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Abstract

Generalized Multiple Mapping Conditioning (MMC) allows for the use of any

physical quantity to represent the required reference variable provided that

it delivers the desired behavior. The binomial Langevin model (BLM) has

been shown to predict higher statistical moments with good accuracy. How-

ever, joint–scalar modeling for many scalars becomes problematic because

scalar bounds must be specified as conditional on other scalars to preserve

elemental balances. The resulting volumes in state space become exception-

ally complex for realistic problem sizes. In the current work, this central

difficulty is avoided by using only velocity and mixture fraction statistics

from the BLM with the latter used as the MMC reference variable. The

principal advantage of this method is that the implementation of the bino-

mial Langevin mixture fraction is relatively straightforward and provides a

direct physical link to MMC. The MMC model is closed using an augmented

modified Curl’s model where the selection of particle pairs for (turbulent)
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mixing ensures proximity in reference space and a corresponding closeness in

physical space. The method is evaluated for a lifted methane jet flame un-

dergoing auto-ignition in a vitiated coflow. Most of the major features of the

flow are well reproduced and found to generally outperform other modeling

approaches, including Large Eddy Simulations using simplified treatments of

turbulence–chemistry interactions such as unsteady flamelet/progress vari-

able descriptions.

Keywords: Turbulent combustion, Multiple Mapping Conditioning, MMC,

Langevin models, Lifted flame
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1. Introduction

The desire to combine improved combustion efficiency with lower emis-

sions has led to an increased interest in combustion systems that operate near

stability limits. Finite-rate chemistry effects (such as extinction/reignition)

become important under such conditions and the formulation of calculation

methods capable of reproducing such phenomena has received substantial

interest [1, 2, 3, 4]. Time-scales covering several orders of magnitude become

important [5] with turbulence typically interacting strongly with chemical

kinetics. Simple models cannot capture such phenomena and transported

probability density function (PDF) based models are typically required [6, 7].

Predictions are more sensitive to various model components—including the

closure for molecular mixing [8]—in such situations.

The hybrid binomial Langevin–Multiple Mapping Conditioning (MMC)

model [9, 10] aims to combine some of the benefits of the binomial Langevin

model (BLM) [11], such as predictions of higher statistical moments, with the

benefits of the MMC approach [12], while overcoming at least some of the

deficiencies associated with each individual model component. Previously,

the hybrid model utilized a velocity component for mapping the MMC mix-

ture fraction. The current work replaces the velocity with a mixture fraction

to provide a more physical basis for general flames.

One of the difficulties with BLM is joint–scalar modeling because the

bounds for all scalars must be specified as conditional on all other scalars to

conserve elemental balances. A formulation of the joint velocity–scalar PDF

that includes the joint statistics of a mixture fraction and a reaction progress

variable has been developed [13]. The formulation provides detailed statistics
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of velocity–scalar interactions, predicting higher moments with encouraging

accuracy. The current hybrid model seeks to retain this ability while averting

the central difficulty of evolving (variable) scalar bounds.

In the MMC framework, a mathematical reference space is utilized that

has sufficient dimensions in scalar space to describe the manifold on which

compositions may lie [14]. This is founded on the principles of ordinary

and doubly-conditioned Conditional Moment Closures (CMC) [15] applied

in previous studies [16, 17, 18]. The probabilistic approach [19] (similar to

second-order CMC) provides an alternative [20], has been implemented in a

variety of ways [21, 22, 23], and forms the basis for the MMC component of

the current hybrid model.

Surrogate reference variables have been developed for MMC to avoid dif-

ficulties in specifying model coefficients: some quantity (preferably already

solved as part of the calculation procedure) is used as the reference variable.

