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Abstract

Fractional partial differential equations have been developed in many different fields such
as physics, finance, fluid mechanics, viscoelasticity, engineering and biology. These models
are used to describe anomalous diffusion. The main feature of these equations is their
nonlocal property, due to the fractional derivative, which makes their solution challenging.
However, analytic solutions of the fractional partial differential equations either do not
exist or involve special functions, such as the Fox (H-function) function (Mathai & Saxena
1978) and the Mittag-Leffler function (Podlubny 1998) which are difficult to evaluate.
Consequently, numerical techniques are required to find the solution of fractional partial

differential equations.

This thesis can be considered as two parts, the first part considers the approximation
of the Riemann—Liouville fractional derivative and the second part develops numerical
techniques for the solution of linear and nonlinear fractional partial differential equations

where the fractional derivative is defined as a Riemann-Liouville derivative.

In the first part we modify the L1 scheme, developed initially by Oldham & Spanier
(1974), to develop the three schemes which will be defined as the C1, C2 and C3 schemes.
The accuracy of each method is considered. Then the memory effect of the fractional
derivative due to nonlocal property is discussed. Methods of reduction of the computation

L1 scheme are proposed using regression approximations.

In the second part of this study, we consider numerical solution schemes for linear frac-
tional partial differential equations. Here the numerical approximation schemes are de-
veloped using an approximation of the fractional derivative and a spatial discretisation

scheme. In this thesis the L1, C1, C2, C3 fractional derivative approximation schemes, de-



ii

veloped in the first part of the thesis, are used in conjunction with either the Centred—finite
difference scheme, the Dufort—Frankel scheme or the Keller Box scheme. The stability of
these numerical schemes are investigated via the technique of the Fourier analysis (Von
Neumann stability analysis). The convergence of each the numerical schemes is also dis-
cussed. Numerical tests were used to confirm the accuracy and stability of each proposed

method.

In the last part of the thesis numerical schemes are developed to handle nonlinear partial
differential equations and systems of nonlinear fractional partial differential equations. We
considered two models of a reversible reaction in the presence of anomalous subdiffusion.
The Centred—finite difference scheme and the Keller Box methods are used to spatially
discretise the spatial domain in these schemes. Here the L1 scheme and a modification
of the L1 scheme are used to approximate the fractional derivative. The accuracy of the
methods are discussed and the convergence of the scheme are demonstrated by numerical
experiments. We also give numerical examples to illustrate the efficiency of the proposed

scheme.

Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative, Griinwald-
Letnikov fractional derivative, fractional subdiffusion equation, fractional advection-diffusion

equation, accuracy, stability and convergence, L1 approximation, numerical method.
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Chapter 1

Introduction and Literature

Review

1.1 Background

Anomalous subdiffusion is a physical phenomenon which is observed in many systems
which involving trapping, binding or macromolecular crowding. In recent years, exam-
ples of anomalous diffusion have been discovered in many different fields such as fluid me-
chanics (Chen, Wei, Sui, Zhang & Zheng 2011, Elbeleze, Kiligman & Taib 2013), physics
(Metzler & Klafter 2000b), engineering, and biology (Atangana & Alabaraoye 2013, Roul
2013). Anomalous diffusion is characterised by the asymptotic long-time behaviour of the

mean-squared displacement of the form

2K,
ALY 1.1
I'(1+~) (L1.1)

(Az?(t)) ~
where v is the anomalous diffusion exponent and K, is the anomalous diffusion coefficient.
For standard diffusion (ordinary or Brownian motion) the exponent is 7 = 1, whilst in
anomalous subdiffusion 0 < v < 1, and in superdiffusion 1 < vy < 2. If the exponent is v =
2, we have ballistic diffusion. Anomalous subdiffusion can be modelled using a number of
methods including Continuous Time Random Walks (CTRWSs) (Metzler & Klafter 20000),

Monte Carlo simulations (Marseguerra & Zoia 2006), Langevin equations (Porra, Wang &

Masoliver 1996, Mura 2008), Stochastic differential equations (Metzler & Klafter 20000,
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Mura 2008) and by using Fractional Partial Differential Equations (FPDEs) (Metzler &
Klafter 20000).

A Fractional Partial Differential Equation is a partial differential equation, which involves
a temporal fractional derivative or spatial fractional derivative. For example one of the
well-known FPDEs is the fractional subdiffusion equation, which has the form

Of(x,t) o= (9% f(x,t)
ot _8t1—7< Ox? )

(1.2)

where the anomalous exponent v lies in the interval 0 < v < 1.

Another example is the fractional superdiffusion equation, which has the form:

Of (x,t) . 0°f(x,1)
=K Tl (1.3)

o1

,Wand

where the exponent £ lies in the range 1 < 5 < 2. In Equations (1.2) and (1.3)
8‘87?5 are fractional partial derivatives of temporal and spatial type respectively. Baeumer,
Kovécs & Meerschaert (2007) considered the fractional superdiffusion equation by extend-
ing the Reproduction—Dispersal equations, where the second derivative in a diffusion or

dispersion model is replaced by a fractional derivative of order 1 < 8 < 2.

A fractional derivative is an extension of the familiar derivative operator 82{7(Lt) by re-
placing the integer value n with a non-integer parameter p which can also be denoted as

agj;gt) or DY f(t) (Samko, Kilbas & Marichev 1993, Podlubny 1998). Definitions of several

common fractional derivatives are given in the next section.

1.2 Different types of Fractional Derivatives

There are several definitions of fractional derivatives of the order p, the Riemann—Liouville
fractional derivative, the Caputo fractional derivative, the Griinwald—Letnikov fractional
derivative and the Riesz fractional derivative (Gorenflo & Mainardi 1998, Podlubny 1998,
Li & Zeng 2015). Note p can also defined as a complex number or variable, but in
this research we focus on p being a real number. In the following some definitions are

introduced.

Definition 1.2.1. The left and right Riemann—Liouville fractional derivatives of order
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p > 0 of the given function f(t), ¢t € (a,b) are defined respectively as (Li & Zeng 2015);

rr Dy f(t) = F(nl—p);;/ @_J:_()Z)_anT ) (1.4)
and
_1\n n b T
rRLDELf(t) = I‘Enl—)p);t”/t (T—ft()P)—”JrldT ; (1.5)

where T'(.) is the Euler’'s Gamma function, with n € Z* satisfies n — 1 < p < n.

Definition 1.2.2. The left and right Caputo fractional derivatives of order p > 0 of the
given function f(t), t € (a,b) are defined respectively as (Li & Zeng 2015);

Eoopr
Dy f(t) = F(nl— 5 / ; ;fT)JE)rL+1dT , (1.6)
and
P (=nm ()
Dt,bf(t) = T(n —p) /t (r —tpntl dr (1.7)

where n € Z* satisfies n — 1 < p < n.

Definition 1.2.3. The left and right Griinwald—-Letnikov fractional derivatives of order
p > 0 of the given function f(t), t € (a,b) are defined respectively as (Li & Zeng 2015);

N
iDLt )= Jim w0} fe-n). (19
Nh=t—a k=0
and
N
GLD () = Jim h <—1>'f(§)f<t+kh>. (1.9)
Nh=b—t k=0

Definition 1.2.4. The left and right fractional integrals (or left and right Riemann—
Liouville integrals) with order p > 0 of the given function f(t), t € (a,b) are defined

respectively as (Li & Zeng 2015);
D, 7 f(t) = reDy} f(t) / f)(t =) tdr (1.10)
and

Dy L f(t) = reDY, f (1) / f(r tyP~ldr . (1.11)
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Definition 1.2.5. The Riesz derivative with order p > 0 of the given function f(t),
t € (a,b) is defined as (Li & Zeng 2015)

1

rzDPf(t) = “2cos ()
2

(reD2 () + rLDEFD)) (1.12)

where p # 2n+ 1, n = 0,1, .... The Riesz derivative is sometimes denoted by 8;];'(;).

It should be noted that the definition of the Riemann-Liouville fractional derivative in
Equation (1.4) and the definition of the Caputo fractional derivative in Equation (1.6) are
different but they are related in Laplace space. For example the fractional derivative of a
constant function f(¢) = 1, using the Caputo definition is zero, but using the Riemann—
Liouville definition is not zero, that is
4P

I'(l-p)
However, the Griinwald-Letnikov and Riemann-Liouville definitions have been shown to

be equivalent (Podlubny 1998).

cDh (1) =0, and gDy ,(1) = (1.13)

The Riemann-Liouville derivative and the Caputo derivative of the function f(¢) have
the following relation

= P (@)(t - )
'k+1-p)

riDg f(t) = Dy f(t) + : (1.14)

k=0

where n € Z* satisfies n — 1 < p < n and f(¢) is integrable on [a,].

1.3 Focus of the Research

The focus of this research is to find the numerical solution of partial differential equation

of fractional order such as:

ou(z,t) o7 0?u(z,t) ou(z,t)
= D K t 1.15
o o \P e P ) T (1.15)
along with the initial and boundary conditions
u(z,0) = g(z), 0<z<L, (1.16)

u(0,t) = ¢1(t) and wu(L,t) = @a(t), 0<t<T, (1.17)
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where D > 0, K, > 0, the fractional order 0 < v < 1, and f(x,t) is a given source
function. The fractional derivative in Equation (1.15) can be discretised by using the
L1 scheme (Oldham & Spanier 1974) or by using a modification of L1 scheme (given
in Chapter 2). The centred finite difference scheme, the Dufort-Frankel, or the Keller
Box methods will be used to discretise the second spatial derivative (or diffusion term)

respectively in Chapters 3, 4, and 5.

In this work we develop an alternative numerical method based upon the Keller Box
Method for Equation (1.15). This scheme extends the standard approach to the fractional
case where the Riemann-Liouville definition of the fractional derivative is used instead
of the Caputo definition used by Al-Shibani, Ismail & Abdullah (2012). We also use
a modification of the L1 scheme to approximate the fractional derivative instead of the

Griinwald-Letnikov approximation used by Al-Shibani et al. (2012).

Other examples to be considered in this research, in Chapter 6, are models of reversible
reactions. Let A, B and C be three chemical species undergoing a reversible reaction,
A+ B = C ( the double arrow symbol = indicates that the reaction is reversible). In the

absence of diffusion, the governing equations for A and B reduce to the reaction kinetic

equations

dA

E = -k AB+ k_1C, (1.18)

dB

E == —klAB + k‘_lc 5 (119)
and

d

ch — ki AB — k_,C (1.20)

where k7 is the forward reaction rate constant and k_7 is the reverse reaction rate. These
equations correspond to the reaction, A and B reacting together to form species C,
A+B—C,ifk_1 =0.

Reversible reactions, in the presence of subdiffusion can be modelled by the system of
fractional reaction—diffusion equations by using the CTRW model in Henry & Wearne
(2000), which we will denote as Model Type 1,

OA(x,t) D 0? (81714(3:,15)

- ot

o =D > — k1A(z,t)B(z,t) + k-1C(x, t) , (1.21)
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OB(z,t) D 0? (817B(x,t)

- ot

5 =D ) — k1A(x,t)B(z,t) + k_1C(x, t) , (1.22)

and

oC(x,t) 8% [0C(x,t)
ot 02

_ pyie ) -+ k‘lA(.CL‘, t)B(iL’, t) - /{_10(.%', t) . (1.23)

Another model, which we call Model Type 2, has been derived by Angstmann, Donnelly

& Henry (2013a) is of the form
aA(xa t) _ s —k1 [ B(z,s)ds o k1 [} B(w,s)ds
T [e ’ ot (e ’ A(‘T’t))

— k1 A(z,t)B(x,t) + k_1C(x,t) , (1.24)

83(33, t) . 9? —k ft A(z,s)ds o' k1 ft A(z,s)ds
o Poz [ ' g (€ B(a,1))

— k1A(z,t)B(z,t) + k_1C(x,t) , (1.25)

and

ot 0z ot
+ k1 A(z, t)B(z,t) — k_1C(z,t) . (1.26)

C(a,t) _ Dﬁ [e—k_lt ol (ek_ltc(x’t)>:|

This equation involves the non—standard fractional derivative operator L% ()

91

- - ¢ x,s)as
Ly f(t) = e Jo Bles)d e

(ekl Jy Bla.s)ds f(t)) . (1.27)

The current methods for approximating fractional derivatives will need to be modified
to approximate the operator in Equation (1.27). We consider numerical solutions for
Equations (1.21) — (1.23) and Equations (1.24) — (1.26), by applying the Keller Box
method with the modification of the L1 scheme (developed in Chapter 5) and the Implicit
finite difference with the L1 scheme (IML1) in Chapter 6.

One of the major issues in evaluating fractional derivatives numerically is the cost of the
evaluation of the convolution sum. This computational cost increases as the number of
time steps increases, which becomes significant for a large number of time steps. This
is not as significant for problems involving only space—fractional derivatives, on a finite
domain, as the computational domain is not normally growing and so the computational
cost does not increase. We do acknowledge that if it is on infinite domain the computa-

tional cost is significant. One way to reduce this computational cost is to eliminate the
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tail of the integral known as the short memory principle (Deng 2007b). This takes advan-
tage of the fact that the integral in the fractional derivative is weighted mainly around
the time ¢, that is the most recent history of the function f(t), with the earlier history
near t = 0 being weighted less.

In Chapter 2, we consider methods such as the short memory principle, the reduction of
the computation of L1 scheme, and regression methods (the Linear regression method,
the Quadratic regression method and the Nonlinear regression method) to reduce the cost

of the evaluation of the convolution sum.

1.4 The Aim and Thesis Objectives

Recently fractional differential equations have attracted attention in the areas of science
and engineering. The main feature of these types of equations is their nonlocal property in
time or space. It is known that the integer order of the differential operator is a local op-
erator, however the fractional operator is a non-local operator (Podlubny 1998, Diethelm,
Ford & Freed 2004). The non-locality of the fractional derivative is quite attractive from
the physical aspect as it allows us to model phenomena with memory effects. However,
there is a fundamental problem related with all fractional differential operators, not only
the Riemann-Liouville in Equation (1.4), in contrast with the differential operators of
integer order which is its non-locality. Computationally, this non-locality leads to higher

computational effort and storage requirements.

This research proposes developing numerical techniques to solve FPDEs. It will help de-
velop more efficient (less computationally expensive) methods to approximate the Riemann—
Liouville fractional derivatives whilst maintaining accuracy of their approximation. These
approximation methods will be combined with finite—difference spatial discretisation meth-

ods to help more efficiently solve FPDEs. The advantages of such an approach are:

1. The numerical approximation is more useful where the analytical method is either
unavailable or difficult to evaluate such as those that require the evaluation of the

Fox or H-function.

2. It will enable the development of flexible and more accurate computational methods
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to solve a variety of fractional partial differential equations.

3. It will help determine more computationally efficient methods and help reduce the

computational effort and slow down involved in evaluating the memory sum.

Thesis Objectives

In the present research, using numerical analysis for linear and nonlinear fractional partial

differential equation, the objectives of this thesis are given below.

1. To develop a numerical scheme to find the approximate solution of Equation (1.15),

Equations (1.21) - (1.23) and Equations (1.24) - (1.26).

2. To develop new accurate numerical methods for solving linear and nonlinear frac-

tional partial differential equations.

3. To investigate a more efficient way to approximate fractional derivative whilst main-

taining accuracy.

4. To discover the accuracy, convergence, and stability of these numerical schemes.

1.5 Previous Work

Fractional differential equations have acquired popularity in the area of science and engi-
neering and have increasingly been used to model problems in physical processes, biology,
finance, fluid mechanics and many other processes. In fluid mechanics for example Chen
et al. (2011) demonstrated the feasibility and efficiency in the approximate solutions of
the time—fractional diffusion and wave equation by using the generalised differential trans-
form method. Elbeleze et al. (2013) investigated the unsteady flows of viscoelastic fluids
through a channel tube and solutions for velocity field using a fractional Burgers model

and a fractional generalised Burgers model.

There are also several types of the fractional partial differential equation which are in-

teresting in the area of physics such as the fractional diffusion-advection equation, the
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fractional kinetic equation, and the fractional Fokker—Planck equation. The fractional
Fokker-Planck equation takes into account the effect of an external force (Metzler &
Klafter 2000b) which is given by

orP o' 0? 1 0

—_— = — — ——F(x,1) | P(x,1) , 1.28
ot ot < 10z my Oz (@ )> (z,1) (1.28)
where the fractional derivative operates on the forcing term F'(z,t). An alternative model,
where the fractional derivative does not act on the forcing term is given by (i.e. as in

Equation (1.24) with A = P and k; = 0)

W - (Daa; - aiF(x,t)) [;T:P(a:,t)] . (1.29)

In the area of biology, Roul (2013) considered the analytical and numerical solutions for
the time-fractional biological population model

u(z,y,t)  0*u?(z,y,t)  0*u*(z,y,t)
ot B 0?2 dy?

+g(u(z,y,t)) , (1.30)

where the fractional derivative were described by the definition of Caputo derivative and
0 < a < 1. The homotopy perturbation method was applied to the model given in
Equation (1.30) with, in the special case of & = 1 the general solution reduces to the
diffusion solution. Roul (2013) concluded that the homotopy—perturbation method is
an effective and very powerful method for obtaining analytical solutions of a wide class
of problems involving fractional derivatives. Atangana & Alabaraoye (2013) similarly
demonstrated that the homotopy decomposition method (HDM) is a powerful and efficient
tool for a solution of system of fractional partial differential equations that arose in the

model for HIV (Human Immune Virus) infection of CD4+T cells.

Cable equations with fractional order temporal operators have been introduced to model
electrotonic properties of spiny neuronal dendrites (Henry, Langlands & Wearne 2008,
Langlands, Henry & Wearne 2009). These equations were derived from Nernst—Planck
equations with fractional order operators to model the anomalous subdiffusion that arises
from trapping properties of dendritic spines (Henry et al. 2008). The solution of the
fractional cable equations are given as a functions of scaling parameters for infinite cables
and semi-infinite cables with instantaneous current injections (Langlands et al. 2009).
The authors show that electrotonic properties and firing rates of nerve cells are altered
by anomalous subdiffusion, and they suggest electrophysiological experiments to calibrate

and validate such models.
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Langlands, Henry & Wearne (2011) modeled the subdiffusion by using two different ap-

proaches leading to two different fractional cable equations

ov ol (VY L, 9NV
and
ov. 9 [(9*V OR(V)
Model II = (=) =t 1.
ode ar — ari (ax?) H Tk (182)

They also presented the fundamental solutions on finite and semi-finite domains.

The fractional chemotaxis equation was developed by Langlands & Henry (2010). They
provided a new class of models for biological transport influenced by chemotactic forc-
ing, macro—molecular crowding and traps. In this research they considered two separate

equations which are similar to the fractional Fokker—Planck equation in Equation (1.28),

%l; - g;l <D788;u(x,t) - xw% <8Cg; t)u(:r,t)>> , (1.33)
and
ou 7 9%u(w,t) 0 (0Oc(x,t) o1 Vu(z,t)
at o a2 NVox < o oty > ’ (1:34)
where the motion is influenced by the chemotactic forcing term
Fla,t) = —X,yac(;; b (1.35)

The fractional Fokker-Planck equation with space-time dependent forcing was derived
by Henry, Langlands & Straka (2010). Angstmann, Donnelly & Henry (2013a) present
a derivation of the generalized master equation for an ensemble of particles undergoing
reactions whilst being subject to an external force field. They show reductions to a range
of well-known models such as the fractional reaction diffusion equation and the fractional

Fokker—Planck equation.

The CTRW model has also been extended to the networks including the effects of re-
action (Angstmann, Donnelly & Henry 2013b) and forces (Angstmann, Donnelly, Henry
& Langlands 2013). Recently Angstmann, Donnelly, Henry & Langlands (2016) intro-
duced a mathematical network model to simulate a pathogenic protein neurodegenerative
disease in the brain taking into account the anomalous transport. The set of reaction

kinetics equations on the nodes of a network was used to model the proliferation and
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accumulation of the pathogenic proteins. The model predicts the disease extends as a
propagating front over the brain and the anomalous behavior leads to the difference in

the concentration of pathogenic proteins.

1.5.1 Analytical Solution of FPDEs

The analytic solutions of FPDEs have been considered recently by a number of researchers.
These include the fractional diffusion equation (Mainardi 1996, Wyss 1986, Metzler &
Klafter 2000a, Agrawal 2002, Jiang, Liu, Turner & Burrage 2012), the fractional reaction—
diffusion equation (Henry & Wearne 2000, Langlands, Henry & Wearne 2008), the frac-
tional time-space differential equation (Duan 2005, Huang & Liu 2005, Zhang & Zhang
2011), and space fractional diffusion equations (Zhang & Liu 2007, Shen, Liu, Anh &
Turner 2008, Muslih & Agrawal 2010).

The solution of the fractional diffusion equation can be written in terms of Fox’s H-
function (Mainardi, Pagnini & Saxena 2005). Wyss (1986) applied the Mellin transform
to the fractional diffusion equation, with the solution given in terms of Fox’s H-function
diffusion. Later Metzler & Klafter (20000) found the solution for the fractional time
and space equation in terms of Fox’s H-function by using Mellin and Laplace transforms.
Liu, Anh, Turner & Zhuang (2003) derived the solution of the time fractional advection—
dispersion equation

Nu(x,t)  Ou(w,t) 0u(z,t)
5 = U oy +D ol (1.36)

where (7,t) € IRT x RT and 0 < v < 1, by using a variable transformation, Mellin
and Laplace transforms, and the properties of Fox’s H-function (Mathai, Saxena &
Haubold 2010). The Green’s solution of space—time fractional advection—dispersion equa-
tion was derived by Huang & Liu (2005). The method of characteristics can also be
applied to solving fractional partial differential equations as in Wu (2011).

The fractional diffusion—wave equation can be expressed in term of an auxiliary function
by using Laplaces method which was based on Cauchy and Signalling problems (Mainardi
1996). Anh & Leonenko (2000) applied Gaussian and non-Gaussian scenarios to find the
rescaled solutions to the equation given singular random initial data.

In 2001, Anh and Leonenko used a similar method to solve fractional diffusion and frac-

tional kinetic equations. Agrawal (2002) considered a time fractional diffusion-wave equa-
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tion in a bounded spatial domain. The space-time Riesz fractional partial differential
equation with periodic conditions

°u(z,t)  9Pu(a,t)

e where (z,t) € RT x R | (1.37)

was considered by Zhang & Liu (2007). They found the fundamental solution of the
equation using a Fourier and Laplace transforms. Shen et al. (2008) considered a Riesz

Fractional Advection-Dispersion Equation (RFADE),

ou(z,t) 0%u(x,t) OPu(x,t)
— =A "~ +B ’ h T xRY 1.
e D] + BlP where (z,t) € R™ x IR™ | (1.38)

where 0 < o < 1, and 1 < 8 < 2, which is derived from the kinetics of chaotic dynamics.
Shen et al. (2008) derived the fundamental solution for the RFADE and generated a dis-
crete random walk model for this RFADE.

Muslih & Agrawal (2010) used the Fourier transform method to solve the fractional Pois-

son equation with Riesz fractional derivative of order «,
(0% =L where 1<a<2. (1.39)

Recently, Momani & Odibat (2007) proposed the homotopy perturbation method for
linear inhomogeneous fractional partial differential equations and compared this method
with the variational iteration method. The authors found that the homotopy methods
were more effective and convenient. The linear and nonlinear problem can be solved
by using the homotopy analysis method (Xu, Liao & You 2009). The same method
has been achieved for computing the approximate analytical solution of nonlinear partial
differential equations of fractional order (Roul 2013).

Most fractional differential equations do not have exact solutions, so numerical techniques
are required to approximate the solution of fractional partial differential equations because
the closed form analytic solutions either do not exist or involve special functions, such
as the Fox (H-function) function and the Mittag-Leffler function (Podlubny 1998), which

are difficult to evaluate. For instance the solution of the fractional diffusion equation

du(e,t) _ . 97 (82u(:v,t)> 7

ot o\ oa? (1.40)

by using the separation of variables, can be written as

u(x,t) = ichn(x)Ew(—Kv)\it'y), (1.41)
n=0
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where X,,(x) and A, are the eigenfunction and eigenvalue of the problem and E,(z) is
the Mittag—Leffler function (Klafter & Sokolov 2011). As a consequence many researchers
have developed numerical schemes to approximate the solution of fractional partial differ-
ential equations. In the next subsection we give a review of the numerical methods used

to approximate the solution of fractional partial differential equations.

1.5.2 Numerical Solution for Linear and Nonlinear FPDEs

The numerical solution of fractional partial differential equations has been developed in
several ways by using the Finite Difference method (Chen, Liu & Burrage 2008, Murio
2008, Hu & Zhang 2012, Sweilam, Khader & Mahdy 2012, Tadjeran 2007, Tadjeran &
Meerschaert 2007), the Adomian Decomposition method (Dhaigude & Birajdar 2012, Di-
ethelm & Ford 2002), the Predictor—Corrector method (Diethelm & Ford 2002), the
Finite Element method (Deng 2008, Jiang & Ma 2013), and Numerical Quadrature
(Diethelm 1997, Murio 2008). The majority of these numerical methods either use the
Griinwald—Letnikov approximation or the L1 scheme to approximate the fractional deriva-
tive. However, there are other techniques used to approximate the fractional derivative
such as the Spline method (Pedas & Tamme 2011, Li 2012) and the Collocation method
(Rawashdeh 2006, Hesameddini & Asadollahifard 2016).

The finite difference method can be used to numerically approximate the second spa-
tial derivative. This method has been used to develop both explicit numerical methods
(Yuste & Acedo 2005, Shen & Liu 2005, Liu, Zhuang, Anh, Turner & Burrage 2007, Chen,
Liu, Anh & Turner 2012, Liu, Dong, Lewis & He 2015) and implicit numerical methods
(Langlands & Henry 2005, Liu et al. 2007, Chen et al. 2008, Murio 2008, Chen et al. 2012).
Explicit methods require less computation per time-step compared to implicit methods
due to their requirement to solve systems of equations in the implicit case especially in
two or three dimensions. However there is a stability problem when explicit methods are
used to approximate the solution of the fractional partial differential equations.

For instance Yuste & Acedo (2005) proposed an explicit numerical scheme based on the
finite difference method for the fractional diffusion equation, given by Equation (1.40),
where the fractional derivative is a Riemann—Liouville derivative, defined previously given

in Equation (1.4), and where the Griinwald-Letnikov approximation scheme (given in
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Chapter 2), was used to approximate the fractional derivative. The numerical method
was only conditionally stable for the equation, and they did not give the convergence of
the method. Later Langlands & Henry (2005) considered an implicit numerical method
for the fractional diffusion equation, Equation (1.40), developed using the L1 approxi-
mation (Oldham & Spanier 1974) for the fractional derivative: here they discussed the
accuracy and stability of the numerical method and showed the method was stable and
the accuracy of the fractional derivative was of the order 14+ in time. Stability was later

proven by Chen, Liu, Turner & Anh (2007) using the Energy 2-norm approach.

Murio (2008) developed the implicit method for the fractional diffusion equation, in Equa-
tion (1.40). The proposed method incorporated the Caputo derivative, Equation (1.6),
and the fractional derivative was approximated by using a quadrature formula. The
Fourier analysis method was used to show the method was unconditionally stable, and
that it was first—order in time and second—order in space. Zhuang, Liu, Anh & Turner
(2008) also proposed an implicit numerical method for the anomalous subdiffusion equa-
tion. The stability analysis was investigated by the Energy method and the convergence
order was O(7 + h?), that is first-order in time and second-order in space.

Liu et al. (2007) developed implicit and explicit methods for the space-and time-fractional
advection dispersion equation on a finite domain and considered the stability and conver-
gence of these methods. They proved the implicit method was unconditionally stable, but
the explicit method was only conditionally stable. The convergence order for both implicit
and explicit methods was first—order in time and first-order in space. Chen et al. (2008)

applied the finite difference method for the fractional reaction subdiffusion equation

ou(z,t) o7

82
ot ot <kvax2“($»f) - ’W(I,t)) + f(x,t) (1.42)

where 0 < v < 1, and k > 0. The relationship between the Riemann—Liouville and the

Griinwald—Letnikov definitions of fractional derivatives was used to evaluate the fractional
derivative with the Griinwald—Letnikov approximation. The discrete Fourier method was
used to show the method is unconditionally stable and the accuracy of the proposed
method was discussed and the convergence order was found to be O(7 + h?). Chen et al.
(2012) also used explicit and implicit methods to solve the two-dimensional fractional
order anomalous subdiffusion equation. In this work they considered the case where the
anomalous exponent « varied with x and ¢ and also investigated the convergence and

stability for these methods.
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The semi—implicit numerical scheme, which is a modification of the Euler method, was
used by Yu, Deng & Wu (2013) for a fractional reaction-diffusion equation. The stability
and convergence of the method were investigated and the method was found to be first
order accurate in time and second-order accurate in space. Ding & Li (2013) also de-
veloped two classes of finite difference schemes for the reaction subdiffusion equation by
using a mixed spline function in space. The stability analysis was investigated, showing
that the method is unconditionally stable and convergent of order O(t + h?).

Cao, Li & Chen (2015) derived a high—order compact finite difference scheme for solving

the fractional reaction subdiffusion equation

2

o 0
cDiu(x,t) = Ka@

u(z,t) — Cou(u, z,t) + f(x,t) , (1.43)
with a Neumann boundary condition, 0 < a < 1, K, > 0 is the diffusion coefficient,
Cy > 0 is the constant reaction rate, and ¢Djf* is Caputo derivative. The compact finite

difference method through the L2-norm was unconditionally stable and convergent with

order O(72~® 4 h*), where 7 is the temporal step size, and h is the spatial step size.

Recently, Mustapha, Abdallah, Furati & Nour (2016) considered a piecewise-linear time
stepping discontinuous Galerkin method to solve the fractional diffusion equation with
variable coefficients numerically. The fractional derivative was defined as a Caputo frac-
tional derivative of order u where p € (0,1). The stability and convergence of the method
was investigated and the method was found to be second—order in time and second—order
in space.

Dehghan, Abbaszadeh & Mohebbi (2016) developed a numerical technique for solving
time fractional diffusion wave equation by using a meshless Galerkin method to approx-
imate the spatial derivative with Robin boundary conditions. The fractional derivative
was defined by Caputo fractional derivative of order o where o € (1,2). The numerical
method was unconditionally stable by using Energy method and the convergence of the

method is first—order in space and order 3 — « in time.

Al-Shibani, Ismail & Abdullah (2013) used the compact Dufort—Frankel method for solv-
ing time fractional diffusion equation

0u(x,t)  0%u(w,t)

o FEERACIDR (1.44)

where f(z,t) is a source term and 0 < a < 1 in which the fractional derivative was
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approximated by Griinwald-Letnikov approximation. Liao, Zhang, Zhao & Shi (2014)
also constructed a new explicit Dufort—Frankel method for the fractional subdiffusion

equation

ou(z,t) 1- 0%u(z,t)
o oD T e

+ fz,1) (1.45)

where K, > 0 and thl ~7 is Jumarie’s modified Riemann-Liouville form of the fractional

derivative (Jumarie 2006) given by

_ 1 0 [Yu(z,7)— u(z,0)
DI == ! ! 1. 1.4
oD} (e t) = g5 /0 Hoar. v<y< (1.46)

To approximate the fractional derivative, the Grinwald—Letnikov approximation was ap-
plied for the first time step and then the L1 approximation was used for the subsequent
time steps. The method was found to be convergent under the same time—step, consistency
condition, required by the classical Dufort—Frankel scheme. In addition, the stability of
the method was established in the sense of a discrete Energy method. In Chapter 4, we de-
velop a Dufort—Frankel-based scheme for Equation (1.15). In this equation the fractional
derivative is defined by Riemann-Liouville derivative given in Equation (1.4) instead of
the modified Riemann-Liouville derivative in Equation (1.46) as in Liao et al. (2014) or
Caputo derivative as in Al-Shibani et al. (2013). In this work the fractional derivative is

approximated using the L1 scheme instead of the Griinwald-Letnikov approximation.

The Keller Box method is an implicit numerical scheme with second order accuracy in
both space and time for the heat conduction equation, or diffusion equation (Pletcher,
Tannehill & Anderson 2012), which is also referred to as the Preissman Box scheme. This
method was developed by Keller in 1971 (Keller 1971). Al-Shibani (Al-Shibani et al. 2012)
proposed using the Keller Box method for the one dimensional time fractional diffusion
equation, where the fractional derivative was replaced by a Caputo derivative and the

Griinwald-Letnikov approximation was applied to approximate the fractional derivative.

In Chapter 5 we develop a Keller Box method for Equation (1.15). This scheme extends
the standard approach to the fractional case where the Riemann-Liouville definition of
the fractional derivative is used instead of the Caputo definition used by Al-Shibani (Al-
Shibani et al. 2012). In addition, we use a modification of the L1 scheme to approximate
the fractional derivative instead of the Griinwald—Letnikov approximation used by Al-

Shibani.
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Angstmann, Donnelly, Henry, Jacobs, Langlands & Nichols (2016) introduced an explicit

numerical method for a class of fractional reaction—subdiffusion equation of the form

2 -«
8u(8:l;,t) _ Da% e~ fg a(u,x,S)dsaatli_a (efg a(u,x,S)dsu(x7t)):| + c(u,:v,t) o a(u,x,t)u ’

(1.47)

where c(u,z,t) > 0, a(u,z,t) > 0, and the fractional derivative is defined by Riemann—
Liouville definition. In Chapter 6 we consider the implicit Keller Box method with the
modification of the L1 scheme to develop a numerical scheme to solve systems of fractional
reaction—subdiffusion equations, Model Type 1 given in Equations (1.21) to (1.23) and
Model Type 2 given in Equations (1.24) to (1.26). The latter system is of the form given
in Equation (1.47).

The Crank—Nicolson method is a finite difference method, which is second—order accurate
in time and in space, developed by Crank & Nicolson (1947). Tadjeran (2007) presented
the Crank—Nicolson method for the fractional diffusion equation, when the diffusion co-
efficient was dependent on time and space, which was based upon a shifted Griinwald-
Letnikov derivative approximation. Tadjeran (2007) showed by investigating stability,
this method failed if the diffusion coefficient was evaluated at the time grid points instead
of at the mid points of the temporal subinterval, that is if the diffusion coefficient was
evaluated at the two endpoints of each time subinterval during the integration process.
Tadjeran & Meerschaert (2007) obtained an unconditionally stable second—order accurate
method for the two—dimensional fractional diffusion equation in both time and space

Ou(z,y,t) 0°u(z,y,t) Pu(z,y,t)

- 1.4
5 d(z,y)——7 @y =5 ta@yb), (1.48)

where d(z,y) > 0 and e(z,y) > 0 are diffusion coefficients and 1 < a <2 and 1 < <2
are fractional orders. They combined the alternating directions implicit approach with a
Crank—Nicolson discretisation and with a Richardson extrapolation scheme. The right—
shifted Griinwald—Letnikov approximation was used to approximate the fractional deriva-
tive. The stability and convergence of these methods were discussed, and both meth-
ods were shown to be unconditionally stable: furthermore, the convergence order was
O(At? + Az + Ay) by using the Crank-Nicolson method, while it was of the order
O(A#? + Az? + Ay?) with the Richardson extrapolation scheme.

Hu & Zhang (2012) proposed a similar scheme for the fourth order fractional wave equa-



1.5 Previous Work 18

tion.

8“155:5,15) +b234giﬂ’t) = f(z,t), xe(0,L), te(0,T), (1.49)
where 1 < a < 2 is a fractional exponent and b is a constant coefficient with a source term
f(x,t). The method was unconditionally stable in the ls-norm and the convergence order
was O(727® 4+ h?). Sweilam et al. (2012) also developed the Crank-Nicolson method to
solve linear time fractional diffusion equations involving a Caputo fractional derivative. To
study the stability, they used the standard Von Neumann stability analysis and showed

the method was unconditionally stable. They also showed the convergence order was

O(7 + h?), that is first-order in time and second-order in space.

The Adomian Decomposition method (Adomian 1988) is an analytical /numerical approx-
imation method for solving partial differential equations. Diethelm & Ford (2002) used

the Adomian decomposition method for the Bagley-Torvik equation of fractional order as

Ay'(t) + BD2y(t) + Cy(t) = £(t) | (1.50)

where DY denotes the fractional differential operator of order ¢ € IN, defined through the
Caputo derivative, and the convergence order was found to be O(h%). Wang (2006) used a
similar method for the fractional KdV—Burgers equation with time and spatial fractional

derivatives

0%u(x,t) OPu(z,t) n O*u(x,t)

OBu(x,t)
87 + eu + )

527 15,2 93 = 0, t>0, (1.51)
where ¢, n and ¢ are parameters, « > 0 and § < 1. The fractional derivatives were
described in the sense of the Caputo derivative. The method was shown to generate
more realistic series solutions that generally converge rapidly in real physical problems.
Yu, Liu, Anh & Turner (2008) have also used the Adomian Decomposition method to

construct explicit solutions of the linear and non-linear time-space fractional reaction-

diffusion equations.

Finite element methods are numerical schemes for solving an integral or differential equa-
tions. Deng (2008) developed a finite element method for solving the space and time
fractional Fokker—Planck equation, the stability and error were also discussed. Deng
(2008) showed the accuracy of this method was of order 2 — « in time and p in space i.e.,

O(k?>~ + h*) where a € (0,1) and u € (1,2). Recently, a moving finite element method
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was employed for the time fractional partial differential equation which was based on
non-uniform meshes in both time and space (Jiang & Ma 2013). This method was proven
to be unconditionally stable and accurate to order 2 — « in time and order r in space,

where 0 < o < 1 and r > 2.

A quadrature formula (numerical integration formula) can also be used to evaluate the
approximation of an integral defining the fractional derivative. Diethelm (1997) proposed
the implicit algorithm based on a quadrature formula for solving the fractional differential
equation. Murio (2008) investigated a similar quadrature formula for the definition of the
Caputo derivative for the fractional diffusion equation.

Diethelm, Ford & Freed (2002) successfully constructed a Predictor-Corrector method
for a fractional differential equation through the definition of the Caputo derivative. The
way to use this method is to first rewrite the fractional ordinary differential equation
as a Volterra Integral Equation and then use the Rectangle rule for the Predictor step,
and the Trapezoid rule for the Corrector step. The convergence order of the predictor-
corrector approach was min(2,1 + «), where o > 1. They also discussed the accuracy
and reduction of the computation cost where some techniques presented such as the

Richardson extrapolation and the short memory principle.

Deng (2007a) presented an improved version of the Predictor—Corrector algorithm with
the accuracy increased to min(2,1 + 2«a), where o > 1, and half of the computational
cost when compared to the algorithm in Diethelm et al. (2004). Deng (2007b) proposed
the short memory principle after using the nested meshes in Ford & Simpson (2001).
By combining the short memory principle and the Predictor—Corrector approach, the
computational cost was minimized to O(h~!log(h~!)). In this work we investigate the
short-memory approach for the fractional derivative by reduction of the computation of
the L1 scheme, the fractional derivative is defined by the Riemann—Liouville derivative.
We also used a new approach to reduce the computation cost by using regression methods

in Chapter 2.

Other numerical methods are proposed by several researchers. Liu, Anh & Turner (2004)
used the Method of Lines technique for discretising the space—fractional Fokker—Planck
equations by using backward differentiation formulas. Similarly, Deng (2007a) applied

this method for time fractional Fokker—Planck equations involving the Caputo fractional
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derivatives. A numerical scheme was proposed by Chen, Liu, Turner, Anh & Chen (2013)
for a variable-order nonlinear reaction subdiffusion equation with a Riemann—Liouville
derivative of variable-order. The stability of this method was investigated using Fourier
analysis and shown to be unconditionally stable. The method was also found to be

accurate of order two in time and in space.

Baeumer, Kovédcs & Sankaranarayanan (2015) recently considered the approximate solu-
tion of the space fractional partial differential equation

ou(z,t) 0%u(x,t)

— = ()t 1.52
ot (=1) or> (152)
with 2¢ — la < 2¢ + 1, ¢ € IN where the shifted Griinwald-Letnikov approximation
was used to approximate the fractional derivative. The stability and convergence of the

method were discussed and the method was shown to be unconditionally stable.

Recently, Hesameddini & Asadollahifard (2016) considered a new method based on the
sinc function for the time fractional diffusion equation Equation (1.44) without source
term. The Energy method was used to show the method is stable and the method was

found to be convergent under the time-step O(727%).

1.6 Overview of the Thesis

This thesis is organized as follows:

Chapter 1 presents a description of the problem, a literature review, the motivation
for the present study, and a concise review on the analytical and numerical solution
methods for fractional partial differential equations including their application areas.

The objectives of the present research are also summarised in this chapter.

Chapter 2 describes approximation methods for the fractional derivative. In this chap-
ter we focus on the L1 approximation scheme (Oldham & Spanier 1974). From the
L1 scheme we develop three schemes that we use in the present research, denoted
as the C1, C2, and C3 schemes. Another method considered to approximate the
fractional derivative was Romberg Integration. We also discuss the short memory

principle for the numerical evaluation of fractional derivatives.
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Chapter 3 develops a numerical scheme to solve the fractional subdiffusion equation
with a source term using the C1 approximation and the centred finite difference
scheme. In this chapter the accuracy analysis, consistency and convergence of the
method are presented with the stability analysis conducted using Von Neumann
stability analysis. Numerical tests are also used to confirm the accuracy and stability

of the proposed method with examples being given.

Chapter 4 develops a numerical scheme for the fractional subdiffusion equation with a
source term using the L1 scheme with the Dufort—Frankel method. Here the accu-
racy analysis is presented and the stability analysis is again determined using the
Von Neumann stability analysis. The convergence of the method is also discussed.

Numerical tests are used of the proposed method with examples being given.

Chapter 5 uses the Keller Box method to develop a numerical solution scheme for the
fractional subdiffusion equation with a source term. Here we consider the use of
three approximation schemes of the L1, C2, and C3 schemes to evaluate the frac-
tional derivative. A numerical scheme for the fractional advection equation with
source term is also developed by using the Keller Box method along with the C2
scheme. The stability analysis of each proposed method was investigated by Von-
Neumann stability analysis. The accuracy and the convergence of each of the pro-
posed methods were also tested. In addition, numerical tests are also used to confirm

the accuracy and stability results of the proposed methods.

Chapter 6 develops two numerical schemes for solving a nonlinear fractional reaction
diffusion equation by using two methods; the finite difference discretisation scheme
with the L1 scheme and the Keller Box method with the C2 scheme. The accuracy
analysis and the convergence of the proposed methods are tested. Results from the
proposed numerical methods for both models are determined by using numerical

simulations.

Chapter 7 discusses the conclusions of the thesis work, and gives some recommendations

for future work.



Chapter 2

Approximation Methods of the

Fractional Derivative

2.1 Introduction

In this chapter, we consider approximation methods to evaluate fractional derivative
numerically. In particular we look for approximations for the Riemann—Liouville fractional

derivative definition

1 a [t T
RLDgtf(t) = 1“(n—p)dt"/0 (t_{_()p)_mdv'. (2.1)

The fractional derivative of f(t) in the definition of Riemann-Liouville fractional deriva-
tive, Equation (2.1), depends upon f(¢) at the times [0, ], which means that the fractional
derivative of function f(¢) depends on the historical behavior of f(t) (Podlubny 1998).
One of the main approximations of the Riemann-Liouville fractional derivative is L1
scheme (Oldham & Spanier 1974). We give definition of the function f(¢) which is used

further in this chapter.

Definition 2.1.1. A real function f(t), t > 0, is said to be in the space Cj, | € R, if
there exists a real number p > [, such that f(¢t) = t? f*(¢), where f*(t) € C(0,00), and it
is said to be in the space CF iff f*)(t) € ), k € IN (Podlubny 1998, Momani 2006).

In this chapter, we develop three schemes based upon the L1 scheme (Oldham & Spanier
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1974), the C1, C2, and C3 schemes. We also consider the accuracy of the L1 scheme as
well as for the three modifications is investigated and numerical results are given. We also
consider Romberg Integration to approximate the fractional derivative, again based on
the Riemann—Liouville fractional derivative definition. In addition, we study the short—
memory principle in two different ways; reduction of the L1 scheme and using regression
approximation. There are more recent methods used to approximate the fractional deriva-
tive which is Spline method as in (Pedas & Tamme 2011, Li 2012) and Collocation method,
based on the sinc function, as in (Hesameddini & Asadollahifard 2016). Another method
to approximate the fractional derivative is the Griinwald-Letnikov approximation based

upon the Griinwald-Letnikov definition, given by Equation (1.8) in Chapter 1.

