughout this dissertation, as the basic mode! for the characterization of ATM
traffic sources. Hence this thesis will be mainly concerned with the analysis of sta-
tistical ATM multiplexers whose input processes consist of the superposition of
many independent traffic streams, each being modeled by a sporadic source, with

its own characteristic.

In addition, and as shown in figure 1.1, the activity of an ATM source can be

characterized at three time scales, namely call, burst and cell scales [11}.
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FIGURE.1.1. ATM Source Activity at Three Different Time Scales

A call, once set up between two users, is maintained during the entire connec-
tion, which typically can range from few minutes to many hours. Each call is seg-
mented into an alternate sequence of burst and silences. Each burst, in turn, is
partitioned into a stream of fixed length cells. The cell inter-arrival times within a
burst can have an arbitrary distribution, though, most often, deterministic inter-

arrival times of a fixed number of slots are used.

In an ATM network, the sources access the buffer through statistical multi-
plexing and when the buffer size is finite, cells can be discarded if the buffer
becomes full. Therefore the probability of cell losses due to buffer overflow is
among the most important performance measures in an ATM multiplexer, espe-
cially when dealing with loss-sensitive traffic. The effect of the different time scales
on the performance of an ATM buffer is illustrated in figure 1.2, in the context of

cell loss probabilities.
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FIGURE.1.2. Effect of Different Time Scales on the Cell Loss
Probabilities

As shown above, at small buffer sizes, cell loss probabilities are caused by
the random fluctuations at the cell level. As the buffer size gets larger, smoothing
of the cell-scale fluctuations takes place due to buffering and cell losses are
mainly due to higher level traffic characteristics, such as traffic fluctuations at the
burst scale. In response to this multi-level description in the activity of the sources,
the performance analysis of ATM multiplexers can be carried out at any of the
three time scales depicted in figure 1.2, though burst-scale and cell-scale models
are the most encountered in the literature, since a call-scale model can be substi-

tuted by a burst-scale mode! with long bursts [2].

After this introductory background material on ATM networks and their traffic
characterization, we are ready now to focus more on some of the main ATM per-

formance analysis issues which will be dealt with in this dissertation.
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First, we highlight the importance of taking into account the transient dynan-
ics of the ATM multiplexer by looking into two major areas in the design and per-
formance analysis of ATM systems, namely buffer dimensioning and resource
management. Following that, we give a brief survey on the various analytical
methods which have been developed so far for the performance analysis of single
ATM multiplexers. We will then highlight the urgent need to carry the performance
analysis of ATM systems at the network's level and present some of the
approaches which have been proposed for this purpose. We should also note that
for » detailed discussion of each of the methods, described in the survey which
follows, the reader is advised to consult the referenced documents, since such a

discussion is beyond the scope of this dissertation.
1.5 Transient Behavior and Buffer Dimensioning

In an ATM network, the use of very high speed channels has led to a very
common situation, where a large number of cells are in transit between two ATM
switching nodes. Further, ATM sources are bursty in the sense that a source may
generate cells at nearly peak rate for some period of time and then suddenly
becomes inactive. Therefore, when many ATM sources are simultaneously active,
severe congestion and hence undesirable cell losses and delay may occur at the
network nodes. For these reasons, buffer sizes in the ATM environment, should
be determined properly, taking into account the fact that transient overioad may
result in large cell losses. Itis unfortunate, however, that most of the buffer dimen-
sioning problems in ATM have been investigated through mathematical analysis
techniques, which are based on steady-state results. In particular, the steady-
state probability of cell losses has been used as the main criterion for the choice

of the appropriate buffer size. However, in actual situations, the dynamics of the
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network traffic can lead to temporal congestion and hence cell losses, even

though the long-term time-averaged value of the cell loss rate is acceptable.
1.6 Transient Behavior and Congestion Control

Another area where the understanding of the multipiexer non-stationary or
transient behavior becomes crucial is the congestion control problem in high
speed networks. In ATM networks, congestion control is a real challenge due to
the use of high speed channels and the bursty nature of the traffic sources feeding
the network. First, we briefly review the congestion control problem in ATM net-
works, then we will highlight the importance of taking into account the time-depen-
dent behavior of the ATM multiplexer in order to implement efficient congestion

control strategies.

There are two types of congestion control schemes, which have been devel-
oped for ATM networks, namely reactive congestion control and preventive con-

gestion control [12].
1.6.1 Reactive Congestion Control

Reactive congestion control is responsible for taking the appropriate actions
to bring the degree of network congestion back to an acceptable level. Once con-
gestion is detected, reactive control instructs the responsible node to slow down
its traffic through a feedback mechanism. However, the high transmission speed
of ATM networks makes the implementation of any type of reactive congestion
control inefficient. In fact, in a feed-back type congestion control, and because of
the high values in the ratio of the propagation delay to the cell transmission time,
the time it will take to inform the originating source that the network is overloaded
will be so long that corrective measures cannot be taken on time ((13].{14}).

Hence, most reactive congestion control schemes are effective over short dis-
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tances only. To overcome this problem, preventive congestion control has been

proposed.
1.6.2 Preventive Congestion Control

Preventive congestion control attempts to prevent congestion before it occurs.
The goal is to ensure, in advance, that the network traffic volume will not reach a
critical level which will cause an unacceptable congestion state. Most often, pre-
ventive congestion control is implemented at the access nodes of the ATM net-
work. There are also two ways to implement preventive control, namely bandwidth
enforcement (policing) and admission control [12]. Admission control decides
whether to accept or reject a new connection at the time of call set up. This deci-
sion is often based on the current traffic descriptors of the new connection and on
the current network utilization. The goal of bandwidth enforcement is to ensure
that, once a connection is set up between two users, any change (violation) in the
declared user’s traffic characteristics will not dateriorate the overall network per-
formance. Bandwidth enforcement schemes will not be discussed here and we
refer the interested reader to [15] for a good survey on this subject. We will rather
focus on admission contro, since it is one of the areas where the understanding of

the time-dependent behavior of ATM multiplexers is crucial.

1.6.2.1 Admission Control

Admission control can be thought of as a resource allocation scheme which
attempts to maintain a balance between QoS and network utilization by limiting
the number of connections in the network. The goal of admission control is to
ensure that a new call is accepted if it is guaranteed that it will not degrade the
overall network performance. To guarantee this, and when a new connection is
requested at a particular node, the network first checks for the service require-

ments of this call, which can be expressed in terms of:
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-The acceptable celi transmission delay.
- The acceptable cell loss probability.

The network also examines the traffic characteristics of the new connection,
in order to predict whether the network performance will be maintained, once the
call is accepted. Most often, these traffic characteristics are specified by the user
in terms of some parameters, known also as traffic descriptors. The most used
traffic descriptors are peak and average bit rates, burstiness factor (ratio of peak
bit rate to average bit rate), bit rate variance, average burst length, squared coeffi-
cient of variation of the cell inter-arrival times (i.e. ratio of the variance to the
square mean of cell inter-arrival times), among many others. Which traffic descrip-
tors are best suited to describe the traffic characteristics of a new call is still an
open question. Another major research area in ad™ission control deals with the
decision criteria that the ATM network should adopt in deciding whether to accept
or reject a new connection. In the following, we elaborate more on this issue since
it is closely related to one of the major topics investigated in this thesis and which

deals with the invesiigation of the transient behavior of ATM multiplexers.

1.6.2.2 Call Acceptance Decision Criteria and Transient Behavior

The best known decision criterion in admission control are the cell transmis-
sion delays and the cell loss probabilities, since these are very good indicatars of
the degree of network’s congestion. Most often, in admission control, cell trans-
mission delays and cell loss probabilities are expressed in terms of their long-
term, time-averaged values (ex. [16],[17]). However, and as mentioned in [12],
because of the bursty nature of the ATM sources, the network traffic will fluctuate
dynamically, taking the overall natwork from one degree of congestion to another,
even when the number of calls is constant. As a result, long-term, time-averaged

values may not be sufficient to take the appropriate call acceptance/rejection deci-
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sion. Figure 1.3 [18] illustrates, as an example, how cell loss probabilities change

with time in an ATM node.

A cell loss probability
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loss steady-state
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Figure 1.3. Time Dependent Behavior of Cell Loss Probability [18].

In the above figure, the number of active calls changes from &, at time 15,10 b,
attime #,, to cattime ¢, and back o b, attime #;.The solid curve shows the actual
(time-dependent) behavior of the cell loss probability. As may be seen from the
above figure, when the number of active calls jumps to b (steady-state value) at
time ,, the node starts losing many cells and progressively moves towards the
next level of congestion, where the cell loss probability reaches the steady-state
value, P,,,, (b) . When at time ,, the number of active calls increases again, the
node enters a new congestion level, which corresponds to cell loss probabilities
that exceed the corresponding steady-state value, P (b). Eventually, at time ¢,,

the node gradually moves towards its steady-state congestion level, and so on..
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The above example shows that the bursty and dynamic behavior of ATM traf-
fic may lead to situations of temporal congestion where unacceptable cell losses
occur, even though the steady-state value of cell losses is very small. In [18], the
inefficiency of using long-term, time-averaged cell loss probability as a decision
criterion for call acceptance is demonstrated through extensive numerical exam-
ples. It has been found that even if the long-term, time-averaged cell loss proba-
bility is kept small, severe congestion periods can occur and last for few hundred
milliseconds. In a voice conversation, these congestion periods may lead to the
loss of many bursts. In [18], it has also been shown that the use of instantaneous
cell loss probability as a decision criterion in admission control can be a very

effective remedy against these burst cell losses.

In [19], the transient behavior of voice cell loss probability is further investi-
gated. It has been shown that, once congestion occurs, the cell loss probability
becomes large and may remain so for a long period of time, leading to a notice-
able voice quality degradation at the destination. Further, it has been shown that
the cell loss probability during a blocking period (i.e. when the buffer is full)
exceeds the corresponding long-term, time-averaged value. Therefore, it has
been concluded [19] that the long-term, time-averaged cell loss probabilities are

not appropriate in the measurement of voice distortion since they ignore the tem-

poral behavior of voice celi losses.

Besides the instantaneous cell loss probability, there are also some other time
-dependent performance measures which are very important in admission control.
Among these, is the estimation of the time it takes for a node to come back to a
desired level of congestion, once it has entered an undesired congestion level
[18].
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Having highlighted the importance of taking into account the transient behav-
ior of ATM multiplexers, when implementing efficient congestion control and buffer
dimensioning strategies, we move to the next important issue, namely how 10

derive time-dependent performance measures in an ATM multiplexer.

Because of the dynamic nature of ATM traffic, exact analytical results con-
cerning time-dependent performance measures are generally difficult to obtain.
One of the main goals of this dissertation to investigate this problem in the dis-
crete-time domain. In addition, and as we will show in subsequent chapters, not
only does a transient analysis enable us to derive time dependent performance
measures, but it also allows us to derive the corresponding steady-state results as
well. Next, we give a brief survey on what has been done, so far, in the transient

as well as in the steady-state performance analysis of ATM multiplexers.
1.7 ATM Muttiplexer Transient Analysis

The transient analysis of statistical multiplexers has been the subject of inten-
sive research for a very long time. The most classical example is perhaps the
transient solution of the M/M/1 queue (120],[21],[22},[23] [24]). Transient solutions
of other variants of this queue have also appeared in the literature ([25],[26]). For
example, in the discrete domain, Jenq [27) proposed an approximate algorithm for
the computation of the transient mean and variance of the queue length in a dis-
crete-time queuing system with independent general arrivals and geometric out-

put process.

For queues with correlated arrivals, analytical results concerning transient
behavior are somehow limited, especially for the discrete-time case. For continu-
ous time transient analysis, the theory of linear operators and spectral analysis is
used in [13] to derive the transient solution of the joint probability distribution of the

number of active sources and the content of an ATM multiplexer. The computa-
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tional complexity of the approach involves numerical solution for boundary condi-
tions and inverse Laplace transforms. In [28] the aggregate packet arrival process
to an ATM multiplexer is approximated by a Markov Modulated Poisson Process
(MMPP) and the resulting queue is described in terms of a two-dimensional con-
tinuous-time Markov chain. By embedding at the arrival epochs and using a
matrix-geometric approach, an iterative solution for the probability distribution of

the queue size at any arrival epoch is derived, based on the solution of the Chap-

man-Kolmogorov equations.

For the general discrete-time batch Markovian arrival process, a solution for
the transient probabilities of an empty buffer and for the mean queue Ieﬁgth (in the
transform domain) is proposed in {[29],[30]). The computational complexity of the
spectral decomposition approach involves the determination of the eigenvalues
and the eigenvectors of the probability generating matrix of the system, as well as
performing a numerical transform inversion, based on the Cauchy’s integral for-
mula. In addition the matrix form of the transform-domain expressions, derived in

([29],(30]), makes these latters not very easy to handie.

Recently Lucantoni et al [31] derived matrix equations for the two-dimensional
transforms of the transient workload and queue length distributions in a single-
server queue with a continuous-time batch Markovian arrival process. They
applied a two-dimensional transform inversion algorithm, based on the Fourier
series method and an iterative solution technique to solve for a matrix equation, in

order to derive numerical results for the transient probability distributions.
1.8 ATM Multiplexer Steady-State Analysis

There is a considerable amount of literature on the steady-state analysis of
ATM multiplexers. Different approaches, both exact and approximate, have been

proposed and each of them has its own advantages and disadvantages. Further,
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we can identify five main approaches in the steady-state analysis of a single ATM

multiplexer loaded with bursty sources:
1.8.1 The GI/D/1 Approximation

Renewal arrival processes such as Poisson, geometric, and hypergeometric
processes have been primarily used in the analysis of voice multiplexers [6] and
ATM switching fabrics (ex.[32]). Even though the traffic of a voice source, for
instance, can be modeled by a renewal process, the usage of renewal processes
for the superposition traffic violates the basic fact that the superposition of & num-
ber of renewal processes generally does not result in a renewal process. There-
fore to capture some of the burstiness of the actual arrival process, the
parameters of packet inter-arrival distribution are chosen so as to ensure a large
coefficient of variation. An efficient algorithm for the performance analysis of the
Geo/D/1/K queue can be found in [33]. These models make queuing analysis very
simple and provide good approximation for the superposition of ATM traffic under
heavy load situations [6]. However these models ignore the correlation at the
packet level and hence they lead to a significant underestimation of the packet
loss probabilities, highlighting the difficulty reported by many researchers when

attempting to use the renewal approximation.
1.8.2 The Fluid Approximation Mode! ([8],{34],[35],[36],[37])

The fluid approximation model is suitable for the analysis of ATM multiplexers,
at the burst scale and it often uses the average burst period as the unit of time. In
this model, the discrete packet stream feeding the multiplexer is approximated by
a continuous flow of information and the deterministic server can be thought of as
a “sink” that would allow the incoming fiow “drain” at a constant rate equal to the
mean processing rate of the server. Typically, the packet generation process con-

sists of number of sources which alternate between burst and silence periods.
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The main assumption governing the operation of the fluid model is that each
active source generates information at a uniform rate of one unit of information
per unit of time. In addition the server removes information from the buffer at a
uniform rate of C units per unit of time. The fluid approximation method was
applied by Anick et al [36] to analyze an infinite buffer ATM multiplexer which is
loaded with the superposition of statistically independent and identical On/Off
sources. They assumed that each active source generates one unit of information
in an active period and they took the average duration of the active period as the
unit of time.Stern and Eiwalid [38] extended the analysis to the case of non-identi-
cal fluid sources. The finite buffer case was also studied by Tucker [39]. This
approach accurately captures the correlation behavior of the superposition traffic,
but does not account for the stochastics (cell fluctuations) in flow. For this reason,
it has been found that the fluid approach gives approximate results which are
accurate only for very large buffer sizes [8], since for small buffers the stochastics
become more important than the correlation. Recall that the fluid model does not
take into account the cell fluctuations within bursts. The model also suffers from

numerical problems for large systems, due to state space explosion.
1.8.3 The Matrix-Analytic Approach (ex. [40],[41],[42])

This, we believe, has been the most widely used approach and it makes
extensive use of spectral decomposition theory and the properties of Kronecker
product of matrices. Let i, and J, denote the buffer occupancy and the phase of
the arrival process (ex. number of arrivals) immediately after the k! departure
from the queue, respectively. The matrix-analytic approach is based on the fact
that the transition probability matrix of the pair (i,,J/,) in two successive depar-
iures has a block-partitioned structure which is similar to that of an M/G/1 queue-
ing model. Further the application of the matrix analytic technique assumes that

the Markov chain governing the arrival process is finite. This assumption is gener-
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ally accepted as, in actual situations, the number of packets which can arrive dur-
ing a slot is often bounded. For excellent description of the major steps of this

approach, the reader is referred to [41].

The main advantage of the matrix-analytic technique is that, unlike the previ-
ous two methods, the approach is exact and takes into consideration the individ-
ual contribution of each source. However most of the performance measures
which are derived from this method are given in general matrix forms whose eval-
uation require extensive numerical computations. In addition the computational
complexity of this approach increases rapidly with increasing number of sources.
As an example, consider a statistical multiplexer which is loaded with traffic gener-
ated by N non-homogeneous On/Off sources, each being described by a two-
state Markov chain. Such a system will be described by a 2V - state Markov chain,
where each state corresponds to the number of each type of active sources. This
exponential growth in the size of the state space can put some constraints on the

size of the system that can be studied with matrix-analytic techniques.
1.8.4 The Markovian Arrival Approximation

The method consists of approximating the traffic generated by the superposi-
tion of ATM sources by a generic source model, consisting of a Markov modulated
process. This is a doubly stochastic process which is characterized by a multi-
state source whose state transitions are governed by a Markov chain. in each
state (/) , i cells are generated with a state dependent rate, p,. The most popular
Markovian process is the Markov Modulated Poisson Process (MMPP). The dis-
crete-time equivalent to the MMPP is the Markov Modulated Bernoulli Process
(MMBP) [33] or the Switched Batch Poisson Process (SBPP) [34]. In the simplest
2-state MMPP, four parameters have to be estimated through statistical moment

matching methods between the actual process and the surrogate MMPP model.
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Most often, one has to select the four MMPP parameters so that the following

characteristics are matched:

- The mezan arrival rate.

- The variance to mean ratio for the number of arrivals in a short period.
- The variance to mean ratio for the number of arrivals in a long interval, and
- The third moment of the number of arrivals in a short interval.

The main advantage of the approach is that there are algorithms, based on
the matrix analytical approach, which are available for the analysis of the MMPP/
G/1/K queue ([43],[44],[45].[46]). However the applicability of this method is lim-
ited by the complexity of the solution method which requires two steps. First, a set
of nonlinear equations has to be soived to estimate the parameters of the model.
Then the queuing algorithm has to be run to analyze the model. More importantly
the Markovian Arrival approximation is limited by the fact that the accuracy of the
estimation procedure, for the surrogate model parameters, is critical for the suc-
cess of the approximation. Further, the accuracy of the MMPP model decreases
when the sources have long burst durations and the characteristic knee, shown in

figure 1.2, could not be reproduced from the mode! [2].
1.8.5 The Diffusion Approximation Method ([47],[48])

In this method, the aggregate traffic of ATM sources is approximated by a dit-
fusion process, consisting of the Ornstein-Uhlenbeck process. The buffer occu-
pancy is also approximated by a diffusion process. Kobayashi and Ren ([47],(48])
have shown that this process provides a good approximation for the superposition
of On/Off sources. Very recently, it has been shown that the diffusion process is
also applicable for the modeling of more general sources, with arbitrary number of

states and general distributions for the states’ duration.
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Besides these five approaches, some other methods have also been pro-
posed (ex. [49],[50]). In particular, a model with binary Markov sources was ana-
lyzed by Bruneel [51], using a generating function approach. Brunee! considered
the case where each active source generates at least one packet in each slot. He
derived a functional equation for the PGF of the buffer occupancy. From the func-
tional equation, Bruneel was able to extract explicit expressions for the steady-
state mean queue length. The reader is also referred to [2] for some further read-
ings related to traffic modeling and queueing techniques which have been devel-

oped for ATM multiplexer models.

In the first two parts of this dissertation, we introduce a new approach for the
queueing analysis of ATM multiplexers with bursty sources. These sources are of
the On/Off Markovian type and they have been widely used in the modeling of
Broadband traffic. The proposed approach handles the singie server, as well as
the multiserver queueing problem, for both homogeneous as well as heteroge-
neous traffic sources. Our approach is basically an extension of the classical Gl/
D/1 analysis to the ATM multiplexer case. Through some elegant mathematical
manipulations, we show how to rewrite the transient joint generating function of
the ATM system into a suitable form. We then take transform, with respect to dis-
crete-time, and determine sufficient number of linear equations to solve for all the
unknowns in this generating function. By direct application of Abel's theorem, we
show how it becomes possible to extract the steady-state joint generating function
with a remarkable ease. It turns out that our steady-state results for the joint gen-
erating function of the ATM system are the indirect solutions to some, rather com-

plicated, “nonlinear” functional equations.

So far, we have focused our attention on the ATM multiplexing problem by

looking to a single queue in isolation. A more interesting case arises when we
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deal with the performance analysis of muitistage queues. In an ATM environment,
and because of the single path (virtual circuit) routing of packets, the queuing
analysis of tandem queues can be considered today as one of the major research
area in the performance characterization of ATM systems. As we will explain in
the subsequent section, the transition from a single ATM queue analysis to a tan-
dem queue analysis is by no means trivial. As the traffic streams within the ATM
network interfere with one another, additional complexity in the analysis is intro-
duced and it gets worst as the network size (i.e. the number of queues) increases.

1.9 ATM Tandem Queuing Networks

Despite the flexibility of the asynchronous transfer mode in supporting a wide
range of multimedia services, each with its own bandwidth and QoS requirement,
and despite the availability of ample bandwidth within an ATM network, there are
many network design and performance analysis problems which still remain
unsolved. For instance, today there is a strong need to develop the performance
analysis of an ATM network since, so far, most of the queusing models related to

an ATM environment have been confined to a single multiplexer or to a switch

analysis.

An ATM network that consists of multiplexers and switching elements with
output buffers can be modeled exclusively as a network of queues where queues
correspond to the network’s buffers and servers correspond to the network'’s links.
The understanding of the change of traffic characteristics as packets pass through
a number of switching nodes is of a crucial importance in ATM networks espe-
cially in the context of call acceptance control (CAC) (which decides wether or not
a new call set up request can be accommodated). As mentioned earlier, a CACis
often based on a set of traffic descriptors that partially characterizes the new

incoming packet streams. However because of the inevitable interference with
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other packet streams in the network nodes, these traffic descriptors might be the

subject of substantial change as the packet stream traverses the network. This

may lead to severe network congestion, which is not anticipated by the CAC.

One of the most powerful results in queuing network research is the theory of
the so-called product-form networks. By extending the pioneering work of Jackson
([52],[53])] some networks have been found to retain the product form solution.
Unfortunately, ATM tandem networks do not enjoy the practical application of the
product-form solution results. In addition there are many other factors which com-
plicate the exact analysis of these networks. Among these we can cite the follow-

ings:

- The arrival process to each node is often complicated and exhibits strong
correlation. This correlation among arrivals makes the corresponding analysis far

more complicated than that of uncorrelated case.

- The interaction among the traffic streams in the network gives rise to some,
rather complicated, statistical dependence among the nodes. This results in some
boundary functions in the expression of the joint generating function of the sys-
tem, whose number grows exponentially with the number of nodes. The determi-
nation of these boundary unknowns is generally very complex, even for a four-
node network with simple uncorrelated arrivals and partial interference (see for
example ([54]].[55].[56]).

- Since, as mentioned earlier, the joint generating function of an ATM tandem
network does not posses a product-form solution then the direct application of the
well known combined iterative/decomposition methods ([57],[58]} become hard to
justify. Recall that the combined iterative/decomposition techniques attempt to

decompose a product-form queuing network into smaller subnetworks which are
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easier to analyze than the original network. By doing so it is found that the sum of
the costs of solving each subnetwork times the number of iterations is usually far

less than the cost of solving the whole network.

For these reasons, and in the lack of exact methods, most of the previous
work in the analysis of tandem networks with correlated arrivals has either
focused on simulation experiments (ex. [59],[60]) or on some approximate mod-
els, whereby each node is analyzed in isolation, after fitting an approximate model
to the departure process of each node (ex.[61],[62],[63]). This last approach,
which is based on decomposition techniques [64] has been applied extensively in
the approximate analysis of computer communications networks [65]. We will fur-
ther elaborate on this approach later on, when we will discuss the analysis of ATM
tandem gqueues in chapter 5. In particular, we will also demonstrate the applicabil-
ity of our proposed approach (originally developed for a single multiplexer analy-
sis) to the steady-state performance evaluation of a tandem queueing network.
Qur goal is to establish a general framework for the exact performance analysis of

some tandem configurations which arise in an ATM environment.

1.10 Outline and Organization of the Dissertation

The intent of this dissertation is to offer an alternate simple and efficient
approach for the transient and steady-state analysis of ATM muttiplexers with cor-
related arrivals. In addition, as we will show shortly, the proposed approach can

also be applied to analyze ATM tandem queues.

In the first part of this thesis, we consider a discrete-time single server ATM
multiplexer whose arrival process consists of the superposition of the traffic gen-
erated by a number of independent binary Markov sources. This arrival process

belongs to the class of discrete-time batch Markovian arrival processes (D-MAP)
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and is extensively used in the modeling of voice, video and file transfer. A new
approach for the transient analysis of the resulting queue at the celt level is pro-
posed for the single type and for the multiple type of traffic cases. The approach
uses an embedded Markov chain approach and is an extension of the classical
method used in the transient analysis of single server queues with uncorrelated
arrivals {66]. We derive closed-form expressions for the transient/steady-state
marginal probability generating functions (PGFs) of the queue length and the
rumber of active sources. From these, time-dependent/steady-state performance
measures, such as the mean and variance of the queue length, are derived. In
addition, from the steady-state PGF of the queue length, derived here, and using
the results of [67], closed form expressions for the steady-state PGF of the packet

delay and its corresponding first two moments are presented.

In the second part of this thesis, we extend our approach to the general multi-
server case. The results obtained in the first two parts of this dissertation can be
used to answer some significant questions which arise in the design and perfor-

mance analysis of ATM systems, such as:

- What is the right buffer size required for a predetermined number of sources

and grade of service?.

- For a given buffer size and grade of service, what is the maximum number of

sources which can be accommodated by the system?.

- What is the significance of the transient analysis results in the context of

congestion control?.

in the third part of this thesis, we show how the proposed approach can aiso
be applied in the performance analysis of a tandem queuing network with corre-

lated arrivals. The main thrust of this part of our research was motivated by the
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need to carry an exact performance analysis of an ATM system at the network's
level since, so far, most of the queuing models related to an ATM environment
have focused on a single multiplexer or on a switch analysis. By deriving the
steady-state joint generating function of the system, we were able to extract
closed form expressions for the moments of the queue lengths, the average delay

at each node as weil as for the total average delay in terms of the parameters ot

the network.
We have organized this thesis as follows:

The next chapter gives an overview of the transient and steady-state analysis
of a single-server queue with uncorrelated arrivals and introduces the general
framework of the approach, that will be used in the subsequent chapters, to han-
dle the correlation in the arrival process. in chapter 3, an ATM single server queue
loaded with m homogeneous binary Markov sources is considered and a func-
tional equation relating the joint PGF of the system between two consecutive slots
is given. The functional equation is put into a suitable form which makes it possi-
ble to derive transient and steady-state expressions for the marginal PGFs of the
gueue length and the number of active sources. From these, time-dependent and
stationary performance measures are obtained. We also show how to recover the
mean queue length formula derived in [51], despite the unavailability ot the PGF
there. We then present an asymptotic analysis for the infinite source model, which
will be followed by the investigation of the Idle and Busy periods of the system.
Next, we allow the sources to have different statistical characteristics and hence
generalize the single server queueing analysis to the multiple types of traffic case.
Chapter 4 generalizes the analysis to the multi-server case. In chapter 5, we
extend our work to the exact steady-state analysis of ATM tandem configurations,
with a special emphasis on a two-node tandem queueing network. We assume

that each node is fed with the traffic generated by the superposition of identical
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binary Markov sources and model the system by a discrete-time multidimensional
Markov chain. A functional equation relating the joint PGF of this system between
two consecutive slots is derived and then rewritten in a suitable form which allows
us to derive the marginal PGF of the buffer occupancy distribution at each node.
Some results for the mean queue lengths, mean packet delay as well as for the
total delay in the network are provided. Finally, in chapter 6, we give a conclusion,
followed by a summary of the main contributions of the thesis and some sugges-

tions for future research.



CHAPTER I

The Discrete-Time GI/D/1 Queue Revisited

2.1 Introduction

The discrete-time GI/D/ system is a single server queue, with infinite capac-
ity. Time is divided into fixed-length intervals, called slots and packets which arrive
during a slot cannot be served until the beginning of the next slot. The queue is
characterized by a deterministic server, whose service time equals to a single slot
and by a rengwal arrival process, whose inter-arrival times are general indepen-
dent (Gl) and identically distributed random variables. More specifically the num-
bers of packets arriving at the queue during consecutive slots are independent
and identically distributed (i.i.d) positive discrete random variables with a general
probability distribution, with generating function V (z) . Further it is assumed that

the equilibrium condition, V' (1) < 1, is satisfied.

The discrete-time GI/D/1 model has many applications in communications
systems, and appears in the context of many polling and multiplexing (mainly
Asynchronous Time Division Multiplexing (ATDM})) problems. Among the main
constraints which limit the applicability of this model is the independence assump-
tion in the input packet stream, which is violated in many practical communica-
tions systems as arrival processes often exhibit a high degree of correlation which

significantly affects the queue length behavior.

in this chapter, we focus on the number of packets in the GI/D/1 system,
which thereafter will be referred to as buffer content. Our main goal is to familiar-
ize the reader with the unifying approach which will be subsequently used in the

analysis of the transient and limiting behavior of the ATM multipiexer. In fact, as
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we will see in subsequent chapters, our approach to the queueing analysis of
ATM multiplexers will be based on an extension of some of the techniques pre-
sented in this chapter. Interestingly, it turns out that there are some results (ex.
transient probabilities of an empty system) in the GI/D/1 case which are almost

identical to those corresponding to the ATM single-server queue.

Throughout this chapter, and as well as for the remaining of this thesis, we
adopt the length of a slot as the unit of time. In the time axis, and following the
assumptions in [51], slots will be sequentially numbered in ascending order of
positive integers such that the 11 slot is located in time (51, where (=1 2...). Let
j and j* be the time epochs immediately before and after time j. Then, through-
out our analysis, we assume that a packet which has completed service in siot j, is
considered to have left the system sometimes in (j,j). Further, a packet whose
service time is assumed to have taken place in slot (j+1), starts his service in the
time interval (j,j* ). Although the arrival times of packets within a time slot are arbi-
trary, we will assume that packet arrivals during slot j take place at time j . This
assumption is introduced because, in discrete models, changes in the system
state typically take place at the slots’ boundaries. Hence a message which com-
pletes service at the end of the j‘” slot leaves behind it ali those messages that
have arrived in slot j as well as those that have been waiting at the beginning of

the slot.

An imbedded Markov chain analysis of the GI/D/1 queue yields the following
well known equation relating the probability generating function (PGF) of the

queue length between two consecutive slots:

Qi1 (2) — Q44 (0}

z

0,0 = V| 04, | k2l 2

where Q,(z) is the PGF of the buffer occupancy distribution at the end of the k"

slot and V(z) is the PGF of the number of arrivals during a slot. In the sequel,
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(2.1) will be referred to as a "linear" (as opposed to a "non-linear’) functional

equation.
Traditionally the steady-state PGF, Q (z), of the queue length is derived from
(2.1) by argueing that if a steady-state solution exists then we must have:
Jim 0,,,(2) = JimQ,(z) = Q(2) (2.2)
From which we get the well known formula:

_(=-pz-DV ()
B z-V{2)

Q(z) (2.3)

where p = V'(1) is the load of the system and is determined from the iiormaliza-
tion condition, @ (1) = 1.

