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Abstract
Around the world, climate change has impacted many species. In this study, we used 
bioclimatic variables and biophysical layers of Central Asia and the Asian Highlands 
combined with presence data of brown bear (Ursus arctos) to understand their current 
distribution and predict their future distribution under the current rate of climate 
change. Our bioclimatic model showed that the current suitable habitat of brown bear 
encompasses 3,430,493 km2 in the study area, the majority of which (>65%) located 
in China. Our analyses demonstrated that suitable habitat will be reduced by 11% 
(378,861.30 km2) across Central Asia and the Asian Highlands by 2,050 due to cli-
mate change, predominantly (>90%) due to the changes in temperature and precipita-
tion. The spatially averaged mean annual temperature of brown bear habitat is 
currently −1.2°C and predicted to increase to 1.6°C by 2,050. Mean annual precipita-
tion in brown bear habitats is predicted to increase by 13% (from 406 to 459 mm) by 
2,050. Such changes in two critical climatic variables may significantly affect the 
brown bear distribution, ethological repertoires, and physiological processes, which 
may increase their risk of extirpation in some areas. Approximately 32% (1,124,330 km2) 
of the total suitable habitat falls within protected areas, which was predicted to re-
duce to 1,103,912 km2 (1.8% loss) by 2,050. Future loss of suitable habitats inside the 
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1  | INTRODUC TION

Around the world, climate change has had significant direct and 
indirect impacts on terrestrial species, by being a major cause of 
speciation and species extirpation (Pound & Salzmann, 2017). Many 
studies have recently focused on the ecological (Etterson & Mazer, 
2016; Wikelski & Tertitski, 2016), ethological (Munoz, Marquez, & 
Real, 2015) and biological changes (Torres‐Diaz et al., 2016; Hulme, 
2016) in relation to climatic change. For example, various ecosys-
tems are vulnerable to climate change which may induce a broad 
array of adverse effects such as disturbances of phenological events, 
food web disruptions, pathogens and disease spread and ultimately, 
in worst case scenarios, may include extinction risks (Wu, Lu, Zhou, 
Chen, & Xu, 2016). Furthermore, climate change has impacted spe-
cies distributions by reducing and fragmenting of the area of ani-
mal habitats (Chen, Hill, Ohlemuller, Roy, & Thomas, 2011; Loarie et 
al., 2008; Lord & Whitlatch, 2015; Lundhede et al., 2014; Su, Aryal, 
Nan, & Ji, 2015; Wu, 2016). However, to tackle the challenge of the 
changing climatic conditions, species have adopted different mech-
anisms to counteract the magnitude and speed of climate change 
either individually or within a population (Hill, Griffiths, & Thomas, 
2011). For example, natural populations may react to climate change 
either collectively by shifting their geographical habitats (Hoffmann 
& Sgro, 2011), or individually by adjusting their behavioral activi-
ties through modifications of their diet, activity and energy budget 
and reproductive tactics (Bellard, Bertelsmeier, Leadley, Thuiller, & 
Courchamp, 2012). Although these tactical responses have proven 
to have a short‐term efficiency (Crane, Roncoli, & Hoogenboom, 
2011) to withstand climatic changes, some studies showed that up 
to 42% of species in certain geographical areas are at risk of extinc-
tion in the long term due to deforestation and habitat fragmentation 
solely (Sodhi, Koh, Brook, & Ng, 2004).

The Asian highlands, the high mountainous areas of Afghanistan, 
Bhutan, China, India, Mongolia, Nepal, Pakistan and Russia, contain 
rich biological diversity and provide important ecosystem services 
for downstream human communities. The region has also some of 
the greatest species endemism on the planet and the great variation 
in climate, topography, and elevation underpins rich cultural diversity 
(Xu et al., 2009). However, climate change has greatly impacted both 
biological diversity and ecosystems services in these areas (Aryal, 

