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Abstract 

 Use of fibre reinforced polymer (FRP) in column applications is increased because it 

can act as a confining material, a reinforcement and a structural column. The application 

of FRP tubes is correlated with the fibre orientation since tube stiffness is mainly 

attributed to the stiffness of fibres. Thus, for confinement, the fibres should align in the 

transverse direction of the tube while they should align in the axial direction when tubes 

are used as compression members. FRP tubes with fibres mainly in axial direction may 

reach failure because the stiffness in the perpendicular direction to fibres depends only 

on the stiffness of the matrix. In order to boost the stiffness in the secondary direction 

while supporting fibres in the main direction, fibres should be in multi-directions.  

This paper reviews and identifies gaps in knowledge on the use of FRP materials in 

column applications in new or existing construction regimes.  
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1. Introduction 

The use of Fibre Reinforced Polymer (FRP) materials in civil engineering applications 

gained increased popularity during the last three decades because they have better 

properties than the traditional construction materials such as steel. FRP materials have 

an ability to resist corrosion, and it is easy to use them either for strengthening existing 

concrete members or for building  new composite members [1]. Reduced construction 

time and lower maintenance cost during the service life are some advantages of FRP 

members. 

FRP profiles are mainly used in beam and column applications in a typical structure. 

Using FRP tubes in column applications can be classified into three categories; (a) FRP 

tube encased concrete to obtain strength and strain enhancements, (b) all FRP profiles 

and (c) hybrid columns that consist of steel, concrete and FRP tube. Main purpose of the 

first and the third categories is to utilize the strength of the FRP tube to produce 

confining pressure in the transverse direction of concrete columns or concrete –steel 

columns.  On the other hand, the purpose of the second category of FRP profiles is to 

produce light weight structural column members. The use of pultruded FRP profiles 

which are similar to existing steel profiles has gained popularity because of the cost 

reduction in the fabrication process. [2].  

This paper reviews the recent research on the axial behaviour of structural column 

members which are made by using FRP tubes and to point out the knowledge gaps for 

further studies. The review is presented using the three categories identified above. 
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2. Concrete columns with FRP confinement 

Reinforced concrete column members fail when the lateral strain reaches a specific 

value and concrete cover starts spalling followed by the buckling of steel reinforcement 

[3]. Thus, a delay in reaching lateral strain in the concrete to its ultimate failure leads to 

performance enhancement of a concrete column. This goal can be met by providing 

lateral pressure around the column diameter through confinement by FRP materials. The 

concept of confinement depends on keeping fibre orientation in the transverse direction 

of the column [4-6]. This is because the concrete under axial load expands laterally. This 

expansion creates tensile stress in the confining material which turns into confining 

pressure on the lateral direction of concrete columns [7]. The following sections 

highlight the effect of FRP confinement on the compressive behaviour of concrete 

columns by considering the influences of different parameters on the degree of 

confinement and present a summary of the available stress-strain models for FRP 

confined concrete.   

2.1 Advantages of FRP confinement in concrete columns 

The confinement of concrete columns results in mitigating the possible failure due to 

unexpected load due to an earthquake since the confinement with FRP material 

increases the ultimate strength and strain. Additionally, FRP confined material protects 

the concrete column against aggressive environments, acts as non-corrosive 

reinforcement and as permanent formwork. Moreover, Qasrawi et al. [8] found out that 

the localised damage is decreased in FRP-confined concrete columns compared with 

conventional reinforced concrete columns under blast loading. This important feature 
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provides the ability to save civilian and property against intentional or accidental 

explosions. 

2.2 Effect of different parameters on the degree of confinement  

The degree of improvement in the axial strength and strain capacities of concrete 

columns due to the confinement with FRP materials depends on many parameters such 

as  slenderness ratio of columns, shape of cross–section, concrete strength, method used 

to manufacture the tube, fibre properties, fibre orientation and FRP thickness [9].  

2.2.1 Slenderness ratio 

The influence of slenderness on the axial performance of normal strength concrete filled 

[10] as well as high strength concrete filled [11] FRP circular tubes were studied in the 

past. Their studies concluded that the degree of enhancement of strength and strain 

capacities in concrete has been decreased when the slenderness ratio is increased. 

Similarly, it was found that FRP confinement of circular reinforced concrete columns 

was less significant for slender columns than short columns [12-14]. 

2.2.2 Shape of the concrete columns  

Less effect of FRP confining material on the behaviour of columns with non-circular 

cross-sections was reported by Pessiki et al. [15], Hong and Kim [4] , Fam et al. [16] 

and Mirmiran et al. [17].  The results of their work verified that the confinement in non-

circular sections is not as effective as circular columns due to the outward bending in the 

flat sides of the non-circular FRP tubes. The same view  was reported by Ozbakkaloglu 

and Xie [18] after testing square and circular FRP tubes filled with geopolymer concrete 

under axial compression. Thus, researchers have followed two methods to overcome this 
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problem to improve the confinement of square and rectangular concrete columns by 

modifying the cross section to circular and elliptical shapes respectively. In the first 

method, prefabricated FRP shells were placed around the existing concrete column to 

change the cross section and the gap between shells and original concrete column was 

filled with concrete (Figure 1a). A wet lay-up process of FRP sheets or strips were used 

to fix FRP shells [19]. The second method (Figure 1b) to modify the cross section was 

similar to the first one except the use of concrete segments without creating a gap with 

the original concrete section [20].    

Beddiar et al. [9] improved the first method by assembling three GFRP sheets made 

from twill weave glass with structural bending to modify the cross section of square 

concrete columns and then, filled the gap with shrinkage compensating cement mortar 

(Figure 2). The test results confirmed that strength and ductility capacities of non-

circular concrete sections can be improved through cross section modifications.  

The second method has also been evolved for rectangular columns with large aspect 

ratio by  Bhowmik et al. [21]. They used the concrete segments to form a capsule-

shaped column instead of an elliptical shaped column. The concrete segments in shape 

of either semi-circular or circular were added at the short ends of the rectangular 

columns to change the cross section of rectangular columns. The results showed that the 

shape modification techniques enhanced the confinement effects on the structural 

response of the rectangular columns. 

In addition to the circularization modification method of the conventional square 

concrete columns, Youssf et al. [22] followed two more methods; refined –corner 
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section and rounded - corner angle section as shown in Figure 3. They used crumb 

rubber aggregate in three different percentages to replace the fine aggregate in the 

concrete cross-sections modifiers. The external confinement was achieved by using 

unidirectional carbon sheets with a nominal thickness of 0.128 mm. Their test results 

showed that crumb rubber concrete is useful to replace the normal concrete in 

modification approaches of the non-circular columns. 