Alternatively, it is possible to derive Q (z), using a well known approach in queue-
ing theory, which can be found for instance in [66] and [68]. First let Q (z, w) and

P (w) be the one-dimensional transforms, defined by:

0w = Y g (v (Iwi<1) (2.4a)
k=0

Pw) = ¥ p (01 (w <1) (2.4b)
k=0

where p, (0) = Q,(0). Then by substituting (2.1) into {2.4a), and using the shift-

ing property of this w transform, we obtain:

-P
0 (2w) = 0o () = wv () [ZELZTC0 o p iy ]
or equivalently:

Qp(z)z+ (z=1)P(w)wV(z)
z-wV(2)

Q(z,w) = (2.5)

Next, by applying Abel’s theorem (Appendix Ad) to Q(z, w) ,as given above, we

canwrite 0 (z) = lim (1-w)Q@(z,w),or equivalently:

w1

_(=-p)(z-1)V{(2)
Q(z) = 7=V (2)

(2.6)
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where we used the fact that p (0) = klim p, (0} = lim (1-w) 0(w).
— oo -

w1

However this approach does not work if the PGFs of the buffer occupancy distri-
bution, between two consecutive slots, are related through nonlinear functional
equations, such is the case for the ATM multiplexers considered in the next chap-
ter. In such cases, the non-linearity can be handled by expressing the PGF of the
system at the end of the k! slot in terms of the initial PGF and the probabilities
that the system was empty during all previous slo.s. Such an approach, thereafter
referred to “the modified transform technique “is illustrated below in the context of
the GI/D/1 queue analysis. We first start with the full characterization of the tran-

sient PGF of the GI/D/1 queue length distribution.
2.2 The Transient Analysis

The main idea is that by considering the first few values of k in (2.1), one

might easily express @, (z) as follows:

0, = [ ]Qo(z)ﬂz—l)):[ (Z)] pe-;(0) (2.7)

j=1
where the transient probabilities of empty buffer, p, (0) = Q,(0), are the only
unknowns which remain to be determined in order to fully characterize 9, (z) .
Note that, in (2.7),0, (z) denotes the initial PGF of the buffer content and it is pre-
sumably known. To evaluate p, (0) s in (2.7) we proceed as follows:

First, by substituting (2.7) into (2.4a), we get:

= &y i
C(z,w) = QO(Z)Z—_—WZVTZ)'*'(Z-U Z 2[ EZ)iIPk_j(O)Wk

= 20 gy * =D Z [ ey 0

j=1 k=

- V(z)wj
= 00 s+ - D T [ | PO

j=1
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or equivalently:
Qp(2yz+ (z— 1) P (w)wV{z)

Qzw) = z—wV(2)

(2.8)

The above expression is identical to the one previously derived in (2.5) and which

can be found for instance in [66].

Next, from Rouchés theorem (Appendix A1), it can be shown that if the system is
stable, then the equation:

z—wV(z) =0 (2.9)
regarded as an equation in z, has a unique root, z, inside the unit circle. In addi-
tion since Q (z, w) is analytical inside the poly-disc izl < 1;lw] < 1) [66] then the

numerator of (2.8) must alsobe zeroat z = z . Hence we have:

Qo(F)Z + (=P (Wwz =0
or equivalently:

P(w) = QO(Z* (2.10)
1-:

The above suggests that in order to find p, (0) , one may solve for the unique root

of (2.9) inside the unit disk and then invert P (w) .

Alternatively, from Lagrange's theorem (Appendix A2) and with « =0,

y(z) = QIO_(? . g(2) = V(z) , equation (2.10) can be expressed as:

0o(2) =k kel [ Oo()  Q(2)
P(w) = =27 =p(,(0)+zl"kT d [V(z)’{ 0o 40 m (2.11)
k=1 2=0

-z d*™ ! (1-7)2 1-2

and therefore the transient probabilities, p, (0) 's are given by:

_ 1 d(k“l) [ Qol2) Q'y(2) \ .
pk(O) —HF[V(Z) [(1—2)2'{' 1=z }} . V(LZI) (212)
In the special case, where the system is initially empty (i.e.0,(z) = 1) the above
reduces to:
1 g% v* }
(0) = — Y(k=z1) (2.13)
P kg1 (1-2)2

2=0
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Using Leibniz's rule for the k'derivative of a product, and as shown in Appendix

A3, the above expression can also be written as:

P (0) = %kzlil}ﬂdi:[vu)*] Iy Vikz1) (2.14)
i=0 z
Once the transient probabilities of empty buffer, p, (0) 's, are found, the transient
PGF of the queue length at the end of any particular slot is completely defined as
given in (2.7). This aiso enables the derivation of time-dependent performance
meacures, such as the transient mean and variance of the queue length at the
end of any particular slot. In addition, and as illustrated in the next two examples,
there are situations were the transient probabilities, p, (0) s, are easier to derive

by inverting (2.10) with respect to w, rather than by using (2.12) and vice versa.

2.2.1 Example 1: The M/D/1 Case

Since for the M/D/1 queue, the PGF of the number of arrivals during any par-

ticular slotis V(z) = ¢ P72 then, with an initially empty bufier, we have:

k
—p({l-2) A -p(1=2)
¢ e
z } +(2-1).zl[ z
]‘:

From (2.14) and using the fact that:

Q,(2) = [ ]jpk_j(O) (2.15)

i _ak(1- C ok
- dleoeny| o ot

e d
z=0 “

4 1v(n"
dz

z=0
we get the following closed form expression for the transient probabilities p, (0) 's:
S k=)

D e (pk)’ Vkz1)
i=0 ’

p (0)

e’

PR

(pk)** H, (2, k+2,pk)
G+ 1!

¢ o (ph)*H, (2, k+2,pk)
k+ 1)1 (2.16)

It

(I-p)+



37

where H, is the generalized (known also as the Barnes's extended) Hypergeo-
metric function, which, for integers n and d, is defined by:

oo

1(n+1—1)' (d=-1' ;
z -

g(mdz) = -1 d+i-Dt°

(2.17)

Equations (2.15)-(2.17) completely determine the transient PGF of the M/DA

queue length distribution at the end of any particular slot.

2.2.2 Example 2: The Geo/D/1 Case

This example illustrates the case where, sometimes, it becomes more conve-
nient to solve for the unique root of (2.9) inside the unit circle and then inver
P (w), asin (2.10), in order to compute the transient probabilities, p, (0) s (which
are the only remaining unknowns for the full characterization of the transient PGF

of the buffer content).

In the Geo/D/1 system, the number of arrivals during consecutive slots are
modeled as independent geometrically distributed random variables which are
characterized by the PGF, V(z) = 11_;; For convenience, we express this PGF
interms of the load, p = V' (1) = 1—%, of the system and, hence, we can write:

1

14 (Z) = W—‘:_

If the system is initiaily empty, then from (2.7), the PGF of the buffer content at
the end of the k¥ slot is given by:

2 = [W:T:Ez‘)’} ”Z[ (e sz"**J‘“” (2:18)

Next, it is straight-forward to verify that the solution of the equation z = wV (z),

which lies in the unit circle is given by:

2
;= 1+p—J(1+p) —4wp (2.18)
2p
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and hence from(2.10), we have:

(1=p) +4(1+p) 2= dwp

Plw) = 201 - w)

(2.20)

Expressing the radical term in (2.20) in terms of the infinite Binomial series yields:

= 11

Jaep-awp = 3 |3|(1+p) ! % (~2pw)’ (2.21)
k=0|k

where the Binomial coefficients are given by the general formula:

nl _ I'in+1)
WO T+DTn—r+1)

(2.22)

with T (x) being the Gamma function defined by:

T(x) = sz_]e'zdz
0

} = Jnand T(x) = (x=1)T(x-1);(x>0), among oth-

b2 —

and which satisfies T (
ers [69].

Finally, substituting (2.21) into (2.20) and taking the inverse w transform of the
resulting expression yields the following closed-form expression for the transient

probabilities of an empty buffer:

« [1
1 = i -2i
pi(0) = 5| 1-p+ 2 |2 (=4p) (1+py'72 (2.23)

i=0|;

To the best of oL .10wledge, the expressions for the transient probabilities of
an empty buffer as given in (2.16) and (2.23) are new results, though, we should
point out that their derivation in this thesis arises as the result of an illustration,

rather than being an objective by itself.
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2.3 The Steady-State Analysis

The steady-state PGF, O (z) = Llim Q, (2), of the GI/D/1 queue iength distri-
2 b
bution can be found by applying Abel's theorem to Q(z,w) as given in (2.8).

Hence we can write Q (z) = lim (1-w)Q(z, w},o0r equivalently:

w=1
_ (I=-p) -1)V(2)
B 7=V {(2)

Q(z) (2.24)

As expected, and because of the Markovian property of the model, the steady-
state PGF is independent of the initial queue behavior which is embedded in the
Q,(z) term in (2.8). In addition, in (2.24) we have recovered the steady-state

result which was previously derived in (2.3) using the argument of (2.2).

2.4 Conclusion

In this chapter we have presented the transient and steady-state analysis ot a
basic discrete time model with infinite capacity, independent arrivals and deter-
ministic server. The main simplifying assumption in the analysis is the uncorrela-
tion in the arrival process, whereby the numbers of packets entering the system
during consecutive slots have been modeled as i.i.d. discrete random variables.
This slot to slot independence assumption in the arrival process has made the
analysis fairly easy, especially when dealing with the steady-state queue behavior
where the use of the classical argument given in equation (2.2) enables quick
extraction of the steady-state PGF of the buffer length from the general formula
presented in (2.1). However there are many occasions where the independence
assumption governing the packet arrival process becomes unrealistic. In particu-
lar, in an ATM environment, the packet arrival process to the buffers exhibits a
high degree of correlation as the users’ packet generation process is often bursty.
In order to handle this correlation in the activity of the users, more complicated

queueing models have been introduced. For these models, and as we will show
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shortly, the classical argument (2.2) in the steady-state analysis of the queue
length distribution does not allow the extraction of the steady-state PGF, mainly
because of the presence of "non-linear" functional equations relating the joint
PGF of the system between two consecutive slots. We believe that the failure of
argument (2.2) in deriving the steady-state PGF of the buffer occupancy distribu-
tion is among the main reasons why the queuing analysis tool in the Broadband
context has shifted towards matrix geometric and spectral decomposition

approaches, among others.

In the sequel, we will show how the use of the transform technique, described
in section (2.2), becomes a very powerful tool for the transient as well as for the
steady-state analysis of the queue length behavior of an ATM system. In addition
although this work deals exclusively with the superposition of binary Markov
sources in the modeling of the packet arrival process to the ATM multiplexer, other

correlated arrival processes might also be envisaged.



CHAPTER Il

Transient and Steady-State Analysis of a
Single Server ATM Multiplexer

3.1 Introduction

We have seen in chapter 1, that an ATM network can be viewed as a collec-
tion of nodes which are connected by a set of transmission links. Further, at each
node, switching elements are installed to route the incoming cells to the appropri-
ate output link of the node. For those cells which cannot be transmitted immedi-
atety, buffer space has been provisioned at each switching element. Generally
speaking, buffering can be provided at the input side, at the output side or at some
intermediate leve! of each switching element. A combination of buffering (such as

input/output) has also been envisaged [2].

In response to the ATM approach of statistical multiplexing, there has been a
tremendous interest among telecommunications researchers in studying the
queuing performance of ATM systems. Most often, the performance evaluation
has been carried out by considering ATM switching elements and statistical multi-
plexers. This chapter investigates the performance evaluation of ATM statistical
multiplexers in terms of the buffer occupancy and cell delay, among others. To
capture the bursty behavior of ATM sources, we have chosen the well known On/
Off bursty source model as the basic building block for the modeiing of the input

traffic to the multiplexer.

Throughout this chapter, we model an ATM multipiexer as a discrete-time

gueueing system with infinite storage capacity and a single deterministic server.
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Except for the arrival process, the modeling assumptions are the same as those

previously described for GI/D/1 queue and can be briefly summarized as follows:

- The time axis is slotted and the transmission of a packet starts at the begin-

ning of a slot and ends at the end of the same slot.

- Packets cannot leave the queue at the end of the slot during which they
arrived. In addition all packets have the same fixed size and the service discipline

is FCFS with no priority.

-The average number of packet arrivals during any slot is always less than

one so that the system is stable and a steady-state exists.

This chapter is divided into two main parts. In the first part, we focus on the
transient/steady-state queuing analysis of a single ATM multiplexer when the
arrival process consists of the traffic generated by the superposition of m homoge-
neous and mutually independent binary Markov sources, of the type described in
the next section. We develop a new transform technique and show how by trans-
forming the functional equation relating the joint PGF of the system between two
consecutive slots into a suitable form, it becomes possibie to derive transient and
steady state expressions for the marginal PGFs of the queue length and the num-
ber of activa sources. In the second part, we generalize the analysis to the heter-
ogenous case, where we consider the case of multiple types of sources, each with
its own statistical characteristics. it is aiso interesting to note that the resuits of this
chapter can also be applied in the analysis of ATM switching elements with output
queuing [70]. More specifically each output queue of the switch can be modeled
by an ATM buffer, of the type described here, with the logical input lines to each

output queue being replaced by the Markov sources.
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3.2 The Single Type of Traffic Case

3.2.1 Model Description and Notations

As shown in figure 3.1, we consider an ATM multiplexer which is fed with m
mutually independent and identical binary Markov sources, each alternating
between an On and an Off state. The multiplexer contains a buffer, shared by all
the sources, and which is used for the temporarily storage of the packets before

they are transmitted on the common output fink.

ATM

Output Link

\l//
1L

<>
<>
>
<>

FIGURE.3.1 An ATM Multiplexer Loaded with m Homogeneous Bursty Sources

We assume that during an “active” slot each source generates at least one
packet, with a PGF f(z), while during a “passive” slot no packet is generated.
This implies that State transitions are synchronized to occur at the slots’ bound-
aries according to a two-state aperiodic (for each state, the probability of returning
to that state is positive for all steps) and irreducible (all states are reachable from
all other states) discrete-time Markov chain. A transition from an idle to an active
state occurs with probability (1 —B), while the probability of a transition from an

active to an idle state is (1 — o). As a result, the lengths of the On and Off periods
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are geometrically distributed with means l—iaand 1—1-6 respectively (fig.3.2).
Next let:

tip = Prla sourceisactivej it wasidle during previous slot] = 1 -0

t;, = Prasource is active| it was active during previous slot] = o

and define the correlation index, A = ,; —t;, = &+ p -1, which is zero for a Ber-
noulli process. By choosing A =0, we can incorporate some slot-to-slot depen-
dency in the activity of a single source and hence in the packet arrival process to
the multiplexer. In fact when o and B are high (0<A<1)we havea “positive cor-
relation” whereby packets have tendency to arrive in clusters. Alternatively when
o and B are low (—1 <A < 0) we have a negative correlation where the arrivals are
more dispersed in time. Because of their simplicity and capability to capture some
of the correlation behavior which characterizes the ATM traffic, Binary Markov
sources have been widely used as basic building blocks to model Broadband traf-

fic, including voice (ex.[6]) and video [37].

B 1-o o
SRS ananas i
{ i | ﬂZ) ]
1-B M v
Off On

FIGURE.3.2 The Single Source Model

The queuing model under consideration can be formulated as a discrete-time two-
dimensional Markov chain. The state of the system is defined by the pair {i;, a;)
where i, is the queue size at the end of slot k and g, is the number of active

sources during slot k. From [51], g, , , and a, are related through the relationship:
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Uk m—ak
Jj=1 ji=1

where c; and d; are two sets of i.i.d Bernoulli random variables with correspond-
ing PGFs:

c(z}) = 1-a+az {3.1b)

d(z) =B+ (1-PB)z (3.1¢c)

In (3.1a), the first term represents the number of users which were active during

slot k and which remain active during slot k+1, while the second term represents

the number of users which were idle during slot k and which become active at the

next slot.

The number of packets, b,, which arrive at the multiplexer during slot & is

then:

b= 2 fis (3.1d)

ji=1

where f; , is the number of packets generated by the j* active user during slot k.
All the f; ,'s are assumed to be i.i.d with PGF f(z). We also note that since, in this
case, each source generates at ieast one packet per active slot then f(0) = 0.
This also implies that if the random variable i, is zero then a, must also be zero,
since packets cannot also leave the buffer at the end of the slot during which they

arrived [51]. Thus if the buffer is empty at the end of slot , then all the sources

should have been Off during slot k.

Bruneel [51] has done some initial work on the steady-state analysis of the
above model, using a generating function approach. He derived a functional
equation for the steady-state joint PGF of the system, from which he was able to

extract the first moment of the queue length distribution.



46

3.2.2 The Imbedded Markov Chain Analysis

Let:
. o nt o
{, o . .
0,2,y = El2%" = 3, ¥ 2¥p (i)
i=0j=0
denote the joint PGF of the pair (i}, a,), where p,(i,)) = Priiy=i.a,=j).1n [51l,a
functional equation relating the joint PGF of the system between two consecutive

slots is derived and is given by:

0,(2,Y) -0, (0, 0)

z

01 (2) = [AO-FENIT| L0,0.0] @2

where:

=c(y-f(z)) _ 1 —-o+oyf(z)
d(y-f(2)) B+ (1=B)yf(2)

Because on the right hand side (RHS) of the above equation, 0, (z, y) appears
with the substitution, y = ¥, equation (3.2) will be identified as being a "non-lin-

ear" functional equation.

Further, using the classical argument that for large values of k, the functions
Q,(zy) and @, (z,y) converge to the same limiting function, namely Q (z, ¥},
yields the following functional equation relating the steady-state joint PGF of a,

and i, [51]:

20(z,y) = [d(y f(N]1"Q(zY) +py(z-1)] (3.3)
where p, is the steady-state probability of an empty butfer. However, unlike in the
uncorrelated case, the above approach does not allow here the derivation of
0 (z,y) since the functional equation (3.3) cannot be solved because of the pres-
ence of the Y term on the RHS of (3.3). By considering those values of yand z for
which the second arguments of Q on both sides of (3.3) are equal, Bruneel [51]

was able to derive a closed form expression for the steady-state mean queue
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length, N, but the steady state PGF of the queug length could not be determined.
Under the more general assumption where zero packet arrivals are allowed dur-
ing an “active” slot, Daigie et.al{71] used a Matrix Analytic approach ([41],[72]) to
derive a general form for the solution of the PGF of the queue size, which involves
the inverse of an (m+1)x(m+1) matrix and the computation of the one step transi-
tion probabilities. An expression for the mean queue length, which also requires
the inversion of an (m+1)x(m+1) matrix and the computation of the transition prob-
abilities was derived. The solution for N, as derived in [71], could not be reduced

to the more explicit expression found in [51].

In the sequel, we propose a new approach which is an extension of the trans-
form technique previously applied to the GI/D/1 queue (sections: 2.2-2.3). The
main contribution of this chapter is to show how the new approach enables the
derivation of explicit closed-form expressions for the transient/steady state joint
and marginal PGFs of the system, as well as for some transient and steady state
performance measures. In addition our analysis assumes an arbitrary, but a priori

known, initial condition, @, (z, y) . But first we need to prove the following 2 impor-

tant intermediate resuits:
3.2.3 Proposition 3.1

Let @ (k) be the function defined by the recurrence relation:

O (k+1)=B (K, _,

®0) =y
Then:
Uk
dk) = XEk; (3.4)

where U (k) and X (k) satisfy the following recurrence relationships:
UOy=y;: U =(1-a) +ayf(z) : U= B+af (U k=1) + {1 ~a-Blf{2) Ulk=2) (3.5a)

X(0)=1: X(1)=p+ (1-B)3f(2) : XK= [B+af(2) ] X (k~1) + [1-a- Bl (D)X (k-2) (3.5b)
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PROOF

For k=0,1 (3.4) is =5 ously true. For k=2, and since ® (1) = Y then:

B 1 -o+ayf(z)

Cl-otara) _ L CTORRA-PIYO
=Y 7 —

SR S B)B+(?+g;’£}())

f(z)

®(2) = d(1)],

f(z)

CBref(@)]{(1-0) +oyf(2)} + [1-a—Blf() {y} _ U(2)
T BrefDVIB+ O-Pyf(2)} + [1-a=PBlf(2) {1} T X

Hence (3.4) is verified. Next let us suppose that (3.4) is true for the order k, let us
Uk+1)

prove that it is also true for the order k+1,i.e.: ® (k+1) = ST R

& (k+ 1) is obtained by substituting y=Y, into ® (k) , giving:

U(L)iy .

y= r= X(L)| (36)

Dk+1)=D (k)]
Next it is easy to prove (see Appendix AS and Ag) that:

Uk+1 X (k+1
U(k)|y=},=_}(-{-(—;'3-)- and X(k)iyﬂ:%(il'-)—)-

and therefore:

Uk+1) Xy Uk+1)

P+ = T XD X+ D)

which completes the proof.;3
3.2.4 Proposition 3.2

The functions X (k) and U (k), as defined by the recurrence formulas
(3.5a,b), are given by:
X (k) = C\AL+CyM5

(3.7)
U(k) = D)\ +D,\5



49

where &, ,, C; , and D, , are given by:

B FBrof()) +a(l-a-PIf ()

1.2 2 (383)

CL2=%¥ 2(y=yB-a}f(2) + (B+0of(2)) (3.8b)
2/ (B+af(2))2+4 (1 —a—B)F(2)

D, , = §$ 2(1-a+oayf(2)) - (B+af(z))y (3.8¢)

2/ (B+af(2))2+4(1-a-B)f(2)
PROOF

Equations (3.5a) and (3.5b) are homogeneous linear difference equations, with
constant coefficients, and they both have the same characteristic equation,

namely:

A= (B+af(2))h— (1—a-B)f(z) =0 (3.9)
Assuming two distinct roots, A, ,, and using the corresponding initial conditions,
specified in (3.5a,b), yields (3.7), where C, , and D, ,, as given in (3.8b,c) are the

“sonstants” which are found from the corresponding initial conditions.

It is interesting to note that the roots, A, ,, of the characteristics equation (3.8)

turn out to be {[411,[73]) the eigenvalues of the Probability Generating Matrix
(PGM):

Ay = { ; I'Bi\
(1-)f(2) of(2)

of the arrival process originating from a single Markov source. In particular A, cor-
responds to the Perron-Frobeneous eigenvalue (or spectral radius) of A (z) . This

gigenvalue satisfies the following relations [41]:

dn,
=1, PSPy sl —| =P, (3.10)

z=1

l2|z=l

where p_ denotes the single source average number of packet arrivals {per-slot).
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In [41] it was shown that the PGM of the superposition process, denoted by
T
A" (z), can be expressed as the kronecker product of the PGM's of the individual

processes; i.e:

AT(z) = AR ®A()® .... ®A(z)J

m

which has a dimension of 2™ x 2. In addition the Perron-Frobeneous eigenvalue
of the FGM of the superposition traffic is the product of the individual Perron-

Frobeneous eigenvalues of the Markov sources.

With the preliminary results of propositions 3.1 and 3.2 in hand, we are ready now
to tackle the non-linear functional equation (3.2), in a way which does not differ
much (though less trivial!) from the ideas discussed in sections 2.2-2.3. The next
theorem presents the key to one of the main contributions of this dissertation. As
we will show in subsequent chapters, the same principle will be applied to deal

with ATM multiserver queues as well as with ATM tandem queueing networks.
3.2.5 The Solution Method

By expanding 0, ,; (z,y) in (3.2) for the first few values of k, we can prove by

recurrence the following major result:

3.2.5.1 Theorem 3.1

The joint PGF of the queueing system under consideration, as given by the

functional equation (3.2), can be written as follows:

() B ()

(2, ¢(k))+(z—1)2—~pk (0 (3.11)
i=1
where p, (0) = 0,(0,0) isthe probability of an empty buffer at the end of the k!

slot, B (k) = [X(k)]" and @ (k) is as defined in (3.4).

o
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PROOF
Throughout this proof, we make use of the fact that if B (k) = B(k)1,_, then
B (k) = f—g-g(%u. This follows directly from the fact that X (&)1 _, = )'(",(Y_A(;:)_l)'
as shown in Appendix A5.
Hence for k=0, the functional equation (3.2} yields:
0,y =Bty (2EZEN D L oy
=B(I)Q0 (D(l))+B(_l)(z—l)p0(0) a.12)
For k=1:
0,(zy) = B(1) - {Q'(z'(b“:)_p‘(o) +pi(0)}
Substituting (3.12) in the above gives:
0,y = 22 5 Loy o@) + .‘ 2 (e 1py @) -2, 0+ By 0
= B_(.)_Qo(z D)) +{z~1 %; B_L.j)-pg_j(O)
2 jo1 7 (3.13)

and therefore (3.11) is verified for k=1,2 and obviously for k=0. Next let us sup-

pose that (3.11) is true for the order (k), i.e..

B
0u(2y) = )Qo(zd>(k)+(z-l)z L ey ) (3.14)
j=1

Let us prove that is also true for the order (k+1), i.e:

Qpr1(2,y) = (,:])Qo( ¢(k+1))+(z~1)2 U)pm _j0)  (3.15)

i=1
By substituting (3.14) into (3.2) we get:
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Bk kg
——TlQn(z.dJ(kH)) +{z-1} ¥ ——J—_U)—pk_j(O)—pk(O)
Op. (2y) = B {— 5 +p, (0)
Bik+1) Epg+1) B(D
= zk+1 Q(}(Z-‘b(k'*'l))"'(z"l).z 2’-_‘_1 Pk,_j(o)_—z_“'Pk(O) +B(1)Pt(0)

j=1

B(k+1) k+ip()
= Qo(z.d)(k+1)}+(z—-])j§]——zj—pk+l_j(0)

Hence (3.15) is proved and this completes the proof of the theorem.n

A comparison between the general forms of expressions (2.7) and (3.11)
reveals a striking resemblance, with the only difference being that, in the GI/D/1
case, V(z)’ (which has the interpretation of the PGF of the number of arrivals in j
service times) becomes simply B (j) in the correlated case. Next we show how
the new expression (3.11) for the transient joint PGF simplifies considerably the
transient analysis of the queuing system under consideration. We start our analy-

sis by investigating the dynamics of the binary Markov sources.

3.2.5.2 Transient and Steady State Analysis of the Number of Active
Users

Let A, (y) denote the marginal PGF of the number of active users during slot

k. Then from (3.11):
Ady) = Op(Ly) = B Qg(L @RI, _, = BRI APUDI _,- (3.16)

1 we further assume the same probabilistic initial state for all sources and denote
by ,(0) and =, (0} the probabilities of a source being initially Offand On, respec-
tively, then A, (») = [m,(0) +x, (0)y1".

Hence, using (3.16) and substituting for ® (k) = ;j—%— and B(k) = [X()1”

yields:
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Ay = B [m5(0) +7, (@ (0))7]_ | = [mg(OX (&) + 7 (U RN _

From the above and by substituting z=1 in (3.7-3.8) we get:

A = [my (k) +1, (k) y]™ (3.17)

where:

(k)

‘ 1-B k

I

no(k) l—nl(k)

Therefore the number of active users during slot k follows a Binomial distribu-
tion with mean mmn, (k) and variance mmn, (k) 7, (k). The steady-state PGF of the

number of active sources is obtained by letting £ — = in (3.17), giving:

A(y) = A, (0 = [rg+my]”

1-

where: n1=kliinm7tl(k)=2—_—a_—-ﬂ and "0=k"_‘,"m“0(k) = 1-n,. Therefore, in steady-
state, the number of active users follows a Binomial distribution with mean mm,
and variance mm m, Since each source generates, on the average,

Fodro.
F=ds)

=

packets per active siot, then the load of the system is given by:
1

1-p .
TTa-p

p=mrf=m

In order for the ATM multipiexer to be stable and hence for a stochastic equilib-
rium to exist, we require that the average number of arrivals per slot, p, is strictly

less than the average number of packets that can be transmitted within a time

siot, or equivalently:

1-B

We next focus on the transient/steady-state behavior of the buffer occupancy.
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3.2.5.3 Transient and Steady State Analysis of the Buffer Occupancy
Distribution

Let £,(z) = Q,(z 1)denote the marginal PGF of the queue length at the end
of the &7 slot. Then from (3.11), we have:

B (k - LB
P = 2800y + - 1) Z-ZIU—)pk_j(O) (3.18)
Z j=1
where:
By =B, = KU1 "= @M+ Ty (3.198)

- ~ ok, ok
D) = DU, _, = Uty _ Di+Doky (3.19b)
=L X () G+ '

Uk) = U k)| X (k=X (K, _,

y=1 "
. D;= D, _, vie {1,2} (3.20)
with C; , D; and A; as given in (3.8) and U (k) and X (k) asin (3.7).

From (3.18) we see that the p, (0) 's are the only terms which remain to be evalu-
ated in order to fully characterize the transient PGF of the queue length. The fol-

lowing theorem provides a means to compute them.

3.2.5.4 Theorem 3.2

Let P(z, w) and P (w) be the one-dimensional transforms, defined by:

P(zw) = ¥ P (2w (Iwl <1) (3.21)
k=0

and:

P(w) = 3 pp (0w (Iwi<1) (3.22)
k=0



55
Then:

bm—j %l Poj=%+lol am—j=1
v i SO
o - e = k=00 [ | :H:" ;| Poll Dby Dx G
P(z,w)=§ Z z il el

Kym-—K
i=0j=0xk=0 z—wlllz

m b Knm-—%
+(z_1) Z ["1(:1(:2 P(M?)Wlllz
k=0LK z—w?\.‘fk?_x

(3.23)
where the notations [x,y]* and [x, y]~ denote max (x,y) and min (x,y), respec-

tively.

In addition with, H (z) = A", we also have:

Qo (z%,r(z*))
Piw) = o7 (3.24)
where z* is the unique solution of the equation z = wH (z) inside the unit circle
hy—PB
and r(z) = -
") = oo
PROOF
From (3.18), the wiransform,P (z.w) = Y P.(2) w' where (iw| < 1) is given by:
k=10
e - B ()
Pz w) = ZB(L)QO(z.CD(L))[ ] +(z=1) 2 Z—pk J0wt (3.25)
k=0 k=0j=1

. - =k
We first look to the first term in (3.25) namely, / = ZB(k)Q(,(z,cb(k))[f}‘] .