This is fundamental to the application of generalized MMC [24, 25, 26]. The

transformation of such a quantity into a reference variable has been utilized in

sparse Lagrangian Large Eddy Simulations (LES) by using the LES-resolved

filtered mixture fraction field [24, 27, 28]. In the current hybrid approach, the

mixture fraction obtained from BLM is used as the reference variable. The

scalar mixing in the MMC component of the hybrid model is then controlled

by specifying the fraction of particles which are to be mixed. The model

is evaluated by simulating a fuel jet undergoing auto-ignition in a vitiated

coflow [29].
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2. Theory

2.1. Binomial Langevin model

H
◦

ulek and Lindstedt [13] developed a generalized form of BLM [11] for

the joint-PDF of velocity and multiple scalars. The velocity transport model

(including the turbulent dissipation ε, the return-to-isotropy of the Reynolds

stresses and the dispersion in velocity space) for a stochastic particle p is:

du∗p
i =

1

τu
(α1δij + α2βij)

(

u∗p
j − 〈uj〉

)

dt

+(C0〈ε〉)
1/2dwi (1)

where superscript ‘∗’ represents a stochastic trajectory, k is the turbulent

kinetic energy, the velocity time–scale is τu = 〈k〉/〈ε〉, dwi is an isotropic

Wiener process and the Reynolds stress anisotropy tensor is

βij =
〈u′

iu
′

j〉

〈u′

ku
′

k〉
−

δij
3

. (2)

The modeling coefficients are C0 = 2.1, α2 = 3.7 and α1 = −
(

1

2
+ 3

4
C0

)

−

α2β
2
ll. The modeled stochastic differential equation for any scalar η is

dη∗p =
Gη

2τη
(η∗p − 〈η〉) dt+ (Bη〈εη〉)

1/2 dwbin (3)

where the drift (Gη) and diffusion (Bη) coefficients are defined elsewhere [11,

13], dwbin is a binomial Wiener process [11] and the mean scalar dissipation

is modeled as 〈εη〉 ≡ 〈η′2〉 /τη, with the scalar timescale modeled using the

timescale ratio Cφ:

τη = τu/Cφ . (4)

Many of the physical processes that occur are simulated well by the

model [13]. However, the presence of conditional scalar limits in Gη and
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Bη for reacting scalars cause difficulties due to evolving scalar bounds. This

issue has been addressed for a two–scalar formulation by ensuring transport

along a scalar boundary for limiting cases [13]. Generally, a much larger

number of scalars (e.g. 48 species in the current case) must be considered,

resulting in very complex volumes in composition space. However, if the im-

plementation is restricted to the mixture fraction alone (where the bounds

are simple), then no difficulties arise.

2.2. MMC model

The current work utilizes Generalized MMC [26], so does not solve the

standard transport equation for the reference variable (ξ∗p) [12], because the

mixture fraction solved by the binomial Langevin model is defined to be the

reference variable:

ξ∗p = η∗p . (5)

Instead, the transport of the reference variable is solved by Eq. (3). The same

particle contains information from both the BLM and MMC, so η directly

maps to the MMC mixture fraction Z. The major benefits of this approach

are that the reference variable does not merely map, but actually models the

behavior of the mixture fraction; and the inhomogeneous drift term, which

is challenging to model, does not need to be determined.

Equation (5) is the principal difference with the previous hybrid binomial

Langevin–MMC model [9, 10]; previously the velocity from Eq. (1) was used

to define ξ in Eq. (5). Because η was used in the earlier work to control the

amount of mixing, another model for the mixing needs to be implemented,

which will be discussed later.
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In the MMC framework, ns reactive scalars are solved with ns−1 species

mass fractions (YI) combined with the specific enthalpy h. The stochastic

form of the transport equations is [12]:

dZ∗p = Sdt (6)

dY ∗p
I = (S +WI)dt (7)

dx∗p = Udt . (8)

Here, S is the mixing model, WI the chemical source term, dwl a Wiener

process and U ≡ 〈v|ξ〉 the conditional velocity, with v the physical velocity.

To ensure compatibility with the joint-PDF of mixture fraction and velocity

for BLM, the BLM velocity obtained from Eq. (1) is used in Eq. (8) for the

current hybrid model:

U = u . (9)

The conventional model for the diffusion coefficient B was used

B =
〈εη〉

2

〈

(

∂Z

∂ξ

)2
〉

−1

, (10)

with the derivative obtained by subdividing the reference space and perform-

ing least-squares curve fits in each section [30].