2.2 Grunwald—Letnikov Scheme

As mentioned in the introduction, one method to approximate the fractional derivatives
numerically is the Griinwald-Letnikov approximation. The approximation of Griinwald—
Letnikov fractional derivative given in Definition 1.2.3 can be written as (Lubich 1986,

Podlubny 1998, Yuste & Acedo 2005)

[t/At)
GrDLf(t) = AP ) wl f(t — kAL) + O(AL), (2.2)
k=0

where At is the time step and r is the order of the approximation which depends on the
weight wz chosen. If » = 1, we have the first order approximation and wi is the kt"
coefficient of z¥ in the power series expansion of (1 — 2)?, that is

oo

(1—2P=> wht, (2.3)

or in particular

where
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Higher order approximations are available, such as the second—order approximation where

the weights, w?, are found from the power series (Lubich 1986)

3 15\ o ok
522+ 52 => wpst. (2.6)
k=0

The coefficients w}, in Equation (2.6) can be computed by using Fourier Transforms (Podlubny
1998). The Griinwald-Letnikov derivative (GL scheme), given in Chapter 1 by Defini-
tion 1.2.3, was modified by (Meerschaert & Tadjeran 2004) for the case of right—hand and

left-hand fractional derivatives which are given in Equations (1.8) and (1.9) respectively.

The estimate of the accuracy of the GL scheme, using the weights w} given by Equa-

tion (2.3), was tested on the functions

t*, where t > 0, and k = 2,3,4
fA)=<1-¢+ t3, where t >0 (2.7)
14 t7, where t > 0

to approximate the fractional derivative of order p = 1 — v at time ¢ = 1 and the value
v =0.1,...,0.9. Note the function f(t) = 1+ t7 was chosen here to represent the first
two terms of a Mittag—Leffler function which occur in the separation of variables solution

Equation (1.41), where the derivatives become singular near ¢t = 0 for this function.

The error is plotted as a function of At on double logarithmic scale plot given in Figures 2.1
— 2.5. From these results which we see, as At is decreased, the error decreases for each
value of «v. We also note the error decreases in magnitude as the value of ~ increases for
a fixed At value. This is also reflected in the results shown in Table 2.1, for example
in case f(t) = t? the maximum error occurs where v = 0.1 which is 8.598 x 1073, and
the minimum error occurs where v = 0.9 which is 9.444 x 10~*. Also for the functions
f(t) =3, t* and 1 — €' + 3 the maximum error occurs for ¥ = 0.1 and the minimum
error occurs for v = 0.9. But for function f(¢) = 1+¢” we see the minimum error occurs
for v = 0.9 and the maximum error occurs for v = 0.4. As shown in the Figures 2.1 — 2.5,
the slope of the lines matches asymptotically the slope of 1 of the dashed lines shown in

each figure indicating a first order approximation.
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At
Figure 2.1: (Color online) The absolute error in using the GL scheme to evaluate the fractional
derivative of order 1 — v for the function f(t) = t? at time ¢t = 1.0. Results are shown for
v =0.1,...,0.9 where v increases in the direction of the arrow and dashed lines show lines of

slop v for comparison.

Figure 2.2: (Color online) The absolute error in using the GL scheme for the fractional
derivative of order 1 — 7 of the function f(t) = 3 at time ¢t = 1.0. Results are shown for
v =0.1,...,0.9 where ~ increases in the direction of the arrow, and dashed lines show lines

of slop ~y for comparison.
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At

Figure 2.3: (Color online) The absolute error in using the GL scheme to evaluate the fractional
derivative of order 1 — v for the function f(t) = t* at the time ¢ = 1.0. Results are shown for
v =0.1,...,0.9 where v increases in the direction of the arrow and dashed lines show lines of

slop v for comparison.

At

Figure 2.4: (Color online) The absolute error in using the GL scheme to evaluate the fractional
derivative of order 1 —  for the function f(t) = 1 — e + 3, where v = 0.1,...,0.9 and time
t = 1.0. The value v increases in the direction of the arrow and dashed lines show lines of

slop v for comparison.
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At

Figure 2.5: (Color online) The absolute error in using the GL scheme to evaluate the fractional
derivative of order 1 — for the function f(¢t) = 1+¢" at the time ¢t = 1.0 for vy = 0.1,...,0.9,
where v increases in the direction of the arrow. Dashed lines show lines of slop v for compar-

ison.

Table 2.1: The comparison of the absolute error in evaluating the fractional derivative of order
1 — « for the functions f(¢), Equation (2.7), at time ¢ = 1.0 by using the GL scheme where
v =0.1,...,0.9 and At = 0.01.

v ft) = [ty =13 foy=tt  fy=1-e+¢&  fO)=1+1"
v=0.1 8.598e-03 2.338e-02 4.441e-02 1.213e-02 1.600e—04
v=0.2 7.917¢—03 1.974e-02 3.580e—-02 9.608e-03 4.100e—04
v=0.3 7.086e-03 1.631e-02 2.830e-02 7.351e-03 5.833e-04
v=04 6.142e¢-03 1.313e-02 2.184e-02 5.394e-03 6.395e-04
v=0.5 5.124e—03 1.023e-02 1.634e-02 3.754e—03 5.900e—04
v =0.6 4.066e—03 7.610e-03 1.169e-02 2.432e—03 4.660e—04
v=0.7 2.999¢-03 5.284e—03 7.817¢—03 1.419e-03 3.075e—04
v=0.8 1.950e—-03 3.247e-03 4.632e—03 6.940e-04 1.530e-04
v=10.9 9.444e—04 1.490e-03 2.053e—03 2.317e—04 4.177e-05

In this thesis we have concentrated on the L1 approximation scheme (Oldham & Spanier
1974) as this scheme is exact for the linear function whereas the Griinwald-Letnikov
approximation scheme is not exact. In the next sections we will give the L1 approximation

and discuss its accuracy.
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2.3 L1 Scheme

The L1 scheme can be used to approximate the fractional derivative of order p with
0 < p < 1. This scheme was originally developed by Oldham & Spanier (1974). In
this method the function f(t) is defined as a piecewise linear, and the Riemann-Liouville
derivative given in Equation (2.1) with n = 1 is written as

d f(t) 1 d (" f(r)
ar T(1 p)dt/o (th)pdT' (2.8)

The L1 approximation scheme (Oldham & Spanier 1974) is found, after rewriting Equa-
tion (2.8) as

dPf(t tP 1 tdf(r dr
dtp I'(1-p) l1-p) )y dr (t—7)P
The integral is then split into equally—spaced time points, ¢ = kAt (1 < k < j), to give
I:dpf(t) B tj—p f . 1 j—1 /(k:-i-l)At df(T) dr (2 10)
dtp t=t; I'(1—p) ’ I'(1-p) o ” kAt dr (t; — )P’ .

where in each interval, kAt < 7 < (k+1)At the derivative is then assumed to be constant
and is approximated by a first order finite difference approximation. The approximation

is then given as

24

P 1 J (frst — f) (k+1)At
~ J o p '
=, T(l—p) fot D) Z /kAt (tj — 1), (2.11)

which after evaluation of the integral, gives the L1 approximation scheme

{#ﬂw

J —p _ J—1
O At){“ﬂmm+§yn—nHMu—w+nfﬁ—u—mPﬂ}

o F@2-p =0

(2.12)

Langlands & Henry (2005) used the L1 scheme to approximate the fractional derivative
to develop the implicit method to solve fractional subdiffusion equation. We will follow

their approach to evaluate the accuracy of the L1 scheme in Section 2.4.

The L1 scheme in Equation (2.12) can be rewritten as

J
fo+ Z vi—kf(EAL) |, (2.13)

k=0

L1 F(Q -p

24

T AP [(1-p)
)| gP
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where the weight v; is defined by
1 if  1=0,
m=19(G-—1)P_ it 1= (2.14)
(I—D)'"P =2t P (141)"P if 1<I<j—1.

To evaluate the L1 approximation of the functions f(t) = 1 and f(t) =t at time t;, we

need the following Lemmas to show the accuracy of the L1 scheme.
Lemma 2.3.1. Given the weights v;_j, defined in Equation (2.14), and j > n, we have
J
LY vig=G-n-1))""P=(G(-n)l"P ifn>1 and
k=n

J
2. Y vjp=0,ifn=0.

k=n

Proof. For n > 1 using the definition of the weights in Equation (2.14), we have
J Jj—1
D Vi-k =D vi-kt v
k=n k=n

j—1
=3 [G= G 1) =2 = (1))
k=n

J

= > G-k —223— 1P+ZJ— k)P 41

k=n+1 k=n—1
§—2
=1+ Y (G-k'P-20G-n)t"r-2-2 Z (j— k)P
k=n+1 k=n+1
j—2
H === Y (k) TP+
k=n-+1
=@ -(=1)"P=(-n)'" (2.15)

Hence result (1) holds.

For n = 0 and using Equation (2.15) with n = 1 we have

j
Zyjk—j—l p—l—ZV]k
k=

=G =D =TG- G- D))

=0. (2.16)

There for the second result (2) also holds. O
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Lemma 2.3.2. Given the weights v;_j, defined in Equation (2.14), with j > n, we have

J
L Y kvjg=n(G—-—mn-1)""?—(n-1)G—n)'"P ifn>1, and
J
2. Y kvj_p =3P ifn=0.
k=n
Proof. For n > 1 using the definition of the weights in Equation (2.14), we have

J Jj—1
Z kvj_y = Z kvi_y + jvo
k=n
—Zk;—k—l—l —Qij— 1P+Zk3— — 1)) P4

J j—1 j—2
= > k=D =R"T=2Y KGR+ Y (kDGR T+
k=n-+1 k=n k=n—1
= > k(j—k)' —Zij— 1P+Zkg—
k=n-+1 k=n—1
Jj—2 J
DGR Y Gk T
k=n—1 k=n+1
j—2 j—2
=@ -+ D> kG-k"P=2m(G-n)'"P-20-1)-2 > k(G-k""
k=n+1 k=n+1
j—2
=1 — =)+ -n)"+ D> k(G-k)"P+ (- (n—1)"
s s k=n+1
G- DGR ) R TP -1+
k=n+1 k=n+1
—n(-n)'""P+ -G - (-1 +(G—(n—1)P+(j—n)P
=n(j—(n—1))""—=(n-1)(G—n)"" (2.17)

Hence result (1) holds. To show the second result we have
J J
S kv =0+ kv (2.18)
k=0 k=1
By using Equation (2.17) with n = 1 gives

j
> kv =47, (2.19)
k=0

and so result (2) also holds. O
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2.4 Accuracy of the L1 Scheme

In this section the accuracy of L1 scheme, in Equation (2.12), is estimated at ¢t = ¢;. To
do this we follow the approach of Langlands & Henry (2005) by assuming f(¢) can be

expanded in Taylor series around ¢ = 0 with an integral remainder term, that is

t
f(t) = f(0)+tf'(0 +/f” )(t —T)dT. (2.20)
0

Now taking the fractional derivative of Equation (2.20) with respect to the ¢, and then

evaluating at time ¢ = ¢; we find

#29) —so[Z]_ cro[22]_ [ (Jrow-ne
] J 0 t=t;
t;p / t;ip dp 7 "
= f(O)ﬂ + f (O)W + T /f (T)(t; —T)dr | . (2.21)
0

To evaluate the last term in Equation (2.21) we use the following result in Podlubny

(1998), for the fractional derivative of a convolution

t
dr [ dPK(7) P K (1)
% /K(t — T)f(T)dT = / s f(t — T)dT + TE}IEO f(t — T)W (222)
0 0
Then the fractional derivative of the last term in Equation (2.21) takes the form
t; 1
d’(7) , " (7)
1" _ meg. s
dtp / fir N / grp 1l = )T i P =) T
t=t; 0
(2.23)

The limit in the last term on the right of Equation (2.23) is zero if 0 < p < 1. Changing
the integration variable in the integral on the right hand side by setting s = ¢; — 7, and
so ds = —dr, we then find

t

// dP(tj —s) .,
dtp /f T)dT :/C;Spf (s) ds
0

t=t;
t]
t —§)-p
/ s " (2.24)
0

<.
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The exact value of the fractional derivative of f(¢) in Equation (2.21) is then given by

rﬁp

—for(1_p)+f(0>r(2—p)+o/f (s) T p) ds. (2.25)

t=t;

The accuracy of the L1 scheme can now be determined by comparing the exact value
with the value obtained from the L1 approximation. Thus we need to evaluate the L1
fractional approximation operating on the functions 1, ¢, and the convolution integral in
Equation (2.20). Now we evaluate the L1 approximation of the function f(¢) = 1 at time
t;, which is given by

(1) Arp!u—p> !
= (1) + ) (D] (2.26)
{ v |, T'(2-p) JP o
which, using Lemma 2.3.1 with n = 0, simplifies to
ar(1))’ AtP _, _ Ay t;"
_ _p)j P = - , 2.27
K LT TSR, TR o) (227)

The L1 approximation for function f(t) =t at time ¢; is

tlp

j )
0) + Z I/j_kk’At Z k‘l/] k- (2.28)

k=0

@)’ AP [(1-p)
ol re |5

Using Lemma 2.3.2 with n = 0, we then have the result

[dp(t)j AP At T
av |, T2-p)’ r2-p T@2-p)

We note here the results for f(t) =1 and f(t) =t are exact for the L1 scheme.

(2.29)

Now applying the L1 approximation to the convolution integral in Equation (2.20) gives

[dtp < / £(s) >J’ _ AP (1—p)j " lim /t (s)(t

L1 F(2 - p)
kAt

+Zu] k/f” )(kAE — s)ds p . (2.30)

The limit in the first term on the right of Equation (2.30) is zero if f”(t) is a well-behaved
function of t. Now by dividing the interval into equal At steps, we then have

i ([ oo, =15

(I+1)A

T2—-p) ZVJ kz / f” )(kAt — s)ds.  (2.31)

1 =1 =0 A,
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Interchanging the order of summation and simplifying, we then have the L1 approximation

of fractional derivative of the convolution integral

i ([ rrone=ns)] -

Now using Lemmas 2.3.1 and 2.3.2 with n = [ 4 1, we can evaluate the summation

(I+1)At

_ At P Z / () yj_k(kAt—s)ds. (2.32)
At

J

L1

3N vk (kA —s) = (G~ D P((U+ DAL —5) — (j — (L + 1) P(IAE—s).  (2.33)
k=l+1

Letting
Liip(s) = (G =D P((I+ )AL —s8) — (5 — (1 + 1)) "PIAL — s), (2.34)

then the L1 approximation of f(¢) in Equation (2.20) becomes

(+1nA
dp j t i / tlip //
[ d];(ot) 1 fO (1_ )+f(0)f‘(2] T2 p) Z / " (s)Lj1p(s)ds. (2.35)
=0 At

The value of the L1 approximation in Equation (2.35) can now be compared with the
exact value of the fractional derivative given by Equation (2.21). The absolute error can

now be evaluated as

dP J dp J tg_p / tjl o’ / " 1 -
0] = |G| | = g O+ | [ oG
0 t=t;
o o o1 (A
_ _ f J //
hora = Oy Teop EZ: lA/t ) Lgpls)ds) (236)
which simplifies to
» ; » ; jo1 (4D
[dtpf(t) - [dtpf(t) L1 T(2-p) IZ; / f// [t =) TP = AL (s s)] ds
LAt
(2.37)

Then Equation (2.37) can be written as follows

s

7j—1

j—[dpf(f

dtp

(+nAa
[ el = st
1AL

2pl0

(2.38)
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since , )
J/.f<x>g<x>da:f§ ]/rf<a»||g<z>|dx. (2.39)

Now we let the maximum absolute value of the second derivative in the interval

[lAt, (I + 1)At] be given by

M, = " 2.4
| zmgsn%%}inm‘f (s), (2.40)
then Equation (2.38) becomes

AP J P J 1 Jj—1 (1At . -

[dtpf(t) - [dtpf(t) y gmzm / |(t — )77 — AtTPLj, 4 (s)| ds.

=0
IAt
(2.41)

It is shown in Appendix B.1 that the term (t; — s)'™” — At™PL;; ,(s) is positive and so

we can drop the absolute sign. Evaluating the integral in Equation (2.41), we have

(I+1)At A
[ - ras=5 -t -G -0 e
LAt
and
(+1)At (I+1)At
[ maswas= [ G0 nae— s - G-+ 1) ase— )] ds
IAE LAt
(I+1)At
_ / (G =D+ )AL= (= L+ 1)1 10)| ds
LAt
(I+1)At
- [ [a-oreG-ae s as
At
2
=S iG] (2.43)

Inserting these results in Equation (2.41), we obtain

PN N AP S, —»
Lmﬂ”'WwJ@ngm—mr@—mZ;mﬁf*V ~ G-y

S22 [0 - G- aen]). (2.44)
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Let M = max ({M;;i=0,1,2,...,7}), and then simplifying Equation (2.44) gives
N N
—f()| — |=—f( 2.4
0] - |G (2.45)
<AMt2pj§1 ('_l)l—P '_1_2;]0 _('_(l_|_1))1—l’ l_1+u

which can be rewritten as

N
Lﬁpf(ﬂ - Lﬁp

pof < MAESS s 1 2) e (- 2)]

=1

(2.46)

We then evaluate the summation as

S [rr (1-1+) - 0= (1- )]
J j—1
:lz;llp<l—1+§> —lz;zlp(lﬂ—g)
j—1 i1
= (j-1+ ) +l§:;zl—1)(1—1+12’) —;zl—p (1+1-2)

j—1
—l-p(;_ p _ 1-p
=3 (] 1—|—2)+(p 2);l
-1 5P (2 - (2—19))—2(2—10)]2111_” (2.47)
5 2 . :
The estimate error is then given by
AP J AP J
—fO| — |==f(t < CAt*P 2.4
0] - |G| | <cae (2.48)
where C' is constant
M3 (j, p)
i CAL 2.4
¢ 2I'(3 - p) (2.49)
and (7, p) is defined by
j—1
9(G,p) =3P (25— (2-p) —22-p) > """ (2.50)

=1
In Equation (2.50), we have 9¥(5,0) = 0 and ¢(j,1) = 1. If 0 < p < 1 then 9(j,p) is
bounded 0 < ¥(j,p) < 1 as shown in Figure. 2.6. Furthermore in Appendix B.3 it can be
shown the sum in Equation (2.46) is bounded. Using Equation (B.26) we find 9(j,p) is
bounded above by

V(5 p) < gé‘(l +p,1), (2.51)
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where ¢ (1 + p,1) is the Hurwitz Zeta function (Apostol et al. 1951). This is the same
bound given by Langlands & Henry (2005). Hence the error is bounded by a constant
independent of ¢ and so shows the L1 approximation scheme is of order O(At?>~P) for

function that can be expanded as in Equation (2.20).

Figure 2.6: (Color online) The value of ¥(j,p) in Equation (2.50) is shown versus p for
varying number of time steps j = 10,102,...,10%, where j increases in the direction of the

arrow. These results show 9(j, p) is bounded above by 1.

The estimate of the accuracy of the L1 scheme was tested on the functions given by
Equation (2.7), with p = 1 —~ with v = 0.1,...,0.9. The error is plotted as a function of
At on double logarithmic scale plot given in Figures 2.7 — 2.11. We see as At is decreased
the error decreases for each value of p as expected. In these figures we note the error
decreases in magnitude as « increases for a fixed At value. This is also seen in the results

shown in Table 2.2.

As shown in the Figures 2.7 — 2.11, the slope of the lines match asymptotically the slope

of 1 4+~ of the dashed lines shown in the figure as expected.
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At

Figure 2.7: (Color online) The absolute error in using the L1 scheme to evaluate the fractional
derivative of order 1 —« on the function f(t) = 2 at time ¢t = 1.0 given for v = 0.1,...,0.9.
Note v increases in the direction of the arrow and the dashed lines show lines of slope 1+ ~

for comparison.

Ot

Figure 2.8: (Color online) The absolute error, €, in the L1 approximation of the fractional
derivative of order 1 — « on the function f(t) =3 at time ¢t = 1.0 given for v = 0.1,...,0.9.
Note ~ increases in the direction of the arrow. Dashed lines show lines of slope 1 + 7 for

comparison.
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At

Figure 2.9: (Color online) The absolute error in using the L1 scheme to evaluate the fractional
derivative of order 1 — + for the function f(t) = t*. Results are shown for v = 0.1,...,0.9
at the time ¢ = 1.0 and ~ increases in the direction of the arrow. Dashed lines show lines of

slope 1 + « for comparison.

Ot

Figure 2.10: (Color online) The absolute error in using the L1 scheme to evaluate the fractional
derivative of order 1 —  for the function f(t) = 1 — e + 3, where v = 0.1,...,0.9 and time
t = 1.0. Note v increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + « for comparison.
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At

Figure 2.11: (Color online) The absolute error in using the L1 scheme to evaluate the fractional
derivative of order 1 —  for the function f(¢) = 14 t7 at the time ¢ = 1.0. The results are
shown for v = 0.1,...,0.9, and -y increases in the direction of the arrow. Dashed lines show

lines of slope 1 + « for comparison.

In Table 2.2 we see that the maximum error occurs where v = 0.1 for f(t) = t* of
magnitude 4.98 x 1073 and the minimum error occurs when v = 0.9 which is 1.4 x 1072,
Also, for the functions f(t) = t3, t*, 1 —e! +3 and 1 +#7 the maximum error again occurs

where v = 0.1 and the minimum error occurs where v = 0.9.

Table 2.2: The comparison of the absolute error in the L1 approximation of the fractional
derivative of order p = 1 — « of the function f(¢), given by Equation (2.7), at time ¢t = 1.0
where v = 0.1, ...,0.9 and At = 0.01.

gl f(t) =+t foy=6  fy=tt  f)=1-€+t2  ft)=1+0
v=0.1 4.982e-03 1.489e-02 2.966e-02 8.141e-03 4.519e-04
v=0.2 2.702e-03 8.057e-03 1.603e-02 4.406e-03 4.366e-04
v=0.3 1.448e-03 4.307e-03 8.553e-03 2.354e-03 3.082e-04
=04 7.665e-04 2.269e-03 4.492e-03 1.239e-03 1.871e-04
v=0.5 3.989e-04 1.172e-03 2.310e-03 6.396e-04 1.018e-04
v=0.6 2.025e-04 5.883e-04 1.152¢-03 3.205e-04 4.980e-05
v =0.7 9.836e-05 2.812e-04 5.458e-04 1.528e-04 2.120e-05
v=0.8 4.359¢-05 1.218e-04 2.336e-04 6.590e-05 7.150e-06

v=0.9 1.494e-05 4.049e-05 7.641e-05 2.180e-05 1.370e-06
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We verify the accuracy of the approximate scheme by computing the absolute error be-
tween the exact value of the fractional derivative and the estimate value of the fractional

derivative by using

A d " - " 2.52
wo(At) = || == — | o= f(t .
cltt) =| | 10|~ | t0] (2.52)
P
Numerical accuracy is studied for v = 0.1,...,0.9, and the approximate order of conver-
gence in At, ﬁ, was estimated by computing
R = 10g,[e0s (2At) /ene (AL)]. (2.53)

In Table 2.3, the error and order of convergence estimate are given for the fractional
derivative of order 1 — v for the function f(¢) = 1 +¢” by using Equations (2.52) and
(2.53) for the L1 scheme. The results are shown for time ¢ = 1.0, it can be seen numerically

that the L1 scheme is of order O(At1+7).

Table 2.3: Numerical accuracy in At of the L1 scheme applied to the function f(t) =1+ t7,

and R is order of convergence.

v =0.1 7=0.2 7=0.3
At es(At) R eso(At) R es(At) R
1/1000 3.960e-05 — 3.065e-05 — 1.734e-05 —

1/2000 1.847e-05 1.1 1.334e-05 1.2 7.038¢-06 1.3
1/4000 8.613e-06 1.1 5.802e-06 1.2 2.857¢-06 1.3
1/8000 4.018¢-06 1.1 2.525e-06 1.2 1.160e-06 1.3
1/16000 1.874e-06 1.1 1.099¢-06 1.2 4.710e-07 1.3

v =04 v=05 7 =06

1/1000  8.454e-06 — 3.710e-05 1.474¢-06  —
1/2000 3.201e-06 1.4 1.311e 06 1.5  4.872¢07 1.6
1/4000 1.212¢-06 1.4  4.636e-07 1.5 1.610e-07 1.6
1/8000 4.593e-07 1.4 1.639¢-07 1.5  5.316e-08 1.6
1/16000 1.740e-07 1.4  5.795¢-08 1.5 1.755¢-08 1.6

v=0.7 v=10.8 v=0.9
1/1000 5.165e-07 - 1.460e-07 - 2.402¢-08 -
1/2000 1.601e-07 1.7 4.271e-08 1.8 6.683¢-09 1.9
1/4000 4.959¢-08 1.7 1.246e-08 1.8 1.853¢-09 1.9
1/8000 1.534e-08 1.7 3.66e-09 1.8 5.115e-10 1.9
1/16000 4.739¢-09 1.7 1.054e-09 1.8 1.412e-10 1.9
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2.5 Modification of the L1 Scheme

In this section, we consider three modifications of the L1 scheme: the C1 scheme, the
C2 scheme, and the C3 scheme. We will discuss the development of these schemes in the

next sections and we will show the accuracy of each of these methods.

2.5.1 C1 Scheme

In this subsection, we modify the L1 scheme given by Equation (2.9) to estimate the
fractional derivative at time ¢ = t;. We will refer to this method as the C1 scheme. The
Riemann-Liouville derivative is first rewritten as given in Equation (2.9)

dPf(t) tp 1 /t df(r) dr
0

i IO TTa ) Sy dr o

(2.54)

Then the integral is split into equally—spaced time points, tx = kAt (1 < k < j). As
in Figure 2.12 where, in each interval, the integral over (k — 1)At < 7 < (k4 1)At is
repeated twice, except for the integral over the intervals [0, At] and [(j — 1)At, jAt]. We
add the integral over these two regions and then take half of the integral to approximate

the integral in Equation (2.54).

0 At 2A¢ 3At Co (=3at  (G-2)At  (G-1At At

J=1 k1) At
Z/{ F(r)dr

o/ (k=1)At

Figure 2.12: Intervals used to evaluate the integral in Equation (2.54).
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Then the first modification of the L1 approximation, the C1 approximation scheme, is

then given by

[dpfa)

dtp

S - jzl/(kﬂwdf(”ch
o TA—p)" 201 =p) | & Jupyar dr (G =7

Adf(r) dr I8 df(r)  dr
N /O _dr /( } (2.55)

dr (t; =77 Ji—nae dr (¢ —T1)P

In the L1 scheme the approximation of the first derivative was based on first order differ-

ence scheme. However it should be noted the approximation

o1 = Ju

O = (256)

is second-order accurate if considered at the midpoint 7 =t;_;/5 = % (tx + tx—1) and an

approximation of the form

! / j% _'fk 1
/0 F(r) dmZ / w(T)dr, (2.57)

tk—1

will also be second—order accurate if f”/(t) is bounded.

In our modification we use a second—order accurate finite difference approximation over
the intervals (k — 1)At < 7 < (k + 1)At and the first-order accurate finite difference

approximation over the intervals [0, At] and [(j — 1)At, jAt]. The approximation is then

_ b 1 (A = fo\ [ dr
o1 T(l-p) fo+ 2T'(1 — p) {( At ) /O & — 1) (2.58)

+Z< ((k+1)At) — f((k‘—l)At))/((kH)Ath

2At k—1)ae (L —T)P

. (fUAt)—fAio—l)Aw)/(j"jm(tfﬂp}.

Evaluating the integrals, we then have

given by

[dpf(t)

dtp

dp ' t—p 1
[dtpf(t) oty OF 2r(1_p){ (2.59)
p 1
At Z (k+1)At) — f ((k — 1) At)] [(j k1)) (- (kH)At)l_p}
)io
At™P o 1 A | |
+(1 ) [f (At = (O] [P =G -1 ] + T FEA) - (G- 1)At)]},
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which can be rewritten in the form

i (An7P
[ dtr |, 2T (2—p)

For j > 1, Equation (2.60) becomes

arf(t))’
[ v |, 2T(2

where the weights are defined by

a;(p)

Ajk(p) = {1+ i2t-»

LU —k+D)"7 =G —k=1"7]

and

Bi(p) =201 =p)i ™" — oy

As before we denote the function value at t = kAt as

fr = 1 (KAL)

{/B;(p)fO'f'O‘]( Vi + (fj = fi-1) +ZMJ k(P) (fr+1 — fk—l)}~

(2.60)

:At_p[ fo—i—ZA] k(p fk+1+ZB] k(D) fr— 1], (2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

In Section 2.6.1, the accuracy of the C1 approximation scheme will be evaluated, before

that though we need the following Lemmas.

Lemma 2.5.1. Given the weights A;_;(p) defined in Equation (2.62) and for j > n > 1,

we have

j—1

LY Aj k) =3[ —(m—=D"P+(j—n)"P+1],

k=n

2. :gk;Aj_k()——HQ n(j—(n—1)"P+n-1)G-—n)""P+j+237_

(= k)P
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Proof. Using the definition in Equation (2.62), we have

-1 . =
];Aj—k(p) =1+ 521_1) t3 ; (G —(k=1)"P = (j = (k+1))'7]
7j—3 7j—1
=1+ 21 p+ Z G—k _ Z(j_k)lfp
k=n—1 k=n+1
:1+%2H’+% (G—(n—1)'"P+(G—n)lP-—1-2"7]
LU= D)+ G- 1] (267

Then the first result (1) holds.
To show the second result, with Equation (2.62), we have

j—2

Zk:AJ r(p) =G —1) <1+ —2! p>+;Zk j—(k—=1)"7—(j— (k+1)'77]
1 j—3 j—1
=@-D(+27) 43 (k1) =k = > (k- 1)(j—k)1"’]
k=n—1 k=n+1

G- 1))+ gl = = D) G )

j—3
~(G=2-(G-327"+2 3 (- k)l"’]

k=n+1

= 1+1
a 2

7j—1
n(i—(m=1)"P+m-1)G-n)""P+j+2> (- k)l‘p] :
k=n

(2.68)

Hence the second result (2) also holds. O

Lemma 2.5.2. Given the weight B;_(p) defined in Equation (2.63) and for j > n > 1,

we have

LS Biilp) = =4 [( = (n— 1)) + (j —n)' 7 + 1], and

2. 3 kBj-k(p) = —3 [n(j — (=) P (1) —n) P23 (- k)P
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Proof. Similar to Lemma 2.5.1, using the definition in Equation (2.63), we have

J Jj—1
S By k)= 1= 5 30 [~ (k= 1) = (i~ (k4 1))
k=n k=n
Jj—2 J
e DO R ) SR i
k=n—1 k=n+1
=1 [ - (= D)+ G- ) = 1]
=5 [G— =)+ G =)' 1], (2.69)

Then the first result (1) holds.

Likewise using Equation (2.63), we have

j j—1
S kB k() = J(-1) = 5 Dk [G— (k= 1)' P = (G (k+ 1)) (270
k=n k=n

1 [ iz2 j
=—j—5| > B+DG-R'T= > (k-DG-R)'"
Lk=n—1 k=n+1
: i
=—j—% n(G—n—1)"P+m+1)G-n)""-(G-2)+2 Y (j—k)l‘p]
L k=n+1

7j—1
= [l D) P )G ) P23 ’“] |

k=n

and so the second result (2) also holds. O

Corollary 2.5.3. From Lemmas 2.5.1 and 2.5.2, 1 < n < j — 1, we have the following

results
Jj—1 J
LY () + 3 Brslr) =0
Jj—1 J
2 kg Aj—k(p) kg Bik(p) =G — (n—=1))""P+(j —n)'?,
Jj—1 J
3 kz kA; _i(p) + kg kB;_(p) = —1, and
4 :g kA]_k(p) kg k‘B] k(p) =—-1+ n(] — (n — 1))1 P4 (n — 1)(] — n)l D
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2.5.2 C2 Scheme

In this subsection, we modify the L1 approximation in Equation (2.12), to approximate
the fractional derivative at ¢t = tj 41 instead of at the time ¢t = ¢;. Recently a similar
2

scheme was given by Liu, Li & Liu (2016). As in L1 scheme we begin by rewriting the

Riemann—Liouville derivative, given by Equation (2.1) with n = 1, in the form
dP t—P 1 tdf(r)

—f(t) = [fo + U (t —7)"Pdr . (271)
[dtp i L'(1-p) t=t, 1 PA-p) Lo dr =t

2

ity

Next we split the integral into two with one integral over the interval 7 € [0,¢;] and the

other over the interval 7 € [t;, tj+%]
dP (tjp1)? 1 i df(r)
SO = o+ [ -
[dtp t=t 1 I'(1-p) F(1-p)Jo dr “7%2
1 tird df(7) p
_— —(t, 1 — . 2.72
+F(1—p)/t 7 (tﬁ% T) Pdr (2.72)

We then further split the integral interval 7 € [0,¢;] into equally-spaced time steps with
t;j =jAt (1 <j< M) to give

s

(tj )" 1 A df(r)
L _
. fot / Pt 0 — ) Pdr (273
t=t 1 I'(1-p) ’ IL'(1-p) i1 Y (k=1)At dr ( it ) ( )

2
L'(1-p) jAt dr its

+ — 1) Pdr.

In each interval, the integer—order time derivative, as in Oldham & Spanier (1974), is

then approximated using a first-order finite difference approximation

Vﬂﬂ

dtr

(t41)7" f (tH%) —f({t)\ put+da
— Ta-pot T(1—p)LAt /j (tj+

+F(11_p);<f(tk) A{(tk—l))/(kAt (t—7) Tar. 279)

At

2
k—1)At
which after simplifying can be written in the form

o () )

Cc2

240

+Z%kwuwwf@n%, (2.75)

k=1
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where the weights are defined by

B -0-n(i+y) (2.76)
and
) = (i+3) o (4+3) (2.77)

We refer to the modified method given in Equations (2.75) — (2.77) as the C2 scheme.

The scheme can be written as

P it+3 t P p V1P A 4p
{ddiz(f) o r(lﬂ_QP) fo+ Fét_ ») kzoﬁj—kfk + %fﬂ%, (2.78)
with the weights 7 is defined by
(=3 = )" T
n=4(3)""-33)" it 1=0, (2.79)

I+ 20+ -H"" it 1<i<j-1.
In Section 2.6.2, the accuracy of the C2 approximation scheme will be evaluated. The

following Lemmas will be used in that process.

Lemma 2.5.4. Given the weights 7; defined in Equation (2.79), and j > n, we have

Proof. For the case n > 1, using the definition of the weights in Equation (2.79), we have

J

j—1
§ Vi_ = E Vi + 10
k=n

k=n

2l A A e RO RSO

A
R (e MO RSO

Y0 O AN | L ST S R (2.80)
(2) -l ) )
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Hence the second result (2) holds.

To show the first result also holds we have, from Equation (2.79),

J
E Vi
k=0

J
o+ Vj—k
1

k
1-p 1 1-p J
(i-3) -(i+3) +Xw (281)
k=1
which by using Equation (2.80) with n = 1, gives
S (o) T e ) T (Y T e T ey
2.tk = T I 2 I 7739

_ (;) o (2.82)

Hence the first result (1) also holds. O

l

I
N

N | =

Lemma 2.5.5. Given the weights v;_j, defined in Equation (2.79), with j > n, we have

J _
1. Egk;j_kz G+ =20+ (1), and

2 ST =0 (- -+ ) - ) Gt ) T2+ ) ()

k=n

i{n > 1.
Proof. For n > 1, using the definition of the weights in Equation (2.79), we have
J Jj-1
S kg =Y kUi + it
k=n k=n
1\ 1P j—1 1\ 17 Jj—1 1\ 1P
k-1 +2) - ko k(j—(+1)+
k;(; (k 1)+2> 2ka:(g +2) +> (g (+)+2>
3\'7 1\
56 ]
2 2
Jj—2 1 1-p Jj—1 1 1-p
= > (k+1) <]—k+2) —2Zk<j—k:—|—2> +
k=n—1 k=n k
3\'7? 1\
5) 6]
2 2
1\ 1\ 1\ (1\'7?
_ . 1 e . 1 YA 5
n(j (n 1)+2> (n 1)<j n—|—2> 2<j+2> (2> , (2.83)

j—1
k=n

+J

> tn (ke d)”

=n+1

+J
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then result (2) holds.
The first result can also be shown to be true, by using Equation (2.83) with n = 1, to

obtain

_ I 17 1\ /1)
k=1

and so result (1) also holds. O

>

=0

2.5.3 C3 Scheme

In this section another modification of the L1 approximation will be considered by esti-
mating the fractional derivative at time ¢ JIRE In similar manner, as in Oldham & Spanier
(1974), we begin by rewriting the Riemann—Liouville derivative in the form given in Equa-
tion (2.71). Unlike the C2 scheme we first split the integral domain in Equation (2.71)

into the two intervals [0,¢1] and [t1,¢, 1] instead which gives
2 2 2

-p
dpf(t) B t]+% 1 tj+% df(T) -
[ atr t=t, 1 - T(1-p) fot I'l—p) /0 dr (tH% —7)Pdr
t .
_ I+ ! b df(r) —»
- I(1-p) fot I'(1-p) /0 ar (%% - T) dr
1 Y+t df (1) -p
T -p) /t dr (’% - T) dr. (2.85)

1

2

We then further split the integral interval 7 € [t1 bl | into equally-spaced time steps
2 2

with ;1 = (j +3) At (1 <j < M) to give

[dpf(t)

T = fo+ —(t., 1 — 1) Pdr

t=t . 1 I'(1—p) L'(1-p) 1 J (k=1)At dr ‘7tz

L [ df(r)
CEnT AR

Again in each interval the integer—order time derivative is then approximated using first

iy Ly [

+ — 1) Pdr. (2.86)

and second—order finite difference approximations

dp tj}:% S (%) — [(to) 3t —p
[dtpf(t) - Nr(l_p)fo-i- Ty /0 <tj+1 —T> dr (2.87)

2

1 ZJ: f (tk-&-%) -/ (tk—%) /((k%)m (thr% —T)ipdﬂ

At k—1)At
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which after simplifying can be written in the form

) [te AP [~ ~ i
[ d];(o ) I o) {ﬁj(p)fo +20;(p) f1 + ;Njk(p) (fk+% - fk_é)} . (288)
where the weights are defined by
1\'P
aj(p) = (]’ + 2) -5, (2.89)
~ 1 —-p
Bi(p) = (1—p) <] + 2) - 2ay, (2.90)
and
aip) = (@G +1)P = (2.91)

We refer to this modified method, given in Equations (2.88) — (2.91), as the C3 scheme.

The scheme can be written as

P f(1) AP [ I
e — . - 2.92
[ i | = TEop) | kzzouj efiis | (2:92)
where the weights 7 are defined by
1 it 1=
D=q2a— (1P —(j - 1) if  1=0, (2.93)

I+ P2t P (1 —D"P if  1<I<j-1,

and a; and Bj are as defined in Equations (2.89) and (2.90) respectively. In Section 2.6.3
the accuracy of the C3 approximation scheme will be evaluated, in which we will need

the following two Lemmas.

Lemma 2.5.6. Given the weights V;_;, defined in Equation (2.93), and j > n, we have
j ~ ~
1. > Vj_p =2a;, and
k=0

J
2. 3 0= -(—1)P (-0 ifn>1.

k=n
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Proof. For n > 1 using the definition of the weights in Equation (2.93), we have

J Jj—1
D Pk =) Pkt
k=n k=n

7j—1
= G- k= ) =2 =R P G = 1) ] 41
k=n

j—2 j—1 j—1 J
= D> G-RTPD G- DGR Y G-k 41
k=n—1 k=n k=n k=n+1
=~ (-1 =1-(G-n)""+1
=(—(n=1))"—(j-n)"". (2.94)
Hence result (2) holds. To show the first result, we have
J ) J
Y Dk =2a-G"P =G -1+ Dk, (2.95)
k=0 k=1
which, by using Equation (2.94) with n = 1, we find
. 1 1
S vie=2a- G- G-+ (G- (2.96)
k=0
Then result (1) also holds. O

Lemma 2.5.7. Given the weights 7;_j, defined in Equation (2.93), with j > n, we have

J
1. > kDj_j, = j17P, and
k=0

J
2. 3 kv g=n(i-n—1)'"P—(n-1)@G-n)""ifn>1
k=n
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Proof. For n > 1 using the definition of the weights in Equation (2.93), we have

J Jj—1
Z k‘l//\j_k = Z k‘l//\j_k +7(1)

j—1 j—1 j—1
= k]— k=)' =2 kG -k kG- (k+1) P+
k=n k=n
L, ;
- Z(k+1) —2Zk BT D =1 G =R+
k=n—1 k=n+1
j—2 Jj—1
= (k+1)(j —22 E+D) G-k +2) G-k
k=n—1 k=n
J
+ > (k1) (G -k -2 Z G—k)'P 4
k=n+1 k=n+1
=n(j—(n- ))1p+(n+1)( ) P —2n+1)(G-n)"P-2+2j+2(—n)'""
=n(i—m-1)""=(n-1)G-n'". (2.97)

The result (2) holds. Using the previous result with n = 1 to show first part of the lemma,

we have
J J
kD =04> D =47 (2.98)
k=0 k=1
and so we see result (1) also holds. O

2.6 Accuracy of the Modified L1 Schemes

In this section, we consider the accuracy of the modified L1 schemes: the C1 scheme
given in Equations (2.61) — (2.63), the C2 scheme in Equations (2.75) — (2.77), and the
C3 scheme in Equations (2.88) — (2.91). We will discuss the accuracy of each scheme
in the following sections. In each section we assume that f(t), f € C?[0,00), can be

expanded in Taylor series around ¢ = 0 with an integral remainder term, that is

t
f(t) = fo+tf'(0 +/f” )(t—7)d (2.99)
0
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2.6.1 Accuracy of the C1 Scheme

In this subsection, we consider the accuracy of the C1 scheme given in Equations (2.61)
— (2.63), where t; = jAt, and 0 < p < 1. The value of fractional derivative of (2.99) is

given by

dpf(t) _ t'_p / // t —8
dtpj —fOF(f_p) + 1(0) T2—p) /f ) ds, (2.100)

as shown previously in Equation (2.25). The accuracy of the C1 scheme can now be
determined by comparing the exact value in Equation (2.100) with the value obtained
using the C1 scheme. Thus we need to evaluate the C1 fractional approximation operating

on the functions 1, ¢, and the convolution integral in Equation (2.99).

