
Experiments and Proofs in Web-service Security
Dawood Sheniar∗, Nabeel Hadaad∗, David Martin∗, Ron Addie∗ and Shahab Abdullah†
∗Faculty of HES, University of Southern Queensland, Australia, {dawoodsallemhussian.sheniar,

NabeelMahdy.Hadaad, u1047621, ron.addie}@usq.edu.au
†Open Access College, University of Southern Queensland, Australia, shahab.abdulla@usq.edu.au

Abstract—Many web services have a subsystem for allow-
ing users to register, authenticate, reset their password, and
change personal details. It is important that such subsystems
cannot be abused by attackers to gain access to the accounts
of other users. We study a system which was initially prone
to such attacks. Specific attacks are demonstrated and the
system is then modified to prevent such attacks in future.
The design achieved in this way is then analysed to show
that it can’t be broken in future unless users allow their
email to be intercepted. This is achieved by formulating the
requirement as a statement of the user’s expectations of the
system and then analysing the source code of the system
to prove that it meets these requirements. The process of
attack, correction, and formulation of security rules, and
proof that rules hold, is proposed as a methodical security
design philosophy.

Keywords—web service security, security design, password
reset, security rules, stakeholder analysis.

I. INTRODUCTION

VULNERABILITIES of web systems take a great
variety of forms and new ones appear to emerge

regularly, so it can seem an endless process to manage
and maintain web site or web service security [1]. An
approach used regularly is to assign the task of attacking
a site to an individual or a team and then to address the
discovered weaknesses. We call this a security audit. The
approach of searching for weaknesses and fixing them is
so widely used that it might reasonably be regarded as a
design philosophy.

This approach has been used in this paper, and the
results of both the attacks and the resulting defences are
reported. However, this approach is somewhat pessimistic
in that it assumes that a more methodical security design
philosophy which can guarantee secure design is not
available. The main result of this paper is to demonstrate
such a methodical design philosophy. We call this stake-
holder security analysis.

Stakeholder security analysis proceeds as follows:
1. Identify the key stakeholders.
2. For each stakeholder, identify a set of rules required by

these stakeholders. Note: the collected rules required
by all stakeholders must be consistent.

3. Implement procedures which ensure that all rules are
enforced.

Both a security audit and a stakeholder security analysis
are applied in this paper to a specific subsystem of a
web service system being developed and managed by the
authors. Note: it is not suggested that stakeholder security
analysis obviates the need for a security audit.

A. The Netml System
The Netml system provides services for analysis, de-

sign, and implementation of networks [2]. These services
are provided by means of a web site. No software is

installed on users’ computers (except in the form of
cached javascript). This system is used in teaching, by
computer science students, and in research into network
analysis and design.

A key requirement of this system is that users can
readily create their own accounts and can reset their
password if necessary when they have forgotten it. Users
can share networks that they create or load with each
other, but by default users cannot access the data of other
users.

B. Password Reset Service
Many web systems include a service for allowing users

to register, authenticate, reset their password, and change
personal details. Password re-setting is one of the most
common tasks faced by an enterprise information help
desk. Previous studies have shown that password re-
setting accounts for about one in four help desk requests
[3]. The human involvement in the password re-setting
process is costly to support. Thus, it is desirable to have
an automated way to authenticate a user for the purpose
of password resetting in an enterprise environment [4].
Reset mechanisms are therefore essential at almost every
password-protected site to handle forgotten passwords.

However, a password reset system is complex to im-
plement, and can easily include errors which open the
system to attack [5].

Typically, password reset systems make use of another
system for checking the credentials of a user to confirm
the user’s identity, for example, the user’s email system,
or their phone. Any defect in this second system (for
example, if the user has revealed their email password
to another user, or has allowed others’ free access to
their phone) will compromise the password reset system
which relies on it, so the second system must be one
with significantly greater importance, for the user, for
this type of design to be satisfactory.

Section II surveys current approaches to security de-
sign, including a description of three specific approaches.
In Section III the original design of the Netml password
reset system is described; in Section IV, a series of
experiments in which this system is attacked and then
improved (a security audit), is described; in Section V,
a stakeholder security analysis is conducted and used to
revise the design; in Section VI, the revised design is
proved to be correct (in respect of two of the rules).
Conclusions are presented in Section VII.