The Modified Curl’s (MC) model [31, 32] was applied for the mixing term

(S). What distinguishes MMC from MC is that pairs of particles are not ran-

domly paired, which could cause interaction across a diffusion layer (which

would only happen in extremely high turbulence). Instead pairs of particles

are selected to be close in reference space, modeling the behavior that par-

ticles are physically close together (at a subgrid scale) because the mapping

process requires the reference variable to change across a diffusion layer in
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a similar way to the mixture fraction. Particles are considered available for

pairing according to [10, 30]

|∆ξ∗pq| ≤ (2B∆t)1/2 (11)

where ∆ξ∗pq = ξ∗q − ξ∗p. This mimics the effect of the diffusive term of a

stochastic differential equation [i.e. the last term of Eq. (1) or Eq. (3)], where

the average distance particles diffuse is (2B∆t)1/2 and the particles interact

at the new location. To reduce the chances of Eq. (11) being violated, p

is selected so that |ξ∗p| is in descending order. If no q can be found to

satisfy Eq. (11), then q is selected to minimize |∆ξ∗pq| and any violation will

occur for outliers, which are in the low-probability region. In common with

all other PDF-based approaches where particles mix by sharing information

with a small number of particles (usually one other), if ∆t is too small or the

number of particles is insufficient (i.e. if np∆t → 0, where np is the number

of particles in a physical cell), then the model fails (〈Z ′2〉 does not decay in

the mixing substep).

Particles are paired with a nearby particle, not the neighboring parti-

cle. The reason for this is that smaller values of np∆t are possible without

changing the result. Those MMC methods which pair neighboring particles,

e.g. [33, 21], rely on sufficiently-high values of np∆t to reorder the particles

so particles do not uniquely pair with the same particle repeatedly. Such

behavior is also observed in the stranding behavior of EMST if it is imple-

mented without the aging function, which causes many of the particles to be

unavailable for interactions. Arguably, the low np∆t limit of MMC behaves

worse than EMST in terms of stranding: MMC is restricted to isolated pairs

of particles, whereas in EMST interactions can occur between multiple par-
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ticles. The method used here and in related work [9, 10, 20, 30] guarantees

dissipation in the mixing process for smaller values of np∆t than methods

that pair neighboring particles. Because the distance between particles in

reference space is consequentially greater for individual particles than if they

were neighboring, the amount of dissipation per mixing interaction and the

number of paired particles must also be different.

To close the model for S, the MC model [31, 32] was used. The process of

choosing the degree of mixing differs from the previous model because η is not

available for controlling this process. For those particles selected for mixing,

the amount of mixing was 50% [30] of that specified in the original Curl’s

model. The number of particles selected for mixing remains an unclosed

parameter. In the current work, 6% of particles at any physical location

were mixed per time step; on average, this amounted to 24 particles. It is

likely that this value of 6% is not general and future work will focus on a

general approach to selecting the number of particles to mix.

The method of mixing follows the same procedure as standard MC.

Firstly, the method for choosing pairs must be decided. In MC, particles are

randomly chosen from the available set of particles (normally those within a

computational cell, so the particles are moderately close in physical space).

In the current method, the pair for a particle is chosen at random from

the subset of particles within the computational cell that are also close in

reference space. Secondly, the distribution of the mixing amount must be

chosen. A uniform distribution is common for MC (the amount of mixing

is a uniformly-distributed random variable between no mixing and complete

mixing). The current method specifies a single value that provides the same
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mean amount of mixing [30]; modifying this to a random value affects the

conditional means [30]. Finally, the fraction of particles to be mixed must

be determined. In MC, this is governed by the distribution of the mixing

amount and the rate of decay of scalar variance. A fixed value is used here

for simplicity, but this can be replaced to allow variations.

3. Results

3.1. Simulated experiment

The experiment [29] studied here is a methane-air jet (CH4 33% v.v.) with

a velocity of 100 m/s and pipe diameter of 4.57 mm (jet Re = 28, 000). The

coflow was air vitiated with H2 (lean: Φ = 0.40) and burned prior to being

released as coflow at 5.4 m/s and 1350 K. The typical behavior of this setup

is a lifted flame where the liftoff height is very sensitive to the inflow speeds

and temperature. This case is challenging for models because predicting the

liftoff behavior accurately requires suitable treatment of extinction/reignition

behavior.