. k=0
Since:

Q(2.B(0) = 3 37 19T po i)

i=0j=0

then, first by substituting for B (k) and ®(k) as in (3.19, 3.20) and, afterwards,

by applying the Binomial theorem we get:
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1= 3 330w w" petig (%]

k=0i=0j=0

&

© m m=f f

z‘[mr_j]‘zip"“’” By’ (Daryy’ " (Edy ()" Y]

k=0i=0=0r=05=0

k

1l

M s
™
M

Interchanging the order of summation gives:

lr+skm —(r+s) H)}k

> mm-jJ j=S~r-m-j-r
ZZZZ{"‘ -ﬂzpo(t,j)DDz cen T Z{‘ =

i=0j=0r=0s=0 k=0

Finally the last term in the above expression can be further simplified to yield:

~S = fmFeFam—f=r

i im-ji -] zPo(’J)DD2 Ci€a =
_ r s lrﬂi\m (res)

Next we consider the second term in (3.25) which can be expanded as follows:

o o A o
= (z=1) Y, Z_(ilpk ;0w = (2-1)[2 2(7 Pi—;(O) W —Zpk(ﬂ)wk:l
k=0j=1 k=0j=0 k=0
= (z-—l)[P(w) : ZB(f) wk—P(w)} = (z=1)P(w) - E(—f)—wk
k=0 Z k=1

Once again, substituting for B (k) as in (3.19a) and using the Binomial theorem
gives:
k

= =P Y (€ +Ch) " [2]
k=1

oo m - ) K o~ . m=X w
= (z-nP(w)-Eéi’j(clk‘.) (C2h3) [;]

k

k
rK~m=—K - 7\.’( ?Lm_KW
(z-1)P () 2H01 2 2[%}

k=1
morT (Chy) (oA
= (z=1)P (w)w [’”] A
k=0 z—wh llgz
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Therefore, combining both terms, we obtain:

o m m-j J' ,p (.j)[)-‘bj".i&r&m—'—r
2 W) = m~—j| |l ¢ Palh 102 GG z
P(;.M) = 2 E Z[ JZ|J‘ T
i=0j=0r=0s=0L 7 118 z=wAT A,

- K =~ m
(Ci1d) (C21y)

X m-x
z—wh 17\.;"

+ (z-—])P(w)wZ l:"il

k=0 K
or equivalently, with the change of variables, x = r+ s, we get:

Im—j.x]" ; . R wK=lnf—Ktlcl wm—=j=1
z |:m-—{l J Zpo i ) D) Djz C1C2J 2
o m m [=h(-—'()]’ ! K_I
Pzwy =Y 3 ¥ =

Kam~¥X
i=0j=0x=0 z—wA A,

-k a-m=-

m 1C,C
Fz=1)'Y m 12
x=0
(3.26)

where the notations [x,y]” and [x, y1~ denote max (x, y) and min (x,y), respec-

KP (w) w?\,‘fk?u *

K -%
2= whAy

tively. This ends the proof of the first part of the theorem.

Next we determine P (w) by invoking the analytical property of P(z. w) inside

the poly-disc (Iz1 £ 1;Iwl| <1} as follows:

First let ® = {0,1,2,....,m}. Then for each xe R, let us consider the roots of

the equation:
z=V(z) = wAiA] 7" (3.27)

Let a(z) = z and g.(z) = =V, (2). Since |L|<|A,j<1 and |l <1, then for each
ke R:

8 ()] = [wATAT T < A7

Further A7 ™" is a valid generating function (GF), and for a small €e>0 and on

Izl = 1+¢,a GF, G(z), satisfies: |G (z)| <1+eG' (1) [68].



58

(m-x) (1-P) B
T-a—P f. On |zl = 1+€& we also have

lh(z)] = (1+¢) and therefore if the system is stable, i.e. (p= ';il—mj%: 1), then for

o-p

each ke R, |h(2)] >|gc(2)jon Iz = 1 +e. From Rouché'’s theorem #(z) and g, (z) +#(z2)

Using this bound, we get |z (z)|<1+e

have the same number of zeros inside |zl = 1+¢. Evidently h(z) has one zero inside
izl = 1+¢ and therefore (3.27) has also 1 root inside |zl = 1+e. Moreover, since
floy =o0then it =0 and hence for any xe % - {0}, the unique roct of (3.27) inside
the unit disk is z = 0 which also appears in the numerator of (3.26) since 51‘z=0 is also
zero. For k =0, the corresponding term in (3.26) is given by:

oo m . .
i ~m=)~j - m m
2y Y p (i )Cy Dat (z=1)C2P(wywh,

P(zw) = L=U=0 o (3.28)
Z—Ww 2

Denote by : the unique ro0: of z = wH(z) = wh] inside |z <1. Since P(z,w) is
bounded on (|z| < 1;Iwl < 1), then the numerator of (3.28) must also be zero at z , which
implies that:

= i

. moLifDh
(z —DPWy+ Y Dz [E%]PO(I',J') =0
=0

i=0j

or equivalently:

P(w) = — 2~ (3.29)

-~

D4
where —

-
-

I
13

Nﬁtl (ol

D,
Next, if we let r(z) = E‘_: then, after some algebra, it is easy to verify that:
2

r{z) = __)L_z——B___
(1-B)f(2)

and therefore (3.29) becomes:

P(w) = Q_D(il_l_rg)_ (3.30)
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and this completes the proof of the theorem.

Through the result given in (3.24), theorem 3.2 enables us to completely determine the
transient PGF of the queue length distribution. It is also worthwhile to note the similarity

between the expression of P (w) as given in (3.30) and the corresponding expression

(2.10) in the uncorrelated case, for the GI/D/1 queue.

Next, we show how to compute the unknown probabilities, p,(0)'s, by application of

Lagrange’s theorem (Appendix A2) to (3.30). Therefore, with a=0, g(z)=H(z) and:

Oy (z,r(2))
y(z) = —Q—l—_—z—
Lagrange’s theorem yields:
Q(Z r( )) l ! Q(Hr( )) Q. (Z\r(:))
P(w) = —0———-——-— 0(0)+Z _—( )[0 + 01 - D
Ry (1-2)° o =0
This implies that:
1 4! ([ @Qolzr(z)) Qh(zriz))
) = =L (H(z) " D (k2 1)
Py kg AT [ (1_2)2 =z o

In the special case, where the system is initially empty, with all sources being in the Off

state (i.e. Q,(z.y) = 1), the above equation reduces to:

1 k
pelO) = o "’k [(’:(Z’ ] k2 1) (3.31)
or equivalently:
k=1
k
pi(0) = -Z(—l)~di[H( )] V{kz1} (3.32)

z=0
It is interesting to observe that the above for the transient probability of an empty
buffer is identical to that of the GI/D/1 queue (2.14), with V(z) = H (z) .In this case, finding

a closed form expression for the i derivative of H (z)* = A7* is not an easy task, though a
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recursive solution can be developed. We therefore propose a new approach,
which we ilfustrate for the case where each active user generates one packet per

slot (i.e. with f(z) = z).

3.2.5.5 Computing the Transient Probabilities p, (0)’s when f(z) = z

Let us assume a deterministic initial condition, whereby initially the buffer con-
tains i, packets with a, sources (a, <m) being in the ON state. This implies that

Q,(zy) = 2%

The idea of our approach is based on the fact that the equation, z = wi (z) ,
implies that:

1/m

2(2) - Brof(@) = J(Braf(2))P+4(1-a-Bf () (3.39)

1/m
With the change of variables, x = (%) , and after squaring both sides of the

above equation, we can rewrite (3.33) as follows:

X = Bx+axf(wxm) +(l—a-P)f(2)

or equivalently:
_ l—o- B m
x =B+ (a+ ——x——)f(wx )
When f(z) = z, this becomes equivalent to:
x = B+wg(x)
where:

g(x) = o™+ (1—o—-B)x""!

It is easy to verify that |wg (x)} < |x~ | is satisfied at all points x on the perimeter of
the unit circle. Then, from Lagrange theorem', the equation x = B+wg(x),

regarded as an equation in x has exactly one root, x*, inside the unit circle.

In addition, from (3.30):
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+ i . a2,
{z) (r(z))

1—z*

P(w) =

Substituting for r(z) and taking into account the fact that z = wx™ implies that

X = 7\.2, we obtain:

(M’X*m)io[ = TD i—a

_ Sy Lk oo Sk ag

P(w) = (1 ,f.)’"),ux _ (wx )a (x B,),, (3.34)
T (1=B)* (1 —wx*")

From Lagrange’s theorem (Appendix A2), with ¢ = B and:

yop = ) LB (3.35)
(1=B) (1 =wx")

we have:

my 0T % _py % = k| kel N
powy = 0D WD T g3 Y ["L ¥ e ]} (3.36)
r=p

(1~PBY™ (1 —wx*™) k=1k! dx* !

Our next goal is to develop the term,y' (x) g (x)*, which appears above. To accom-

plish this, we proceed as follows:

First, we expand v (x) in (3.35)as an infinite sum. To do so, we apply the Binomial

theorem to expand the term, (x - [3)"”, and we express the rational, in terms

] - M"Im
of a geometric series. Hence we get:

(wx"')iu—aoliz [ao}xl(—ﬁ)a“_[}
i=ol!

(1-p)™

y(x) =

Y, wi")’
i=0

= dg . -
I z 2 \ia(zl (—ﬂ)au_lwlﬂo—a”-xm““[’_ao)”

(1-B) ™/ Zoisol!

Similarly, from the Binomial theorem, we have:
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k
j=0

I:ﬂock'j(] -—a- B)jx'"k_j

and therefore we can write:

1 L. ; ; I i+ig- mk+ i+ — -
\l!'(x)g(x)k= ’ B)a 202 Z [a[ﬂ&]ak-—j(l_a*ﬁy(_ﬁ)ﬂn Iw+o a"-(m(i+io—a0)+l)x (k+itig—ay) +1=1—
-y ti=oi=0j=0 ]

k
Next, it can be shown (Appendix A.7) that V (N 20), 2 (") = [ﬂk!x’“"" and hence,
dax

from the above, we have:

=1 , k R T 5 . 3 ) .
l:d* [y f‘x)]g(x) ]il - 1 _T 33 [aﬂ‘}’]l:m(k+r+so——a0)+l—l j:l(k_”!uk—J(l_a_B)J,
dx " k=P (1-B)Y"i=oi=0j=0[! k=1

) (_B)ao—-!wi+in-a“. (m(1'+l'0-£10) +D Bm(k+i+io—a0)+l—ié{:37)
In addition, from {3.35) we note that:
0 (ag#0)
W) = | (™" (3.38)
wp )m (ag= 0)
1-wp

Hence V (0 < ay<m) (3.36) and (3.37-3.38) yields:

o2 o a ke at T G Tk i+ ig—ag) + 1= 1] k=i '
Py e 5 3% Z__“A_____{U}[’]{ 0% J}aL-J(l-a-ﬂ)J.

(1=P)Y*,=1 1=0t=0j=0 ! k-1

m (ke itig—ag) +1—j=k

=By (m i+ ig-ag) + )P (3.39)

Let ¢, = iy —ao- Then with the change of variables: k = k+i+ ¢, we obtain:

L - a, K=i=¢ . -
Piw) =_,__.1_2 E zo z 0 “:,K ag K_l-—go me+i=-1-=j aK-j-%'j(l_a_mi,
(1-P)*i=0k=1+i+g, =0 j=0 K—i—¢y] 1 ; k-i-¢g,—1
0 J 0

. (_])ao-l(m(l._"_go) +1)B{m—l)x-j+j+in

or equivalently:

o K=l-Gy @y K-i-g, x . ., , .
Pz —— 3 3 5 3 ||l e ey
! i K-i-g,—1

(1-P) " x=14g, i=0 1=0 j=0 K-i-¢

. (—1)““-l(m(f+g0) +0) B(m-l)x—j+i+|‘n .
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If we further let « = x - i — ¢, then we obtain:

1 I B LN DL PR | VS B . .
P (w} = —— X ¥ ¥ E_l:() 1 Ju‘—"(l_u_ﬁ),f.
(I-B) 0x=i+gul=“=0j=0‘l ! . -1

(=D (k=) + D BRI (3.40)
Finally, identifying the coefficients of w® in (3.40) yields the following closed -form

expression for the transient probabilities of an empty buffer: ¥ (0 <ay<m):
p(0) =0 (0€k<1+i,—ag)

and V(k21+iy—ag):

k=g a5 1 s ) \ : — .
O w2 HH[mk”]’_’F"u-a-mf(-n"°"‘—”'“‘ﬂ—“”s""‘““"(3.41)

(1-p)*1=11=0j=0l! -
For the case, where all sources are initially OFF (ay=0), and using ((3.36)-

(3.38)), the transient probabilities p, (0) 's become:

k—iy ] -y
mi Ul [k = j—1|m k-1 |- e gyimti=t (i
pk(o) = [B +1§[j§(}[;][ -1 ] L U- ( (1 |3) B ( f”) (3-42)

0 (k<ig)

Another interesting special case arises if the system is initially empty will ail
sources being in the OFF state. Under this initial condition, and by substituting
i, = 0 in the last expression, we obtain:

k-1 1 , 1=
p(0) =B+ ¥ Y ‘1 E"k“f‘ I}T—g‘-_—”a (1—a—B)ypmI" (3.43)
ool vl !
In this case, equation ((3.41)-(3.43)) along with (3.18) give a closed-form expres-
sion for the transient PGF of the queue length. From this PGF, time-dependent
performance measures for the ATM buffer can be derived under various initial

states.
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3.2.6 Transient Mean of the Queue Length Distribution
dP,(z)
dz z=1
the end of the k" slot. Differentiating (3.18) with respect to z, substituting z=1 in the

Let NL =

denote the average queue length of the ATM multiplexer at

resulting expression and by taking into account the fact that:

Gl =D, =0, Gl _ =D, =1, M) _ =PBro-1 Al _ =1
dhy| _ 1-p . 4G _ 4G _(-By(-o-B),
dzl,., 2-a-f" dz 1, dz .., (2—o0-P)°
db;|  _ _dDi| _ (a-1)(1-0-P).
dzl.oy - dz (2-a-P)°
we get:
N, = B0 -k+—Qo(z,<b(k))| Lt lek _(0) (3.44)
Next let: J
% {(2)=Qq (2, d’(k))-ioizﬁb(k) po(i:J)-
i=0/=0
dA, (¥)

Then x' (1) = No+®' (k)|__ - A, where &g = 5 , With A, (»¢ being the ini-
: -

tial PGF of the number of active sources, as defined as in (3.16). One can easily

verify that:
BB, = 10201 = D] (- (a+p-1Y = 5= B"Bﬂl (o+p-1)%
and therefore:
Fo= ZUZRUAZ0B s @)y -k(1-p) +Fy
(2-o-)*
+ 3P~ (@ = DY) R Zp; §(0)

i= (3.45)
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or equivalently:

i _ k-1
Ef(l—(ﬁw—l) )[ﬂ—ﬁ—é ]—k(l-—p)+2pj(0) (3.46)
j=0

Using the results of the previous section, we can compute the transient probabili-

NL—-NO-F

ties p;(0)'s and hence, from the above equation, we can evaluate the average

queue length at the end of any particular slot.

We also note that the above expression (in the “time” domain) for the tran-
sient mean of the queue length is much simpler and more handy to use than the
corresponding result (in the transform domain) obtained in ([28],[30]) using the

spectral decomposition approach.
3.2.7 Transient Variance of the Queue Length Distribution
By differentiating (3.18) twice with respect to z and evaluating the resulting

expression at z=1, we get:

d°P,(2)

G

dz® Ti=) dz* =1

2R ir dQy (2. D (4))
_ 4Bk \ +k(k+ 1) -2A__B(") +2[‘”3(JU :l__““u
=]

42 kol o=
——2Q Z, (D(k))|z=|+2 E [dBU) _JP&_J(O)
=il dz = (3.47)

To evaluate the above expression, we also need the following intermediate
results:

dh 1-o) (l-a-p), A 2(0-0) (1-P) (1-c=P) 52 1-

= _p-ad-e by fh) _0-wd-pa-e B)mz+2 B

Z zal a+p- dz” 'y o (P+ue—2) -u-f

£C|  _dT|  _20-B) (@p-2p+1-arad) (@+B-1) g2 (1B (-B- )

d .oy a7 oy (B+o-2)* (2-B-ay?

d*Ds d“Dl _2(1-w) (=20 +3+aP-3B) (I-a-B} .2 (l-ﬂ)(l—ﬂ-B)f.,(”

dzz =1 dZ =1 (2-—0‘_..[})4 (2_(1_[3)2
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4B (k)

From the above, and after some algebraic manipulations, — and
v =1

B are readily obtained as follows:
1

dz ;=
dB (k) (1-B) (1-P~0) . k

= m F(1= (B+a-1)* +&

dz .., (2-—[3—(1)2 B p
2 _ 2
B (k) _ PN k 1-f .
3 zzl-—m(m 1)[ 2-po? f(l—(|3+0:—1))+k2_a_5%

(2-p-o)°

- -— - 2 - =2 - LA
+m([2(1 B (op-2B+1-aro) @b o2 (=B B,“’f"m}u-(aw—l)*)
(B+a-2)

*+2k(1~13)2(1—[5—00Lh2
(2-a-B)°

+2k(1—B) (1-0) (13—I3—a) lﬂz(OH”B-l)
fa+p-2)

T —By? . M (l— 1_ — - . (] =
+L(A 1 (1-p) 2+ El-w) (=P (l-a-P) 2+H1 B)f..“)J
(a+B-2)° 2-o-f

(2-u-PBy?

2 -
In addition, x" (1) = L0,(z. ®(k))| is given by:
dz"

z=1

S (-1 + 200 (01,2 +iG= 1 18 0, )+ B, 2 Jpeti)

(=3
=0j=0

i

- 2 - - 2
S P 1)) AT () 4D (R A (1) + 28 (k)|==1.__Qa?ay 0 (2. %)
é r=y=l

where:

O (k)0 = (€T () =D (D] 1= +B= DX +2k[D'1 (1) - Cy (D] e+ - DFIA (1)

- - - oy = - - 2 .
+2C (=0 (Hl(a+f - 1)""+4D'1 (NC () (c+p- nf-41C (D] (e+B-1F

+2K(C (1) =Dy (D] (@+ B~ 1A, (1) +2C (1) [C'1 (1) =D'1 (1]

with:
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-y - - -

-u d"c ~u d‘.D - d& = db
c(=—p| Dm=— ¢ = —.’\ Dy (1y=—
dz" 1. dz" 1 dz 1oy de la)
N ()=t
wa (===

From the above, the variance of the queue length distribution at the end of the Kth

slot can be then computed from the general formula:

. &P, (2)
Nk dz*

+N (1 -Np)

z=1
3.2.8 Steady State PGF of the Buffer Occupancy Distribution

In this section, we show how from the transient PGF of the buffer content
(3.18), we can derive the exact analytical expression for the corresponding
steady-state result. From this PGF we show how to recover the computational for-
muia for the mean buffer occupancy which was previously derived in [51] despite
the unavailability of the PGF there. We will also give some further results reiated
to the steady-state queue length behavior. We should note, at this stage, that the
application of other solution techniques to this type of queueing mode! (ex. multi-
variate Markov Chain analysis, Matrix Analytic and spectral decomposition tech-
niques) has often ended up with genaral expressions for the steady-state PGF
and for the first moment of the buffer size, which are not very explicit (ex. {40},
[741,[71]). In particular the combination of Matrix Analytic and spectrai decomposi-
tion approaches yields a general matrix expression for the marginal PGF of the
buffer content, which, most of the time, is expressed in terms of the probability
generating matrix (p.g.m) of the superposition arrival process (or its correspond-
ing eigenvalues, right and left eigenvectors). In addition, the exponential size of
the p.g.m adds to the computational complexity of the approach. We should also

remind the reader that approximate solution techniques, which are based on fluid
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approximation models, have also been proposed to deal with the type of problem

we are envisaging here (see for example [35], [36]).

The steady-state PGF, P(z) = klim P, (z), of the queue length distribution can
N
be found by applying Abel’'s theorem (Appendix A.4) to (3.23). Hence we can write

P(z)= lim (1—-w)P(z,w) Or, equivalently:

w1
{m—j.xl” I, K=l jmwtid i
Z [m;’-ﬂ[ ;lzpo(t HADy Dy CIC;I 7 z
L. %ed

P(z) = lim (1—w)22 g L= lxoiof
-1

Ka m—X
i=0j=0k=0 Z—Wlllz

SKm=X Ko ek
lim (1-w) ( 1)§',HC'C2 ikl
+ 1m —-W)lz—
z-—wlflz .

w31 K

Since the first limit converges to zero and since from Abel's theorem

lim (1-w)P(w) = p_(0) then the last equation reduces to:

w—1"

(Cll ) (C-»?L )

3.48
z—?\.f;l'; -k ( )

P(z) = (1-p)(z-1) Z H

Though p was already obtained in section 3.2.6.2, it can also be derived from

(3.48) through the normalization condition, P (1) = 1, as follows:

First we note that since &1|:=1 = 0 then, except for the first term, all the terms
under the summation in (3.48) become zero when evaluated at z=1. Therefore itis
convenient to rewrite the steady-state PGF of the buffer length as follows:

G(z)
P(z) = (I- -1 — 3.49
(z) = (I-p) (z )[F(z)+z_H(z)] (3.49)

where:

-k .

il (C Y ) (C‘:?L ) - m

F(z) = 2[ ) ! VR , G(z) = (C;_:?Lz) ., H(z) = 7\,?
= 172 .



68

or equivalently:

P(2) (z—H(2)) = (1-p) =N [((z-H (2) YF (2) +G (2)] (3.50)

Differentiating both sides of the above equation with respect to z yields:
P () z-HE)+PDU-H () = N-p 1 -H@D)F(2) +G(2)

+{z=1) (1-H(NF )+ (2-HENF(2) +G (2) ]
(3.51)

Since F(1) = 0and G(1) = H(1) = 1 then substituting 2=1 in the above yields:

e __m(l—B)-
p=H (1) —mf

in accordance with the result of section 3.2.5.2.

It is also interesting to note that we could have derived the steady-state load of
the system, p = 1—p_ (0), from the transient analysis results by determining the
steady-state probability, p_ (0), through the application of Abel's theorem to
P (w) in (3.30),i.e.:

Pe{(0)= lim (1-w)P(w)

w1~
Equation (3.48) is a fundamental result which has a significant impact on the

steady state analysis of the ATM queue length behavior, as many performance

measures can readily be derived from it, as illustrated below.
3.2.9 Steady State Mean and Variance of the Buffer Length

Let N denote the steady-state mean buffer length. Then by differentiating
(3.51) with respect to zand substituting z=1 in the resulting expression we get:

H" (1)

N=PO = samrmy

+G'(1) (3.52)
where:

m(1-P) (3-20!-2l3)f

G'(1) = .
(2-o0-P)

(3.53a)
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(1) =m(m--l)|:2(_l;E)j|2[f|2+ [2(1 a)(;l aﬂ);;xw D 72 zi;Eﬁf”m} (3.53b)
The expression of the average queue length, as given above, is remarkabie in the
sense that it depends only on the term of P (z) in (3.48), which corresponds to the
case k = 0. This expression is also equivalent to the corresponding result which was

derived in [51]. Next we focus on the variance of the buffer occupancy distribution.

By differentiating (3.51) twice with respect to z and by substituting z=1 in the resulting

expression we get:

WL HY( H" (1) o , )
P'(1Y = I_:H'—(I)P (l)+m+2[l H(F () +G" (1) (3.54)
where:
H™ (1) = m(m=1) ( -2)[ Bf
= mim nr 2 a— B]
2(1-a) (1-B) (e+P-1) .2 1-PB
+3m(m-—l)l:,) — E'EH: (2—(1—[3)3 1A +2 pram Bf (1):1
n [6(1 By (1 -} (of- 2B+a—2a+2)(u+ﬂ l)f's ﬁf"‘(l)
(@+p-2)° P
6(1 -a) (1-B) (a+p—- l)ff (1):]
2-a-p)° (3.55a)
1-B) (1-0-B)2,
Py = MBI 2 B (3.55b)
(2-0-P)
2
- 120 — . _
G“(l):m(m—l)l:“ B) (2 2a22B)i\ A [(1 B -a-B .,
(2=-o-P) 2-a-p)’
2(1—B)(aB 2ﬁ+1-a+a)(0t+[3-} 1-p
"(1

2(1—0)(1—3)((14'13—1)”]2 2(1-B)° (I*Ot B)[ﬂ }
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The variance of the queue length:

o’y = P (1) +P (1) [1=P (D] (3.57)
can be then easily computed using (3.52)-(3.56).

3.2.10 Asymptotic Analysis

Let us consider the infinite source model which corresponds to the limiting
case where m —» and p— 1 such that m(1-B) = A, in which case the load of
the system becomes P = lj_x—af [13]). The asymptotic results derived herein are
applicable to the case where the number of sources feeding the multiplexer grows
rapidly and the fraction of time spent by each source in the active state decreases

so as to keep the traffic intensity approaching the constant p.

Without any loss of generality, let us assume that the system is initially empty,
with all sources being in the Off state. First we focus on the transient distribution

of the number of active users, whose PGF (3.17) can, in this case, be written as:

n

k-1
Ay () = [1- (1-By-»Yy (a+B—-1)’}

i=0

Let A, () be the corresponding PGF under the above limiting conditions. Then:

A

k-1 m |-
I . . A i Al—:a()'-lj
Ay) = lim I)Ak()’) = lim | 1-—(1-) Yol| =e

i

e =0

The last expression shows that the number of active users at any particular slot, &,
k

1-o . .

= (J. In particular the corresponding

steady-state distribution is also Poisson with a rate o

follows a Poisson process with a rate A[

To derive the steady-state behavior of the buffer length under the above limiting

case, we proceed as follows:

First by expanding (B (k) =C;A% + C,A%) as a Taylor series around = 1 we get:
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S sk, (=B FE@ -1 1—[af(2)]k_} 2
B (ky=CiA+ Cohy = 1 e {af(z)—i—_—aﬁz—)— kl+O0((B-1)7)
Therefore:
= A (f(z) =1) l—laf(z)]"__ D
mim B8 = ml'_‘?’m[l"ﬁe‘ T—of (2) [af(z) T—of*
Af(z)-1) i-laf(z)]
_ i@ [k"“f“) o/ (2)

Next let P(z) denote the steady-state PGF of the buffer length, under the infinite
source model. From the expansion of the second term, //, in (3.25) (see the proof of
theorem 3.2), we note that the steady state PGF of the buffer content, as derived in

(3.48), originally comes from the series:

* Bk
P2y = (1-p) z-1) 3 20
k

k
=1 2

Hence, under our limiting case, with p = %ﬁ we have:

AR -DT, l-laf(z‘)]j
. =, 1-af [
P(z) = (1-p)(z-1) ) - (3.58)
k=1

Zz
The last equation expresses the steady-state PGF of the buffer occupancy distribution
in terms of an infinite series. Finding a closed form expression for this series does not
seem to be trivial, mainly because of the presence of the second expression in the

exponential term, We might, however, approximate (3.58) as follows:

k

Alf(z -1
. = | T i (z)
P(=(-p) =D T 5 | = (1-p) (z-1) —
k§| £ i z—H(z)

where:
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A —-1)
@) =e!7Y0
Note that since &' (1) = p, then the above approximation still gives a vaiid PGF
which has the same p as the original function (3.48). In this case, the first few

moments of the queue length can be easily derived. In particular, th:e mean of the

buffer occupancy distribution is given by:

A ()

=P = gyt

with:

" Af“(l) F()
A (1) = p*+ — 2A[1_]

3.3 The Multiple Type of Traffic Case

Motivated by the fact that fuiure broadband networks are expected to support
multiple types of communication media (and hence of information sources), we
devote this section to the generalization of the single server model of section 3.2,
to the more general case where the sources are not necessarily identical. More
specifically we assume that the multiplexer is fed with m, sources of type /, where
ie {1.2,...1}. Each source of type i alternates between an On state where it
generates at least one packet per active slot, with a PGF f,(z) ,and an Off state
where no packets are generated. The lengths of the On and Off periods of a type i
source are assumed to be geometricaily distributed with means : _1 ; and l+ﬂ, :
respectively. The rest of the model's assumptions are the same as thoee outlined
at the beginning of section 3.1. Let aik denote the number of active sources of
type i during slot k. Then:

m; -ﬂk

drey = ZC + Z d (3.59a)

j=1 j=1
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where cij and d; are i.i.d. Bernoulli random variables with corresponding PGFs:
dz) = (1-a) +oz (3.59b)
d(z) =B+ (1-B):z (3.59¢)
In (3.59a), the first term represents the number of sources, of type i, which were
active during slot k and which remain active during slot k+1, while the second term

represents the number of sources, of type i, which were idle during slot k and

which become active at the next slot.

Let bik denote the number of packets which arrive at the multiplexer, from type f

sources, during slot k. Then:

a'k
i (i}
by= X fix

i=1
where fj(‘,f is the number of packets generated by the f1 active source of type i
during slot k. All the 71 's are assumed to be i.i.d with PGF f;(z) . Next let b, be

the total number of packet arrivals to the multiplexer during slot k. Then:

b= 3 Y (3.60)

i=1j=1

Our first goal is to derive a functional equation which relates the joint PGF of the
system between two consecutive slots. Once this is done, the rest of the analysis

will follow the approach outlined previously for the single type of traffic case.
3.3.1 The Imbedded Markov Chain Analysis

The queueing model under consideration, here, can be formulated as a dis-
crete-time multidimensional Markov chain. The state of the system is defined by
(i,.a'r.a%. . a's), where i, is the queue length at the end of slot k. The evolution of

the queue length is determined by the equation:
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o1 = L, =U) +bp oy (3.61)
where U (x) is a binary-valued random variable, which takes the value 1if x>0
and 0 otherwise. Next let:

T sm ™ to .
Qu(z. ¥y - ¥ = E [z Hyi’] 53 % -3 2‘[H Yﬂmmm---
i=1 =0 W

Jo (3.62)
1=0j,=0,=0 i =1
denote the inint PGF of i, d'y d’...a%;. Then:
2 a'ka
ZJ’J‘"’Z*‘ T
i -UG et £ \
Qk+1(z'yl’y2’ . 'y-:) =F \: Hya,‘ﬂ} = (i) _z: 1j=1 . Hy?k-l
’_1 i=l

From the above, using (3.59) and averaging over the distribution of the £} s, the
¢'; and the d; yields:

v dlh.

z X
i =Ui =) =1
Quertzyy iy ¥ =E AU ﬂya* y
5 ﬂik-l
u z zfj!.l;)‘l e
_ =ty a=iget U 2 T
= E|E|z* Y.z - T1 ¥+ By @ ka1, T k41T k+)

i=1

= E[ ”“*"n (yf,-(z))"'**i]

o'y mng

; }:r-i- Z a‘
= E|E| "W n (yfi (D))=t

1 2 T-l
lk‘ak.ak....akj

W-UG) o i (21)
=E{z* v L1 /)] {—EI—L} }
i=1 & (:(2) (3.63)
or equivalently:
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Oret(2¥p ¥y - ) = H[di(}’iﬂ-(z) ):l .-E\:-:i*—vﬁ“) 1 Y‘,’:‘} (3.64)

i=1
where:

_ ¢ (3£ (2)) It oy (e)
Ay B G=Bie

In the sequel, the notation will be used to refer to the multidimensional sum-

J

O o -]
(=)

m

mation given by ¥ z
Jy=0j,=0 i

. Further, p, (L. jn.. oj7) @nd @, (2. ¥ ¥a - 2¥y)
0

w2

will be simply referred by p, (1.7) and Q,(z.3) respectively. Then from (3.64), by
taking into account the fact that when i, = 0 the random variables a"k’s must also
be zero (in other words, if the buffer is empty at the end of slot &, then all the
sources should have been Off during slot k), we can remove the U(xJ's by noting

that since:

) i T , ©3 ﬁ R . T H -
El:zjk—-b'(xk) ) HY‘:{l _ 2 z ztk—U(fk) . [H Y‘:.‘ pk(l,.f)

r T

w M . .
P00+ T S 2V Hy{.]pku.:r)

Li= 1

i
= ﬁ ) T . B _
=pk(0&6)+%|:2 Zzl'[:I:Ilyllijlpk(laj)"pk(ovo)}

=0j-%

then:

N T M TQp(z, Y Yo Yo) =Py (0)
0rne® = T [dos)] |

i=1]

+p, (0) ] (3.65)

4
where p,(0)=0, (0, 0) is the probability of an empty system. Expanding the
above equation for the first few values of k, enables us to prove by recurrence the

following result:
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3.3.2 Theorem 3.3:

The joint PGF of the system, as described by the functional equatior (3.65), is

given by:
Bk
0,29 = 28 00 (2.0,(0.0,0)... @ (k))+(z—1)2—(’—)p,\ _,;(0) (3.66)
Z j=1
where:
® (& U; (k) D]ilfi+D2ih‘2:i 3.67
i( ) X (A) Cli)“ilci+c2i;\‘§f ( ' )
with:
4o fi(z) FJB Ao (D)) +4(1 -, - BIf(2)
M,-,z,-=B' FOENT) a,f(z)) (1-0,~B)f: (z a.688)
Crim = 1. yi—yiB;—a)fi () + (B;+of (3.660)

2,[(B+af (2)2+4(1 -0, = B)S; (2)

o 2(1-o.+oyf(2)) - (B.+af .
D= l7 (1-o+ 0y (2)) = (B;+0fi(2)); 650
2,[(B,+of, ()2 +4(1 -, =B)f; ()

and:

T

B(k) = JJ 1X:(01™ (3.68d)

i=]

PROOF
Substituting k=0 then k=1 in the functional equation (3.65) and, once again, using
o _ Bk+1)
YtthenB (k) = B (D)
X (k+1)

immediate result of having: X; (&) = X; (0|, _y = -ﬁ—), we get:

1:) -p (0)
2 +p0(0)]

Bl Bl
D 00 (2.0, (1)@, (1) @, (1) + (2= 1) )

the fact that it 8" (k) = B(K)|, _y ;. _y

¥, ye (which is an

[Qo(za Yl\ Y:}_‘ LI !Y

s

0,(z¥ =B(1)

po(o)
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‘ (2.Y. Vs ¥) = p, {O)
Q:(z.}‘)=B(1)[QI SENRL AL

-
Y

B" Q1 B(1
LD (2 + (-1 :( )pn(())]-— (z)p|(0)+8(l)pl(ll)

B(1) [B (D
[—Z——Qn(z.d), (2).9,(2)..