Recently Zeng et al. [23] studied circularized concrete square columns that were 

confined partially and comprehensively with fibre reinforced materials. They tested 33 

concrete columns divided into three groups; one for square columns and two groups for 

the circularized square columns.  The difference between circularized groups is the 

strength of the concrete segments that were used to circularize the square column. 

Concrete segments of one group was made identical to the concrete strength of the core 

while it was higher for the other group. The width of the FRP strips was set to 90 mm. 

The fully FRP confined strengthening technique was used for all square columns and 

some circularized square columns while the remaining columns were confined partially. 

The partial FRP confinement was performed by creating space between the adjacent 

FRP strips.    Four spacings (0, 30, 45 and 90 mm) of FRP strips were considered. The 

results reported in this study showed that the partial FRP confinement of the modified 

square column is an economical and unconventional method compared to the fully FRP 

confinement. This is because the consumption of FRP material is decreased by about 

50% without a huge compromise on the strength and strain capacities compared with 

fully FRP confined square columns. 
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2.2.3 Concrete strength and concrete types  

In order to identify the influence of concrete strength on the behaviour of FRP–concrete 

columns under axial compression, Vincent and Ozbakkaloglu [24] used three different 

concrete strengths; 35 MPa, 65 MPa and 100 MPa. They tested 55 cylindrical specimens 

with 152 mm diameter and 305 mm height under axial loading. Carbon FRP (CFRP)-

wrapping and CFRP tube–encased concrete were used. The research concluded that the 

ductility of the high and ultra-high strength concrete specimens can be improved when 

the FRP confinement is at adequate level. On the other hand, for the same confinement 

ratio, the strength and strain enhancements increase as the compressive strength of the 

concrete decreases. This is due to the increased brittleness in concrete with increased 

compressive strength which resulted in an increase in the hoop rupture strain of FRP 

confined material with a decrease in unconfined concrete strength.  Hence, the capacity 

of concrete with low compressive strength confined by FRP material shows higher 

improvement compared to high and ultra high strength concrete confined by the same 

amount of confinement. It is noted that the strain reduction factor does not significantly 

change due to various ways of preparing FRP confinement (FRP-wrapped and FRP-

tube), while it changes because of variation in the concrete strength. This view is 

supported by the study of  Lim and Ozbakkloglu [25] which reveals that the hoop 

rupture strain reduction factor decreases when either unconfined compressive strength of 

concrete (Figure 4) or elastic modulus of FRP material increases.  
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The confinement of other types of concrete have been experimentally investigated by 

Yu et al. [26], Zhao et al. [27], Xie and Ozbakkaloglu [28], Zhou et al. [29], Lokuge and 

Karunasena [30] , Ozbakkaloglu and Xie [18] and Wang et al. [31]. In these studies, 

circular concrete specimens were made of self–compacted concrete, recycled aggregate 

concrete, lightweight aggregate concrete, geopolymer concrete and seawater coral 

aggregate concrete. Generally, the results confirmed that FRP confinement improved the 

axial performance of confined specimens compared with unconfined specimens.  

2.2.4 Influence of fibre orientation 

In addition to the previous studies by Hong and Kim [4], Kim et al. [5] and, Vincent and 

Ozbakkaloglu [6] examined the impact of  fibre orientation in FRP tube on the axial 

behaviour of confined concrete specimens. They prepared different types of tubes using 

filament winding technique with carbon fibres oriented at various angles with respect to 

the axial direction. The study showed that the axial behaviour of confined specimens is 

influenced by the fibre orientation and the effect is maximized when the fibres are 

aligned towards the hoop direction (Figure 5). When there are more fibres in the hoop 

direction, they provide restraint to the lateral dilation of the concrete. This in fact is the 

confinement provided by the fibres which increases the compressive strength of the 

confined concrete and ultimately increase the axial capacity of the column. 

2.2.5 Effect of other parameters 

The effects of other factors such as manufacture methods of tubes, specimen size, 

amount and type of fibre on the behaviour of FRP-concrete circular column specimens 

were studied by Ozbakkaloglu [32] and Ozbakkaloglu and Zhang [33]. The results 

showed that the compressive strength of FRP confined concrete was significantly 
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affected by properties of FRP tubes while both manufacture methods and specimen size 

had less effect (Figure 6).  

 

2.3 Stress-strain models for FRP confined concrete columns 

The axial stress-strain relationship of FRP confined concrete columns is needed in the 

structural analysis of the composite member. As the behaviour of FRP confined concrete 

columns has been conducted by researchers, many models to calculate confined 

compressive strength and strain of concrete have been suggested. Lam and Teng [34] 

classified these models into design oriented and analysis oriented models, and modified 

their previous models according to the collected data. The design oriented models are 

defined using simple closed-form equations to predict the confined compressive 

strength, the corresponding axial strain and the overall stress- strain relationship [7, 34]. 

The use of design oriented models for design purposes is suitable compared with the 

analysis oriented models[35]. Analysis oriented models predict the stress-strain curves 

of FRP confined concrete by considering the interaction between the FRP confinement 

material and concrete core [36, 37]. An incremental–iterative numerical procedure is 

followed to evaluate the axial stress and axial strain at a given confining pressure. This 

procedure makes the direct use of these models in design unsuitable. However, it is 

suitable  for use in the finite element analysis [38]. Hong and Kim [4] summarized 

existing design oriented models and proposed a model that considers the winding angle 

of fibre orientation as a parameter and the model was modified later by Kim et al. [5]. 

Additional models were proposed by Teng et al. [38] and Teng et al. [35] for  FRP 

confined concrete columns while  Mohamed and Masmoudi [39] and Gao et al. [40] 
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proposed models for FRP confined concrete columns that are reinforced with steel bar 

and steel wire mesh  respectively. 

Thorough assessment of the models for FRP confined circular concrete columns was 

done by Ozbakkaloglu et al. [36] who reviewed 88 stress –strain models (both design 

and analysis oriented models). The number of test results collected by authors was 2038 

from 202 experimental studies published from 1991 to 2011. These 730 data sets from 

92 experimental studies included circular sections confined with unidirectional fibres 

oriented in the hoop direction, height-diameter ratio less than 3 with unconfined 

concrete strength less than 55 MPa. They stated that the accuracy of the model was 

improved when the value of the hoop rupture strain has been used instead of the ultimate 

tensile strain of fibres. Furthermore, the performance of design oriented model is better 

than that of the analysis oriented model because the former is calibrated with test 

database, while the latter is not.  