The model was implemented into a parabolic code used successfully in

a previous study of the current vitiated flow [34]. In each simulation, there

were 80 cells in the radial direction, with the width of the domain increasing

as the entrained region grew. There was also variable spacing in the axial

direction, with ∆z/d = 1.5×10−3 initially, linearly increasing to ∆z/d = 0.05

at z/d = 10, then subsequently linearly increasing up to ∆z/d = 0.11 in the

range 30 < z/d < 60. On average, 400 particles were used in each cell, with

an ensemble of 10 simulations. Direct integration of the chemistry was used

in order to eliminate interpolation errors. The reduced chemical mechanism
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comprises 48 species (28 in steady-state) and 300 reactions [7].

3.2. Mean statistics

The mean statistics were averaged over a spatial resolution of ∆z/d = 0.5,

with no spatial averaging in the radial direction, then averaged over the

ensemble. The ensemble standard deviation is computed from the Favre

mean from each of the 10 simulations in the ensemble. The centerline mean

mixture fraction (Fig. 1) and temperature (Fig. 2) show good agreement

for most of the domain, generally reproducing the behavior near the outlet

and the axial stabilization point of the lifted flame. From the small ensemble

standard deviation in all the results, 400 particles/cell appears to be sufficient

to resolve the flow. The centerline rms mixture fraction (Fig. 3) tends to be

under-predicted downstream, which is likely due to excessive mixing in this

region, but the location and magnitude of the maximum is reproduced. The

temperature rms (Fig. 4) is well reproduced for z/d < 70, which accounts

for most of the important features of the flow. The temperature rms is

predicted significantly better than other models [29]. The species centerline

distributions are all generally well predicted, with the O2, OH and CO profiles

shown in Fig. 5. Further species are included in the Supplemental Material.

The radial profiles of mean mixture fraction (Fig. 6) and mean tempera-

ture (Fig. 7) generally agree with the experimental data. The radial locations

of the local maxima in the temperature around the base of the lifted flame

(40 ≤ z/d ≤ 50) are predicted well, as is the edge of the coflow. Like the cen-

terline results, the standard deviations tend to be modestly underpredicted.

Most results presented so far are similar to those obtained using the MC

model [34]. The exception is the centerline temperature rms, where the au-
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Figure 1: Centerline Favre-average mixture fraction. Hybrid model: ensemble mean, —;

ensemble std either side of ensemble mean, – –. Experiment [29], ◦.
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Figure 2: Centerline Favre-average temperature. As per Fig. 1.

thors have not found a RANS simulation that can correctly predict the loca-

tions of both the rise at z/d ≃ 40 and the decrease at z/d ≃ 60. Of the LES

simulations that report the temperature rms, some cannot simultaneously

predict both these locations [35, 36]. Others that do predict the centerline

temperature rms cannot predict a local maxima in the radial profile of mean

0 20 40 60 80 100
0

0.04

0.08

0.12

Figure 3: Centerline rms mixture fraction. As per Fig. 1.
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Figure 4: Centerline rms temperature. As per Fig. 1.
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Figure 5: Centerline Favre-average mass fractions. (a) O2; (b) OH; (c) CO. As per Fig. 1.

temperature at z/d = 40 [37, 38].

3.3. Conditional statistics

To properly understand the conditional statistics, the mixture fraction

PDF is reported in Fig. 8. The general shape of the experiment is repro-

duced; the δ-function at f = 0 shows that the coflow is resolved through-

out the domain; while the maximum mixture fraction decays with distance
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Figure 6: Radial mixture fraction at different axial locations. Hybrid model: mean, —;

rms, – –. Experiment [29]: mean, ◦; rms, �.

downstream somewhat faster than the experiment, which causes the slight

underprediction of the standard deviation.

The scatter plots of temperature with respect to mixture fraction (Fig. 9)

show that there is broad agreement with the experimental data. The results

presented here are qualitatively similar to the corresponding MC results [34].