Brunton, & Raubenheimer, 2014; Kujala, Moilanen, Araujo, & Cabeza, 
2013; Xu et al., 2009). The variation of climate effects that have 
been detected in the Asian Highlands shows progressive substantial 
changes at several levels from species to ecosystems (Yu, Luedeling, 
& Xu, 2010). Impacts of climate change on the hydrology, biodiversity, 
and ecosystems in this area have been reported which include gla-
cial melting, changes in streamflow, groundwater scarcity, altitudinal 
shifts, reduction in plant and animal habitats, biodiversity loss, and 
grassland desiccation (Pressey, Cabeza, Watts, Cowling, & Wilson, 
2007; Shrestha & Bawa, 2014; Walther et al., 2002). Furthermore, 
many studies foresee that future climate change would have even 
greater impacts on biodiversity in Central Asia (Chen, Li, Deng, Fang, 
& Li, 2016; Garcia, Cabeza, Rahbek, & Araujo, 2014; Zhang, Zhang, & 
Sanderson, 2013). It is important to understand the results of these 
changes in terms of habitat composition, structure and function and 
the responses of animal geographical distribution, which can guide 
conservation actions and government efforts in the Asian Highlands 
in response to these changes (Xu & Grumbine, 2014).

Brown bear (Ursus arctos) is a solitary, non‐territorial species 
with a promiscuous or polygamous mating system (Jerina, Jonozovic, 
Krofel, & Skrbinsek, 2013; Figure 1). It has a circumglobal distribu-
tion in the northern hemisphere, occurring in North America (The 
United States and Canada), Europe, and northern and Central Asia 
(McLellan et al., 2008). Many of these regions are experiencing rapid 
climate change (Shrestha, Gautam, & Bawa, 2012). In Central Asia 
and the Asian Highlands, brown bear distribution is mostly limited 
to higher elevation areas where more pronounced effects of climate 
change have been reported (Aryal, 2012; Aryal et al., 2014). In these 
regions, brown bear distribution and presence may be impacted by 
changing thermal regimes, vegetation, and prey abundance. Such 
changes may potentially increase human–bear conflicts due to shift-
ing in distribution of resources and possibly increasing scarcity of 
key resources such as water and food. In the same way, decrease in 
species diversity in the region due to climate change (Bertelsmeier, 
Luque, & Courchamp, 2013; Seim et al., 2016) might directly affect 
the distribution and abundance of the brown bear by reducing food 
resources. Reduced food abundance may result in increased inci-
dences of brown bears moving to anthropogenic areas in search of 
food, which could lead to increased levels of livestock depredation 
and human–bear conflict. However, little is known regarding how 

Foundation of China, Grant/Award Number: 
31460566 and 31760706 protected areas may force brown bears to move outside the protected areas thereby 

increasing their risk of mortality. Therefore, more protected areas should be estab-
lished in the suitable brown bear habitats in future to sustain populations in this re-
gion. Furthermore, development of corridors is needed to connect habitats between 
protected areas of different countries in Central Asia. Such practices will facilitate 
climate migration and connectivity among populations and movement between and 
within countries.

K E Y W O R D S
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brown bears habitats will be affected by future climate change in 
this region. To date, there are few published studies which assess 
the potential impacts of climate change on brown bears and their 
habitats (Roberts, Nielsen, & Stenhouse, 2014), and none in Asia. 
However, in recent years, a growing interest in the ecological and 
evolutionary mechanisms of habitat change due to climate change 
has promoted development of new models for predicting biodiver-
sity futures (Anderson, 2013). Here, we model the current suitable 
habitats for brown bears and predict the change in their future 
distribution due to climate change in Central Asia and the Asian 
Highlands. We used bioclimatic variables and biophysical layers of 
Central Asia combined with presence data of brown bear to under-
stand their current and future distribution. Such information will be 
helpful in managing brown bear populations and designing future 
conservation policies in Asia.