II. WEB SERVICE SECURITY DESIGN

Because web services (including services provided via
apps on mobile phones) are a recent development and
continue to evolve in both details and fundamentals,
principles of secure design of these services is also a new
and evolving area of research and development [6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints

https://core.ac.uk/display/211504619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This section reviews three different approaches for
securing web sites/services. Each of these approaches is
usually expressed as a completely independent philosophy
for achieving good security. We shall see that these
approaches are actually complementary, and to achieve
rigorous security all three approaches are needed. Note
that although we describe a design philosophy which is
able, formally, to prove, i.e. guarantee, security, because
no logical system can claim certainty in an absolute sense
(in mathematical logic, this fact is expressed in Gödel’s
incompleteness theorem), the strategy of attacking the
system remains useful, even after it has been methodically
proved to be correct.

The present paper does not apportion equal emphasis
on all approaches because the original contribution of
this paper is in the third of them, together with the way
the second approach joins with the third to form a more
comprehensive whole. The second approach is the one
summarised in Subsection II-B and applied in Section IV.
The third approach is summarised in Subsection II-C and
applied to the Netml password reset system in Sections
V and VI.

A. Good Security Design Practice
Good design takes security, ease of access, and usabil-

ity into account, striking a balance between protecting
the system and ease of use. Good practice has evolved
a number of practical approaches like minimizing attack
surface area [7], establish secure defaults [8], using the
principle of defence in depth [9], not trusting services
[10], keeping security simple [11], and fixing security
issues correctly [12].These approaches are used for main-
taining and improving security which are so natural and
important that they should be adopted as a first layer of
protection as a matter of standard practice, even when
more sophisticated approaches are also in use [13].

B. Security Auditing
Strategies for breaking into web systems or services

are under continuous development by government and
non-government organisations and individuals, both those
with friendly intentions and those who wish to exploit
security weaknesses for their own advantage. When a
new exploit is discovered, if it is discovered first by
those with friendly intentions, defences against the exploit
are usually developed quickly and published. Exploits
discovered by attackers with ill intent can, of course,
be deployed before web managers have the opportunity
to defend against them. Also, in the period of time
immediately after the defence against a new exploit has
been published, there is still an opportunity to attack
web sites which have not deployed the newly developed
defences. This time can be somewhat extended due to
the limitated expertise of web-site owners and because
the sequence of steps required to address a weakness in
a high-level framework can be quite lengthy.

A widely used strategy for improving web site or web
service security is to attempt to attack the site by using
the strategies which are currently known to be effective
one-by-one, or simultaneously, to discover if the site is
vulnerable to any of these strategies. Since all of the
strategies tried are known, the defences against all of
them are also almost certainly known, and hence can be
adopted by the web site.

Experiments of this type, and the resulting web service
design improvements, are described in Section IV.

Fig. 1. SDL diagram for User behaviour when resetting their password

Fig. 2. Sequence diagram for the Netml password reset system

C. Stakeholder Security Analysis
A more fundamental strategy which is not well-

developed at present is to seek to develop provably secure
protocols and software for all aspects of a web service
[14], [15], [16].

The first step in this approach, which is developed
further in Section V, is to consider the point of view of
all legitimate stakeholders in relation to the service, and
to enumerate a complete set of rules required by each
of these stakeholders, sufficient to ensure that they will
agree to actively participate in the service.

III. ORIGINAL DESIGN OF PASSWORD RESET
SERVICE

The original design of the password reset service of the
Netml system is described in Figures 1 and 2.

There is nothing exceptional about this design. How-
ever, in Section IV we discover that there are mistakes in
the implementation of this design which make it insecure.

IV. BREAK-IN EXPERIMENTS

A series of experiments in which the system is attacked,
successfully, and then modified, are described in this
section. These experiments took the form described in
Subsection II-B, i.e. a series of attacks were undertaken
in accordance with known vulnerabilities and observed
behaviour of the system.