The major difference is that by localizing the mixing, the particles tend to

be richer for the same temperature, in closer agreement with experiment.
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Figure 7: Radial temperature at different axial locations. As per Fig. 6.

Comparing to other computational results [29], for z/d ≤ 40 there are

frozen particles across most of the range of mixture fraction, in line with

the experiments. At z/d = 30, no particles are close to equilibrium, un-

like other studies. There is notable divergence between experimental data

and all previous studies at z/d = 40. The current results and past MC re-

sults [29, 34] appear similar at z/d = 50 and reproduce the band of particles

at stoichiometric-to-rich mixture fractions which span the frozen and equi-
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Figure 8: Mixture fraction PDFs. Hybrid model, – –; experiment [29], —. z/d = 30, —;

40, —; 50, —; 70, —.

librium limits. However, unlike the MC results [29, 34], local extinction is

limited at z/d = 70, resulting in better agreement with the experimental

data.

Conditional averaging of these results (Fig. 10) shows that the current

approach predicts the near-frozen nature of the flow at z/d = 30, while

repeating the MC model behaviour [29] of the conditional mean being the

equilibrium temperature for a large portion of the lean part of the domain

further downstream. The lean portion (the stoichiometric mixture fraction

is 0.177 [29]) is predicted well by the current model, while other studies over-

predict the temperature in this region [29]. Following this trend, the current

results under-predict the conditional temperature for the rich region (partic-

ularly at z/d = 50) in contrast to other studies [29]. The behavior of MMC

in the rich region can be attributed to the lower centerline mixture fraction

rms. Ironically, the latter creates a good prediction at z/d = 70, where

the MMC results slightly over-predict the experiment for the entire range of

mixture fractions. Conditional statistics for some species are included in the

Supplemental Material and tend to mirror the predictions of temperature.
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Figure 9: Scatter plots of temperature versus mixture fraction for the hybrid model (left)

and experiment [29] (right). There are 2500 randomly-selected data points shown for each

axial location. Equilibrium (upper) and frozen (lower) limits, and stoichiometric mixture

fraction (vertical line): —.

3.4. Flame liftoff height

The flame liftoff height was calculated by averaging the axial locations

where the mole fraction of C2H4 reached 100 ppm and C2H2 reached 2 ppm [29].

For the base conditions, the liftoff height was found to be H/D = 42, some-

what larger than the experimental value of 35 [29]. Similar to previous re-

sults [29], there is little sensitivity to coflow velocity (Fig. 11), although the
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Figure 10: Temperature conditioned on mixture fraction. Hybrid model: z/d = 30, —;

40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △; 70, �. Equilibrium

(upper) and frozen (lower) limits: —.
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Figure 11: Liftoff height as function of jet velocity. Coflow velocity: 4.2 m/s,♦; 5.3 m/s,�;

6.5 m/s, ◦. Hybrid model: open symbols with linear curve-fit of all results, – –. Experi-

ment [29]: closed symbols with linear curve-fit of each coflow velocity, —.

current results predict a much larger liftoff height. The general trend of a

monotonic decrease in liftoff height with increasing coflow temperature is

reproduced (Fig. 12), with a lower sensitivity of liftoff height to coflow tem-

perature, consistent with the MC model results using the same code [34].

The insensitivity to coflow conditions could be caused by the mixing model

and future improvements may contribute to a greater sensitivity to coflow

conditions.
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Figure 12: Liftoff height as function of coflow temperature. Hybrid model, +. Experi-

ment [29], ◦.

4. Conclusions

A modified version of the hybrid binomial Langevin–Multiple Mapping

Conditioning model has been proposed with the reference variable modeled

by the mixture fraction from BLM. This approach promises to improve upon

the applicability of the previous formulation [9, 10], while resulting in a

simpler implementation. The development of a universal methodology that

imposes a physical condition on the fraction of particles to be mixed remains

desirable. However, it appears that the current augmented MC model, which

imposes local mixing of particles in reference space, removes the tendency of

the standard MC model to over-predict local extinction. The model was

evaluated for a lifted jet flame [29], with the results generally comparing

favorably with experimental data and previous modeling efforts.
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Figure Captions

Figure 1: Centerline Favre-average mixture fraction. Hybrid model: en-

semble mean, —; ensemble std either side of ensemble mean, – –. Experi-

ment [29], ◦.