2  | MATERIAL AND METHODS

2.1 | Study area and presence data

We selected 11 countries of Central Asia and the Asian Highlands 
where brown bears are reported to occur (McLellan et al., 2008). The 
countries included are Afghanistan, Bhutan, China, India, Kazakhstan, 
Kyrgyzstan, Mongolia, Nepal, Pakistan, Tajikistan, and Uzbekistan. 
We obtained brown bear presence data by field surveys, informa-
tion from published and unpublished sources, and occurrence data 
from Global Biodiversity Information Facility (GBIF; https://www.
gbif.org). Presence data were collected through field surveys in Nepal 
(2007–2011), India (2001, 2006, 2012), Mongolia (2010–2014), and 
China (2014). In these studies, brown bear presence was recorded 
by sign survey including camera traps, scats, and tracks. Brown bear 
presence information from published and unpublished literatures was 
obtained for India (Sathyakumar, 2001, 2006 ; Sathyakumar, Kaul, 
Ashraf, Mookherjee, & Menon, 2012), Pakistan (Nawaz, 2007; Nawaz, 
Swenson, & Zakaria, 2008), Mongolia (Mccarthy, Waits, & Mijiddorj, 

2014), China (Gong & Harris, 2006, Xu, 2010), Nepal (Aryal, Iii, 
Raubenheimer, Ji, & Brunton, 2012; Aryal, Sathyakumar, & Schwartz, 
2010), Kazakhstan (Loginov, 2012), and Afghanistan (Moheb, Lawson, 
& Mostafawi, 2012). Additionally, information on brown bear pres-
ence, recent killing/poaching sites, and locations of human–bear en-
counters and conflicts was obtained from local authorities.

We used a species distribution map from the International 
Union for Conservation of Nature (IUCN; McLellan et al 2008; 
IUCN & Wildlife Conservation Society, 2008), to extract brown 
bear distribution areas (resident) for Asia with the help of ArcGIS. 
We plotted GPS points of current presence data we obtained and 
compared with the current IUCN distribution map for ground 
truthing for validation and correction. We downloaded protected 
areas of Asia (IUCN & UNEP‐WCMC, 2014), and based on the lit-
erature survey of brown bear presence, we selected areas and 
overlaid them into the species distribution map. Only the brown 
bear occurrence points within protected areas were selected for 
further analysis to model the potentially suitable habitats for 
brown bear. We removed the unconfirmed brown bear distribu-
tion areas (potential distribution) which lay outside of protected 
areas throughout the range on which we did not have evidence of 
presence. In this way, we validated brown bear presence points 
collected from field surveys and from literature and used them for 
final analysis. We also created 500 presence points within each 
protected area (one point per 5 km × 5 km cell) that overlaid with 
the IUCN’s brown bear distribution map using Hawth’s tools ex-
tension in ArcGIS. We verified the randomly generated presence 
points by brown bear experts from China, Mongolia, Nepal, and 
India. We did field verification of those randomly generated points 
in China, and Nepal by consulting with local park authorities to 
determine the current brown bear presence and removed those 
points from the analysis where absence was indicated. We also 
removed duplicate presence points and retained only one pres-
ence points per 1‐km2 grids cells. After validation, verification of 
presence points and removal of duplicates, we used remaining 209 
occurrence points of brown bear presence for further analysis.

2.2 | Bioclimatic data

We used nineteen bioclimatic variables derived from www.worldclim.
org (Hijmans et al., 2005), land use land cover data from global land 
cover data (https://www.glcn.org; Latham et al., 2014) and altitude 
from GTOPO30 (https://lta.cr.usgs.gov/GMTED2010; Danielson & 
Gesch, 2011). We prepared aspect and slope layers using a digital 
elevation model (DEM) layer using ArcGIS and clipped all variables 
to our study areas. We then extracted the values of each variable 
corresponding to the species occurrence locations to perform cor-
relation analysis and removed highly correlated variables (>0.85; 
Table 1). We used the remaining 14 variables for our final analysis.