2.4 Prestressing FRP confining material 

It can be concluded from the available literature that the axial behaviour of confined 

concrete is similar to that of unconfined concrete during initial stages of loading. This is 

because the activation of confinement is delayed until the lateral strain of concrete 

reaches a specific value. One way to overcome this delay is prestressing FRP material 

where hoop strain of confining materials is increased thus confinement by FRP will be 

better. This increment leads to enhance the level of lateral confining pressure and as a 

result, the axial behaviour of FRP confined concrete specimens improves. Mortazavi et 

al. [3] and Yan et al. [19] had constituted initial prestress in the external FRP jacket or 

shell through inserting an expansive grout in the gap between original concrete 
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specimens and external FRP Jacket.  In order to minimise the axial expansion and allow 

the specimen expansion only in the hoop direction, steel plates and vertical weight had 

been used.  Vincent and Ozbakkaloglu [41] could obtain this state for concrete filled 

FRP tube by adding an expansive agent to the concrete mix. They used prestressing rigs 

to restrain the axial extension of the concrete.  The results showed that the prestressing 

of FRP material improves the axial behaviour of FRP-confined concrete columns. 

2.5 Summary of FRP confined concrete columns 

Originally FRP use in the civil engineering applications aims to increase the strength 

and strain capacities of concrete columns and to retrofit existing columns that are 

subjected to damage due to either aggressive environment condition or load increments. 

The establishment of tensile stress in the FRP confining material is necessary to ensure a 

high degree of confinement. This explains why most researchers have aimed to include 

most fibres in the transverse direction of the column member for creating tensile stress 

in the FRP material which provides lateral confining pressure. Table 1 is the summary 

of the reviewed studies of FRP confined concrete columns. 

3. All FRP column members 

This section discusses the axial members that are made out of FRP only. FRP members 

that are fabricated by pultrusion method have the majority of fibres in the axial 

direction. This property makes pultruded FRP having higher capability to resist tensile 

stress. On the other hand, pultruded FRP tubes have been used as compression members 

too [42]. The instability condition due to either local or global buckling is created 

because of the low longitudinal modulus and the wall slenderness of FRP profiles [43, 
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44] which prevents their maximum utilisation of the strength capacity. Below sections 

discuss the past research on all FRP column members with regards to the axial 

behaviour, models for predicting load carrying capacity and the ways to overcome the 

issues in the axial compressive behaviour.     

3.1 Effect of slenderness on the axial behaviour  

Hassan and Mosallam [45] investigated the buckling behaviour of 30 box section 

columns and 40 I-section columns with slenderness ratio (L/r) ranging from 20 to 120. 

They reported that the box and I –shape FRP columns failed due to global buckling 

when its slenderness ratio was equal to or greater than 60 and 50 respectively. 

Otherwise, they failed in either local buckling or a combination of local and global 

buckling. Based on the results of testing 24 full-scale columns having universal and box 

sections, Hashem and Yuan [46] have established a distinguishing criterion for 

behaviours of short and long FRP composite columns. They stated that specimens with 

slenderness ratio (L/r) equal to or less than 50 fails by either local buckling of the flange 

plate or localised crushing of the composite material. In both situations, the composite 

material reached the inelastic range. The deciding factor about the type of failure is the 

length to thickness ratio of the flange and the web plates. On the other hand, a specimen 

with slenderness ratio (L/r) greater than 50 fails by global buckling. Moreover, they 

mentioned that using Euler’s formula to predict critical buckling load provides very 

accurate results, and this accuracy becomes higher when the slenderness ratio of 

composite column increases. This is because the effect of the instability conditions due 

to global buckling will control ultimately the axial behaviour of the slender FRP 

columns without interaction with local buckling or material failure. Therefore, the 
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lateral movement occurs causing the entire profile to move out of its vertical plane while 

the shape of the FRP columns remains undeformed [47, 48]. As a result, the accuracy of 

the Euler’s buckling equation to predict the load carrying capacity of slender columns 

increases since the axial compressive behaviour of pultruded FRP columns is controlled 

by the elastic Euler buckling mode.    

 Qian et al. [49] tested five circular GFRP tubes with an external diameter of 41.2 mm,  

thickness of 3.6 mm and length of 120 mm to determine the basic mechanical properties 

and four groups of GFRP tubes with various slenderness ratios ranging from 35 to 90 

under axial compression to investigate the instability. They reported that there was a 

little difference in the values of elastic properties (5.5%), and the lateral displacement of 

long tubes increased rapidly when the value of axial load had reached buckling load. 

Also they stated that the failure mode of GFRP tube changed from fracture to buckle 

and failed in oversize lateral deformation when the slenderness ratio of tubes was 

increased.  

Godat et al. [50] investigated the axial behaviour of different FRP pultruded members to 

predict the failure mode. They tested angle and box sections (square and rectangular). 

The results show that if the global slenderness ratio is higher than local slenderness 

ratio, the global buckling failure dominates and vice versa while both types of failure 

may occur when the difference between slenderness ratios is not large enough. It further 

shows that the failure mode of box section is local plate buckling in all sides of the 

square section and in the wider side of the rectangular section.  



  

14 

 

Full–scale tests of the new type of pultruded GFRP square tube that has  glass fibre plies 

at   45 ˚orientation were carried out by Guades et al. [51] in order to measure the 

compressive strength of the hollow tube, modulus of elasticity in the longitudinal 

direction and compared the results with coupon tests. The height of specimens was set to 

provide slenderness ratio (L/r) of about 2.6. The results showed that full-scale specimens 

exhibit linear elastic behaviour up to the failure and the maximum variation between 

results of full scale tests and coupon tests is 8 %. 

3.2 Prediction models of axial load capacity  

Developing a model to predict the axial strength of hollow FRP column member with 

buckling effects is more economical than conducting an extensive testing. Local and 

global buckling of pultruded FRP wide flange- I section (WF-I) was researched by 

Barbero and Tomblin [52]. Based on their experimental results, they proposed design 

equations which, in authors’ opinion, do well to predict the critical loads of intermediate 

length of FRP–I section columns. Zureick and Scott [53] experimentally investigated 24 

specimens made of E-glass and vinyl ester under concentric axial compressive load. 

They used two types of sections; pultruded wide flange sections and pultruded box 

sections. The slenderness ratio had a range from 36 to 103. As a result, they proposed 

design guidelines to consider effect of shear deformation in calculation the critical load 

of global buckling. Hassan and Mosallam [45] proposed a formula to predict the global 

buckling load for the box and I–shaped pultruded FRP columns and the predictions were 

in good agreement with the experimental results. 