The C1 approximation scheme given by Equations (2.61) — (2.63) of the function f(t) =

at time ¢, is

dr(1) ! At~P . Ch 4
B [(2(1 i — ) (D) + 3 A1) + 3 By k() (1)
c1 k=0 k=1
AP = g
a2 _p) [(2(1 —p)i P —a;(p) +a;(p) + ZAj—k(p) + ZBj—k(p)] ;
k=1 k=1
(2.101)
which upon using Corollary 2.5.3 with n = 1, we then have
P AP _
[ a7 | 2F {2 —aj(p) + aj(p) + 0}
At~P
= —p)g P
_ Ay
I'(1-p)
tjfp
-7 (2.102)
The C1 scheme’s approximation for function f(¢) =t at time ¢; is
POF _ A 15 a IV o k—1)At
W |, = e |FPO+ kZO j—k(p) (k +1) At + ]; j-k(p) (k= 1)

At!P ! J il j
BENCET)) [O‘f () + Y _KAjk(p) + Y _KBjk(p) + Y Aj-k(p) = D Bji(p)

k=1 k=1 k=1 k=1

(2.103)
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using Corollary 2.5.3 with n = 1 and Equation (2.64), we obtain
dar(t) |’ AtHP dp . anle a1 L1
= —G-D'r)1 » e
R R e S R R R
AN
= _—"  (94l-p
@) @)
_ (jan'?
I'(2 - p)
£ (2.104)
S T(2-p) ’

t
Now we apply the C1 scheme’s approximation to the convolution integral [ f”(s)(t — s)ds

in Equation (2.99) which gives ’
" St AP "
idtp/ I lo, 2r(2-p) {”BJ }g%/f )t = s)d (2.105)
i1 (k+1)At i (k—1)At
F3Au) [P DA 9ds 1Y Bra) [ P DA s
k=0 0 k=1 s

Note the limit in the first term on the right is zero if f”(t) is a well-behaved function of

t and so we have

1 (k+1)At
( J a7y 4; "(s)((k+1)A d
idtp/f (t—s)d Cl T 2L (2-p) j—k(P) / f7(s)((k + 1)At — s)ds
k=0
(k 1A
+ / f” ~ 1At —s)dsp.  (2.106)
Now by dividing the integration interval into equal At steps, we then have
(I+1)At
dv ! 1" J At™P it k .
[dtp/o Fi(s) (8 = s) ds - To9r (2 ) 2-p) Ajr(p Z / 7 (s)((k+1)At — s)ds
k=0 =0 jA¢
j p_o (HDAL
+> Bixp) / "(s)((k— 1At — s)ds p, (2.107)
k=2 =0 A

and then by changing the order of summation and simplifying, we obtain

(+1nA 1

[t I J At™P i ” ] -
[dtp/o f'(s) (t —s)ds LT areop) lzg ZA/t 2 lA k(D) ((k + 1)At — s)ds
j_g (DA .
+Z / f" k(@) (k=D)AL —s)ds . (2.108)

=0 a4
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Equation (2.108) becomes

dp ¢ 1
FIECIEEEN
A jAt joo (DA
= r @) {(1 +277) / f(s) (AL = s)ds + ) / f”(s)wl(s)ds} , (2.109)
(G-1At =0 A
where ;(s) is defined as
Jj—1 J
0(s) = S A )k + DA =)+ 3 B @)((k—DAt—s).  (2110)
k=1 k=142

Evaluating ;(s) we have

ZkAJ k(p Z kBj_k(p)| At+ | > Ajk(p) = > Bj_k(p)| At
k=I1+2 k=l k=1+2
Z + > Biwp)|s
k= k=1+2
[ ((G==)P =G =+ )+ + D) (G- D7P = (G~ +2)77)]
A2 (G =07 =G = 40 )+ (=07 = G =+ 2)' )
Jj—1 J
+ Z /CAJ k Z kB] k At + Z AJ k ) Z Bj_k(p) At
Lk=1+2 k=1+2 k=1+2 k=1+2
Jj—1 J
1 D A+ D Bj—lc(p)] s. (2.111)
Lk=1+2 k=1+2
Using Corollary 2.5.3 with n =1 4 2, we have
Yi(s) = % [(G=U=))P =G =+ ")+ A+ D) (G- = (G = +2)"7)]
A (G =0 T G G )M (G- D G- 2) )]
A+ [+ I)P+ (G — ([ +2)7P + 1] At — [0]s, (2.112)
which after simplifying becomes
At — s . 1— . 1— . 1— . 1-
Ui(s) = —5—[G-D"P+G-0-1))"=(-0+1)P =G -(1+2)"7"]
+ % 2 -D"P+ (G- -D))"P+(G—(1+1)7]. (2.113)

The value of the C1 scheme’s approximation in Equation (2.61) can now be compared

with the value of exact value of the fractional derivative in Equation (2.100). The error
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can be evaluated as follows

p | p | —p A
0] - [r0] |- |hri - 0rE— / o L
—p P » jat
_for(ij—p) _f/(O)F(tQJ—p) QF?; p) (1277 / (s (GAt = s)d
(j—1)At
joo (1At
+Z / Pi(s)ds ¢, (2.114)
=0 At

where the first terms cancel, we then have

dP J dr J
[dtpf“) - thpf e
JAt _ —p
j—1)At i
=2 (I+1)At At »
—|—Z / |:tj _ S)l—p ¢l( ) . (2115)

=0 A

Using Equation (2.39) in Equation (2.115) we then have

P IooTap J
—f)| = |—=f(t
E0 [dt,,fom
JAt A
1 t—P
< — " —s)lP — 1+27P) (jAt —
Staey [ Ol6-0r- S are) Gar-s)as
(G-1)At
L (H—l)At A
_ tP
+Z ) (5 — )P — Uy(s)| d (2.116)
=0 At
We now let the maximum absolute value of the second derivative in the interval
[[At, (I 4+ 1)At] be given by
M, = " 2.117
: zmgsn_g(%l}inm}f OlF ( )
then Equation (2.116) becomes
j j JAt A
dP dP M; t—P
—f)| = |==f(t E—— t—s)l P — —— (14+27P) (jAt —s)|d
0] - [0] |<raty [ |e-or - S e Gaca)e
(G-1)At
joo (DAt A
+Z:Ml / ‘(t—s)lp— ’; Pi(s)| ds. (2.118)




2.6 Accuracy of the Modified L1 Schemes 57

We know from Appendix B.4 that both terms in the absolute value functions are nonneg-
ative. Dropping the absolute value and then evaluating the integrals in Equation (2.118),

we then have

JAL - JAL )
/ (tj —s) Pds = ét_p , and / (tj —s)ds = ATt, (2.119)
(J-1)At (G-1)At
(I+1)At -
(- 9)! P ds = 5 [G— 1P = G = 1+ )P, (2.120)
LAt
and
(+1)A
/ Yi(s
LAt
(I+1)At
IAt—s . 1— . 1— . 1— . 1—
= [ B0 G- - ) - = )T (- (2] ds
- (1+1)At
/ At . 1—p . 1-p . 1-p
GRG0 4 (G~ (= 1)+ G- (4 1)) ds
LAt
At2 . 1—p . 1—p . 1-p
=BG D"PH G = =) P = = ()P - (G (4 2)))
2
FE G- D P G (- )M (- (1))
2
::%}{%j—wkﬂ+u—0—4»“p+wj—u+1nkﬂ+u—a+a»kﬂ- (2.121)

If we now let M = max ({M;;i=0,1,2,...,5}), and then use the value of the above

integrals in Equation (2.118), we then have

{ﬂfw

J
o 1o

J [ P
C1

dtr

7j—2

MAt?~P 2—p —p
- (2—p)F(2—p)H1_4(1+2 )] >

=0

(=07 =G = +1)*7

SR (- (- D) P3G - U+ D)) P (- 2))“’}]}

8
MA#?>P 2 — ) 4 - L
:<2—p>r<2—p>ﬂ1_ L)+ 3
_2%1’ K7+ (k+ 1)1 7P +3(k — 1) P + (k — 2)1_”]] } : (2.122)
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Evaluating the summations

J J Jj—1
Z (K7 — (k— 1)>7) = Z 2P _ Z k2P = 2P 1, (2.123)
k=2 k=2 k=1
and
j
S OBETP Hk+ D)V 43k — 1)V 4 (k- 2)' 7]
k=2
j+1
_BZkl p+Zk1 p+32k1 P+Zk1 P
=3RS G )T G-
j—2
+3(14+2" P+ (G-I P) 414277 48> kP
j—1
=45 P+ G+ )P - (- D)P -4 2148 kP (2.124)
we then find
dP J dP J
—f)] = |==f(t < CAt*P 2.125
o] - (G| | <car. (2.125)
where C = ]\g(g( I’)p)), and Y(j,p) is given by
. 2 —p _ 2
T(j,p) = 1—T(1+2 Pl +5°7P -1 (2.126)
(2-p) S
- 1— . 1— . 1— 1— 1—
- [4j PG+ —(G-—1)P—4-2 p+8;k P

:<jlp [] } (2- kal p>+((j—l)lp—(j+1)1p)+2;p,

or

| —

T(.p) = &um+2ﬂ%o—WP—u+nlﬂ+ﬁf] (2.127)

2 4

In Equation (2.127), we have Y(j,0) = 0, and Y(j,1) = 3. If 0 < p <1 then Y(j,p) is
bounded 0 < Y(j,p) < Z as shown in Figure 2.13. Compared with the L1 scheme we see
the first term in Equation (2.127) is bounded by

V() p) < §<(1 +p,1). (2.128)

After using this result and since the term ((j —1)'™? — (j 4+ 1)'77), as shown in Ap-
pendix B.5, is bounded by —2!7P we obtain the bound of Y(j,p), of

T(j.p) < 24(1 +p,1)+¥ (1—277). (2.129)
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This verifies this scheme is of order O(At?>~P) for any function that can be expanded as

a Taylor series around ¢ = 0 as in Equation (2.99).

0.8 T T T T T T T

0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1

Figure 2.13: (Color online) The value of Y(j,p) in Equation (2.127) as shown versus p for
varying number of time steps j = 10,10%,103,...,10% where j increases in the direction of

the arrow. These results show Y(j,p) is bounded above by % forall0 <p< 1.

The estimate of the accuracy of the C1 scheme was tested on the functions given in
Equation (2.7). The error is plotted as a function of At on double logarithmic scale plot
as given in Figures 2.14 — 2.18. We see the error decreases for each value of « as At is

decreased, and the slope of the lines match asymptotically the slope of 1+~ of the dashed

lines.

In Table 2.4, we see that the maximum error occurs when v = 0.1 and the minimum error
occurs when v = 0.9, except for the function f(¢t) = 1 4+ ¢¥ where the maximum error

occurs when v = 0.2. For small At the error is of order O(At?7P).
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At

Figure 2.14: (Color online) The absolute error found by using the C1 scheme to evaluate the
fractional derivative of order p = 1 —+, where 0 < v < 1, of function f(¢) = ¢ at time ¢t = 1.0.
The error is given for v = 0.1,...,0.9, where v increases in the direction of the arrow. Dashed

lines show lines of slope 1 4 « for comparison.

Ot

Figure 2.15: (Color online) The value of the absolute error in using C1 scheme to approximate
the fractional derivative of order 1 — « for the function f(t) = 3 at the time ¢ = 1.0, with
v =0.1,...,0.9. The value of 7 increases in the direction of the arrow and the dashed lines

show lines of slope 1 4 v for comparison.
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At

Figure 2.16: (Color online) The absolute error in using the C1 scheme to estimate the frac-
tional derivative of order 1 — v for the function f(t) = t* shown at the time t = 1.0, for
v =0.1,...,0.9. The value of v increases in the direction of the arrow. Dashed lines show

lines of slope 1 + « for comparison.

Ot

Figure 2.17: (Color online) The absolute error in using the C1 scheme to evaluate the fractional
derivative of order 1 —  for the function f(t) = 1 — e + 3, where v = 0.1,...,0.9 and time
t = 1.0. Note v increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + « for comparison.
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At

Figure 2.18: (Color online) The absolute error in using the C1 scheme to evaluate the fractional
derivative of order 1 —  for the function f(¢) = 14 t7 at the time ¢ = 1.0. The results are
shown for v = 0.1,...,0.9, and -y increases in the direction of the arrow. Dashed lines show

lines of slope 1 + « for comparison.

Table 2.4: The comparison of the absolute error in the C1 scheme estimate of the fractional
derivative of order p = 1 — 7 of the functions f(t) in Equation (2.7) at the time ¢ = 1.0 with
~v=0.1,...,0.9 and At = 0.01.

gl f(t) =+t fe)y =1 fey=tt  ft)=1-e+t2  ft)=1+1
v=0.1 7.964e-03 2.371e-02 4.710e-02 1.297e-02 7.268e-04
v=0.2 4.626e-03 1.372e-02 2.718e-02 7.501e-03 7.542e-04
v=0.3 2.671e-03 7.878e-03 1.555e-02 4.303e-03 5.748e-04
v=04 1.529e-03 4.474e-03 8.782e¢-03 2.441e-03 3.785e-04
v=0.5 8.645e-04 2.499e-03 4.872e¢-03 1.361e-03 2.241e-04
v=0.6 4.778e-04 1.359e-03 2.624e-03 7.381e-04 1.194e-04
v=0.7 2.528e-04 7.037e-04 1.343e-03 3.807e-04 5.530e-05
v=0.8 1.217e-04 3.295e-04 6.194e-04 1.773e-04 2.020e-05
v=0.9 4.500e-05 1.178e-04 2.175e-04 6.300e-05 4.140e-06

The approximate order of convergence in At given in Table 2.5, we give the error and
order of convergence estimate for the fractional derivative of order 1 — = of the function
f(t) =1+t7. The results are shown for v = 0.1,...,0.9 with time ¢ = 1.0, we see the C1

scheme is also of order O(A#1+7).
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Table 2.5: Numerical accuracy in At of the C1 scheme applied to the function f(¢) =1+ t7,

where R is order of convergence.

v=0.1 v=0.2 v=0.3
At eo(A) R eso(At) R eo(A) R
1/1000  6.338e—-05 5.264e-05 3.216e-05
1/2000 2.955¢-05 1.1 2.289¢-05 1.2 1.304e-06 1.3
1/4000 1.378e-05 1.1 9.955e-06 1.2 5.292e-06 1.3
1/8000 6.426e-06 1.1 4.332¢-06 1.2 2.148¢-06 1.3
1/16000 2.997e-06 1.1 1.885e-06 1.2 8.721e-07 1.3
~v=0.4 v=0.5 v=20.6
1/1000 1.703e-05 - 8.170e-06 — 3.563¢-06 —
1/2000 6.446e-06 1.4 2.888¢-06 1.5 1.180e-06 1.6
1/4000 2.441e-06 1.4 1.021e-06 1.5 3.902e-07 1.6
1/8000 9.243e-07 14 3.610e-07 1.5 1.290e-07 1.6
1/16000 3.501e-07 1.4 1.277¢-07 1.5 4.261e-08 1.6
v=0.7 v=0.8 v=0.9
1/1000 1.373e-06 - 4.254e-07 — 7.607e-08 —
1/2000 4.273e-07 1.7 1.253e-07 1.8 2.137¢-08 1.9
1/4000 1.327e-07 1.7 3.675e-08 1.8 5.973e-09 1.9
1/8000 4.114e-08 1.7 1.075e-08 1.8 1.662e-09 1.9
1/16000 1.274e-08 1.7 3.135e-09 1.8 4.611e-10 1.9

2.6.2 Accuracy of the C2 Scheme

Here we determine the accuracy of the fractional derivative approximation at t = bl
2

given by the C2 scheme in Equations (2.75) — (2.77). To do this we follow a similar

approach to that used for the C1 scheme.

To estimate the accuracy we compare the results of taking the Riemann—Liouville frac-

tional derivative of the function f(¢) in Equation (2.99) with the approximate result

obtained by applying the C2 scheme, in Equations (2.78) — (2.79), to the same function.

The exact expression of the of the fractional derivative in Equation (2.99) is given by
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Equation (2.25), by replacing t; by t j+1 we then have
2

1 — 1-p tj+?12 1
rfE) P tjfl/Z , 75j+% Y (tj+l —s) P
0

Next we apply the C2 fractional approximation scheme on the functions 1, ¢, and the

convolution integrals in Equation (2.99) at the time ¢ = ¢, 1
2

The C2 approximation of the function f(t) =1 at time ¢ i+l is given by
t P p J 1\1-p
dr(1) j+1 AtP N 2(5) PAer
= s (W s 2 k() + e (1), 2.131
K= rg g 20t T,y (M (243

which simplifies, after using the first result of Lemma 2.5.4, to

tj__fl At—P 1\ 1P 1\ 1P tj_.fl
= 2 + -2 <> +2 () =2 2.132
W Ta-p TTe-p | 22 2 Mi-p (2132

The C2 approximation for function f(t) =t at time ¢ JIE
2
2(1)' P AL 1
Ui p(V)(EA) + 22— <<j+) At)
2 2 p) Z a I'(2—-p) 2

B Atl P {Zj:k”ﬂ O G)H’ <J+;)} (2.133)

Using the first result of Lemma 2.5.5, we then have the result

=

)| At F N I (N 1Y (1T
ar | T T@2-p |V 2 YAV ITo)\2
tp
Jj+s3
=—2_ 2.134
I'(2-p) (2134
Applying the C2 approximation to the convolution in Equation (2.99) gives
// (At)_p / //
=—<¢(1— 1 —
C2
+ At kAt

+2<)1P / i 1_T>d7+zy]k/f” (kAt—7)dr y. (2.135)

The limit in the first term on the right in (2.135) is zero if f”(¢) is a well-behaved function

as mentioned earlier. Now dividing the integration interval, [0, jAt], into equal At steps
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and the integral interval from 7 = jAt to 7 = (j + %) At, we then have

j+§ (j+3)At

AP 1\'P 1
/l _ - " . - o
| froene] =R ()T [ e (1) ) e
C2 jAL
+2 <2> > / £(7) <(j + 2) At — T> dr+) vk Y / f"(7) (kAt — 1) dr
=0 1AL k=0 =0 IAt
(2.136)
Upon simplifying this expression we have
its - (+3)At
At™P 1\
// _ — - " . _
dtp /f J(t=7) re—p > <2> / 1) (tH% T) dr
Cc2 jAt
jo1 (DA . N1
+ Z / f” yj_k (kAt —7T) +2 <2> (tj+% — 7') dr . (2.137)
1=0 A k=1+1

Now using Lemmas 2.5.4 and 2.5.5, with n = [ + 1, we evaluate the summation to find

J

> Uik(y) (kA7) =2 (;)HJ <T - thr%) - <j — 1+ ;)1_73 (1 +1)At —7)

k=l+1
1\
- (j —- 2> (1At — 7). (2.138)
The C2 approximation of the fractional derivative of f(¢), in Equation (2.99), is then
given by
30 ti b
= fomri—— + f'(0 ) : (2.139)
[ dt? oy TT(1—p) ( )
A . (l+1)At
t_p 1"
rap2(a) / i é”)d”z
JAt At

[(j—l+;>1_p((l+1)At—7) _ (j—l— ;)H (ZAt—T)] dr}.

The value of the C2 approximation in Equation (2.139) can now compared with the exact
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value of the fractional derivative in Equation (2.130). The absolute error is given by

dP its dr it3
= f(¢t — | == f(t 2.140
E [dtpﬂ)m (2.140)
-p 1-p Y -p
— t]+1/2 f + t]+1/2 / / f// J 5 T) pdT _ tj+1/2 f
r(i-p" " T2- ~p) r(1—p)"°
_ (G+1)At
H-p At—P 1-p = 7
j+1/2 4 t 1 / " o1
SR A ST () P “VAt—7)d
6t 0 ta-512(3) Fo{Utg)ae-r)a
JAt
i1 (DA " -
+Z / (1) [(; -1+ 1) (I+ DAt —7) — <j —1- 1) (lAt—T)]
2 2 ’
=0 a4
which reduces to
dP it3 dP it3
— f(t — | —f(t 2.141
EECI G . (2.141)
(j+3)At A )
_ 1 1" 1-p t\
ey [ 7 [(%; -7 () ()|
jAt
i1 (tF)A _ 1P
+Z / f” 1—7)*P—At*1’ (j—l+2) (I+1)At — 1)
=0 A L
1\ 7 ]
<jl2) (IAt—71)| | ds p|.
Now using the inequality Equation (2.39) we then have
dr it3 dr itz
— f(t — | —f(t 2.142
E20 [dﬂ,ﬂ)m (2.142)
(j+3)At ,
1 " 1-p At
<ta=g| | VO (F) (=)
JAt
i1 (DA / 1 1P
Jrz / | (7)] (thr%—T) P _ AP <jl+2> (I+ 1At —1)
=0 A¢
1\'"?
—<j—l—2> (IAt—T)||ds ¢ .
Now we let the maximum absolute value of the second derivative in the interval
[1At, (7 + 1/2)At] be denoted by
Mji“+% = max |f"(s)] (2.143)

JAL<s<(j+3)At
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and in the intervals [[At, (I + 1)At] by

M, = " . 2.144
1= e () (2-149)

Then from Equation (2.142) we have the inequality

Es

its

f(t)

j+l D
g [d (2.145)

dtr

M (J+3)At

“recn |

jAt

dr

_ At\ P
(tj+§ — )P - <2> (tj+§ - T)

(I+1)At

(tjyr —7)'7P = AP

2

(j—z+;)l_p<(z+1>m—f)

=0 IAt

- (jl ;)l_p(ZAtT)

Now we know, from Appendix B.6, each term in the absolute value functions is positive

ds.

and so we can drop the absolute value sign. Evaluating the integrals in Equation (2.145),

e (6720
e —?)tli(;_p) ng [(J Sy ;)2_73 B (j L ;)2—13

_(2;’7) [(j—z+;>l_p+<j—1—;>l_p”. (2.146)

If we further let M = max ({Mz,z =0,1,2,...,5} U{M;Jrl}), and then simplifying we
2

we obtain the bound on the error

{ ® tt

dtp

it3

f(t)

it3 dr
- [dt

obtain
dp j+% dp J'JF% MAt2—P 1 1=p P
_ I R < =7 - = .
o] el | = s () N 140
Jj—1 1-p 1-p
: 1 : 1—p , 1 , L—p
s ) () T )

Evaluating the sum in Equation (2.147) we find

g[(j—wré)l_p (j—l—1;p> - (j—l—i)l_p (j—l+1;p)] (2.148)

- <”;)1_p (- - (33 <§)l_p<2p>g (mé)l_p.
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The estimate error is then given by

dp J‘f‘% dp Jt3 2
[dtpf(t) — [dtpf(t) . < CAtP, (2.149)
where C' is constant X
M9(j,p)
C = o <_ )’ (2.150)

and 9(j, p) is defined by

=t (3) 7617 6-122) () 0)

Jj—1 1—p
—(2-p)) <k + ;) - (2.151)

k=1

In Equation (2.151), we have 9(j,0) = 1, and 9(j,1) = 0. If 0 < p < 1 then J(j,p) is
bounded 0 < 9(j,p) < % as shown in Figure 2.19. Furthermore in Appendix B.7 it can
be shown this sum in Equation (2.148) is bounded and 9(j, p) is bounded above by

1-p
Wjip) <7 <;) +3¢ (1 +p, ;) : (2.152)

after using the bound given by Equation (B.72).

Hence the error is bounded by a constant independent of ¢ and so demonstrates that the
approximation scheme is of order O(At?>~P) assuming the scheme is applied to a function

that can be expanded as in Equation (2.99).
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Figure 2.19: (Color online) The value of J(j,~) in Equation (2.151) is shown versus p for
varying number of time steps j = 10,102%,103,...,10% where j increases in the direction of

the arrow. These results show 15‘(]'7 ) is bounded above by i forall 0 <p < 1.
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The estimate of the accuracy of the C2 scheme was tested on the functions given in
Equation (2.7). The error in the value of the fractional derivative, for each function, is
again shown in the double logarithmic scale plots given in Figures 2.20 — 2.24. We also
see the error is decreases for each value of « as the value of At is decreased, and we see
the slope of the lines match asymptotically the slope of 1+ v of the dashed lines shown

in the figure as expected.

From Table 2.6, for the function f(t) = 2, we see that the maximum error of 2.45 x 103
occurs for v = 0.1 and the minimum error of 1.10 x 10~° occurs for v = 0.9. Also, for the
functions f(t) = t3, t*, 1 — e’ +t3 and 1+ ¢” the minimum error again occurs for v = 0.9

and the maximum error occurs for v = 0.1.

Ot

Figure 2.20: (Color online) The absolute error, ¢, in the C2 approximation of the frac-
tional derivative of order 1 — v on the function f(t) = t? at the time t = 1.0 given for
v=0.1,0.2,0.3...,0.8,0.9. Note y increases in the direction of the arrow, and dashed lines

show lines of slope 1 + ~ for comparison.
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At

Figure 2.21: (Color online) The absolute error in the C2 scheme approximation of the order
1 — v fractional derivative of the function f(t) = t* shown at the time ¢t = 1.0 with v =
0.1,...,0.9. The value of 7 increases in the direction of the arrow, and for comparison we

show lines of slope 1 + v as a dashed lines.

Ot

Figure 2.22: (Color online) The absolute error found by using the C2 scheme approximation
of the fractional derivative of order 1 — + on the function f(t) = t* at the time ¢t = 1.0, and
for v =0.1,...,0.9. The value of - increases in the direction of the arrow. Dashed lines show

lines of slope 1 + « for comparison.
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At

Figure 2.23: (Color online) The absolute error in using the C2 scheme to evaluate the fractional
derivative of order 1 — + for the function f(t) = 1 — e +#3, where v = 0.1,...,0.9 and time
t = 1.0. Note v increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + « for comparison.

Ot

Figure 2.24: (Color online) The absolute error in using the C2 scheme to evaluate the fractional
derivative of order 1 —  for the function f(t) = 1+ t7 at the time ¢ = 1.0. The results are
shown for v = 0.1,...,0.9, and +y increases in the direction of the arrow. Dashed lines show

lines of slope 1 + « for comparison.
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Table 2.6: The comparison of the absolute error in the estimate of the fractional derivative of

order p = 1 — v by using the C2 scheme on the functions f(¢) in Equation (2.7) at the time
t = 1.0 where v = 0.1, ...,0.9 and At = 0.01.

Operator ft) =t ft) =1 ft) =t fit)y=1—et 413 fOy=1+17
v=0.1 2.451e-03  7.292¢-03 1.447¢-02 3.988¢-03 3.399e-04
v =02 1.330e-03  3.943¢-03 7.804e-03 2.156e-03 3.287e-04
v=0.3 7.268¢-04  2.142¢-03  4.222¢-03 1.170e-03 2.337¢-04
v =04 3.990e-04 1.165¢-03  2.284e-03 6.359¢-04 1.437e-04
v=0.5 2.189¢-04  6.313e-04 1.228¢-03 3.438¢-04 7.970e-05
v=0.6 1.187¢-04  3.364e 04  6.477c 04 1.827e-04 4.000e-05
v=0.7 6.216e-05 1.722¢-04  3.273¢ 04 9.310e-05 1.750e-05
v=0.8 2.981e-05 8.024e-05 1.501e-04 4.310e-05 6.080e-06
v =09 1.103e-05 2.868¢-05  5.265¢-05 1.530e-05 1.200e-06

The approximate order of convergence in At was estimated by using Equation (2.53).

The error and order of convergence estimate was used for function f(¢) = 1+ ¢7. The

results are shown in Table 2.7 for v = 0.1,...,0.9 with time ¢t = 1.0, it can be seen that
the C2 scheme is of order O(At!*7).
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Table 2.7: Numerical accuracy in At of the C2 scheme used for the function f(t) =1+ t7,

and R is order of convergence.

y=0.1 v =02 v=0.3
At eo(A) R eso(At) R eo(A) R
1/1000  2.957e-05 — 2.291e-05 — 1.305e-05

1/2000 1.378e-05 1.1 9.960e-06 1.2 5.294e-06 1.3
1/4000 6.427e-06 1.1 4.333¢-06 1.2 2.148e-06 1.3
1/8000 2.998¢-06 1.1 1.885e-06 1.2 8.722e-07 1.3
1/16000 1.398e-06 1.1 8.205e-07 1.2 3.541e-07 1.3

~v=0.4 v=0.5 v=20.6
1/1000  6.451e-06  — 2.891e-06  — 1.180e-06  —
1/2000 2.442¢-06 1.4 1.022e-06 1.5 3.903e-07 1.6
1/4000 9.245e-07 14 3.611e-07 1.5 1.290e-07 1.6
1/8000 3.502e-07 1.4 1.277e-07 1.5 4.261e-08 1.6
1/16000 1.327¢-07 1.4 4.513e-08 1.5 1.407¢-08 1.6

v=0.7 v=0.8 v=0.9
1/1000 4.276e-07 - 1.253e-07  — 2.138¢-08 -
1/2000 1.327e-07 1.7 3.676e-08 1.8 5.975e-09 1.9
1/4000 4.115e-08 1.7 1.075e-08 1.8 1.663e-09 1.9
1/8000 1.274e-08 1.7 3.135e-09 1.8 4.609¢-10 1.9
1/16000 3.939¢-09 1.7 9.124e-10 1.8 1.274e-10 1.9

2.6.3 Accuracy of the C3 Scheme

In this subsection, we determine the accuracy of the fractional derivative approximation
at ¢ =t;, 1 given by the C3 scheme in Equations (2.88) — (2.91). We again follow the
approach of Langlands & Henry (2005) by assuming f(t), f € C2[0,00), can be expanded
as in Equation (2.99). We likewise compare the results of taking the exact fractional
derivative of f(t) given in Equation (2.130) with the approximate result obtained by
applying the C3 scheme in Equation (2.88) to the same function.

Similar to before we apply the C3 fractional approximation scheme on the functions 1, ¢,

and the convolution integral in Equation (2.99) at the time ¢t =¢,, 1.
2
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The C3 approximation of the function f(¢) =1 in Equation (2.99) is

() [TE Ar i
[dtp oz T(2-p) [ﬁﬂ() kZ:OVj—k(l)], (2.153)

which, upon simplifying, after using Lemma 2.5.6, reduces to

[dp(l)

dtp

3 AP 1\ 7
N [T ERE R

AtP o 1\7?
~ =g (1+3)
_(Utg)an”

L'(1-p)
t pl
N ﬁ'

(2.154)

The C3 approximation acting upon f(t) =t is

[ dr(¢) |73

u Z (k) ae

C3 k:
Atl—p J
_ {Zzwj s ZVJ k} (2.155)

Using Lemma 2.5.6 and 2.5.7, we then have the result

)Pt At [ , . 1
= —-— ) - el 2/\
[ atr |.s  T(2—p) {9 5l O‘J)}

Attr 1\'7?
_ = 1—p . < _l-p
I'(2—-p) {‘7 +<j+2> ’ }

—_J*ts (2.156)

Finally applying the C3 approximation to the convolution in Equation (2.99) gives

j+%

At~
"( _ " .
dtp /f “T2-p) }g%/f =)

C3
0/2 f”(T) <<k + ;) At — r> dr 3. (2.157)
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The limit is again zero if f”(t) is a well-behaved function of ¢, and so the C3 approximation

of the convolution is then

i+3 : (k+3)At

;;ijwm AT S [ () arr)or

C3
(2.158)

Now by dividing the integration interval into equal At steps and simplifying and we then

have
t -7+% j k (l+%)At
v " _ AP -~ " 1
) /f(T)(t T)dr —F(Q_p){;yjk; f(r) k—l—2 At — 71| dr
0 o3 =0 “ta-1yat
J = At
—l—Zujk/o 1(7) <(/<: + 2> At — T) dr (2.159)
k=0
Changing the order of summation, Equation (2.159) becomes
2P t AP j (H_%)At j 1
a " . _ t " . L .
T /f (r)(t —7)dr| = ) lz; / f (T)kzlyj_k <<k+ 2) At T> dr
0 C3 T (1-3)At -
J LAt 1
+ Z V]_k/ f(7) <(k: + 2) At — 7') dr (2.160)
k=0
The C3 approximation of f(t) in Equation (2.99) is then given by
. —p 1-p
AN s bivs
—f(t = fo=r—2~+ f(0) =2~ 2.161
0] = s ot (2.161)
(1+3)At 4
+ Ay EJ: I )EJ:A <<k+ >At )d
T Vi = —7|dr
re-p < Ly "IF 2
- (i-g)a -
%At J 1
1 =, - _
—l—/o f (T)kzzoyjk<<k+2>At T>dT .

Now using Lemmas 2.5.6 and 2.5.7, with n = [, we have

ki:ﬁjk <<k+ ;) At — T) =(G-@—-1)? ((l+ ;) —r> —(j—0P ((z —~ ;) —T)
= Lesp(51,7), (2.162)

and

J
1
N i <<k + 2) At — T> — At(j'"P + a;) — 2a;T. (2.163)
k=0
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The value of the C3 approximation, in Equation (2.161), is now compared with the exact

value of the fractional derivative given by Equation (2.130). The absolute error is then

dP it3 P i+3
[dtpf(t) - [dﬂ’f Q o3 (2.164)
= 75]_4{)71/2 tjl+f/2 / // i+5 )1 P B tj_‘fl/Q B t]l-i-;f/? /
= r(l_p)f0+p( /f =) ——o 5 dr T )f o p)f((])
At™P j (l+ )A 1At
T2-p) Z / f1()Loaslsit T)dTJr/ F1(7) [AtGYP + @) - 2a,7] dr g
-
Which can be written as
dP itz P i+
[dt”f(t) B [dﬂ’f s ‘ (2.165)
o (+)Ae
1
=@ | | PO Aoy L] dr
RGHE

+ /OQAt (1) {(t )P AP (At(jl_p +ay) - 2&]-7)] o

Using Equation (2.39), we then have the inequality

[dpf(w

it3 dP
- - { (2.166)

dtp

At

e {Z / 7( H (t— 1)t At_pLC?),p(jalvT)‘dT

o [P dT}-

Similar to before we let the maximum absolute value of the second derivative in the

l
2

(t—7)17P — At~ P<At( 1P+ @Q;) - 2ayT >

intervals [0, 3At] and [(I — ) At, (I + 1) At] be denoted respectively by

M, 1= max }f”(s){ , (2.167)

1
T2 (m)ars<(i+1) At
and

My = max [f"(s)]. (2.168)

1
2 0<s<IAt
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Then the bound of the absolute error becomes

dP it3 P
0 I e
dtp dtp

it

f(t) (2.169)

C3

(1+1)At

1 J
< — E M, 1 / t—1 — At PLes (4,0, 1) dT
F(2_p){l—1 I+3 ‘( ) 3,p ‘

(-3
1At
+M1 / dr y .
2Jo

We know, from Appendix B.8, that each term in the absolute value functions in Equa-

(t—7)"P — At~ P(At( 1P+ Q) - 20T )

tion (2.169) is positive, then by evaluating the integrals in (2.169) and letting

M =max{M;;i=0,1,2,...,j + 1}, we obtain the result
v It3 MAtl p [ o
0 (0 {Z e

=1

it3 dP
- [dt

C3

—(2-p) [[l(j —(=)P =G -] - <l - ;) [G=@=1)"=G- l)l_p]”

<j + ;)M - % <j1p + <j + 1) 1p>] } , (2.170)

or upon simplifying

dP it3 dP
Srol -5
dtp dtp

_l’_

[\

i+3

ft)

C3

<(2 ]\f)ml - {ZJ:[J—lJrll p(y—l+1—2;p>—(j—l)l_p<j—l+2;pﬂ

=1

(8) " (3 232) - (+350)])

<o {iw—mv—p(jw—u—w—p(j—m—z)]

=1

<j+;>1_p (j+§) —jlor (‘H;_Z)”' (2.171)

After simplifying, the estimate of the error becomes

_l’_

dP it3 dr it3
o -]
MAt1 A - . p
< GopT [+ (142 )—lﬂ’(lﬂ-i)}
=0

+

<j+;>1 p(j+i>_j1_p <j+;_i>”, (2.172)
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Now we evaluate the sum in Equation (2.172) to give

[(z+ 1)i-r (z+ g) e (z 41— g)}

J Jj—1
:lz;llp<l—1+§> —ZZ;PP(lH—g)
j—1 j—1
:jl_p(j—l—l—g)+;ll_p(l—1+g) —;ll_p(l+1—g)

I
—

J

l

Il
o

j—1
= ji7p (j -1+ g) +(p—2) ZZH’. (2.173)
=1
The estimate error is then given by
dP it3 e itz .
%f(t) - ﬁf(ﬂ s < CAt"?, (2.174)
where C is the constant
MK(j, p)
C=—LP 2.175
I'(3—p) (2.179)
and K (j,p) is defined by
j—1
KGp) =7 (j-1+2) + -2 > 1
=1
1\'"? 1 2-p . 2—p
o1 L 2=p\ (., 2-P
+<j+2> <j+2 1 > J <]—|— 1 > (2.176)

In Equation (2.176), we have K(j,0) = 0, and K(j,1) = 3. For 0 < p < 1 the constant
K(j,p) is bounded by 0 < K(j,p) < % as shown in Figure 2.25. In Appendix B.9 we show

this sum, in Equation (2.176), is bounded and hence K (j,p) is bounded above by

. p—4 (IN'"? p—2 p
K(j:p) < == (3 + =+ 3¢ +p1), (2.177)

after using Equations (B.91) and (B.105). Hence the error is bounded by a constant

independent of ¢ and so demonstrates that the approximation scheme is of order O(At>~P).
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Figure 2.25: (Color online) The value of K(j,p) in Equation (2.176) as shown versus p for
varying number of time steps are j = 10,102,103,...,10°, where j increases in the direction

of the arrow. These results show K(j,p) is bounded by % forall 0 <p<1.

The estimate of the accuracy of the C3 scheme was tested on the functions f(¢), given in
Equation (2.7), at the time ¢t = 1.0 and p = 1 — v when v = 0.1,...,0.9. We again see

the error appears to be linear on a log-log plot which shows error behaves as
e~ CAtHY

for some constant C'. In Figures 2.26 — 2.30, we see as At is decreased the error also
decreases for each value of 7, and the slope of the lines match asymptotically the slope of
1+ v of the dashed lines as shown in the figure. In Table 2.8, we see that the maximum

error occurs where v = 0.1 for all functions f(t) and the minimum error occurs for v = 0.9.
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At

Figure 2.26: (Color online) The value of the absolute error found by using the C3 scheme to
approximate the fractional derivative of order 1 — v of the function f(t) = 2 at time ¢t = 1.0.
The error is shown for v = 0.1,...,0.9, where the value of v increases in the direction of the
arrow, and the dashed lines show lines of slope 1 + v for comparison. For small At the error

is of order O(At!*7).

At

Figure 2.27: (Color online) The absolute error in the estimate of the C3 approximation of the
fractional derivative of order 1 — « of the function f(t) = ¢* shown at ¢ = 1.0. The error is
shown for v = 0.1,...,0.9 with 7 increases in the direction of the arrow. Dashed lines show

lines of slope 1 + « for comparison.
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Figure 2.28: (Color online) The value of the absolute error in the estimate of the fractional
derivative of order 1 — v for the function f(t) = t* found by using the C3 approximation at
the time ¢ = 1.0, and for v = 0.1,...,0.9. Note the value of v increases in the direction of the

arrow. Dashed lines show lines of slope 1 4 « for comparison.

Ot

Figure 2.29: (Color online) The absolute error in using the C3 scheme to evaluate the fractional
derivative of order 1 —  for the function f(t) = 1 — e + 3, where v = 0.1,...,0.9 and time
t = 1.0. Note v increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + « for comparison.
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Figure 2.30: (Color online) The absolute error in using the C3 scheme to evaluate the fractional
derivative of order 1 —+ for the function f(¢) = 1+¢" at the time ¢ = 1.0 with vy = 0.1,...,0.9,
and + increases in the direction of the arrow. Dashed lines show lines of slope 1 4 v for

comparison.

Table 2.8: The comparison of the absolute error in the estimate of the order 1 — 7 fractional
derivative of the functions f(t), Equation (2.7), at time ¢ = 1.0 where v = 0.1,...,0.9 and
At = 0.01 by using the C3 approximation.

gl f(t) =+t fe)y =1 fey=tt  ft)=1-e+t2  ft)=1+1
v=0.1 4.982¢-03 1.481e-02 2.985e-02 8.103e-03 3.399e-04
v=0.2 2.701e-03 8.020e-03 1.585e-02 4.385e-03 3.287e-04
v=0.3 1.448e-03 4.287e¢-03 8.475e-03 2.344e-03 2.337e-04
v=04 7.665¢-04 2.258e-03 4.451e-03 1.234e-03 1.437e-04
v =0.5 3.989e-04 1.166e-03 2.288e-03 6.365e-04 7.970e-05
v=10.6 2.024e-04 5.855e-04 1.141e-03 3.189¢-04 4.000e-05
v =0.7 9.830e-05 2.798e-04 5.407e-04 1.520e-04 1.750e-05
v=0.8 4.360e-05 1.212e-04 2.314e-04 6.560e-05 6.080e-06
v=0.9 1.490e-05 4.030e-05 7.570e-05 2.170e-05 1.200e-06

The absolute error and order of convergence estimated of the fractional derivative of order
1 — v for the function f(¢) =14 t7 are shown in Table 2.9. To estimate the convergence
we used Equation (2.53), from the results given in Table 2.9 for v = 0.1,...,0.9 with time
t = 1.0, we see that the C3 scheme is of order O(At! 7).
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Table 2.9: Numerical accuracy in At of the C3 scheme applied to the function f(¢) =1+ t7,

and R is order of convergence.

v=0.1 v=0.2 v=0.3
At eo(A) R eso(At) R eo(A) R
1/1000  2.957e-05 2.291e-05 1.305e-05
1/2000 1.378¢-05 1.1 9.960e-06 1.2 5.294e-06 1.3
1/4000 6.427e-06 1.1 4.333¢-06 1.2 2.148e-06 1.3
1/8000 4.484e-06 1.1 1.885e-06 1.2 8.723e-07 1.3
1/16000 1.398e-06 1.1 8.205e-07 1.2 3.541e-07 1.3
~v=0.4 v=0.5 v=0.6
1/1000 6.451e-06 - 2.891e06 — 1.180e-06  —
1/2000 2.442¢-06 1.4 1.022¢-06 1.5 3.903e-07 1.6
1/4000 9.245e-07 14 3.611e-07 1.5 1.290e-07 1.6
1/8000  3.502e-07 1.4 1.277e-07 1.5 4.261e-08 1.6
1/16000 1.327¢-07 1.4 4.513e-08 1.5 1.407¢-08 1.6
v=0.7 v=0.8 v=0.9
1/1000 4.276e-07 - 1.253e-07 — 2.138¢-08 —
1/2000 1.327e-07 1.7 3.676e-08 1.8 5.975¢-09 1.9
1/4000 4.115e-08 1.7 1.075¢-08 1.8 1.662e-09 1.9
1/8000 1.274e-08 1.7 3.135¢09 1.8 4.609¢-10 1.9
1/16000 3.939¢-09 1.7 9.124e-10 1.8 1.274e-10 1.9

We conclude that from these results that the accuracy of the L1 scheme, C1 scheme, C2

scheme and C3 scheme approximations are the same order of 1 4+ v, where p = 1 — 7.

We see in the Tables 2.2, 2.4, 2.6, and 2.8 the minimum error occurs for v = 0.9 and the

maximum error occurs for v = 0.1. We also note that, from Figures 2.7 — 2.11, 2.14 — 2.18,

2.20 — 2.24, and 2.26 — 2.30, the error decreases as the value of At is decreased for each

value of v. We also see, from these results, that the C2 scheme is a better approximation

as it is more accurate in magnitude than the other schemes.
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2.7 Romberg Integration

In this section, we use Romberg Integration (Mathews & Fink 1999) to help approximate
the integral in Equation (2.9) to evaluate the fractional derivative. We consider the use of
Romberg Integration because it may give a higher order accuracy and the other benefit is
that we can evaluate the estimates iteratively. Because of the singularity of the function

f(7)(t — 7)7P we need to rewrite the integral as
| =i = [0 = ro) e=nris+ [ - i
= / (f'(r) = f'(1) (t = 7)"Pdr + f'(t) / (t—7)"Pdr. (2.178)
0 0

The last integral can be evaluated as

t R LA e
/O(t—f)—pdf_— [(t1_)p = f_p. (2.179)
Equation (2.178) is then given by
t t tlfp
/0 F(r)(t — 1) Pdr = /0 (f'() = £/ ) (t = 7) Fdr + f(1) ~ (2.180)
Let
g(r,t) = (f'(r) = f'(t) (t —7)77, (2.181)

then we have

A (j-1)A iA -
/otf’(T)(t—ﬂ‘pdT:/O tg(ﬂt)d”/] tg(m)d”/] t g(r,t)dr + f'(t) r °

At (j—1)At 1-p
(2.182)

To evaluate the integral from 7 = (j — 1)At to 7 = jAt, we use the finite difference

approximation of f/(7), to find

jAL jAt
[ atmoar= [ (50 - £(0) ¢ 7
( (

j—l)At j—l)At
_ (fUAY) = f((G—-DAY) (-7 jAt
~( Al ro) |- .
C(fGAY = F((G - 1AL, AP
- ( At - f (ﬂ) 1— »
p o
- & (fGAL) — f((1 —1AYL)) — At (1), (2.183)

1—p 1—p
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and the integral from 7 = 0 to 7 = At, gives

At At
/ o, t)dr = / (F'(7) - £'() (t — 7)Pdr
0 0

~ (f(At)A; f(0)> [tlp —ft_—pAt)lP] _ [tlp _ft__pAt)l

(2.184)

To evaluate the second integral in Equation (2.182) from 7 = At to 7 = (j — 1)At, we
use Romberg integration (Mathews & Fink 1999) by setting a = At, b = (j — 1)At, and
with h, = (b—a)/2"~!. We then have

b
/ g(7,t)dr =~ I ) + ¢, (2.185)

The one and two-interval Composite Trapezoidal approximations of this integral are

b—a
L= 5 [g(a,t) + g(b,t)], (2.186)
for one interval, and
— b
Iy, = Ta [g(a,t) +2g <a—2i_,t> + g(b, t)} , (2.187)

for two intervals. The Composite Trapezoidal rule of subinterval n is given by

an—1l_1
h
Ini == |9(at) +2 Z g(mi,t) + g(b,1) | (2.188)

where 7, = a + th. For n > 1 we split the summation into two summations containing

odd numbered terms and containing even numbered terms like so

an—2 2n—2-1
Ini = %" gla,t) +2 z; gla+ (20 —1)h,t) +2 z; gla+ 2ih,t) + g(b,t)
h i an—2-1 2n—2
= 7” gla,t)+2 ; g(a+ 2ih,t) + g(b,t) | + hs ; gla+ (2i —1)h,t)
] on—2_1
zfn 11+ Iy Z + (2i — 1)h, t). (2.189)

For 2 < k < n, we can use Richardson Extrapolation (Richardson 1911, Mathews &

Fink 1999)

Lot — It s
T = Ty + g i (2.190)

For instance, to obtain 32 we can apply Richardson Extrapolation in Equation (2.190)

using Iz and I3;. There is a significant decrease in error in using the estimate I, 2



2.7 Romberg Integration 86

as it has fourth-order accuracy and I, is computed using half the step size of I,,_1 2.
This follows from the error term in the Composite Trapezoidal Rule is O(h?), and in the

Richardson is O(h®) (Kress 1998).

In using Romberg Integration to approximate the integral in Equation (2.185) we currently

use a set number of subintervals n and order k.

Using Equations (2.183), (2.184) and I,, ; in Equation (2.190) into Equation (2.9), we

then have the RInt approximation at ¢t = t;

[dpd];]Et)

1 (LT =t — At
ame T2—D) { [(1 R ( At )

+ ((t; — AP — AETP) F(t) + AP (f; — fi-1) }+I k-

(2.191)

Using the finite difference method to approximate the first order derivative, we then

obtain the approximation

dpf(t) = Atr P 1—p ; -p :1—p . -p
R I e o e T e I R R
+ G-V fio) }+1“(11—p)1"7’“ : (2.192)

where f; = f(jAt). The RInt scheme (given in Equation (2.191)) was tested on the
function f(¢) given in Equation (2.7) at time ¢t = 1.0 with p = 1 —~ when v = 0.1,...,0.9.
The error of the approximation is plotted as a function of At on double logarithmic scale
plot given in Figures 2.31 — 2.35. Here the 192 estimate of the integral was used.