For projections of future climate, we used the MIROC5 
(Model for Interdisciplinary Research On Climate) General 
Circulation Model (GCM) developed by the University of Tokyo, 
National Institute for Environmental Studies, Japan Agency for 

F I G U R E  1  Brown bear (Ursus arctos)

https://www.gbif.org
https://www.gbif.org
www.worldclim.org
www.worldclim.org
https://www.glcn.org
https://lta.cr.usgs.gov/GMTED2010
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Marine‐Earth Science and Technology (Sperber et al., 2013; 
Sharmila, Joseph, Sahai, Abhilash, & Chattopadhyay, 2015; 
Mishra et al., 2014). The GCM data were downscaled using the 
delta method and bias corrected by worldclim’s current climate 
(https://worldclim.org/). We ran the MIROC5 model using the 
Representative Concentration Pathway 4.5, a “middle‐of the‐
road” GHG (Green House Gas) scenario. For our analysis, we used 

current and 2,050 (average for 2,041–2,060) time series climate 
change scenario (https://worldclim.org/cmip5_30s).

2.3 | Modeling current and future suitable habitat

We used maximum entropy (MaxEnt) species distribution modeling 
(SDM; Phillips Steven and Dudík, 2008) to map the current and pre-
dicted future distribution of brown bear in the study area. MaxEnt 
is a widely used tool for modeling species distributions using 
presence data of species and various environmental parameters 
(Kramer‐Schadt et al., 2013). There are limitations in MaxEnt mod-
eling (Boria, Olson, Goodman, & Anderson, 2014; Radosavljevic 
& Anderson, 2013). We minimized these limitations by using vali-
dated presence data (from field surveys, past studies, and IUCN 
distributions map). Finally, we evaluated and selected the best 
model projection of current and future scenarios. Since our data 
were based on field surveys and areas with existing brown bear 
presence in protected areas, there may be some biases due to auto‐
correlation of localities and variables (Boria et al., 2014); therefore, 
we validated the model using the area under the curve (AUC) of 
the receiver operator characteristic (ROC) curve to correct for 
biased samples and variables (Pearce et al., 2000; Roura‐Pascual, 
Brotons, Peterson, & Thuiller, 2009). We prepared suitable habitat 
of brown bear based on equal training sensitivity and specificity 
logistic threshold (Table 2) and removed the area below <0.39 of 
equal training sensitivity and specificity logistic threshold (Table 2).

3  | RESULTS

After removing highly correlated variables (>r = 0.85), we used 14 
variables for further analysis, such as Temperature Seasonality 
(BIO4), Max Temperature of Warmest Month (BIO5), Mean 
Temperature of Driest Quarter (BIO9), Mean Temperature of 

TA B L E  1  Relative contribution of environment variable to the 
MaxEnt model

Variables
Percent 
contribution

Permutation 
importance

Annual Mean Temperature 
(BIO1)

43.9 58.3

Mean Temperature of Wettest 
Quarter (BIO8)

27.1 0.2

Precipitation of Driest Month 
(BIO14)

5.2 2.7

Min Temperature of Coldest 
Month (BIO6)

4.4 2.2

Annual Precipitation (BIO12) 4.3 1.7

Elevation 4.3 7.3

Aspect 2.3 1.7

Temperature Annual Range  
(BIO7)

2.1 14.4

Slope 2.1 0.8

Land cover 1.2 1

Precipitation Seasonality  
(BIO15)

1 4.7

Mean Diurnal Range (BIO2) 0.8 1.5

Isothermality  (BIO3) 0.7 2.8

Precipitation of Coldest Quarter 
(BIO19)

0.5 0.7

TA B L E  2  Common thresholds (cumulative and logistic) and corresponding omission rates

Cumulative threshold Logistic threshold Description
Fractional predicted 
area

Training 
omission rate

1.000 0.032 Fixed cumulative value 1 0.629 0.000

5.000 0.107 Fixed cumulative value 5 0.437 0.026

10.000 0.171 Fixed cumulative value 10 0.332 0.046

2.652 0.067 Minimum training presence 0.519 0.000

19.020 0.280 10 percentile training presence 0.226 0.099

26.635 0.363 Equal training sensitivity and specificity 0.173 0.171

19.871 0.292 Maximum training sensitivity plus specificity 0.218 0.105

2.652 0.067 Balance training omission, predicted area and 
threshold value

0.519 0.000

9.876 0.170 Equate entropy of thresholded and original 
distributions

0.334 0.046

Note. If test data are available, binomial probabilities are calculated exactly if the number of test samples is at most 25, otherwise using a normal ap-
proximation to the binomial. The “Balance” threshold minimizes 6 × training omission rate +0.04 × cumulative threshold +1.6 × fractional predicted 
area.