Fig. 3. Sequence diagram for the Netml password reset system under
attack

A. First Experiment

A detail not mentioned in Section III is that when an
attempt to update a user’s password is made, with an
invalid ticket, the web page which is prepared to report
an error includes both the invalid ticket, and the value that
the ticket should have taken. This is a fatal mistake (from
the point of view of good security). There is no need to
report to an ordinary user what the value of the ticket
should have been. The reason this was included in the
error-report web page was to enable the software to be
readily tested and debugged. However, this information
should have been removed from the error page in the
working system.

The procedure used to change the password of a
different user was as described in Figure 3. First, the
password reset system was used to reset the password of
the attacker (a perfectly valid procedure, with no ill intent
or consequence). During this process, the URLs used at
each stage were observed. In particular, the URL which
was used to complete the reset of the password of user
addie11 was of the form shown in Listing 1. A URL

https://netml.usq.edu.au/netml4_6/registration.jsp?
resetpwd=true&ticket=12345&uname=u1047621&fullName=fake&
email=u1047621@umail.usq.edu.au&organisation=USQ

Listing 1: Form of URL which causes the password
change web page to be displayed

of this form was then used with the target user’s email
address and an invalid ticket. This generated an error
report page which revealed the value the ticket should
have had. Finally, the correct ticket was inserted into the
URL and it was sent to the server. This URL caused the
web page for supplying a new password to be displayed,
which was then used to change the target user’s password.

B. Second Experiment

After this defect was corrected, by removing the display
of the valid ticket in the error report web page, another
experiment was carried out. In some cases the algorithm
used to generate tickets is known by attackers because

the source code for the server may be available or the
attackers may be able to guess the ticket algorithm [17].
In the revised Netml system, tickets were calculated as:

hexsha(username+Calendar.getInstance()
.get(Calendar.DAY_OF_YEAR))

In the present case this algorithm was deliberately re-
vealed to the attacker.

In response to this attack, the ticket algorithm was
changed to that shown in Listing 3. No attacks of the
sort described in this section were then able to succeed.
A proof that these type of attacks can’t succeed is given
in Section VI.

V. STAKEHOLDER SECURITY ANALYSIS

Stakeholder analysis includes all those who have in-
fluence on decisions, events, or outcomes related to the
system [18], [19]. There are several ways to classify
stakeholders [20], [21], [22], some of which depend on
their threat potential [23], [24]. Stakeholder analysis helps
in determining: who would be an attacker, and how would
a successful attack be carried out? Also, how should
security rules be changed to make the system safer [25]?

However, the most important reason for a careful
stakeholder analysis, from the point of view of this paper,
is that if we are able to identify a sufficient set of rules
that ensure the willing participation of each stakeholder,
and if we can enforce these rules, then the system is self-
evidently secure. This does not rule out the possibility that
through experience stakeholders may, during the lifetime
of a system, discover that there are rules which were
not initially obvious and which needed to be added to
their required rule set. If sufficient care is taken with the
stakeholder analysis, such events should be rare.

A. Stakeholder Roles

The role refers to a synonym for the stakeholder type.
Two main questions need to be considered: a) which
stakeholder roles impact on password reset system safety;
and b) which stakeholders are involved in those roles. The
resulted four stakeholder roles and their stakeholders are
listed in the first and second columns, respectively in table
I.

Stakeholder role Stakeholder
User Teacher or Student
IT Admin the System Administrator, IT Department personnel
Netml Admin an administrator of the Netml System
Guest Non impacted stakeholder
Attacker External attacker, Internal attacker(Administration

member)

TABLE I. STAKEHOLDER ROLES

1) User: Anyone can become a user. Users are per-
mitted to access and change information they have stored
including information about their identity, such as their
email address and password. In this study, the role of users
includes those who use the password reset system to reset
their account passwords. Members of this role can cause a
successful attack on their accounts. For example, sharing
access information to an inbox that contains password
notification email can result in a successful attack on the
password reset system.