2

B ()
R

g s

B(2
D (2. ®,(2.0,(2)... ® (21} + (2-1)

2

1

]

Therefore (3.66) is true for k=1,2 and also for k=0. Next let us suppose that

(3.66)is true for the order k, i.e.:

. _ B S B
Qi(zh) = — 00 (2 ® (1)@, (). © () + =D Y, —p,_;(0)  (3.69)
- _.'=1 -
Let us prove that it is also true for the order (k+1), i.e.:
Bik+1) k+1ph
Qo (2B (k4 1), @ (k+ Do DK+ D)+ (2= 1) B =Py ()
j=

Qs &) = ——
By substituting (3.69) into the functional equation (3.65) and using the fact that

B(k+1
( ) we have:

B (k) = ___B(l)
. B(l) B (k kBt
Qk+1(2,)')=_(z_){_.._(k_)-Q0(z.¢](k+1).(I)2(k+1)...(I)t(k+l))+{z—1) by ;’)pk_j(m }
z ji=1

B(1)
-T—Pk(OHB(UP;-(OJ

B{k+1 k+lp (g
{ )Qc(z,¢](k+l),¢2(k+l)...¢t(k+1))+(z—1)‘z—5)—;;*+]_j((l)

= k+1
LD i

which completes the proof of the theorem.O
3.3.3 Transient/Steady-State Analysis of the Number of Active

Users
Let A,(9)=0,(1,7) denote the marginal PGF of the number of active users

during slot k. Then from (3.66):
Ak(fz):B(k)Qo(l,d)l(k),¢2(k),..<D,_(k))|z=l=B(k)A0(d>](k).. RUNCONI
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T

Further, if we assume that A,(3) = [ [r,(0) +n,.,(0)y,-]'"', where =.,(0) and
i=1

n,, (0) are the probabiiities of a type / source being initially Off and On respec-

tively, then we obtain:

A3) = BT [ (0) +1, (0) D, ()™
i=]

z=1

- Uk L
Substituting B (k) = ] [X;(k)1™ and &, (k) = i-‘—z% in the above equation gives:

i=1

A3 = TT [70 ()X, () +7, (O) U, (R))™

i=1 z=1
or equivaiently:
T
Ay () =TT Imi (k) +1, (Ryy1™ (3.70)
i=1
where:
T, (k) = @, (0) (0‘;+B;-1)k+2—'_f;_“:{'5(1" (o;+P; - 1)%)
T, (k) = 1-m, (k)

The steady-state PGF of the number of active sources is obtained by letting

k — o0 in (3.70), giving:

) T 1-o; 1-B; "
Aw(y) = H[z_ai—ﬂi+2-ai“ﬂiyi:1

i=1

In addition since each source of type i generates, on the average, f; = dizf,-(z)l )

packets per active slot, then the load of the system is given by:

T 1 - B,’ )
p= animﬁ' (3.71)
i=1 t !

We next focus on the transient/steady-state behavior of the buffer occupancy.
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3.3.4 Transient and Steady-State Analysis of the Buffer
Occupancy Distribution

Let P,(2) = Qi(z. 1. 1.....1) denote the marginal PGF of the bufter occu-
pancy distribution at the end of the K" siot. Then from (3.66) we have:

Bk
Pk(2)= E)

2 002, @, (6). D, (). D u))+(--nz_ﬂ i (0) (3.72)
=
where:

T T
- - m, - . -~ m
B(k) =B, o, . .,y =[] X0 =T] (CiAk +Cadyy) " (3.733)

i=1 i=1 '
- = ok ALk
Ui (k) DA+ Doy,

O (k) = 0| _, = X0 Ok 4 CahE
i 14 1 2i 2

(3.73b)

with C,;=C,l _, and D, =D, _, Y(red{l2}), whie ,.Cnd D, are
as given in (3.68).

From (3.72) we note that the transient probabilities, p,(0)'s, are the only terms
which remain to be evaluated in order to fully characterize the transient PGF of

the queue size. The following theorem provides a means to compute them.

3.3.4.1 Theorem 3.4

Let P (z, w) and P(w) be the one-dimensional transforms, defined by:

P(zw) = 3 P(2)W (I <1) (3.74)
k=0
and
P(w) = Y p (0w (Iwi<1) (3.75)
k=0

respectively. Then:



IM-J.K) T = : Y Y TV I B A A Y ) -
{IILh}[mlﬂDﬂ'Dﬁ C1iCa; }bdhﬂz
; sLi=1[Fim

T
k-0 - wl Mg
i= (3.76)
_ W
M M-Ikl
here the notations 2 and refer to the multidimensional summa-
tions: k=0 = K191
my my  nig L
ky= Ok, =0k, =0 k=0
and
[y =j k)T Iy~ fakal™  [my=jyksl” [my=Jo k1™
4= 14 —j,.O]‘Ilz [k;—jz.()]‘l3= [kj—jl'ol‘ I= {k,—-j,.or
respectively.
T
In addition, with #(z) = J] A5, we have:
i=1
0oz, r (2).ry (), - 1(2))
Pw) = — ! il i (3.77)
i-:z

where z* is the unique solution of the equation, z = wH (z), inside the unit circle
A‘ZJ'— ﬂi
and I',-(Z) = (1-[3,)f,(3) .
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PROOF

Let P (z, w) be the one-dimensional transform, defined by:

Piz,w) = 3 P (D)w (wi< 1) (3.78)
k=0

Then from (3.72):

Pizow) = 3 B(DQ, (2@ (k). dy(k), & (A))[“] +(z- D3 5 z = PO (3.79)

k=0 k=0j=1 2

o : B _ _k
We first look to the first term, 1= ¥ B(k) Qo= ®, (). &y (0. 0.0 [ 2]
k=0 B
Since:

_ - . o M T . J -
Qolz. @, (), P, (k) ... P (R)) = 2 Y ‘[H [®; (£)] ]pn(l..f)
=07-07 i=1
then by substituting for B (k) and &)1. (k) as in (3.73) and by applying the Binomial

theorem, we get:

o o M T o
=3 X X: [I‘[U(L)J'X k) ]pU(LJ)[W]

k=01=07_7

= = M \ J [ md % i -k - s m—f =, k
ST 5 S| I T 3 M B Baady" T @y o =]
k=01=0j7_3 i=lr=0s5=0 S; r - -

Interchanging the order of summations gives:

k
Wn ll{:+5)lm' {(r,+5}}
i=

" - \{- 1 “+ * ji m; = e T Lt =l
Z z ~ ZP(}(L’J) n DI:D": C]lC"r Z 4 (380)
-=aE 6 =0 i=1 sl' r" 4 k=0

.

uMs

1

where we used the notations ): and z to refer to the muitidimensional! sum-

§=0 k=0
i1 i m:".h —ha m.—j .
mations, ¥ ¥ - z and 3 v . - 3 ,respectively.
5, =0s5,=0 5,=0 ry=0r=0 =0

Finally the last term in (3.80) can be further simplified to yield:
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= i JomSare=m=imr .
i J ];[ S:_ !r‘ Dth, C],Cz, ZPO(I,J)Z

1=0j=0R=05=0 4 H (r,+s) m-—((r+s))
: -wl A Ay
i=1

Next we consider the second term in (3.79) which can be exnanded as follows:

= X By C o _

= (z-1) Z 2—(-11 P j(OW = (z—l)[z Z—U.—)pk_j(O)w"— Zpk(O)w*]
k=0j=1 k=0j=0 z k=0

- (2-1)[10(“:)-2 )t P(w)‘J PRYICPR Yty

z

LOZ k=1

Once again, substituting for B (k) as in (3.73a), using the Binomial theorem and

interchanging the order of summations gives:

o0 T . ) . ; ml k
i (z=1)YP(w) - Z [H (C“l’;i-*-c;:_;}\.;‘.) }[%]

k=1kLi=1

it

. T ml _ ' m,'-, k
(z=DP(w)- 3 [H ) { }(c.,x‘ A(Card) ’}[Yz‘i]

k=1Li=1j,

WHK m j‘

T - -]
{HE" @' (@ }2 —"—1——*
=0 i=117 k=

Mm

(z=1}P(w)

I}

'-.|
L.

T ml -
= 1 (Cu c, x
7 HU( W (C Hl
=(z-1P W X

T
j=(—) — jl' nlf—ji
z WHkulzf

i=1

—

Combining 1 and 1l yields:
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-F "ml-"I_rI

T
i "sl "J'J b -
[H E}[m }Dl,Dv, CHCQ,‘ il:‘pn(\..]):
i=1 $ '

Few-3IT 5 :
) o

i=1

m, =,

[ }(Cl:) (éZi)ml”i\wn ljfilzi

i=1

+(z=1)P(w) 2 i=1
z—le'lT' =),

i=1

or equivalently, with the change of variables: K = R +3:
~l ekl Ll m -i=1 \ _
pfn )z

T .
Ji Ji
Dy 'Da; | CiCai
[HL";‘[ ’f]l 2 l

-
hioam —k
z”wnlulzi

1=07=-0k=0
i=1

[M=

i=1

T ki oom, -
e s

i=1

73
+(z=1)P{w) Y,
- --wnxhx'"' A (3.81)

i=]

(M-7.8
refers to the multidimensional summation

where the notation Z
i=R-7.81
lmy = 1]

[ml—jhkll [mz"j;nk:]_ lm3—j3,kgl”

4 [k§J.1v0]+1:= [kzz-’jz.Ol' ly= (k3= 3. 0] I= [ky=je. 01"
This proves the first part of the theorem. Next, let
= {0,1,2, ,m} % {0, 1,2, Jm}x - - {0,1,2, ,n}
For each K= {k;, k,... k;} € R, let us consider the roots of the equation
(3.82)

T
z=Vg(2) = le’;‘il’;‘f-k‘

i=1



85

Let h(z) =z and gg(z) = -V;(z). Since Vie {1.2....1} A €A, s1 and

Iwl <1, then foreach K € R:

T

<|[1a "

i=1

gt = pITHA

T
Since Hh’z";"k' is a valid generating function (GF). then for a small >0 and on

el | v
( i )(I“Bi)-
|zl = 1 +& we have |gg (Z’I‘“*ez 2-o,-B; "

On |zl = 1+ we also have |z (z)| = 1+¢ and therefore if the system is stable, i.e.

Tom(1=-0B)
(p= ):';( i f,<l) then for each Ke R |h(2)| >|gg(z)] ON l2d = 1+e. From
1=} i

Rouche's theorem h(z) and gg(z) +h(2) have the same number ci zeros inside
Izl = 1+¢ and therefore (3.82) has also 1 root inside |z = 1+¢. In addition, since
f;(0) = 0 implies that Myl _,=0 then for any Ke %— {0}, the unique root of
(3.82) is z* = 0 which also appears in the numerator of (3.81) since €y, _, and
f),,-|:=0 are also zero. For K = 0, the corresponding term in (3.81) is given by:
wJiowm ] T om *
l:l_ID-a,C;:J j|:1p0(1,f)z [H Cz,-':lel;l‘.'
P(z.w) = ZZ = +(z-DPwy 2= —=1=1_ (3.83)

T
1=073 m m
1LY 2= w ]IS
i=1

i=1

T
Next, let H(z) = []2;; and denote by 2 the unique root of the equation,
e
z = wH (2}, inside the unit disk. Then the numerator of (3.83) must also be zero at

-, which implies that:

oA T A J‘I

"_1 1
(z‘-l)P(w)+z Zz' 1'[( 2‘) po(L]) =0

=0J= 1

or equivalently:

Otz r (2) (2 ) - re(2)
Pw) = 02 NTE R (3.84)

1-:




86

where r,(z) = Dy _ B,
N T ST A

Taking the inverse w transform of (3.84) allows the computation of the unknowns

p, (0)'s. Alternatively from Lagrange's theorem (Appendix A2), with a=0, g(z)=H(z)

and:
Oz .ri(2).r(2). - - rg(2))
y(z) = =
we have:
= LA g PO P () (D) - F D)) QG (B r (D))
Pw)=py(0) + :‘T k_l(H(z)*L 0 1 2 T . 0 | : -ﬂ t )
F=1" dz - (I~z)" - =u

This implies that V(2 1):

' 1 dk"( JOE @ @) @) Qg (@D D) )
p(0) = Edzk-'l H{z) (;—-z)z + 1T

=0

In the special case, where the system is initially empty, with all sources being in the

Off state (i.e. Qy(z.%) = 1), (3.84) reduces to P(w) =

% In addition, for a large
number of traffic types (t) the root z* cannot be easily found. Hence, as a simple
approximation, we might expand H (z) in a Taylor series around z=1 and keep the first

three terms. Then the equation : = wH (z) is reduced to the following quadratic equa-

tion {in z):
whz+ (aw—=2bw-1Dz+w(l —a+b) =0 (3.85)
wherea = H'(1) and b = ﬂz(ﬁ,with:
H' (1) = imi—ﬂ"—ﬁ (3.86)
o 2mmh

and:
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( (1-Bp*
H" (1) = 3 jm(m;—1 il ?

) —————= lfil
i=1 (2“(1;_[3;)"

D (1-a) (1-B) (o +B,=1 2 1-B
+ ]+ 5——xfi" (1)

I (2-o,-B)° 2-a£.-ﬂ,.f U
+2‘£ T omm(1-8) (1-B)

By G —a=p)
&5, 3 o=B) 2-o-B) (3.87)
The proof to the last equation can be found in Appendix A.8. Next, the solu-

tion to (3.85) which lies inside the unit circle is given by:

(1426w —aw) — 4 (1=aw)? +4bw (1= w)
z* = B (3.88)

Hence:

1—-w

1 1 lea (1 —aw)i+4bw(1-w)
P(w) = =% = —2-{(1+ + T—w -J (3.89)
Taking the inverse w transform of the above equation, it can be shown (Appendix

A.9) that:

p(0) = 3 L1+ H' (1) (3K = )]

1
+

2%}

koLl - R ; =2
> E/ﬂ['—_l}[H"(l)-ZH" (DY 128" (1) —2H (1)} 7Y
PRATS|Y (3.90)

where & (k) is the Kronecker delta function; while:

X . .

. 3 if xi1s even
x]? =
[x] p

—5— if xis odd

Note that the Binomial coefficients in (3.90) are given by the general formula
(2.22).
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3.3.4.2 Transient Mean of the Queue Length Distribution

_ dP.(2)

Let Ny = — denote the average queue length at the end of the K™
¢ z=1

slot. Then from (3.72):

—  dB(k d ~ - - k
p= B ke 20,8, (0.8, (0 B0+ T (39
z= - - I=1
Next let:
- ~ = ﬁ T l
x(z) = Qo(z»q)](k)-(bz(k)---- z Z [n j|p()([ ”
Then:
w M T
(=Y 2[ .2 J (k)| _l}po(\ Jy=Ny+ EA,U () _ (3.92)

where 4, is the initial average number of active sources of type i. From the above

and after substituting:

dé(k) Tom(1-B) (1-0,=B) .
= (11— (o + -1 +k
dz lgl 2_(1';_B,') f B P
. (. +PB,-1)
& (K, = 2;{7-3_]‘,(1 (a‘.+|3£.—l)k)

]

into ((3.91)-(3.92)) we finally get:

m(1=8)7 *-!
= uj_d+ 3 7, (0) (3.93)

o, +p, - "
N, = No+k(p- 1)"'2 Bf.(l (o, +B, - 1))[10
=0

i=

We also note that with more complicated algebra, higher moments for the tran-
sient queue length distribution can also be obtained by successive differentiation

of (3.72).
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3.3.4.3 Steady-State PGF of the Queue Occupancy Distribution
lim P, (z) of ihe queue length distribution is

The steady-state PGF, P (z)
readily obtained by applying Abel's theorem to (3.72), giving
m,—k,

H\i } (C]!lh) (Clrlz,)

M
P(z)=(1-p) (z=1) ¥
k=0 Hl]:lm h

where p = 1-p_(0) is the load of the system, which once more, can be

(3.94)

obtained from the normalization condition, P(1) = 1 as follows:
Since C;l._, = Dul,_, = 0, then, except for the case K = 0 all the terms
under the multidimensional summation in (3.94) become zero when evaluated at
(3.95)

=1. Hence it is convenient to rewrite (3.94) as follows
(2) = (1-p) (z—l){F(z)+ Gl) ]
—H (z)

m -k,

where:
T
by H\: }(Clrl ) (c21?\2,)
Fz) = Y —
E=5 _ 7L lm
K#0 : II_-II li
T N m T
G(z) = J[(Cairy)  and H(z) = J] A3
i=1

i=1
(3.96)

From (3.85):
P(2)[z-H(2)] = (1-p) (z= D [F(2) (z=H (2)) + G (2)]
Next differentiating both sides of the above equation with respect to z, substituting

z=1 in the resulting equation yields
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* 1-B. _
i=1 ¢ i

in accordance with the result previously derived in section 3.3.3.

The expression of the steady-state PGF of the buffer occupancy distribution

given in (3.94) might look a bit complicated, yet it is another significant result

mainly for two reasons:

- First, expression (3.94) is, by far, more explicit than the corresponding result
obtained with the matrix geometric/spectral decomposition approaches since the
latter is often given in a matrix form which involves the Kronecker products of the
individual probability generating matrices of the individual sources, (see for exam-
ple [41], [75),[76]).

- Second, the observation we made earlier concerning the fact that, except for
the case K = 0 all the terms under the multidimensional summation in (3.94)
become zero when evaluated at z=1, allows a straight forward derivation of any

moment of the queue length distribution.

3.3.4.4 Steady-State Mean of the Queue Length Distribution

Let N denote the steady-state mean buffer length. Then by differentiating
(3.96) twice with respect to z and substituting z=1 in the resulting expression we
get:

o H'(D) ,
N=pPM = 55—y T0O (3.98)

where:

t m,‘(l"B,') (3_20«;_2&-)-
G(1) = f; (3.99)
Z‘l (2—0{5—[5‘.)2

with H' (1) and H" (1) as given in (3.86) and (3.87), respectively.
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The above result for the steady-state mean of the buffer length is a generali-
zation of Bruneel results [51] obtained for the single type of traffic case. !t should
be noted that higher moments of the buffer occupancy distribution can also be
obtained by successive differentiation of (3.96). The resulting expressions get
however complicated. A derivation for the variance of the queue length can be

found in Appendix A10.

Under the special case where the number of each type of traffic source, m;, is
restricted to one, with each source generating one cell per active slot (f;(z) = z),
Viterbi {75] derived an explicit expression for the steady-state mean of the buffer
length, using a matrix analytical approach. By substituting m; = 1, fi =1 and
f":(1) = 0in (3.98) we have found that our result reduces to hers. However while
the derivation of (3.98) was done in a straight-forward and classical fashion, once
we have derived P (z) in (3.94), the derivation of the corresponding formula in
[75] is quite lengthy and requires clever manipulations of Kronecker products and

eigenvalues ([41],pp. 354,360).
3.3.5 The Infinite Source Model

Let us consider the limiting case where m; > and B,—1 such that
m{(1-p,) A, fori=12. 7. This corresponds to modeling each type of
traffic by an infinite source model. Further, without any loss of generality, let us
assume that the buffer is initially empty, with all sources being in the Off state. Let
A, () denote the PGF of the number of active users under this model. Then from

(3.70) we obtain:

T k-1 A
" > = . a = . 4 _ j
A0) =, 4O ,,}.@JEI[I Al y)ZaH

j=0
i=1.2...1T i=12,..1

or equivalently:
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~ A (1-a) A(l-ah
2 l-a - T - — (

A (3) = e ' =Tle | (3.100)

The above equation shows that the number of active users for each type of

traffic (/) at any particular slot, &, follows a Poisson process with a slot- -dependent
A(1-
rate, _—l?_—— Similarly we can derive the steady-state PGF of the queue

length, P (2), under the above asymptotic limit by following the same approach

outlined in section 3.2.10 for the single type of traffic case. Hence, with

Af: ,
p = 2 T-_-E,.’we obtain:

i=

A (2) - L={af(2)]

. > Z 1-af@ ['af'(” 1_%(:;‘]
P(z) = (1-p) (z-1) T &
k=1

k

which can be approximated to yield:

H()
z—H{(2)

P(z)=(1-p) (z=1)
with:

A A = 1)

3.4 Steady-State Distribution of the Packet Delay

So far, we have focused on the derivation of some transient and steady-state
performance measures refated to the buffer occupancy distribution. In this section
we focus on the steady-state packet delay, which is also an important perfor-
mance measure for the ATM multiplexer, as a real time traffic such as voice or
video has very stringent delay and delay jitter requirements. Here we define the
packet delay as the period (expressed in integer number of slots) between the

end of the slot during which a packet enters the queue and the end of the slot
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when it departs from the system. Accordingly let D (z) be the PGF of the packet

delay in number of slots at the steady-state.

In [67], Steyaert et al, have derived a general relationship between the packet
delay and the buffer contents in a discrete-time multiserver queue, assuming gen-
erally correlated (not necessarily Markovian) arrivals. More specifically, they
derived explicit expressions for the distribution, PGF, mean and variance of the
packet delay, in terms of the distribution, PGF, mean and variance of the buffer
occupancy. One significant aspect of their result is that the derivations are inde-
pendent of the exact nature of the arrival process. Therefore, using the results
derived in [67], D (z) can be derived from the steady-state PGF of the bufter

occupancy distribution, P (z) , through the relationship:

D) ==-[P(2)-(1-p)] (3.101)

| —

The average packet delay is therefore d = g while the variance of the delay

o o; -
becomes ¢}, = —p’f— ( 1p)
Y

N.

3.5 Ildle and Busy Period Analysis

In this section, we focus on the discrete idle and busy periods of the ATM mui-
tiplexer with multiple types of traffic case. We feel that this study can give further
insights into the behavior of the ATM multiplexer, especially in regard to the
smoothing function performed by the multiplexer. We first start with the idle period,
since it is easier to analyze. By definition, an idle period starts at the departure
instant of the last packet from the buffer {which leaves the system empty) and
ends at the end of the first subsequent slot during which at least one arrival occurs
[2]. Let the random variable I" denote the length of an arbitrary idle period,

expressed in number of slots, and denote by / (z) the corresponding PGF.
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3.5.1 The Idle Period

For the idle period to last for k consecutive slots there must have been no
arrivals during each of the first (k-1) of these slots and at least one arrival must
have occurred in the k¥ of these slots. Recall form our model assumption that
when the ATM buffer is empty, all the sources must be in the OFF state. There-
fore, since an idie period is initiated by an empty system, then all the sources
must be in the OF~ state and must remain so for the first (k-1) slots. At the last
slot (k), at least one source must turn to the ON state. Because of the indepen-
dence assumption among all the sources it follows that:

k-1

Prif‘=k] = {HBE"} [“HBT‘} (kz1)  (3102)

i=1 i=1

z\il - H [‘5:"'}
i=1

=216

i=1

and therefore:

1) = (3.103)

In other words, the idle periods of the ATM multiplexer are geometrically distrib-
T

uted with parameter T B, mean:
i=1
r-__1 (3.104)

it

i=1

and variance:

021. ==l (3.105)
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3.5.2 The Busy Period

In this section, we study the busy period of the ATM multiplexer. Our main
goal is to derive an expression for the PGF of the busy period in terms of the sys-
tem parameters. As done before, we first illustrate our solution technique by con-
sidering the case of the GI/D/1 queue and then show how the approach is directly

applicable to our system.

3.5.2.1 Busy Period Analysis of the GI/D/1 Queue

Generally speaking, the analysis of discrete busy periods is far more compli-
cated than that of the idle periods. Further it is well known that the lengths and the
positions of the idle and busy periods on the time axis are not affected by the
queueing discipline, as long as it is work conserving. Based on this observation,
Bruneel and Kim [2] have presented the busy period analysis of the GlI/G/1 model,
assuming a Last-in-First-Out (LIFO) discipline. When applied to the GI/D/1 model,
their result yields a functional equation for the PGF of the busy period and an
explicit expression for its mean. Closed-form solutions for the PGF of the busy
period can only be obtained under some special cases, corresponding to specific

arrival distributions.

This section presents a simple approach for the derivation of the busy period dis-
tribution of the GI/D/1 model. Once again, we denote by Q(z) the steady-state
PGF of the buffer content and by V (z) the PGF of the number of packet arrivals
during a slot. in addition we use the superscript ¥ to denote the i""derivative oper-

ator.

Without any ioss of generality, let us assume that the system is initially empty
(Qo(2) = 1). We explain our approach through a tree diagram, as shown in figure
3.3, where, for the purpose of illustration, we assume that the number of arrivals

during a siot can take on the values zero, one or two packets.
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From figure 3.3, we can see that the event of having an empty buffer at the
end of the ki'slot can be expressed as the sum of k mutually exclusive events. For
instance, in reference to figure 3.3, if we look to slot number 1, the probability of

having an empty buffer, @, (0), is equal to the probability that the buffer was ini-

tially empty and there was no arrival. In other words:

For k=1:
0,(0) = @, (0)V(0)
0
0 0] i 2
L2 _ 9
0 a 1 T, ?
2 2
2""_{'1_‘|
2 h | 2
2. 3
0
0 0 1 ?
. 2 _ 9
—0
2 _ 9
2 2 b
2_3
0 1‘_L1_?
2 -
—0_ 4
2 2 1 2 4 o
| —=2- 3
| e e
j L—2- 4
I | l : Time
**
0 1 2 3 (Nb of Slots)

FIGURE.3.3 An lilustrating Example (Numbers above branches represent
number of arrivals (we assume a maximum of 2 per-siot) and number at the end
leaves represent buffer length at the end of the corresponding slot)
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Similarly, from figure 3.3, and for k=2, the probability of having an empty buffer at
the end of the second slot is equal to the probability that the buffer was empty at
the end of the first slot and there was no arrivals plus the probability that the buffer
was initially empty and there were one then zero arrivals, since these events are

mutually exclusive. in mathematical terms, this translates t0:

0,(0) = 0, (0)V(0) +Qy (0) V! (0) V(0)

v (0)?
= 0, V(©0) + 1520, (0)

Similarly, for k=3, it is easy to verify that:

2 v (o ;
0,(0) = 0, (V0 +8, OV (O (0) + 2, (0) [(V“’ OV () + )(V(O))‘:|

(D 2 () 3
= v(02, 0 + L5 0,0 + L5120, O)
and in general, by induction, we can write:
&
pe(0) = Y E(Npy_;(0) (3.106)
j=1
where:
V(0) (=1
= U Vo w _ 3.107

i=1

In (3.106), we have expressed the probability of having an empty buffer at the end
of the k!slot as the sum of k mutually exclusive events. Further, in the RHS of
(3.108), p,.;(0}, is interpreted as the probability that the system was empty for
the last time at the end of the (k-j) ** slot and therefore the function £ (/) in
(3.107) is the probability that the system is busy for (5-1) slots. With simple alge-

bra, we can prove by recurrence that (3.107) can be further simplified to yield:



a8

-1 1
E(j) = pr(System is Busy for(j~1)slots] = Jl‘ Jd_Ul V() ];l G2 1)
.dn’-

=0

and therefore:

. Vs = 1 j+1
pr[System isbusy for j slots] G +1)1 [ ()]

(j=0) (3.108)

=0

Note that the above expression allows a busy period to consist of zero slots. In
general, we define the busy period of a system as the time between two consecu-
tive idle periods. Therefore since a busy period is initiated by an arrival, then it
must consist of at least one slot. Under this definition, iet the random variable B
der;ote the length of an arbitrary busy period in number of slots. Let B (2) be the

corresponding PGF. Then the distribution of the busy period is given by:

1 1 d") j+i .
VT gD gy L @) » G=1) (3.109)

pr(B =j] = ¥

and the corresponding PGF is therefore:

oo

B (z) = Y priB =17
j=1
_ 40 1l
[1—\/(0)151 T vert
[I—V(O)"]"' Z{ZM [V(Z)] 2=0—2V(0)}

From Lagrange's theorem (Appendix A.2), we can write:

(k=-1)
d_ -G

=0

3 bt

vl

where ¢ is the unique solution of the equation ¢ = zV (o), inside the unit circle.

Hence:

e G -2zV(0)
B (Z) = m (3.110)
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The above expression for the PGF of the busy period of the Gl/D/1 gueue has a
simpler form than that of the corresponding -esultin [2], which expresses B" (2) in
terms of the functional equation:

g < Vela ~V(0))B () +V(0)}) -V (0)
- T-V(0)

The mean length of the busy period is readily obtained by differentiating (3.110)
with respect to z, substituting z=1 in the resulting expression and by taking into
account the fact that:

1
=1 12V

ﬁ- *
de

d *
@1, ~ V@] ()

el =) ==V d=-v(0)

(8.111)

in accordance with the corresponding result derived in [2].

3.5.2.2 Busy Period Analysis of the ATM Multiplexer

In section 3.2.5.4, it was found that, when the ATM multiplexer is initially
empty, the expression of transient probability of an empt)! buffer, p, (0), is the
same as that of the GI/D/1 queue with V(2) = H(z) = H?L; Hence ((3.106)-
(3.107)) aiso hold for the correlated arrivals case (thisilflalts also been verified
through symbolic computation using the symbolic Maple computational system

[77]) and hence:

() .
: L_d” iy Gz1) (3.112)

priB =jl = :
T G+ D!
[1—1_113'"1 4 2=0

f
Foq

and:
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.
0_* "ZH B:-m
B () = — =1 (3.113)

i

where ¢ is the unique solution of the equation o = zH (o) inside the unit circle.