https://worldclim.org/
https://worldclim.org/cmip5_30s
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Warmest Quarter (BIO10), Mean Temperature of Coldest Quarter 
(BIO11), Precipitation of Wettest Month (BIO13), Precipitation 
of Wettest Quarter (BIO16), Precipitation of Warmest Quarter 
(BIO18), and Precipitation of Driest Quarter (BIO17; (Supporting 
information Table S1). Overall, annual and seasonal temperature 
and precipitation were the main bioclimatic factors contributing 
to brown bear habitat suitability, which together contributed more 
than 90% to the species distribution model (Table 1). Annual Mean 
Temperature (BIO1) contributed the most (43.9%), followed by 
Mean Temperature of Wettest Quarter (BIO8; 27.1%), Precipitation 
of Driest Month (BIO14; 5.2%), Minimum Temperature of Coldest 
Month (BIO11; 4.4%), and Annual Precipitation (BIO12; 4.3%) to 
the model. Aspect, slope, and land cover contributed <3% to our 
model (Table 1).

The result of the jackknife test of variable importance showed 
that highest gain was in annual mean temperature and elevation 
(Figure 2). The environmental variable, which decreased the gain 

the most when it was omitted, was the land cover (Figure 2). Our 
model was well represented because the omission rate was close 
to the predicted omission as a function of the cumulative threshold 
and both were calculated based on the training presence records 
(Figure 3, Table 2). Our model and environmental variables described 
the current distribution of brown bear very well in the study area 
(AUC = 0.90; Figures 2‒4). Response curves showed each environ-
mental variable affected the prediction of brown bear distribution, 
which keeps all other environmental variables at their average sam-
ple value and showed how the logistic prediction changes as each 
environmental variable is varied (Figure 5).

3.1 | Role of temperature and precipitation on 
brown bear habitat

Our model showed that brown bear distribution was attributed 
to bioclimatic variables associated with climate change: annual 

F I G U R E  2  Results of the jackknife 
test of variable importance. The 
environmental variable with highest 
gain when used in isolation is Mean 
Temperature of Warmest Quarter 
(Bio10), which therefore appears to 
provide the most useful information 
by itself. The environmental variable 
that decreases the gain the most when 
omitted is land cover, which appears 
to have the most information that isn't 
present in the other variables

TA B L E  3  Current and future suitable habitat of brown bear

Country
Current suitable habitat 
(area in km2) Current area in %

Future (2,050) suitable habitat 
(area in km2) % of Change

Mongolia 477,503.00 13.87 465,880.00 −2.43

Afghanistan 47,474.70 1.38 42,402.30 −10.68

Kazakhstan 176,320.00 5.12 160,711.00 −8.85

Tajikistan 76,153.90 2.21 75,215.30 −1.23

Kyrgyzstan 118,768.00 3.45 111,641.00 −6.00

Uzbekistan 10,271.70 0.30 15,523.40 51.13

China 2,259,810.00 65.66 1,969,610.00 −12.84

India 141,002.00 4.10 103,882.00 −26.33

Bhutan 14,182.10 0.41 13,084.00 −7.74

Nepal 40,505.90 1.18 35,132.30 −13.27

Pakistan 68,502.60 1.99 56,501.30 −17.52

Total 3,430,493.90 3,051,632.60 −11.04
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temperature (BIO1) and precipitation (BIO12; Table 1). The spa-
tially averaged current mean annual temperature of brown bear 
habitat was −1.2°C (maximum 17.1, minimum −13.7°C) and is 
predicted to increase to 1.6°C (maximum 19.9°C and minimum 
−11.2°C) by 2,050. Similarly, current annual mean precipitation of 
brown bear habitat is predicted to increase by 13%, from 406 mm 
to 459 mm by 2,050.