We see in Figures 2.31 — 2.35, the error decreases as At decreases and for small At the
error is of order O(At!*7). We also see the slope of the lines match asymptotically the
slope of 1+ v of the dashed lines. The comparison of the absolute error for each function
given in Table 2.10. We see in Table 2.10, the maximum error occurs where v = 0.1 for

all functions f(¢) and the minimum error occurs for v = 0.9.
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Figure 2.31: (Color online) The value of the absolute error found by using the RInt scheme,
Equation (2.191), to approximate the order 1—+ fractional derivative of the function f(t) = ¢2
at ¢ = 1.0. Results are shown for v = 0.1,...,0.9, and the value of 7y increases in the direction

of the arrow. For comparison we show lines of slope 1 + v as the dashed lines.

Figure 2.32: (Color online) The absolute error in the estimate of the RInt¢ approximation,
Equation (2.191), found for the fractional derivative of the function f(t) = t* of order 1 — v
at t = 1.0. The error is shown for v = 0.1,...,0.9 with v increases in the direction of the

arrow and the dashed lines show lines of slope 1 4 7y for comparison.
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Figure 2.33: (Color online) The value of the absolute error of the fractional derivative of order
1 — v for the function f(t) = t* found by using the RInt approximation, Equations (2.191),
at the time ¢ = 1.0, and for v = 0.1,...,0.9. Note the value of y increases in the direction of

the arrow. Dashed lines show lines of slope 1 + « for comparison.

Figure 2.34: (Color online) The absolute error in using the RInt approximation, Equa-
tions (2.191), to evaluate the fractional derivative of order 1 — « for the function f(t) =
1 —ef +t3, where v = 0.1,...,0.9 and time ¢t = 1.0. Note  increases in the direction of the

arrow, and the dashed lines show lines of slope 1 + « for comparison.
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Figure 2.35: (Color online) The absolute error in using the RInt¢ approximation, Equa-

tions (2.191), to evaluate the fractional derivative of order 1 — +, where v = 0.1,...,0.9,

for the function f(¢) = 1+ ¢” at the time ¢t = 1.0. Note +y increases in the direction of the

arrow, and the dashed lines show lines of slope 1 + « for comparison.

Table 2.10: The comparison of the absolute error in the estimate of the fractional derivative

of order 1 — v on the functions f(t), Equation (2.7), at the time ¢ = 1.0 with v = 0.1, ...,0.9

and At = 0.01 by using the RInt scheme approximation.

gl f(t) =+t fe)y =1 fey=tt  ft)=1-e+t2  ft)=1+1
v=0.1 4.886e-03 1.461e-02 2.913e-02 7.992e-03 4.428e-04
v=0.2 2.578e-03 7.709e-03 1.537e-02 4.216e-03 4.157e-04
v=0.3 1.331e-03 3.981e-03 7.934e-03 2.177e-03 2.820e-04
v=04 6.699e-04 2.003e-03 3.991e-03 1.095e-03 1.624e-04
v=0.5 3.260e-04 9.745e-04 1.942e-03 5.330e-04 8.250e-05
v=0.6 1.516e-04 4.530e-04 9.026e-04 2.478e-04 3.691e-05
v =0.7 6.575e-05 1.965e-04 3.915e-04 1.075e-04 1.413e-05
v=0.8 2.524e-05 7.543e-05 1.503e-04 4.124e-05 4.142e-06
v=0.9 7.246e-06 2.162e-05 4.307e-05 1.181e-05 6.831e-07

In Table 2.11, we show the convergence result in At of the fractional derivative of order

1 — v for the function f(¢) =1+ t7, where v = 0.1,...,0.9 and the I3 2 estimate of the

integral was used with time ¢ = 1.0. From the results given in Table 2.11, we obtain the

prediction accuracy of 1+ -y in time.
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Table 2.11: Numerical accuracy in At of the RInt scheme applied to the function f(t) = 1+t7,

where R is order of convergence.

v=0.1 v=0.2 v=20.3
At eo(A) R eso(At) R eo(A) R
1/1000  3.882e—-05 2.920e-05 1.587e-05
1/2000 1.810e-05 1.1 1.271e-05 1.2 6.444e-06 1.3
1/4000 8.444e-06 1.1 5.530e-06 1.2 2.617¢-06 1.3
1/8000 3.939¢-06 1.1 2.407e-06 1.2 1.063e-06 1.3
1/16000 1.838e—06 1.1 1.048¢-06 1.2 4.316e-07 1.3
~v=0.4 v=0.5 v=20.6
1/1000 7.319¢-06 - 2.975¢-05 — 1.065e-06  —
1/2000 2.773e-06 1.4 1.052¢-06 1.5 3.513e-07 1.6
1/4000 1.050e-06 1.4 3.717e-07 1.5 1.158¢-07 1.6
1/8000  3.980e-07 1.4 1.314e-07 1.5 3.821e-08 1.6
1/16000 1.509e-07 1.4 4.648¢-08 1.5 1.261e-08 1.6
v=0.7 v=0.8 v=0.9
1/1000 3.241e-07 - 7.603e-07 -~ 9.832e-09 —
1/2000 9.974e-08 1.7 2.183e08 1.8 2.634e-09 1.9
1/4000  3.069¢-08 1.7 6.268e-09 1.8 7.056e-10 1.9
1/8000 9.447¢-09 1.7 1.800e-09 1.8 1.891e-10 1.9
1/16000 2.910e-09 1.7 5.176e-10 1.8 5.081e-11 1.9

2.8 The Short Memory Principle

The value of a fractional derivative of a given function f(t), see Definitions 1.2.1 — 1.2.3,

depends on the function values in the interval 0 < 7 < ¢ and so the fractional derivative

of function f(t¢) depends on the historical behavior of the function f(¢) (Podlubny 1998).

It should be noted that to use the fractional derivative approximations, as in Equa-

tions (2.12), (2.60), (2.75) and (2.88), the history of the function f(t) needs to be stored

and the convolution sum needs to be evaluated. One of the major issues in evaluating

fractional derivatives numerically is the cost of the evaluation of this convolution sum.

This computational cost increases as the number of time steps increases, becoming sig-

nificant for a large number of time steps. This is not as significant for problems involving
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space-fractional derivatives as the domain does not grow and so the computational cost
does not increase. One way to reduce this computational cost is to eliminate the tail of
the integral, known as the short memory principle (Podlubny 1998). This takes advantage
of the fact that the integral in the fractional derivative is weighted mainly around the
time ¢, that is the most recent history of the function f(¢), with earlier history near ¢t = 0

contributing less to the value of the fractional derivative.

The idea behind the short memory principle is to consider only the most recent history
of the f(t) when evaluating the fractional derivative. That is only in the interval [t — T, t]

where T is the memory length
JDUF() ~ rDVF(E), (8> a+T). (2.193)

Podlubny (1998) shows that the truncation error is given by
. < MT?
~T(1-p)
with a fixed integral length T', if |f(¢)] < M for a < t < b and where p is the fractional
derivative order.
Ford & Simpson (2001) introduce a short-memory principle for the Caputo derivative,

and show that the truncation error is given by

€ < L (tl—P _ Tl—P) ,
I'(2-p)
where p € (n — 1,n), n € IN. Deng (2007b) extended the effective range of short memory

principle from p € (0,1) to p € (0,2), where the integral interval [0, ¢,] split as follows
[0,t0] = [0,tn, — @™ T U [tn — @™ T tn — ¢™ 7] U U [ty — @27, by — q7] U [tn — g7, L],

where 7 = h, h € R", m,,q € N and ¢"'r < t,, < ¢""17. Deng (2007b) implemented the
numerical computation by using the Predictor—Corrector approach, as in Diethelm et al.

(2002), where 0 < p < 1. The convergent order was found to be order 1 + p in time.

In this section, we introduce a short-memory principle for the Riemann—Liouville frac-
tional derivative in Equation (2.8) by using Equation (2.12). We also consider regression
methods to approximate the early history given in Equation (2.9) instead of ignoring this

early history. We will discuss this in the next sections.
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2.9 Reduction of the Computation of the L1 Scheme

In this section, we consider reduction of the computation of the L1 scheme following
the short memory principle approach. To do this we suppose that the summation in
Equation (2.12) starts from k& = n instead of £ = 0. We refer to this approximation as

the L1* scheme and it is given, for n < j, as follows

: .
PO 7P At S : lp _ (i _\lp
[ dip Ll*_r(l—p)fo+F(2—p),;1(fk Ser) [G— (k+ 1) = (G — k)P,
(2.194)
again we denote f; = f(jAt). We can rewrite L1* scheme, if 1 <n < j, as
af(t)) AtP _ /
= - 1— p . 1
|: dt? 1 P(2 _ p) ( p)j fO + Z N] k(p>fk ) (2 95)
k=n
where the weights N;(p) are defined by
G=@+D))P=(G-m)" if  I=j-n,
N(p)=q(U-D"P 2P+ (1+1D)"? if  1<I<j—(n+1), (2.196)

1 if l=0.

To evaluate the L1* at the functions 1 and ¢ we need the following lemma.
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Lemma 2.9.1. Given the weights N;_;(p) defined in Equation (2.196), and n < j, we

have

J
L. > N;_k(p) =0, and
k=n

j
2. 3 kRjk(p) = (G —n)' P

k=n

Proof. Using the definition of the weights in Equation (2.196), we then have
ZN] Kp) =G - (+1) P =G —n)'P 41

.S (G = b+ 1) =2 = ) + (= (b = 1)

k=n+1

=(—(n+1)) "= -n)'"+1

J Jj—1 Jj—1 Jj—2
+ > G-r)'TP= Y G-k - [ > G-k - Z(j—rz)”]
1

ri=n-+2 k=n+1

=(-(+1))P—(G-n)"P+14+0+ > (G-r)'P =G - (1)

ri=n+2
Jj—1 Jj—2
Y I S R e SR
k=n-+2 k=n+1 ro=n+1
_0 (2.197)

Hence the first result holds. We now show the second result also holds

> onlp) =G = (1) = (=) 7]
k=n

j—1
3 k|G k) T 2GR (- (k= 1)
k=n+1
j—1
=n |G =+ 1) =G0 i Y kG- (k1)
. . k=n+1
—2 ) kG-R)TPE D> kG- (k1) (2.198)

k=n+1 k=n+1
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and rewriting the first and last sums, we find

SRRkp) =n [+ )T = G P i DD =) G )
k=n

ri=n+2

j—1 j—2
=2 ) KGR (1) ()t
k=n+1 ro=n
i
=n (= +1) P =G =) i+ D G-
ri=n+2

j—1 Jj—2
S kG —k) [Z k(G — k)P - Zwu—m)lﬁ]

_k: +1 k=n-+1 ro=n
j—2
= > G P Y )
ri=n-4+2 r2=n
—n [ =+ 1) =G =) P =t )G = (1) = (- 1)
+n(j—n)'"P =14+ (=)' P+ (- (1)
= (j—n)'"". (2.199)
Hence result (2) also holds. O

We note there is a problem with the L1* approximation. We note it is exact for f(¢) = 1,

ie.
(1)) t,P AP j’lN
=—1)+=——— i 2.200
EXN eI R RRI) (2.200)
and by using first result in Lemma 2.9.1, we have the exact value of the derivative
p J t. P
[d (LI _ —1 (2.201)
v |;;» T'(1-p)

But for f(t) =t we have the approximation

P (t) |’ t;P Atl -
S B kR
{ dtr |, T(1 —p)( Z i (P

= Zk;NJ x(p (2.202)
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Now evaluating the summation, by using the second result in Lemma 2.9.1, we find

) At
[ |, Te-pY "
_ (jAt —nAp)tP
- T2-p)
. 1-p
_ (tﬂr (ztf)p) . (2.203)

When we compare this result with the exact fractional derivative of the function f(t) = t,

arfi) . t-e
dtr. — T(2—p)’

we have an error unlike when the full L1 scheme is used. To remedy this

we add an extra term

1
eI TR R FAC)
to Equation (2.194). We then have the approximation
rf)| _ 1 - L Niep)
[ atr | F(lj—p)f0+ r2—p) [t =t = ta) 7] £(0)
AP I X 1
+w;(fk—fk+1) [G—(k+1))" =G =k, (2.204)
which we will refer to as the RL1 scheme. Equation (2.204) can be rewritten as
P ft)) TP 1 1- , 1—p] ¢
[ dt* |pry F(IJ—P)fO * I'(2—-p) [t577 = (& =) 7P] F(0)
oo L 4 (G e )P = -]
reg-pl7 v J "
j—1
+ > Sl B+ =20 —R) P (- (k= 1) 7] } . (2.205)
k=n+1

or, upon using the first order finite difference approximation for f/(0), as

[dp fof A
dtr |p;, T(2-p)

+ i+ [0 =+ 1) =G = n) ] fa

{ [(=p)i ="+ G =) o+ [ = (=)' P

j—1
+ > Sl R+ TP =20 — k)P (- (k= 1) 7] } . (2.206)

k=n+1

If n > 0 the RL1 scheme can be rewritten as

FrOf A el

[ dtr | pry = m {h(P)fo + [jl —(j- n)l ] fi+ ;Nj_k(p)fk} . (2.207)
where Ai(p)

hp)=1—p)j P —3"P+(j—n)?, (2.208)

and the weights N;_j(p) are given in Equation (2.196). In the next section we give the

accuracy of the RL1 scheme and the L1* scheme.
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2.10 Accuracy of the RL1 and L1* Schemes

In this section, we determine the accuracy of the fractional approximation RL1 and L1*
schemes given by Equations (2.204) and (2.195) at time ¢ = ¢; and 0 < p < 1. We again
follow the approach of Langlands & Henry (2005) by assuming f(¢) can be expanded as
in Equation (2.20). The value of the fractional derivative of Equation (2.20) is given by
Equation (2.25).

2.10.1 Accuracy of the L1* Scheme

In this section, we consider the accuracy of L1* scheme given in Equations (2.195) and
(2.196). As shown previously in Section 2.6, the accuracy of L1* can now be determined
by comparing the exact value in Equation (2.25) with the value obtained using the L1*
scheme. Now we need to evaluate the L1* fractional approximation operating on the
functions 1, ¢ and the convolution integral in Equation (2.20).

In Equations (2.201) and (2.203) we found the L1* fractional approximation operating

on the functions 1 and ¢.

We now apply the L1* fractional approximation on the convolution integral, to find

i ([ o) =G5 10 -mi i L
T i R k(p) k/Atf”(S)(kAt —s)ds b . (2.209)
k=n 0

Note the limit in the first term on the right is zero if f(t¢) is a well-behaved function of t.
By dividing the integration interval into equal At steps, we have

e [/ " (s)(t —s)d

pop (DAL

= ZN] k(p Z / s)(kAt — s)ds, (2.210)
k: n

=0 A

1*
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and then by changing the order of summation, we obtain the expression

| +DA
I/ //
T [/f )(t — s)d | 2 > Z / F( ZNJ k(p) (kAL — s)ds
=0 At
jo1 (+D)AL
+> / Z N, i (p) (kAL —s)ds p . (2.211)

Then the L1* scheme approximation for the function f(t) is then given

a4 (tj —ta) 7,
[ dtP |1, N I'(1-p) fot I'2-p) F(0)
A o DAL
+P
+ m Z / Z N] k k‘At — S)d
=0 ga¢
PERCEY
+> / Z R, 1 (p)(kAt — s)ds p . (2.212)
l=n IAL k=Il+1

The value of the L1* approximation scheme in Equation (2.212) can now be compared
with the value of exact of the fractional derivative in Equation (2.25). The error can be
evaluated as follows

EST

J

L1 I'(1-p) - D)

t;" ’ tl‘_p / 1" (t' _3)171)
= f0]7+f(0)ﬁ +O/f (8);(27@

t.? ( )1-p AP no1 (FDA

- b — )™ t

— fo—Zt— — 0L _ / N (p)(kAt — s)ds

b O ey ten )/ Z SRR
PRRGEN

+> / Z N, x(p) (kAL — s)ds o |, (2.213)

which, after simplifying, becomes

N N o o U TS S Y S P
o] - [mro] |=|rg (7 - - w) ro)
_q (+DAt
1 n
T2=p) g / f”()[(t—s AthNjk k:At—s)]ds
- IAt

o1 (DAL

+> / [(t S L YN Z R, x(p kAt—s)] ds p|. (2.214)

l=n IAL k=l+1
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To evaluate the summations Zi:lﬂ N;_x(p) and Ei:lﬂ EX;_1(p) we need the following

two Lemmas.

Lemma 2.10.1. Given the weights X;_j(p) defined in Equation (2.196), and n < I+1 < j,

we then have

Z N h(p) =G D" = (G- (1+1)P, (2.215)

k=l+1

Proof. By using Equation (2.196), we have

J
S Nl =1 3 [l e )T 2 R (- 1)
k=Il+1 k=I+1
j—1

_1+Z (G— (k+1)) —22;— 1p+2 j—(k—1))

k=l+1 k=l+1 k=Il+1
(2.216)
and, after rewriting the first and last sums, we find
i i i1 i1 2
DN =1+ Y Gr) TP Y G R T DGR )
k=l+1 r1=I+2 k=l+1 k=I+1 ro=l
Jj—1 Jj—1
S 140+ Y G- TG Y (R
r1=I0+2 k=142
Jj—2 Jj—2
— 1+ Y GRG0 = > ()
k=l+1 ro=l+1
=([G-0"" =G -0+1) (2.217)
Hence the result in Equation (2.215) is correct. O

Lemma 2.10.2. Given the weights R;_;(p) defined in Equation (2.196), and k£ < j, then

Z kR k() =+ 1) DY P =1 — (I +1)"7. (2.218)
k=Il+1
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Proof. By using Equation (2.196), we have

7j—1

J
S kp) =i+ 3 k[ (1) T2 = B (- (k= 1)

k=Il+1 k= l+1

—j+Zk:]—(l<:+1 —QZk]— P

k= l+1 k=l+1

+Zk]— k—1) (2.219)

k=141
then, after rewriting the first and last sums, we find

J

7j—1
Z ) =+ > (m=1G-r)" =2 k(—k)'"
k=Il+1 r1=Il+2 k=Il+1
j—2

+ Y (ra+1)(G—r2)" P

ro=I

J j—1 j—1
=i+ Y mG-r)' = Y kG -k | Y kG- k)
=142 k=141 k=i+1
j=2 j j—2
=Y o) = > Ger) TP Y ()t
ra2=l r1=1+2 ro=l

—(+D)G -0+ PG - +HIG )P -1
GG -+

—(I+1)G-D"P—1(G—(+1)P. (2.220)

Hence the result in Equation (2.218) is true. O

Now using Lemmas 2.9.1, 2.10.1, and 2.10.2, then the summations in Equation (2.214)

are given by
Z N (p) (kAL — 5) = At(j —n)' 7P, (2.221)
and

Z N;_k(p)(kAt —8) = (j — D' P((I+ DAt —s) — (5 — ([ + 1) P(IAL —5). (2.222)

k=l+1
‘/f(a:)dx

Using the inequality

< [1r@]da (2.223)
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Equation (2.214) then becomes
iorge P
[

dtr” " s 57 = (5 = t) 7| 1(0)] (2.224)

[j;ﬂt)

n—1 (I+1)A

2= pz / 1( H i — ) At! P(j— n)l_p‘ds

=0 A4
i1 (DA

+;Z / £ ()] (8 — )P = AP [(j = D'P((L+ 1) AL — 5)

—(j — (I +1)'PAL - 5)]| ds.

Let the maximum absolute value of the second derivative in each interval [IAt, (I + 1)At]

where [ =0,...,5 — 1, by

M, = " . 2.225
I mtgsng(iz}il)m}f (s)] ( )

The bound then becomes

1

& tj & tj < 8P — (t — ) 7P| | £(0 2.226
Lmﬂ>—[ﬁgmLN_F@ﬂmL St I 2226)
(I+1)At
o ZMZ / (t; — )17 — AEP(j — ) P| ds
LAt
- (I+1)At
1 J
+7F(27p) ;Mz / [(t; — )P = AP [(j = D' P((L+ 1) At — )
LAt
—(j — I+ 1)"P(At - 5)]| ds.
We conclude that the term
(tj =) P = AP —n)' P = (1 — )P = (t — 1),

is positive since f(z) = x!7P is an increasing function of x and for 0 <! < n — 1 and
IAt < s < (I+1)At we have 0 < s <t, <tjandsot; >t; —s>t;—t, >0. Also it
is shown in Appendix B, Section B.1, that the term in the absolute value function in the
second integrand is positive and so we can drop the absolute sign in both integrals.

Evaluating the integrals in Equation (2.226), we have

(+1)At (DAL
/ (tj—s) Pds = [_ (t; = )"
IAt 2= p IAt
AP oy _
e (R (R BVl (2227)
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(I+1)At

§2 (I+1)At
/ [[At — s]ds = [lAts - —
2 liae
1AL
20+ 1
- [Z(At) - T+(At) }
2
= —ATt, (2.228)
and
(I+1)At oA
/ [+ DAL — 5] ds = [(l%—l)Ats— s
2 lint
1AL
20+ 1
_ {(z +1)(AD? - ;(At)Q]
2
_ ATt. (2.229)
Inserting the value of the integrals into Equation (2.226) and then letting
M = max{M;; 1 =0,1,2,...,j}, we have
o - [Lro] |« - w10 (2:230)
dtp v’ .| T T(@2-p) Y o '
AP M = 2 p 2-p 1
. e e N(s o N-p
e T2 -7 {l 0 [(] ) (J—1-1) 2-p)F—n) }

+Z[9l S (- Z;p[(jl)l‘pw<l+1>>1"’]]}.

Evaluating the summations

i[f—l J—<Z+1>>2p}=t§§3_z lil]_l

7 = j;_p ~(=n)*", (2.231)
ji G=0>7 = (= a+1)"7] = ji (G- 1> _lil (G — 2
_ - (;_ n)* ", N (2.232)

<
|
—
u
,_.

S |G-0"T G ) = SO0 Y G0
l=n l=n+1

=@-n)'"r+2 > (G-, (2.233)
l=n+1
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and using these results in Equation (2.230), we then have
dP J P
/0] - |50

J

dtp dtp

I ] CRA CRU i [ICTRCE D

N At2PM
(2-pl'(2-p)

2_p . 1-p = . 1-p
5 (J—n) +QZ(]_Z) '

l=n+1

{j“ )PP = @ )l — )P (- n)P

Equation (2.234) simplifies to

J

PN I N
[dtpf(t) — [dﬂ,f(t) IESvoE ‘tj Pt —ty)! p) 1£/(0), (2.235)
AZPM |, 2 =i t)

—p D —p —p
+F(3—p) 42 —?(]—n)l (2n+1)—(2—p) ; k!

j—1
1 . _ ARPM | — 1
= o |t; T =t —ta) P S P2 - (2-p) —2(2— P
@ ) 677 = (1 — ) 7|17 0) + TG ) [J (2j - (2—p)) - 2( p)kz_l
APM | . =
= oGt r2n 1) 42 S kP 2.2
Tor@op |7 U e )+ k_]z;n (2.236)

The estimate error is then given by

J

ool [ Zrwl <t 1477 — (15— )P 1 (0) + CAPP 4 Cr AR
dtr dtp | T(2-p 1 o n ’
(2.237)
where C' is defined by
M9(j, p

and (7, p) is given by Equation (2.50). The bound of C' is given by Equations (2.49) and
(2.51). The value of C} is given by

MF(j, n,p)
* — R 2.239
where k(j,n,p) is
j—1
Knp) =1 G- ) a1 42 Y K (2:210)
k=j—n

In Equation (2.240), we have (j,n,0) = n? and x(j,n,1) = 0. For 0 < p < 1 the constant

#(j,n,p) is bounded by 0 < k(j,n,p) < n? as shown in Figure 2.36. Another bound can
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be found by sitting j = n, which gives

J—1

k(G g,p) =3P +2) kP
k=0

J—1
<GTP2) (-1
k=1
<GP 4235 —1)%7P. (2.241)

This shows the term C:At?>P is of order 7P as an upper bound. We see the error
increases in Equation (2.237), so this suggests that just by adding the extra term in
Equation (2.204) does not improve the accuracy even though makes it exact for linear

functions of time.

In Figures 2.36 — 2.38, we show the value of k(j,n,p) given in Equation (2.240) against
p, where p = 0,...,1. In Figure 2.36 we set j = 1000 and varied n = 50, where
l=1,2,...,8. We see the value of k(j,n,p) increases as n increases in the direction of
the arrow. Whilst in Figure 2.37 when n is fixed and varying j = 10* where k = 2,3,4,5
and 6, the value of k(j,n,p) decreases as j increases in the direction of the arrow. We
also note that the value of k(j,n,p) increases as p decreases, we see that the maximum
value of k(j,n,p) occurs for p = 0 and the minimum value of k(j,n,p) occurs for p = 1.
We show the maximum value of the x(j,n,p) in Figure 2.38 for n = j = 1,...,10. We
note the value of k(j,n,p) increases as j increases in the direction of arrow, as suggested

by the upper bound in Equation (2.241).
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06 07 08 09 1

P
Figure 2.36: The value of x(1000,n,p) in Equation (2.240) is shown against p for varying
values of n = 501, where [ = 1,2,...,8. The value of n increases in the direction of the arrow.

Note the value of (1000, n,p) increases as p, 0 < p < 1, decreases.

2500

——— i
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— 1
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=108

2000

1500

w0500

1000
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Figure 2.37: The value of k(j,50,p) in Equation (2.240) is shown against p for 0 < p <1 for
fixed n = 50 and j = 10* where k = 2,3,4,5 and 6. The value of k(j,50,p) decreases as j

increases in the direction of the arrow.
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Figure 2.38: The maximum value of k(j,7,p) in Equation (2.240) is shown against p for
0<p<lforn=j=1,...,10. The value of k(j, j, p) increases as j increases in the direction

of the arrow.

The accuracy of the L1* scheme was estimated by comparing the fractional derivative
of order p = 1 — «, for v = 0.1,...,0.9, of the function f(¢) = t*, for exponents k =
2,2.5,3,3.5, and 4, at the time ¢ = 1.0. The error is plotted as a function of n for each
function in Figures 2.39 through to 2.43. Also the comparison of the absolute error is
given in Table 2.12, where we have set j = 100 and n = 100. We see that the maximum
error occurs for v = 0.5 for functions f(¢) = t* and f(t) = >, and the minimum error

occurs for v = 0.1. Whilst the maximum error occurs for v = 0.4 for functions f(t) = ¢3,

f(t) =135 and f(t) = t.

In Figure 2.39, we see the error does not increase immediately for all + values when n
is small. For example for v = 0.1 the error only begins to increase when n = 20. Thus
suggests we can use the L1* scheme with n =1,...,20 without introducing a large error
for n > 20. Whilst for v = 0.9 the error begins to increase for n > 2, which is not as
good as v = 0.1. We also see in Figure 2.43 for the value v = 0.1 the error only begins to
increase when n > 70, so we can use the L1* scheme with n =1,...,70, to still maintain
the same level of error. But for the case v = 0.9 the error begins to increase for n > 6, so
we can only ignore a smaller number of terms for case v = 0.9 compared with the number

that can be ignored for v = 0.1. We see similar behaviour in Figures 2.40 and 2.41.

From these figures it appears we can ignore more terms as the power of ¢ increases. This
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is most likely due to the fact the value of M = max(f”(z)) and f'(0) being smaller as
the power increases. From Table 2.12 and the Figures 2.39 — 2.43, we conclude that the
error increases as n increases (as we ignore more history), and the minimum error occurs

for n is near zero. This is to be expected as n = 0 is similar to the L1 scheme.

10 —

1’° 10 10
n

Figure 2.39: The absolute error in using the L1* scheme, Equation (2.194), for the fractional
derivative of order 1 — v of the function f(¢) = t2, at time ¢t = 1.0, with j = 100 and
n=1,...,7j. Results are shown for v = 0.1,...,0.9 where « increases in the direction of the

arrow.

Figure 2.40: The absolute error in using the L1* scheme, Equation (2.194), for the fractional
derivative of order 1 — 7 of the function f(t) = 2%, at time ¢ = 1.0, with j = 100 with
n =1,...,100. Results are shown for v = 0.1,...,0.9 where 7 increases in the direction of

the arrow.
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Figure 2.41: The absolute error in using the L1* scheme, Equation (2.194), to evaluate the
fractional derivative of order 1 — v for function f(¢) = t3, at time ¢ = 1.0. Results shown for
j = 100, with n = 1,...,100 for v = 0.1,...,0.9 where - increases in the direction of the

arrow.
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Figure 2.42: The absolute error in using the L1* scheme, Equation (2.194), for the fractional

derivative of order 1 — 7 of the function f(t) = 35

, at time ¢t = 1.0, with the time step
j =100 where n = 1,...,100. Results are shown for v = 0.1,...,0.9 where « increases in the

direction of the arrow.
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108

Figure 2.43: The absolute error in using the L1* scheme, Equation (2.194), to evaluate the

fractional derivative of order 1 — v for function f(¢) = t*, at time ¢ = 1.0. Results shown for

j =100, n =1,...,100, and for value v = 0.1,...,0.9 where v increases in the direction of

the arrow.

Table 2.12: The comparison of the absolute error for functions f(t) = t*, k = 2,2.5,3,3.5,

and 4 at time ¢ = 1.0 with n = 100, j = 100, and At = 0.01 using the L1* scheme to evaluate

the 1 — v order fractional derivative, where v = 0.1, ...,0.9.

gl fy=t  f)=1> fley=2 f(t) =t ft)y=t!
v=0.1 5.914e-01 6.790e-01 7.604e-01 8.369e-01 9.0951e-01
v=0.2 9.524e-01 1.076e-00 1.188e-00 1.290e-00 1.386e-00
v=0.3 1.157e-00 1.288e-00 1.405e-00 1.510e-00 1.607e-00
vy=04 1.255e-00 1.375e-00 1.482e-00 1.578e-00 1.664e-00
v=0.5 1.280e-00 1.382e-00 1.470e-00 1.549e-00 1.619e-00
v=0.6 1.259e-00 1.337e-00 1.405e-00 1.463e-00 1.515e-00
v=0.7 1.208e-00 1.262¢-00 1.309e-00 1.348e-00 1.383e-00
v=0.8 1.139e-00 1.172e-00 1.198e-00 1.220e-00 1.239e-00
v=0.9 1.062e-00 1.074e-00 1.0836e-00 1.091e-00 1.096e-00

2.10.2 Accuracy of the RL1 Scheme

In this section, we determine the accuracy of the fractional derivative at time t = t;

and 0 < p < 1 given by the RL1 scheme in Equation (2.207). We again compare the
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result of taking the exact fractional derivative of f(¢) given in Equation (2.25) with
approximate result obtained by RL1 scheme in Equation (2.207). Similar to before we
apply the RL1 approximation scheme on the functions 1, ¢ and the convolution integrals
in Equation (2.20) at time ¢ = ;.

The RL1 approximation of the function f(¢) =1 at time ¢ = ¢;, is given by

[dp(l)

dtp

AP
RL1 ['(2-p)

I [jl—P — (- n)l—P] (1) + Z Nj_k(p)(l)}
k=n

{ (L= p)i =P+ (G —n)'?) (1)

AP b Sy
=— < (1—p)~ - . 2.242
Using the first result of Lemma 2.9.1, Equation (2.242) becomes
dr (1))’ AP _
[ d(P) Tt
® |rra (2-p)
;P

=_J 2.243
I'(1-p) (2249)

which is exact for f(t) = 1.

We next use the RL1 approximation on f(t) =t

dP(t) AP 1 ' . j |
[ it |p,  T(2—p) {0 -G -mA + ;(thg—k(p)}
At f o d
“Te_p {Jl P=(i—n) T+ ;km@} , (2.244)

which after using Lemma 2.9.1, we then have the result

J AP

d(t) _ 1—p ; —p ; —p
[ T U UG
_ (jaytr
- T(2-p)
1-p
_ b (2.245)

(2 -p)’
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which is also exact for f(t) =t.

We now we apply the RL1 approximation on the convolution integral

e [/ ' (s)(t —s)d

RLI

= F(A;_pp) [(1 — ) j—Dp _jlfp + (] — n)lfp} %g%/f”(s)(t . S)ds
At j kAt

+ [jlfp —(j— n)lfp] /f”(S)(At — s)ds + Z Nj—k(p) / f”(S)(kAt — 5)ds
0 k=n 0

(2.246)

The limit is again zero if f”(¢) is a well behaved function of ¢. Now by dividing the

integration interval into equal At steps, we then have

1" - At™P . //
dtp [/f (t = s)d RLl F(2—p){[] J_nlp/f At =s)d

; Ly (DA
R0 Y / F(s) kAt — s)ds S . (2.247)
k=n =0 1At

Then by changing the order of summation, we obtain

dtr [/ F(s)(t = s)d At—p){[jl"’(jn)l—f’} 7tf"(s)(Ats)ds

RLl Y
(I4+1)At
+Z / F(s) ZN] w(p) (kAL — s)ds
=0 At
i1 (DA
+> / Z N, i (p) (kAL — s)ds p . (2.248)
l=n IAL k=Il+1

The RL1 approximation of function f(¢) in Equation (2.20) then becomes

L] L R e U W 7tf"< At - s)a
= + — —n S — s)das

dt* |p T(l—p) T@2-p) T2-p) |7 / J

noq (HDAL jo1 ()AL

+> / ZNM k:At—sds+Z / ZN]k (kAt — s)ds

(2.249)

The value of the RL1 approximation in Equation (2.249) will be now compared with the

exact value of the fractional derivative given by Equation (2.25). The absolute error is
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then given by

dr J dP t‘_p / tjl_p 4 o (E=8)'7P
[dtpf(t) - [dﬂ,f(t) Nl 0= + [ g
0
At
P P At—P
— fo=rt— — f1(0) =2 - P '—nlp/"s At — s)ds
ooy (DAL jo1 (1A
+> / ZN]k kAt—sderZ / ZNN ) (kAL — s)ds
(2.250)
or by
P - [ Lo | = [ A [ -y - ] 7tf”(8)(At—S)ds
dtp dtp RL1 - T(2-p) g ’
0
1 U+DAL
+Z / [ts — At™ pZN]k (kAt — s)| ds
=0 A
i1 (A
+Z / [t—s YN Z R, x(p k:At—s)] ds p|. (2.251)
Now using Lemmas 2.9.1, 2.10.1 and 2.10.2, the summations simplify to
ZNJ k(D) (kAL — ) = At(j —n)'7P, (2.252)

and

Z N;_k(p)(kAt —8) = (j — D' P((I+ DAt —s) — (5 — ([ + 1) P(IAL —5). (2.253)
k=I+1

The absolute error of the RL1 scheme is then

D J D J
[jtpﬂt) - @ (2254)
IG5 /f” [(t—9)'"P = AP (At P+ ((j =)' 7P = 5'77) 5)] ds
GR
+Z / ) [(t =)' 7P = At P(j —n)' 7P ds
=1 A
jo1 (DAL
ns / [(t— )P = AP [(G = )P+ 1) AL = 5) = (j — (14 1) P(IAE = 5)]] ds| .

l=n A
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Noting
b b
[ @] < [15@) o) dz (2.95%)
we then have
P J i j
[jtpf(t) a L;itpf(t) - (2.256)
At
1 1 1— _ 1 ) 1 1
< F(Qp){/f ()|t =)' P = AP (Atj' P+ ((j—n) P —j"7P)s)|ds
1 (FDAL '
£ [ @I -9 = ARG ) ds
=1 A
j—1 (1AL
+Z / |f//(8)|}(t—3)1—P_At_p [(j—l)l_p((l+1)At—5)—(j—(l—i-l))l_p(lAt—s)”dg
=n AL

Let the maximum absolute value of the second derivative in each interval [IA¢, (I + 1)At]

and [0, At] by

M, = " 2.257
z zmgﬁ%ﬁnm}f (s)], (2.257)

and

_ 1"
M, = Jax, f"(s)]. (2.258)

Then from Equation (2.256) we have

EIs

J

f(t)

T [dp (2.259)

dtp

RL1

At
1 -p —p -1—p . —p 1—p
<I‘(2p){M10/|(t3)1 — AP (AP 4 ((G—n) P — 1) ) | ds
At

SR RN
—i—ZMl / [(t =)' 7P — At P(j —n)' 7P| ds
=1 1AL
(I+1)At

£ / (t— )P — AP [(G— DR+ DAL —5) — (G — (1 + 1) P(AE — )] | ds
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By Appendix B.1, the term in the absolute value sign in each integrand is positive, and

so evaluating these integrals gives

(1+1)At - (I+1)At
1-p 1-py(: 1— —(tj —s) i 1-p(.: 1—
{(tj—s) —At7P(j —n) p}ds: —— — At "P(j—n) Ps
2-p
1At LAt
2-p
= (-0 - G- a7 - Al -, (2.260)
(I+1)At
2 1 (I4+1)At )
/ AL — ] ds — [lAts _z — [z - 21“] (a2 = -2 (9.961)
AN 2 2
1At
(I+1)At
2 (I4+1)At 2
/ [(1+1)At — s]ds = [(z +1)Ats — = = [(z +1) - 2”1} (An? = A
AN 2 2
1A
(2.262)
At At
2—p 2
. o\1-p _ | = (tj — S) . (At) p 2 p 2 p
/(t] 5) ds_[ o =5 [ G—1) } (2.263)
0 0
and
At
1— . 1— - At? 1— . 1—
[Atj" P+ ((j—n)"P = p)s]ds:T(] P+ (j—n)P). (2.264)
0

Now we let M = max{M;; | = 0,1,2,...,5}, and using Equations (2.260) — (2.264) in
Equation (2.259), we then have

o] [ (2:265)
MAE*P 9y 27D A - .
< BT D) {32 S R R VR )
n—1
+> (G- =G -+ -2 -pG—n)')
=1
j—1

3 (-0 - G- g -22 [('—1>1-p+<j—<1+1>>1-”}]}-
l=n

Evaluating the summations, we find

n—1 n—1 n
S |G- =G )T =X G0 =Y G-
=1 =1 =2

= (-1 =(—-n)?", (2.266)
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j—1 j—1 J

SG-0T = G )T =G0 Y G-

l=n l=n r=n+1

=(-n)*", (2.267)
and

-1 -1
3 [(j —D)TP G-+ 1))1‘73} =@G-n)'"P+2 > (G- (2.268)
l=n l=n+1

Substituting these in Equation (2.265), we then have the bound

AP J P J MA2—P q (. 2—p ) _
0] - [0, <o { {f (-5 ey ]

j—1
—@2=pnG-n)""+2-p) > klp}

k=j—n

MAZ? | i
= [J"P (2 - (2-p)—202-p) > kP
() 2
MARP | = B
T2 ) S kTP —n(j-n)P|. (2.269)
p k=j—n
Equation (2.269) becomes
{dpf(t) g [dpf(t) ’ < CAPP 4+ CLALPTP (2.270)
dtr dtr Rl " ’ '
where C is a constant and defined by
M9(j,p

where 9(j,p) is given by Equation (2.50). The bound for value of C is given by Equa-
tions (2.49) to (2.51). C is defined by

« _ MK(G,n,p)
n T T oy 2.272
Y= T2 (2.272)
where K(j,n,p)
j—1
RGmp)= D kP —n(-n)"". (2.273)

k=j—n
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In Equation (2.273), we have &(j,n,0) = § (2j —n — 1), and &(j,n,1) = 0, as shown in
Figure 2.44. Another bound can be found by sitting 7 = n, which gives

R(j,j,p) =) k'P

(-1

IN
I

k
(j—1)%7P. (2.274)

IN

This shows the term C*At?>7? is of order 27 as an upper bound. Again we see the error
increases in Equation (2.270), so this suggests that reduction of the computation of the

L1 scheme does not improve the accuracy.

In Figures 2.44 — 2.46, we show the value of K(j,n,p) given in Equation (2.273) against p,
for 0 < p < 1. In Figure 2.44 the number of time steps is fixed to j = 1000 and the value
of n is varied with n = 501, where [l = 1,2,...,8. We note that the maximum value occurs
where n near the value of j, we also see the value of K(j,n,p) increases as n increases,
and the minimum value occurs for n is near zero. In Figure 2.45, we show the value of
the R(j,n, p) against p, for fixed n = 50 and j = 10* where k = 2,3, 4,5 and 6. The value
of K(j,m,p) decreases as j increases for fixed n. In addition, the magnitude of the value
of R(j,n,p) increases as p decreases. We also show in Figure 2.46 the maximum value of
the K(j,mn,p) occurs when n = j. We note the value of k(j,n,p) increases as j increases

as suggested by the upper bound in Equation (2.274).
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p

Figure 2.44: The value of K(j,n,p) in Equation (2.273) is shown against p, for 0 < p < 1,
for varying number of n = 50l, where [ = 1,2,...,8 and j = 1000. Note n increases in the

direction of the arrow.
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Figure 2.45: The value of K(j,n,p) in Equation (2.273) is shown against p, for 0 < p < 1, for
fixed n = 50 and j = 10¥ where k = 2,3,4,5 and 6. The value of &(j,n,p) decreases as j

increases in the direction of the arrow for fixed n.
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Figure 2.46: The value of K(j,n,p) in Equation (2.273) is shown against p, for 0 < p < 1, for

n=j=1,...,10. The value of K(j, j, p) increases as j increases in the direction of the arrow.

The accuracy of the RL1 scheme was estimated by comparing the fractional derivative of
order p = 1 —+ of the functions f(t) = t*, (k = 2,2.5,3,3.5, and 4) evaluated at the time

t = 1.0. Results are shown for varying exponents v = 0.1,...,0.9.

In Figure 2.47, the error does not increase immediately for small n. We see for v = 0.1
the error starts increase when n > 20, so for this case we could start at n = 20, if we use
the RL1 scheme as the error does not change dramatically for n = 1,2,...,20. Whilst in
Figure 2.48, we see the error only begins to increase, for v = 0.1, when n > 70 which is
better and so we can ignore the first 70 terms in this case. But for the value v = 0.9 the
error begins to increase sooner for n > 2 which is not good as v = 0.1. We also see the
similar behaviour in Figures 2.49 —2.51. That is as the power of ¢ increases we can ignore

more terms as mentioned for the L1* scheme.

The absolute error for given functions are compared in Table 2.13, where j = 100. From
Table 2.13 and the Figures 2.47 and 2.51, we obtained similar error estimate results found

by using the L1* approximation scheme.
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Figure 2.47: The absolute error in using the RL1 scheme, in Equation (2.270), to approximate

the fractional derivative of order 1 — v of the function f(t) = 2, at the time ¢t = 1.0, using

j = 100 time steps, n = 1,...,100 and v = 0.1,...,0.9. In the figure v increases in the

direction of the arrow.

w108 b —

Figure 2.48: The absolute error in using the RL1 scheme, Equation (2.270), to approximate

the fractional derivative of order 1 — v of the function f(t)

— 425

, at the time ¢t = 1.0, using

100 time steps for n =1,...,100 and v = 0.1,...,0.9. The value =y increases in the direction

of the arrow.
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Figure 2.49: The absolute error in using the RL1 scheme, in Equation (2.270), to evaluate
the fractional derivative of order 1 — v for function f(t) = 3, at the time ¢ = 1.0. Results are
shown for j = 100, n = 1,...,100 and v = 0.1,...,0.9 where v increases in the direction of

the arrow.
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Figure 2.50: The absolute error in using the RL1 scheme, Equation (2.270), to approximate
the fractional derivative of order 1 — v of the function f(t) = t>°, at time ¢ = 1.0, using 100
time steps and for n = 1,...,100 and v = 0.1,...,0.9 where « increases in the direction of

the arrow.
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Figure 2.51: The absolute error in using the RL1 scheme, in Equation (2.270), to evaluate the

fractional derivative of order 1 — v for function f(t) = t*, at time ¢ = 1.0. Results are shown

for j =100, n=1,..

.,7and v =0.1,...,0.9 where « increases in the direction of the arrow.

Table 2.13: The comparison of the absolute error in the RL1 approximate estimate of the

fractional derivative of order 1 — + of the functions f(t) = t*, k = 2,2.5,3,3.5, and 4 at time
t = 1.0 where v =0.1,...,0.9, n = 100, 7 = 100 and At = 0.01.

g fo=1  fi)y=° fle)y =2 f(t) =t>° fe)y=t!
v=0.1 5.914e-01 6.790e-01 7.604e-01 8.369e-01 9.0951e-01
v=0.2 9.524e-01 1.076e-00 1.188e-00 1.290e-00 1.386e-00
v=0.3 1.157e-00 1.288e-00 1.405e-00 1.510e-00 1.607e-00
vy=04 1.255e-00 1.375e-00 1.482e-00 1.578e-00 1.664e-00
v=0.5 1.280e-00 1.382¢e-00 1.470e-00 1.549e-00 1.619e-00
v=20.6 1.258e-00 1.337e-00 1.405e-00 1.463e-00 1.515e-00
v=0.7 1.208e-00 1.262¢-00 1.309e-00 1.348 e-00 1.383e-00
v=0.8 1.139e-00 1.172e-00 1.198e-00 1.220e-00 1.239e-00
v=0.9 1.062¢-00 1.074e-00 1.0836¢-00 1.091e-00 1.096e-00

From the results given in Tables 2.12 and 2.13 and Figures 2.39 — 2.43, and Figures 2.47

— 2.51, we see that the L1* scheme and RL1 scheme are not good approximations, since

the error increases as the value of n increases for each value of 7.