In the single type of traffic case, we have dealt with a similar equation, namely
z = wH (2), in full details through the application of the Lagrange’s theorem, as
explained in section 3.2.5.5. The same analysis can also be used, in some cases,

to explicitly derive the distribution of the busy period. Further, from (3.113), the

mean busy period of the ATM multiplexer is:

L A E— :
(1—H (1)) (U -H(0) LI
(1—P) (]—HB;')

i=1

(3.114)

T [3 i
where p = Y m"ﬁ—"_ﬁf" is the load of the system at steady-state.
i=1 t I

Finally we note that our definition of the busy and idle periods implies that a siot
will belong to an idie period if and only if the multiplexer is empty at the beginning
of this slot, otherwise it belongs to a busy period. Hence, from (3.104) and (3.114),

the fraction of slots belonging to an idle period is given by:

*

I
I +B"
which, as expected, equals to the steady siate probability of an empty bufter
P.(0).

=1-p (3.115)
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3.6 Numerical Results

In this section we illustrate our soiution technique by some numerical examples
where we also attempt to draw some congclusions on the general attributes of the
transient behavior of the ATM multiplexer. First we consider the case where the
system is initially empty, with all sources being in the OFF state. In figure 3.4 we
plot the iransient probabilities of an empty buffer as function of time, with the num-
ber of sources as a parameter. We assumed that f(z) =z and kept a (which, as
defined before, is the probability that a source is active, given that it was active
during the previous slot) fixed at 0.75. In addition, the steady-state load is also
kept constant, at p = 0.7826. As may be seen, for the same steady-state load, dif-
ferent probabilities are obtained for different vaiues of m. Aiso note that the tran-
sient probabilities of an empty buffer approach the steady state value of 1-p as
time increases. In figures 3.5 and 3.6 we plot the corresponding transient mean
and variance of the queue length. In particular we observe that for the same
offered load, an increase in the number of ources leads to a rise in the transient
mean and variance of the queue length. Note also the exponential behavior of the
mean-time curve and the nearly-linear profile in the variance-time curve for large
values of m. In particular we note that the exponential rise in the mean-time curve,
depicted in figure 3.5, is typical in many other queueing systems [78]. More specit-
ically the transient mean curve of the ATM multiplexer, under zer6 initial condi-

tions, can be approximated by an expression in the form:

Nk = N“,[I—e_kﬁj

where T is the characteristic time constant (known also as the “relaxation time") of
the system, which depends on the parameters of the offered traffic and which is

often independent of the initial conditions [78].
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FIGURE.3.6 Transient Variance of the Queue Length for Different Values of m

A very useful measure to estimate the transient packet loss ratio, due to a finite
buffer size (n), is the probability, g, (n) = prli,>n], that the transient buffer occu-
pancy exceeds the proposed buffer size, which is an upper-bound for the transient
probability of overflow. In our case, this probability can be computed from the tran-
sient PGF P, (z), as given in (3.18). Figure 3.7 shows the transient probabilities of

buffer overflow for fixed source's statistics and with f(z) = z. in this case these

1-P.(2)
1-—

polynomial function in z, then g, (n) = prli;>n] corresponds to the coefficient of

probabilities were easily computed by noting that since is found to be a
2" in this polynomial. As expected, the transient probabilities of overflow increase
as time evolves and this reflects the fact that when the system starts from zero ini-

tial conditions, the queue waiting room builds up progressively.
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Next we investigate the transient behavior of the ATM multiplexer under a
non-zero initial condition (IC). Without any loss of generality, fet us assume a
deterministic initial state whereby, at time zero, there are i; = 10 packets in the
buffer, with all sources being active {i.e. ay = m). Figures 3.8, 3.9 and 3.10 show
the transient probabilities of an empty buffer, the transient mean and the transient

variance of the queue length for different values of m.

On the basis of these plots, we recognize the strong dependency of the multi-
plexer transient behavior on the initial state of the system, though the steady state
is independent of the initial condition. For the same offered load, the manner in
which the p,(0), N, or ci curves approach the steady state value does depend
on the initial state of the system. Further for deterministic 1Cs, one can use the
previous plots to predict the future behavior of the system. For instance one may

use the transient mean curve to determine how many slots it will take before Ny
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becomes very ciose to N (let us say within ~2%). Further, as result of the over-
shoot displayed in the transient mean curve in figure 3.9, we conclude that
steady-state mean does not always reflect the true behavior of the ATM multi-

plexer.
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FIGURE.3.8 Transient Probability of an Empty Buffer for a Fixed Offered Load
and Different Number of Sources (m)

Next we show, through one simple example, how equilibrium solutions can
sometimes be invalid descriptors of the system behavior and how transient solu-
tions become necessary. With the same deterministic ICs, specified by iy = 10
and a, = m, we plot the probability of buffer overflow versus buffer size for differ-
ent number of slots, as shown in figure 3.11. In particular, and as shown in figure
3.12, for small buffer sizes, the transient probability of overflow exceeds the corre-
sponding steady state result. This is a further confirmation that ATM system
design and congestion control algorithms which are based on steady state results

could sometimes fail as a result of the underestimation of the transient dynamics.
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Figures 3.13 and 3.14 show some results for the mean and variance of the

packet delay. Here we assumed that during an active slot we have a batch arrival
(l—-v):
1

process whose size is geometrically distributed with a PGF f(z) = where

v = % Observe that under light loading the mean delay is heavily influenced by
the mean batch size (f = 2), while under heavy loading, queuing delay dominates

and, for a fixed load, it increases with the number of sources.

We also note the very sharp increase in the variance of the packet delay
under heavy loading. In this case the variance-load curve is also tailored by the

choice of the parameter v which controls the first three moments of the batch size

distribution.
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FIGURE.3.13 Mean Packet Delay for Different Numbers of Sources (m)
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CHAPTER IV

Transient and Steady-State Analysis of a
Multi-Server ATM Multiplexer

4.1 Introduction

In this chapter, we extend the analysis of the queue length behavior of the
single-server ATM multiplexer to the general muitiserver case. More specifically,
we assume that the number of output links (channels), used for the removal of
packets from the buffer (i.e. the number of servers in the ATM multiplexer), is
equal to the integer, ¢>0.We also assume that the servers are not subject to
interruptions. This means that if at the beginning of a slot, ¢ packets are present at

the front of the queue, they will leave the buffer at the end of this slot.

The remaining assumptions for the arrival process are the same as those
previously described in section (3.2.1), except that, in this case, we allow a source
to generate no packets during an active slot. By allowing some “silence” between
cells, generated during a burst, we introduce more variability in the activity of each
source. Filipiak [79] has suggested this type of source behavior as being a very
versatile mode! in the ATM environment. However, the possibility of having zero
arrivals during an active slot introduces more unknowns in the analysis of the

queue length behavior.

Once again, the time axis is slofted in such a way that one slot is dedicated for
the transmissicn of one packet via each of the ¢ output channels of the multi-
plexer. We further assume that the average number of packet arrivals during an
arbitrary slot is strictly less than c so that the system is stable and a steady-state

exists.
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As we will show shortly, ATM multiserver queues are more complex to ana-
lyze than the single server ones and some of the algebra presented in later stages
of this chapter might look rather involved. Through careful choice of notation, we
hope to have succeeded, with a certain degree, in presenting the material in a rel-

atively simple and unified manner.

We start our analysis by considering the homogeneous case where we

assume that all the sources feeding the multiplexer are of the same type.
4.2 The Single Type of Traffic Case

In this section, we consider a muiti-server ATM multiplexer whose packst
arrival process consists of the superposition of the traffic generated by m mutuaily
independent and identical binary markov sources of the type described in section
3.2.1. Once again, we define the system by the pair (i}, a,) where i, is the queue
content at the end of the k! slot and g, is the number of active sources during slot
k. We focus our analysis on the transient as well as on the steady-state system

occupancy distribution.
4.2.1 The Imbedded Markov Chain Analysis

The goal of this section is to derive the functional equation relating the joint
PGF of the system between two consecutive slots. In this case, the evolution of

the queue length is determined by the relationship:
fpor = (=07 +b, | (4.1)
where the notation (x)* denotes max (x, 0) . Next let:

0.y = EIZY" = ¥ ¥ Vb L))

i=0j=0

denote the joint PGF of the pair (i,, a;), where p, (i.j} = Pr{iy=i,q,=)). Then:
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Qk+l(z’y) = E[Z(it‘f) + b0 yak-l]

Using (4.1) and averaging over the distribution of the fj_k's, the ¢;'s and the d's,

gives:
r Sk
(’-k_c)++zj.1'k»l
=1 LPP
Q1 (zy) = Ejz = ¥
r TS
("k"'-'f'*Zf,.hl

— . = Tia] ;

= E{E|z =1 ¥y [ Qg 4y
L

- [ gt

ﬂk m-u‘k

o Edj
j=1

= E\E|:Y7 (yofy

,k‘ak

- m (y-f(2)) “
=-E[z(" @ -£(2)) [————;((ffc()))} } wz)
or equivalently:
0., (zy) = o FN"EL ] (4.3)

where:

Y = c(y -f(2)) _ I—o+oyf(z)
d(y-f(z2)) B+ (-PB)yf(z)

The (x)* operator in the expectation term in (4.3) can be removed by noting that:

e[ ] = 3 3 )

i=0j=0

c-1lm = m )

=Y Y Vp i)+ X7 Yo (i)
i=0j=0 i=c¢j=0

c-1

m o = m c-1m
= 2 X Yp (i) +-1;[Z DERCACHEDY ZZ‘Y’PNJ)}
i=0j=0 z

i:Oj:O i=0j=0



113

Hence:
c~1m
NERSED WD IS¢ MUY R
Qps1(zY) = [d@-f(2))]" (=022 +3 X¥p i) (44)
4

i=0j=0

The above result is a generalization of Bruneel [51] functional equation, obtained
for the single server (c=1) condition and under the special case where zero packet
arrivals occur only during “passive” slots. in addition, in the sequel, we propose a
new approach which enables us to derive explicit closed férm expressions for the
transient/steady-state joint and marginal PGFs of the multiserver system, as well
as for some transient and steady-state performance measures. Our analysis also

assumes an arbitrary, but a priori known, initial condition, Qg (z,y) -
4.2.2 The Solution Method

By expanding Q, ., (z, ) in (4.4) for the first few values of k, we can prove by

recurrence the following important result:

4.2.2.1 Theorem 4.1:

The joint PGF of the queueing system under consideration, as given by the
functional equation (4.4), can be written as follows:

c—1

k n B [ . . A
Qo2 D (k) + 2 z 2——(,0—)(2 - [@ WD) Vp_ (L)) (4.5)
I=1i=0j=0 ¢

B (k)
ke

Z

Qk(Z,Y) =

where B(k) = [X(k)1™ and X (k), ® (k) are as defined in (3.7) and (3.4),

respectively.

PROOF

Throughout this proof we make use of the fact that if B™ (k) = B(k) ,_y then
B(k+1)
B(1)
k=0, the functional equation (4.4) yields:

B (k) =

. This follows directly from the resuit of Appendix A5. Hence for
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c-1 m
Qo2 ®(1)) =Y D FO(WYpo (i) .y
Q,(zy) = B(1) - 220 + 3 T e patig)
z i=0j=0
B(l) c-1 m i
Qq (. ( ) (£~ Ho et
i=0j=0 < (4.8)
For k=1:
c-1lm .
0, (z®(1) =), Y IO(Wp (i) .y,
0,(z,y) = B(1) - =00 + Y Y@ p i)
i=0j=0

Substituting (4.6) in the above gives:

Bl c—1 m 1
c’{ Qoucb(z)nzz ”

:0;0‘

Q,(z.y) = —;.)(1)(2)p',(lj)}

(l)clm c=1 m

Y Ao p (L) +B) Y, Y @ (p, (i)

2:0;0 i=0j=0

BZ ZCImB!
()Qo(’ b

2y (D (1D Vpa_ (i)
1=1i=0j=0 (4.7)

and therefore (4.5) is verified for k=1,2 and obviously for k=0. Next let us suppose
that (4.5) is true for the order (k), i.e.:
k c=-1 m B (1) . i
Qo( z,® (k) + 2 Y Z ) 1D (D Vpi-, () (4.8)
I=1i=0j=

Let us prove that is also true for the order (k+1), i.e.:

Qk (2, )’)

Bilk+1) k+le=1 m

Qpsr(2y) = NTOE QO(‘MH”H;Z[ 20}: e (2 =2y (oW Vpy, - 0D (4.9)
i j=0

By substituting (4.8) into (4.4) we get:
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G lzy) = B(]){

B' ' c-1l m
Qo(z Gk+1))+ z 2 z )(z -2 [¢(l+])}"pk -3 Z z(dJ(l))pL(zj)
t=ti=0j=0 Z i=0f=0

<
Z

c—§f m

+3 3 (@) Pp i)}

imslj=0
Bk+1) koe—lm g4l )
= e G MHUH:E;.Z%‘Y‘U e (= 2) (@04 1)V pe i)
B(])t‘ L' m c=1l m
I 3 A@)Yp i) +8() T T 1@V )

£ i=0j=0 i=05=0

B | ktle=1 m ; . o
iE:-l})QU( GUh+1))+ X 2 Z z :'-)ld’([)ljpk.,,]_,(hj)

J=1li=0j=0 2°

Hence (4.9) is proved and this completes the proof of the theorem.O
in this case, the load of the system is:
1-B
My - [3
and hence for stability we require that p < c or equivalently n 1-p ﬂf< c.

We next focus on the transient/steady-state behavior of the buﬁer occupancy.

4.2.2.2 Transient/Steady-State Analysis of the Buffer Occupancy
Distribution

Let P, (z) = Q,(z 1) denote the marginal PGF of the queue length at the end
of the K" slot. Then from (4.5);

B (k k c—1 m B ! ; . :
P (2) = _(_.lQO TICIED I e D -H1dWTp i) 4.10)

z I=1i=0j=0

where:
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nt

B =BW)I_, = (X0 = (CM+CaAd) (4.11)

- Y -
(?I)(k) _ (I)(A)| _ U(A) B D[lﬁ'!'Dzlz
LT XM G+

(4.12)

with C; = Ci,_, and D; = D, Vie {1,2} ,while . C, and D; are as given
in (3.8).

Nextlet S = {0,1,...,c—1} and ® = {0,1,2, ..., m}. Then from (4.10) we
see that the transient probabilities p,(i.j)'s, (i,j} e & = Ix3 are the only terms
which remains to be evaluated in order to fully characterize the transient PGF of the

queue size. The following theorem provides a means to compute them.

4.2.2.3 Theorem 4.2:

Let P(z,w) and P,-j(w) be the one-dimensional transforms, defined by:

P(z,w) = ZPk(z)wk (Iwl<1) (4.13)
k=0
and:
P (w) = Zopk(i,j) wh (wl < 1) (4.14)
k=
Then:
[m=j.xl”

. : : k=l j=ktlt om—j-
Z m;{\[ J ;|Z‘p0(i,j)D1 Dg C1C2 .'."c
K_

[ iy e P AN
Pew =3T3

¢ Ky m—K
i=0j=0xk=0  —wh A,

(m—j. k]l 3 . k=l efj=Ktlal em—j=1 c ; Knth— X
2 {m JjKjJDn D, CiCx  (F=2)Py(w)whihy

c—=im m 1 -

+ Z Z Z 1= x-j,0" .

C Kn 1=X
i=0j=0x=0 2 —wh A,

(4.15)
where pg (i, /) = Prlig=1.jo=]) -
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In addition, for each xeX®, let V (z) = wAjA;™" and denote by =z,

(pe B3 = {12 ...c}) thecroots of the equation z* = V,.(z) inside the unit gircle.

Then for each (p.k) € X = 3x R, P;(w), (1)) e R = IR satisfies:

= [m-j.x]" (}» ﬁ)2[+j
:§OJEOI= hc'j 0]*[ I }[}C ? ° ( - 1) [(1 _ﬂ)f(sz)]l-h’
Lo n 2i+j
c=1 m lm-.l'oKI
(A =B
+ZZ z \: —iH: :l(pr: px)Pij(w) 1 “_.-‘:O
{=0f=0y s b L AT ’ (=1 [(1 =P flz,01 (4.16)

where A = M, _,
PROOF

From (4.10), the wiransform,P (z,w) = 3 P (2) w* where (Iwl < 1) is given by:
k=0

- L]

P(z.w)=zé(mgg(z.?n(kn[zi;] Y >:

k=01= 1. 0j=

é I . k
B -1 o Gpwt (417)
0z

IMS

= . -k
We first look to the first term in (4.17) namely, / = ZB(k)Qo(z,da(k))[ﬂ .
k=0 z

Since:

0,z ®(0) = T T F @K polis))

i=0j=0
then by substituting for B (k) and ® (k) as in ((4.11)-(4.12)) and by applying

the Binomial theorem we get:

b oo m . i k

1= Y3 Y AUWE®R" poti) [i}
z

k=0i=0j=0

°°°°mm_rj

=Y YX2X [’" f} Fpo (i) (D) (DY ™" (Exh) (Ean)” ’_[i]

k=0i=0j=0r=0s=0

k

~

Interchanging the order of summations gives:
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o m m-j j jeseram- e oo lrﬁ-slm (r+\-)
I = ZZ Z[Wr :\ po(l_])D D’r C,C2 Z{ 7(_ ]

i=0j=0r=05=0

k

Finally the last term in the above expression can be further simplified to yield:

eSS eF am=j—F
m

= m=j j e
po(l JY Dy D‘I C]C'\ z
l= 2 ZZ Z[n!r} Pt Sam— (r+s)
i=0j=0r=0s=0 wh Ay

5

Next we consider the second term in (4.17) which can be expanded as follows:

3555

k=0l=1i=0j=0 7

! (2 [y j . 3
(,C) (z7=2) [¢(l)1jpk_,(i.1)wk

c-

m o o
= Z 2 2[2_‘(_ q’”)]Pg ) Pk('j)ilw
i=0j=0 k=obli=

1
0

[

1 m
= 2(;‘-:‘)[&7(“») )

i=0j=0 o

B(A)

[fD(L)] wh —P;; (n)}

o

B (k)

c=1 m )
= Z z (zc—z’)P!-j(w) .
i=0j=0

k=1 <
Once again, substituting for B (k) and @ (k) as in ((4.11)-(4.12)) and using the

Binomial theorem gives:

e=tm : i m=j~ Frw K
H=73 % (ZC—Z')PU(W) ST X Uk [z_c]
k=1

i=0j=0

e=1m = m=j j 105 - - -5 - ro- me—j—r &
S5 S P T L S [”"i}(m’;)’wzh’;)’ el (€ L—]
r 5

i=0j=0 k=1r=0s=0

Next by interchanging the order of summations, we get:

el m j lr+$lm_(r+” k
m- J njoSar—m=j-r i M W
n=y Z (: —z)PU(w) Z z DID2 CiC; 2 .
2

i=0f= r=0s=0 k=1

The last term can be further simplified to yield:
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-5 = f=5=r am—
c—1 m=—j

. i=r r+sam—(r+s)
- i[m IJD 1Dy GG (zf Z)P (W) wA] A7
i=0j=0r=0s=0 ZC—WA.;+:}\,; (r+s)

> 2
Therefore:

—f=5~T ~em—j=r

l:m J]Zpo(lj)D Da C\C> b
S0/=0r=0s=0 ZC—WJ\.,;-”)Lm (r+s}

Pam =555 S

S e joSer m—f— r

=l mm-j J DDZ C,C, —z)P (W) wA] Ay
Z Z Z 2[ r jl e —Wl“—s m— (r+s)
1

j=0j=0r=0s=0 2

= (r+s

or equivalently, with the change of variables, k = r+s, we get:

[m~j.¥] ] rcl}lc+lIm_,rf

m m
[=|x=j0]"
Pizw) = 3 3 T =l e
172

i=0j=0Kk=0

c=1m !

1= | op*
+ Z Z z = J ZC—W}LKKM-K
1772

i=0j=0x=0

[m=j.x] =i . wK=laj—Kktlnl om=j-1 . i Knm—K
> J Kf AP Dy CiCy  (F=2)Py(w)whik,

(4.18)
The only remaining unknowns in (4.18) are the ¢ (m+ 1) terms, P (w) ’s, which can be
determined by invoking the analytical property of P(zw}, inside the poly-disc

(Iwl <1, |z} £1), as follows:

For each k ¢ R, let us consider the roots of the equation:
£ = Ve(z) = wAAy " (4.19)
We first apply Rouché's theorem (appendix A1) for the evaluation of the number of roots

and then use the Lagrange's theorem (Appendix A.2) in order to compute these roots

explicitly.
Let h(z) = = and g, (z) = =V, (z). Since |Aj<[A,[ <1 and iwi <1, then for each x e N:

2 ()] = [wATAT 7" <A

m-x
2
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Further A7~ is a valid generating function (GF), and for a small e>0 and on

Izt = 1+¢, a GF G(z) satisfies [68]:

IG ()| S 1+€G' (1) +B(€).

Using this bound, we get |g,(2)| 51+a(m;ft(_lgﬁ)f+e(e). On |21 = 1+& wWe
also have |h(z)| = (1+8)° = 1+ce+08(¢g) and therefore if the system is stable,
m(l1-0)

i.e.{p= -i—-:—a_—Bf< c), then for each xe R, | ()] >[g ()] On [z = 1 +€.

From Rouché’s theorem h(z) and h(z) +g,(z) have the same number of zeros
inside |z = 1 +¢. Evidently #(z) has c zeros inside |z = 1+¢ and therefore (4.19)
has also ¢croots inside |z| = 1+¢. These roots can be expressed explicitly in terms
of Lagrange's expansion by noting that for each xe %.(4.19) implies that
z=v,[V, (21" where v, = ¥ (p e B) are the ¢ roots of unity and j = J-1.
Therefore, from Lagrange’s theorem, and for each xe %i.the ¢ roots of (4.19)
inside |zl = 1 are given by:

= (v Wl/c)” dn_l )
= X o Ve @1 (4.20)

=
n=1 <

where (p.x) € R = 3x XK.

Now for each xe R we know the values of the ¢ zeros of the denominator of
P(z.w). In addition since P(z.w) is analytical inside {z<1; [wi<1) then for
each ke K, the numerator of P(z.w) must also be zero at : = z,,, for each

pe . Hence V(p.x) e R = BxR:

™ -7 - A [ S f
m  Im=j.x] m—j j . N Clbz b, J
i=0j=01 2 [x~j.01" €D, LC

c=1 m Im—j K" . s N —C b : D') /
+ZO_ZO by ["’,‘J]Lf_ J(z;.c—z;x)f’,-,-(w) ‘ 2} [-—} =0
i=0j=0 L

= [x-j.01"

whereC1_2=C1.zL=zk and D],2=Dx.2|2=_,_l-
P 4
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Next, it is easy to verify that — = -3—-, —* = ——=— _ and hence the
ylovenlyhal == = =1 ¢, - 0-P/®

above equation can be conveniently rewritten as:

N 20+

o m |m-j K]
(A= PB)
XY X {"’,MK’J Po (i) 1 )

i=ﬂj=U[=[K_j‘0] (a_l) [(I'B)f(z‘m()]

R . 21+
c-1m |m=jx]
i ; (A, —B)
+ m —j}{ J jl( c i P.. —
EOEO,:E,.,O,.[ =) o P T =V

(4.21)

where A = M| o .
z K

“r
The above defines a set of c(m+1) equations for the determination of the w

transforms, P, (w), (ij) € R = IxR. Taking the inverse w transform enables us

to compute the c(m+1) unknown boundary terms p, (4, j) 'S,

4.2.3 Transient Mean of the Queue Length Distribution

_  dP
Let N, = "( i

denote the average queue length of the ATM multiplexer

=]

at the end of the k”’ slot. Differentiating (4.10) with respect to z and substituting

z=1 in the resulting expression yields:

_ dé k) _ k c—=1 m
K= d(z | '*'%Q()(Z,‘D(k))\z + Z Z Z (c=D)p,_, i, )) (4.22)
= B 1=1i=0j=0
or equivalently:
Nﬁm”_m“ OB 1 (a+B-1)) —kc-p) + o
(2-a-B)°
k=le=~1 m
a+B Bf(l—(a+ﬁ—1)k)/?g+22z(c—i)p,(i.j)
1=0i=0j=0 (4.23)

Using the resuits of the previous section, we can compuie the transient probabili-
ties p,(i.j)'s and hence, from the above equation, we can evaluate the average

queue length at the end of any particuiar slot.
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4.2.4 Transient Variance of the Queue Length Distribution

By differentiating (4.10) twice with respect to z and evaluating the resuiting

expression at z=1, we get:

d*P, (z) B (* B (k B (k 40,z B (k
A _ B&) +kc(kc+1)-zkcd3(“l +2[dB(A) _kc] Gutn @ ))l
dz” z=1 dz" =1 d: :=1 dz z=1 dz 1=
ke-=1m d: _
+3 T T |:2{-—.B(l)| “lc} le=i) + {cte=1) —i(i=1)} +2(c=- D Lo | ka_,(i.j)
I=1li=0j=0 dz =1 d: -

™~

+—-Q_ U(-’-m(“‘))lz—'] 42 l
dﬁ 3 ( ) )
( a d CY 0(-- ( '))l:_l

=
-

The unknowns

dB (k) dQn(z.fD(k))‘
’ dz :=1, dz =

z=1

can be readily obtained, using the resuits of section 3.2.7 and hence the variance

of the queue length distribution at the end of the K" slot can be computed from the

general formula:

Oy, = +N (1=Ny)

4.2.5 Steady-State PGF of the Buffer Occupancy Distribution

The steady-state PGF, P(:) = Jim Py (2), of the queue length distribution can

be found by applying Abel's theorem to (4.15). Hence we can write:

P(z)= lim (1-w)P(z,w) or, equivalently:

w1

(m=jixl” " i akmd =Xt —m—f=1

s M| ] |dpp iy D2 €€
“ m om I= {K=j.0]" I K-1{

P(z) = lim (1-w) ¥ ¥ % :

- Ko =
w—=l i=0j=0Kk=0 ZC—“'A.IA.'; ¥

(m=j. ] AT ¢ N aketojmxrtatomejmt e
: 3 m’;J JID| Dy CiCa (2" =)0, (W) wh &,
[ m m

v lm (l-w) ¥ 3 3 Zixoio)

w17 i=Uj=0k=0 z’—wlfk;'"'
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Since the first limit converges to =zero and since from Abel's theorem

lim (I=w)P;(w) = Ii_l)n p.(i.j) then the last equation reduces to:

w
lm-j.xl® . [kl jmktlal am—j=l _
py [m“lﬂl}o, Dy CiCz AMAF
ce=1m ! x-1

P =3 3 _dpi) 3 e e (4.25)
i=0j= k=0 Z =Ny

where p(i.j) = limp,(i.j} = lim {(1-w)P;(w).
k- oo w—1"

As expected, and because of the Markovian property of the model, the steady-state
solution is independent of the initial conditions pg(i.j) 's (which are imbedded in the first
term of {4.10)). The only unknowns in the steady-state PGF are the c¢(m+1) boundary
terms p(i.))'s, (i.j) e R = IxR. These could be determined from the application of
Abel's theorem to P (w), Of they could be simply determined by invoking the analytical

property of the steady-state PGF, P (z), inside the unit disk as follows:

First by applying Rouché’s theorem, and using similar arguments to those presented
in the proof of theorem 4.2, it is easy to prove that for each ke %, the equation
£ = V() = A"\ 7" has c distinct roots inside the unit circle. These will be denoted by
Ign (PK)E % = 3xR. For x = 0, one of these roots is z,. = 1,which also appears in

the numerator of P (z), and the remaining roots are zy, . zgy v Zge -1+ 118 FOOLS z,,'s CAN

Kp
be computed using standard numerical solution techniques, such as the Newton-Raph-
son method, by noting that for each xe R the equation =V, (z) can be replaced by
an equivalent set of ¢ equations, each having a unique root inside the unit circle [2].
Alternatively, from Lagrange's theorem, the roots 2ep{ (P2 X) € ®=%& - {c.0}) are given
by:

Z —’.’ e, (4.26)

=0

where v, = J2<( ¢ B) are the ¢ roots of unity and j = J~1.
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Since P(z) is analytic inside the unit disk, then for each k € R the numerator of P (z)
must also be zero at - = z;,. Hence:v(p.x) e ®=K- {c.0}

2+

e—1 m lm=jixl’ ] . . . ('j\.q—ﬂ)
£33 [l eesora ' m =0 el

i":oj:OI:[K—j.O]‘ (a—])[[(l—‘ﬁ)f(sz)]

where b = 1|

=12,

The above defines a set of ¢(m+1) -1 linear equations for the determination ot the
unknowns p (i,j)’s. The remaining equation is provided by the normalization condi-
tion, P(1) = 1 as follows:

First we note that since C,|__, = D\|__, = 0, then, except for the term corresponding
to (x = 0), ali the terms under the third summation in (4.25) become zero when eval-

uated at z=1. Therefore it is convenient to rewrite (4.25) as follows:

c=-1 m . G(:)
P(z) = 3 > (=) pli)) I:Fj(z) +-r—i—-—} (4.28)
i=0j=0 : —H(z)
where:
bm 1%l I ] ket mjmktlad am—j=l
Y i
1= [x-j.01" -
Fi(z) = ,
! k§=:1 o MYV
N oY
G;(2) = (Ca21,) |:_—2:l and H(z) = lg’
Ca
From (4.28):
X c=1m )
Py [F-H(] = 2 3 (- pi.)IG(2) + (zc—H(z))Fj(z)l (4.29)
i=0j=0

Next differentiating both sides of the above equation with respect to z, substituting

=1 in the resulting equation and noting that F;(1) =0 . G;(1) = 1 yields:

c~H () = 3 3 (c=p (i)
j=0

1
i=0j
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or equivalently:

I_B . c=-1m ) .
C—mmf = 2:0};0(6—’)!)(1,}) (4.30)

This is the remaining equation for the determination of all the ¢(m+1) boundary
terms.
Note that (4.30) implies that:

) m L m c-l m

c—p = c[z PNITEDY zp(f.j)}— 2, X ip (i)

i=0j=0 i=¢j=0 i=0j=0

or equivalently:
c=1

p=Yipiy+ Y cpli) (4.31)

i=0 i=c
This last expression is intuitively clear owing to the conservation principle and the
infinite waiting room assumption. In fact the quantity in the right hand side of
(4.31) represents the steady-state mean of the number of packets that leave the
buffer at the end of a slot, which is also equal to the steady-state mean of the

number of packet arrivals during a slot.
4.2.6 Steady-State Mean and Variance of the Buffer length

Let N denote the steady-state mean buffer length. Then by differentiating (4.29)
twice with respect to z and substituting z=1 in the resulting expression we get:

H (D) ~cle-1) 1 e o S e y
e E) +2[C_H,(])1i§w§ch(t‘-—])—r(t—l)+2(c‘—t}G_’-(1)]p(I.J) (4.32)

N=

where H' (1) = p and H" (1) is as given in (3.53b).

Surprisingly, the expression of the average queue length, as given above,
depends only on the term of P (z) in (4.25), which corresponds to the case x = 0.
Further, for the special case, c=1, the average buffer length is given by the for-

mula:
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H (1) L3

N=qa=mon * ll—H'(])]JZ G (p 0.0

=0
which is more involved than the expression previously derived in (3.52), since in

this chapter we are aflowing zero packet generation during an active slot.