3.2 | Suitable habitats of brown bear under 
current and future climates

Our model showed that present suitable brown bear habitat area 
was 3,430,493.90 km2 in Central Asia (Figure 6). Most of the habitats 
located in China (65.7%), followed by Mongolia (13.9%), Kazakhstan 
(5.1%), India (4.1%), Kyrgyzstan (3.5%), and Pakistan (2.0%; Table 3, 
Figure 6). The least amount of suitable habitat was found in Bhutan 

(0.4%), Uzbekistan (0.3%), Nepal (1.2%), and Afghanistan (1.4%; 
Table 3, Figure 6).

Our results showed that the current suitable habitat will be re-
duced by 11% (378,861 km2) across Central Asia by 2,050 (Table 3) 
due to climate change. The most suitable habitat is predicted to be 
lost in India (26% loss), Pakistan (17%), and Nepal (13%). In China, 
290,200 km2 (13%) of suitable habitat is predicted to be lost by 2,050 
(Table 3). However, a small increase in suitable habitat for brown bear is 
predicted in Uzbekistan relative to the entire study area (10,271 km2), 
but a relatively large gain within the country (51%; Table 3; Figure 6).

3.3 | Suitable habitat within protected areas

About 1.8% of the areas from the current total suitable habitat 
lay within protected areas (1,124,330 km2), which is predicted to 
decrease to 1,103,912 km2 by 2,050 (Table 4). In some countries, 

F I G U R E  3  The omission rate and predicted area as a function of the cumulative threshold. The omission rate is calculated both on 
the training presence records, and (if test data are used) on the test records. The omission rate should be close to the predicted omission, 
because of the definition of the cumulative threshold

F I G U R E  4  The receiver operating 
characteristic (ROC) curve for the 
same data. Note that the specificity is 
defined using predicted area, rather than 
true commission. This implies that the 
maximum achievable AUC is less than 1. 
If test data are drawn from the MaxEnt 
distribution itself, then the maximum 
possible test AUC would be 0.868 rather 
than 1; in practice, the test AUC may 
exceed this bound
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however, suitable habitat loss within protected areas was greater. 
For example, India will experience the greatest loss at 27% of suit-
able habitats, followed by Tajikistan (6.8% loss). China’s predicted 
loss within protected areas is about 12,841 km2 (1.4%) of a suitable 
area by 2,050. However, suitable habitat within protected areas is 
predicted to increase in some countries, such as Uzbekistan (21%) 
and Bhutan (9%; Table 4).

4  | DISCUSSION

Habitat use by organisms reflects the environmental characteris-
tics that augment their fitness (Fretwell, 1969). Generally, it is sup-
posed that a species distribution or individuals within a population 
is a good indicator of habitat structure and particularly manifests 
their preference toward the habitat qualities. Predictive modeling 

F I G U R E  5  Response curves. These curves show how each environmental variable affects the MaxEnt prediction. The curves show how 
the logistic prediction changes as each environmental variable is varied, keeping all other environmental variables at their average sample 
value
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has become a valuable tool for successful conservation planning or 
wildlife management through identification and prediction of habitat 
appropriateness for given species (Schadt et al., 2002). Indeed, pre-
dicting future geographical range by species distribution modeling 
is pivotal to understand their ecological requirements and biological 
responses to upcoming climatic changes (Duan, Kong, Huang, Fan, 
& Wang, 2014).