Figure 2: Centerline Favre-average temperature. As per Fig. 1.

Figure 3: Centerline rms mixture fraction. As per Fig. 1.

Figure 4: Centerline rms temperature. As per Fig. 1.

Figure 5: Centerline Favre-average mass fractions. (a) O2; (b) OH;

(c) CO. As per Fig. 1.

Figure 6: Radial mixture fraction at different axial locations. Hybrid

model: mean, —; rms, – –. Experiment [29]: mean, ◦; rms, �.

Figure 7: Radial temperature at different axial locations. As per Fig. 6.

Figure 8: Mixture fraction PDFs. Hybrid model, – –; experiment [29], —.

z/d = 30, —; 40, —; 50, —; 70, —.

Figure 9: Scatter plots of temperature versus mixture fraction for the

hybrid model (left) and experiment [29] (right). There are 2500 randomly-

selected data points shown for each axial location. Equilibrium (upper) and

frozen (lower) limits, and stoichiometric mixture fraction (vertical line): —.

Figure 10: Temperature conditioned on mixture fraction. Hybrid model:

z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦;

50, △; 70, �. Equilibrium (upper) and frozen (lower) limits: —.

Figure 11: Liftoff height as function of jet velocity. Coflow velocity:

4.2 m/s, ♦; 5.3 m/s, �; 6.5 m/s, ◦. Hybrid model: open symbols with linear

curve-fit of all results, – –. Experiment [29]: closed symbols with linear

curve-fit of each coflow velocity, —.

23



Figure 12: Liftoff height as function of coflow temperature. Hybrid

model, +. Experiment [29], ◦.
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List of Supplemental Material

Figure S1: Centerline Favre-average CO2 mass fraction. Hybrid model:

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-

ment [29], ◦.

Figure S2: Centerline Favre-average CH4 mass fraction. Hybrid model:

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-

ment [29], ◦.

Figure S3: Centerline Favre-average H2 mass fraction. Hybrid model:

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-

ment [29], ◦.

Figure S4: Centerline Favre-average H2O mass fraction. Hybrid model:

ensemble mean, —; ensemble std either side of ensemble mean, – –. Experi-

ment [29], ◦.

Figure S5: Scatter plots of temperature versus mixture fraction (2500

randomly-selected data points shown for each axial location). Equilibrium

(upper) and frozen (lower) limits, and stoichiometric mixture fraction (ver-

tical line): —.

Figure S6: Temperature conditioned on mixture fraction. Hybrid model:

z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦;

50, △; 70, �. Equilibrium (upper) and frozen (lower) limits: —.

Figure S7: Rms of conditional temperature. Hybrid model: z/d = 30, —;

40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △; 70, �.

Figure S8: Scatter plots of O2 mass fraction versus mixture fraction

for the hybrid model (left) and experiment [29] (right). There are 2500

randomly-selected data points shown for each axial location. Equilibrium
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(lower) and frozen (upper) limits, and stoichiometric mixture fraction (ver-

tical line): —.

Figure S9: O2 mass fraction conditioned on mixture fraction. Hybrid

model: z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦;

40, ◦; 50, △; 70, �. Equilibrium (lower) and frozen (upper) limits: —.

Figure S10: Rms of conditional O2 mass fraction. Hybrid model: z/d =

30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △;

70, �.

Figure S11: Scatter plots of OH mass fraction versus mixture fraction

for the hybrid model (left) and experiment [29] (right). There are 2500

randomly-selected data points shown for each axial location. Equilibrium,

and stoichiometric mixture fraction (vertical line): —.

Figure S12: OH mass fraction conditioned on mixture fraction. Hybrid

model: z/d = 30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦;

40, ◦; 50, △; 70, �. Equilibrium: —.

Figure S13: Rms of conditional OH mass fraction. Hybrid model: z/d =

30, —; 40, – ·; 50, – –; 70, · · · . Experiment [29]: z/d = 30, ♦; 40, ◦; 50, △;

70, �.
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