Next, we focus on the variance of the buffer occupancy distribution. From
(4.29), the second moment of the queue length is given by:

P"(1)=H (1) —cle=1){c=2) H" (1) =c{c=1}

Ac=H (D] t——rm W
1 =1 m
TR A {EOEO{CH—I) (c=2) = i(i-1} (i=2) +3[e(c-N —ili-DIG ;)
+3(c-1) lG"j(l) +2(C-H'(1)}F'J-(l)l Y} (4‘33)
where:

G' (1) = G" (1) +2jG" (1) [D'2 (1) - C'2(1)]

$ D72 (1) = €72 (1) =285(1) 1D'2(1) = Ca (MY + G- D 1D (1) =C2()] Hg 34y

m(l- 1-a—-P)°. o+p-1)2,
Fi(1) = (1-P) ( : B ;_(o+B )2f (435
(2-a-By (2-0-P)
D (1) =2(l-a)(1—u*B) (a2_2a+aB—3B+3)fg_{l-u}(l-u—ﬁ)f"(l) (4.36)
) (2-0’.—1})4 (2-—(1—[&)2

and H™ (1), G'(1) and G" (1) are as given in (3.55a), (3.53a) and (3.56),

respectively.

The variance of the queue length:
o’y = P' (1) +P (1) [1-P (1)] (4.37)

can be then easily computed using {(4.32)-(4.36)).

Finally note that equations ((4.32)-(4.37)) provides us with explicit closed-from

analytical expressions for the mean and variance of the queue length distribution.
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These expressions are exact and can be easily evaluated, once the boundary

terms are computed.

4.3 The Multiple Type of traffic case

in this section, we extend the multiserver analysis of section 4.2 1o the mare
general case where the multiplexer is fed with T types of binary Markov sources.
The model's assumptions for the arrival process are the same as those outlined in
sections 3.3. Further throughout this section, it assumed that the equilibrium con-
dition:

T 1 _ B,‘ }
p= -glm*'f—_a.f—ﬂsﬁ<c (4.38)

is fuffilled and hence a steady-state exists.
4.3.1 The Imbedded Markov Chain Analysis

Once again, the queueing model under consideration, here, can be formu-
lated as a discrete-time multidimensional Markov chain. The state of the system is
defined by (ik.alk.azk. "), where i, is the queue length at the end of slot k. The

evolution of the queue length is determined by the equation:

fpeq = (=0)"+b, (4.39)
Let:

0 (2yyyy - v = E [sk ]']_vﬂ IR R z‘[n ﬁ]pku.fl-fz---.m (4.40)
j =0 Li=1

i=1
denote the joint PGF of iy a'x, a’..a". Then:

hi 3il+l
T Ea
)

T . . -
s wly ) = i : = =9 i=lged Ay
Qper By ¥y - ¥ = E l:z‘ “ T —V?‘d] = E| ' 1 B
i=1 i=1

t=
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From the above, using ((3.59)-(3.60)) and (4.39) and by averaging over the distri-

bution of the £{} 's, the ¢'; and the d;, we obtain:

r 1 a'yay
IS,
{iy=e)" =l 1
Querlypyy -y = B[zt 2 - T
L i=1
r v e
E E £
. Jkey t
(6~ ) =1 =1 ¢ . 2 .
= ElEjz " 4 'l'l)‘f“"k."lhl-““l'---““l
el
"

‘ .t
= El}(u-c) M (."Ji(:])ahl:\
i=1

a'y "'l‘-’ll
Gom et PRI

= E|E|z I G- =

i=}

. 1 1 T
b ﬂ,('{lk....ﬂ;}

i-c) N ] m, C‘(.\"'I(Z)) o
=E|-z(‘ U I o) [ / } ]
| .y d (yf;(2))

=

(4.41)

or equivalently:

T m

OQpei (LY ¥n - 2 ¥g) = Hl:di(}’;ﬂ-(z))]

i=1

-+ T ¢
-E{z('*_r) 1 yj.'k} (4.42)
i=1
where:

_dufia) | 1-etoyfi)
T Aoy B O-Bhie)

i
In the sequel, the notation ¥ will be used to refer to the multidimensional sum-
i

mation given bylﬁ )f

J[=0j:=0 j1 0

. Further, p, (1, jp .- o) @ND Q{2 yy.y5 .+ ¥0)

npag 2L

will be simply referred by p,(1,J) and Q(z.3) respectively. Then from (4.42) we

can remove the (x)* operator by noting that since:



c-1 M [‘ T _ o M . T
= ZLHY“'.]mu,JHZ 3 27 [H}’]’C\p;(t,ﬂ
L=0j_p-i=1 1=cj=7 {=
c=-1 M M T c=1 M T )
= Z[H};‘jlpk(l,j)*—-;{z ZZI'[HYJIE}I)-‘.(I’J) Zz' [H i}pk(l,.f):l
1=07.g-i=1 v=07_7 i=1 1=07-0 i=1
then:
-1 M T
Q¥ Yy . Y- Z X7 \:ﬂ Yﬂpa(‘ 5 =
. T ‘ m; ‘=0j=6 ‘=1 c=-1 M T }ﬂ"g ;
Qk...](z.))-il;li[:f(y‘]}(z))] v +t§o£a[gl .-:\Pm )

(4.43}
The above is the functional equation relating the joint PGF of the general muitiserver sys-

tem, with multiple types of traffic, between two consecutive slots.
Expanding the above equation for the first few values of k, and using the same recurrence

approach outlined in theorem 4.1, we can prove the following resuit:

4.3.2 Theorem 4.3:
The joint PGF of the system, as described by the functional equation (4.43), is given by:

5, BK) Lol
Q2 =——C (2. &, (). (0. O N+ T T T
z

I=h=05_7 z

B(l © ; .
E) (£-1") [n fbl.(l)"‘:lpk_r(t..]) (4.44)
o

<
where:

k k
Ui (k) Dy Dyidy

q),('{) = - = 3 :
X; (k) Clilﬁi + Cz:‘lfzi

{4.45a)

with &, ;. Cy; 2; @nd Dy, »; as specified in (3.68a-c) and:

Bk = T [X; (k™ (4.45b)

i=1]
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PROOF
Substituting k=0 then k=1 in the functional equation (4.43) and, once again,
+ LI B(!\'i' 1)
using the fact that if B (k) =B(K), oy ymty vt then B () = B
X, (k+1)
), we get:

(which is an immediate result of having: X; (¢) = X; (01, .y = <

-t M T

N ER 0 PR AR z 2 ﬂf'}-:\po(‘-h L E s

0, (2.3 = B(1) “j=p 7 + X [l'l Yﬂf’u(lj)
¢ 1=0j_gh=!

Oy (2.0, (1) . D,

3(1) -1 M g1 s ; _
e (N X ¥ ) (- 1 [(bl(]]]J]p“(L.J}
\ (=1

=) M LI _

0, (Y, Yr . Y)-F % Z"[l'l Y'ﬂpl(l,.f) _

- =1 c=1 M T _

Q2 }) = B(D) d [1‘1 a
l:()j=6 i=1

B(1)[B (1 -1 M gty LTI . R
= )[ L 00 (2,8,(2).0,(2)... 0 () + T 3 _..(:_)(zf—z)[ﬂ [, (2) |’]p”u..n]
R a

Fd ©

B(l)‘ 1M T ; ;
- \;H [¢{1)]:\P1(11)+B(1)Z }:l:]'] [‘D(I)I]P ()

1UJ01

B(2 2 -l M Bl T ; -
-—L)-QD( ®,(2).d,(2)... 2N+ T X z —(—-)-(z -z)[n 1(Il‘.(!)]"i\p2_,(1...l)
=1

z = lis0f_ 2

Therefore (4.44) is true for k=1,2 and also for k=0. Next let us suppose that (4.44)
is true for the order k. i.e.:

B (k) L T0 * h
0,(2.3) =0y (2. &, (1) Dy (k). & )+ T T X - (2 —z)[]'] (¢, (0] ]pk ,(uJ (4.46)

I=1=0j_5

Let us prove that it is also true for the order (k+1), i.e
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o, Bk+1
QkH(z,y)=-%ﬁ)—}Q0(z,¢](k+1).¢2(k+l)... @ (k+1))
z

ktic-1 M B (1) o ) _
IOl Gk |:H [¢1'(I)]jli|pk+l—!(l'1)
[=li=0j_p % i=1
By substituting (4.46) into the functional equation (4.43) and using the fact that
« . Blk+1) -
B (k) = 5(T) we obtain:
B(1) B (k
Qi1 (29)= ( ) { ( )Qo( O (k+1),®,(k+1),.. . (k+1))
kc—l.ﬁB*([) o T ; )
+3 Y S ¢ —2)[1'[ [¢,~(1+1)]'}pk_;(1,1)
I=l=0j_5 ¢ =]
=1 M
3 3 mearlen]
1=07_5 4=l J
c=-1 M T
+B(1) Y Y, {H [®, (1)]"};&(1 7
1=0j_pgli=1
B(k+1)
= ?m)—QU( 2@, (k+1). Py (k+1)... D (k+1))

‘)[H [‘D (01 ilp,u.] (1 J)

== OJ 0

which completes the proof of the theorem.[3

4.3.3 Transient/Steady-State Analysis of the Buffer Occupancy
Distribution

Let P, (z) = O, (. L 1...., 1) denote the marginal PGF of the buffer occupancy
distribution at the end of the k7 slot. Then from (4.44) we have:

B (k . r=1 M é .
P s )-—‘-lot.u (0. By (... D)+ 5 T 3 -z‘)[
I=11= OJ 0 Z

e

;I’,'(I)J‘]pk_r(l.j) (4.47)
1

where:
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T T
~ - m, - . - .m,
B(k) = B(K) |)'1 Sy,= .=y=1 H [(Xi(h)} = H (C”lii'{"c?ilgf) (4.47a)
: ' i=1 i=1
X; (k) DyMy;+ Daiks,

q)i(k) = q)i(k)‘y‘:l - EJ(L) - E‘ .}'k +6‘ .)Lk
i 1ifey; 2ifay;

(4.47b)

with C,; = Cpl, .y and D,; = D ., Vire {12}), whiek, . Cyand D, are
as given in (3.68).

Next let ® = {0,1,2, ...m,} x {0.1,2, ...m,} x - - {0, L2 ...m.} and let
T
S = {0.1. ....c—1} Then, from (4.47), the ¢[] (m;+1) transient probabilities
i=1

p(i.D)'s, (i.Jye R = 3xR are the only terms which remains to be evaluated in
order to fully characterize the transient PGF of the queue size. The following theo-

rem provides a means to compute them.

4.3.3.1 Theorem 4.4

Let P(z,w) and P 5 (w) be the one-dimensional transforms, defined by:

Piz,w) = 3 P()w (I < 1) (4.48)
k=0
and:
- o (4.49)
P;w) = Y p(LD)w (Iwl < 1)
k=10
then:
IE-I.E] T i, ;- ‘- "kl_"rl’ .iuki"'fl"li "mi-jr-f -
o z [1’1 LJ‘ 1:\ |:m,1 J:JD“ DJZ:' CyiCa; jzlpo(t.J’) 2
=« M M i= [E—],(-)]. =i i
Pzw=3 % I -
i=1
(M-J.EY T ; R T R Y R Rl T .
z I i }[m' Dy D{g.' C1iCai }(zr—z‘JPJ(w)w n lf'jl'z"l'-“
e-1 M M =[E-}6]‘ i=1 kl'_l' Il' i=|
+ X Z_ E_ - T
1205 _5F=0 Few n l‘;,'lgi:-kn
i=1

(4.50)
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M (M -1.K]
where p, (1,J) is the initial joint distribution of the system, Yy and > refer to the
. . . moMm T k=0 = (k=70
multidimensional summations Z Z 2 and
ky=0ky=0 k=0
Loy =dinkyd Iy = fyka]™ Loy =Jse ksl [m - e k]
[k, =01 lky—js 01" [k3=j3.01" [k~ 01"

respectively.

T
In addition, for each K = {k. k,..k.} ¢ K, I8t Vz(z) = wnkﬁ".l’z";"" and denote by

zJ
i=1
zPE,(pe 8 = {1,2....c}), the c roots of the equation :* = V;(2) inside the unit circle.
Then for each (p.K) e R = 3x R, P ;(w) satisfies:

2+

] ﬂ? “W—j.l?l' T . . 'j\‘ _B.)
m;=J; Ji ( 2i f \ -
Z H[, EH: ’:' 5 12, gP (\,J)
Z : . +li=1 li k,“"l,' (aiﬂ—l)!'[(lﬂﬁi)ﬁ(zpf)]ll 5| BKTO

— = am 2+
-1 W \M-IRY | s arc . 5 i,
- . (lﬂ_B) ;
Sy [n[ JH i } B, }(zc___,,_”,_(w) .
g S [ k=1 N1 - . _yqhti TPk TpKT
‘=DJ=“i=|E_j,')1' i=1 i it (Cli Dl Bl.)fl-(-PK)] (451)
where A, = Mo,
4——-"pE
PROOF
Define the following wtransform, P (z.w) = 3 P, (z2)w" where (Iwl <1). Then from {4.47):
k=0
- ) ) ) i
P(zw) = ZB(k)QU(z.d)l(k),ch(k)...<D,(k))[ﬂ
k=0 Z

é l [ 1 . ~ jl L - .
v et

(4.52)

= - - . k
We first look to the firstterm, 1= ¥ B0, (z @, (5).@, (k) ... D (R) E;] . Since:
k=0

-~ - = N_’ * -~ l‘- _
00 (2 @ (1)@, (k) ... @ (k) = T, ZZ‘[H [@;(k)]’}pou.n
= i=1

1=0j =7
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then by substituting for B (k) and &)i (k) asin (4.47a,b) and by applying the Bino-

mial theorem, we get:

o b ,ﬁ . T ) m'_jl ~ &
1= 3 5 5 nuwxw™ e H

k=0'|.=0j=6 =1

1 3

o M . _ T m—j, i Alm=fl = o = IS s e m=j=r| muyt
L Xzp NI X X FUHDALY D2k} Gk (Caidg) E—]
i=1r=05=0 £ r -

=01=07_§ ;

interchanging the order of summations gives:

&
T
w ]_l l(r|+s.] ;me- ((r,+s))

- A_{_ __j j 1 - T j n. - i~ rl"ml_jl-rl - i 1 L 2i
=Y £ % Tap, b T Dl-D‘!. "CliCa ¥ - (4.53)
1=07_0F=05=0 i=1|5% I k=t z
j -
where we used the notations Z and 2 to refer to the multidimensional sum-
§=0 E:En
i I s my—~jimy— m =,
mations, 3 Y - - and Z .+ -y, respectively.
s]=052=0 st=0 r]-0r=0 r‘=0

Finally the last term in (4.53) can be further simplified to yield:

T l—l —
JI_S...r ~ N, _,l, r, _ -
-7 7 {Hh\: , J}Dlasz C1iCa :]zln(,(l..nz
i=1" i

l=0j=6§=6§=0 s —Wnl(r+3))»nl ((r,+s))
i=1

Next we consider the second term in (4.52) which can be expanded as fol-

lows:

Ok M é([) . T _ h o
Ih= 2 22 2_ Te (ZC-Z)[H [®; (D] :|Pk_,{l.f)w

fe

L BT j ] 1
= Z(Z—Z)Z[Z {H !)]}pk_,(t.l)—pk(l,l)]w

1=0j.5 k=0li=0 z° i=1
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ZPk(l,j) w*. Hence:
k=10

o R B
= Z Z z —z)[Pu-(w) Z []‘[ (@, (k)] ]w -P; (w)}

k=0 2 i=1

Recall that PJ (w)

W
=E 2 £=2)P(w) - B(” [H (D, (k)] }
= - Z

k=1 iz}

Substituting for Ebl. (k), B(k) as in (4.47a,b), applying the Binomial theorem, and

interchanging the order of summations gives:

- o

k k
1= );(z-z)P w) - ¥ ”[nuu)xu) ][{l
1=UJ=(J k=1 2
l.lA‘(r+s) mo—={(r,+s5})

-l M M-J ] o T =] =5 P 2 q,
= ZO_Z__Z__Z_ (z ‘Z)PJ(H') 'ni sl lr DhD": Chc"e £2 0
‘=0r=0R=05=0 =1 i = z

From the above, the last infinite sum can be further simplified to give:

t o . N L s -
n Ty T DhD": Clic’l nlffﬂll::' (tres)
i= 1|5 F; i=1

W

1] Z_“ynh(r*")kﬂlg-((’*‘s})
i=}

Tl m -5, =S =i -
[n H[" ]D],Da, ‘C1iCai ]z‘po(l.nz‘
i= 1SN

==X}

k

o M M-J
Pizw=3Y ¥ ¥ Y
=07 _0R=05=0 £ —w n l(rl”}l = (4}
Iw-
A At P Ut s) ymi (4 )
[ - H ' ! DI.ID"x Cllc”x nll" j;‘-r' )
=1 M M-J ! P i=1|5 r; iz 2
+ Zo p3 ) 2_ (z —Z)PU',(W) = ( ) ” .
\=07_9Rk=05= rits)ym— ((r+s;
J=0R=05=0 zt‘_wnl“ ;in

i=1

gl

or equivalently, with the change of variables: X = R



IM-JK1 [« i, Y I S Y R Y R A IR -
X I1 ) ! D]l D"l CIJC‘I :POU-J):
R e L :,.

1=0j_37% =0 k|
J=0K=0 e I‘lkl,lm,
i=1
1M-J.KY S A P I e R P L R ) =,
Z H ! ! Dl: Dai C]rC"J (Z '*)P =(whw n l A,
=1 M M M ja]‘ i=1 kl'_ll' li = s
+3 3 3 S _
1=05_3K=0 L, kiom —k
2 =w I1 iy,

i=1 (4.54)
which completes the first part of the theorem.

Next, for each K= {k, k,... k;} € R, let us consider the roots of the equation

_V()_WHM@”* (4.55)

i=1
Let h(z) = and gz(2) = -Vg(2). Since Vie {1,2....t} |A[<[A,S1 and

lwi < 1, then for each K e R:

WH l]';\'m ~k,

i=1

)
| K ‘

]H l’z".-'”"!

i=1

Since ]’[l’"' ‘. is a valid generating function (GF), then for a small e>0 and on

iz To(my—k) (1=-P) .
Izl = 1+ewehave|g z)l<l+az T =P fi+8(€).

On |z = 1+ we also have |h(z)| (1+€)° = 1+ce+0(e) and therefore if the

o mi(1-B)
system is stable, i.e. (p= Z 2_—_13

on |zl = 1+&. From Houchestheorem h(z) and h(z) +g5(2) have the same num-

fi<c), then foreach Ke R, 1a(z ) > |eg ()]

ber of zeros inside |zl = 1+¢& and therefore (4.55) has also ¢ roots inside
Izl = 1+¢. Once again, these roots can be expressed explicitly in terms of
Lagrange's expansion by noting that for each Ke R, (4.55) implies that
2=V, [Vg(2)]” where v, = J2/¢ (pe 8), are the ¢ roots of unity. Therefore,
from Lagrange's theorem, and for each K e R the ¢ roots of (4.55) inside 2| =

are given by:
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= (VPWVt)" aﬂ_l v ,L/Cl 45
z”’?=n§1 n! dz"-l[ gL 4.58)

where (p.K) e kK = 3xR. Now for each K € % we know the values of the ¢ zeros of the

denominator of P(z w). In addition since P(z.w) is analytical inside (<1 iwi< 1},

then for each K € R, the numerator of P(z.w) must also be zero at z = Z.k for each

pe 3.Hence V(p,K) e R = 8 xR:

where ;2 = Cli,2i|z=: _ and Dli,:’.:':Dli.ZiL._,: -
K K

p

The last expression can be further simplified to yield:

2+

ig (W -1.R It[[m'“jﬂ jl ;=B )
I ! 1 -t I ' zl_p (LJ)
; ' o ki (a‘.-—1)!'[(1_[3i)]ri(zpf)]’.+1. Pk 0

2 4],

- | (2 z—2 )P (W) =
. | L l‘- k‘:_lf (ai_l)l,[(l_ﬁi)fi(zp’?)]ﬂ*']; pK pKo W (45?)

T
The above defines a set of ¢ [T (m;+1)

i=1

transforms, P ;(w}, (1.J) € & = 3x K. Taking the inverse w transform enables us to

equations for the determination of the w

compute the unknown boundary terms p, (1,7)'s.
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4.3.3.2 Transient Mean of the Queue Length Distribution

— dP (2) h
Let N, = - denote the average queue length at the end of the K" slot. Then
7 =1
from(4.47):
__ dB(k - . - Ee-1 i
= ___d(Z) :=h—kc+£Q0(z.fbl{k).(bl(k)....¢t(k))|:=l+ TS T (e-up D (4.58)

I= 11=L1J'=a
Using the results of section 3.3.4.2, we finally get:

T

o+ P, - — o (1-8)
Ny = No+k(p- C)+22_a—ﬁf‘(l (a;+B;— 1))\:40 2——&-*-[;"]

k-le—1 M

+Y Y Y (c-up )

= =0j_7 (4.59)

where A is the initial average number of active sources of type I

4.3.3.3 Steady-State PGF of the Queue Occupancy Distribution

The steady-state PGF P(z) = klim P.(z) of the queue length distribution is readily
S ‘
obtained by applying Abel's theorem to (4.50), giving:

(M-JKI [ = ‘. Skm kL o= T "
Z n ’> /i i J Dla D"l C“C2I n h -,l -k
e-1 M M l-'-]l?-j a]— |=l|_k,"‘lI l,‘ i=
P(n=% T (F-HPLD) T —= (4.60)

1207 _7 ¥ =0 =k,
J=0 K=0 -
4 ]"]l“l?"

where p(L ) = p_(LJ) = lim (1-w)P ;(w).
R v
T

Alternatively, when there is no need for transient resuits, the c[] (mi+1) unknowns
P(LT)'s, (1.7) € 8=3 xR, can be determined by invoking the anal;n=iclzal property of P (z)
inside the unit disk. First, it is easy to verify that for each Ke R, the equation
£ = Vgiz) = Hl"'k’"""" has ¢ distinct roots inside the unit circle. Thase will be denoted
by zz X (p, K} 'e ® = 8 xR. For K = 0, one of these roots is Z. = 1,which also appears in
the numerator of P(z), and the remaining roots are :z. .z. z. . The roots g, 'S,

01'"62" " " Toe-
((p.K) € R=% - {c,0}) can be expressad in terms of the Lagrange's expansion:
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(4.61)

s

d"_.
— f’
2 n! d

g, =
n=1

where v, = /¢ (p< 8) are the ¢ roots of unity
Since P (z) is analytical inside the unit disk, then for each K € R the numerator of P (z) must

. Hence:v(p.K) R=R - {c,0}:
28+,
i\(am, g p(L]) =0 (4.62)

alsobezeroat: = 2z,
(L, B

iR

’} (o= D' (=B Sfi(z, 1"

where Ay = Ay _ -
The remaining equation required for the determination of the unknowns P (1,J) S IS pro-
= 1. SlnCE é“'z:l = bli‘:___l = 0,

vided, once again, by the normalization condition, P (1)
then, except for the case K = o all the terms under the third summation in (4.60) become

sero when evaluated at z=1. Hence it is convenient to rewrite (4.60) as follows
Gj(z)
Fo(z) + -—————1 (4.83)
2 —-H(z2)

c~1 M
P(z) = Zz "—z)p(lj)l:
=j T

-kl - l m -j =1 k
:\Hllrlt:

where:
1"_4"-7 l'?]- T . ‘” k I—j
l-[ jl J Dl: D';J lr 21
Mo kerm b k-l b =
Fia) = 3 ' »
K=0 _ m X,
l?;ef) H}\’]t 2i
T o % ;
G;(2) = [] (C2iky) [—"’—} and H(z) = ] Ay
P=1 Cz,' i=l
From (4.63):

c=1 M
P -H(D)] = Z 2 (=Y p D [G;() + (=H()F ()]
=05

(4.64)
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Next differentiating both sides of the above equation with respect to 2, substituting

=1 in the resulling equation yields:

c-1 M

c=H'(1) = 3 ¥ (c-up.d)
=073

or equivalently:

c~1
c—p =3 (c-vp() {4.65)
=0

This is the remaining equation for the determination of all boundary terms in
(4.60).

4.3.3.4 Steady-State Mean of the Queue Length Distribution

Let N denote the steady-state mean buffer length. Then by differentiating
(4.64) twice with respect 1o z and substituting z=1 in the resuiting expression we

get:

H" (1} —c(e—1) 1 c-t M

N= =T +2[(__H,“)]1§0;—,_‘_a[c(c-1) -1 +2(c- 06D p LD (4.66)

where:

m(1-B) (3-20,-2B) . o+p-1.
it !
1 (z_ui_ﬂj)z 2—(1'-—[5‘-

G'5(1) = X (4.67a)

with H' (1) and H" (1) as defined in (3.86) and (3.87), respectively.

Once more, the expression of the average queue length, as given in (4.66),
depends only on the term of P (z) (which corresponds K = 0). This expression is
fairly general since it is applicable for multiserver queues, with multiple types of
traffic sources, and where some silence is permitted within each source's active

period.
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4.4 Steady-State Distribution of the Packet Delay

Let D(z) be the PGF of the packet delay in number of slots at the steady-
state. Using the results derived in [67], D (z) can be derived from the steady-state
PGF of the buffer occupancy distribution, P (z) , through the relationship:

2n

c—1 1—-25 (1 - ¢ - lC—l . .
D(ZC) = %Z ( zn‘f )( 4 )'2?.:‘I P(e € ZJ_E_Z (C"I)p([) (4.68)
1=0[1 “i— _1)[1 j— ) =0
-e °z —e “z

where j = J-1. In [67] it was shown that the mean packet delay is d = o in

accordance with Little’s formula [80], while the expression for the variance of the
packet delay, as given by eqguation (18) in [67] is incorrect and should be modified

as follows:

jzn e—1 le=1)
First note that, with a = ¢ ¢ , the property ¥ ka" = cl—_f—z— which follows (17)

. k=0 (1-d)
in [67] is incorrect and should read:

c

-1 l (1#0)
Y ka* = a; - (4.69)
k=0 5cle=1) (1=0)

Hence it follows that the variance of the delay becomes:

c

2nl
2 cm1 P[e }
2 _ On, (e=D(c+1)

p. .2 1
oo = —+ —(1-2)[d) - =3,
pc 6cp c pc’=1(l—cos(zfi))

(4.70)

4.5 Numerical Resulis

In this section, we present some numerical results in order to illustrate our
solution technique. We consider the case where each active user independently
generates sither one packet with probability p, or no packet at all. This is a gener-
alization of Bruneel [51] model since zero packet arrivals are now allowed to occur
during an active siot. In this case, f(z) = (1 -p) +pz and we keep o = 0.75, cis

fixed to 2 and the parameter p is fixed at % We therefore consider the case of a
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single type of traffic and we want to examine the queueing behavior of the multi-
server queue for different traffic intensities and different number of sources, m.
Figure 4.1, shows the average buffer length, as a function of p, for m=5 and
m=10. In each of these two cases, we had to solve for a system of 12 and 22 lin-

ear equations, respectively, in order to determine the boundary constants

p(i,j)’s.

10° ¢ ] . ;

108 : c=2 alpha=0.75

—_
o

Mean Queue Length

-2 |

1 | 1 1 L 1 ) 1 J‘

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Load

FIGURE.4.1 Steady-State Mean Queue Length as a Function of Load, p
Note also that for the same offered load, the average queue length increases with

m and this becomes more noticeable at heavy loads. figure 4.2 shows the vari-
ance of the queue length for different applied loads. in particular, we note the very
sharp increase in the variance at high traffic intensities. Finally, in figure 4.3, the

average packet delay is plotted as function of p.
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CHAPTER V

Queuing Analysis of ATM Tandem Networks

5.1 Preliminary

It most analytical studies related to ATM systems have focused on an isolated
component in the network, such as a switch or a buffer, it is mainly because of the
difficulty which surrounds the performance analysis at the network level. However
because of the single path routing in ATM networks, the performance analysis of
an ATM virtual connection, which typically consists of a number of queues in tan-
dem, is of great importance since it might help to understand how ATM cell

streams change as they pass through a number of switching nodes.

in chapter 1, we discussed some of the main issues which make it difficult to
establish an exact performance evaluation method for a network-wide ATM sys-
tem. In the lack of exact methods, we also highlighted the frequent use of the

decomposition technique as a tool for the approximate analysis of ATM networks.

The main idea behind the decomposition technique consists of decomposing
a queueing nretwork into weakly coupled subsystems (ex. individual queues or
subnetworks) and then analyzing each subsystem in isolation. To do so requires
some approximations and fitting methods for the modeling of the input (arrival)
and output (departure) to each subsystem. For example in [81], a four node ATM
tandem queusing network is considered as shown in figure 5.1. The output pro-
cess of each node is approximated by a renewal (Gl-stream) process and it is fed

to the next node. In addition interfering traffic enters each node and leaves imme-
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diately. The interfering traffic in [81] consists of an M-stream which is modeled by
a Bernoulli process with batch arrivals and a B-stream which is modeled as a
number of N discrete-time interrupted Poisson processes {IPP’s). By convolving
the delay distribution at each switching node, an approximation for the end-to-end

delay distribution is provided.

M-stream M-stream M-stream M-stream M-stream
B-stream B.stream B-stream B-stream B-stream

Sourcs A& W \N L\ N—

EIIQETI QI

FIGURE.5.1The Four Nodes Tandem Queuing Model Considered in [81]

One of the limitations of this approach lies in the characterization of the output
process of each isolated switching node. In fact the renewal approximation for the
nodal departure process is hard to justify, as correlation is inherent in the output
process of each node. This correlation has significant effect on the gueuing
behavior of the downstream nodes. This problem has been investigated by Lau
and Li [82] where the “output/input” distortion due to multiplexing and splitting of
traffic streams has been studied through extensive simuiation studies. To take into
account this distortion in the departure streams, Ren et al [83] proposed an
approximate analytical technique which is based on the observation that when an
isolated node is fed with a number of Markov modulated ON/QFF traffic streams,
the departure streams from that node can also be approximated by ON/OFF
streams with modified parameters. This makes the aggregate arrival process to
each node, in a tandem ATM network, consist of ON/OFF streams. Using the per-

formance results of a single ATM multiplexer with Markov modulated ON/OFF
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streams (ex. the fluid approximation approach [36]), it becomes plausible to ana-
lyze each node of the network in isolation and hence develop end to end perfor-
mance analysis. The main limitation of this approach lies in the need to estimate
the new parameters of the departure stream at each node. Also, the estimation
has to be accurate since the departure stream at each node becomes the input to
the next downstream node. In addition, the approach neglects the effect of the
cross-correlation among the different traffic streams in the network and, from a
modeling point of view, the approach is also limited because it requires different
models for the output of every buffering element in the network. Another limitation
of the decomposition method is that, in most cases, one cannot guarantee that
there are feasible solutions for the estimation problem of fitting parameters to the

output process at each node.

In this chapter, we consider a generic tandem queuing network with correlated
arrivals and joining interference, which models a portion of a virtual circuit at the
inlet of an ATM network. We focus our main analysis on a two-node tandem net-
work, which we model as a discrete-time ¢ .eueing system. The same example
has been treated by Morrison [84] under the special case where the input to the
first queue is geometrically distributed while the external input to the second
queue is a Bernoulli process. Very recently Boxma and Resing [85] treated the
case where the number of external arrivals to the two queues is modulated by a
two-state Markov chain. An expression for the joint generating function of the
queue lengths distribution when the modulating Markov chain is in state j, (=1,2)
is derived. To our knowledge, this derivation is the only contribution, we are aware
of, in the exact queuing analysis of tandem queues with correlated arrivals. How-
ever, the two-state Markov chain model for the external arrivals in [B5] is too
restrictive to be used for the modeling of ATM traffic since it can be viewed as a
surrogate model which does not have a concrete relationship with the actual traffic

generated by the multimedia sources.Therefore, it is hoped that by generalizing
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the external arrivals process, this work will be another step towards the exact
analysis of more realistic tandem configurations which arise in an ATM environ-
ment. We also note that the delay results of tandem gueues with joining interfer-
ence will provide an upper-bound for the corresponding results, with crossing
interference. The main contribution of this chapter is that it presents an exact
analysis of a two-node ATM tandem network, where the external arrival process to
each queue is modeled by the traffic generated by the superposition of Markov
binary sources, which as mentioned before, are extensively used in the modeling
of Broadband traffic. This work can also be viewed as an extension of our previ-
ous approach, presented in chapters 3 and 4, in the context of a single multi-

plexer.