Across Central Asia, suitable habitats of the brown bear are 
widely distributed in higher elevation regions and are predicted to 
moderately decrease by 2,050 due to climate change; however, the 
extent of the change is not felt equally in the countries. In China, 
where most of the current suitable habitat for brown bears is found, 
a loss of 13% of suitable habitat is likely to have a significant impact 
on the distribution of bears in the country, but much of this change 
will occur outside the protected areas with a minor change in the 
habitats inside protected areas. For countries which have small suit-
able areas for brown bears, loss of suitable habitat may have more 

profound effects. India for example, which offers a relatively small 
amount of suitable habitat for brown bears, is likely to experience 
the greatest impact on brown bear distribution given the significant 
loss of predicted habitats inside protected areas. A similar situation 
was observed in Pakistan and Nepal. Therefore, the establishment 
of future protected areas may be necessary to ensure that the 
extirpation of bears does not occur in these areas such as India, 
Pakistan, and Nepal. While suitable habitat is predicted to increase 
in Uzbekistan and Bhutan, such an increase is unlikely to offset the 
total loss of habitat to brown bears in Central Asia as those countries 
have very little suitable brown bear habitat (Aryal et al., 2014). An 
adaptive approach to establish future protected areas in response 
to climate‐induced change is necessary to ensure the persistence of 
the species in this region.

We hypothesize that two bioclimatic variables, annual precipita-
tion and temperature, may significantly challenge the geographical 
distribution of brown bears in Central Asia by potential direct and 

F I G U R E  6  Current and future suitable 
habitat of brown bear in Asia



     |  11895SU et al.

indirect effects. These effects are not only anticipated to cause shifts 
in brown bear distributions, as species often pursue an optimal hab-
itat, but threatening their viability due to range reductions or frag-
mentations and partially altering their biological systems (Parmesan, 
2006). Our results highlighted the influence of future meteorological 
conditions on behavioral plasticity, the ability to respond to envi-
ronmental changes, which will dictate how well brown bears can 
adjust or resist to changes occurring in their environment (Williams, 
Shoo, Isaac, Hoffmann, & Langham, ). For example, brown bears tend 
to modify their ambulatory activities and movement speed during 
periods of increased precipitation with an increase of 0.1 km/hr for 
each increase of 5 mm of rainfall (Martin 2009) which might predict 
the relatively greater energetic costs of future high‐speed locomo-
tion of brown bears to meet their basic requirements (Gormezano, 
McWilliams, Iles, & Rockwell, 2016) by the probable increase in pre-
cipitation from 406 to 459 mm by 2,050. Similarly, the predicated 
high precipitation should accelerate the melting of snow, increase 
the run‐off, and cause streams to overflow. On one hand, this could 
reduce the period during which snow still offers a protective shelter 
for optimal denning structure and environment. On the other hand, 
due to poor winter precipitation, the snow depth and snow cover 
in alpine scrub and meadow habitats would be very less leading to 
changes in plant community structure, composition, and biomass 
in the following spring and summer. This could force individuals to 
move more in search of better quality habitats increasing energy 
costs. Furthermore, disturbances resulting in displacement at this 
stage of the life cycle could have deleterious effects, especially in 
the presence of altricial bear cubs developing locomotory skills, as a 
new den site must be found, and the offspring need to be relocated 
(John, Swenson, Andersen, & Barnes, 2000).

Our results also highlighted the influence of predicted tem-
perature increase from −1.2°C to 1.6°C by 2,050 on brown bear. 
The global change in temperature will inevitably lead to challeng-
ing impacts not only on brown bear distribution patterns but also 
on their ethological repertoire and cyclic and seasonal changes of 