2) Admin: Admin users are able to access all the
same services and information as ordinary users and, in
addition, are able to see a variety of reports which are
not available to ordinary users. There are different levels
of admin access, and at a sufficiently high admin access
level, data stored by other users is visible. This is a feature
which is convenient for users when they need help with
their use of the system, although it may be desirable under
some circumstances to allow users to have privacy from
admin users as well as from other users. Administration
role in this system consists of Individuals that can play
the role of attackers. For example, an administration’s
member who has an authorized access to the user’s inbox
that contains the password notification email.

3) Guest: Guest users are able to access, and run
algorithms on, networks which are publicly accessible.

4) Attackers: Although attacker’s have no inherent
rights, it is useful to consider the objectives and mo-
tivations of attackers to better understand the strategies
most effective in thwarting them. In particular, this role
includes who can achieve a successful attack on the
password reset system. As mentioned previously, the at-
tacker may be an administrative member. The others, For
example, who can eavesdrop on the password notification
email if it is an encrypted email, or who can discover
the contents of the password notification email when the
inbox of the account user is not password protected.

B. Stakeholder rules
In this subsection, a subset of the rules for two of the

key stakeholders have been identified and are tabulated in
Table as shown in tables II and III. Rules are classified as
mandatory (M) or optional (O). A complete set of rules
is beyond the scope of this paper.

Rule number Users can Rule type
U1 create a new user identity and password

associated with a specific email address
M

U2 reset the password associated with their
email address without having to remember
their existing password

M

U3 access the services associated with the
user account by providing their password

M

U4 not change the password of a user other
than themselves

M

U5 not disseminate the supplied email address
that contains the Password notification
email

O

U6 a user cannot obtain another user’s pass-
word

M

U7 a user should not reveal their own Netml
password to anyone else, or store it un-
safely

O

U8 tickets sent to users who are resetting their
password are valid for at least 30 minutes
and at most 31 minutes

M

TABLE II. USER RULES

Rule number Admins can Rule type
A1 ensure that password problems are only

resolved after adequate user authentication
M

A2 enable users to access the right resources
at the right times and for the right reasons

M

A3 allow users who to authenticate with an
an alternate factor

M

A4 not access to the inbox of the account user M

TABLE III. ADMINISTRATION RULES

Attackers might be considered as stakeholders in their
own right, and it is important to consider them in this
way, however in the security design the objectives or

rules which stakeholders adopt are not ones which we
seek to enforce or support. In fact we seek precisely the
opposite – to thwart these objectives. Furthermore, the
rules of the other stakeholders will normally encompass
these requirements. Hence, in the present context it is not
necessary to include rules expressing the point of view of
attackers.

VI. PROOFS OF CORRECTNESS

In this subsection we describe, in detail, how to enforce
rules U1–U4. The procedure for implementing other rules
(e.g. A1–A4) follows the same pattern.

Proving correctness of some aspects of a system is very
straightforward and all that is necessary is to review the
normal procedures adopted by software developers and
remark that these are adequate. This applies to rules U1–
U3. The reason these rules are easy to prove is that, by
their nature, these rules can be demonstrated by a single
example. Testing, which is the normal procedure adopted
by software developers, is therefore adequate to prove that
these rules are correctly enforced.

The distinction between rules which are easy to prove
and those which are difficult to prove is logical, i.e. by
their logical nature some rules can be proved by a single
instance, while others require a series of deductive steps.

Rules which are difficult to prove are often difficult to
implement correctly, also. While attempting to prove the
security rules for the password reset subsystem, mistakes
in its implementation were discovered which had to be
corrected before the system could be proved to be correct.
This occurred in other aspects of the system (which were
analysed in a similar manner, but for which details have
not been included in the paper), also. This supports the
practical utility of the methodology investigated in this
paper.

The complete set of rules for this system is a superset of
those listed in Subsection V-B and so a complete security
design and implementation will need to include specifi-
cation of those rules and their proofs to be complete. In
this section, we show that Rules U1–U3 hold and Rule
U4 holds, i.e. it is not possible to break into the system.

<!-- this is the case of updating details of an
existing user -->↪→

<c:if test="${(! empty param.resetpwd) and
(param.ticket==target_ticket)}">↪→

<sql:update dataSource="jdbc/MySQLDB">
UPDATE USERS set name=?, user_name=?,

organisation=?, email=?, password=’’,
user_pass=?

