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Digital foot print

https://www.teacherspayteachers.com/Product/What-is-my-digital-footprint-poster-3005468 
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Big data

https://www.google.com.au/search?q=what+is+big+data&source=lnms&tbm=isch&sa=X&ved=0ahUKEwimrrP575XcA
hXFHpQKHZqqBCcQ_AUICygC&biw=1920&bih=901#imgrc=LdhqJ29DA0cq-M
: 

https://www.google.com.au/search?q=what+is+big+data&source=lnms&tbm=isch&sa=X&ved=0ahUKEwimrrP575XcAhXFHpQKHZqqBCcQ_AUICygC&biw=1920&bih=901#imgrc=LdhqJ29DA0cq-M
https://www.google.com.au/search?q=what+is+big+data&source=lnms&tbm=isch&sa=X&ved=0ahUKEwimrrP575XcAhXFHpQKHZqqBCcQ_AUICygC&biw=1920&bih=901#imgrc=LdhqJ29DA0cq-M


Sources of big data



Sources of big data in health

https://tcf.org/content/report/strengthening-protection-patient-medical-data/?session=1 

https://tcf.org/content/report/strengthening-protection-patient-medical-data/?session=1
https://tcf.org/content/report/strengthening-protection-patient-medical-data/?session=1
https://tcf.org/content/report/strengthening-protection-patient-medical-data/?session=1


Conventional Econometrics and Big 
Data
• Conventional econometric techniques (regression) often 

work well, but there are issues unique to big datasets 
that may require different tools (Varian, 2014).

• Why?
   Size of the data and p value
   More potential predictors (variable selection)
   Non linear relationship



Machine Learning

• Divide the data into training, testing and validation.
• Machine learning finds particular function (s) that 

provide a good prediction of y as a function of x. 
• Out of sample performance (overfitting problem) 

minimizing sum of square residuals.
• Historically, machine learning deals cross-section data.
• The data may be “fat,” (lots of predictors relative to the 

number of observations) or “tall” (lots of observations 
relative to the number of predictors).



Big Data Variety



Structured Data

• Automated Multiple-Pass Method (AMPM), developed by 
the Agricultural Research Service of the United States 
Department of Agriculture (USDA)

• ABS follow AMPM approach for Australian National 
Nutrition and Physical Activity Survey.

• Face to face and telephone interview



Bland and Altman plot for saturated 
fat intake for the two methods
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Bland and Altman plot for sugar 
intake for the two methods
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Supervised Learning: Neural 
Networks
• Most work in machine learning has involved cross-section data (Varian, 

2014, 2016)

• The MLP Neural networks are composed of layers of elementary units, 
called neurones, linked to one another by weighted connections. 



Effect size of the sources of 
disagreement of two measurements 
(fat and sugar intake)



Source of disagreement of two 
measurements for over reporting 
sugar value 



Source of disagreement of two 
measurements for over reporting fat value



Unstructured data

• When big data is observational, generated from 
uncontrolled experiments/environment and often non-
random.

• Often less expensive to collect.

• No statistical sampling (example: electronic health 

records (EHRs)). 



Unstructured data: unsupervised 
and supervised learning (cross 
section)
• Unsupervised learning can be used for clustering, 

grouping, autonomous post stratification.

• Supervised learning could be used for testing 
theories by controlling the learning process.



Data extraction with wavelet 
analysis (big data time series)
Coherence

Coherence: Respiratory Infection and PM2.5 at Delhi
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Data visualization
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Neuronal Networks

Lüchters, G. 2017 
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Neuronal Networks
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Neuronal Networks
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