The main advantage of the approach is being exact, that no approximations
are made regarding the nature of the departure process from the nodes. Hence
the performance measures derived in this chapter faithfully incorporate the “out-
put/input” distortion caused by multiplexing. We also note that our choice for the
generating function approach to analyze the tandem queueing network is moti-
vated by the fact that other solution techniques such as global balance equations
[86] which are often used in continuous-time systems are not adequate in the dis-
crete domain. This is due to the fact a very large number of state transitions (if not
infinite) is required in the discrete case, as multiple arrivals are allowed within a

time slot [87]. We have organized this chapter as follows:

In the next section, we give a description of the general model along with the
assumptions governing its operation. In section 5.3, we illustrate our solution tech-
nique by considering a two-node tandem network. We model the network as a dis-
crete-time queueing system and derive a functional equation relating the joint
generating function of this system between two consecutive slots. The functional
equation is then put into a suitable form, which enables the derivation of the
steady-state joint generating function of the contents of the queues and the num-

ber of active sources. From this, any moment of the gueue length at each node
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can be extracted. In addition we derive explicit expressions for the average packet
delay at each node as well as for the total average delay in the network. In section
5.4, we discuss the extension of the analysis to the general N-nodes tandem net-

work. Finally, in section 5.5, we illustrate our solution technique by some numeri-

cal results.
5.2 General Model Description and Notations

In this chapter, we consider a tandem queuing network, consisting of N

nodes, as depicted in figure 5.2.

. o_.'. .

/V

IT1 I / ITN

00,
|

FIGURE.5.2 The General Model for the ATM Tandem Network

Here node (1) is an access node, which is loaded with the traffic generated by the
superposition of m, independent and homogeneous Markov binary sources. The
remaining nodes are also loaded with an intermediate traffic (IT) which consists of
the superposition of the traffic streams arriving from other nodes in the network.
We further assume joining (as opposed to crossing) interference, whereby the
interfering traffic joins the main packet stream until the last queue. This assump-
tion is appropriate at the inlet of the ATM network where joining interterence (mul-
tiplexing) dominates crossing interference (switching) which often prevails inside
the network [88]. In addition, we model the intermediate traffic to node (i), as the

traffic generated by the superposition of m; independent and identical binary
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Markov sources. Throughout this chapter, the ATM tandem queueing network that

we are considering is assumed to operate under the following conditions:

- All channel time axises are segmented into slots of equal length, each corre-
sponding to the transmission time of one cell. in aadition all the nodes are syn-
chronized, so that a node can transmit cells only at the slots’ boundaries. Hence a
packet which arrives during a slot cannot be served before the beginning of the
next slot. We further assume that the cells received by a node from external
sources or from other nodes are buffered in an infinite capacity queue and then

transmitted on a FCFS basis. However a node can transmit up to one cell per slot.

- It is assumed that the mean combined input rate from alil the sources is

always less than 1 so that the system is stable and a steady-state exists.

- Each node (i} is fed with m; mutually independent and identical binary
Markov sources, each alternating between an On and an Off state. We assume
that during an “active” slot each source, feeding node /, generates a strictly posi-
tive number of packets with a probability generating function £; (z;) , while during a
“passive” slot no packets are generated. State transitions are assumed to occur at
the slots’ boundaries and the lengths of the On and Off periods are, once again,
assumed to ba geometrically distributed with means T—l_a,. and 1—_1*[—;‘ respec-
tively. At this stage, it should be noted that the extension of this work to the multi-

ple type of traffic case (at each node) is straightforward.

Let a; , be the number of active sources that feed node / during slot k. Then:

al.k R mr_aa. .
! 3
a1 = 2, G+ 2 94 (5.1}
=1 j..—..l

where cj and dJ"- are two sets of i.i.d Bernoulli variables with corresponding PGFs:
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c;(z;) = (1-0o) +ouz; (5.2a)

di(z;) = B+ (1-B)z (5.2b)
The number of packets, b; ,, generated by the m; sources during slot k and des-

tined for node (i) is given by:

ﬂl‘k )
b= 2fik (5.2¢)

j=1
where fJ’, « is the number of packets generated by the i* active source during slot

k and which are destined to node i. All the f:Aa are assumed to be i.i.d with PGF
f,- (Z,‘) .

5.3 A Two-Nodes Tandem Network

The queuing model shown in figure 5.3 can be formulated as a discrete-time
multidimensional Markov chain. The state of the system is defined by
(ip e 4y @5 ) Where i, and j, are the queue lengths of nodes 1 and 2 at the end

of the «* slot, while a, , and a, , are the number of active sources during slot k

which feed nodes 1 and 2, respectively.

T~

00,

m, source;: L

SO0

FIGURE.5.3 A Two-Node Tandem Network

| m2 sources
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In this section, we shall first determine the joint PGF of the queue lengths at
the end of the k! slot and then put it into a suitable form, which will be used in
conjunction with Abel's theorem to derive the steady-state PGF of the queue

lengths.

The evolution of the queue length at each node is described by the following

equations:

fpe1 = L= U3) +by i

Jre1 = Rm UG +by 40+ U (5.3}

where U (x) is a binary-valued random variable which takes the value 1 if x>0
and 0 otherwise.
Next let us define the joint generating function of the system at the end of the B

slot as follows:

My

Qu(zpzpypya) = E[’*J* AL EUEI DY 2 Z 5319y i dy gy )
i=0j=0a, =0a,=

where p, (i, /. ay. ap) = prliy=i.jy=i.a, ;=a,.a, ;=a;] is the joint distribution of

the system at the end of the k! slot. Then from (5.3) it follows that:

B=UG) +b, .y o= UG +by v UL .G
Q1 (2122 ¥1,¥2) = ELzf S, 32121 U+ by ‘*))"11“* ‘y?* 7 (5.4)

From the above, using {5.1) and (5.2) and averaging over the distributions of

the f; . ,'s. the c/'s and the d's yields:
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i=1

or equivalently:

2 : S . :
Qk+1(:1; :2! yis )'2)= 1_[ [dt(y,f,(:,))]m' ‘E[:‘lkHU(‘k):Jzk_U(Jk)+U(It) Y{:l'k}’g:'” (S-Sa)

i=]
where:
_qfi(z)) - o, +oyf(z)
Y= IOFG) - B APy @ (5.50)

Next in order to remove the U(x)'s from (5.5a}, and as illustrated in figure 54,

we consider the four cases:

i,>0,/,>0 Case (/)

i,>0,j, =0 Case (/1)

i, =0,j,>0 Case ({11)
i =j=0 Case (JV)
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FIGURE.5.4 Partitioning the State Space of the Queue Lengths into 4 Non-

Qverlapping Regions

In addition, from the model's assumption, we note that if the random variable
i,(j,) is zero then the random variable a, ; (a,, ) has also to be zero. As before,
this follows from the observation that if one buffer is empty at the end of a slot,
then the sources which feed it should have been empty during that slot. There-

fore, from the above two observations, we can write:

[
=My - U1 i 4 Soe —ih i u i
gty Vnl syl - 5 5 oz P AR T NN RN
i=0f=0Ba, = a2=0

™ w My LS w |y

. . - a . =118 . . )
=rror 50"1 Y Py )« 5 20"3 NI 000 o 5 5 ATl (0).0.05) 4R (0.0.00)
R P 11, =

(5.6)

My

With reference to figure 5.4, the first, second and third term in the above expres-

sion can be written as follows:
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- my o m:
- X :‘lY';'pktl.O.urUl- I I :{,Y?pk(ﬂ.;.o.uz)vp*(0.0.0.0)1

1=02 =0 i=0a,=0 (5 ?a)
- " = My
¥ I :'1":].,_}":1;-*(1,0.41.0] =1 z;‘ [E bk :I].Y‘lllpl.[l'o'“‘l‘m —pklu.o. 0, Uzl (57b)
|=Ial=0 =o.;1=n
and:
- l'l'lz o m:
T T 4 00y = 5! [z T A 1070y ~py (0.0 ME\ {(5.7¢c)
J='ld::0 =CGu,=0
respectively.

Finally, from (5.5a) and after substituting (5.7) into (5.6) we get the following

expression relating the joint PGF of the system between two consecutive slots:

2
Qpa1 (24 222y 7)) =[] 1d; 0fi (217 4

i=1
Z']-] [QL (Z], 22: Y]s Yz) - Q}\ (zla 01 er 0) - Q,{ (Oa 22! Os Yz) + QJ\(U& 01 0» ()) ]

+2,- 27 [0 (21,0, Y1, 0) —0,(0,0,0,0) ]

+ 55010, (0,25, 0,Y,) = 0,(0,0,0,0) ]

+0,(0,0,0,0) }
2 (5.8)
In the above, the first term corresponds to case (1), the second to case (li}, the

third to case (IH1} and finally, the last term corresponds to case (IV).

As before, we note that taking the limit as k — - on both sides of (5.8) does
not help in carrying the analysis further, namely because of the presence of the

Y, and Y, terms on the RHS of (5.8).
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Therefore, to handie the functional equation (5.8), we apply a similar
approach to the one presented in chapters 3 and 4 in order to put (5.8) into a suit-
able form, which enables us to carry the analysis further. In addition, since we are
interested in the steady-state solution, then without any loss of generality we can
assume that the system is initially empty, with all sources being in the Off state,
i.8. Qy(z),7 ¥, ¥2) = 1. Note that because of the Markovian property of the sys-

tem, the steady state solution is independent of the initial condition.
5.3.1 The Solution Method
With zero initial conditions, and by expanding 0, , (z;, 7. ¥;, ¥) in (5.8) for the
first few values of k, we can prove by recurrence the following major result which

enables us t0 express Q,(z.z,, ¥, ¥,) IN @ more suitable form so that the corre-

sponding steady-state result will be readily obtained.

5.3.1.1 Theorem 5.1:

The joint generating function of the system, as described by the functional

equation (5.8), can be written as foliows:

04 (21,2 ¥137) = —f—% 2= 1) Z—(-fl Qi (21,0, ®, (1), 0)
41 ji=1
(21‘22)'(_13(]') .
+ i Qk_j(osz:)-soa(bz(.]))

Zz
2 j=1 2’1

(z,-1) (z; =20 " B
- —= Y :,.’) Q,_;(0,0,0,0)

Zz
2 j=t1 %1

{(5.9a)
or equivalently:
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B (k B
Qi (2,23, ¥1:32) = (A) + (23— 1)2i) Q¢ (2.0, @, (). 0)

“1 Jj=1 ~1

..

SBG)
2 g Qe (02209200

-1 -
LD -

B .
2 z&.’) Q,_,;(0,0,0,0)

72 ji=1 7
where:
o8 U (k) D“l’;l+D2llﬁ‘
X Cli?\'i:"*'cziléi
with:
N B+ ofi () F (B 0f, (2)) T+ 4 (1 - 0= B (2)

1,2i — )

c _ i - 2(y‘-—yiﬁl.—a‘.)f,. (Zl-) + (B,""aifi (Z,'))
B2 (B o (2)) 2+ 401 - 0 - BYS, (2)

i o 2(1—oy+ oy fi(z)) — (B + o f (2))y;
2./ (B +afi(z))2+4(1—0a,~B)fi(z)

a

-

B(k) = T 1x;(01™

i=1

PROOF

(5.9b)

(5.10)

(5.11a)
(5.11b)
(5.11¢)

(5.12)

Throughout this proof we use the fact that s w - sy, -1, ,,-7, - . IN addition we

g

can easily verify that (5.9a) and (5.9b) are equivalent. Hence by substituting k=0

then k=1 in the functional equation (5.8) we get:

Q] (zy, szyp)'z) = B(1)
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Oy (tytgayrg) = 8O) [T BT (100115, 0.0, (1.0 -0 (013, 0.85( 1) = £ (0.0.0,0)
t 2,770 10 (27,09, 111,00 - €, €0,0,0,0})

-vxil 1 (01, 0.0, (1)) = Q) (0.C.0.01) + &y 10.8,¢,0/]

t5y=3) ! Bep

B(2)

= ——t {2 —I)E——-Q (2.0, (i), 0)+ —=—— T —4@ (D 2 0P, (1)
P 2 i ’11 - DU 1:, 2- 2
(z3=N(zy-29) 1 pep

+ ————— ¥ —in_jIO.U.O.OJ

] )= tji

which shows that (5.9) is true for k=1,2 and evidently for k=0. Next let us suppose

that (5.9a) is true for the order k, i.e.:

04 (2123 30 V2) = ek 4 (29~ 1) 2 ) 0, ;(2,0,®, (), 0)
Z J—l

(z;-2) X B ()
+ -
zq 2 ZJ]

o j=1

Qk..j(o! 229 01 ¢2 (j) )

(=D (5 -2 KB
-2 L2y _(’.J) Q,_;(0,0,0,0)

AL (5.13)

let us prove that it is also true for the order (k+1), i.e.:

k

B(k+1 B (j
Qi1 (Cpinypyn) = ; ) 5= 1) Y T Qper1-;j (0, ® (), 0)
z| j=1 4
(31—22) k B () .
+ z 2 -,J Qk+1-—j(0,zzao,¢2(_]))
2 j=1 7
(z'_)"‘l) Z a) A B
* 4 - 2 :,}) Qk+1-j(010,0,0)
S (5.14)

Substituting {(5.13) into the functional equation (5.8) yields:
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(8 gty
Qk.q.](:],zzy}’]y.vz) =B(])|::1 ( L( I) + (.-\, )2 U) QL J( 1,0 q’ U+1) 0)
5

j=1 -1

5 -5) B¢ (z,- D (5, -2 F BT (G
+——73 D (0,25, 0,0, G 1)) + —2 L2 o) ¢-;(0.0,0,0)
2 o 7 / ¢ 2 )

_Qk(zlvoad)](l)!o) _Qk(ov :2101 q)z(l)) +Qk(0’0’0’ 0) )

TH0, (21, 0, D, (1),0) = 0, (0,0,0,0)) +323' (24 (0, 23,0, , (1)) =2 (0,0,0,0))

+ (0,(0,0,0,0)) )

Since B (1) -B" (k) = B (k+1) then the above reduces to:

B (k+1) =lp+) ,
Q1 (Zpip YY) = ¥ + (2, 1) .Zl_ZFT' 04—z 00, (+1),0)
X1 j=1 A

(a—-)JL Ta(j+1) ,
22 ] _J+1 Qk_j(0322:0:¢20+]))
=1 -

—1) (2 —zyk=dp s
+(22 ) (7 Z)ZB(HI)Qk_j(o,O,O,O)

22 i< zj|+1
B(l (z;—23) B(]
€ ~1)—(lgkc.l,0 &, (1),0) + —— —(1—)QL(U.L2,0 ®, (1))

(’ -1 (" _~1)B(1)

- QA(O 0,0,0)
or equivalently:
B(k+1) BU) .
Qk+1(215223y1!y2) = ‘“1) 2 Qk+1_j(zl,0,¢](.l),0)
21 j=1
(2,-25) & BU) | .
+ 22 jz zji Qk+]..j (0’ 22: 0! (Dz U))

(-1 (z,-z) L B
: l 22—9—9“1 ;(0000)
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which completes the proof of the theorem O .

5.3.1.2 Steady State Analysis of the System:

Let Oz 2y y) = Jlim 0, (222310 30) denote the steady state joint generat-

ing function of the system under stability conditions and let us define

0 (2}, 73 ¥;. ¥p W) by the following wtransform:

((wl < 1) (5.15)

k
Q(zpzpypypw) = 2 Qulzpnypy)w
k=0

Substituting (5.9b) into the above equation gives:

= k

Oz ip Y ¥uW) = 3 B [—"‘—} + (2
k=0 ‘1

=k )
_1) Z ZTU JL j(Zl,O,q)l(j),O)wk

k
B
3 29 g (0200, ()W

=1y (2~ =
22D zgwgh(oooo;w

“2 AO;I-[

(5.16)

k
[“’] , in the last expression. Substitut-
“1

We first focus on the firstterm, 1= ¥ B(%) | —-
k=0

ing for B (k) as in (5.12) and applying the Binomial theorem yields:

- 31| 3 e w7 |[2]

=0

Interchanging the order of summations gives:

or equivalently:



e (5.17)

Next we consider the second term, 1/ = (z,-1) 2 Z —Ul T EN UL N ONUE fin
k=0j=1 ~|

(5.16). Once again, substituting for 8(j) as in (5.12) yields:

ndu

[ ]llll + C" ;\'{’a]

w© ok
= 2 l) Z Z ‘ ..J Qk_j(:|,0.¢lu),0)l"k
=0j= %

or equivalently:

":"'

[chl“+ Cnln]

Z ] Qk_j(zl.0.¢l(j),0) wh
=] <y

-...
L
It
.\l
PJ
||'M 8

By making the change of variables, k- j = [, the above expression becomes:

o
=

. N ml
w o II[C“M5+C3MJ

= (-1)y ¥ = . 0,(z1,0,®, (), 0w "'
j=11=0 )
=) ny
Next, since @,(:,,0,®,(),0) = ¥ ¥ 2} [P, ()1"p,(k 0,1, 0) then:
k—Oq-O
e 0 oo m H [Cll l:+C21 ] " )
H=(-DY XTI X —— 10, (D17, kO, 0w

j=l=0k=0r =0 “1

Substituting for @, () ,as in (5.10), in the above expression gives:

s

L ; - j ik Wt
TR T T 71 PRt 1 B (P PRt LT PR T B LR
j=11=0k=0r =0 1

By applying the Binomial theorem to the above and after rearranging the terms we

get:
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L T T T
Hmia- 2 ¥ L L I %
I=0k=0r -OJIuﬂjz-Djl-U

- PAREE P RAUIRE T T U § Vit I

-1y P e e P Lot M Y ‘[
EREY of Dy ey ik Oy 0w £ :

5 e j=1 A J

or equivalently:

wow MMy My my - ry
Hetzy-1) 2 L X L E I
{o0k=0r -OJ"OJI-UJ]"O 4

(5.172)

i - =0 4= fq s — R P ;. o = f
3

Fy* dy ) =4y —dyndy et i
R I R U

. (2y-29) = & B ()) k .
The third term, #11= ——— 3 3 —— ©;;(0,2,,0,®,())w", can also be expanded in a
T k=o0j=1 T
similar fashion, as follows:
2 m,
("1—:2) ok H[ 11111+C21 ]
m=_—"1_13 ¥ = 5 Q- (0,22, 0, b, ())w
T k=0j=1 3
2
(_ ---7) v UI[CIIR.“+C2’7LJ] '
Ry R 0 000,00
s j=lk=j 1
2 m,
'.']—:')) == -I:ll [C“ +C-"N'] .
= —.‘;'Z Z!_ g QI(0’22’0’¢20))“J+!
2 j=l=0 g}
=1 mz
Substituting ©,(0,2,0,®,()) = ¥ ¥ 1@, ()17p,(0.40,r)) in the above, expanding
k=0r =0

@, () asin(5.10) and applying the Binomial theorem yields:

(5ymzg) = = M2 M TTh N
I ¥ X £ I I
't 1=0k=0r20/,=0/=0j3=0

iy * dymy = iy =gy 4y =iy
m ma-r - - o | whil 3}5_,2 29300 }__'1 l—l
G ‘| e ey Jw",c,.., " ":g’llzp,;, J:J{,,r(k r 0w I ‘: L nz
Al gl i=1 o i

=

or equivalently:
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- o~ ma my m:-rl £}
T £ £ ¥ ¥ %

1=0k=0r =0j,=0j,=04+0

-r
mmh ™ CJ1'1':T1' Jdﬂ‘:‘ ' J17"D~‘~. ’Jnx‘!:. 3 Jlx’ ‘fu"" ~Js h* mxom..‘
-2 A j3 -wx"l?.l "l;\f ThaMeT T

. (z=1) (2 - 22) B(J)
Finally the forth term v = 2 —= Q;_;(0,0,0,0) w' can be expressed as

.
=]

(5.18)

follows:

0r_;(0.0,0,0)

- m
H [C“?L"“+C ?\,J B
i=1

(z,- D (5-3) 2 o \
- - pADY - 0,_;(0.0,0,0)w
Iq j=1k=j bt
2
”’l
o oo n [Clllll+C2£Kj]
_ =D (Em) i=1 0.0.0.0) '
i 2 'znzo z 0,(0,0,0,0)w
- 1= = -

Il

(za— 1) (31"'

2 Z 0,(0,0,0,0)w 2 n Lz { ]Clhct;n‘ ﬁ'[’“”;’;"’z",' ]MLT

j=li=1 =
2 J
(:1— 1) (:l : ma . " ur‘n llllk:”: I
= —= - ZQ[(OOOO)W 2 2 [H\:i\c}lrch J,:\z ._.’_'.""..‘_-._..._.-
2 5h=0j,=0 i=] j=l “]
or equivalently:
- ! Sy pm =
C P M w
(2 _1) (- - m {n lij] Li :H;I:[] i 2: ]
v = ‘2 ZQ,(OOO 0) w' py 2 - (5.19)

j1=0j,=0 _ Joym=i
: z=wll A ™

Combining the previous intermediate results yields the following expression for the w trans-

form of the joint PGFs of the system at the end of the K" slot:
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121 | e
moomy =] | K4} i
Glzppypdgpw = Eo §n 2 _
H = E ..w'y‘lf]al;_'z"‘. 4

siy-bE I L I X
f=Uk=0r-D;ch;2—0;1'0

Wi l'h'«': J2ama =ty
Ty WAy l12"12

(1)=25) = my om oMy

I —r ey i g2’
zxzzsz"’”" 1323

+

1 JZD{%D-. ‘J:wfl 1 ! 11;;‘2”:;,

22T JJZ,p‘(OkOrl)n
: . P ; = jiydy by ma=fa =t
2 1=0kz0n=0/,50=0,y=0] & LS ,1_..,;3111;\211 J”ﬁz: 3122. k]
2
n " c’ |:n M -"j
lry= 1112y -390 © momy =1}k
. z anou;w T I
2 5 =0py=0

4y i
e nllilllh' !
i=

(5.20)

The steady state joint generating function of the system can be found by applying Abel's
theorem to (5.20) giving:

Ql:l.:.,.yl.y..l= lun

(1- w]Qtzl.:z.y].,vﬂ.WJ
Wb 1T

Lolmmny m) e clyeq!” "h‘fz of JDJ’1D:’1 J”‘11'1*',”";7'1'_J’_Jj”‘}fz"fsﬂ-vz-"7”11"’“‘ 0.7y 00
=1L ¥ I X I - L =
- = Gr, = = T j YT - P Tt ISP B It P
k Uil 0;] 0j,=05,=0 4 13'_ I3 5 ‘p\,” 121 I lelu
* I R JayJ = fysdnt Faama =iy dy k
(2-2) ™ my my omy=ry o - '"lj " L]llc‘;”! lc’l—,c,; n zDJJDM :;,111 1;\_2 3;.\,21 270k 0
- - 2 ]
+ = *}.0 ry ¥ f Iz )
2 =0r =04 =0,,=03=0 Ja DR REE]

_adiam T et iy =iy
: z =R I A

R=T

+

"
ml| . -2 -
Sy M Jiam =l
., e [n l]ljlllr EI
(rg=Nrts —2q} Mmoo omy =14 =1
g10000 ¥ X
jy= 01320

Ta

Jiymi=
Ilf|7\.2: s

o
'
L 3]

(5.21)
where we also used the fact that:
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im (1-w) Y p(k0.ry, 0w

w=1" [=0

p(k0,r;,0) = lim p;(k0,r, 0)
[ )

[}

It
n

lim (1-w) 2 POk, 0.r) w!

w— I 1=0

p(oakaovrl) Ijm Pl(o,k,(),r])
e

0(0,0,0,0)

1]
il

lim (1-w) ¥ 0,(0,0,0,0) w!

w1 1=0

lim ©,(0,0,0,0)
e

Next, and as previously done in the sii. e multiplexer case, it is conveﬁient to combine
the j, and j; terms which appear in the first pan of (5.21) and !so combine the j, and j,
terms which appear in the second part of the same equation, in order to rewrite {5.21)in
the following form:

lmy = ryn)” m r . [ ) f i3
m, = F 2 ] i -r - ) -} = ro =t boam =)k
e m i Ii‘ ﬂ i = G e I:” Mk E]H"“‘-""p“‘
~ L 1 2 ;=“l_r|'0]o ] IRE =1

Qurpzgypygd=(s~ L X L X%
k=0r!=01,=0;1=ﬂ

[ JE N

. digmicd
5 )..l"l:l' t

¢

[mg"'l-f1]- a
- - m r i - -r - - - - -
z menf ! Ulch ¢™Mhel, dl e, yhy =t W Ao ko)
. . -2 1a%22 12 22 1" 2 |
oMM a0y b S |4a-! =1
5 2

-
- I i
T k=0 =0),=05,=0

2y - 29}

“

I

-
- 1 J"“Illli'g‘ll.}'
=1

2 [ 2
i [Pl on
tzg=1) 3y - 25} myomy =t iz 1 “

0000 I I
2 5 =0jy=0

-
" i ami— i

% n!"l'."‘z.' '
.

(5.22)

The above equation fully describes the steady state joint generating function of the sys-
tem where the only unknowns correspond to the two boundary functions
0(:,,0,71,0) . Q(0,2,,0,3,) and the boundary term ¢(0,0.0,0.

Next we determine the marginal generating functions of the queue lengths at each node
as follows: |

By substituting z, = », = y, = 1 in (5.22), the marginal generating function of the queue

length at node 1 is readily obtained, giving:
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my =
™ (Ciih ) "Gy
Vi(z) = (z;-DU-p) ¥ { } e (5.23a)
h=olJ1 l“'J“'f]?"ZI1 l
where ¢ = ¢;| _, for/=1,2 and
=
m (1—[3 ).
p, = 1-0(0,1,0,1) = l Bf (5.23b)
1
with f; = a—‘i-f(zl) is easily found from the normahzatlon condition, v, (1) = 1.
!

z; =1
As expected, (5.232) corresponds to the same result as the one previously derived in chap-

ter 3, for the single mulitiplexer case. From (5.52), the average queue length at node 1, denoted

by ~,, is:
Ny = W’f—%}fﬁ+o'(l) (5.24)

where:
H)y=p, =+ G)= m-P) G20 ), (5.25)

(2- a—B)

2 2(1 - 1- -1 1—
H' (D=m;(m;-1) |:2 ﬁ)j| [( o) ( Bl) (a]+B| ) .2 P

717+ 1 — (| (5.26
3 117 +my (2—(11—[31)3 Ui 2_a1_Blf 1€ ):I ( )

Similarly, from (5.22), the marginal generating function of the queue length at node 2, is given
by:

my~ds

- 1y -
"2 [m,| (C12hyy) (C22hgy)
Vatzgl = Q(lipl) = L= Thil-py) E | 7

5R=0]4n 1_1-9221::‘5‘12

4 —n ¥

-

1 k=0r=0jy=0 1- J:';. ~iz

Imy =7y Jaf’
: - L B B N R -
b maThy " C1aCa Dia Dy ljllmz jz:ﬁp([}.k.ﬂ.r)
2722 & 1
-z = ™ ™ oo L0 Jla!
2 v ¥ 2

my = Jo

53=0 /2 PRt

33 (5.27)

. i -
1ge 1 (1 -2y i N m,| (C12h4t (Cxahag)
4 —_— (0000 ¥ -
2 Ja
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where Cp» = Cal, and D;: = Dyl _, for =1,2. The boundary constant, p, = 1-Q(L.0. 1,0,

=1
can be determined from (5.27) by using the normalization condition, v, (1) = 1, as follows:

= Dy2

, = 0, then itis convenient to rewrite (5.27) as:

22

i

. 2] L] .
{Caak, -2) l 8] -1y (C::l.nl Dm L
VZ“:‘,) = (:2—1)[l—p._,1 Fl[:,}+ ] + Fz(z.,)-v Q[U.x,,ﬂ.-_—-

e 2 1-ag; ;

2 s

I

lzn'” (- q)

m2
(Caahyo) l

£(0.0.0, O)‘F 1)+
Mo
1=had

2

(5.28)

where:
o my=fa
m, (Cl'l;"p) (CZ"A"Q)

Fl(:z) = ." J" s J

h=10J2 1-A A7
[my=ryjal e 1 wd wmg—ry =l jy=lry=jyt e
Y 2 ht C12Cn2 Dz Dx 7\."1",,1.,’ 2k B (0 k0, 1))
m:._ Mz l= EJ. , OI I 12_
Fa(z) = 2 Y Y

Jagma= J
k=0r =0f,=1 1-“7\- 7&—,2 2

are both zero at z, = 1. From (5.28) we have:

- mz
Vy(z9) (1-A0) = (5= 1) (1-py) {F} () (1=A5]) + (Cahyy) )

(1-2))
+ {F,y(z4) (1 __:;‘222} + \CZZA-Q) Q(O 25, 0,14 (2 21)}
o2
(z,=1) (1= 2) . m
2T T 50,0,0,0) {F, () (1= A0 + (Caahgy) )
% (5.29)
Dn _ _M2=Pe  pgereniating both sides of the ab tion with
where r,(z;) = TETRTACAN ifferentiating both sides of the above equation wi
C22 275212

respect to z, and substituting z, = 1 inthe resulting expression yields:

2 m(1-B)f;

p2 = ,=]T0‘._'.—_ﬂ;_ (5.30)
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where f; = Edzf (z;) . The last expression is an expected result, as the average depar-
ture rate from node 1 =6(1?|U3|S to the average arrival rate, p,, under steady state conditions.
Next, in order to evaluate the boundary function @, (z;,0, y;, 0) , we proceed as follows:

First, taking the limit of the functional equation (5.8} as z, 0.y, 0 yields:

Qk+|(=|,0,y1,0) = ﬁ?z[ﬁl“‘ (I_Bl)y1f1 (z))] ll:dizzgk(o’ 25,0, Y;)

+0,(0,0,0, 0)}

=0

Then by substituting z, = y, = 1 in the above equation we get:

Qk+ 1 (110, Iy 0) = ﬁ;‘z[d_i;Q’\-(O’ :’:2, 0, Yz)

+0,(0,0,0, 0)} (5.31)

22=0
and therefore, from the above two equations, we can write:
Q, (24 0,71 0) = Q,(1,0,1,0) - []31 +(1- B1)y1f1 (zl)]MI (5.32)

Taking the limit as £ — < in the last expression gives:

0(:0,y;0) = 0 (2, 0,3, 0) = (1-py) By + (1 =B 3f, (2p1™ (5.33)

We also note that (5.33) could have aliso been derived by noting that if node 2 is empty at
the end of the k" slot, then node 1 has also to be empty at the end of the previous slot.
This also implies that all the sources feeding node 1 were in the Off state during this previ-
ous slot.-Hence each source will remain passive with probability g, or go active with proba-
bility (1-p,), in which case it generates packets according to the generating function
fi(zy)-

The boundary constant ¢ (0,0,0,0) is readily obtained by substituting z,=y,=0 in (5.33), giv-
ing:

0(0,0,0,0) = (1-py) B’ (5.34)

Next, from Rouché's theorem, it can be shown (Appendix A11) that the equation:
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2
- jl mz_jl —
n=-Jla2A; =0
i=]

has a unique root z,* in (jz;] <1), given =, {j=a<1). Further, for j;»0, =) = 0 is the root,

which cancels out with the numerator since ¢,,|_ _ =4,| _ = 0. Hence and as before,
5= :1 =

consider the remaining term in (5.22), which corresponds to j, = j, = 0, namely:

H (Czilz.')mi
B2 23y = Ga= DRG0 (2), 02—
2 - 1M
i=1
2 " 2 m
(z-2) R S Y 11 ot ™
e 200,50, () B e 0(0.0,0,0)
) N z, 5 '
0= [Ty 5= 1 My
i=1 ie
where:
Dy Ay~ By
Cy  (1=B)fi(z)

Once again, it can be shown that the equation:

(5.36)

(5.37)

Since Q (=, 2,7, ¥,) 18 analytical in |z <1, given z,, {|z;| < 1) then the numerator of (5.35)

should also be zero at z,* and it follows that:

2y (5= YO (2%, 0,7y (210,00 + (5% = 2) Q0,7 07y (2)) + (2= 1 (¥ =) @ (0.0,0,0) = 0(5.383)
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A similar argument appears in the analysis of the M/G/1 queue with priority batch arrivals [68].