In the next sections, we consider the regression approximation to approximate the early
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history. We also estimate the error given by these approximations.

2.11 Regression Methods

In this section, we consider regression methods to approximate the early history given
in Equation (2.9). Now we use regression to approximate f’(7) in Equation (2.9) in the
interval 7 = 0 to 7 = T instead of ignoring this contribution to the integral as in short

memory approach. We begin by rewriting the integral in Equation (2.9) as

t T t
/ f ()t —7)Pdr = / f'(r)(t—7)Pdr + / f(7)(t —7)"Pdr, (2.275)
0 0 T
where T' = nAt and t = jAt. We then have

PrE) L N B LIS
s -F(l_p>fo+r(1_p)/o )t —7)vd +m_p)/Tf()<t )P,

(2.276)

In the following analysis we introduce three different functions to approximate the function

f(7) in the first integral in this equation.

2.11.1 Linear Regression Approximation

To evaluate the first integral in Equation (2.275) we first used the Linear Regression to

approximate the function f(7) for 0 < 7 < T, that is with

f(r) = Bo + A, (2.277)

where [ is the slope and fy is the intercept point of the regression line. We used a

piecewise linear approximation for the second integral as in the L1 approximation. We

then have
. (k+1)A
/Of,(T)(tT)_pdTZ&/ (t—1) pdT*Z/ 7)(t —7) Pdr
—p -1
— lﬁ—lp [P — (¢t —T)'77] + 1At p ;(fk — [ [ = R+ )P = (= k)P

(2.278)
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The approximation of the fractional derivative, which will be denoted as LRA, is then

given by
i e B e i
[ dtr LRA_ F(l—P)fO+F<2—p) (t t=7) )
Atr 4 . - )
+F(2—p),;(fk_f"’+1) (= (k+1)'"P=(G—k)'"P]. (2.279)

Using Equation (2.195), then Equation (2.279) can be rewritten as

[dpdéz(f) L - [dpd];(ot)

TARTPE
- L(2-p)

The accuracy of the LRA scheme was tested by comparing the exact value of the fractional

- (G"P = (G —n)'P). (2.280)
LRA

derivative of the function f(t) = t*, for k = 2,2.5,3,3.5, and 4, with the value from
the LRA approximation. The exact and approximate value of fractional derivative was
estimated at time ¢ = 1. The error in the fractional derivative estimate using j = 100 time
steps is shown in Figures 2.52, 2.53, ..., and 2.56 against the value n, where 1 <n < j,
for various values of v =0.1,...,0.9.

From Table 2.14, and Figures 2.52 — 2.56, we conclude that the maximum error occurs
when n approaches j. That is as we approximate more history, using regression, the error
increases.

From the results shown in Figures 2.52 — 2.56, we conclude that if we do ignore some terms
for small n the error does not increase immediately. For example in Figure 2.52 the error
only begins to increase for n > 51 when v = 0.1 and for n > 47 when v = 0.2,0.3,0.4.
But in the case v = 0.5 the error increases earlier for n > 9 and increases for n > 12 in
the cases of v = 0.6 and 0.7. Whilst for the cases v = 0.8 and 0.9 the error increases from

n = 0.
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Figure 2.52: The value of the absolute error in using the LRA scheme, Equation (2.279), to
approximate the fractional derivative of order 1 — « of function f(¢) = ¢, at time ¢t = 1.0.
The results are shown n = 1,...,100 and v = 0.1,...,0.9 where 7y increases in the direction

of the arrow.

Figure 2.53: The value of the absolute error in using the LRA scheme, Equation (2.279), to
estimate the fractional derivative of order 1 — v of function f(t) = t*®, at time ¢ = 1.0. The
results are shown for n =1,...,100 and v = 0.1,...,0.9 where - increases in the direction of

the arrow.
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Figure 2.54: The value of the absolute error by using Equation (2.279), to evaluate the

fractional derivative of order 1 —  of function f(t) = t3, at time t = 1.0, n = 1,...,100 and

v =0.1,...,0.9 where ~ increases in the direction of the arrow.
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Figure 2.55: The value of the absolute error by using Equation (2.279), to evaluate the

fractional derivative of order 1 — v of function f(t) = #3-5, at time t = 1.0, n = 1,...,100 and

v =0.1,...,0.9 where ~ increases in the direction of the arrow.
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Figure 2.56: The value of the absolute error in using the LRA scheme, Equation (2.279),

to evaluate the fractional derivative of order 1 — « of function f(t) = t*, at time t = 1.0,

n =1,...,100. Results are shown for v = 0.1,...,0.9 where ~y increases in the direction of

the arrow.

Table 2.14: The comparison of the absolute error in the LRA scheme estimate of the fractional

derivative of order 1 —+ of the functions f(t) = t*, k = 2,2.5,3,3.5, and 4 at the time ¢ = 1.0
for v =10.1,...,0.9, n = 100, j = 100, and At = 0.01.

gl fy=¢  fO=°  fH=  fO=°  ft)=t
v=0.1 2.112e-01 3.200e-01 4.240e-01 5.223e-01 6.152e-01
v=0.2 3.099e-01 4.690e-01 6.190e-01 7.586e-01 8.883e-01
v=0.3 3.396e-01 9.158e-01 6.810e-01 8.338e-01 9.744e-01
v=04 3.253e-01 4.978e-01 6.595e-01 8.083e-01 9.444e-01
v=0.5 2.847e-01 4.420e-01 5.895e-01 7.249e-01 8.482e-01
v=0.6 2.309¢e-01 3.667e-01 4.951e-01 6.128e-01 7.198e-01
v=0.7 1.720e-01 2.845e-01 3.920e-01 4.910e-01 5.809e-01
v=0.8 1.135e-01 2.030e-01 2.903e-01 3.714e-01 4.451e-01
v=0.9 5.888e-02 1.270e-01 1.958e-01 2.606e-01 3.200e-01
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2.11.2 Quadratic Regression Approximation

Another way to approximate the first integral in Equation (2.275) is to use the Quadratic

Regression to fit the function f(7) by

f(T) = Bo+ BT + Bor?, (2.281)

in the interval 7 € [0, T] where (1, 52 and [y are fitting parameters of the regression line.
We again use piecewise linear approximation, as per the L1 scheme, for the integral over

T € [T,t].
t T T
/0 ()t —1) pdT:ﬁl/O (t—1) pdT-i—Q,Bg/O T(t — 1) Pdr

J=1 ak+1)At
+> / f(7)(t —7)7Pdr. (2.282)

o JEAL

Now evaluating the integral, setting u =t — 7, we then have

/O )P = /t T wurdu (2.283)

t
:/ (t —u)u Pdu
t—T

[ ul=r 2|
l=p 2-pl ¢
e

i =Rt e (R Rl

Using this approximation in Equation (2.9) we have the approximation for the fractional

derivative

|:dpf(t) ‘ _ P fo + B1 [tl—p _ (t _ T)l—P]

dv r(l-p)" T(2-p)
2[32 2-p _ — —T)t-r
Fime e p e
—p -l
- r(Azt—m D =) [G= (417 = (G =R (2:289)

k=n
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Using Equation (2.195), then Equation (2.284) can be rewritten in terms of the L1*

scheme as
dpf(t) — w ! L 1-p _ 1-p
[ dt* |opa [ dtP |, * I'(2—p) i (t=T)"7]
232 _ _
T a-prG-p) [t + Q=)= T)P = £77]. (2.285)

We denote this approximation as the QRA scheme. Similar to the LRA scheme, the
accuracy of the QRA scheme is estimated by comparing the exact value of the fractional
derivative of order 1 — ~ of the functions f(t) = t*, where k = 2,2.5,3,3.5, and 4, with
the value obtained from the QRA approximation. The error is plotted as a function of n

on log-log plot in Figures 2.57, 2.58, 2.59, 2.60, and 2.61.

The approximation and the exact values are evaluated for time ¢ = 1.0 using 100 time
steps, for n changing from 1 to 100, and v = 0.1,...,0.9. In Figures 2.57, 2.58, 2.59,
2.60, and 2.61, we can see the error increases as n increases. For instance we note for
v = 0.3 the minimum error of 1.72 x 10~ occurs in Figure 2.57. While in Figure 2.61
the minimum error is 1.84 x 107° for n = 21 when v = 0.8. From these figures we expect
similar behaviour to the LRA scheme except, unlike the LRA scheme, there are for larger

n values where the error is smaller than when n = 0 as seen in Table 2.16.

The comparison of the absolute errors is also shown in Table 2.15. We note that the
maximum error occurs where v = 0.9 for functions f(t) = t* and the minimum error
occurs where v = 0.1. From the results shown in Figures 2.57 — 2.61, we note that if
we ignore some terms for n small, then the error does not increase immediately as n is
increased. For example in Figure 2.57 the error increases only when n > 10 for v = 0.1,
and for case v = 0.9 the error also only increases when n > 2. We note though that the
optimal choice n (where the error is smallest) may occur for n = 0, as in the L1*, RLI1,

LRA, but for an intermediate value n.
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Figure 2.57: The value of the absolute error in using Equation (2.284) to evaluate the fractional
derivative of order 1 — + of the function f(t) = t? at time ¢t = 1. The error increases as n

increases for large n and the value of 7 increases in the direction of the arrow.
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Figure 2.58: The value of the absolute error in evaluating the fractional derivative of order
1 — v of the function f(t) = t*®° at t = 1 by using Equation (2.284). Note as n increases the

error increases for large n and the value of v increases in the direction of the arrow.
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Figure 2.59: The value of the absolute error in evaluating the fractional derivative of order
1 — 7 of the function f(t) =3 at t = 1 by using Equation (2.284). Note as n increases the

error increases for large n and + increases in the direction of the arrow.

Figure 2.60: The value of the absolute error in evaluating the fractional derivative of order
1 — v of the function f(t) = t3° at t = 1 by using Equation (2.284). Note as n increases the

error increases for large n and the value of v increases in the direction of the arrow.
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Figure 2.61: The value of the absolute error in using Equation (2.284) to evaluate the fractional

derivative of order 1 —+ of the function f(t) = t* at time ¢ = 1, for large n the error increases

as n increases. Note =y increases in the direction of the arrow.

Table 2.15: The comparison of the absolute error in the QRA scheme estimate of the fractional

derivative of order 1 —+ of the functions f(t) = t*, k = 2,2.5,3,3.5, and 4 at the time ¢ = 1.0
for y=0.1,...,0.9, n = 100, 7 = 100, and At = 0.01.

g foy=¢  fo=t**  fo=t  fO=°  f@)=t
v=0.1 5.268e-00 6.721e-00 7.630e-00 8.160e-00 8.428e-00
v=0.2 3.795e-00 4.806e-00 5.415e-00 5.747e-00 5.887e-00
v=0.3 2.695e-00 3.384e-00 3.780e-00 3.976e-00 4.035e-00
v=04 1.880e-00 2.336¢-00 2.582¢-00 2.686¢-00 2.695¢-00
v=0.5 1.279e-00 1.568e-00 1.710e-00 1.753e-00 1.733e-00
v=0.6 8.387e-01 1.008e-00 1.077e-00 1.082e-00 1.046e-00
v=0.7 5.174e-01 6.014e-01 6.214e-01 6.014e-01 5.570e-01
v=0.8 2.848e-01 3.089e-01 2.952e-01 2.599e-01 2.124e-01
v=10.9 1.180e-01 1.003e-01 6.413e-02 1.958e-02 2.812e-02
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Table 2.16: The comparison minimum absolute error in the QRA scheme estimate of the
fractional derivative of order 1 — v of the functions f(¢t) = t*, k = 2,2.5,3,3.5, and 4 at the
time t = 1.0 for v = 0.1, ...,0.9, 5 = 100, and At = 0.01.

v foy=  foy=°  foy =t f)y=¢5  f)=t
v=0.1 6.920e-04 9.302e-04 3.220e-05 7.455e-04 1.458e—04
v=0.2 2.129e-04 4.040e—05 2.825e-04 6.164e—04 4.713e—04
v=0.3 2.695e—04 6.070e—05 1.589¢-04 4.404e-04 1.368e-04
v=04 3.580e—04 1.458e—04 1.500e-05 2.280e—05 4.750e—05
v=10.5 5.330e—05 1.430e-06 6.080e—05 5.480e—05 1.697e—04
v =0.6 5.530e-05 3.240e-06 5.410e-05 2.500e-05 7.900e-05
v=0.7 1.740e-05 2.390e-05 3.860e—05 2.020e-05 4.480e-05
v=0.8 3.470e-05 1.470e—05 4.350e-06 2.010e—05 1.840e-05
v=10.9 1.780e-05 1.050e—06 5.160e—06 4.400e—06 9.050e—05

2.11.3 Nonlinear Regression Approximation

To evaluate the first integral in Equation (2.275) we use the Nonlinear Regression model

to approximate the function f(7)
y=Bo+pir' 7, (2.286)

for 0 < 7 < T. Here §; and () are constant parameters. The solution of the frac-
tional subdiffusion equation is in term Mittag—Leffler function which is the power series
of t'7P, so we choose the same type of function as in Equation (2.286) to approximate the
function f(7). As in the other schemes in this section we again use the piecewise linear
approximation for the integral over T' < 7 < t. Splitting the integrals into two, we have
¢ T J=1 a(k41)At
/0 f (D)t —7)Pdr=(1-p)B /0 TPt —7)"Pdr + ]CZ: /km f'(7)(t —7)"Pdr.
=n

(2.287)
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We now evaluate the integral fOT T P(t — 7)"Pdr, by setting 7 = tu and simplifying

T T/t
/ TPt —7)Pdr = / t7Pu"P(t — tu) Ptdu
0 0
T/t
= t12p/ u P(1—u)Pdu
0
= t'"#B(1 —p,1—p)Ir(1—p,1-Dp), (2.288)
t
where Ir(1 — p,1 — p) is the Incomplete Beta function (Thompson, Pearson, Comrie &
t

Hartley 1941, Temme 1975)

1 T/t
Ir1l—-pl—-p=———"-— P —uw)7? 2.2
r-pi-p)= g [Ty @29

and the Beta function (Abramowitz, Stegun et al. 1966) is given by

! (C(1—p))*
Bl—p,l—p:/u_pl—u_pdu:. 2.290
( )= [ —wrae = =gl (2.200)
Using Equation (2.288), in Equation (2.9), we then have the approximation
& f(t) P Bi 19
= —t PB(1—-p,1—p)Izr(1 —p,1—
[ o F(l—p)f0+F(2—p) (1 =p1=p)lz(l—p,1—p)
At - . 1-p ; 1-p
+m2(fk—fk+l) (G = (k+1)"P—(j—k)'P]. (2.291)
k=n
Now using Equation (2.195), Equation (2.291) simplifies to
drf(t) () B o
= —t "Bl —-p,1—p)Ir(1—p,1—p). (2.292
[ dtp ‘NLRA [ P |- i I'2-p) R )

We denote this approximation as the NLRA scheme. Similar to the LRA scheme and the
QRA scheme, the estimate of the error was found by comparing the exact value of the
fractional derivative of order 1 — « for functions f(t) = t*, where k = 2,2.5,3,3.5, and
4, with the value obtained from the NLRA approximation scheme. The error is plotted
as a function of n on log-log plot in Figures 2.62 — 2.66. The approximation and the
exact value are evaluated for time ¢t = 1.0 using 100 time steps with n changing from 1 to
100 for v = 0.1,...,0.9. We can see in Figures 2.62, 2.63, 2.64, 2.65, and 2.66 the error
increases as n increases, for large n. We also note in Table 2.17 that the maximum error

occurs when v = 0.9 for each function and the minimum error occurs when v = 0.1.

In Figure 2.62 the error is still the same where n is small, we see for the value v =

0.1,...,0.6 the error increases where n > 3. Similar to the QRA scheme, we see there are
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some values of n which give smaller errors than if we use the full L1 scheme. The smaller
error of 5.001 x 10~* occurs for n = 26 when v = 0.6 and when n = 96 for v = 0.4 and is
8.042 x 1073, We also see the error increases where n > 7 for v = 0.7 and for v = 0.8, 0.9

when n > 2.

From results shown in Figures 2.62 through to 2.66 and Table 2.18, we see for some values
of v there is a smaller error than when intermediate values of n are used rather than n = 0.
For example in Figure 2.66 the smallest error occurs when n = 26 and v = 0.5 which is

1.563 x 1076.

Figure 2.62: The value of the absolute error in using the NLRA scheme, Equation (2.291), to
approximate the fractional derivative of order 1 — v of the function f(t) = t? at time ¢ = 1.0.
Here 100 time steps were taken with n varying from 1 to 100 and v =0.1,...,0.9. The error

increases as n increases and the value of -y increases in the direction of the arrow.
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Figure 2.63: The value of the absolute error in evaluating the fractional derivative of order
1 — v of the function f(t) = t>®, at time ¢ = 1.0 by using Equation (2.291). The results are
shown for j =100, n =1,...,7 and v = 0.1,...,0.9, and the error increase as n increases and

the value of v increases in the direction of the arrow.

Figure 2.64: The value of the absolute error in evaluating the fractional derivative of order
1 — « of the function f(t) = 3, at time ¢t = 1.0 by using Equation (2.291). The results are
shown for j =100, n =1,...,7 and v =0.1,...,0.9, and the error increase as n increases and

the value of v increases in the direction of the arrow.
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Figure 2.65: The value of the absolute error in evaluating the fractional derivative of order
1 — v of the function f(t) = t3®, at time ¢ = 1.0 by using Equation (2.291). The results are
shown for j = 100, n =1,...,5 and v = 0.1,...,0.9, and the error increase as n increases.

Note « increases in the direction of the arrow.

Figure 2.66: The value of the absolute error in using Equation (2.291) to evaluate the fractional
derivative of order 1 — 7 of the function f(t) = t*, at time ¢t = 1.0. Results shown for 100

time steps, n =1,...,100 and v = 0.1,...,0.9 and ~ increases in the direction of the arrow.
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Table 2.17: The comparison of the absolute error in the estimate of the fractional derivative

of order 1 — v using the NLRA scheme on the functions f(t) = t*, k = 2,2.5,3,3.5, and 4 at
the time ¢t = 1.0 for v = 0.1, ...,0.9, n = 100, 7 = 100, and At = 0.01.

v ft)y=+ foy=2  fo=t  fOy=>  fit)y=t
v=0.1 15.74e-00 13.34e-00 11.50e-00 10.04e-00 8.852e-00
v=0.2 4.623e-00 3.759¢-00 3.072e-00 2.509e-00 2.039e-00
v=0.3 1.152e-00 7.344e01 3.899e-01 9.952e—02 1.498e-01
v=04 2.385e—01 4.767e01 6.786e—01 8.525e—01 1.005e—00
v=0.5 8.214e-01 9.719¢-01 1.101e-00 1.214e-00 1.313e-00
v=0.6 1.049 e-00 1.148e-00 1.233e-00 1.307e-00 1.371e-00
v =0.7 1.112e-00 1.175e-00 1.228e—-00 1.274e-00 1.315e-00
v=0.8 1.095e-00 1.131e-00 1.160e—00 1.186e—-00 1.207e-00
v=0.9 1.041e-00 1.055e—00 1.066e—00 1.074e-00 1.081e—00

Table 2.18: The comparison minimum absolute error in the NLRA scheme estimate of the

fractional derivative of order 1 — «y of the functions f(t) = t*, k = 2,2.5,3,3.5, and 4 at the

time ¢ = 1.0 for v = 0.1, ...,0.9, 7 = 100, and At = 0.01.

g foy=¢  fo=t*  fO=t  fO=°  f=t
v=0.1 5.533e-03 1.304e-02 1.652e-02 5.234e-03 3.607e-04
v=0.2 3.029¢-03 5.660e-03 1.413e-03 2.297e¢-03 1.640e-05
v=0.3 1.639¢-03 3.058e-03 7.133e-04 6.099e-04 6.175e-04
v=04 8.755e-04 1.035e-03 4.974e-04 2.274e-04 1.051e-04
v=0.5 4.598e-04 8.360e-05 2.200e-04 5.950e-05 1.560e-06
v=0.6 2.354e-04 1.890e-05 1.021e-04 8.611e-04 1.314e-03
v=0.7 1.153e-04 2.100e-04 3.291e-04 4.719e-04 6.381e-04
v=0.8 5.150e-05 9.250e-05 1.436e-04 2.045e-04 2.750e-04
v=0.9 1.780e-05 3.130e-05 4.800e-05 6.780e-05 9.050e-05

In Tables 2.14, 2.15 and 2.17 we obtained results for the estimate of the fractional deriva-

tive of the functions f(t) = t*, k = 2,2.5,3,3.5, and 4 at time ¢ = 1.0, if we set n = j.

We see the minimum error occurs for v = 0.9 and the maximum error occurs for v = 0.1.

From the results given in Figures 2.52 — 2.56, Figures 2.57 — 2.61, and Figures 2.62 — 2.66,

we see that the LRA scheme is a better approximation as overall it introduces less error
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as the value of n increases for each value of v. However, in the NLRA and QRA schemes
for some values of n a smaller error occurs when a specific intermediate value of n is used,

as shown in Tables 2.16 and 2.18.

2.12 Results and Discussion

In this section, we compare the results from the modifications of L1 scheme with the
L1 scheme and Romberg integration, and also we compare the results from the memory
principle effect scheme with Regression methods. Each scheme was compared by looking
at the error in their approximations of the fractional derivative of order 1 — v of the

function f(t) given in Equation (2.7), for v = 0.1,...,0.9 at the time ¢ = 1.0.

The L1, C1, C2, C3 and Romberg Integration Schemes

The fractional derivative approximations given by Equations (2.2), (2.12), (2.60), (2.75),
(2.88), and (2.191), were compared. From Tables 2.19 through to 2.22 we see that the C2
approximation introduces the smallest error in most cases, for 0 < v < 1, when compared
with the L1, C1, C3 and Romberg integration (where k = 2) schemes. It was only in the
cases v = 0.8, and v = 0.9, for all functions where Romberg integration performed better.
In Table 2.23 we see the smallest error appear for the C2 scheme where v = 0.1,...,0.5,

whilst for v = 0.6, ...,0.9 the smallest error occurs for the Romberg integration scheme.

Improvement in these results my be made if we use higher order Romberg approximation

(k > 2) but this is left to future work.
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Table 2.19: The comparison absolute error of the fractional derivative approximation of order

1 — v of function f(t) = t2 at time t = 1.0 for v = 0.1, ...,0.9 and At = 0.01.

5 GL L1 C1 C2 C3 RInt (k=2)
v=01  860e03 49803  7.96e 03 24503  4.93¢ 03 4.89¢-03
v=02 79203  270e-03 46303  1.33¢03  2.70e03 2.58¢-03
v=03  7.09e03  145¢-03  2.67e03  7.27e-04  1.45¢-03 1.33¢-03
y=04  6.14e-03  T.67e-04  153e-03  3.99e-04  7.67e-04 6.70e-04
v=05 51203 39904  865e04 21904  3.99 04 3.26e-04
v=06  4.07e-03  2.03e04 47804  1.19e 04  2.02¢ 04 1.52e-04
y=07  3.00e-03 98405 25304 62205  9.8305 6.58¢-05
v=08  195¢-03  4.36e05  1.22¢04 29805  4.36e-05 2.52e-05
v=09  944e-04 14905  4.50e-05  1.10e 05  1.49¢ 05 7.24e-06

Table 2.20: The comparison absolute error of the fractional derivative approximation of order

1 — v of function f(t) =3 at time t = 1.0 for v = 0.1, ...,0.9 and At = 0.01.

5 GL L1 C1 C2 C3 RInt (k=2)
y=0.1  234e-02 14902  2.37¢02  7.20e-03  1.48¢02 1.46e-02
v=02  197e-02  806e-03  137e02 39403  8.02 03 7.71e-03
v=03 16302  43le03  7.8%8¢03  214e03  4.29¢03 3.98¢-03
y=04  13le02 22703  447¢ 03  1.17e 03  2.26e 03 2.00e-03
y=05 10202 1.17e03 250003  6.3le 04  1.17¢03 9.75e-04
v=06  7.6le03 58804  136e03  3.36e04  5.86e 04 4.53¢-04
y=07 52803  28le04  7.04e04 17204  2.80e-04 1.97¢-04
v=08  325e03 12204  330e04  8.0205 1.21e-04 7.54e-05
v=09  149¢03  4.05e 05  1.18¢-04  2.87e 05  4.03¢05 2.16e-05
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Table 2.21: The comparison absolute error of the fractional derivative approximation of order

1 — v of function f(t) = t* at time t = 1.0 for v = 0.1, ...,0.9 and At = 0.01.

vy GL L1 C1 C2 C3 RInt (k=2)
v=0.1 4.44e-02 2.97e-02 4.71e-02 1.45e-02 2.94e-02 2.91e-02
v=0.2 3.58e-02 1.60e-02 2.72e-02 7.80e-03 1.59e-02 1.54e-02
v=0.3 2.83e-02 8.55e-03 1.56e-02 4.22¢-03 8.48e-03 7.93e-03
v=04 2.18¢-02 4.49¢-03 8.78e-03 2.28¢-03 4.45e-03 3.99¢-03
v=0.5 1.63e-02 2.31e-03 4.87¢-03 1.23e-03 2.29e-03 1.94e-03
v=0.6 1.17e-02 1.15e-03 2.62e-03 6.48e-04 1.14e-03 9.03e-04
v=0.7 7.82e-03 5.46e-04 1.34e-03 3.27e-04 5.41e-04 3.92e-04
v=0.8 4.63e-03 2.34e-04 6.19e-04 1.50e-04 2.31e-04 1.50e-04
v=0.9 2.05e-03 7.64e-05 2.18e-04 5.27e-05 7.57e-05 4.31e-05

Table 2.22: The comparison absolute error of the fractional derivative approximation of order

1 — v of function f(t) =1 — et +#3 at time t = 1.0 for v = 0.1, ...,0.9 and At = 0.01.

5 GL L1 C1 C2 C3 RInt (k=2)
y=01 12le02 81403 130002  3.99¢03  8.10e-03 7.992¢-03
v=02  96le03  44le03  7.50e-03  2.16e-03  4.39¢03  4.216e-03
v=03 73503  2.35¢03  4.30e-03  1.17e-03  2.34e-03 2.177e-03
v=04 53903  1.24e 03  244e 03  6.36e 04  1.23¢ 03 1.095e-03
v=05  3.75¢-03  640e-04  136e 03  3.44e 04  6.37e04 5.330e-04
v=06  243¢03  32le04 73804  1.83e 04  3.19¢ 04 2.478¢-04
y=07 14203  153¢04  38le04  93le 05  1.52¢04 1.075¢-04
y=08  694e-04  659¢05 1.77e-04  4.31e-05  6.56e-05 4.124e-05
v=09 23204 21805 630005  1.53¢05 21705 1.181e-05
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Table 2.23: The comparison absolute error of the fractional derivative approximation of order

1 —~ of function f(t) =14t at time t = 1.0 for v = 0.1, ...,0.9 and At = 0.01.

5 GL L1 C1 C2 C3 RInt (k=2)

v=0.1 1.60e-04 4.52e-04 7.27e-04 3.40e-04 3.40e-04 4.428e-04
v=0.2 4.10e-04 4.37e-04 7.54e-04 3.29e-04 3.29e-04 4.157e-04
v=0.3 5.83e-04 3.08e-04 5.75e-04 2.34e-04 2.34e-04 2.820e-04
v=04 6.40e-04 1.87e-04 3.79e-04 1.44e-04 1.44e-04 1.624e-04
v=0.5 5.90e-04 1.02e-04 2.24e-04 7.97e-05 7.97e-05 8.250e-05
v=0.6 4.66e-04 4.98e-05 1.19e-04 4.00e-05 4.00e-05 3.691e-05
v=0.7 3.08e-04 2.12e-05 5.53e-05 1.75e-05 1.75e-05 1.413e-05
v=0.8 1.53e-04 7.15e-06 2.02e-05 6.08e-06 6.08e-06 4.142e-06
v=0.9 4.18e-04 1.37e¢-06 4.14e-06 1.20e-06 1.20e-06 6.831e-07

Short Memory and Regression Schemes

Here we compare the results found in the fractional derivative approximations, given by
the L1*, RL1, LRA, QRA, NLRA schemes in Equations (2.194), (2.206), (2.279), (2.284)
and (2.291) respectively. In Tables 2.24 — 2.26, and Tables 2.27 — 2.29, it can be seen that,
if we approximate the first part of the integral by regression, as given by Equation (2.276),

the errors are smaller rather than ignoring the early history of f(¢).

Note by choosing 7 = n = 100 we are attempting to approximate all the early history.
However, if we choose to only approximate half of the integration interval (by setting
n = 50) we see the estimates are better, as seen by comparing the n = 50 and n = 100

cases.

We also see that if the function f(#) is linear, and if we do not ignore the first part in the
integral, there is no error in the approximation, whilst if we do ignore the early history
(of the linear function) then error is introduced. We also note, if linear regression is used
to approximate the early history, that there is less error in the estimate then the other
regression methods or by ignoring the early history as shown in Tables 2.24, 2.25, and
2.26.

However for all methods the error, in the approximation, increases as more of the history
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of f(t) is ignored (i.e. as n increases). But using regression was found to be better than

if we ignore the early history.

If we choose the value of n where the error is smallest, as given in Tables 2.30 — 2.32, we
see that the QRA scheme performs better when compared with the L1*, RL1, LRA, and
NLRA schemes, instead.

Table 2.24: The comparison absolute error of the fractional derivative approximation of order
1 — v of the function f(t) = 2 at time ¢t = 1.0 for v = 0.1,...,0.9, n = 100, j = 100, and
At = 0.01.

¥ L1* RL1 LRA QRA NLRA

v=0.1 5.91e-01 5.91e-01 2.11e-01 5.27e-00 1.57e+4-01
v=0.2 9.52e-01 9.52e-01 3.10e-01 3.80e-00 4.62e-00
v=0.3 1.16e-00 1.16e-00 3.40e-01 2.70e-00 1.15e-00
v=04 1.26e-00 1.26e-00 3.25e-01 1.88e-00 2.39e-01
v=0.5 1.28e-00 1.28e-00 2.85e-01 1.28e-00 8.21e-01
v=0.6 1.26e-00 1.26e-00 2.31e-01 8.39¢-01 1.05e-00
v=0.7 1.21e-00 1.21e-00 1.72e-01 5.17e-01 1.11e-00
v=0.38 1.14e-00 1.14e-00 1.14e-01 2.85e-01 1.10e-00
v=10.9 1.06e-00 1.06e-00 5.89e-02 1.18e-01 1.04e-00

Table 2.25: The comparison absolute error of the fractional derivative approximation of order
1 — v of the function f(t) = t* at time ¢t = 1.0 for v = 0.1,...,0.9, n = 100, j = 100 and
At = 0.01.

vy L1* RL1 LRA QRA NLRA

v=0.1 7.60e-01 7.60e-01 4.24e-01 7.63e-00 1.15e+4-01
v=0.2 1.19e-00 1.19e-00 6.19e-01 5.42e-00 3.07e-00
v=0.3 1.41e-00 1.41e-00 6.81e-01 3.78e-00 3.90e-01
v=04 1.48e-00 1.48e-00 6.60e-01 2.58¢-00 6.79¢-01
v=0.5 1.47¢-00 1.47¢-00 5.90e-01 1.71e-00 1.10e-00
v=0.6 1.41e-00 1.41e-00 4.95e-01 1.08e-00 1.23e-00
v=0.7 1.31e-00 1.31e-00 3.92e-01 6.21e-01 1.23e-00
v=0.8 1.20e-00 1.20e-00 2.90e-01 2.95e-01 1.16e-00
v=0.9 1.08e-00 1.08e-00 1.96e-01 6.41e-02 1.07e-00
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Table 2.26: The comparison absolute error of the fractional derivative approximation of order

1 — ~ of the function f(t) = t* at time t = 1 for v = 0.1,...,0.9, n = 100, 5 = 100 and

At = 0.01.

vy L1 RIL1 LRA QRRA NLRA
v=0.1 9.10e-01 9.10e-01 6.15e-01 8.43e-00 8.85e-00
v=0.2 1.39e-00 1.39e-00 8.88e-01 5.89e-00 2.04e-00
v=0.3 1.61e-00 1.61e-00 9.74e-01 4.04e-00 1.50e-01
v=04 1.66e-00 1.66e-00 9.44e-01 2.70e-00 1.01e-00
v=0.5 1.62e-00 1.62e-00 8.48e-01 1.73e-00 1.31e-00
v=0.6 1.52e-00 1.52e-00 7.20e-01 1.05e-00 1.37e-00
v=0.7 1.38e-00 1.38e-00 5.81e-01 5.57e-01 1.32e-00
v=0.8 1.24e-00 1.24e-00 4.45e-01 2.12e-01 1.21e-00
v=0.9 1.20e-00 1.10e-00 3.20e-01 2.81e-02 1.08e-00

Table 2.27: The comparison absolute error of the fractional derivative approximation of order

1 — v of the function f(t) = t? at time t = 1.0 for v = 0.1,...,0.9, n = 50, j = 100, and

At = 0.01.
vy L1* RL1 LRA QRA NLRA
v=0.1 4.24e-02 4.18e-02 9.58e-03 4.11e-01 1.64e+4-01
v=0.2 7.63e-02 7.49e-02 1.04e-02 4.42e-01 4.38e-00
v=0.3 1.09e-01 1.07e-01 1.15e-02 4.68e-01 1.45e-00
v=04 1.40e-01 1.37e-01 1.22e-02 4.88e-01 4.55e-01
v=0.5 1.67e-01 1.64e-01 1.25e-02 5.01e-01 6.82e-02
v=0.6 1.91e-01 1.87e-01 1.21e-02 5.08e-01 9.61e-02
v=0.7 2.10e-01 2.05e-01 1.10e-02 5.09e-01 1.72e-01
v=0.38 2.24e-01 2.20e-01 9.38e¢-03 5.04e-01 2.09e-01
v=0.9 2.34e01 2.29¢-01 7.31e-03 4.94e-01 2.28e-01
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Table 2.28: The comparison absolute error of the fractional derivative approximation of order

1 — « of the function f(t) = t* at time ¢t = 1.0 for v = 0.1,...,0.9, n = 50, j = 100 and

At = 0.01.

~y L1* RL1 LRA QRA NLRA
v=01 35502  355e02 21202  3.11e 0l  6.00e-00
v =02  4.66e-02  4.65e02 17902  3.29¢01  1.6le-01
v=03  597¢02  597¢02  1.72¢02  3.46e-01 52701
y=04  T7.3le02  7.31e02  1.76e-02  3.60e-01  1.54e01
v=05 85502  854e02  18le 02  3.70e 01  5.66e03
v=06  9.6le02  9.6le02 18502  3.76e-01  5.90e02
4=07  1.05%¢01  1.05e-01  184e02  3.77e-01  8.96e02
4=08  11le0l  1.1le0l 17802  3.74e-01  1.05¢-01
y=0.9  1.15e01 11501  1.68¢02  3.67e-01  1.13¢-01

Table 2.29: The comparison absolute error of the fractional derivative approximation of order

1 — v of the function f(t) = t* at time ¢t = 1.0 for v = 0.1,...,0.9, n = 50, 5 = 100 and

At = 0.01.

v L1* RIL1 LRA QRRA NLRA
v=0.1 4.25e-02 4.25e-02 3.64e-02 1.96e-01 2.32e-00
v=0.2 3.69e-02 3.69e-02 2.45e-02 1.96e-01 6.15e-01
v=0.3 3.72e-02 3.72e-02 1.89e-02 2.00e-01 1.95e-01
vy=04 4.04e-02 4.04e-02 1.65e-02 2.05e-01 5.02e-02
v=0.5 4.46e-02 4.46e-02 1.56e-02 2.10e-01 7.92e-03
v=0.6 4.88e-02 4.88e-02 1.54e-02 2.12e-01 3.37e-02
v=0.7 5.24e-02 5.24e-02 1.52e-03 2.13e-01 4.61e-02
v=0.8 5.51e-02 5.51e-02 1.49e-02 2.11e-01 5.25e-02
v=0.9 5.68e-02 5.68e-02 1.44e-02 2.08e-01 5.58e-02
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Table 2.30: The comparison minimum absolute error of the fractional derivative approxima-

tion of order 1 — 7 of the function f(t) = t? at time ¢t = 1.0 for v = 0.1, ...,0.9, j = 100, and

At = 0.01.

vy L1 RIL1 LRA QRRA NLRA
v=0.1 5.53e-03 5.53e-03 5.53e-03 6.92e-04 5.53e-03
v=0.2 3.03e-03 3.03e-03 3.03e-03 2.13e-04 3.03e-03
v=0.3 1.64e-03 1.64e-03 1.64e-03 3.58e-04 1.64e-03
v=04 8.76e-04 8.76e-04 8.76e-04 2.24e-04 8.76e-04
v=0.5 4.60e-04 4.60e-04 4.60e-04 5.33e-05 4.60e-04
v=0.6 2.35e-04 2.35e-04 2.35e-04 5.53e-05 2.35e-04
v=0.7 1.15e-04 1.15e-04 1.15e-04 1.74e-05 1.15e-04
v=0.8 5.15e-05 5.15e-05 5.15e-05 3.47e-05 5.15e-05
v=0.9 1.78e-05 1.78e-05 1.78e-05 1.78e-05 1.78e-05

Table 2.31: The comparison minimum absolute error of the fractional derivative approxima-

tion of order 1 — 7 of the function f(t) = 3 at time ¢ = 1.0 for v = 0.1,...,0.9, j = 100 and

At = 0.01.

v L1* RIL1 LRA QRRA NLRA
v=0.1 1.65e-02 1.65e-02 1.65e-02 3.22e-05 1.65e-02
v=0.2 9.03e-03 9.03e-03 9.03e-01 2.83e-04 1.41e-03
v=0.3 4.87e-03 4.87e-03 4.87e-03 1.59e-04 7.13e-04
v=04 2.59e-03 2.59e-03 2.59e-03 1.50e-05 4.97e-04
v=0.5 1.35e-03 1.35e-03 1.35e-03 6.08e-05 2.20e-04
v =0.6 6.83e-04 6.83e-04 6.83e-04 5.41e-05 1.02e-04
v =0.7 3.29e-04 3.29e-04 3.29e-04 3.86e-05 3.29e-04
v =028 1.44e-04 1.44e-04 1.44e-04 4.35e-06 1.44e-04
v=0.9 4.80e-05 4.80e-05 4.80e-05 5.16e-06 4.80e-05
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Table 2.32: The comparison minimum absolute error of the fractional derivative approxima-
tion of order 1 — v of the function f(t) = t* at time ¢ = 1.0 for v = 0.1,...,0.9, j = 100 and
At = 0.01.

vy L1* RIL1 LRA QRA NLRA

v=0.1 3.29e-02 3.29e-02 3.29¢-02 1.46e-04 3.61e-03
v=0.2 1.80e-02 1.80e-02 1.80e-02 4.71e-04 1.64e-04
v=10.3 9.67¢-03 9.67e-03 9.67e-03 1.37¢-04 6.18¢-04
v=04 5.12e-03 5.12e-03 5.12e-03 4.75e-05 1.05e-04
v=0.5 2.66e-03 2.66e-03 2.68e-03 1.70e-04 1.56e-06
v=0.6 1.34e-03 1.34e-03 1.34e-03 7.90e-05 1.31e-03
v=0.7 6.38e-04 6.38e-04 6.38¢-04 4.48e-05 6.38e-04
v=0.8 2.75e-04 2.75 e-04 2.75e-04 1.84e-05 2.75e-04
v=0.9 9.05e-05 9.05e-05 9.05e-05 9.05e-05 9.05e-05

2.13 Conclusion

In this chapter, we described the approximation of the fractional derivative and we focused
on the L1 scheme (Oldham & Spanier 1974). We modified the L1 scheme to develop
the C1, C2, and C3 schemes. The accuracy of each of these approximations for the
order p fractional derivative was found to be of order O(At>7P). The numerical tests
on powers of t verified the accuracy of each of these approximations. From these results
we conclude that the C2 scheme is more accurate when compared with the L1, C1, C3
and Romberge integration (k = 2) schemes. We also considered short memory based
approximate fractional derivatives of order p, the L1* and RL1 schemes. The accuracy of
each these approximations was discussed, and the numerical tests on powers of ¢t compared

with the exact fractional derivative to verify the accuracy of each of these methods.

In future work a stopping criterion based upon the convergence of integral estimates will
be used to shorten the number of the steps, n, required. We will analyse the accuracy of
the Romberg Integration analytically and this method also needs to be incorporated into

a full numerical method.



2.13 Conclusion 146

In addition, the Regression methods, LRA, QRA and N LR schemes, are used to approx-
imate the fractional derivative by using regressions to approximate the early history in
the integral in Equation (2.276) instead of ignoring this history. We conclude that using
linear regression is a better approximation to reduce the error that accrues if we ignore

the early history. It is also easier to determine what value of n should be used.

These approximations can be potentially implemented in the full numerical solution. The
advantage of using LRA over using the full L1 scheme is that we no longer need to
evaluate the complete convolution sum but rather need only update the estimate of the
slope parameter. This can be done iteratively whilst the full convolution sum cannot. The
QRA method outperforms the LRA scheme when the optimal value n is used. However

the LRA is more predictable in deciding when to truncate the sum.



Chapter 3

Implicit Numerical Method:
IMC1 Scheme

3.1 Introduction

Many researchers have investigated ways of finding the solution of fractional partial differ-
ential equations (FPDESs) such as analytical solutions (Wyss 1986, Mainardi 1996, Henry
& Wearne 2000, Metzler & Klafter 20005, Langlands et al. 2008) and numerical solutions
(Diethelm & Ford 2002, Langlands & Henry 2005, Deng 2008, Murio 2008, Dhaigude &
Birajdar 2012, Chen et al. 2013). Some analytic solutions are known but they are difficult
to evaluate. Most fractional partial differential equations do not have exact solutions and

so consequently numerical techniques must be used to obtain their approximate solutions.

In this chapter, we consider a finite difference solution scheme for the fractional subdif-
fusion equation with a source term given by Equation (1.15), where K., = 0, which we

repeat here as

ot T otl—

u(z,t) _ 0" (82gi€,t)> b f(t) (3.1)

with the initial condition

u(z,0) = g(z), 0<z<IL, (3.2)
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and the boundary conditions
u(0,t) = ¢1(t) and u(L,t) = pa(t), 0<t<T, (3.3)

where D > 0, 0 < v < 1 and f(z,t) is a given source function. We also suppose that

u(z,t) € U(R) is the exact solution for the fractional subdiffusion equation (3.1), where
Q={(z,0)|0<z<L,0<t<T}, (3.4)
and

U(Q) =

4U.’E 3’LLCC QUIE
{w:,w’a (z,t) Fulz,t) Fulzb) (3.5)

ozt 7 9x?0t T 02 C(Q>}

We approximate the second-order spatial derivative by using second-order centred finite

difference approximation. The centred difference at time step j around the point ¢ is

’ ~ Uiy — 207 Uy (3.6)
Ax? ' '

o
0x?

i
The time derivative on the left of Equation (3.1), can be approximated using a Centred—

finite difference, as in Figure 3.1,
ou
ot

a forward finite difference

J uj+1 — uj_l
i N (Central Method) (3.7)

T
[g;‘ m% (Explicit) (3.8)
or a backward finite difference
i1
[‘?;Z %% (Tmplicit). (3.9)

Both explicit or implicit numerical schemes can be derived using these approximations
similar to the standard (non-fractional) partial differential equation. Explicit methods
evaluate the right hand of Equation (3.1) at the current time, whilst implicit methods
evaluate the right hand side at the new time level. Implicit methods require the solution

of systems of equations to update their solution.
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t—At t t+At

Figure 3.1: Geometric interpretation of the finite difference approximation of the time deriva-

tive.

3.2 Derivation of the Numerical Method (IMC1 Method)

An implicit numerical method for the fractional diffusion equation was derived by Lang-
lands & Henry (2005), where the fractional derivative was approximated by using the L1
approximation (Oldham & Spanier 1974). In this section, we describe the derivation of a
modified implicit method for the fractional subdiffusion equation.