A new design method to predict the load at which the pultruded FRP columns will fail 

due to either local or global buckling was proposed by Puente et al. [54] by testing 
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pultruded FRP circular columns. The results of their model showed an acceptable degree 

of accuracy, as they were close or below the experimental values. Another model to 

calculate the axial strength of pultruded GFRP square column was proposed by Cardoso 

et al. [55]. Five different sizes of the square tubes with 14 specimens in each size were 

tested to cover a range of global and section slenderness ratios. When either the material 

stress reached to the ultimate strength or the value of lateral deflections at mid-height 

exceeded L/50, the test was stopped. The researchers found that the proposed equations 

perform well for short and intermediate columns, but not for long columns because the 

restriction of the lateral deflection at mid-height. Gangarao and Blandford [56] used 

another approach to predict axial strength of FRP columns by using the strain energy 

density model which used the area under the axial stress-strain curve of the column. The 

main objective of their work was to investigate the effects of local and global buckling 

on the strength of pultruded GFRP compression member. They tested 46 hollow box 

columns. The results of hollow box sections show that the difference between predicted 

and experimental values vary from 8% to 19%. The possibility of having shear failure in 

the pultruded GFRP profiles before compressive failure due to low shear-to-compressive 

strength ratio was also studied by Bai and Keller [57] for rectangular tubes with 

different lengths. Based on that, a model was proposed to predict ultimate load based on 

shear failure and second order deformation. A number of researchers [58-63] have been 

dealing with the calculation of local bucking load as a plate buckling problem. They did 

an analytical study of FRP plate element under various loading conditions and different 

states of restrained edges to assess the local buckling load of FRP section through 
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evolving closed form equations. Different types of pultruded FRP shapes such as I-

section, channels, angles, box sections and Z-sections were included in their studies. 

3.3 Enhancing the axial behaviour of all pultruded FRP profiles 

Although pultruded FRP tubes have low self-weight and similar ultimate strength 

compared with steel, they have one-seventh of the modulus of steel. These features 

combined with thickness of the wall tube lead to buckling failure which prevents FRP 

pultruded member from reaching its ultimate strength. Thus, researchers have 

investigated on how to delay the buckling failure. Fam and Rizkalla [64] tested nine 

circular short columns cut from the ends of beams after testing to compare their 

behaviour under different degree of concrete fill. According to the stacking sequence of 

glass fibre layers, different tubes were used to investigate the influence of laminate 

structure. The results of the pultruded tube with fibres only in the axial direction and 

filled with concrete reveal low ability to carry axial load compared with specimens of 

filament wound tubes that contain fibres in transverse direction. This is because the 

pultruded tube has low stiffness in the hoop direction to resist the lateral deformation of 

the concrete and to apply confining pressure. 

Han et al. [65] studied the crushing performance of GFRP pultruded tube and the effect 

of wrapping with carbon or glass braid. Two values of braid thicknesses were used 0.3 

mm and 1 mm. They stated that the crushing behaviour had improved due to the 

restraint from braids to the crack propagation in the pultruded tube. In the same vein, Li 

et al. [42] confined hoop direction of the circular pultruded FRP tube with carbon fibre 

sheet . The numbers of carbon layers were limited between 2 and 8. The results revealed 
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that the ultimate axial compressive stress increases when the number of CFRP sheets are 

increased for specimens of equal wall thickness.  

Correia et al. [44] could increase the critical buckling load, the ultimate load and the 

axial stiffness of hybrid specimen by 14%, 13.5%, and 30% respectively than reference 

specimens of pultruded FRP I-section by adding carbon fibre sheet to the flanges as 

shown in Figure 7.             

The partial replacement of glass fibre with carbon fibre for pultruded FRP I -section to 

improve its axial performance was investigated by Nunes et al. [66]. Specimens  were 

divided into four series in addition to the reference group. Each series includes short, 

intermediate and long columns. Specimens were prepared by using unidirectional and 

bidirectional carbon mats.The results showed the replacement method increases the 

axial stiffness of columns up to 17% and the load of global buckling rises in a range 

from 10% to 17%. In contrast,  the load carrying capacity of the short and intermediate 

columns that fail by buckling was reduced by (1-13%) than reference columns due to 

delamination in the carbon mats. Further study needs to be conducted to enhance the 

axial behaviour of all FRP columns. This enhancement can be obtained by overcoming 

the deficiency of the  low axial stiffness and high wall slenderness ratio. Furthermore 

the stacking sequence of the fibre layers, their orientation, dimensions of the FRP profile 

together with the type of fibre type can be varied to investigate the effect of them on the 

axial behaviour of all FRP columns.  

3.4 Summary of all FRP column members 
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Pultruded FRP profiles have fibres oriented either totally or mostly towards axial 

direction compared to the other directions. This feature makes these sections behave 

better as column members. The main drawback that affects adversely in its axial 

behaviour is low axial stiffness and length-thickness ratio of the wall plate (b/t).  Both of 

these issues prevent FRP columns to reach their ultimate strengths. Studies in this area 

have focused on two objectives. The first one is increasing the accuracy of the predictive 

models and looking for the new methods to improve the load carrying capacity of FRP 

column profiles. The general frame of the calculated models is to determine the load 

values of local and global buckling and then, compare the results with ultimate 

compressive load of the section. The lower value among them is the safe load that 

should be considered in the design. The second objective is strengthening the low axial 

stiffness of FRP profiles. In order to do that, researchers either replace the fibre of low 

stiffness with fibre of high stiffness or confine the transverse direction of the FRP 

profile with FRP material to delay the delamination in the FRP column section. 

Summary of past studies on all FRP columns are shown in Table 2. 

4. Hybrid FRP column members 

The hybrid FRP column member is a combination of FRP profile with traditional 

structural materials such as steel and/or concrete.  The purpose of this type of FRP 

column is to achieve improved performance due to composite action. The action of FRP 

material is generating a confining pressure on the concrete which it supports the steel 

profile against buckling. A variety of innovative, cost-effective and high-performance 

hybrid FRP column members have been studied by researchers. The following sections 
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focus on these studies together with the numerical methods to evaluate the axial 

performances          

4.1 Columns with circular FRP and steel tubes 

The first type of columns (Figure 8) with a diameter of 152.5 mm and height of 305 mm 

consists of outer FRP tube, inner steel tube and the space between them filled by 

concrete were tested by Teng et al. [67]. The FRP tubes were fabricated by wrapping 

process of fibres oriented mainly in the hoop direction. They reported that the test 

results confirmed the positive influence of confinement on the concrete which it 

supports by the inner steel tube against buckling.  

Fanggi and Ozbakkaloglu [68] examined the effect of inner steel tube diameter, concrete 

infill and loading pattern on the axial behaviour of FRP-concrete-steel composite 

columns. They tested 32 specimens with concrete filled FRP tubes and two types of 

double-skin tubular columns (DSTCs). The inner steel tube in the first type was filled 

with concrete while it was kept unfilled in the second one. The dimensions of FRP tubes 

were 152.5 mm in diameter and 305 mm in height, and they were formed by layup 

process of S-glass fibre in the hoop direction. The unconfined concrete strength of the 

filler was ranging from 82.4 to 96.2 MPa. The results of filled specimens that were 

confined by both FRP and steel tubes show a high level of improvement than others that 

were confined by FRP tube only due to the dual effects of FRP and steel confinements 

on the concrete. DSTCs specimens exhibit higher strength under cyclic loading as well. 