↪→

↪→

where user_name= ?
<sql:param value="${param.fullName}"/>
<sql:param value="${username}"/>
<sql:param

value="${param.organisation}"/>↪→

<sql:param value="${param.useremail}"/>
<sql:param value="${hexshapass}"/>
<sql:param value="${username}"/>

</sql:update>
...

</c:if>

Listing 2: Code for changing passwords

If all users are treated identically, if Rules U1–U3 are
verified for one user, they must be valid for all other
users. If there are, in fact, distinct classes of user which
are treated differently, it will, more generally, be sufficient
to check these rules for users in each class. Even in this
case, however, it will usually be straightforward to check
each of these rules for each class of user.

/**
* Returns a random salt to be used to hash a
password.↪→

*
* @return a 32 bytes random salt
*/
private static final Random RANDOM = new

SecureRandom();↪→

public static byte[] nextSalt() {
byte[] salt = new byte[32];
RANDOM.nextBytes(salt);
return salt;

}
/**
*
* @return a random Hex string of length 64
bytes↪→

*/
public static String ticket() {

StringBuilder sb = new StringBuilder();
byte[] salt = nextSalt();
for (int k=0; k<salt.length; k++) {

sb.append(String.format("%02x",salt[k]));↪→

}
return sb.toString();

}

Listing 3: Algorithm for tickets

A. Proof of U4
Proposition 1: Rule U4 is enforced so long as the

following two conditions are true:
(a) The password of user U will not be changed by the

Netml server unless a ticket is supplied which is valid
for changing the password of user U ; and,

(b) a ticket which is valid for changing the password of
user U can only be received or calculated by user U .
Proof: By assumption (a), a user’s password can

only be changed if a ticket valid for changing that user’s
password is provided. By assumption (b), such a ticket
can only be received or calculated by the User for whom it
is valid. Hence, the only user who can change a password
is the user themselves.

To apply this proposition we need to verify that the
assumptions hold in the Netml system. This is where
the “real work” has to be done. Assumption (a) requires
checking the code for the Netml system. The relevant
code is shown in Listing 2. Observe that if the ticket
provided by the user is not valid, the password will not
be updated. In addition, the only other place where user
passwords are updated cannot be accessed if the email
address provided already exists in the database. Hence
Assumption (a) holds. Note that proof of this assumption
relies on an inherently complex observation that there
is only one possible location where passwords can be
changed as a consequence of a password reset request.

Assumption (b) also requires checking the source code
of the system. There are two aspects of this functionality
which need to be checked: (i) that tickets valid for
changing the password of user U can only be received by
user U ; and (ii) tickets valid for user U can’t be calculated
or guessed (in a feasible time), by a user other than U .
The algorithm for calculating tickets is shown in Listing
3. This algorithm uses the Java class SecureRandom as
the source of random numbers used to generate tickets.
This class provides a cryptographically strong random
number generator,which means that it produces a non-
deterministic sequence of random numbers.

This addresses (ii). Requirement (i) relies, in turn,
on the assumption that user U manages their email in
such a way that they, and only they, can receive email
sent to their email address. The Netml software sends
tickets valid for a certain email address only to that email
address, but if a user allows someone else to know their
email account password, another user use this to gain
access to their Netml account, by requesting a password
change, and then accessing the email which enables the
password to the changed.

If U uses un-encrypted email, it is also possible for
anyone with physical access to the network by means of
which the email is transferred to gain access to the ticket
and thereby to change the password of a user who is
attempting to reset their password.

This method of re-setting an account password should
not be used if the sensitivity of the information protected
is greater than that of an email account.

B. Proof of U8
The code which checks the timeliness with which a

ticket provided in an email is used to reset a password is
shown in Listing 4. It can be seen from this code that if
the ticket used is not the same as the one generated and
stored in the system, when the user requested to reset
their password, or if it is used on a different day, or
at a time more than 30 minutes after it was generated,
the script which is used to reset a users password will,
instead, display a login screen. Thus, it is only possible to
use a password reset ticket within 31 minutes of it being
issued. Proof that tickets are valid for at least 30 minutes
is not included here because this is best undertaken by
testing.

