### Causality Detection in Health Econometrics Using Big Data

Dr. Sayan Chakrabarty Research Fellow (Economics) University of Southern Queensland

Arpita Chakraborty PhD Fellow School of ICT, Griffith University

#### Content

- Digital foot print
- Big data
- Sources of big data
- Conventional econometrics and big data
- Machine learning
- Big data variety
- Data extraction
- Data visualization

#### Digital foot print



https://www.teacherspayteachers.com/Product/What-is-my-digital-footprint-poster-3005468

#### Big data

#### What about Big Data?



https://www.google.com.au/search?q=what+is+big+data&source=Inms&tbm=isch&sa=X&ved=0ahUKEwimrrP575XcA hXFHpQKHZqqBCcQ\_AUICyqC&biw=1920&bih=901#imgrc=LdhqI29DA0cq-M

#### Sources of big data

| Sources                        | Some examples                                                                                                                                                                                              |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Administrative data            | <ul> <li>Electronic medical records</li> <li>Insurance records</li> <li>Tax records</li> </ul>                                                                                                             |
| Commercial transactions        | <ul> <li>Bank transactions (inter-bank as well as personal)</li> <li>Credit card transactions</li> <li>Supermarket purchases</li> <li>Online purchases</li> </ul>                                          |
| Sensors and tracking devices   | <ul> <li>Road and traffic sensors</li> <li>Climate sensors</li> <li>Equipment and infrastructure sensors</li> <li>Mobile phones</li> <li>Satellite/GPS devices</li> </ul>                                  |
| Online activities/social media | <ul> <li>Online search activities</li> <li>Online page views</li> <li>Blogs and posts and other authored and unauthored online content and social media activities</li> <li>Audio/images/videos</li> </ul> |

Source: ITU, adapted from UNSC (2013).

#### Sources of big data in health



https://tcf.org/content/report/strengthening-protection-patient-medical-data/?session=1

#### Conventional Econometrics and Big Data

- Conventional econometric techniques (regression) often work well, but there are issues unique to big datasets that may require different tools (Varian, 2014).
- Why?
  - Size of the data and p value
  - More potential predictors (variable selection)
  - Non linear relationship

#### Machine Learning

- Divide the data into training, testing and validation.
- Machine learning finds particular function (s) that provide a good prediction of y as a function of x.
- Out of sample performance (overfitting problem) minimizing sum of square residuals.
- Historically, machine learning deals cross-section data.
- The data may be "fat," (lots of predictors relative to the number of observations) or "tall" (lots of observations relative to the number of predictors).

#### **Big Data Variety**



#### Structured Data

- Automated Multiple-Pass Method (AMPM), developed by the Agricultural Research Service of the United States Department of Agriculture (USDA)
- ABS follow AMPM approach for Australian National Nutrition and Physical Activity Survey.
- Face to face and telephone interview

## Bland and Altman plot for saturated fat intake for the two methods



## Bland and Altman plot for sugar intake for the two methods



#### Supervised Learning: Neural Networks

- Most work in machine learning has involved cross-section data (Varian, 2014, 2016)
- The MLP Neural networks are composed of layers of elementary units, called neurones, linked to one another by weighted connections.





# Effect size of the sources of disagreement of two measurements (fat and sugar intake)



#### Source of disagreement of two measurements for over reporting sugar value



## Source of disagreement of two measurements for over reporting fat value



#### Unstructured data

- When big data is observational, generated from uncontrolled experiments/environment and often nonrandom.
- Often less expensive to collect.
- No statistical sampling (example: electronic health records (EHRs)).

#### Unstructured data: unsupervised and supervised learning (cross section)

- Unsupervised learning can be used for clustering, grouping, autonomous post stratification.
- Supervised learning could be used for testing theories by controlling the learning process.

## Data extraction with wavelet analysis (big data time series)

Coherence



#### Data visualization



#### **Neuronal Networks**





Lüchters, G. 2017

G.L. Causality & Statistics Part 1 & 2

#### **Neuronal Networks**



Lüchters, G. 2017

G.L. Causality & Statistics Part 1 & 2

#### **Neuronal Networks**



Lüchters, G. 2017

G.L. Causality & Statistics Part 1 & 2

#### Reference

• ITU World Telecommunication/ICT Indicators database, 17th edition, 2014, available at:

http://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx

- Varian HR. 2014. Big Data: New Tricks for Econometrics. Journal of Economic Perspectives 28 (2).
- Varian HR. 2016. Causal inference in economics and marketing. Proc Natl Acad Sci USAdoi:10.1073/pnas.1510479113.
- Wasserstein L. R., & Lazar, A.N. 2016. The ASA's Statement on p-Values: Context, Process, and Purpose. *The American Statistician*, 70, 129-133.