According to the study, the axial behaviour was improved for filled compared to that of 

the hollow DSTCs especially when the diameter of inner steel tube increases (Figure 9).  
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Ozbakkaloglu [69] investigated the effect of filling DSTCs with different concrete 

grades. Depending on the fill conditions of the inner steel tube, three series of specimens 

were set; hollow, filled with the same concrete that was used to fill annular section 

between tubes and filled with concrete of higher strength than that used to fill annular 

section. The research showed that specimens with dual grade concrete exhibit superior 

compressive behaviour than those with single grade concrete. 

Zhang et al. [70] tested FRP-concrete-steel double skin tubular columns (DSTCs) under 

seismic loading. In order to simulate seismic condition, columns were subjected to the 

axial compressive load and cyclic lateral loads. The dimensions of columns were 300 

mm in diameter and 1350 mm in unsupported height. The point of applying lateral load 

lays at 175 mm from the upper end of the column. The space between FRP and steel 

tubes was filled with concrete at values of compressive strength ranging from 37 MPa to 

117 MPa. The research concluded that the axial behaviour of columns showed excellent 

ductility and seismic resistance even for those that were made out of high strength 

concrete. Also, they stated that filling the lower inner part of the steel tube with concrete 

resulted in better behaviour. 

Different types of concrete were used to cast hybrid FRP columns by Cao et al. [71], 

Zhou et al. [72] and Zhang et al. [73]. Cao et al. [71] prepared and tested three types of 

hybrid FRP columns; FRP-concrete steel double skin column, FRP confined solid 

concrete column and FRP confined concrete filled steel column. Self-consolidating 

concrete (SCC) and expansive self-consolidating concrete (ESCC) were used as the 

filler. They reported that creating prestress in the FRP tube influenced positively on the 

compressive behaviour of all types of columns except those in the form of FRP–
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concrete steel double skin column. The reason for this behavior is due to the prestress in 

the FRP confined material related to the concrete expansion is not as high as that for 

other types of columns because the prestress in concrete close to the inner steel tube is 

much less than that close to FRP. Furthermore, the buckling of the hollow inner steel 

tube may influence adversely so that the effects of the prestress is not clearly visible in 

these columns. Use light weight concrete to fill the void between steel and FRP tubes to 

form the hybrid double skin columns was researched recently by Zhou et al. [72]. The 

results revealed that the light weight concrete was confined by FRP tubes effectively 

resulting in enhancements in the ductility and compressive strength. Zhang et al. [73] 

performed similar tests on double skin hybrid columns to examine the influence of using 

high strength concrete to fill the gap between FRP and steel tubes. The research 

concluded that the ductility of hybrid columns were not compromised even with high 

strength concrete filler. 

4.2 Columns with circular FRP tube and different types of steel sections 

A new form of a hybrid column was proposed by Xue and Gong [74]. Their columns 

consist of GFRP tube filled with concrete and reinforced with steel I- section. They 

investigated effects of concrete strength by using two types of both concrete (39.5 MPa, 

51.6 MPa), and reinforcement ratio and three values of FRP wall thickness. Three types 

of GFRP tubes with same inner diameter and different wall thickness (4, 5, 6 mm) were 

fabricated using filament winding of fibres at an angle of 55˚ with the transverse 

direction and two different sizes of I-steel section. The reference specimen was a 

concrete filled GFRP tube. The research concluded that rupture of the GFRP tubes is the 
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dominant failure mode, and the proposed hybrid column has higher strength and 

deformation (due to the steel I section reinforcement) than the concrete filled FRP tube.  

The same type of hybrid FRP-steel column section was used by Zhang et al. [75] to 

strengthen the axial behaviour of steel members (Figure 10). They tested different cross 

sections of the steel core that were surrounded by pultruded FRP tube. The space 

between                                             steel section and FRP tube was filled with mortar. 

The results reported in this study showed that both the bearing capacity and the capacity 

of axial deformation had been enhanced.  

 

 

4.3 Other types of hybrid FRP columns 

Hu et al. [76] , Xie and Ozbakkaloglu [77] and Gao et al. [40] tested another type of 

hybrid FRP columns to examine the axial behaviour of circular FRP tubes that were 

reinforced with either steel tube (no gap between FRP tube and steel tube), steel fibre or 

steel wire mesh and filled with concrete. FRP tubes were fabricated via wet lay-up 

procedure of unidirectional fibre sheet in the hoop direction. Hu et al. [76] tested three 

series of specimens with various diameters to thickness ratios of the steel tube and each 

series consisted of three confined specimens and one unconfined. The thickness of the 

FRP jacket was ranging from 0.17 to 0.68 mm. In this combination, steel tube is 

prevented to buckle inward and outward by the concrete and FRP jacket respectively. 

The research pointed out that the compressive behaviour of concrete filled steel tube is 
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improved because firstly, the buckling failure of steel tube is delayed by the FRP wrap, 

and secondly, additional confining pressure is created by FRP wrapping.  

Xie and Ozbakkaloglu [77] used steel fibre to reinforce concrete filled FRP tubes. They 

studied the effect of fibre volume fraction, fibre aspect ratio and fibre shape on the axial 

behaviour of specimens with dimensions 152.5 mm in diameter and 305 mm in height. 

The results indicate that the axial behaviour is influenced significantly by the presence 

and the amount of steel fibre, whereas the fibre shape and its aspect ratio have less 

influence. Gao et al. [40] used wire mesh as a reinforcement to make hybrid FRP 

column. They reinforced their specimens that confined with FRP tubes by using a steel 

wire mesh and compared its results with unreinforced specimens. The thickness of 

GFRP tube and wire mesh volumetric ratio were chosen as research parameters. The test 

results show that the strength and ductility of reinforced specimens are improved. 

4.4 Assessment of the axial behaviour of the FRP hybrid columns 

The confined concrete strength of  FRP hybrid specimens (inner steel is empty) is 

calculated after subtracting the axial load resisted by the steel tube from the total load. 

Then, the concrete load at failure was divided by the cross sectional area of the concrete.  

The contribution of steel tube was assumed to be equal to the load carrying capacity of 

hollow steel tube. This procedure was followed by Teng et al. [67], Fanggi and 

Ozbakkaloglu [68] and Ozbakkaloglu [69].  A simple model of FRP hybrid columns was 

proposed by Yu et al. [78]. They modified the design oriented stress-strain model 

proposed by  Teng et al. [35] to consider the influence of the hollow inner steel tube.   