<!-- this is the case of updating password
of an existing user -->↪→

<c:if test="${! empty param.resetpwd &&
(param.ticket!=target_ticket↪→

or
param.minutes>(ticket_minutes+30) or
param.date!=ticket_date)}">

↪→

↪→

<jsp:forward page="login.jsp" >
<jsp:param name="errorMsg"

value="An invalid or out-of-date
ticket was used to reset a password. Please
try again." />

↪→

↪→

</jsp:forward>
</c:if>

Listing 4: Algorithm for checking ticket timeliness

VII. CONCLUSION

In Section II, three complementary approaches for
achieving rigorous security were reviewed. The first of
these is a pragmatic list of good practices which help to
minimise the effort required to create and maintain good
security. If these practices are not followed, the other
two approaches, which are more specific in addressing
security requirements, will require too much effort to
be put into practice. The second approach is to attempt
a series of attacks by methods which are known to
be currently active, and to use the known (and usually
published) techniques to address them.These methods are
used by attackers as they are easy to get the worked
attacked vector and they know they will work as uptake
of fixes and patches is slow.

The third approach is a more systematic and rigorous
complement to the second. Instead of enumerating and
employing a series of exploits, the threats are systemati-
cally classified in the form of a list of rules stated as the
requirements of each of the stakeholders. This allows us to
logically address the important question of completeness.
Whereas a list of currently active exploits is inherently
evolving and therefore incomplete, it is reasonable to
ask each stakeholder (or their representative): “is this
list of rules sufficient, if guaranteed, for you to agree to
actively participate in this service?” If all stakeholders are
satisfied in this way, the web service is secure. Despite
an agreement of this sort being established, naturally, if a
new approach which undermines security in a way which
one or more stakeholders were not able to anticipate
is discovered, the rules which stakeholders require will
need to change. At least, when this happens, we have an
explanation: our fundamental understanding of the nature
of the service has progressed.

In addition, the third approach defines how to rigor-
ously review the steps which are taken to address new
exploits: these steps should be formulated sufficiently
clearly, and in such a way, that the stakeholder rules are
provable. This makes a critical connection between the
code implementing a web service and the security rules
it is expected to conform to. It is not necessary to adopt a
special purpose programming language, or methodology,
in order to achieve this level of rigour (although adopting
special methods may make this task easier).

The key new ideas in this paper are that: (a) there is a
simple and logical security design philosophy, which is to
identify the rules required by all stakeholders, and ensure
they are guaranteed; (b) we can ensure some of these are
satisfied by proving they must hold from some of the rules
which are guaranteed. Note: proving that all rules hold,
even for a small system like the one considered in this
paper, is not feasible in a paper of this length. For systems
which need a security guarantee, it may be feasible to
prove that all stakeholder rules hold. However, many
systems rely on correct behaviour by the stakeholders,
which will limit what level of security can be achieved.

REFERENCES

[1] A. Jøsang and S. Pope, “User centric identity management,” in
AusCERT Asia Pacific Information Technology Security Confer-
ence. Citeseer, 2005, p. 77.

[2] R. G. Addie, Y. Peng, and M. Zukerman, “Netml: networking
networks,” in Dependable, Autonomic and Secure Computing
(DASC), 2011 IEEE Ninth International Conference on. IEEE,
2011, pp. 1055–1060.

[3] D. V. Bailey, M. Dürmuth, and C. Paar, “Statistics on password
re-use and adaptive strength for financial accounts,” in Interna-
tional Conference on Security and Cryptography for Networks.
Springer, 2014, pp. 218–235.

[4] K. Nimmy and M. Sethumadhavan, “Novel mutual authenti-
cation protocol for cloud computing using secret sharing and
steganography,” in Applications of Digital Information and Web
Technologies (ICADIWT), 2014 Fifth International Conference on
the. IEEE, 2014, pp. 101–106.

[5] C. Routh, B. DeCrescenzo, and S. Roy, “Attacks and vulnera-
bility analysis of e-mail as a password reset point,” in Mobile
and Secure Services (MobiSecServ), 2018 Fourth International
Conference on. IEEE, 2018, pp. 1–5.