Using (5.33) we can rewrite (5.38a) as follows:

75 (25— 1) " m
Q(O,z._,,(),rz(zz))=(l—zz)Q(O,O,U,O)+%IT(]—p2) B+ (1-BYr () fi (5] (5.380)

Although we do not have the complete expression for the boundary function, @ (0, 2, 0, y,) ,
the above equation contains sufficient information, which can be combined o our previous
results, to derive moments of the queue length behavior at node 2. In fact, from the above, the
average queue length, N,, at node 2 can be obtained as follows:

First by differentiating (5.29) twice with respect to =, and substituting z, = 1 in the resulting
expression, we get:

5 (C'22(1) + X5y (1)) 1 y 1 000
2= klzz(]) (pz-p])+m{E'-_’?-Q(O"'Z!O!rz(‘z))]z::l'( —P])‘*‘Q(O’ y Uy )}

(my— 1} A", (1) A", (1)
2 T 2R, (1

(5.39)
where:
- dCx (1=By) (1o, = By) . dr,, 1-B,
C'n(l) = — = - T f i M, (1) = = ———fs
2051 (2-0,-B,)* 2 dy |,y 27%-B
T o 2(1-0) (1-B,) (1-0,—By) . 1-p
Ay (l) = vf = - — : 2 Lr§1+2_a '25 fhs (1)
25 - (a2+[52—2)' 27 F2

The only remaining unknown in (5.39) is the term:
d
':Q (0» zZv O, I‘Z(ZZ) ) |22___ 1

which can be computed from (5.38b) in folle'wing way:

First, from (5.36), we can write:

5*=H, (z|*) -H,(z) (5.40)
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where H,(z)) = A7} and H,(zp) = A3} Since lim z *=1, then by differentiating both sides of

2,1

(5.40) with respect to :z,, and substituting :, = 1 in the resulting expression, we get:

dzy* dH | (z,*) o) = H (l)d:l* o (1)
= e—— + H' = ! + '-,
dzqy =1 dz, _— 2 1 dz, fm 2
or equivalently:
dz* H. (1)
—_— = (5.41)
4z 1, o 1-H (1)
m,‘(]'B,‘)J}i - \
where H';(1) = TP Similarly from (5.40) we can show (Appendix A12) that:
i i
& * H'5 (1) 2[H,(D1H (D) :41",(1)[15!'2(1)]2
dz} BRI A TR R T N TTNTIE (542)
“2 =1 1 1
where:
) = 1)[(1-!3,-)13,12 20-0) G-By A=a=B) 5 1B
. = . ., — — + . . .
! A 2-o;- B m,li (a‘.+[5‘.—2)3 o 2-o B )il
Finally from (5.38a)} it can be shown (Appendix A13) that:
d=1. dzzl'
Q055014 (24]) 1-p, S P a1,
d:.,. - i -1_ 4:1'- ey ey "‘1'. ’ d-']'z (}-py)-@10.0.0.00 (543)
- ) - d=3 =1 I_T='.2- ;=1 ZE'E;L::J

and therefore by substituting (5.43) into (5.39), we obtain the following expression for the

steady state mean of the buffer length at node 2:

_(Cm N 0 (my= DR o (1) A" 1)
NET (py=pp- > o
dzl' d;':—i
. 1-p N 5= dst el
+m27»'22(11 ]_d='l' 49}“-"2)1 i’l'_ ‘.' l“:}; ”"pl""“"’ﬂ{
SN | (5.44)
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Using ((5.41)-(5.42)) we can further simplify the above expression to obtain:

(my— DA (1) A"y (1)
2 SN, (D

Noy=m, (Cap (1) + X 5 (1)) -

1 H", (1) (H, ()12 H' (1) [H5(]?
——{p,H - = = =
+mzl'22(1){p1 2D+ (0 pl)2{1‘P2)+pl 1-p, +2(1'Pz)“‘91)

(5.45)

From the above analysis, we can use Littie's formula [80] to get the average time deiay at

node /, denoted by T;, as follows:

T, =

TP

(5.46)

where p, is the total arrival rate at node i as defined in ((5.23b), (5.30}).
Similarly the total average delay in the system, denoted by T can be obtained by applying
Little's law to the whole system and is given by:

3 F

i=1

T=12"0 5.47
re ik (5.47)

where p,, as defined in (5.30), is the tota! arrival rate to the network which is also the sum of
the arrival rates to the two nodes from their corresponding sources.Note that in the above
we have considered queusing delay only and hence did not incorporate the propagation
delay. This, however, might be assumed to be constant [83].

Finally we note that higher moments of the queue length at node 2, can also be obtained by

successive differentiation of (5.29).

5.4 The General N-Node Tandem Network

In this section we show how to extend the analysis of section 5.3 to tandem networks
with an arbitrary number of nodes. Further, let »; and «; denote the queue length of node /

and the number of active sources which feed it, respectively. For an N-node tandem net-
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work, the functional equation relating the joint PGF of the system between two consecutive
slots can be written by inspection (see [89]). For example, a three-node network will be

described by the foliowing dynamic equation:

3
Oyt Cp2p 23 Y Yo ¥a) = [ 140 GD1™ - |

=1
30 (220 73 Yy Yo Ya) = Qp (21,5, 0.7, Y5, 0) = Q€21 0,23, 11, 0,73
~ 0, (0,252, 0, Y5, ¥3) + 0, (21,0,0,¥1,0,0) + (0,0, 25, 0,0,Y,)
+0,(0,75,0,0,Y5,0) ~0,(0,0,0,0,0,0) ]
#2357 10 (170 0, Y], ¥, 0) =0, (5,0,0,7,0,0) = 2,0, 25, 0,0,Y5,0)
+0,(0,0,0,0,0,0) ]

+ :2 ' (Zl:’fl)—l [Qk(:ln Or :3’ Yla 0, Y‘_;) - Q’x (:], 0, 0, Y], 0, 0) - QL(O’ 0, 23, 0, O. Y:‘\)

+ Qk (0’ 01 0: 0; 0, 0) ]
+ :E] {Qk (0. 22) :3, 0) Y:, YB) - Qk (0, 0, :3, 0, O, Y3) - Qk (0’ :2’ O, 0, Y2, 0)

+0,(0,0,0,0,0,0) ]

+2y 27 [04(,0,0, 71, 0,0) - 0,(0,0,0,0,0,0) ]

rz3073 1Q4(0,22,0,0,Y,0) - 0,(0,0,0,0,0,0) ]
+55110,(0,0,25,0,0, Y3) - 2,(0,0,0,0,0,0) ]

+0,(0,0,0,0 } (5.48)

or, equivalently:
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B (k
Qs zpin ¥ Yo ¥y = : )+(- -1 2———- JETENEN A NORORY
i=1 -1
(-33) & B() . .
+ — 3y = Q4-j 1 0z @ ()0, @, (D)
3Ioj=1 07

(z,-2,) X B(
2y 3,’) 0 (0,537, 0, 0, (). O, (1))

(z.=2,) (1-z) £ B
j2 2 =y (}’) 0 (1 0.0.0, (). 0,0)

ma)(n-1) L B() :
z : Z _(,J Qk..j((),[),:«j,(),(),cbjg))

+ Ld
“273 i=1 =
(5,2 U=23) X B()
Iy >=: 2 Q- (022, 0,0. 9, (). 0)
(zy-m) (3=3) U-23) L B ()
.\ : g == 0;_;(0,0,0.0,0,0)

3
TT [x;(k))™ and X, (k) and &, (k) are as defined in (5.10-511).
i=1

From the above, the steady-state PGF of the buffer occupancy distribution at node 3 is

where B (k) =

given by:

—jl

3 [ ](C]ql”) (C23?"21)
3

Va(zy) = (z3=1) (1-p,)
3N=3 “3 3 132_40 1_K1133l;"33 A

[m'_\'ry-fal. m _r _! ‘-mz-rl" 13 i. ro- 13_!_! Jiam, —j .
Y 3[ j lCnCz% D1z Doz Ak ap (0,4 0ry)
-

z < 1= -0l
WSSy T
3 k=0r=0j;=0 1-Apyhn
.= 1) (1 - s (C|37t ) (C'z17L ) i
3 13 23
+ - Q(IOOIOOJZ[} T,
3 =0t 1-A5A
A=0173 13423 (5.49)
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and the corresponding steady-state mean is:

(C 2301) = A L, 11 [T ES DI A R A § 1]
- 23 1 3 2 e
s e [ vp.,}*———{-—Q(] 0,24.1,0.74 1z nl S(1= )~ @(1.0.0,1.0,00} - - (550)
301 32 Ao (1) ‘3 3 2
3 mah 5

7“23'[33
(1-P3)f3(23)

We have also studied a four-node network and found that the steady-state PGF of the

wherery (z;) =

and p (0,4, 0,r)) = pr(n;=0, ns=k,a;=ry) .

buffer occupancy distribution at node 4 is given by:

o \: jl(cl4)~14) (C24>"24)
4

Vo(z) = (z4=1 (1=p) 3, -
* ja=0 114 12; i

l'".z"n 4’4l. _] umger I‘_Jl -Il.r "j
2 I:mqu}[ ;JCHCZ-: ' Diy Da lh Mg h'd’(o k0, ry)
Ja—

_"4) Z E Ez—[h r10] !
4 k=0r=0j,=0 RO Vi
-1 () me T Gy Gagy™
+_‘.1___:____Q(11001100)2{1\ 1 . m4:‘1i
- js=0tt =KAo (5.51)

The corresponding steady-state mean is:

_ 02l +1‘..,“tln

d
Ny=——3 (py—Pyi+ [ Q100241007 (301 |, _ - (1=p5) + Q11,1.0.0,1,1,0.0)}
SE i .

1
rn4l':u[l) d:

mg= 1IN 11 A7 4080

E)

2 Th,m (5-52)
Ay~ Bs

(1 - B4)f4 (24)

From equations (5.27, 5.49, 5.51) and (5.39, 5.50, 5.52) we conjecture that for the N-

node tandem network, depicted in figure 5.2, the steady state PGF of the buffer occupancy

where r,(z4) = and p (0,4, 0,r)) = pr(n;=0, ny=k,a,=r).

distribution at node i (1 <i<N) is given by the general expression:
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m —j

(Cu"'l) (C"J)\' )
g

Vi(z) = (z-1) (1-p) 2 H

=112 [ IO T By Y By A
Z il C‘,C’: D|I,' D7; k’ lm = I",r:ﬁ((l kO, r))
(1— QAN o S j" l

i g=0r,=0j=0 l-l’;‘il';:.'"""
m =)
(=D -z o (Clk)(czl)
s T (1,100 L L 0,0) 3 |
s - J' l: k 1
‘ fi=oL (5.53)
while the corresponding steady-state mean is:
_ (E":.tlhl‘:‘tm 1
N.:—-—W—a—{pl—p'_ﬂ*—;\——zTﬁ{d [ I e ......[},rI(:I))I:.=1-(l-pl_]]*QH.I...._0.(!.1.1......0_0)}
(ml-nA'zl.n) A" 5,
2 21‘2I(1| (554)
ﬁ) bai ?\-2,'_'3,'

wherer.)-z-f—a——ﬁf; and ri(z) = Cai T A-BAGy

Note that in (5.53), p(0,&,0,7,) = pr(n,_,=0,n=k,a;=r,) where n;_,,n; denote the
steady-state queue lengths at nodes (+1) and J, respactively, while g, is the steady-state
number of active sources feeding node /. It is also interesting to note from (5.53-5.54) that
the steady -state queue length behavior at node i is influenced by two factors, namely
the mean combined input rate from all the sources feeding the downstream nodes (as
demonstrated by the p, term) and the joint behavior of nodes jand /-1, when the latter is
empty. The unknowns in (5.53-5.54) can in principle be found by applying similar
approach to that of section 5.3 {i.e. through direct substitution into the functional equation

of the system and by applying Rouché's theorem) and this is left for future research.
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5.4.1 Numerical Results

In this section, we present some numerical results related to the average queue
sizes and the average time delay at nodes 1 and 2, as well as to the total delay in the
network. We have assumed that all the sources feeding the retwork are identical. In

addition when a source is active it generates, at each slot, a geometrically distributed
(1-v)z
1-vz;
average batch size of f=f; = 5 packet arrivals per active slot. We have also kept

number of packets with a PGF f;(z) = , where v = %. This corresponds to an

a = 0.02 and assumed that m, = m, = m = 2. In Figure 5.5, we plot the mean queue
length at nodes 1 and 2 as a function of p = p,

In figure 5.6, the average deiay at each node as well as the total average delay in the
network are also plotted as a function of p. As expected, we can see that, compared to

node 1, the average queue length and the mean delay, at node 2, saturate much faster.

10 F T T T T T T T T T
; ... Node 1 f=5 m=2 alpha=0.02
-~ Node 2
[
10° ¢ ] .
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FIGURE.5.5 Average Queue Length at Nodes 1 and 2 as a Function of p = p,
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CHAPTER VI

Conclusion and Suggestions for Future
Research

6.1 Conclusion

In this dissertation, we have proposed a new theoretical approach for the
transient analysis of ATM multiplexers with a correlated arrival process, consisting
of the traffic generated by the superposition of independent binary Markov
sources. We demonstrated the effectiveness of the approach in deriving closed-
form expressions for some transient performance measures as well as the corre-
sponding steady-state results. We also presented some results related to the
steady-state packet delay as well as the busy and idle periods. We then showed
how the proposed approach can as well be applied to analyze tandem queues
with correlated arrivals. The solution technique developed here can be applied to a
variety of design and performance analysis problems which arise in an ATM envi-

ronment.

The main thrust of our work was an attempt to tighten the bridge that exists
today between the classical transform analysis of discrete-time queues with
uncorrelated arrivals and the relatively new analysis which takes into account the
correlation in the arrival process. While the former anaiysis' is relatively easy to
understand, the latter is often complex and requires some knowledge of the matrix
geometric and spectral decomposition approaches. In addition most of the resuits
previously derived using matrix geometric approaches are given in general matrix

forms which are often not very handy.



179

In this thesis, it has been shown that, with some slight modifications, we can
extend the classical analysis of discrete time queues with uncorrelated arrivals in
order to handle the correlation in the arrival process. We proposed a novel
approach which enables us to handle the functional equation relating the joint
PGF of the ATM system between two consecutive slots. First, we expressed this
PGF in terms of the unknown boundary terms and then derived a sufficient num-
ber of linear equations to determine these unknowns. We then applied Abel's the-
orem to extract the steady-state joint PGF of the system. We have illustrated this

technique for the case of a single multiplexer, as well as for the case of two multi-

plexers in tandem.

Compared to matrix geometric and spectral decomposition approaches, we
feel that this work offers a smoother transition from the classical theory of queues
which appears in Takécs [66] and Kleinrock [90] and which most communication
researchers are familiar with. Further, compared to other methods, our approach
has another advantage which lies in the fact that it enables the derivation of

explicit closed-form expressions for many performance measures, with a remark-

able ease.
6.2 Main Contributions

The main contributions of this thesis can be briefly summarized as follows:

In chapter 3, we derived closed-form expressions for the transient PGFs of
the queue length and the number of active sources for the single-server case.
Through transform techniques, we were able to extract explicit expressions for the
transient probabilities of an empty buffer with arbitrary deterministic initial condi-
tions. From these, time dependent performance measures for the buffer length
behavior, such as transient mean, variance and buffer overflow probabilities were

derived. We then presented a fully explicit expression for the steady-state PGF of
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the buffer content. This is also the solution of the non-linear functional equation
(3.3) considered by Bruneel [51]. We also carried the steady-state analysis of the

busy and idle periods of the system.

In chapter 4, we extended the above analysis to the multi-server case where
we also added more variability in the activity of each source. Our numerical
results have shed light on many interesting aspects in the transient behavior of
the ATM multiplexer. For instance, under zero initial conditions, we noted the
exponential rise in the mean-time curve and the nearly linear profile in the vari-
ance-time curve for large number of sources. We also observed the strong depen-
dency of the multiplexer transient behavior on the initial state of the system. We
have shown that equilibrium solutions can sometimes be invalid descriptors of the
ATM multiplexer behavior. For instance, we observed that the transient probabili-
ties of overflow may exceed the corresponding steady-state results and high-
lighted the importance of this observation in the ATM design problem, where it is
required to estimate the right buffer size needed to meet a specified QoS for fixed

source statistics.

In chapter 5, we have shown how to extend the queuing analysis of the single
multiplexer to handle tandem queues. We focused our analysis on a two-nodes
tandem network. We derived a functional equation relating the joint PGF of the
system between two consecutive slots. From this we obtained the steady-state
joint PGF of the system in terms of the boundary functions. Further, we have
derived expressions for the average queue length and the average delay at each
node, as well as the total average delay in the network. We finally discussed the
extension of the approach to the analysis of tandem networks, with more than two

nodes.



181
6.3 Suggestions for Future Research

This work can be explored in many directions and possible extensions of the

results obtained so far include tne following:

- Extending the analysis of the multiserver queue to the finite buffer case and

investigating the effect of a limited buffer size on the performance of the system.

- Since the inversion of the steady-state PGFs of the queue lengths is not triv-
ial, either numerical techniques or approximate formulas need to be introduced in
order to derive estimates for the buffer occupancy probabilities. In particular, tight
upper-bounds for the tail distribution of the buffer contents could be derived. As
mentioned in [71], the distribution of the buffer content of a wide range of infinite
capacity queueing systems, including the G/G/c queue has a geometric tail
behavior which is dominated by the smallest pole, outside the unit circle, of the
PGF of the queue length. This tail distribution provides a good approximation to

the original queue length distribution under heavy traffic.

- Applying the proposed approach to deal with similar types of functional
equations that arise in other contexts in the performance analysis of ATM switch-

ing systems (see for example {91]).

- Extending the two-node tandem network analysis to handle the case where

packets leaving the first node are allowed to leave the system with a pre-assigned

probability.

- Generalizing the steady-state analysis of the two-node tandem network,

considered here, by deriving some transient results under different initial condi-

tions.

- Investigating the end-to-end cell queuing delay characterization for the two

gueues in tandem.
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Finally, as any research, there will be no end to this work and many issues
that we did not cover here will need to be investigated. Perhaps, among the most
important issue is the need to exploit our explicit formulas for the steady-state
PGFs of the buffer content in order to derive formulas for the tail probabilities of
both the buffer occupancy and the packet delay. Also the significance of our tran-
sient analysis in the context of ATM design and cengestion control needs further

investigation. These will be the subject of our future research.
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Appendix A1

Rouchés Theorem [92]

if f(z) and g (z) are analytic inside and on a closed contour C, and if on Cwe
have f(z) #0 and |[f(2)| >|g ()], then f(z) and f(z) +£(2) have the same num-

ber of zeros within C.

Appendix A2

Lagrange’s Theorem ([92],[93])

If w(z) and g (z) are functions of 2, analytic on and inside a contour C sur-

rounding a point &, and if wis such that
lwg (2)| <z —al (A.1)

is satisfied at all points z on the perimeter C, then the eguation

z = a+wg(z) (A.2)
regarded as an equation in z, has exactly one root in the interior of C. Further any
function y (z) of z analytic on and inside C can be expanded as a power series in
w by the formula:

k=1 dz* !

y(z) = yia)+ E . V [y'(2) g (2) ]} (A.3)

For the special case, a=0, and provided that g (0) #0, the following identities also
hold:

RO A IO ION
1-wg'(z) E‘oﬁ{ p } i (A.4)

V(28 _ ¢ &y () g ()%
T-wg'(2) E (A—l){ TS -
z=0
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Appendix A3

Proof of Equation (2.14)

Recall that the Leibniz's rule for the k™'derivative of a product (4 - B) , denoted by
(A-B)® | states that:

k
4-B" = 2[’3,4"“”3“" (A.6)
i=0 J
where E\ C k:)' T Next let: A = H(z) ‘andletB = (1-2)" 2 Then:
; -
(A-B)(k_l)lz=0 - 2|:k-i-'_li|A(k—l—i)B(l') (A?)
i=0 =0

In addition since B”1__, = (i+1)!, then:

k-1

(k=1) _ (i+1)  -1-0
- Y= k-1 EmA y (A.8)
and therefore, using (2.13), we can write: V (k= 1) :
k-1 . h 1
! (i+1) -1-p _ (k=1) 4
O P N (I TCM T L, (9
which completes the proofQ .
Appendix A4
Abel’s Theorem [94]
if lima, = aand ), a,w" converges for [w] <1, then:
n— o n=0
s {(1 ) 2—‘,0%4 =a (A10)
Appendix A5
To prove that if X* (k) = X (k) 1,y then:
L X{k+1)
X (b = (A1)
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. X1
we proceed by recurrence, as follows. For k=0, X (0) =1 = }?% hence (A.11)

is satisfied. For k=1, (A.11) is also satisfied since:

1._.
X (1) = B+(1-B)f(z)(é+ﬁ) +B?;ﬁ§))

_ BB+ (1=B)yf(2) + (1 =B)f(z) (1 -) +03f(2))
B+ (1-B)yf(2)

_ ((B+of(z)) (B+ (1-P)yf(2)) + (1—a—B)f(2))
B+ (1-P)yf(2)

_ B+af(z)X (D) +(1-a-B)f()X(0) _ X(2)
B+ (1-PB)yf(2) T X(1)

Next let us suppose that (A.11) is true for the order k, let us prove that is also true

for the order (k+1), that is: X (k+1) = XJ(:(I)?') Using (3.5b), we have:

X (k+1) = (B+af(NX () + (1-a-Pf(X (k=1)

_ X(k+1) X (k)
—(B"'af(z))w'*‘ B)f() X(1)
X (k+2)
ToX(D
which compietes the proof.0 .
Appendix A6
To prove that if U™ (k) = U(K)1,_y then:
« o Uk+D)
U (k) = <0 (A12)
we proceed by recurrence, as follows. For k=0,

. v 1-a+oayf(z) _ U(1) .
U-=Y= BT (=P (@ = X0 _hence (A.12) is satisfied. For k=1 ,(A12)is

also satisfied since:
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1 —o+oxfi(z)

v = BT =B

f(2)

_U-a) (B+ (1=-P)¥f (=) +of(2) (1 - ) +0yf(2))
B+ (1=-P)yf(=)

_(Brof(z)) (1-a+ayf(z)) + (1—-a- Byf(z)y
B+ (1-B)yf(2)

_ (Brof(x)U) + (1-o-P)f(2) ULO) _U®
B+ (1-P)¥f(2) - XD

Next let us suppose that (A.12) is true for the order k, let us prove that is also true
Uk+2)

for the order (k+1), thatis: U" (k+1) = T

. Using (3.5a), we have:

U (k+1) = Brof()U (B + (1—a-Bf( U (k= 1)

k+1 U (k)
(i3+af(2))—)({-ﬁ+ ﬁ)f()X“)

i

Uk+2)
X(1)

which completes the proof.0)

Appendix A7

In order to proof that:

x: (x ) = Mk!x”"" (A.13)

we proceed by recurrence as follows:

For k=1, (A.13) is obviously true. Next let us suppose that (A.13) is true for the

order kand let us prove that it is also true for the order (k+1); i.e.

(k+1)
df“ o) = LJ(H]WN"‘ (A.14)
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K+ 1
d( }

— =
dxk+1

No_oddt _df[MyN-) 2 IN o N-k-
x)—a}(dk(x’v)) dx[Mk!W ) Mk!(N k) x

X

or equivalently:

g%ty _ k+1 -1 _ | N —k-1
W(xf") = [H]JN K(N=k)NF T = [k+1] k+ 1)1 (A.15)

which completes the proof..0 .

Appendix A8

T
The PGF H(z) = J] 23 can be viewed as the PGF of the sum:

i=1

.
Y = Zx,.
i=1

of © independent random variables, each with a PGF H;(z) = A;". Therefore we

can write:

T 2 T
H' (1) = E[Y'} -E[Y] = E{(in”— Y EIX]
i=1 =1

-1 =
ZE[X]+22 py E[X]E[X]—ZE[X]
i=1lj=i+1
ZH‘ (1)+2z Z H' (1) H'; (1)
i=lj=i+l (A.16)

This last expression leads to the result obtained in (3.87).

Appendix A9

The main complexity behind the inversion of the transform:

P(w)=%[ l—a  J(1-aw)’ +4bw(l-—w)}

1_w+ - (A.17)
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resides in inverting the radical term:

O (w) = J(1—aw)+abw(l-w) = (a° —4b)w’+ (4b—2a) w+ 1

We first note that since the transform P (w), as defined in (3.75}, is convergent
within (|wl < 1), then we can apply the binomial theorem to express & (w) in

terms of the infinite series expansion:

k
dw) = 3 [‘ﬂ((az—sz)w% (4b-2a)w)
k=0

oo k . )
XY [lﬂm (a* - 4b) (4b - 200" W

k=0j=0

Next we rewrite the above eqguation as follows:

I oo
e = ¥ ToGow =T ok (A.18)
k=0

k=0j=0

with:
0, k) = Kﬂm (@ - 4’ (4b- 201"

By equating the coefficients of equal powers of win (A.18) itis easy to verify that:

0k) = Y oG k-1 = 3

(k11 [kt [
j=0 j=0

i/ﬂ [" Tf} (@ —abY (4b—2a)*"¥
—iL Jj

and therefore:

k
pe(0) = W' QW] = %[amn (l—a)+i§0¢(i)}
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Appendix A10

Steady-State Variance of the Queue Length Distribution for the
Multiple Type of Traffic Case

By differentiating (3.96) three times with respect to z and substituting z=1 in the
resulting expression we get:

H" (1) H" (1)

=’ (D3

pra) = A ()]

+2[1-H'(DHIF (1) +G" (1) (A.19)

where H' (1) ,H" (1) and P'(1) are as given in (3.86), (3.87) and (3.98), respec-
tively. To find H" (1) we follow the same procedure outlined in Appendix AB.
Hence we can write:

H" (1) = E[Y] =3H" (1) -H'(1) (A.20)

The only unknown, E [¥’], in the above equation can be computed through the

application of the multinomial theorem, as follows:

i = nytnyttn =3 i=1

T 3 T
E(Y = E\:[lei)] = S [nl.n,.3- .HJHE[X?] Vin;e {0.1,2,3})

where:
3 g
Apge s R mylngtngdooong!
and:
1 n;=0
H/'(1) n =1
EIX]) = |, . '
H (1) +H; (1) n; =

t

H" (1) +3H" (1) +H; (1) n;=3
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Note that H;” (1) in the above can be computed from (3.55a) by replacing
m, o, B and f by m,o,B, and f; respectively. Next it is easy to verity that
F'(1) = 0 forallt>1 andthat G" (1) is given by:

G' (1) = YG " (n+2¥ ¥ G/ (LG () (A.21)

i=1 i=lj=i+1l
whereG';(1)and G";(1) are directly computed from equations (3.53a) and (3.56)

by replacing m, o, fand f by m; , o, B, and f;, respectively. From the above and

using (3.98) the variance of the queue length, 62, can be obtained from the gen-
N

eral formula:
=P () +P (N {1-P (1)} (A.22)
Appendix A11
Proposition
Foreach (jj.jo) € {0,120 « oo} x {0.1.2, - ,my} , the equation:
Hx A (A.23)

has a unique root z,* in (|z,) < 1),given z;, ({z;] <1).

PROOF

2 . ]
Let h(z,) =z, andlet g(z;) = -J[A}A5; 7. Since Vie {1,2}, [A| Ayl €1
i=1
inside the poly-disc (lz;} <1, |z} < 1) then:

18 (z))] <|Agr )

Recall that A} it is a valid generating function and hence for a small >0

1 - .
( Bl ——fi+0(). On
1~ B,

|zy| = 1+€, |h(z))] = 1+¢ and therefore if node 1 is stable ( p, < 1) then for each

and on |z| =1+e we have [g(z)|<l+elm -5
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jie {0,1.2, - .m} th(zp)|>|g(z)ion |z] = 1+&. From Rouche's theorem it follows
that #(z,) and g(z,) +g(z;) have the same number of zeros inside |z| = I +e, given

2,. Therefore (A.23) has also one root z;* in {|z;| < 1),given z;.

Appendix A12

Given:
zl*=H](2|*) 'Hz(z:’-) (A.24)

Then by differentiating both sides of the above equation with respect to z, we get:

de* dH(2,%) dH, (2,)
- Ho(z) +H (2%) —
dz, dz, 22) HH (%) dz,

Once again, differentiation both sides of the above equation with respect to z, and tak-

ing the limit as z, — 1 gives:

H, (1) +H"5(1)

=1

d*H, (2,%) dH\ (2,*)
= —— +2_""f—_
dz; » dz,

o.=1 z

dH, (z;*) dz* .
dz, - dza }( )
- o,=1 - ::=l
dzHl(zl*) 7 * L o ¥
- = H" (1) +— | H ()
dz; -3 P z
=1 - 1
and therefore:
dzzl* dz * dzzl* dz ¥
= =H"1(])[d" )+ , H'1(1)+2 H'](l)H'2(1)+H"z(1)
d:a =1 =2 Ia=1 dZE 1 dzl 22=]

- =

or equivalently:
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dz,* H (1) pdz*| N _H (DH (1) dog* H" 5 (1)
2= . - M
Substituting for 1 as in (5.41) in the above equation, yields the expression given in
“2 ,=1
(5.42). i

Appendix A13
Recall from (5.38a) that:
2, (2= 1) 0 (2,%,0,7, (21), 0) + (2% = 2,) 0(0, 23, 0. 13 (2)) + (1= 1) (5,* = 2) €(0,0.0.0) = 0

Differentiating both side of the above equation with respect to z, gives:

. dO (z,%,0,r,(2}).0)  (dz*
(2:5—-1)Q(z;*.0.71(2),0) +z3(z2- 1) 1 d,’ ' +(d,1 *I)Q(O‘Z:J‘-":(Zz))
d0(0.25,0.7,(z2) ) dz,*
+ (2% —zy) 7 + (1 +(z,—-1) T +zl*-222JQ (0,0,0,0) =0
3 2

(A.26)
Once again we differentiate (A.26) with respect to z, and take the limit as z, — 1 to get:

20(1.0,1,0) +2

o 1,0, 1)

dQ(zl*,O,rl(z;),O)} +d221*

2
d22 =1 d22

)

2, )

5 dz ™
+ (dz2

dQ (0.2,,0,75(z3))
_1] .
:2=l 22

dz*

+ 2( —l)Q(U,(}.(),O) =0
- dz | _
z,_!-l .2—-1

or equivalently:

dQ(Z;*.O,rl(z:),O)\ dz)*
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Next we note that:
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Using (5.33), the above reduces to:
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Finally substituting this last equation into (A.27) leads to the expression given in

(5.43).