This model was used to model the stress-strain curve of concrete in hybrid FRP columns 

subjected to cyclic axial compression and of high strength concrete in hybrid  filament-
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wound FRP columns by Yu and Teng [79] and Zhang et al. [73]  respectively. Another 

model was proposed by Yu and Teng [79]  for the square FRP hybrid columns. The 

model of the FRP hybrid columns filled with light weight concrete was suggested by  

Zhou et al. [72]. In cases of filled inner steel tube , the concrete core will be confined by 

both FRP and steel tubes [76].  As a result, models of FRP confined concrete should be 

adjusted before using to shape stress-strain curves by considering the confinement 

effects of FRP and steel tubes. Gao et al. [40] investigated confinement effect of steel 

wire mesh and proposed model to predict the ultimate compressive behaviour while a 

theoretical model had been proposed by Deng et al. [80] for FRP- steel concrete column.   

 

 

4.5 Summary of hybrid FRP columns 

The use of traditional construction material (steel and concrete) and the FRP tube to 

form hybrid FRP columns is similar to the first one because the orientation of fibres sets 

towards transverse direction of the column in order to create confining pressure. 

Furthermore, most studies were conducted on short column specimens.  Although the 

main reason to innovate hybrid FRP columns is to provide the light weight property, the 

hybrid FRP columns are ever evolving by the use of fillers, steel tubes or steel I 

sections. This process provides hybrid FRP–steel concrete column which can be 

researched in two ways. The first one is the axial behaviour of hybrid column and the 

second one is the improvement in the axial behaviour of steel section due to 
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strengthening with concrete filled FRP tube. Table 3 gives a summary of research on 

FRP hybrid columns. 

5. Gaps in knowledge 

Factors that influence the degree of confinement are studied extensively in the past. 

Majority of the research used circular concrete specimens with height-to-diameter ratio 

equal to 2. These short columns will not fail due to local or global buckling. The 

combined effect of the slenderness ratio and effects of other factors that influence the 

degree of confinement are not investigated for columns at height-to-diameter ratio 

greater than 5 to specify how the axial strength and ductility of slender columns can be 

improved. Furthermore, it is important to study FRP confined lightweight concrete 

intensively because most previous studies examined the axial behaviour of FRP 

confined normal concrete or high strength concrete columns. The confinement of the 

light weight concrete columns results in improvements in its ability to resist the axial 

load [29]. Consequently, the applicability to use FRP confined light weight concrete 

columns instead of unconfined normal concrete columns in construction industry will be 

increased. This will be an economical application because the dead load of the structural 

column members will drop.  

A general study to describe the effect of potential variables in the behaviour of pultruded 

FRP profiles having fibres in multiple directions is not done into greater depth in the 

past. Moreover, using a filler material with the pultruded FRP tubes to increase the 

stiffness of FRP tubes is not reported for short and slender columns.  
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The application and potential opportunities of FRP closed sections in civil and structural 

engineering will be improved due to further investigations into overcome the barriers 

that prevent them to be included in construction. Although extensive research have been 

done, significant and potential gaps in knowledge are still there. The combined effect of 

the slenderness ratio of the column and other factors such as strength of infill concrete, 

thickness and diameter of inner steel are not studied in depth. Particularly in the area of 

slenderness effects on the degree of confinement for concrete columns, the axial 

behaviour of the hollow and filled pultruded FRP tubes that having fibre in multiple-

directions and the different shapes of the hybrid FRP columns. Moreover, the use of 

lightweight concrete will provide an opportunity not to compromise much of the light 

weight feature of the FRP profiles. These areas will contribute to fill the gaps in 

knowledge which will improve the use of FRP tube in construction industry.       

6. Conclusions 

This paper reviewed three broad areas of FRP tubes in column applications in either new 

or existing construction; concrete columns confined by FRP, all FRP columns and 

hybrid FRP columns. Based on comprehensive review in this research area, the authors 

identify the following key findings.   

 Research on FRP as a confinement has been well established over the last three 

decades which resulted in their enhanced structural applications. 

 While research has been conducted on all FRP profiles, one of the major 

challenge is the adverse effect of buckling on overall axial performance. As a 
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result there is a need to modify the cross sections in order to effectively utilise 

the capacity. 

Research into the use of hybrid FRP columns is another area which will enhance the 

applications of these lightweight tubes. The following further investigations are 

recommended in order to address major challenges related to broader utilisation of FRP 

profiles in structural applications.  

 Investigate the effect of the properties of filler material (light-weight, stiffness 

and creep) and properties of FRP (prestressed) on the behaviour of FRP confined 

concrete columns under concentric and eccentric loads. 

 Investigate the axial behaviour of pultruded FRP profiles having fibres in the 

multiple directions under both concentric and eccentric loads for various cross 

section and support conditions. 

 Comprehensive research work on FRP confined concrete column with larger 

length/ least dimension ratio to study the combined effect of slenderness ratio 

and other factors. 

 Examine the improvement in the strength and strain capacities of the non-

circular concrete columns. This improvement can be created through confining 

the core of the concrete column with circular FRP tube that has fibres only in the 

hoop direction. This gives an opportunity to keep the original shape of the 

column and increase its capacity to resist loading. 



  

28 

 

Once these further studies are completed, there will be improved knowledge on the use 

of filled FRP tubes as column members which will enhance their applications in civil 

infrastructure. 
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Figure 1. Modification methods of non-circular sections (a) using prefabricated FRP 

shell and (b) using precast concrete segment. 

  

 

Figure 2. Stepped lap joint of GFRP shell to modify the square concrete columns [9]. 
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Figure 3. Refined –corner and rounded-corner methods to modify the shape of the 

square columns [22]. 

 

 

Figure 1. Effect of unconfined compressive strength on the hoop strain reduction factor: 

Aramid FRP confined specimens, and (b) Carbon FRP confined specimens [25]. 

 

 

 

Figure 4. Effect of unconfined compressive strength on the hoop strain reduction factor: 

(a) Aramid FRP confinement (b) Carbon FRP confinement [25]. 

 

 

 

 

 

 

 

 

Figure 5. Effects of fibre orientation on the performance of confined concrete specimens 

[6]. 
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Figure 6. Effects of different parameters on the compressive behaviour of circular 

samples (a) FRP tubes with different modulus [32], (b) Manufacturing methods of tubes 

(lay-up and filament winding) [32] and (c) Diameter of specimens [33]. 

 

Figure 7. Improving the behaviour of pultruded I- section. 
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Figure 8. Hybrid columns. 
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Figure 9. Influence of the size and the filling of inner steel tube with concrete on the 

axial behaviour of DSTCs [65]. 