[6] R. G. Addie, S. Moffatt, S. Dekeyser, and A. Colman, “Five ex-
amples of web-services for illustrating requirements for security
architecture,” in Proceedings of 2nd International Conference on
Data and Knowledge Engineering, 2011.

[7] A. Bhardwaj and S. Goundar, “Reducing the threat surface to
minimise the impact of cyber-attacks,” Network Security, vol.
2018, no. 4, pp. 15–19, 2018.

[8] H. Lai, J. S.-C. Hsu, and M.-X. Wu, “The impact s of requested
permission on mobile app adoption: The insights based on
an experiment in taiwan,” in Proceedings of the 51st Hawaii
International Conference on System Sciences, 2018.

[9] E. Toch, C. Bettini, E. Shmueli, L. Radaelli, A. Lanzi, D. Riboni,
and B. Lepri, “The privacy implications of cyber security sys-
tems: A technological survey,” ACM Computing Surveys (CSUR),
vol. 51, no. 2, p. 36, 2018.

[10] K. Ghirardello, C. Maple, D. Ng, and P. Kearney, “Cyber security
of smart homes: Development of a reference architecture for
attack surface analysis,” in Living in the Internet of Things:
Cybersecurity of the IoT-2018. IET, 2018, pp. 1–10.

[11] D. Thomsen and E. Bertino, “Network policy enforcement using
transactions: The neutron approach,” in Proceedings of the 23nd
ACM on Symposium on Access Control Models and Technologies.
ACM, 2018, pp. 129–136.

[12] M. Tabassum, S. Watson, B. Chu, and H. R. Lipford, “Evaluating
two methods for integrating secure programming education,” in
Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 2018, pp. 390–395.

[13] R. S. Ross, M. McEvilley, and J. C. Oren, “Systems security
engineering: Considerations for a multidisciplinary approach in
the engineering of trustworthy secure systems [including updates
as of 1-03-2018],” Tech. Rep., 2018.

[14] M. E. Whitman and H. J. Mattord, Principles of information
security. Cengage Learning, 2011.

[15] L. O. Mailloux, P. M. Beach, and M. T. Span, “Examination
of security design principles from nist sp 800-160,” in Systems
Conference (SysCon), 2018 Annual IEEE International. IEEE,
2018, pp. 1–8.

[16] M. A. Bishop, Introduction to computer security. Addison-
Wesley Boston, 2005, vol. 50.

[17] K. C. Wang and M. K. Reiter, “How to end password reuse on
the web,” arXiv preprint arXiv:1805.00566, 2018.

[18] P. M. Institute, “A guide to the project management body of
knowledge (pmbok R© guide)-(simplified chinese).” Project
Management Institute, 2018.

[19] K. H. Rose, “A guide to the project management body of
knowledge (pmbok R© guide)fifth edition,” Project management
journal, vol. 44, no. 3, pp. e1–e1, 2013.

[20] B. Maguire, J. Potts, and S. Fletcher, “The role of stakeholders in
the marine planning processstakeholder analysis within the solent,
united kingdom,” Marine Policy, vol. 36, no. 1, pp. 246–257,
2012.

[21] S. Maynard, A. Ruighaver, and A. Ahmad, “Stakeholders in secu-
rity policy development,” in 9th Australian Information Security
Management Conference. Citeseer, 2011, p. 182.

[22] L. Bourne, Stakeholder relationship management: a maturity
model for organisational implementation. Routledge, 2016.

[23] M. Almorsy, J. Grundy, and I. Müller, “An analysis of the cloud
computing security problem,” arXiv preprint arXiv:1609.01107,
2016.

[24] G. T. Savage, T. W. Nix, C. J. Whitehead, and J. D. Blair, “Strate-
gies for assessing and managing organizational stakeholders,”
Academy of management perspectives, vol. 5, no. 2, pp. 61–75,
1991.

[25] S. Diver, “Information security policy–a development guide for
large and small companies,” Sans Institute, pp. 1–37, 2007.