In this modified method the finite difference scheme is used to approximate the second
spatial derivative. Instead of the L1 scheme, the C1 scheme, given in Chapter 2 by Equa-
tion (2.60), is used to approximate the fractional derivative of order p = 1 —~ at the time
t; = jAt. Using the approximation in Equation (3.6) for the second spatial derivative
and Equation (3.9) to approximate the first temporal derivative in Equation (3.1), we

arrive at the scheme

ug — ug_l DAt—1 {

At = aAarr(d ) | ) (e — 2wy (3.10)

) . . - ) )
+aj(7)( Uit 2“ +u )+ [(ug—&-l _2“5 +u§_1) - <UZ+1 —2u ] ‘H‘Z 1)}

-1
1 J
5 Dok () | (b = 2 ) = (b - 20t ) } + 7,
k=1
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Equation (3.10) can be written as

, . DAY . .
1 * 1
e { 85 (1)ozul + a;()0zu; + dgu] — Gzu
j-1 A
+> w5 (7) [5310?“ - 5§Uf_1] } + 11, (3.11)
k=1
where 53@{ is defined as
2] = Ve 20+ (3.12)
x :

Ax? ’
which uf is the numerical approximation of the solution Uij = u(z;,t;) at the discrete grid
point (x;,t;), Az is the spatial grid-step size, At is the time-step size, and ff = f(zs,t;)
is the numerical approximation of the source term. We refer to this approximation as

IMC1 scheme. Equation (3.10) can be rewritten in matrix form as

A*ul = A*u/ 7 4 e+ At 7, (3.13)
where
1 0 0 0 0 0
-p 1+2p —p 0 0 0
A" = : : P f : ) (3.14)
0 0 0 —p 14+2p —p
0 0 0 0 0 1
and
7—1
¢ = pB; (1w’ + pa; (7wt +p > iy (7) (W — wbL). (3.15)
k=1

In Equations (3.14) and (3.15) the term p is given by

DAY
_ 1
P = 9AZ (1 + ) (3.16)
where the weights a;(v), 85 (7) and uj(y) are given by
a;(v) =737 = (-1, (3.17)
Bi(y) =297 = a; (), (3.18)

and

pin) = 516+ 17 = G- 1)7). (319
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3.3 Accuracy of the IMC1 Method

Here we determine the truncation error accuracy of IMC1 numerical scheme. Now from

Equation (3.11) we have

Loy g DAg= [ , -
At [“5 — 1} ~ (i +) { By (705l + aj(7)02u) + pul — 62ul ™ (3.20)

j—1
+> k() [(ﬁuf*l —~ (ﬁuf_l} } + flwi,t).
k=1

The first term on the right hand side of Equation (3.20) is the C1 approximation, Equa-
tion (2.60), with u(t) replaced by d2u;(t)

1—'-)/ J ~y—1 . .
s 020 =gt LBl 0+ ud - 82
1,C'1

7j—1
D () [ — o2t } , (3.21)
k=1

and so Equation (3.20) can be written
1, oL J
— [uﬂ — 1} =D [ 52u) + f(z, t)). (3.22)

At Lt ott=1 Ve

Now taking the Taylor series expansion around the point x; = i{Ax in space, we then have

U
Oz?

I AZ? [0U
12 | oz

J

(5§Ul-j ~ [

+0(Az?). (3.23)

% )

Also taking the Taylor series expansion around the point ¢; = jAt gives
vl -uitt [8U

At ot

’ +O(AY), (3.24)

7

and so we have

ou |’ v (92U A2 ToUV J
[Gt i+0( t) [atl—v <a$2 + 05 [8334 i+0( x )) Cl+f(:n,tj) (3.25)
o 920\ | DAz? Tol-7 () !
=D |55 2 : T ®) + f(@it5),
otl=7 \ Oz e 12 ot1— i
where
orU
M(t) = |- 3.26
Q (ifl)Awrga?g(iH)A:p oz ( )
Adding and subtracting the exact fractional derivative, we find
U J = /82U J ,
[m . =D [81&17 (awz) i + f(xi, tj) + O(At) + O(Az”) (3.27)

J

o [(9%U
D [(%1—7 (w)

J 81—7 aQU
iC1 - L%I_W <W>

)
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From Equation (2.125) the last term
o' (90U [ o' (9°U
o= (3|, ~ v ()

is O(At'™7) but the Equation (3.27) also includes O(At) terms, and so we then find the

J

(3.28)

i
truncation error, 7; ;, is first order in time and second order in space, that is

7ij = O(At) + O(Az?). (3.29)

3.4 Consistency

The numerical approximation for the fractional subdiffusion equation is consistent, if we
can show that the truncation approaches zero as Az — 0 and At — 0, that is we let

uf R~ Uij = u(z;, t;), then

Jim (ul —UY) = Aim 75 = 0. (3.30)
At—0 At—0

From Equation (3.29), we have

Alililo Ti,j = 0. (331)
At—0

This shows that the IMC1 method is consistent with the original fractional partial differ-

ential equation.

3.5 Stability Analysis

In this section, the stability of the modified implicit numerical method (IMC1) in Equa-
tion (3.10) is considered by using Von Neumann stability analysis. Before this we first

rewrite Equations (3.10) — (3.19) as

J_
%

j—1
u; = u;

+ 87 (7) (usr — 20 + w1 ) + pa (7) (wigy — 2u; + ;1) (3.32)
o (i~ 2ud ) = (st = 20t )

J j—2
oY w5 () (g = 2uf +ufy) —p Y i, () (ufy = 2uF ) + AL
r=2 p=0
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Now let Uij be the exact solution of the Equation (3.1) and satisfying Equation (3.32),

we then have
U UJ 1‘1‘05 (v )( i+1 — 207 + U 1)+Paj(7) (Uerl 2U; + U ) (3.33)

<U1j+1 —2U7 + Uz'jq) (Uz]Jrll —2Ui 7+ Ug:f) + pZM;_T'Fl(’Y) (Ui — 207 +U7y)
r=2

—pZu] 1 (1) (UP = 2UP + UP,) + ALf] + AtR].

The error is then given by

e =U! —u, (3.34)

3 7 (2

and so the error satisfies the equation

o .
e =€ +pB(7) ( €it+1 — 26 + € 1) + paj() ( €ir1 — 26 + € 1) (3.35)
1 i—1 -

+P< €it1 —2€¢ + e 1) p(i—i—l —2¢] +€§_1>

+ PZ M;—r+1<7) (€§+1 —2¢; + 65—1) - PZ M;—p—l<7) (eli)Jrl - 26? + 5&1) :

In Equation (3.35) we set the truncation error to zero (in stability analysis the truncation
error is not required), but later in Section 3.6 we will use the truncation error to show

the convergence rate of the numerical method.

To investigate the stability by Von Neumann stability analysis, we let
e = (el BT (3.36)
where 4’ is the imaginary number, \/—1, ¢ is a real spatial wave number and
1A% — cos (qAz) + i sin (¢Az) . (3.37)
Using Equation (3.36) in Equation (3.35) gives the equation for (;
Cjei’qu _ Cj_lei'qu 4 P{B}‘(V) (ez g(it)Az _ o i'qide 4 i'q(i=1) Ax) G (3.38)

+aj ( 7q(i+1)A _ 96! "qilAx + 1q(i—1)Ax> G+ ( i'q(i+1)A — 96t 'qiAz + 1q(i—1)Ax> Cj

J
N (ei’q(i-‘rl)Aaz N Zei’inx + ei’q(i—l)Az) Cj—l + ZM;—T+1(7) ( Vq(i+1)A _ 96! "qilAx
r=2

+ez "q(i—1) Aa:) Z’u] e 1 (ei’q(i-‘rl)Ax o 2ei’inx + ei’q(i—l)Aac) Cp}a
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which can be rewritten as
G =¢G-1+ p{ﬂ}-‘(v) (eilqAz -2+ e_i/qm) G +a;(7) (ei/qm -2+ e_ilqm) G (3.39)

i (ei'qm 94 e—i’qAac) ¢ - (ei’qAac 9 e—i/qu) ¢t

j -
Y (7) (ez'qm’ 2+ e‘zlqm) G =D Hpa(7) (élqm —2 6_Zlqm> Cp}'
r=2 =0
Noting
v 4 A
e I8T — 2 4 ¢7TIAT — 2 (1 — cos(qAr)) = —4sin® <qz$> ' (340

Equation (3.39) can then be rewritten as

A
(j = (o1 —4sin® <q2x> P{ B; (7)Co + ajCi + ¢ — G-t
J j—2
D M (NG =D u§_p_1(7)Cp}- (3.41)
r=2 p=0
Setting
vg = 4sin’ (qéx> P, (3.42)

for j > 1, Equation (3.41) becomes

J j—2
G=Cj-1— Aq{ﬁ;‘(v)co +a;(MG+ D (NG =Y u;fplmcp}, (3.43)
r=2 p=0

where

_ Y
N 1+v,

g (3.44)

For 0 < v, < 00, A4 satisfies the inequality 0 < A\, < 1.

For j > 3, Equation (3.43) can be rewritten as

1

G=1y 2-1),

{ <1 + % (1-3) >\q> 1+ Aq (; (" =G=2) - 6;-‘@)) G (3.45)
1 =
A (2 (G- 17— (G—3)) ajm) G- waW)Cr} ,
2
where the weight @;(7) is defined as

w;i(v) =5(+2)7-2"+(—2)]. (3.46)

N =

We next consider the following lemmas which will aid in showing the stability of our

numerical method.
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Lemma 3.5.1. Let a;(y) = j7 — (j — 1)7, where j > 1 and 0 < v < 1 then a; satisfies:

1. aj(y) > 0, and,

2. aj(v) > aj+1(7)-

Proof. To show a;(y) > 0, we have

aj() =" -G -1)"=5"|1- — ) | (3.47)
but
i1
0<?i =<1, (3.48)
J
when j > 1 and so
.\
0< <‘7. > <1, (3.49)
J
and
I\
0<1— <Jj ) <1. (3.50)

Hence from Equation (3.47) we have 0 < a;(v) < j7 since 57 > 0 and so a;(y) > 0.

To prove the second result we let f1(y) = (y — 1)” and fao(y) = y7—(y — 1)7. We will show
these functions, fi(y) and f2(y), are monotonically increasing and decreasing functions
respectively of y, for v € (0,1).

Since

=T > 0, (3.51)

we can conclude, for y > 1 and 0 < v < 1, that the function fi(y) is a monotonically
increasing function in y.

Finding the derivative of fs(y) we have

dfa(y) ,yy771

iy BRI Y (3.52)

Now since

yl—’Y > (y - 1)1_’Y ;
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as fi(y) is an increasing function for 0 < v < 1, then

Lo 1
yl=r T (y -1t

(3.53)

Hence

df2(y) v Y
dy ~ (y-n'77 (-1

and so the function f5(y) is a monotonically decreasing function of y, for 0 < v < 1.

<0 (3.54)

Setting y = j we then have

a;(y) =47 = (G —1)"
>+ = (G+1)-1)
> ajy1(7). (3.55)

Hence results (1) and (2) hold for 0 < v < 1. O

Lemma 3.5.2. The coefficients w;(), defined in Equation (3.46) for 0 < v < 1 and

J > 2, obey the constraint w;(y) < 0.

Proof. First we can write @;(y) in terms of a;(7) (defined in Lemma 3.5.1)

@;(7) =;[((jm)”—(j+1)”+(j+1)y—j”>—<ﬂ—(j_l)“r(j_m_(j_wﬂ

= 3| @20+ 60) = (w00 + a0 | (3:50)

By Lemma 3.5.1 we have a;2(7) < aj+1(7) < a;j(7v), and so

@) < 5[ 2a510) - 60) = )]

1

<5|em-ame]. (357

Since a;(7y) < a;j—1(7), then we have the result @;(y) < 0.
If v =1, then w;(y) =0, for j > 2 by direct substitution. O

Lemma 3.5.3. If b; = S -G - 2)7)= B3 (7), where 37 (7) is defined in Equation (3.18)
and0<7§1,thenl}j>O,forj22.

Proof. By using Equation (3.18), we then rewrite IA)j as follows

by = 3 (a3(1) +a51) = (277 = a5(7)
= L) + a5 () - 207+ a5(m). (3.58)

2



3.5 Stability Analysis 157

By using Lemma 3.5.1, we have a;_1(y) > a;(7), and so
bj > 2a;(7) — 2yt =2 (a; — 457 7). (3.59)

From Appendix B.10, we have 757~ —a;(y) < 0 then a;(y) =757~ > 0, and we conclude
that b; > 0, Vj > 2. O

Lemma 3.5.4. Given b; = 1 [(j —1)” — (j — 3)"] — a;(7) where a;(7) defined in Equa-
tion (3.17) and 0 < v < 1, then b; > 0, Vj > 3.

Proof. Rewrite b; as follows

by = 5 (a51(1) + a5-2(2) — () (3.60)

and using the result a;_2(y) > aj—1() from Lemma 3.5.1 twice we then have

b > 2 (a-1(7) + a51(7)) — (%)

2
= aj-1(y) —a;(7) > 0. (3.61)
We then conclude that b; > 0, Vj > 3. ]

We now consider the stability of our scheme.

Proposition 3.5.5. Let (;, where j = 1,2,..., M be the solutions of Equation (3.43),

then
1¢51 < 1¢ol - (3.62)

Proof. We use mathematical induction method to prove the relation in Equation (3.62).

We assume (y > 0, and first consider the case j = 1. From Equation (3.43) we have

€1 = Co — Ag( BT (7)Co + ar(7)C1) - (3.63)

Using f7(v) =2y — 1 and a1(y) = 1, gives

(1+2)C = [1 = Ag(2y = D))o, (3.64)
which can be simplified to
2v7q
=(1-— . .
G ( 1+Aq>€0 (3.65)
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Since the second term in the bracket is positive then (; is bounded above by (y, that is

2v7g
=(1- < (. 3.66
G < 1+Aq>§o_C0 (3.66)
In addition, for 0 < A\; <1, we have
2797q
0< < 3.67
T4 T 7 (3.67)
SO
29
1>1- L >1-9>0> 1 3.68
21-1 0, 21-7202 -1, (3.68)
and we conclude that
27
=(1- N > — :
a=(1- 25 ) 6=~ (3.69)
hence
—Co < (1 < Co, (3.70)
or
[SIRSCIE (3.71)

So Equation (3.62) is true for j = 1.

In the case j = 2, from Equation (3.43), we have

=0 [B5(7)C0 +as(MG +277 1 — 277G (3.72)

Then using Equations (3.17) — (3.19), we find

1

@= i,

— (27 = DG = A (292 =27+ 1271 G} (3.73)

Since for 0 < \; < 1and 0 <y <1, we have 27 —1 > 0, we see the coefficient of (; obeys
the inequality

0<2-27<1—-X (2" —1) <1 (3.74)
In addition since (; < (o we have

1

G < i, {T+ 21 =2] =X (27271 =27 +1-27"1)} ¢ (3.75)
Y27

Since the second term in the brackets is positive then (s is bounded above by (y

27)
o = (1 _ M) Co < Co- (3.77)
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Since we also have —(y < ¢y, then from Equation (3.73)
- _ 9 =1 _ 97 _on—1 _
C221+27_1)\q{1+)\q(1 27) 4+ Aq (272 274+1-2 )}( o), (3.78)
which simplifies to
Ag (2427(y —3))
> -1+ : :
G2 > < L 2 Th, Co (3.79)
For 0 < A\; <1 and since —2 < 27(y —3) < —1 for 0 < v < 1, we have
A (24+27(y—=3)) _ 2+27(y-3)
< .
1+20-1n, — 1+201 (380)
and for 0 <y <1
2+27(y—-3)
1< —= < -2 . .81
< S 23<0 (3.81)
So we then have
Ag(2 427 (v —3))
0<1+-2 <1 3.82
=4 1+20-1N, =7 (3.82)
which gives the bound
Ag (2427(y —3))
>—(1+- > —(p. :
G2 > < + 71x, Co > —Co (3.83)
We then conclude that
—Go < G2 < Co, (3.84)
or
G2| < [Gol- (3.85)
So Equation (3.62) is also true for j = 2.
We now assume that
—Co < Cn < Co, for n = 1,2, ...,k’, (386)
and then need to show that
—C0 < Crt1 < Co- (3.87)
From Equation (3.45) we have
G = g | |1+ (1= 30| Gt Ay |5 (8 = (k= 2)7) = B) | &
k+1—1_’_27_1)\q 5 q| Gk a|5 E\Y)| Go
1 k—2
g |5 (6= 17 = (6= 37) = ()| G+ Ao T (-moa(2)d (3.59)
=2
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In Lemma 3.5.2 we have shown w;(y) < 0 therefore —w;(y) > 0, and for 0 < \; <1 and

0 <~ <1 the coefficient of (}, satisfies
1 1
0< 5(3—37) §1—|—§(1—3V))\q§1.

By using Lemmas 3.5.3 and 3.5.4 with Equation (3.86), where (, < (p, then Equa-

tion (3.88) becomes

Cht1

< e 5 (=3 A 5 07 e =27) = i)

k—2
) [; (k=17 = (k—3)) — ak(’y)] + g Z(—wk_z(v))} Co- (3.89)

=2

Now evaluating the summation in Equation (3.89), gives

k—2 1k 2
(k-1 (v 52 k—1+2)"+2(k—1)"— (k—1-2)"]
= 1 - k—4 k—2 k—2 k
2[ S (k-1 + +< (k‘—l)”—Z(k—l)”)]
=0 l:2 =2 =4
_% Vb (k=2 + (k-3 +27+3 —1].  (3.90)

Using this result in Equation (3.89), we find

C 1
BHLS gy

g 5 (=17 = (6= 37) - )]

% 37427 — 1=k — (k= 1)+ (k—2)7 + (k — 3)7] }go, (3.91)

{1+2(1—37)>\ + A { (k7 —(k—2)”)—/6’2(7)}

which can be simplified to

29k L),
< B e pe——— . .
Cer1 < (1 T 27T, Co (3.92)

Since the second term is positive then (;11 is bounded above by (g

2'yk7_1)\q
Chy1 < (1 - M) Go < Co- (3.93)

Since —(p < (,, then Equation (3.88) becomes

1 1 1
G > g {1 5 (030 [5 (0 = (6= 27) = )]

f—2
+Aq [; (k=1)"—(k—=3)7) - ak(V)] — g Zwk_l('y)} (o), (3.94)
1=2
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which can be simplified to

29k
> (1 2 Ja .
Ck+1 el < 1 + 27_1)\q> 0 (3 95)
we then have
29k
> (1- — L > —(p. .
Cht1 = < T 271)\(1) Co > —Co (3.96)
So Equation (3.62) is true for n = k + 1 that is
—C0 < Crt1 < Co, (3.97)
or
|G| < [Col- (3.98)

Then for all n € IN Equation (3.62) is true. Hence according to Von Neumann stability

analysis the numerical method is unconditionally stable. O

3.5.1 Numerical Solution of the Recurrence Relationship

In this section we investigate the solution of the recurrence relationship in Equation (3.43)
by direct evaluation, where 0 < v < 1. The ratio (;/{p is shown in Figure 3.2 against j
(where j = 1,...,100) for various values of v = 0.1,...,0.9 when A\, = 1. Also the ratio
(j/Cj—1 is plotted as a loglog plot given in Figure 3.3. From these results this method is

stable as the ratio is less than 1, as predicted.

Figure 3.2: Prediction of ¢;/(o found from numerically evaluating the recurrence relation in
Equation (3.43). Results are shown for 100 time steps, A, = 1 and v = 0.1,...,0.9. In this

figure -y increases in the direction of the arrow.
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5 Ga

Figure 3.3: Results of (;/{j—1 found from Equation (3.43) for j = 1,...,100, A, = 1 and

v =0.1,...,0.9. In this figure « increases in the direction of the arrow.

3.6 Convergence of the IMC1 Method

In this section, we consider the the convergence of the IMC1 scheme, we follow the

approach as in Chen, Liu, Anh & Turner (2010) by defining

; Uj — U.j*1 DAL . ) -
R==x  ara ﬂ){ﬁj (V)S2U? + a;(7)52U} + 8207 — 5207~
j—1
D) [B2UE - 55@-’“‘1} — 1, (3.99)
k=1

where 5§Uij is defined as in Equation (3.12), from the C1 scheme we note that

d'f(t)
{ dtl=

j At'y—l
o1 2D+~

){B;‘-‘('y)fo a4+ S~

7j—1
+ > 15k [frr = fk—ﬂ} +O0(At7). (3.100)
k=1

Now using Equations (3.23), (3.24) and (3.100) in to Equation (3.99), we then have

pi _ O

22Ul 92Ul 92Ul
Lot + B

0x2 0x2 0z?

‘ A1 o 02U
— fl +o(At) - DM{ BN g2 T ai()

j—1 27 rk+1 277k—1
. 0°U; 0°U;
+ E :u’]—k:(f}/) o2 - O12
k=1

J N /92U J
;P [alv (w)

+ O(A:c2)} + O(At)

[ou

) 2
_ [81& _ [ £ O(A + Ag?), (3.101)

i
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According to the Equation (3.101), we have

R = O(At + Az?) (3.102)
where i =1,2,...,N and j =1,2,..., M, since 4, j are finite, there is a positive constant
c for all 7, 7 such that

IRI| < e1(At + Az?). (3.103)
Let

E] =U] -] (3.104)

where i =1,2,...,N and j =0,1,2,..., M. From Equation (3.99) we have

vl =it A0

7 % 2:[1(1_’_7) {/BJ (7)6‘%(]@ +a](’}/)5mUl +633U7, 6ZEUZ

J—1
+ D15 k() [5§Uf“ - 5§Uf‘1] }+Atf3 + AR, (3.105)
k=1

Subtracting (3.11) from (3.105), we then have the following error equation

. . AtY
El=FE"'4

— B ()O2EY + a;(7)82E} + 62E) — 2E7 1
7 7 2F(1+7){5J(’Y)m 2+a](7)m 1+ x g x

7j—1
+ > w(7) [63 B 52 Ef—l} }+Ath : (3.106)
k=1
Fori=1,2,..., N we define the following grid function

. Ef ifl’G(-’Ei,laliprl},i:laQa"'aN
Ei(z) = 2 2 (3.107)
0 ifael0,825]U(L- 425 L],

and

, R if:L’E(a:i_;,a:i+;},i:1,2,...,N

R (z) = 2 2 (3.108)
0 ifzel0,5|U(L -5 L]

respectively and then Ef and Rg can be expanded in Fourier series as

Ei(z)= Y &)e ™/t j=0,1,2,... .M (3.109)
l=—c0
and
Ri(z)= Ym0/t j=0,1,2,... .M (3.110)

[=—00
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where

L
() = 2/ B (z)e "2/ Ly, (3.111)
0

and
e .
n;i(l) = L/ RI(x)e™ 2@/ g, (3.112)
0

Next we applying the Parseval identity (Spiegel 1965, Spiegel 1991), we then have

1

N—-1 é 00 2
|E7 |2 = (Z Ax\EfP) = (Z |£j(l>|2> . j=0,1,2,...,M  (3.113)

i=1 [=—00

and

(SIS

1
N-1 2 00
|7l = (Z Ax|Rz|2> =<Z m-(m?) S =012, M (3114)

i=1 l=—0

Now we assume that

Ef — fjei,qu, (3.115)
and

RY = el tite (3.116)

where ¢ = 27l/L and ¢’ = y/—1. Using Equations (3.115) and (3.116) in (3.106) gives

j—1
& =E&j—1— Vg {5;(7)50 +a;(MN& +& =&+ D 151 (7) (€1 — &m]} + Atnj,
k=1
(3.117)
where v, is defined as in Equation (3.42). Equation (3.117) becomes

Uq
1+ vy

j-1
A .
§=E&-1— {5;(7)50 +ag(Né+ Y i (7) [Erer — §k—1]} +1 inj . (3.118)
P

Uq
For j > 3, Equation (3.117) can be rewritten as

1

&= rzmc] (1430390 g (507 G-20) - 550 ) &

1 =
+q (2 (-1 =G-3)) - aj(7)> &= Y @i (& + Atm} , (3.119)
2

where the weight w;(7) is defined as in Equation (3.46), and also ), is defined as in
Equation (3.44).
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Proposition 3.6.1. Let &; be the solution of Equation (3.118). Then there exists a

positive constant co such that
65| < c2jAt|ml, (3.120)

where j =1,2,..., M.

Proof. From Equation (3.104), we note that E° = 0, we then have.
o =¢&(1) =0. (3.121)
From Equations (3.103) and (3.114), we obtain
IR ||a < oV NAZ(AL + Az?) = eoVL(At + Az?), (3.122)

where j =1,2,..., M, and on the right hand side (3.114) by the convergence of the series

there is a positive constant c¢; such that

sl = (D] < ¢jlml = ¢ilm (D], j=12,..., M. (3.123)
We then obtain
Injl < calm (1), i=1,2,..., M, (3.124)
where
co = 131};4{0]-}. (3.125)

Now using mathematical induction, starting with j = 1, from Equation (3.118), we have

v Atn;
1 2 = . 3.126
( Jr14—1161,>§1 1+, ( )
Equation (3.126) becomes

= At 3.127
fl 1+ 2Uq m, ( )

since 1 + 2v, > 0, we obtain
< At < At < egAt|m|. 3.128
ST o, Im| < Atlm] < coAtm | (3.128)

For j = 2, from Equation (3.118), we have

Atnp
1+,

Uq

62:51_1—%%

(85 ()0 + ag(1)& + 20T — 27716 + (3.129)
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which upon using Equation (3.127) in Equation (3.129), is then given by
¢ = [+ (2 = 2 + (1 4+ 20g)]
= vg(2 — v
27 0+ 200)(1+ vg + 1,2 0) a m a)’2
At vg27
= 1—- L 3.130
1+ vy + 0,201 K 1+2vq>m+m]’ (3-130)
since |n2| < c2|m|, we then obtain
At vg27
< 1- 2
&2l < T T H T+20,] CQ} Il
1+c¢
=1 ( 2) 1 At‘nl‘
+ vg + vy27
< 2co At (3.131)
Suppose that
1€n] < canAt|m], n=12...,k—1. (3.132)
For 0 < v <1 and v, > 0, from Equation (3.119), we have
1 1
< lh+>(1-3A S (kY — (k—2)") - Bt
6l < g [+ 50 A 2( (k ~277) ﬂkm\rsor
k—
1 v v
HAg |5 (= 1)7 = (k= 3)7) —aw(y)| [&2] + Aq Z| — w1 (NG| + At[nyl
(3.133)

In Lemma 3.5.2 we have shown w;(y) < 0 therefore —w;(y) > 0, and in Lemma 3.5.4 the

coefficient 3 [(k —1)Y — (k — 3)"] — ax(y) is positive. For 0 < A\ <1 and 0 < v < 1 the

coefficient of &1 satisfies
1
o<§(3—37)<1+ (1—3”))\ <1

Equation (3.133) becomes after using Equation (3.132)

A |
!ék!_lf;tl)\{[1+2(1—37))\](k—1)+/\q (2

+Aq Z(—lwk—l(ﬂ) + 1} Im.
1=

Now evaluating the summation in Equation (3.134), gives
k—2
(—lwp_i(y Zz k=142 420k =07 —(k—1-2)"]
=2
k

k—4 —2
[Zz+2 k—1)" ZZ(k—Z)H

=0 =2

= =4

N | =

[—2k7 — 3(k — 1) + (k — 3)7 + k(2 +37 — 1) — (37 — 3)].

k—2
S Hk=1T =) (1 —2)(k -
=2

|

((k— 1) — (k= 3)) - akw))

(3.134)

(3.135)
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Using this result in Equation (3.134), we then have

&) < %{[1—%;(1 —37))\,1] (k—1)+ A <;((k— 1) = (k= 3)) — (b7 — (k= 1m>

+ % (<27 —3(k —1)7 4+ (k= 3)Y + k(37 +27 — 1) — (37 = 3)] + 1}|m|

c2At {[1 +lao Aq} (k—1)+ X (—%7 - % (37 +2" — Dk + (3 37)]> + 1} Imi

T 1420, 2
_ At -1 2
. CQAt)\q (2]{7 — 1)
= caAAth|m| — —— 2Th, |m|
S CgAtk‘T]ﬂ. (3136)
We then conclude that for n = k
€| < cokAt|m | (3.137)

and hence for all n € IN we have |§,| < canAt|n|. The proof of the proposition is

completed. 0

Theorem 3.6.2. Let u(x,t) € U(Q2) be the exact solution for the fractional subdiffusion
equation. Then the numerical scheme (3.10) — (3.19) is convergent with the convergence

order O(At + Ax?).
Proof. Using Equations (3.103), (3.113), (3.114), Proposition 3.6.1, and jAt < T, we then
have

1B |2 < caj At| Ry < creaj AtVL(AL + Ax?) < C(At 4+ Ax?) (3.138)

where C = ¢1¢oTVL. O

3.7 Numerical Examples and Results

In this section, we provide three examples of the implementation the implicit scheme,
IMC1, where the analytic solution is known. For each example we compare graphically

the numerical prediction against the exact solution. We also verify the accuracy of the
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implicit scheme by computing the maximum norm of the error between the numerical

estimate u} and the exact solution u(x;,tys) using the infinity norm

eoo(At, Az) = max | uM — u(zi,ta) |- (3.139)

Numerical accuracy is studied for varying time and spatial steps sizes in the cases of
v =0.1, 0.5, 0.9, and 1. The approximate order of convergence in Az, R1, was estimated

by computing the term
R1 = log, [eso (AL, 2Ax) /e (AL, Az)], (3.140)

and the approximate order of convergence in At, R2, was estimated by computing the

term
R2 =log, [eco (2At, Ax) /eno (AL, Ax)]. (3.141)

This scheme was implemented in MATLAB R2014a (see Appendix C.2) using the linsolve

subroutine to solve the system of linear equations.

Example 3.7.1. Consider the following fractional subdiffusion equation with a source

term

du 9 (9% . o (1 2t
5 o <81:2> + sin(7x) {225 +7 (F('y) + T2+ 7)>] ; (3.142)

with 0 < v <1 and the initial and fixed boundary conditions
u(z,0) = sin(nzx), u(0,t) =0, u(L,t) =0, (3.143)

where 0 < z < L, t > 0, L = 1. The exact solution of Equation (3.142) given the

conditions in Equation (3.143), is

u(z,t) = (1+ %) sin(rz). (3.144)

In Tables 3.1 and 3.2 we give the error and order of convergence estimates for this example.
To estimate the convergence in space we kept At fixed at 1072 whilst varying the value
of Az. To estimate the convergence in time we kept Az fixed at 10~3 whilst varying At.
From the results shown in Tables 3.1 and 3.2 it can be seen that the implicit method

IMC1 is of order O(Axz?) and O(At).
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Table 3.1: Numerical accuracy in Az of the IMC1 scheme applied to Example 3.7.1 with

At = 1073 and R1 is order of convergence.

v=0.1 v=0.5 v=0.9 vy=1
Az ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl
1/2 0.32 e-00 - 0.41e-00 - 0.42e-00 - 0.42e-00 -
1/4 0.75e-01 2.11 0.95e-01 2.11 0.99¢-01 2.12 0.96e-02 2.12
1/8 0.19¢-01 2.01 0.23e01 2.03 0.24e-01 2.03 0.24e-01 2.03
1/16  0.49e-02  1.93  0.59¢e-02  2.00  0.59¢-02  2.00  0.59¢-02  2.00
1/32 0.15e-02 1.72 0.15e-02 1.96 0.15e-02 1.97 0.15e-02 1.97

Table 3.2: Numerical accuracy in At of the IMC1 scheme applied to Example 3.7.1 with

Az =107 and R2 is order of convergence.

v=0.1 v=0.5 v=0.9 vy=1
At exo(At,Az) R2 ex(At,Az) R2 ex(At,Az) R2 ex(At,Az) R2
1/10 0.11e-00 - 0.37e-01 - 0.13e-01 - 0.10e-01 -
1/20 0.52e-01 1.06 0.15e-01 1.26 0.61e-02 1.11 0.51e-02 1.00
1/40 0.25e-01 1.07 0.64e-02 1.27 0.29e-02 1.08 0.25e-02 1.00
1/80 0.12e-01 1.08 0.27e-02 1.25 0.14e-02 1.05 0.13e-02 1.00
1/160 0.55e-02 1.08 0.12e-02 1.22 0.67e-03 1.03 0.64e-03 1.00

A comparison of the exact solution and the numerical solution of Equation (3.10) in the

case of the fractional exponent v = 0.5 at the times ¢ = 0.25, 0.5, 0.75 and 1.0 is shown

in Figure 3.4. It can be seen that, the approximate solution obtained from the numerical

scheme is in good agreement with the exact solution. Results are not shown here for other

values of v, but the exact solution is the same for all + in this and in the next example.
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Exact solution

t=1.0 +  Numerical solution

18F 4
=075

121 =05 b
t=0.25
08 -
06 4
04 -

02- -

Figure 3.4: A comparison of the exact solution and the numerical solution of Equation (3.142)

shown at the times ¢t = 0.25,0.5,0.7 and 1.0, for v = 0.5, and time step At = 1073.

The numerical solution of Equation (3.142) for fractional exponent v = 0.5, time ¢t = 1.0

and At = 1072 is shown in Figure 3.5.

05—

oa T R 02
08 X e 0.4
0.4 e 0e
0z 0a

t

Figure 3.5: The numerical solution by the IMC1 scheme for Equation (3.142) shown for

0<t<1,and 0 <z <1 in the case v = 0.5.

Example 3.7.2. Consider the following fractional subdiffusion equation with the source

term
ou O (9% N t
ot = on <ax2> 2t [1 - r(zﬂ)} ’ (3:145)

with 0 < v <1 and the initial and fixed boundary conditions

u(z,0) =0, 0 <z < L, u(0,t) =t u(L,t) = et?, (3.146)
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where ¢t > 0 and L = 1. The exact solution of Equations (3.145) and (3.146) is
u(z,t) = e*t% (3.147)

The absolute error and order of convergence estimated for this example are shown in
Tables 3.3 and 3.4. To estimate the convergence in space we again kept At fixed at
103 whilst varying Az and kept Az fixed at 1073 whilst varying At to estimate the
convergence in time. From the results given in Tables 3.3 and 3.4, we see again that the
approximate truncation order of the IMC1 scheme, given in Equation (3.10), is of order

in space O(Ax?) and O(At) in time.

Table 3.3: Numerical accuracy in Az of the IMC1 scheme applied to Example 3.7.2 with

At = 1072 and R1 is order of convergence.

v=0.1 v=0.5 v=0.9 vy=1

Az ex(At,Az) Rl  ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl

1/2 0.38e-02 - 0.36e-02 - 0.34e-02 - 0.34e-02 -

1/4 0.98e-03 1.96 0.94e-03 1.95 0.90e-03 1.94  0.89¢-03 1.94
1/8 0.25e-03 1.98 0.24e-03 1.96 0.23e-03 1.95 0.23e-03 1.95
1/16 0.65e-04 1.93 0.67e-04 1.86 0.64e-04 1.86  0.63e-04 1.86
1/32 0.19e-04 1.79 0.22e-04 1.59 0.21e-04 1.58  0.21e-04 1.58

Table 3.4: Numerical accuracy in At of the IMC1 scheme applied to Example 3.7.2 with

Ax = 1073 and R2 is order of convergence.

v=0.2 v=0.5 v=0.9 vy=1

At eoo(At,Az) R2  ex(At,Az) R2 ex(At,Azx) R2 ex(At,Az) R2

1/10 0.45e-02 - 0.15e-01 - 0.21e-01 - 0.21e-01 -

1/20 0.31e-02 0.53 0.86e-02 0.85 0.11e-01 0.98 0.11e-01 1.00
1/40 0.20e-02 0.65 0.46e-02 0.89 0.54e-02 0.99 0.53e-02 1.00
1/80 0.12e-02 0.74 0.24e-02 0.93 0.27e-02 0.99 0.27e-02 1.00
1/160 0.68e-03 0.80 0.13e-02 0.95 0.14e-02 1.00 0.13e-02 1.00

In Figure 3.6 we show the comparison of the exact solution and the numerical solution at
the times ¢ = 0.25, 0.5, 0.75 and 1.0, and for the fractional exponent v = 0.5. Again we

see the numerical estimate is in agreement with the exact solution.
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Exact solution
+  Mumerical solution

Figure 3.6: A comparison of the exact solution and the numerical solution for Equation (3.145)

at different times t = 0.25, 0.5, 0.75, and 1.0 with v = 0.5 and At = 1073.

The numerical solution of Equation (3.145) for fractional exponent v = 0.5, for 0 <¢ < 1,

and 0 < z < 1 with At = 1072 is shown in Figure 3.7.

t

Figure 3.7: The numerical solution by the IMC1 scheme for Equation (3.145) for 0 < ¢ < 1,

and 0 <z < 1in case v = 0.5 and At = 1072,

Example 3.7.3. Consider the following fractional subdiffusion equation

ou o= (9%
u_0 <83}2> , (3.148)

with the initial and fixed boundary conditions
(3.149)

u(x,0) = sin(rx), w(0,t) =0, u(L,t) =0
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where 0 < x < L, t > 0, L = 1. The exact solution of Equation (3.148) subject to the

initial and boundary condition is
u(w,t) = sin(rx) B, (—m%t7). (3.150)

In this example we need to evaluate the Mittag—LefHler function, E,(2), (Podlubny 1998)
with v = 0.5 and v = 1.0. To do this we rewrite the Mittag-LefHler function E; 5(2) in

terms of known functions in MATLAB. The exact solution for v = 0.5 then is given by
u(z,t) = sin(rx) exp(nlt) erfe(r?t7) (3.151)

and for v = 1.0 by
u(z,t) = sin(rz) exp(—n2t), (3.152)

which can be evaluated in MATLAB.

In Figure 3.8 we show the comparison of the exact solution and the numerical solution
at the time t = 0.25, 0.5, 0.75 and 1.0 with At = 10~*. We also give a comparison at
x = 0.5, u(0.5,¢) for 0 <t <1 in Figure 3.9. We see the numerical estimate lags behind

the exact solution as evidenced in Figures 3.8 and 3.9.

In this example we also give the error and order of convergence estimates; For the con-
vergence in space we kept At fixed at 10~7 whilst varying Az and for the convergence in
time we kept Az fixed at 1073 whilst varying At. From the results shown in Table 3.5 it
can be seen that, where v = 0.5, we are not able to get the order of accuracy predicted in
Section 3.3. A potential reason for this (and the lag seen in Figures 3.8 and 3.9) is that
the first and second derivatives at ¢ = 0 are not bounded in this example. Therefore the
assumption in Section 2.6.1 in Chapter 2, that we can expanded the solution as a Taylor
series around t = 0 is not satisfied. By decreasing At we are in fact trying to approximate

this singularity at ¢ = 0 more closely but this is difficult to do numerically.

In Table 3.6 we show the convergence results in Az, keeping At = 107° fixed, and in
At keeping Az = 1072 fixed, in the case v = 1. From the results given in Table 3.6, we
obtain the predicted accuracy of second order in space and first order in time. This is

because the singularity in the derivative at ¢ = 0 does not occur in the case v = 1.

The numerical solution of Equation (3.148) by using the IMC1 scheme for fractional
exponent v = 0.1,0.5,0.9, and 1.0, and At = 10~* are shown in Figures 3.10 and 3.11
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respectively. From the results shown in these figures we see the numerical solution of
Equation (3.148) changes with the value of the exponent . It can be seen that the
solution, in the long term, decays faster to zero for larger values of v compared to smaller
values of v. However, it should be noted that the initial decay is faster for smaller values

of «v. This behavior is consistent with the behavior of the Mittag—Lefller function.

Enact solution
< MNumerical solution

012

0.1

0.08

uix,t)

Figure 3.8: A comparison of the exact solution and the numerical solution for Equation (3.148)

at times ¢ = 0.25, 0.5, 0.75, and 1.0 in the case v = 0.5 and At = 104,

———Numerical Solution
08fF Exact Solution

Figure 3.9: A comparison of the exact solution and the numerical solution present at the mid

point z = 0.5 for Equation (3.148) with v = 0.5 and time step At = 1074,
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ulg)

Figure 3.10: The numerical solution of Equation (3.148), using the IMC1 scheme, shown in

the case of the fractional exponent (a) v = 0.1, and (b) v = 0.5 on the domain 0 < ¢ <1, and

0<ax<1with At =104

Figure 3.11: The numerical solution of Equation (3.148), using the IMC1 scheme, shown in

the case of the fractional exponent (a) v = 0.9, and (b) v = 1 on the domain 0 < ¢ < 1, and

0<z<1with At =104

Table 3.5: Numerical accuracy in At and Az applied to Example 3.7.3 with v = 0.5.

O(At) O(Ax)

At exo(At,Az) R2 Az ex(At,Az) Rl
1/1000 0.11e-00 - 1/2 0.43e-00 -
1/2000 0.81e-01 0.5 1/4 0.13e-01 1.8
1/4000 0.57e-01 0.5 1/8 0.46e-02 1.5
1/8000 0.40e-01 0.5 1/16 0.25e-02 0.8
1/16000 0.28e-01 0.5 1/32 0.20e-02 0.3
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Table 3.6: Numerical accuracy in At and Az applied to Example 3.7.3 with v = 1.

O(At) O(Ax)

At ex(At,Az) R2 Az ex(At,Az) Rl
1/1000 0.44e-03 1/2 0.17e-01
1/2000 0.22e-03 1.0 1/4 0.45e-02 1.9
1/4000 0.11e-03 1.0 1/8 0.12e-02 2.0
1/8000 0.55e-04 1.0 1/16 0.29¢-03 2.0
1/16000 0.28 e-04 1.0 1/32 0.76e-04 2.0

3.8 Conclusion

In this chapter, we constructed the implicit method, IMC1, for the solution of the frac-

tional subdiffusion equation, where the C1 scheme was used to approximate the fractional

derivative. We have shown that the unconditional stability of the proposed method by

using Von Neumann stability analysis. The order of convergence of the method is first—

order in time and second—order in space. The numerical experiments have verified these

results, where the known solution can be expanded as a Taylor series in time around

t=0.



Chapter 4

The Dufort—Frankel Method

4.1 Introduction

The Du Fort—Frankel method is an alternative approximation method, in which the value
at the central grid point uf at time step 7, in the centred—finite difference scheme for the
second derivative, is replaced with the average of uf 1 and uf ~!. Al-Shibani et al. (2013)
applied the compact Dufort—Frankel method to solve the time-fractional diffusion equation
given in Equation (1.44), in which the fractional derivative was defined by the Caputo
derivative and the Griinwald-Letnikov approximation was applied to approximate the
fractional derivative. Liao et al. (2014) developed the explicit Dufort—Frankel method for
a fractional subdiffusion equation, where the fractional derivative was defined as Jumarie’s

modified Riemann-Liouville derivative (Jumarie 2006) given by Equation (1.46).

In this chapter, the Dufort—Frankel method is developed for the fractional subdiffusion
equation with the inclusion of a source term f(z,t), given by Equation (1.15), with

K., = 0, which we repeat here as

ou(z,t) o= (OQU(x, t)

ot ot =

along with the initial and boundary conditions

> + f(x,1), (4.1)

u(z,0) = g(z), 0<z<L, (4.2)

u(0,t) = ¢1(t) and wu(L,t) = @a(t), 0<t<T, (4.3)
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where D > 0,0 <y < 1and f(z,t) is a given source function. In this chapter, we suppose

that u(z,t) € U(f) is the exact solution for the fractional subdiffusion equation, where
Q={(z,0)|0<z<L,0<t<T}, (4.4)
and

U(Q) =

4u3§' 2U.’L‘ 2u3§'
{u(:c,t)‘a (2,t) Sulz,t) Fulzb) (4.5)

) ci) .
ot dz20t ~ Ot? ( )}

This scheme is applied to the fractional partial differential equation where the fractional
derivative is given by the Riemann—Liouville definition, instead of the Caputo definition

used by Al-Shibani et al. (2013).

To find the Dufort—Frankel scheme for Equation (4.1) we need to approximate the second
order spatial derivative and the first order time derivative. The second order spatial
derivative can be discretised using the Dufort—Frankel scheme as

2 j .t g1 J
07w (zy,t5)  Wipq — 1 wp Uy

0x2 - Azx?

(4.6)

The time derivative on the left of Equation (4.1) can be approximated using the backward
difference given by Equation (3.9) as

j—1

iy VR
Ou (i, ty)  wy — ug . (47)

ot At

In the next section we develop the numerical method and in later sections we will inves-
tigate the stability, convergence and the accuracy of the numerical method and provide

examples of its use.

4.2 Dufort—Frankel Method with the L1 Scheme: DFL1

Scheme

In this section, we describe the derivation of the Dufort—Frankel method using the L1
approximation in Equation (2.12) to evaluate the fractional derivative of order 1 — v at
time t; = jAt. In evaluating the L1 fractional derivative approximation of the second

order spatial derivative, we use the centred difference approximation in Equation (3.6) at
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t =0 and t = t; and the approximation in Equation (4.6) for all other times. Together
with the approximation in Equation (4.7), we then have the scheme

Iyt pape

7

At Az2T(1+7)

-1
k=1

u

0 0,.0 j j j
{ﬁj(’Y) (uiyy — 2uf +ug_y) + (Ugﬂ — 2u] + “ﬁl)

where uf is the numerical approximation of the solution Uij = u(x;,t;) at the discrete grid
point (z;,t;), Ax is the spatial grid-step size, At is the time-step size and fij = f(x;,t5)
is the numerical approximation of the source term. The weights 5;(y) and p;(y) in

Equation (4.8) are defined by

Biv) =" =7 -G -1, (4.9)

and

i) =0G+1)" =27 +(G-1)7, (4.10)

and the term o is defined by

DAY

We denote this approximation, in Equations (4.8) — (4.11), as the DFL1 scheme. For
each grid point ¢ and time step j, the approximations of the second derivative need to
be stored for the summation in Equation (4.8). The evaluation of the summation in the
Equation (4.8) is a major contributor to the computational cost that increases with each

time step.