  

a- Ds =60.3mm b- Ds=101.6 mm 
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Figure 10. Different steel sections in hybrid FRP-steel column. 
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All Tables 

Table 1 Summary for concrete columns with FRP confinement 

Reference Cross 

section 

Fibre 

type 

Stacking sequence( respect to the axial 

direction of the tube) 

              

(MPa) 

    

    
 

   

   
 

Mirmiran et 
al. [10] 

Circular Glass Unidirectional E-glass fibres (±75˚), 
(t=3.68 mm) 

22.4 - - 

Pessiki et al. 
[15] 

Circular+ 
Rectangular 

Glass 
Carbon 

1- Multidirectional E- glass (0˚/±45˚)* 
2- Woven unidirectional E-glass (0˚)* 
3- Unidirectional carbon sheet (0˚)* 

26-32 1.12-2 1.4-8 

Mortazavi et 
al. [3] 

Circular Carbon  
Glass 

Pre-formed confining jackets 32 1-4 - 

Hong and 
Kim [4] 

Circular+ 
Square 

Carbon Filament wound (t=3 mm) 
 90˚/90˚ -  90˚/±60˚ -  90˚/±45˚- 90˚/±30˚ 

17-19 1.2-5 11.2-
23 

Fam et al. 
[16] 

Rectangular Glass Filament wound 
(90˚/(±45˚)2/(0˚)2/90˚/(0˚)2/(±45˚)2/90˚) 

52 - - 

Yan et al. 
[19] 

Square, 
circular 

rectangular 

Carbon, 
Glass  

Unidirectional prefabricated shell 10-15 - - 

Mohamed and 
Masmoudi 

[39] 

Circular Carbon, 
Glass 

 Confine reinforced concrete column.      
±60 3, 4˚, (±65 3˚, ±45˚, ±65 3˚), (60˚, 90 

4˚, 60˚), (±60˚, 90 2˚, ±60˚, 90 6˚) 

30,45 1.6-4.2 - 

Fitzwilliam 

and Bisby 
[12] 

Circular Carbon Unidirectional CFRP sheet towards hoop 

and longitudinal directions of RC 
columns 

30.5 1.1-1.7 - 

Kim et al. [5] Circular Carbon CFRP sheet wrapping ( t=1.8 mm) 
 90˚/90˚ - 90˚/±75˚- 90˚/±60˚- 90˚/±45˚ 
- 90˚/±30˚ 

17.5 2.2-
4.17 

4.5-
12.3 

Hadi et al. 
[20] 

Square Carbon Horizontal wrapping with CFRP layers 32 - - 

Ozbakkaloglu 
and Zhang 

[33] 

Circular, 
Square, 

Rectangular 

Carbon, 
HM 
carbon, 
Aramid 

Wrapping fibre sheet by wet-layup  55-
100 

- - 

Ozbakkaloglu 
[32] 

Circular Carbon 
HM- 

carbon 

Aramid 

The majority of FRP tubes that their 
results were considered made with wet 
lay-up process.(fibre sheet in the hoop 

direction) 

36-
110 

1.13-
2.77 

1.7-
14.1 

Vincent and 
Ozbakkaloglu 

[24] 

Circular Carbon Unidirectional carbon sheet is used to 
confine specimens either by wrapped 
concrete cylinder or precast CFRP tube. 

35-
65,100 

1.01-
1.68 

1.6-
7.16 

Vincent and 
Ozbakkaloglu 

[6] 

Circular Aramid 1- Filament winding tube with angles   
(45, 60, 75 and 88) degrees. 
2- Wet lay-up process at 90 degree. 

3- wrapped cylinder via wet lay-up 
process (90) 

50 - 
85 

1.0-
2.23 

1.5-
14.8 

Lim and 
Ozbakkloglu 

[25] 

Circular Aramid 
Carbon 

FRP single continuous sheets wrapped by 
using manual Lay –up method around 
polystyrene forms in the hoop direction. 

25-
100 

- - 

Yu et al. [26]  Circular Glass 

Carbon 

FRP Jackets (wet lay-up process) 30-

105 

1.1-

2.09 

2-7.89 

Zhao et al. 
[27] 

Circular Glass Wrapped in the hoop direction with 
unidirectional glass fibre sheet. 

34-45 1-1.8 3-6.3 

Siddiqui et al. 
[14] 

Circular Carbon Unidirectional CFRP sheet towards hoop 
and longitudinal directions of RC 
columns. 

35 - - 

Vincent and 

Ozbakkaloglu 

Circular Aramid Wrapping unidirectional aramid fibre 

sheet around Styrofoam templates in the 

100-

110 

1.2-

2.11 

5.4-

7.97 
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Notes:    ,      = Unconfined compressive and strain of concrete values. 

               ,         =Confined compressive and strain values. 

* Respect to the circumferential direction of the column. 

 

 

 

 

[41] hoop direction. 

Qasrawi et al. 
[8] 

Circular Glass Continuous glass fibre wound (± 55˚) 34 - - 

Beddiar et al. 
[9]  

Square Glass Twill weave glass 38.2 1.31 1.76 

Vincent and 
Ozbakkaloglu 

[11] 

Circular Aramid Unidirectional aramid fibre sheet 
wrapped in the hoop direction 

55-
110 

1-1.73 3-11 

Gao et al. 

[40] 

Circular  Glass GFRP sheets 29.7 - - 

Zhou et al. 
[29] 

Circular Carbon CFRP sheets 19-48 1.4-
5.17 

3.9-32 

Lokuge and 
Karunasena 

[30] 

Circular Carbon  
Glass 

Wrapping fibre sheet by wet-layup 19-45 1.1-2.7 1-1.8 

Ozbakkaloglu 
and Xie [18] 

Circular  
Square 

Carbon        
S- glass  
Basalt 

Wrapping fibre sheet by wet-layup 25 1.1-
2.48 

5.2-
13.5 

Xie and 
Ozbakkaloglu 

[28] 

Circular  
Square 

Carbon          
Basalt 

Manual wet layup with unidirectional 
carbon and basalt fibre sheet 

37-66 1.1-1.4 5.8-
11.6 

Zeng et al. 

[23] 

Square Carbon Wrapping unidirectional CFRP sheet by 

wet-layup 

24.3 0.9-

2.91 

1.58-

8.33 

Youssf et al. 
[22] 

Square Carbon Wrapping unidirectional CFRP sheet by 
wet-layup 

48.8-
51.5 

1-1.69 1-4.21 

Bhowmik et 
al. [21] 

Rectangular Car-bon Wrapping unidirectional CFRP sheet by 
wet-layup 

24-
27.2 

- - 

Wang et al. 

[31] 

circular E-glass  Filament –wound process (± 85˚)* 61-64 1.3-3.4 9.3-

13.8 

Lam and 
Teng [34] 

Collected 76 results from others and present new model to anticipate 
the strength and strain capacities of FRP confined circular concrete 
specimens.  

- - - 

Teng and 
Lam [7] 

Review 
paper 

- - - - - 

Teng et al. 
[38] 

Collected results from others and present new model to anticipate 
the strength and strain capacities of FRP confined circular concrete 
specimens.  