biological activities. Generally, mammals can cope with escalating 
thermal stress by adopting some thermoregulatory behavioral re-
sponses (Sawaya, Ramsey, & Ramsey, 2017) including shifting to 
more nocturnal activities, as a least‐cost thermoregulation strategy, 
to reduce the costs associated with autonomic temperature regula-
tion (Maloney, Moss, Cartmell, & Mitchell, 2005). Bears are largely 
diurnal (MacHutchon, 2001) but become less active at daytime 
and more nocturnal when temperature rises (McLellan & McLellan, 
2015). Similarly, failure or inadequacy of the behavioral thermoreg-
ulatory measures will inevitably lead to costlier physiological adap-
tations to climate changes. For instance, increased temperatures 
have been strongly linked to shorter periods of denning in bears 
(Inouye, Barr, Armitage, & Inouye, 2000). Shorter durations of hiber-
nations could lead to altered energy budgets, reduced cub survival 
and fitness and higher incidents of human–bear conflicts (Pigeon, 
Stenhouse, & Côté, 2016). Finally, an examination of regional stud-
ies over a 50‐year period showed that carnivore body sizes have 
generally increased over the past half‐century. This may be a result 
from the increases in the length of warm season associated with 
climate change (Yom‐Tov, 2003). Following this trend, brown bears 
may also increase in their body size that mandates extra‐energy de-
mands which could threat the predator–prey relationship through 
magnifying predation effects and reduce the probability of prey 
coexistence (Thakur, Kunne, Griffin, & Eisenhauer, 2017). An exam-
ple could also clarify the effect of climate change on predator–prey 
dynamics in the region (Aryal et al., 2014). Brown bears can prey 
heavily on small mammals such as pika (Ochotona spp.) and marmot 
(Marmota spp.) at high altitudes which are sensitive to temperature 
and precipitation changes (Francl, Hayhoe, Saunders, & Maurer, 
2010); therefore, future climate change may alter their distribution 
and population dynamics. Pika and marmot, which effectively inhabit 
high‐elevation “islands,” may have to migrate upwards in elevation in 
order to live under preferred climate conditions. If climate changes 
cause reductions in wild prey populations or availability, there may 
be an increased risk of brown bears switching their feeding strategy 

TA B L E  4  Suitable habitat within protected areas current and projected for 2,050

Country
Current suitable habitat within protected 
area (area in km2)

Future (2,050) suitable habitat within protected 
area (area in km2) % of Change

Mongolia 60,527.40 62,703.20 3.59

Afghanistan 6,290.29 5,922.30 −5.85

Kazakhstan 16,247.50 16,181.60 −0.41

Tajikistan 24,579.60 22,897.90 −6.84

Kyrgyzstan 5,990.36 5,796.69 −3.23

Uzbekistan 5,278.12 6,401.47 21.28

China 940,672.00 927,831.00 −1.37

India 33,124.80 24,162.20 −27.06

Bhutan 5,572.79 6,111.63 9.67

Nepal 18,736.80 18,597.30 −0.74

Pakistan 7,310.58 7,307.27 −0.05

Total 1,124,330.24 1,103,912.56 −1.82
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to kill more livestock in the region (Aryal et al., 2012, 2010 ), thereby 
exacerbating human–bear conflict.

Any loss of suitable habitat within protected areas is of con-
cern for brown bear conservation in Central Asia, because it may 
result in bears moving out of protected area due to climate‐in-
duced range shift (Upward and northward). Such movement may 
increase encounters with humans and a subsequent increase in 
human–bear conflicts and increased bear mortalities. However, 
more research is necessary to determine the impact of climate 
change on food resources (bottom‐up regulation) and nutrition 
of bears. As well, the addition of mortality risk to bear models 
will help to understand top‐down factors that may affect popu-
lations (Nielsen, McDermid, Stenhouse, & Boyce, 2010). The data 
necessary to resolve such nutritional and mortality‐related fac-
tors are to our knowledge not available across the entirety of our 
immense study areas but should be a focus of future research. In 
addition to upwards migration, future climate change may cause 
some mammal species to move northward (Francl et al., 2010). The 
range shift from southern areas such as India, Nepal, and China 
to northern regions such as Mongolia would be unlikely due to 
habitat fragmentation and loss (Inkley et al., 2004; Rosenzweig et 
al., 2008). Such a situation might contribute to local extirpation of 
brown bear and low genetic diversity (Guralnick, 2006; Hadly et 
al., 2004). To prevent this, brown bear movement between suit-
able habitats should be facilitated through the development of 
corridors which connect habitat between protected areas in dif-
ferent countries (Ramiadantsoa, Ovaskainen, Rybicki, & Hanski, 
2015). Such a conservation effort would, of course, be challeng-
ing, and require the participation and collaboration of different 
countries.
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