We consider the following lemma which will use later to show the stability of our numerical

method.

Lemma 4.2.1. The coefficients 3;(y) and p;(y) are given in Equations (4.9) and (4.10)
respectively for j > 1, then ;(v) and p;(7) satisfy the following:

1. Bj(v) <0, where j =1,2, ...,

2. pj(y) <0, where j =1,2,....
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Proof. By the result in Appendix B.10, the first result is true, that is 5;(y) < 0.
To show the second result, we can rewrite 1;(7) as

1i() = aj41 — aj, (4.12)

where
aj=j"—(—1)7, (4.13)

then by Lemma 3.5.1 we have aj;1 < aj. Then we obtain the result p;_p <O0.

Hence the results (1) and (2) hold for 0 < v < 1. O

4.3 The Accuracy of the Dufort—Frankel Method

In this section we consider the accuracy of the numerical scheme the Dufort—Frankel
method in Equation (4.8). We let
Ug+1 —2ul +ul_,

L
pu} = AL , (4.14)

and then rewrite Equation (4.8), noting ;_(v) = @j—g+1 — aj—g, as

J j—1 - J—1
u; — Uy DAY ! 5200 + 524 , ) 82Uk
At - F(l + ) IBJ u; + u; + ; (aj—k—i-l aj—k) 2 Ui
Jj—1 k+1 k—1
2u —u; ;
+ (aj_kﬂ — aj_k) ( AmQ ! > } + flj (4.15)
k=1

Identifying the first term on the right hand side of Equation (4.15) as the L1 approxima-
tion, Equation (2.12), with u(t) replaced by 62u;(t), we then have

J Jj—1 1— J
w; —u 077 J
At {87517 (%) i,L1 i
DAL 14 WL
+ A$2I‘ 14+ '7 Z Aj—k+1 — Aj— k:] (2U ) . (4.16)

=1

Taking the Taylor series expansion around the point x; = i{Ax and t; = jAt in time, we

L Acfory
21 | a7 |,

then have

vl -uit [aU i

_ 2
X | o), (4.17)
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< . Ul AR [92U) A (93U
+1 4
U™ = U] + At S T e | T ar Lo T+ O(AL), (4.18)
and
-~ - Ul A2 [92U) A3 [o3U [
1, 4
Ulm = U] — At 20l T ar el T ar | ae +0(AtY), (4.19)

then we have

: : . A2 22U At [8U )
J g—l—l ) 1 _
207 — U Ui 2([ 2l o2 |, 4l [(%4 .

- O(At6)> . (4.20)

Likewise expanding around the point z; = iAz and t; = jAt gives
sl o [PU] A (00
SRR Y 12 [0zt |,
Using Equations (4.17), (4.20), and (4.21) in Equation (4.16)

+ O(Azh). (4.21)

%

aul At [92U ) o= (182U ) Az? [9AU | <

—| + === At? — —_— | = Az® J

[6% i+ 2! [atQ ‘+O( ) ot <[81’2 i,L1+ 12 [6954 i,L1+O( ’ )> o
oDAp -1 11 A2 02U | At [o'U "

T AT 1) Z Gk k)< 2! [(‘%2 M [(%4 oA |, (422)
=1 - ) : i

and simplifying gives

oU |’ o= 82U\ |
[at +O(AY) = [8t1—7 <8a:2> L1 LT

+O(Az0) + f7

Az? [OVYM(t) |
ot =

i,L1
k

2 52 4 o4
Atc0°U  At* 0*U ’ (4.23)

Ak+1 = @] [ 2 9z T 41 ot

9oDA-1 LI
> [

AG
CA(1+7) +O(Ar)

k=1 i

where

M(t) =

84U} . (4.24)

(i—l)Axrgfg(m)Ax [(%4
The order of the last term in Equation (4.23) is given by

k

At [94U |F
Al ot |,

AT(1+7) Z a-ki1 = %-k) | G | G|

oDAr—1 11 (At2 [82U
=1

+ O(At6)>

oDAp- 12

2
M(lﬂz; aj—k+1 — aj—k) O(AL7)

At1+’y
_ ) 4.2
0 < - ) (4.25)
Adding and subtracting the exact fractional derivative, we then find
U  [9 (92U
Lot \ 922

ot |;
o (92U
o= (2

Ax?

} . (4.26)
i, L1

Atl‘f"‘/ >

+fJ+O(At)+O(Aa: )+O<

J 81—7 aZU
- [(%1—7 <8$2>
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By Equation (2.48) the term

o' (U [0V (92U [
A \a2 )l a1\ a2 (4.27)
ott=v \ 0z2 /|, ott=v \ 022 /|,
is O(At'*7) and so we obtain the truncation error for Equation (4.16) as
9 At1+’y
The error term O (%;ﬁ) gives the following consistency condition
A1ty
NI 0, as Az — 0and At — 0. (4.29)

The numerical approximation for the fractional diffusion equation is consistent, if the

A+
Az

truncation error approaches zero as — 0. The proposed scheme, Equation (4.8),
is similar to the original Du Fort-Frankel scheme. That is why we had to use a small
At /Az? in order to keep the numerical solution stable. The impact of the consistency
problem of the Du Fort—Frankel method can be seen in the case of the standard diffusion
equation. When At = Az then the solution converges to the wave equation, but if
% — 0, i.e consistency influences a restriction on At in relation to Az, then the solution

converges to the diffusion equation (Gottlieb & Gustafsson 1976).

4.4 Stability Analysis

In this section, we investigate the stability of the Dufort—Frankel method by using stan-
dard Von Neumann stability analysis. Using a similar approach, as in Section 3.5 (Chap-
ter 3), we let Ul-j be the exact solution of the Equation (4.1) and satisfies Equation (4.8).
The error is then given by

=0 - (4.30)

(3 3 7

and so the error satisfies the equation

J— -1 0 0,0 J J
6 =€ +ofj(a -2 +6,)+0 (€i+1 —2¢ + 6%1)
j—1

+o Z (@j—k+1 — Gj—k] (E?H — ef“ — ef_l + ef_1> , (4.31)
k=1

where the coefficient o, 5;(y) and a; were defined previously in Equations (4.9), (4.11)

and (4.13) respectively. In Equation (4.31) we set the truncation error to zero, as in
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stability analysis the truncation error is not required, but later in Section 4.5 we include

the truncation error to show the convergence of the numerical method.

To investigate the stability by Von Neumann stability analysis, similar to Chapter 3 we
let eg = Cjei/qmm, where 7’ is the imaginary number, /—1, ¢ is a real spatial wave number

and €97 is defined in Equation (3.36).

Now using Equation (3.36) in Equation (4.31) gives

Cjez’/inx — Cj_lei/inm + O-Bj <ei/q(i+l)Am o 262"in$ + ei/q(i—l)Ax> CO (432)

+o (ei’q(i—i-l)Ax - 2€i’inx + ei’q(i—l)Ax) Cj
j—1
+o Z [aj*rJrl - aj*r] (C?"ez a(ithar _ (<T+1 + Crfl)eZ gine + Crez q(l_l)Am) ’

r=1

which simplifies to

G =1+ 0B (e"'q“ —2+ e""qm) Go+o (ei'qm —2+4 e‘i'qm) G

j—1

to Z [aj—rs1 — aj] (CT (ei’quc + e_i/qAx> = (G + Cr—1)> . (4.33)
r=1
Noting
, y A
1A _ 9 4 o=ihT — 9 (] _ cos(qAx)) = —4sin <q2x> : (4.34)
i'gAz | —i'qAz .o (qAT
e 157 4 7 9%% = 2 cos(qAx) =2 —4sin ) (4.35)
and letting
A
V, = dsin? <q2x>, (4.36)
where 0 <V, < 4, we then have
j—1
(14 V0)¢ = Gm1 = Voo BiGo+ 0 Y [aj-ra1 — aj—r] (G (2= Vo) = (Gr1 + G-1)) 4
r=1

(4.37)

where 0 < V0 < o0.
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For j > 2, Equation (4.37) is then given by

1

G = T =g |~ DR - VoG~ VirBi = (2 =2

j—2
oY ajri1—aj ] (G (2= V) = (Gryr + Cr—l))}
r=1

1

:1+%%+Qv_ma%1+@7_m@_wngfl_wﬂ@®‘(m—2ﬁg4

-2 j—2
+0(2-V,) Z [@j—rt1 —aj—] G — 0 Z [aj—r41 — aj—r] (Gr1 + CT—I)} . (4.38)

r=1 r=1
In the following proposition we prove the stability of the Dufort—Frankel scheme given in

Equation (4.8).

Proposition 4.4.1. Let (;, where j = 1,2,..., M, be the solutions of Equation (4.39)

then
Gl <16l (4.39)

if2<V,<4and 0 <y <1,

Proof. We use mathematical induction method to prove the relation in Equation (4.39).

We assume (y > 0 in this analysis. In the case j = 1, Equation (4.37) gives

(14 Vyo)Ci = Co — Vo B1(7)Co- (4.40)

Noting 81(y) = v — 1, then Equation (4.40) becomes

Vo
=(1-—2")¢. 4.41
G ( o U) o (4.41)
Since the second term is positive, we find (; is bounded above by (y, that is
Voo
=(1- 12— < (o. 4.42
G ( 1+VQU>COCO (4.42)
For 0 < Vo < oo, since the term
V,oy
0< L1 < 4.43
STV ST (4.43)
then
Vaoy
— > — 4.44
v (4.44)
we then have
V.
1>1- 977 514 >0. (4.45)
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We then conclude that

Q= <1 - 1??};) € = 0= —Co, (4.46)
and so
—Co < 1 < Co, (4.47)
or
[Gal < 1Col- (4.48)

Hence Equation (4.39) is true for j = 1.

We now assume that
—o < G < (o, where n=12,..k, (4.49)
and then need to show that

—C0 < Crt1 < Co- (4.50)

From Equation (4.38) we have

1

0+ 22900 - 2006+ Vio (- (D)0 + (2 - 2060y

k—1 k—1
+U(‘/q - 2) Z [ak—r+1 - ak—r—i—Q] C?" +o Z [ak—r—|—1 - ak—r+2] (Cr—&—l + Cr—l)} . (451)

r=1 r=1
From Lemma 4.2.1 we have —3;(y) > 0, and from Lemma 3.5.1 we have a; — a1 > 0,

and the term 2 — 27 > 0. Also for 2 < V,, < 4 the terms satisfies (V; —2) > 0,

1
1+ (V427 -2)0

> 0, (4.52)

and

1+ (2—2")(V, —2)o > 0. (4.53)

Equation (4.51) then becomes

1
Cht1 = (Vy+27 — 2)0{(1 +(2-27)(Vg = 2)0) + Voo (=Brr1(7) + (2 =270
k—1 k—1
+o(Vy —2) Z [ak—r41 — p—rt2] + 20 Z [ak—r+1 — ak—rt2] ¢ Co- (4.54)
r=1 r=1

Now evaluating the summation in Equation (4.54), gives

k—1

k-1 k—2
§ [ak—r41 — Qp—ri2] = E Af—rg1 — E Ag—ri1 = A2 — Qg1 1, (4.55)
=1 r=1 r=0

<
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where aa = 27 — 1 and ag+1 = (k+ 1)Y — k7. Using this result in Equation (4.54), we

then obtain the inequality

1
Ce1 <

TVt - 2)0{(1 + (2= 2)Veo = 2(2 = 27)0) + Vyo(agr — y(k +1)771)

+ (2 — 27)0 + U(Vq — 2) [CLQ — ak+1] + 20 [ag — ak+1] }C(), (4.56)

which can be simplified to

Vooy(k +1)771
<{1--— : 4.57
C’““-( 1+ (Vg +2 —2)0 (4.57)
Since the second term is positive, the value of ;41 is bounded above by (y
Vyoy(k+ 1)1
<(1--—% < (p. 4.
Crr1 < ( T+ (Vo + 2 — 2o G < Go (4.58)

From Equation (4.49) we have —(y < (,, then Equation (4.51) becomes

¢ _ 1
LT (V42— 2)0

{(1 +(2=27)(Vg = 2)0)C + Voo (=Brt1(7))0 + (2 = 27)0 (1

k—1 k-1
+o(Vg—=2) D lak—ri1 — @Groria] G + 0D [@hopi1 — arria] (Gryr + Crl)}

r=1 r=1
1
>
1+ (Vg+27-2)

A0+ @2 - 22 - 290) + Vit -+ 107
~+@—2ﬁa+aﬂ@—mhm—amﬂ+aomw—%ﬂ1}—@» (4.59)

which can be simplified to

Vyoy(k + 1)1
> (1-—4 . 4.60
G > - (1- ) G (4.60)
Now for 2 < V; < 4 we have
1)t 4 1)t
1+ (Vg+27=2)0 — 1+ (2+27)0
and for 0 <y <1 and k > 0, we also have 0 < (k+ 1)?~! < 1. We then have
v—1
0 < doy(k +1) < 4oy ’ (4.62)
1+ (2420 ~— 14+(24+27)0
which gives the inequality
v—1
1+2+2)0 1+(2+2)0 2+ 27
Then the bound for (x41 becomes
Vyoy(k + 1)1t
>—11- 4 > — 4.64
Gt 2 ( T+ (V12— 2)0) 07 (4.64)
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and so

=G0 < Cr+1 < Co, (4.65)

or
[Crra] < 1ol (4.66)

Hence if 2 <V, < 4 then Equation (4.39) is satisfied which means the numerical method
is stable. This method is only conditionally stable as evidenced by the results of the next

section. O

4.4.1 Numerical Solution of the Recurrence Relationship

In this section, we investigate the solution of the recurrence relationship in Equation (4.37)
by direct evaluation, where 0 < v < 1. The ratio ¢;/(o is plotted on a double logarithmic
scale. These results are shown in Figures 4.1 to 4.4 against j, where we have taken
j=1,2,...,100 time steps, with the value of V;, =1, 1.5, 2 and 4. The value of o used is
given by Equation (4.11) with At = 1072 and Az = 1072

From the results shown, for the cases of V; = 2 and 4 in Figures 4.1 and 4.2, this method
is stable as the ratio remains less than 1. Consequently, these results suggest this method
is stable, where 2 <V, < 4, as the ratio remains less than 1.

Whilst we see in Figure 4.3 for the case V; = 1.5 and 0.5 < v < 0.9 the ratio is less than
1 but for 0.1 < < 0.5 the ratio is bigger than 1. We also note in Figure 4.4, for the case
Vg =1and 0.7 < < 0.9, the ratio is less than 1 but for 0.1 <+ < 0.7 the ratio is bigger

than 1. We conclude that for 0 <V, < 2 this method is stable for some values of v only.
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Figure 4.1: The value of the ratio {;/{y predicted by evaluating Equation (4.33). Results are
shown for 100 time steps, V; = 4, and v = 0.1,...,0.9. Note the value of v increases in the

direction of the arrow.

Figure 4.2: The value of the ratio (;/(o found from recurrence relation in Equation (4.33).
Results are shown for 100 time steps, V; = 2, and v = 0.1,...,0.9. Note the value of ~

increases in the direction of the arrow.
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b 42 20 18 eesemie e

Figure 4.3: The value of the ratio {;/{y predicted by evaluating Equation (4.33). Results are
shown for 100 time steps, V; = 1.5, and v = 0.1,...,0.9.
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Figure 4.4: The value of the ratio (;/(p found from recurrence relation in Equation (4.33).

Results are shown for 100 time steps, V, =1, and v =0.1,...,0.9.
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4.5 Convergence of the DFL1 Method

In this section, we consider the convergence of the DFL1 scheme. Following the approach

of Chen et al. (2010), in Equation (4.8) we let

U Ut DApt
J ) % _ . QUQ 2[7] § 2(ﬂq
Ri - At F(l ,Y) {6](7)51‘ 7 +5x + IUJ 5 }
1

DA L
~ Az2D(1+7)

(aj ke —aj ] (UF —UF U f (67)

7

k=1
where 533(]5 is as defined in Equation (4.14). Noting that

vl Uit oul

At = + O(At), (4.68)
s2Ul 92Ul
Am; = o2 + O(Ax?), (4.69)
and we also have
. . . 2 5217
U — Ui — Ui = 2 <[A2f %tQ | O(At4)> : (4.70)
and from the L1 scheme we note that
df) DAP! !
- = Bitvfo+fi+ D mi—k()fk ¢ (4.71)
[ d= |, T(1+~v) )™ ! ; !
Now applying Equation (4.67) — (4.71), we then have
- [oup o' (02U DA+l -
Ry = [8t D [aﬂ—v <8:):2> T AST(147) Z ajk1 = aj-k] = f] + O(At + Aa?)
ou ! oV (92U D la; — ai] Aml : )
= {(% ' -D {81_7 (83&2) o+ F(lj—i—’y) ( A2 ) — [} + O(At + Az?). (4.72)

According to the Equation (4.72), we have
A7+
Ax?

R{:O(At+Ag¢2+ ) i=1,2,...,N, j=1,2,..., M, (4.73)

since 1, j are finite, there is a positive constant ¢; for all ¢, j such that

. A7+
2
IR]| <1 <At+Ax + A3 > : (4.74)

Let the error

E =U) -, (4.75)

3 (2 K3
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where i =1,2,...,N and j =0,1,2,..., M. In Equation (4.67) we have

4 . DAY -t . . .
k=1
(4.76)
where
PR 0 J 5 A § ¢ Ry g
82yl = L i Az . =1 (4.77)

Subtracting (4.8) from (4.76) gives

; i DAt
) I o

9l gl . '
S V) {Bj(v)éiE? OB+ pi-k(7)6 Ef} + AR (4.78)
k=1

For ¢ = 1,2,..., N using a similar grid function as given in Chapter 3, Section 3.6, by
Equations (3.107) and (3.108) respectively, and then Elj and R{ can be expanded in
Fourier series as in Equations (3.109) and (3.110). Again the Parseval identity can be
used to give Equations (3.113) and (3.114).

Now with ¢ = 27l/L, we assume that
El = ¢jel 0BT (4.79)

and

R} = pje’ 74T, (4.80)

Using Equations (4.79) and (4.80) in (4.78) gives

j—1

(1+Vyo)§; = &1 — Vo Bi&o+ o Z [aj—111 — aj—] (& (2 = Vo) — (&1 + &-1)) + At
=1

(4.81)
where V, = 4sin?(qAx/2) > 0.
For j > 2, Equation (4.81) can be rewritten as

1
S = 1+ (V,+27 - 2)

0+ @ -2 06— Vot - (27 - Dot o

j—2 72
+o(2= V) lajri1 — @& — 0D a1 — aj ] (G +&o1) + Atnj} , (4.82)

r=1 r=1

where the weights a;(v) and a;41(y) are given in Equation (4.13).
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Proposition 4.5.1. Let £; be the solution of Equation (4.81). Then there exists a positive

constant ¢y such that
1&5] < cojAt|mi|, where j=1,2,...,. M (4.83)

if2<V,<4and 0 <y <1

Proof. From Equation (4.75), noting that E° = 0, we then have & = & (1) = 0.
From the Equations (4.74) and (3.114), we obtain

At’y+1
Ax?

. At’erl
HR']HQ SCQ\/W <At+ASE2+ ) :CQ\/E <At—|—Al’2—|—> , (4.84)

Ax?

where j = 1,2,..., M, and by the convergence of the series on the right hand side Equa-

tion (3.114) there is a positive constant ¢; such that

nil = (D] < ¢jlml = cilm @I, 7=1,2,..., M. (4.85)
We then obtain
il <calm@l,  j=1,2,..., M, (4.86)
where
cy = lgljagjj{cj}. (4.87)

Now using the mathematical induction. In Equation (4.81) for j = 1 we have

(14 Vyo) & = Atn;, (4.88)
Equation (4.88) becomes
= At 4.89
51 1+ V;]O' m, ( )
since 0 < ﬁ < 1, we obtain
< At < At < coAt|ny]. 4.90
& < TF Vo Im| < Atfm| < c2Atm| (4.90)

Suppose that

1&n] < canAt|m], n=12...,k—1. (4.91)
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For 0 <y <1,2<V, <4 and Vo > 0, from Equation (4.82), we have

€k

T (G R AL L R R G RN CRERL S

k—2 k—2
Ho@=V)I D lak—1s1 — apil &Gl + 0D lan— — ar—ra] (| + 161]) + At\nkl} :
=1 =1

(4.92)
For 2 <V, <4,0>0,and 0 <« <1, then the first term in the brackets satisfies

1+(2-27)(Vy—2)o
14+ (Vg +27-2)o

> 0,

and for 0 < v < 1, the term 2 — 27 > 0. By Lemma 3.5.1 we also have a;11 < a;.
Applying Equation (4.91) in Equation (4.92), gives
CQAt

6 < a0 Q-T2 (=) + 2= D)olk=2) (499

k2 k-2
+o (Vg —2) Y lak—i — ar—111] + 0> 2 [ag—i — ap_i1] + 1} m|
=1 =1

Ed

-2

(2-2M(k-1)+ > l(ag—— akl+1)] }|771|-
=1

. CgAt
1+ (V427 —-2)

{k + (27 = 2)ok + Vo
o

Evaluating the summation in Equation (4.92) gives

k—2 k—2 k—2
Zl lay—1 — ap—141] = Z lag—; — Z lag—i+1
=1 =1 =1

k
=a(k-1)- ) a. (4.94)
=2

Using this results, where ag = 27 — 1, in Equation (4.92), we then have

[

k+ (20— 2)ok
—1+(Vq+27—2)a{ + Jok + Voo

k
2-2)(k-1)+a(k—1) - Zal] } |

=2

k
CQAt
< k+ (27 —2)ok k—1)— - 4
_1+(%+27—2)U{ + Jok + Vyo(k —1) fqu;az}lml (4.95)

We note that Zfzz a; = k7 — 1 and so Equation (4.95) becomes

CgAthUki7

< oAtk -
€] < caltk|m| 1+(Vq+2,7_2)01771’

S CQAtk|771|. (496)
We then conclude that, for n = k
€kl < caAtk|m]. (4.97)

Hence for all n € IN, and if 2 <V, <4 and 0 < v < 1, we have |§,| < conAt|n]. ]
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Theorem 4.5.2. Let u(z,t) € U(Q2) be the exact solution for the fractional subdiffusion
equation. Then the numerical scheme (4.8) — (4.11) is convergent with the converge order

O(At+A:c2+M“),if2§1@§4and0<7§1.

Azx?

Proof. Using Equations (4.74), (3.113), (3.114), Proposition 4.5.1, and jAt < T, we then

have
. At'erl At7+1
| E7||2 < cajAt|Ry|| < creajAVEL | At + Az + < C(At+ Az? +
Ax? Ax?
(4.98)
where C = ¢1¢oTVL. O

4.6 Numerical Examples and Results

To verify the accuracy of our scheme, we compute the maximum norm of the error between
the numerical estimate, given by Equation (4.8), and the exact solution

eoo(At> A$) = 1%33](\7 ‘uf\/[ - U(ZL‘Z‘, tM)‘ ) (499)

for two examples where the exact solution is known. Numerical accuracy is tested for
various time and spatial steps sizes in the cases v = 0.3, 0.5, 0.7, 0.9, and 1. The
estimated convergence order, R1, recorded as order of convergence in Az, is estimated by
computing

R1 =logy [eco (Al 2A%) /e (AL, Ax)] .

This scheme is implemented in MATLAB R2014a (see Appendix C.3) using the linsolve

subroutine to solve the system of algebraic equations.

Example 4.6.1. Consider the following fractional subdiffusion equation with a source

term
ou 07 (9% , o (171 217+

with 0 < v <1 and the initial and fixed boundary conditions

u(z,0) = sin(nz), u(0,t) =0, w(L,t)=0. (4.101)
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The exact solution of (4.100) given the conditions (4.101) is
u(z,t) = (1+ %) sin(rz). (4.102)

Numerical accuracy of the DFL1 methods in Equation (4.8) is tested for different time
steps that is At = O(Az), At = O(Az?) and At = O(Az?) for the fractional exponent
values v = 0.3, 0.5, 0.7, 0.9, and 1.0. In Tables 4.2 and 4.3 we see the consistency

condition, AAt;? — 0 as At — 0 and Az — 0, is satisfied and so the expected second

order is obtained. However when At = 10~°Axz the consistency condition is not satisfied
and here the expected second order result is not obtained as seen in Table 4.1. Note
the negative order appear in Table 4.1 for v = 0.3 and Az = 1/16 where the error is
very large. Also the results for v = 0.3 where Az = 1/32 and Az? = 1/32 could not be
obtained in Tables 4.1 and 4.2.

A comparison of the exact solution and the numerical solution at ¢ = 0.25, 0.5, 0.75,
and 1.0 for v = 0.9 with the time steps 7 = 1000, is shown in Figure 4.5. We see the
numerical method, DFL1, estimate is in agreement with the exact solution, with respect

to the consistency condition in DFL1 scheme (we have taken At!*7/Ax? = 0.8).

Table 4.1: Numerical accuracy in Az of the Dufort-Frankel scheme, Equation (4.8), with

At =107°Ax and R1 is order of convergence.

v=0.3 v=10.5 v=0.7 v=0.9 v=1.0

Az eo(At,Az) Rl exo(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) RI1

1/2 1.14e-02 1.26e-03 1.01e-04 7.22e-05 1.87e-06

1/4 3.57e-03 1.67 3.87e-04 1.70 2.92e-05 1.80 1.97e-05 1.88 4.97e-07 1.91
1/8 9.78e-04 1.87 1.09e-04 1.83 7.85e-06 1.90 5.08e-06 1.95 1.26e-07 1.98
1/16  2.27e+03  -21.1 2.93e-05 1.89 2.04e-06 1.94 1.29e-06 1.98 3.17e-08 2.00
1/32 - - 7.67e-06 1.93 5.25e-07 1.97 3.25e-07 1.99 7.92e-09 2.00
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Table 4.2: Numerical accuracy in Az of the Dufort—Frankel scheme, Equation (4.8), with

At = 107°Ax? and R1 is order of convergence.

v=0.3 v=10.5 v=0.7 v=0.9 v=1.0

Az exo(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl

1/2 1.41e-02 - 1.46e-03 - 1.10e-04 - 7.40e-06 - 1.87e-06 -

1/4 4.86e-03 1.54  4.63e-04 1.65 3.21e-05 1.77 2.02e-06 1.87  4.97e-07 1.91
1/8 1.43e-03 1.77 1.29e-04 1.85 8.50e-06 1.92 5.19e-07 1.96 1.26e-07 1.98
1/16  4.04e-04 1.86 3.38e-05 1.93 2.17e-06 1.97 1.31e-07 1.99 3.17e-08 2.00
1/32 - - 8.66e-06 1.97 5.48e-07 1.99 3.28e-08 2.00 7.91e-09 2.00

Table 4.3: Numerical accuracy in Az of the Dufort—Frankel scheme, Equation (4.8), with

At = 107°Ax? and R1 is order of convergence.

v=10.3 v=10.5 v=0.7 v=0.9 v=1.0

Az exo(At,Ax) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl

1/2 1.67e-02 - 1.62e-03 - 1.62e-04 - 7.53e-05 - 1.87e-05 -

1/4 5.80e-03 1.51 5.08e-04 1.67 3.35e-05 1.80 2.05e-05 1.88 4.97e-06 1.91
1/8 1.67e-03 1.79 1.37e-04 1.89 8.69e-06 1.95 5.22e-06 1.97 1.26e-06 1.98
1/16  4.46e-04 1.90 3.50e-05 1.96 2.19e-06 1.99 1.31e-06 1.99 3.17e-07 2.00
1/32 1.23e-04 1.95 8.82e-06 1.99 5.50e-07  2.00 3.28e-07 2.00 7.93e-08 2.00
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Figure 4.5: A comparison of the exact solution and the numerical solution present for equa-
tion (4.100) at different time ¢ = 1.0, 0.25, 0.5, and 0.75, for v = 0.9 with the time steps
§ = 1000, and At'T7/Ax? = 0.8.
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Example 4.6.2. Consider the following fractional subdiffusion equation with the source

term
ou =7 (9% = v
ot = on (axz> 2t [1 B r(zﬂ)} ’ (4109

with 0 < v <1 and the initial and fixed boundary conditions
u(z,0) =0,  u(0,t) =t*, wu(L,t)=et’ (4.104)
The exact solution of Equation (4.103) given the conditions (4.104) is
u(z,t) = et2. (4.105)

Numerical accuracy of the Dufort—Frankel method is again tested for different time steps
that is At = O(Ax), At = O(Az?) and At = O(Az?) for v = 0.3, 0.5, 0.7, 0.9 and 1.0.
The results are given in Tables 4.4 and 4.6, we see the DFL1 scheme is of order one in
space when At = O(Ax), of order two when At = O(Ax?), and of order three when
At = O(Az3).

Table 4.4: Numerical accuracy in Az of the Dufort—Frankel scheme, Equation (4.8), with

At = 107%Ax and R1 is order of convergence.

v=0.3 v=0.5 v=0.7 v=0.9 v=1.0

Az exo(At,Az) Rl exo(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl

1/2 8.20e-21 - 8.24e-21 - 8.24e-21 - 8.24e-21 - 8.24e-21 -
1/4 5.27e-21 0.64 5.29e-21 0.64 5.29e-21 0.64 5.29e-21 0.64 5.29e-21 0.64
1/8 2.99e-21 0.82 3.00e-21 0.82 3.00e-21 0.82 3.00e-21 0.82 3.00e-21 0.82
1/16 1.77e-21 0.76 1.59e-21 0.91 1.60e-21 0.91 1.60e-21 0.91 1.60e-21 0.91
1/32 1.28e-21 0.46 8.20e-22 0.96 8.23e-22 0.96 8.23e-22 0.96 8.23e-22 0.96

Table 4.5: Numerical accuracy in Az of the Dufort—Frankel scheme, Equation (4.8), with

At = 107%Ax2 and R1 is order of convergence.

v=0.3 v=0.5 v=0.7 v=0.9 v=1.0

Az exo(At,Az) Rl exo(At,Az) Rl exo(At,Az) Rl ex(At,Az) Rl ex(At,Az) RI1

1/2 4.10e-21 - 4.12e-21 - 4.12e-21 - 4.12e-21 - 4.12e-21 -

1/4 1.32e-21 1.64 1.32e-21 1.64 1.32e-21 1.64 1.32e-21 1.64 1.32e-21 1.64
1/8 3.68¢-22 1.84 3.75e-22 1.82 3.75e-22 1.82 3.75e-22 1.82 3.75e-22 1.82
1/16 1.00e-22 1.87 9.96e-23 1.91 9.98e-23 1.91 9.98e-23 1.91 9.98e-23 1.91
1/32 2.95e-23 1.87 2.56e-23 1.96 2.57e-23 1.96 2.57e-23 1.96 2.57e-23 1.96
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Table 4.6: Numerical accuracy in Az of the Dufort—Frankel scheme, Equation (4.8), with

At = 107%Ax? and R1 is order of convergence.

v=0.3 v=10.5 v=0.7 v=0.9 v=1.0
Az exo(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl ex(At,Az) Rl
1/2 2.05e-21 - 2.06e—21 - 2.06e—21 - 2.06e-21 - 2.06e-21 -
1/4 3.29e-22 2.64 3.31e-22 2.64 3.31e-22 2.64 3.31e-22 2.64 3.31e-22 2.64
1/8 4.52¢-23 2.86 4.68e-23 2.82 4.69e-23 2.82 4.69e-23 2.82 4.69e-23 2.82
1/16 5.98e¢-24 2.92 6.22e-24 2.91 6.23e-24 291 6.23e-24 2.91 6.23e-24 2.91
1/32 7.93e-25 2.91 7.98e¢-25 2.96 8.04e-25 2.96 8.04e-25 2.96 8.04e-25 2.96

A comparison of the exact solution and the numerical solution at t = 1076, 7.5 x 1077,

5x 1077, and 2.5 x 1077, v = 0.5 is shown in Figure 4.6, it is apparent that the numerical

method, DFL1, estimate is in agreement with the exact solution, with respect to the

consistency condition in DFL1 scheme, we have taken At!™7/Az? = 10710,

x 10"

Exact solution
*  Murmerical solution

Figure 4.6: A comparison of the exact solution and the numerical solution present for equa-

tion (4.103) at the times t; = 107°, t5 = 0.75 x 1075, t3 = 0.5 x 1076, and #;, = 0.25 x 1076,
with v = 0.5 and At'T7/Az? = 10710,
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4.7 Conclusion

In this chapter, we constructed an implicit method based upon the Dufort—Frankel dis-
cretisation scheme for the solution of the fractional subdiffusion equation with a source
term, where the L1 scheme was used to approximate the fractional derivative. We have
proved the stability of the DFL1 scheme by using Von Neumann stability analysis, if
2 <V, < 4 but the scheme appears to be unstable if 0 < V;, < 2. The DFL1 scheme is
also shown only to be conditionally consistent, that is we to ensure the ratio At1+7/Az?
is small to be consistent with the original equation. The numerical experiments have
verified our results.

We conclude that the method that we considered in Chapter 3, IMC1 scheme, is bet-
ter than DFL1 scheme. The DFL1 method is only conditionally consistent and these
consistency problems affect the stability and the convergence of the method. We see in

Chapter 5 we will obtain a better method than the IMC1 scheme and the DFL1 scheme.



Chapter 5

Keller Box Method

5.1 Introduction

The Keller Box method is an implicit numerical scheme which is second order accurate in
both space and time for the Heat conduction equation or the Diffusion equation (Pletcher

et al. 2012)
ou(z,t)  0%u(z,t)
e D IR (5.1)

It is sometimes referred to as the Preissman Box scheme and was developed by Keller in

1971 (Keller 1971). The idea of Keller Box method is to replace the higher derivatives by
first derivatives via the introduction of an additional variable. Following the Keller Box
approach, as in Pletcher et al. (2012), Equation (5.1) can be written as a system of first

order equations

Ou(x,t)

e v(x,t), (5.2)

and

Ou(z,t)  Ov(xz,t)
= D= (5.3)

To approximate these equations by using the central difference method at the point

x =z, 1 and at the time ¢t = tj+;. The resulting equations are
2 2

Jj_ .7
w; — U 4

A4
v , (5.4
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and

=3 i—

Atj+1 N A$7,

- ) . .
W — ! itz Jt3
A

o=
|
)

(5.5)

The grid points used in the Keller Box scheme for Equations (5.4) and (5.5) are shown in

Figure 5.1.
X
J j+1 j j+1
g = P e °
Ax; X
e * e (e
E-« .ﬂtj bren ;,;

(a) (b) (c)

Figure 5.1: The grid points used in the Keller Box method (a) shows the grid points for the

Box scheme, (b) the difference molecule for evaluation v} , in equation (5.4), and (c) the
2

difference molecule for equation (5.5).

1 A
g+2 and vlj,_ ; terms by their corresponding temporal and
2

After replacing the values v

spatial averages, we have

J .7 J J
up — Uy U T U

_ 7 5.6
A 5 (5.6)
and
Bt W, il
—D : (5.7)
At Az Atjp Az

The strategy of the modified method is to express v’s in the term w’s. Then the term Ug_l

can be eliminated by using Equation (5.6) into Equation (5.7), becomes

i - i o . S
S Y AL il S L ek S DY Pt e = (5.8)
Atj-i—l Ax; Amf Atj—f—l Ax; A.I‘? ' '

In a similar way by replacing i with ¢ + 1 in Equations (5.6) and (5.7), we then have

equation
Jj+1 Jj+1 J+1 J+1 j+1 J J J J J
Wipq tw; Wi — U v; Ui g +U; Ui — U v;
=2D 5 —2D +2D———5——2D .
Athrl A$i+1 AxiJrl Athrl AJ"H—l A.’EiJrl

(5.9)



5.1 Introduction 202

Multiplying Equation (5.8) by Axz; and Equation (5.9) by Ax;;1, then the terms vf 1

and vf can be eliminated. After adding the two, the resulting equations

Aufil + Bl + Gt = Dy, (5.10)
where
Az, 2D Ax; 2D
A = 20 L =2t (5.11)
Atj1 Awiqg Atjy1 Ax
Ax; Ax; 2D 2D
By= S =Ty + =, (5.12)
Athrl At]qu Az Ax;
Awl+1 1 7, 1 'Uzi u‘g—l-l — ’LL'Z
D, = 2D——— 4+ 2D———, 5.13
] At +1( 7,+1+u )+At]+1(u +ul 1)+ A:L'Z + A$i+1 ( )

In the case of constant grid spacing Az; = Az and time spacing At; = At, Equa-
tions (5.10) — (5.13), after multiplying both side by At/Ax, we then have

2DAt ;
( 5111 + 2uJ —|—u3+1) N (ufill — ZugJrl +u3+1) (5.14)
2DA¢

= (ug—f—l + 2“? —l—ug_1> Nz A2 ( Wit 2u +ul 1)

Al-Shibani (Al-Shibani et al. 2013) proposed a Keller Box method for the one dimensional

time fractional diffusion equation

Ou(z,t)  u(z,t)
otr  Ox?

+ f(z,1), (5.15)

where 0 < o < 1 in which the fractional derivative was replaced by a Caputo derivative,
and the Griinwald-Letnikov approximation was applied to approximate the fractional

derivative.

In this chapter we develop an alternative numerical method to Al-Shibani using the
Keller Box method for the modified version of the fractional subdiffusion equation, Equa-

tion (1.15) with the inclusion of a source term f(z, 1)

du(z, t 91 [ 9u(x,t
“g‘; ) _p atu( ZE; )>+ (a1, (5.16)

and for the fractional advection-diffusion equation

ou(z,t) 07 Dﬁzu(ac,t)
ot ot Ox?

K, 8“((92’ t>> + f(,0), (5.17)
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where D > 0, K, > 0, and 0 < v < 1. Both equations are to be solved on the finite
spatial domain 0 < z < L and for times 0 < t < T subject to the following the initial and

Dirchlet boundary conditions

u(zx,0) = g(x), 0<z<L, (5.18)

u(0,t) = ¢1(t) and wu(L,t) = @a(t), 0<t<T. (5.19)

We suppose that u(x,t) € U(2) is the exact solution for the fractional subdiffusion

equation and the fractional advection-diffusion equation, where

Q={(z,t)|0<z<L,0<t<T}, (5.20)
and
Otu(x,t) Ou(x,t) 9*u(w,t)
Uui) = {u(m,t)’ 5t Bnlor | o © C(Q)} . (5.21)

This scheme is applied to the fractional case where the Riemann-Liouville definition of the
fractional derivative is used instead of Caputo definition used by Al-Shibani (Al-Shibani
et al. 2013). In addition, we use a modification of the L1 scheme (Oldham & Spanier 1974)
to approximate the fractional derivative instead of the Griinwald-Letnikov approximation
used by Al-Shibani et al. (2013). In Section 5.2, we derive the numerical solution schemes
for Equation (5.16) and in later sections we investigate the stability, convergence, and the

accuracy of these implicit numerical methods and give examples of their implementation.

In Section 5.7, we also develop the modified scheme for the fractional advection-diffusion
equation in Equation (5.17), which again is based upon the Keller Box method for the
standard diffusion equation but extended to the fractional case. We also investigate the

accuracy of this numerical method and provide examples of its application.

5.2 Derivation of the Numerical Method for the Fractional

Subdiffusion Equation

In this section, we develop an implicit numerical scheme using the Keller Box method to

spatially discretise Equation (5.16) and a modification of the L1 scheme to approximate
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the Riemann-Liouville fractional derivative. For positive integers M and N, we define
the spatial grid points, x; as {z;|0 =21 < x93 < x3 < --- < xy_1 < zny = L}, denote the
spatial grid spacing as Ax; = x; — x;—1, and the equally spaced temporal points as

tj = jAt, for j =0,1,..., M with At = T'/M which denotes the time step.

To approximate the fractional derivative in the following numerical method we either use
the L1 scheme (Oldham & Spanier 1974), the C2 scheme or the C3 scheme (which were
developed earlier in Chapter 2) instead of the Griinwald—Letnikov approximation used
in Al-Shibani et al. (2013). In Section 5.2.1, we develop a scheme using the C2 scheme
(KBMC?2), in Section 5.2.2 we develop a scheme using the C3 scheme (KBMC3), and in
Section 5.2.3 we use the L1 scheme (KBML1).

An alternative to the Keller Box method is the Crank—Nicolson scheme; both methods
are second-order accurate in space and time. In the fractional case, a generalised Crank—
Nicolson scheme could be constructed using the C2 or C3 approximation scheme for the
fractional derivative. One advantage of the Keller Box method is that it can more easily
accommodate non-uniform spatial grid points. Another advantage of Keller Box scheme
is that it can be constructed using the L1 scheme, whilst we cannot use the Crank—
Nicolson scheme with L1 scheme. In the Crank—Nicolson method we will need to evaluate
the average of the fractional derivative on the right hand side of Equation (5.16) at the
current and previous time steps. But the L1 scheme is not bounded at ¢ = 0 and so we

cannot take the average t = 0 and t = At using the fractional derivative values.

In the KBMC2 and KBMC3 schemes, following the Keller Box approach, we approximate

Equation (5.16) at the point = x;_1 and time ¢t = b1
2 2

ou itz L [0 (9
)., = Lo (5)

First we define the first spatial derivative in Equation (5.22) by similar to the standard

it3
S (:Eifé,tﬁ%). (5.22)
2

71—

diffusion case

ou
= —. 5.23
U7 or (5:23)
We then obtain a system of two first order equations
= =Py ., 5.24
[856 i1 MZ_% ( )
2
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and
its M= /v it+3
i—1 =D |:8tl_7 (a:r) +f (xi—%’tj+%) . (5.25)

du
ot

The grid points for Equations (5.23) and (5.25) are shown in Figure 5.1. We will discuss

N

-1
=3

the discretisation of the fractional partial differential equations using the Keller Box

method in the next sections.

5.2.1 Keller Box Method with the C2 Scheme: the KBMC2 Scheme

In this section, the numerical scheme for solving Equation (5.16) will be developed using
the Keller Box method combined with the C2 approximation scheme for the fractional
derivative given earlier in Equation (2.75) in Chapter 2, with p = 1 — v, which we repeat
here as

gl

dti—

:2 - Pﬁ”:y) {Bj<7)u(0) 2 (;)7 (u(tn) ~u)) (526

J
+ > k() [ (t) — u (k) } ;
k=1
with the weights

B = (i+ ;) , (5.27)

o= (5+3) = (i+3) (5.29)

We will refer to this scheme as the KBMC2 scheme. We now use Equation (5.26) to

j
| 1) (5.29)

and

approximate the fractional derivative in Equation (5.25) to give
ou 0 1\ [ [ov
il +2(= il
ot s 1 2 Ox i
2

k B @ k—1 N UV*%
635 F% if% ’

=
Now we use the centred-finite difference scheme to approximate the first order spatial

its ov
a [&r

i+3 DAt | ~ ov
J
- 0
+> k() ([BZ

k=1

derivatives in Equations (5.24) and (5.29)
j j+1 j+1
Lt — [3U O w -

1 AQ?Z ’

=3

=5 (5.30)
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and ) ) .
Ul O e S (5.31)
Oz i—1 Azx; '

We also use a centred-finite difference for the first order time derivative in Equation (5.25)

[8u its jj% “j_% (5.52)
ot |;_1 At ' '
Using these approximations in Equations (5.24) and (5.25) gives
uj+1 J+11 .
] n
# = MZ,% ) (5.33)
(2
and
A i1 i1
i T B;(7) W) o (1Y G (5.34)
At T+ )7 A 2 Az ‘

1\ [v; — v vk — ok 1 A kall 4l
_9( = % i—1 Y i— 3
(2) ( Az, ) +Z“J ( Az, Az, Tl

-1 A
Now replacing the values vlj-+2 and ”1]-, , terms, in Equations (5.33) and (5.34), by their
2

corresponding temporal and spatial averages

j j+1 J J
P ; vy + vy
v; P =t—— 5 L, and vf_% = = 5 =, (5.35)
we then have
i+1 i+1 41 +1
Aﬂj‘i 2 ’ '
and
]+l —i—qu uf +ug_1 5.7
2A¢ 20t '

DAp—1 0 1\ (o] +o]" vl o]
" Az T(1+7) {5]( ) (v =l 1)”(2) ( 2 2

)" k k=1 _ k-1 i+3
—2 <2> (” _Uz 1)+ZMJ <U - 1‘(% _Ui—l)) +[f|i_§~
Equation (5.37) can then be simplified to

wl ™ ] B wl +ul_ N DAt Bi(y) (o0 — o2 ) + N1/ 41 Lyt
oAt 2At | AxT(1+q))| W T TG ) [\ T
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Using Equation (5.36) we have

A 9 A , )
vl = ay (wl —uly) —ol (5.39)
which, when combined with Equation (5.38), gives an equation between u; and v
(5.40)

TERNNETE R B - N
ot PO LB g ) e
2At 2At ACL‘ZF(l + ’y) Az; t i—1 7Y%

1

1 1\7 TER IS 1\” 1 1 1 v . . v
(2) (' =otid) () o7 an (3) (o) = (5)
K3 K3

s,

) [~y — (e 1)}@% ) (ot ok 1)}+[fi_é.