- - - 

Teng et al. 
[35] 

Make refinement to the previous Lam- Teng model  - - - 

Jiang and 
Teng [13] 

Circular - This paper present a theoretical model for 
FRP confined slender RC columns. 

- - - 

Ozbakkaloglu 
et al. [36] 

Review 
paper  

- - - - - 
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Table 2 Summary on all FRP columns. 

Reference 

 

Cross 

section 

FRP 

type 

 

Stacking sequence( respect to 

the axial direction of the tube) 

Enhancement 

methods 

Critical 

load (kN) 

Failure             

mode 

Barbero and 
Raftoyiannis 

[43] 

Box  
 I- section 

- Pultruded Analytical 
model. 

-  LB 

Barbero and 
Tomblin [52] 

I –sction - Pultruded  - 79.2-174 LB+GB 

Zureick and 
Scott [53] 

I -section 
square    

E-glass Vinyl ester matrix reinforced 
with E-glass roving and 
nonwoven mats was used to 
made sections  

- 33-494 
54-334 

GB 

Fam and 
Rizkalla [64] 

Circular Glass 1-(+8˚/-86˚/(-86˚/+8˚)3/-86˚) 
2-(-88˚/-88˚/+4˚/-88˚/(-
88˚/+4˚)2/-88˚) 

3-(0˚) pultruded 
4-(-87˚/+3˚)4/-87˚) 
5- (+15˚/-82˚/(-82˚/+15˚)3/-82˚) 

 Filled with 
concrete 

350 Tube 
splits 

Hashem and 
Yuan [46] 

Universal  
 

 square  
 

E- 
glass 

Specimens were made by using 
continuous filament at (o˚), 
continuous mat and woven 
roving (o˚/90˚) 

- 468-1361 
 
185-663 

LB,GB,C
E 

Puente et al. 
[54] 

Circular Glass Pultruded - - LB,GB 

Qian et al. 
[49] 

circular Glass Short Pultruded tube. 
Long pultruded tube 

- 
- 

71-92 
10-60 

LC 
GB 

Bai and Keller 
[57] 

Rectangular Glass Pultruded - 25-148 Delaminat
ion (shear 
failure) 

Han et al. [65] Circular Carbon  
Glass 

Pultruded   Insert FRP tube into glass or 
carbon braid  

- 

Correia et al. 
[44] 

I -sections Glass Pultruded (layers of 
unidirectional roving and strand 
mat) 

Adding carbon 
sheet in the 
outer face of 
flanges 

533-625 LB 

Godat et al. 
[50] 

 angle   
Rectangular 
Square 
I- section 

Glass Pultruded - 32.6 
339 
716 
18.6-67 

LB 

Li et al. [42] Circular Glass Pultrusion method (fibres lay in 
the axial direction) 

Wrapping with 
CFRP sheet 

Rupture CFRP sheet and 
splitting GFRP tube 

Gangarao and 

Blandford 
[56] 

 Square  

Wide flange  

Glass Pultruded - 44.5 

44.5 

GB 

GB,LB, 
CM 

Guades et al. 
[51] 

Square Glass Pultruded - 540-590 LB,CE 

Cardoso et al. 
[55] 

Square Glass Pultruded - 13.2-957 GB,LB,C
M,CE, 

LB+GB 

Nunes et al. I-section Glass Pultruded Partial 133-690 LB, web-
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[66] replacing of 
GF mats with 
CF mats 

flange 
split, 
GB+LB, 
GB 

 

 
Notes: GB=Global buckling, LB=Local buckling, CE=Crushing at end, CM=crushing at mid, GB+LB= buckling interaction, 

LC=longitudinal crack.                                                                              
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Table 3 Summary of hybrid FRP columns 

Reference Components 

of hybrid  

FRP columns 

Cross 

section 

FRP 

type 

Stacking 

sequence* 

Dimensions of steel 

tube (mm) 

Gap  

between 

tubes 

(mm) 

             

(MPa) 

d t 

Teng et al. 
[67] 

FRP tube, 
concrete, steel 
tube 

Circular Glass Wrapping FRP 
sheet in the hoop 
direction 

76.1 3.2 38.2 39 

Fanggi and 
Ozbakkalog
lu [68] 

FRP tube, 
concrete, steel 
tube 

Circular S-Glass Wet layup process 
of fibre sheet in the 
hoop direction 

60-114 3.2,6 - 82.4- 
96.2 

Ozbakkalog
lu [69] 

FRP tube, 
concrete, steel 
tube 

Circular 
Square 

Aramid (lay –up 
process)Unidirectio
nal aramid fibre 
sheet 

88.9,114.3 3.2, 6 31.8,19.
1 

49-113 

Zhang et al. 
[70] 

FRP tube, 
concrete, steel 
tube 

Circular Glass Filament winding (± 
80˚)  

219 6 40.5 37-114 

Zhang et al. 
[75] 

FRP tube, 
concrete, steel 
section 

Circular Glass Pultruded GFRP 
tube 

Cross, H, circle and 
square sections 

- 36 

Xue and 

Gong [74] 

FRP tube, 

concrete, steel 
section 

Circular Glass Filament winding 

(55˚)* 

I -section - 39-51 

Hu et al. 
[76] 

FRP wraps, 
steel tube, 
concrete 

Circular Glass Wet –layup with 
fibres in the hoop 
direction 

202-204 1-2 0 35-42 

Cao et al. 
[71] 

FRP tube, 
concrete, steel 

tube 

Circular Carbon (lay –up process) 
fibre sheet 

150                     
114                      

89 
60 

3.5 
4.5 

4 
4 

- 26-32 

Zhou et al. 
[72] 

FRP tube, 
concrete, steel 
tube 

Circular Carbon Alternate and 
orthogonal 
arrangement of 
unidirectional 
carbon fibre sheet. 

42 
55 
71 

2 
2 
2 

55.4 
49.15 
41.1 

39.8 

Zhang et al. 
[73] 

FRP tube, 
concrete, steel 
tube 

Circular Glass Filament winding (± 
80˚)  

159 
120 
219 

5 
4.5 
6 

- 40-104 

Xie and 
Ozbakkalog
lu [77] 

FRP tube, 
concrete, steel 
fibre 

Circular Aramid (lay –up 
process)Unidirectio
nal aramid fibre 
sheet 

Hooked end , 
crimped  steel fibre 

- 116-125 

Gao et al. 
[40] 

FRP tube, 
concrete, steel 
wire mesh 

Circular glass (lay –up process) 
fibre sheet 

reinforcement ratio 
of steel mesh 
(0.31,0.6,0.89)% 

- 29.7 

 
* Respect to the hoop direction of the column. 

 

 

 