In a similar manner, by replacing ¢ with ¢ 4+ 1 in Equations (5.36) and (5.37), we have the

equations
j+1 j+1 j+1 j+1
3+1 — u _ Vit + v (5.41)
A.Z‘Z+1 2 ’ ’
and
j+1 j+1 j j
ui Uy (5.42)
2At 2At '
. 1 , o
1>7 (Uqurl + vl _ v} +Uzj‘+ )
2 2

o DAp—1 ~ 0 .
= m {B](’V) (Ui—I—l — UZ») +2 (2
j 1
& 1‘““))} U

IR : _
“2(5) (ohon =) + X Aalo) (s = ok = (ol o

2
k=1

As before we solve Equation (5.41) to find v/,

, 9 . . ‘
o = gy (b =) -l (5.43)

and use this result in Equation (5.42) to give a second equation between u and v

+1 +1 j j _ >
2At 2At A:U,L'+1F(1 + ’}/) ALIJ7;+1 i+l t J ‘ '
1 N/ i1 i 1N\ 1 1\ / . : 1\7 ;
+ ALL’Z'_H (2) <u5+1 B uz > B 5 vzj' B AIL’Z‘_H 5 <Ug+1 - ui) + 5 ’UZJ'
— ’_l’_,
- ()] = o () b

J
~ k
Z -k () [ui—i—l — U
=1

Ax;
i+1 k
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Now multiplying Equation (5.40) by Az; and Equation (5.44) by Ax; 41 and then adding

the two, we obtain the equation

Az; Ax;
o (4 )+ S (it ) (549

Az; Arip1 [ N\ . 2DA 5J() 0 N0

2At< + 1) oAt (“i+1+“i) T+ Az (= i) + B0

U (N (g INY e, L (N

_Axi <2> (v 21)+<2) +Axi<2> Cht
J

e zﬂj o) [t =y = @ =]+ ) i) (vF o)
v k=1 k=1

2DACL [ Bi(y)
{ 20 (40 0) — )

T%
—
~—
|
7 N\
N | —

T(1+) | Azise it1 — Ui 5

3 (a0 LI\ i g
Bi(v)v; + 5 (“i+1 -

1 (1N j AR k=1
(2 G (8) o S (ot
7
1 k k k— k i+3
L ~ ko 1_ k-1 , 3
+A$7j+1 ;M]—k(’)/) [u2+1 ul ( z+1 ’I,LZ >i| + A‘TZ"F]. [f|7,+%
This equation can then be simplified to give the equation for u‘Z at each grid point z; and

time step t;
Az JHL gl Azit1 (i1, jr1
2At( - )+ 2AL ( Uiy +U; ) (5.46)
Az; Azig1 [ 2DA L 0
(st )+ 5 (s od) 4 ey { B ()

1\ / ) i ) )
—<2) (i) ( ) —ul_,) —;uj_km [ — oy — (uf 1—u§_f)]}

2DAL! 3 0 0 INT g1 g 1\ j
+A:E¢+1F(1+7){6j(7) (“"+1_“")+<2) (st = >‘<2> (11 = ul)

J
~ _ _ _A'_l +l
D dir () [k — b = (w7 } + Ay £ 7 + A [£1]] 2
k=1

Equation (5.46) can also be written as a system of equations
j+1 j+1 i*3 i+s
Ay + B +BuZ l—Ci—i-Axi[f\ii%#—Ale [f|i+%7 (5.47)

with the coefficients

Az 2DA ! 1\”
A; = — —, 5.48
2At A:ci“l“(l + "}/) 2 ( )
Ax; 2DAL 17
B; = - , 4
2At Az T(1+7) (2) (5:49)
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Ari + Az n
Az; Az

E; = =
2A¢t I'l+~v) \2

2DA ! <1>7[ 1 1 ] (5.50)

and
Ci = Aiungl + Ezuz + Biug,l
2DAt 1 ~ . .
N Az D(1+7) { () (upp — ui) +

2DAL | < N
~ AT ) {ﬁj(’Y) (U? - u?_l) + ;Mjk(’)f)
(5.51)

In the case of constant grid spacing Az; = Az, Equations (5.47) — (5.51), after multiplying

both sides by 2At/Az, reduces to
1\" : :
( ot 4 uJH) - (2> d ( = oul ™l
1" 0 0
d( ul g — 2u] +ul_ 1) +d Bi(7) (ufyy — 2uf +uf_y)

j+§]
)

) (5.52)

= (u{Jrl +2ug —i—ug_l) — (2
41

2
)] +2a [f, R

J
+ dZﬁj—k(W) [Ufﬂ —2uf +uf | — ( P20
k=1
where
4DAY
(5.53)

T A T(1+7)
(1) = 1, Equation (5.52) simplifies to the

If we set v = 1, noting gj(l) = 1 and p;
Equation (5.14), which is the Keller Box method (Pletcher et al. 2012) when applied to

the diffusion equation with a source term

5.2.2 Keller Box Method with the C3 Scheme: the KBMC3 Scheme

In this section, we now use the C3 scheme approximation instead for the fractional deriva-
~(2.91), where p =1 — 1,

0o ts) ()]}

tive given in Chapter 2 by Equations (2.88)
j+% At'y—l . J
Bi()u(0) + 28, (x)u (1, ) + > s

d' " u(t) B
dt'=7 |os  T(1+7)
(5.54)
where the weights are defined by
~ 1\"”
() = <j+ 2) -3, (5.55)
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a; (5.56)

and
ii(y) =G +1)7 =3 (5.57)
We will refer to this method as the KBMC3 scheme. Using a similar process, as given in

the previous section, we approximate the fractional derivative in Equation (5.25) using

Equations (5.54) — (5.57), and Equation (5.25) is replaced by the equations

u‘z _ ugfl _ v@-? + Uqul (5 58)
A.’L‘Z’ 2 ’ '
and
Wt DAt 1 3.(7) (! ) +26,(7) R A T
— — v; — U (67 -
2A 2At Az, D1 +7) |7V 7 2 2
1 ] - _ i+1
5> ) ([oh + ol (l1+¢ﬁg}_Pf+vf1_(11+4¢5H>}+4ﬂif.
k=1 2
(5.59)

Equation (5.59) is then simplified to give

j+1 j+1 j j .
u; ot u; o +u;_y DAY . . ~ ) 1
e 2d T aera ) O ) a0 =)

! (5.60)

J 1
k k k— k- ity
E : [ o = (T ey )] } + [f|z-_%2 ;

—_

[\D

where the weight is defined as

ki (7) = Bi(v) + &%)
:7<j+;>7_1— <j+;>7+j”- (5.61)

Solving Equation (5.58) to find vflfl and combining with Equation (5.60) gives

J+1 J+1 J J -1 0 0
+ -+ u; DAY S — U,
L k() [of = (2=t —of (5.62)

2At Aa:iF(l + ’y) Az;

1 1 j k+1 k+1
1 Uy — Uj_q 1 1 ~ k41 u; 1 k-+1
- ()] i - (5 )
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which can be further simplified to
]H +uj+1 uf +ug_1 2DA 1 ()00 (0 — 2 )
= kqi(y)v, — u; — U
AL 2AL Az D(1 1) | T A, (T i

~ J
- a;(7y) 1 .
+a(7)vj - . (g —uiy) + 3 > k(%) [Ufﬂ - }
(A

1
AL > k()
Y k=1

In a similar manner, by replacing i by i + 1 in Equations (5.58) and (5.60) we then have

k+1 . k+1 k=1 k-1 i+
K“ﬁ _uijl)_(ui — Ui 1)}}‘*‘“’1'_5'

Uiy T Vi 0 (5.64)
Az 2 ’ .
and
j+1 j+1 j ; B
g = i & DAt ‘ 0 0 5.65
2At - 2At Az T(1+7) k5(7) (vi+1 - Ui) (5.65)
a 1 1y, L o k41 k+1 k=1 k—1 =
+350) (ol = w1) + 5 2B [l — ol = Gl o] o+ U

Solving Equation (5.64) to find vg 1 and then using in Equation (5.65) gives

Wt Jj+1 J J -1
+ u; (L 2D ALY j
i1 = LT 75 (7) (udpy —ud) — kj()v)  (5.66)
2At 2At AQEZ‘+1P(1 + ’y) A.’f;‘z‘+1
a;
+ i) (U%H —uzl) U — = E ik ( [ k+1 vffl]

Awiyq
d k k k— k i+

-~ 41kl 1 k-1 3

+2Ax,-+1 521 1j-k(7) [uiJrl U < Uitr — U )} } + [f‘zur% :

Multiplying Equation (5.63) by Az; and Equation (5.66) by Az;;1, and then adding the

two, we then obtain the equation
Ax; j+1 g+1 Axipq j+1 j+1 Az; j j
ot o ]+ SR [+l vl + ]

+ IM{ (Vi — A, (U _ui—l) +aj(y)v; — Az,

1A - 1 _
"‘5 ZMj—k(’Y) [UZI‘CH - Uf 1} T oA -k (7) [(Uz — Ui
k=1

2DA [ k(%)
{ . (u’LQ-‘rl - ulo) - K‘J(’}/)UZO + Az (u'}—‘rl -
Ti+1

F(l + ’)/) A[I},‘_H
1 K+l _ k-1 1 ~ k+1 k+1 k—1 k—1
52% [ " } t+oa 1j—k(7) [“111 _“i+ - <Ui+1 Uy )}

1 i+l
N P+ Aai S]] 1

(5.67)
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Multiplying both sides of Equation (5.67) by 2At and simplifying, we then obtain the
system of equations
Azl + (A + Az ul T+ Azgull] = G+ 24t [Aa:@f]+2 + Aa:mfJ :
(5.68)

where
4DAE! o 0
M]M{ IQJ (’LLZ — Ui—l) (569)

+6(7) (uj —ui_ ;i [(U?H - ufff) - (“;ﬂ_l - “;ﬂ—_ll)} }

k=1

C; = Ax; uZ 1+ (Azi + Azigq) ul s A$z+1uz+1

ADAL~ ~
+A:U¢+1F(1+7){ ki (1) (uin —wf) +a;(7) (wipy —ug)

1 k41 ket k=1 k=1
+§Z i—k(7) [“w—ﬁ _Uz‘+ _( Uiy — U )} .

In the case of constant grid spacing Az; = Az, Equations (5.68) — (5.69) after multiplying
both sides by 1/Az, reduces to

( A 1T A ufill) = (u{_l +2u! + ugH) +dri () (u)_y —2uf +udyy)  (5.70)
1 d ‘ k+1 BEL ]
+ daj(y) (ui_g — 2u; + uz—i—l 5 Z 1k () Kuzj& 2u; uzil)
k=1

—(uf:ll—Quk 1+ul+1 —I—QAt[ 2—|—f ]

7

where d is as defined in Equation (5.53). In the standard diffusion case, v = 1, we again

get a similar equation to that given by Equation (5.14) with the source term.

5.2.3 Keller Box Method with the Ll Scheme: the KBML1 Scheme

In this section, the numerical scheme for solving Equation (5.16) will be developed by
applying the Keller Box method together with the L1 scheme approximation for the
fractional derivative. We refer to this implicit method as the KBML1 scheme. Here we
approximate Equation (5.16) at the point = = T 1 and time ¢ = ¢; that is

oul’ O /92u\ I’
[‘% P [8t1—7 (aﬂ) . +f (fci—%’tj) ~ (5.71)
2

1
2
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The L1 scheme (given in Chapter 2 by Equation (2.12) for p =1 —7), is

{dld_tzugt) ; - pﬁi;) {@‘(VW(O) + :Z_::uj_k(v) [u(te1) — u(tk)]} : (5.72)
where the weights are defined by
Bi(y) =", (5.73)
and
ni(y) =37 -G -1" (5.74)

Similar to Sections 5.2.1 and 5.2.2, we again define the first spatial derivative by
Ou
ox

Approximating the fractional derivative using Equations (5.72) — (5.74), we then have

oul’ DAt ! ovl® I3 P . ‘
[815 1 Tt {53'(7) [695 . + kzzoujk(v) ([(% i_;> } +f
(5.76)

J

= [v|g'_% . (5.75)

-1
T3

k+1 B 8'1)
ox

.1
=3

Note instead of evaluating at time t = ¢t y

41 we evaluate the equation at the time ¢ = ;.
2

Approximating the first order spatial and time derivative in Equations (5.75) and (5.76)
by using the finite difference scheme, in Chapter 3 given by Equation (3.9), and applying

the spatial averages, given by Equation (5.35), we then obtain the algebraic equations for

uf and Uf
ol el .
Ar. = 7 (5.77)
and
W+l wl Tt D) DAp—!
i QA; _ N i-l ArT(1T7) Bi() (v? — v?fl) (5.78)
Jj—1 '
3 k) [ (o =) = (wF =) } +I7
k=0 ?
Combining Equation (5.77) with Equation (5.78), gives
uj + UJ ujjil + ujjil DAt’Y_l 0_,0
7 i—1 — 7 i—1 + ﬁj(f)/) 'U? o 2“1 uz—l _ U,? (5'79)
2At 2At Az;I(1+7) Az;

Jj—1 uF uk+11
+> k() [(vf” —~ [21M/‘ ~ vf“]) - (vf -
k=0 !
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which can be simplified to

(uf = ud_y) + B (5.80)

e, ea At [ o)
2At 2At Az, L(1+7) | Az
—1

_Almijzzuj—k(v) [(ufﬂ _ufjll) - (u —uf 1)} +Zuj ( k+l )} + [flf_%

In similar manner, by replacing ¢ with i + 1 in Equations (5.77) and (5.78), we have

ug+1 B “i _ Uzj'—l-l + Uz]' (5 81)
Azitq 2 7 '
and
J J—1 -1
ui+1+u Z+1+u DAY 0 0
. ! 5.82
2At AT T AmaT( gy ) B ) (5.82)
j—1
FS et [( =) - (ko )] L
k=0
Combining Equation (5.81) with Equation (5.82) gives another equation involving uf and
j j 1 _
uj g + _ Ui ‘HLJ 4 DA™ By (|2 up g — uf ~ 0 — g0
2At 2At ACEZ'JrlF(l + ’7) J A.:U/LJFl ¢ ¢
Jj—1 k+1 k+1 k k
Uy — U Uy — U
o g_itl k+1 k+1) _ 9 _itl v k| Lk
+kZ:O’LL] k(v) [( Aa:H»l — Y Yi AZEH»I Yi J
[f|1+1 : (5.83)
This equation is then simplified to
wl o+l +u] ! 2DA ! -
SR 050 (4, )~ B
2At 2At AleF(l + ’Y) AQZH_

j—1
it S (o - t7) ()] - S (o -ot)

+1 f\j.% : (5.84)
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Now multiplying Equation (5.80) by Az; and Equation (5.84) by Ax; 41 and then adding

the two gives the equation for u; at each grid point ¢ and time step j

Ax; Azipr [ j Azi i1 o1\, ATipr (o1 -1
AL (u tu )+ 2At (UMJF“') AL (“ + Ui >+ N (ul+1+u )

_%{B]( ) (uf —uf_ +Z”J [( k1 _ ie+11> (uf—uflﬂ}

+ m {51‘( ) (u H—l )+ Zﬂj [( ﬁ_ll - “§+1> - (ui‘:—l - Uf)}}

+ Az [fl]_, + Azip [f\ir;
2 2

(5.85)
Multiplying both sides by 2At, Equation (5.85) is then given by system of equations

Afbiug_l + (Azip1 + Aziq) uf + A$@'+1U{+1 = C; + 2At (Aﬂ%’ﬂ [f|f+% + Ax; [f|g_;> )
(5.86)
where

—1

C; = Axiug__ll + (Azipr + Azipr)uw]  + Al‘i_i_lu'g;il (5.87)

_%{BJ( ) (uf —uf_ +Z/'L] K k1 _ f+11) (uf—ufl)}}

ADALY
+ m {51'(7) (ugy —uf) + kgoﬂj—k(ﬂ [(“ﬁf - Uf“) - (“§+1 - “f]f)} } :

In the case of constant grid spacing Ax; = Az, Equations (5.86) and (5.87) reduce to the

equation
4 . . - - -
(wl_y 4 2u! +ul ) = (uly + 20 +ul2)) +dB () (udy — 20 +uf_y) (5.88)
j—1
+d>  piok(7) [(um — oyt 4 uf_+11> _ ( uby ) —2ul 4 ul 1)} +2At <fg+; + fg_%> ,
k=0

where d is as defined previously by Equation (5.53).
If we set v = 1, Equation (5.88) reduces to

. 4 4 2DAt 1 4y 4y
(o +20) +ul ) = o (whoy —20d +d ) = (ul] + 26l +ulT])  (5.89)

1 2At [f (wi,%,tj) +f( Tit g )]’

since Bj(1) = 1 and pj_,(1) = 1. Equation (5.89) is the Keller Box method (Pletcher

et al. 2012) for the non—fractional diffusion equation with a source term.
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5.3 The Accuracy of the Numerical Methods

In this section, we consider the consistency and the order of accuracy of the three numer-
ical schemes KBMC2, KBMC3, and KBML1 methods given by Equations (5.52), (5.70)
and (5.88) respectively. Similar to Chapter 3, we let

J J J
Uiy — 2u; +uy_y
Az ’

2,7 _
opu; =

(5.90)

to aid in the analysis of each scheme.

5.3.1 Accuracy of the KBMC2 Scheme

We now determine the truncation error of the KBMC2 scheme. First using Equa-

tion (5.90) in Equation (5.52) we then have

jgj o200 — 02u] + = [ — ] 1)

DAOT [N [ (2 41 s, 2 i3 o ] L[+l | i+
“rirrm ((a) (27 o) 2 (2 o) g ]

DAY~ |~ 1\” 1 , i
Py {Bf'wug r2(5) (30 o)« a2t - 2t ) } -
k=1

Next we identify the term in the third line of Equation (5.91) as the C2 approximation,
Equation (5.26), with u(t) replaced by 62u(t). We can then further rewrite Equation (5.91)

as
1
Ax? 1 i1 o L[ AT IN (A W I EE S
tag (ol o] 4 g [ -] =D g ()| AT R
(1)’7 DAt 1 . . i1
+1 Jt+
—2F(1+7) {53574 + 62u! — 2621 2]. (5.92)

Adding and subtracting the exact value of the fractional derivative, Equation (5.92) then

becomes

‘ ‘ 1=y /52, \ |9T3 1 . 2 , ‘
é [ugﬂ - “i] =D [;1_7 (gg) +% [f,ﬁ? +fj+2} — A {(ﬁugﬂ — 52u].]
X

; img ity 4At S
.1 -1
81_7 J+3 81—7 82u J+3 1 0 DAtW—l . . i1
D |- (62 Doy =) S |02t 4 0%u] — 202w 7|
* [atl—v (Ozu)] [atl—v az|, <2> T(1+ ) [x“ T T 20

(5.93)
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Now taking the Taylor series expansion around the point (z;,t;), we have
(o A2 [oU)
S2U) ~ Az?). 94
2Ui [8332 ; 12 {8x4i+0( =) (5-94)
Expanding the Taylor series around the point (z;,t;, 1 ), we find
1
L[ g 4d] L td | Aa? [O2f72 "
- ~ f — A .
1 -1
: : 1A WU PR AR?AR ] 9U PR
S2UIT 4 8207 — 252U T w2 | 22 o(At*
oi 00 200 1 |o%08 |, s |aetorr|, OB
(5.96)
and
. . . -1
Uit Ul TouPt: Al [oRU Pt
d A et — | == O(AtY). 5.97
At [8ti 24[&31. +O(Ar) (5.97)
We also have
Sl -1
A2 [ U P72 Az2A2 [ o°U T2
S At Az?).
[c%?(‘)t i 96 [8x28t3 | Tolar) oA
(5.98)

art 207+ - s2ud] = =

4At

Combining these approximations with Equation (5.93) gives
its
+ fay, tj+%) + O(AH ) + O(Az?)

U I 9 (U
[8752. - [atlv <8x2> ;
P A A R A A B Vel sl O (5.99)
o=\ 022 ) oo, [0t \ 022 )| 12 ot ’ '
where M (t) is defined by
o0*U
M(t) = — - 1
®) (z‘—l)Aac?’?%{(i—i—l)Ax Ox?t (5.100)
By Equation (2.149) the term
1—ry 2 it+3 1—ry 2 i+
78 — 37U - 75) — 87U (5.101)
ott=1 \ 022 ) |y, O™ \ 022 /|
, of Equation (5.52), is order 1 + ~ in

1)

, we then get the truncation error, 7; j
;

is O(At! )
time and second order in space, that is

= O(At'™) + O(Az?).

(5.102)
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5.3.2 Accuracy of the KBMC3 Scheme

We now also determine the truncation error of the KBMC3 scheme. First using Equa-

)

tion (5.90) in Equation (5.70) we then have
Tag o o] g (o —od] = PR [ ot -2l
4D fi; ,é [ (s2ubtt — o2uf ) - (5@?*5 82t )]
+113(1At+”1){§]() 0 4 28, (7) 820 +Zu] (52 bt k—)}
(5.103)

. [f”2 +fj+2] .
2
Next recognising the terms on the third line in Equation (5.103) as the C3 approximation

Equation (5.54), with u(t) replaced by 62u(t), we can then rewrite Equation (5.103) as
i) [ Ly 52,0 92 3
Opu; + oyu; — 20,u;

Az® 19 i+t o i+, j] _ DAt
1At [5 ~0zu ]JFE[ _“i}_ T(1+7)
J
DAt'Y : Z [ (52 A 5guf71> - ((ﬁuiﬁ_é —5iuf_>}
(5.104)

l—l—fy P

1=
0| g

otl— 3

Adding and subtracting the value of the exact fractional derivative then gives

Az® 1o Gl 52 L g
1AL [5 O ] At [“ _“i}
1
O (2u\PTE [ el el DAOTE(y)
g - 520l 4+ 5249 — 25242
B e o
1
RS a5 (2 ozl ) - (st -l
1+’y P
1—y i+3 =7 /92w Jjts
D 52u; — |+ 5.105
" [atl—v(x“)cg [8t1—7 (aﬁ) (5.105)
Now taking the Taylor series expansion around the point (z;,t;) using Equations (5.94)
gives
_ a2U) " A3 [93(520) |F
S2UFT — S2UF 7 2Nt | 2 z O(A# 5.106
Wk 520 R o i R G N AT

+ O(AtY), (5.107)

1 1 a2 |*
22U — 52U~ A | B
Ui Ui ot 2 ot

7

JOIE)
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and so

+0(Af).  (5.108)

1 1 A TO3(52U) |F
S [t — stu] - [@%Uf g ] L [8 (:U)

8 ot3

Using these expansions, along with those in Equations (5.94) — (5.98) and Equation (5.96)
with j = 0, Equation (5.105) then becomes

A2 [ U '3 Tou |t ) o1 (0P [T
e [8:1:28751. [at +OAr) =D [Btl—’Y (w) Z. (5.109)
1
i+3 2y, DAOIa;(y) | A2 Ty |2 1
+f; 2+ O(Az?) + TiT ) T o (67 U)i+O(At)
L DAp! J A3 [03(520) |F 5
T(1+7) Z“” !8[ ot 1+O(At)
o1 [PUPTE  Ax? ol [otU T . LA
Do {8:02 s 12 00 [8954 oy, TOBT) =D L‘)th (a:ﬁ) .
We note the term
L1 -1
DA 'a,(y) (A2 [02 , , T2 A DAtlﬂa( ) NN
A e i A A
T(i+4) |4 [6t2 (02U)| +OAD)) == ra—) [atz (%20)].
Da;(v) 3+
— LT 0(A8),  (5.110
is of order O(At'*7), and the term
DA'y 1 J A3 352
! Z t[a (53U) + O(AP) (5.111)
) &= 8 ot |,
DALY 83320 | D "
T 8(1+7) ; [ o | r(1+7);“j’“(7)0(m ")

is of order O(At?**7). Then Equation (5.109) can be simplified to

oU [7+3 o1 (PUNPTE e
{at =D [mw (W) | + 772 4 0(A2%) + O(AL?) + O(AEHY)  (5.112)
L p [0 (BPUNTE 1o (U DAl T ()
o= \ 022 )| o3 ; ott=r \ 9x2 /|, 12 o= s,
where
al 5.113
M(t) = .
( ) (i— 1)Amr£:?§(z+1)A:r 8%4 ( )
By Equation (2.174) we note
1—y /52 j+% -y /9217\ |V T3
o (U T0 oy 11
ott=7 \ Ox? O3 ot1=7 \ 922 ;
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is O(At'*7) we then get the truncation error is of order 1+ v in time and second order
in space i.e.

72 = O(AH) + O(Az?), (5.115)

where Ti(i-) is the truncation error of Equation (5.70).

5.3.3 Accuracy of the KBML1 Scheme

Here we determine the truncation error of the KBML1 scheme. Rewriting Equation (5.88)
using Equation (5.90), we have

- s
DAY

1T . ,
e 2.0 2 k—f—l 2,k - J J ) 11
T(1+7) { )0 +Z“J (5 5w)} *3 [fié +fi+§:| (5.116)

Recognising the first term in the right—hand side as the L1 approximation given by Equa-
tion (5.72) with u(t) replaced by §2u(t). Equation (5.116) becomes
Az?

A [ﬁuf - (ﬁuz_l} - Ait [u{ - ug_l] =D [g;__: (62u)

J

1 J J :|
L1y 2|:f 1+f

(5.117)
Now adding and subtracting the exact fractional derivative we then have
AI’Q i—1 1 i—1
T (20 = 0%+ 5 [l —d 7] (5.118)

0" (Pu\[ 7 0" (P*u\[
=P [81&17 35132) i Ll - [81&17 (3172) i "

Expanding the Taylor series around the point (x;,t;), we have

oL

1 . .
- J J
2 [fi—é +fi+é]’

o U A2 [oU)
I it~ A e A#). 11
U; —U; t[at B [81&2 i+0( %) (5.119)
We also have
2r7i=1 o 52777 _ 0 2 3
0,U " ~oU) — At [875(5””(]) i + T [87&2 (6:U) i + O(At?), (5.120)
and so
] ) o J At2 52 J )
2179 _ §2p9—1 2 2 3. 121
0 U = oU) " ~ At [&(5 U) i T L%Z (0:U) i + O(At?) (5 )
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Using Equations (5.94), (5.95), (5.119) and (5.121) in Equation (5.118), we then have

Az? a(a2U) |’ ) 1 Ul )
L — — 122
A t{ o i+O(At) + 5 At[ati—i-O(At) (5.122)
v (2UN\ i 1A2? [92f) "
=P [Btl—"/ (w) T [axz , T o)
O\ (92U Az?0'U W\ o (orU\ )
D [8751—7 (agﬂ T g et OB )) P [8151—7 (a:@) i

This equation is then simplified to

J J

ou ! ot (02U i DAz [97M(¢)
e, =2 o= (5| r 0 P [T (5:129)
81—7 aQU J 81—7 aQU J )
where
otU
M(t) = — . 124
®) (i—l)Angf;((i-i-l)Ax ox* (5.124)
By Equation (2.48) in Chapter 2 we note that the term
o= (02U o (02U |
[|:8t1_’7 (W) Ll a |:at1_’}’ <8$2> i (5125)

is O(At'*7), we then get the truncation error is first order in time and second order in

space i.e.
7 = O(At) + O(Az?), (5.126)
where Ti(fj-) is the truncation error of Equation (5.88).

5.4 Consistency of the Numerical Methods

A numerical approximation scheme for the fractional diffusion equation is consistent, if we

can show the truncation approaches zero as At — 0 and Az — 0. Let uf ~ Uij = u(x;, tj)

then
Al}I_I}O (u! =U}) = Al%I_I}O 7i; = 0. (5.127)
Ax—0 Ax—0

From Equations (5.102), (5.115), and (5.126) we see this condition is satisfied, that is

Aliino Tij = 0. (5.128)
Az—0

This means the KBMC2, KBMC3, and KBML1 numerical methods are consistent with

the original fractional partial differential equation.
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5.5 Stability Analysis of the Numerical Methods

In this section, the stability of the numerical methods in Equations (5.52), (5.70) and
(5.88) is considered by using Von Neumann stability analysis. We will discuss the stability

of each scheme in the following sections.

5.5.1 Stability Analysis of the KBMC2 Scheme

To investigate the stability by Von Neumann stability analysis, we let uf and Uf be the

approximate solution of the Equations (5.36) and (5.37), and so we have

. . Az s - .
(" — ) = 85 (o7 0] (5.129)

and

u{“ + u‘Ziﬁl DAt—! <1>W (U?H _ vj+1) — %

2At B A{EZF(l —+ fy) 2 7 i—1 OAL
DAY [ 3 (00 _ 4 N (i i
+A;KZI‘(1+7){ Bi(v) (U@' - ’Uifl) - (2> (vi — ”1—1)
i .
_ ) ) »
+ 2 k() [“lk — Ui - (Uf - Uf_f)] } +ULE (5.130)
k=1

The errors then are given by
ez = Uij — and 5{ =V - (5.131)

where U7 and V7 are the exact solution of Equations (5.24) and (5.25). These errors
satisfy the equations

' A Az 7 . ,
(6J-+1 B Ezirll) _ % (Eg—i-l +€{f11) — 0, (5.132)

and

e+l pan! <1>7 (giﬂ B j+1) _dtd

2At  AxT(1+74) \2

DAOL [~ N
gt LB @ -4 - (5) (€ -)

+ zj: k() [ef — ey — (b7t =il } (5.133)
k=1
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with zero boundary conditions. In Equations (5.132) and (5.133) we set the truncation
error to zero, but later in the convergence section, we will use the truncation error to find

the convergence rate of the numerical method.

j_‘i’ﬂ?' ]_le . . . .
Let €; = (je' %, and gj = §;e' 9, where 4’ is the imaginary number, /—1, ¢ is a real

spatial wave number. Equations (5.132) and (5.133) can then be rewritten as

i'q; i'q(xi—Ax; A"'U’L i qx; i q(x; —Ax;
<<j+16 i — (e q(zi—A 1)) == (fj+1€ 9T 4 Ee a(zi—A Z))’ (5.134)
and
1 v Palw— A DAt 1’ i q; i qzi— Az
g (Grae/#  Guaef0em320) = s (5) (e - et a)
1 Yo ra(ei-Ae; DAt 3 i g P alei— A,
= 5A7 (Cje Wi et h J) +Aa:ir(1+7){5j(7) (506 azi _ g, efa(@i=A 1))
1\” , , J ) )
_ <2) <§j61 qr; __ Ejel q(fﬂi—ACEi)) + Zﬁj—k(')/) [é‘kez qr; __ é&kez q(zi—Azx;)
k=1
— (5k—1ei,q$i _ gk_lei’q(xi—A$i)>:| } ] (5135)

Using Equation (5.134) in Equation (5.135), and simplifying, we obtain the recursive

equation for (j1

/1 ¥ 1_6—1"wa1- 2 B /1 Y 1_e—i'wA27i 2
G+1—p BY 11 o—twha; Git1 =G =P 9 1 4 e—wAz; G

, 2 ) 5
() B+ (| S a0 Gl (5130
P 1+€—i/wai J Y)Go 1Y 1-|—e*i/'LUA93i ] N_]*k Y k k—1]> .
where
4ALY
p= : 5.137
PT T+ (A2 (5.137)
Noting

4 2

1 — eVl — sin2(aAz: Az

SR (gAz:) S = — tan’ <q x) (5.138)
I+ e ran% (1 + cos(qAx;))

Equation (5.136) then becomes

B J
G+1 =G — g {5j(7)€0 + ) k() (G - Ck—l]} : (5.139)
k=1
Here the coefficient A is defined by
A, = Y% (5.140)

1+ (3)Y,
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and U, is defined by

U, = ptan’ <qmi> : (5.141)

where 0 < U, < co.

When j > 1, the recurrence relation in Equation (5.139) can be rewritten as

7j—1
Gir1 = [ = Agro(M)] G — Aq {&j(’Y)Co + Z@jk(V)Ck} : (5.142)
k=1

with the weights

a;(y) = Bi(v) — mi-1(v), (5.143)

and

@i () = 1 (v) — Bj—1(7), (5.144)

where Ej(’Y) and ij(7y) are defined earlier in Equations (5.27) and (5.28) respectively.
We consider the following lemmas which will help in showing the stability of our numerical

method.

Lemma 5.5.1. Given 0 < v < 1 and 0 < [, < oo then the parameter A, given in
Equation (5.146) is bounded by
0<A, <27, (5.145)

Proof. Note Equation (5.140) can be written as

27
— 97 —
Ay =2 (1 2W+Uq> . (5.146)

The second term 27/[27 + U] is always positive and it is bounded between 0 and 1 as

0 < U, < 1. Consequently, we have the bound 0 < A, < 27. O
Lemma 5.5.2. (adapted from Zhuang et al. (2008))
Let f(z) =27 — (x — 1), where x > 1, then f(z) satisfies:

1. f(z) >0, and

2. f(z) > f(z+1).
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Proof. To show f(x) > 0, we have

f@) =27 — (@ —1) =" [1_ (x_lﬂ, (5.147)

X
but
1
0< <1, (5.148)
X
when z > 1 and so
—1\”
0< (‘T ) <1, (5.149)
X
or
—1\”
0<1- (x ) <1 (5.150)
X

Hence from Equation (5.147) we have 0 < f(z) < 27 since 7 > 0 and so f(x) > 0.

To prove the second result, we let f1(z) = 27 and fa(z) = 27 — (z —1)7. We will
show the functions f;(z) and fy(z) are monotonically increasing and decreasing functions
respectively, when v € (0,1).

Since

dfl(x) _ y—1 _ i
o =T = > 0, (5.151)

we can conclude, for z > 0 and 0 < 7 < 1, that the function fi(z) is monotonically
increasing function in x.

Differentiating fo(x) with respect to = we find

dfz(.%’) _ ,yx'y—l
dx

—y(z—1)" . (5.152)
Now since
2> (- 1),

as fi(x) is an increasing function for 0 < v < 1, then

1 < 1
=7 T (=)

(5.153)

Hence

<0 (5.154)
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and so the function fs(z) is a monotonically decreasing function of x, for 0 < v < 1. Now

we have, for z > 1,
f@)y=2"—(z-1)">@+1)—((z+1)—1)" = f(z+1). (5.155)
Hence results (1) and (2) hold for 0 < v < 1. O

Lemma 5.5.3. Let g1(2) = y27 1 =27 + (2 — 1)7, and g2(z) = (x +1)7 — 227 + (x — 1)?

where x > 1 and 0 < 7y < 1, then ¢;(z) and go(z) satisfy the following:

1. g1(z) <0, where x > 1, and

2. g2(z) < 0, where x > 1.

Proof. First apply the binomial expansion to (z — 1) then g;(z) becomes

g@) =1 =2+ 3 7] (1
k=0 n
S N R (5.156)
n=2 n

Now by rewriting the binomial coefficient, using the result in Appendix B.2, we then find

7F n- 2n—1,v—n
E:MFl— (=)™ e
~I'(n — y—n
— .1
Z (1 : (5.157)
since (—1)?""1 = —1.

For n > 2 and 0 < v <1 the term

L —7)

LT S,
n!l(1 —~)

is positive since the Gamma function is positive for positive arguments. Also the term
27" > 0 is positive and so we then conclude that g;(x) < 0.

By the second result of Lemma 5.5.2

g2(x) = flz +1) = f(x) < f(z) - f(2) =0, (5.158)

then go(x) < 0. Hence results (1) and (2) hold for 0 < v < 1. O
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Lemma 5.5.4. For 0 < v < 1 given the weights p;(y) = j7¥ — (j — 1)7, for j > 1, and
()= (3 + %)’Y —(j+ %)’Y, for j > 0, then p;(y) and () satisfy:

1. pj(y) > 0, where j > 1,

2. p5(v) > pjga(7), where j > 1,

3. fj(y) > 0, where j > 0, and

4. () > fij41(y), where j > 0.
Proof. Using results (1) and (2) from Lemma 5.5.2 with = j, we find results (1) and

(2) above hold. Similarly setting z = j + 3 we find results (3) and (4) above hold from
results (1) and (2) in Lemma 5.5.2. O

Lemma 5.5.5. For j > 1 and 0 < v <1 given

&) = (j t ;)H - <j " ;)7 " (j - ;)7

aj(V) =" =+ (1),

s =(i+3) ~2(i+3) +(5-3)

wi(VN =0+ =27+ (G -1)

and

then the weights a;(7), a;(7v), w;j(y) and w;(y) are negative if 0 < v < 1 and zero

otherwise.

Proof. Setting x = j + § in results (1) and (2) of Lemma 5.5.3 we see a;(y) < 0, and
a;(y) < 0. Similarly by using Lemma 5.5.3 with 2 = j, we have from results (1), w;(y) < 0
and from (2) w;(vy) < 0.

If v =1 we have a;(y) =0, a;(y) =0, wj(y) = 0 and w;(y) = 0. O

Proposition 5.5.6. Let (j, where j =0,1,2,..., M, be the solution of Equation (5.139),

then we have

1 G 1<I o, (5.159)

if 0 <Ay <min(1/p0(7y),27) and 0 < v < 1.
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Proof. We use the mathematical induction method to prove the relation in Equation (5.159).
For simplicity we assume (3 > 0. The case (y < 0 can be handled in analogous manner
to the method below.

Consider the case j = 1 in Equation (5.139), where we have

1\
G =0 — Ay <2> Go

— (1 — Ay (;>H> Co. (5.160)

1\
1—Agy () <1, (5.161)

First we note

2

is automatically satisfied as the second term on the left is positive and so

1\
G = (1 —Agy <2> ) o < Co- (5.162)

We now consider the inequality

1\
1 Agy <2> > 1, (5.163)

which is satisfied if

27
= >,
Y

However since 0 < v < 1 and using Lemma 5.5.1 then Equation (5.163) is satisfied. We

1\
G = (1 —Agyy <2> ) Co = —Co- (5.164)

then have

Hence for 0 <y <1,
—Co < G < Co, (5.165)
or
|Gl <]¢| (5.166)

and so Equation (5.159) is true for j = 1.

We now assume

(o< a< (o, for n=1,2,....k (5.167)
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and then need to show that
—Co < Ckt1 < Co- (5.168)
From Equation (5.142), we have
k—1
Cea1 = [1 = Agrio(7)] Gk — Aq {ak(V)Co + Z&?k—l(ﬂ@} : (5.169)
=1

Note by using Lemma 5.5.5, we have —w;_j(y) > 0 and —ay(y) > 0. However the sign of
the first term (1 — A4zio(y)) may be positive or negative and so we need to consider two
cases when checking the stability.

These cases are

1. (1 —Agpo(y)) >0, and 0 < Ay <27, and

2. (1 —=Agmo(y)) €£0,and 0 <A, <27,

The range of values of A, and v which satisfy each case is shown in Figure 5.2.

Figure 5.2: The range of values of A; and  for both cases to be considered when testing the

stability of the KBMC2 scheme.

Case 1

Case 1 occurs if the first term satisfies

(1= Agiio(7)) = 0 (5.170)
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then we have, from Equations (5.167) and (5.169),

(1= Aqio(7)) (—C0) < (1 = Agpio(7)) G < (1 = Agpio(7)) Cos (5.171)
Ag (—ar(7)) (—60) < Ag (—ar(7)) Co < Ag (—ar(7)) Co, (5.172)
and
k—1 k—1 k—1
Ag ) (=0r—1(7) (=C0) <Ay ) (=@r—1(7) G < Ag ) (=Wr—1(7)) Co- (5.173)

=1 =1 =1

Using these results, we have the expression for the upper bound for (x

k-1
Ch1 = (1= Agpio(7)) G — A { Jrzwk 1y }
=1

k—1
< (1—Aqu0( )+ Ay ( )+ A Y (=Brily )go (5.174)
=1
Next we evaluate the summation, where w;(7) is given in Equation (5.144), to find
k—1 k—1
(@) = Y [ (7) = k()]
=1 =1
k—1
=D [n1(v) = (7))
n=1
= fuo(7) = fir—1(7)- (5.175)

Using Equation (5.143) with the result in Equation (5.175), Equation (5.174) becomes

1\ !
Cot1 < <1 —Agy (k + 2) > Co- (5.176)

Since the second term, in the brackets, is positive then (11 is bounded above by (jy

A
gk—&—l < (1 - (k_’_qlf;/l_"f> CO < CO- (5177)
2

Considering the lower bound we have, after using Equations (5.171) — (5.173),

k—1
e = (1 = Agpo(v)) G — {&k(’v)Co + Z@k—l(V)Q}

> (1—Aquo( )+ Ag ( )+ A, Z —wp—(y ) —Co)- (5.178)
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In a similar way, we obtain the inequality

-1 y—1
Ch+1 = (1 — Agy (k + ;)7 > (=) = (Aﬂ (k + ;) — 1) Co. (5.179)

Since 0 < v < 1 and (l<:+%)1_7 > 0 for k > 0 then

A
< <Ay, (5.180)
(k+3) "
which satisfies
A
1< <Ay, (5.181)
(k+3) "
as 0 <Ay <2and 0 <7y < 1. We then have
A
Chy1 > <ﬁ717__1> Co = —Co, (5.182)
(k+3)
and so
—C0 < Cer1 < Co or [Cera] < [Col, (5.183)

which shows Equation (5.159) is true for j = k + 1.
Hence if 0 < Ay < 27 and (1 — Ayfip(y)) > 0 then Equation (5.159) is satisfied, for all

j > 0 which means the numerical method is stable for this range of parameters.

Case 2

Case 2 occurs if
(1= Agfio()) < 0. (5.184)

We then have from Equations (5.167) and (5.169)

(1= Agpio(7)) Co < (1 = Agpio(7)) ¢k < (1 = Agpio(7)) (—Co), (5.185)
Ag (—ar(7)) (—C0) < Ag(—ar(7)) o < Ag (—ax (7)) Cos (5.186)
and
k—1 k—1 k-1
Ay (—@r(7) (=) <Ay Y (—@ri(1) G <Ay Y (—@r—1(7)) Co- (5.187)
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Adding these equations we find

k—1
Cri1 < (1= Agfin(7)) (=o) + Ag (=ak(7)) Co + Ag Y _ (=&k-1(7)) Go- (5.188)
=1

Then using the value of g, given in Equation (5.143), and the summation, given in

Equation (5.175), in Equation (5.174) we obtain the inequality

v—1
Cht1 < <2Aqﬁ0(7) —1-Agy <k + ;) ) Co- (5.189)

Considering the lower bound, we have

E

-1

Cer = (1= Agpo(7)) (Go) + Aq (—ar (7)) (=0) +Aq ) (=wr1(7)) (=C0).  (5.190)
=1

Then, again using Equations (5.143) and (5.175), Equation (5.174) becomes

1\
G > <2Aqﬁo(7) S1-Ap (k n 2) ) (). (5.191)

Therefore (11 is bounded by

_p(77 kv Aq)CO S CkJrl S P(% k7 Aq)CO: (5192>
where
_ 1\
p(V: k, Ng) = 2Aqfi0(7) — 1 — Agy (k + 2) - (5.193)

Unlike Case 1, the value of p(v,k,A,) is not bounded by 1 for all values of A4, k and
v, see Figure 5.3. As a result we cannot conclude from this analysis that the method is
stable. However these bounds are lower and upper bounds on the actual values of (; and
the actual values of (; may be indeed still satisfy Proposition 5.5.6.

In the next section we demonstrate the method is stable by evaluating the solution of the
recurrence relationship in Equation (5.169) numerically.

Note if v = 1 the solution of Equation (5.169) is
G = (1= Ag)* G, (5.194)

which is bounded if 0 < A; < 2 for both Case 1 and Case 2. So proposition 5.5.6 is true
if vy=1. O
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Figure 5.3: The predicted of p(v, k, A4) for v =0,0.1,0.2,...,1, k = 1000 and A, = 2.

5.5.2 Numerical Solution of the Recurrence Relationship

In this section, we investigate the solution of the recurrence relationship in Equation (5.169)
by numerical evaluation for both Case 1 and Case 2.

For Case 2 the value of + lies in the range logs 2 < v < 1 where v = logs 2 is the v value
at the intersection of A, = 27 and A, = 1/fip(y) curves. Figures 5.4, 5.5, and 5.6 show
the results of simulating Equation (5.169) against j for 0 < v < 1 with Ay = 1/p0(y),
Ay =27 and A, = 2103 2 regpectively. We see from Figure 5.4 the value of the ratio ¢i/Co
decays quickly to zero but does undergo some initial oscillations. Meanwhile in Figure 5.5
we see the values of (j/(y also oscillates but decays to zero if 0 < v < 1. We also see
similar behavior when we choose A, = 210832 a5 shown in Figure 5.6. Note though that in
the case of v = 1 we have the solution (;/(y = (1 — A,)?, which for A, = 2 will oscillate

between —1 and 1 without decaying as shown in Figure 5.5.

For Case 1, shown in Figure 5.7, we give the results for A, = 1 with + in the range
0<y<landj=0,...,100. We see from Figure 5.7 the value of the ratio (;/(y decays
quickly to zero. We conclude that this method for A, = 1 is stable as the ratio is positive
and is less than 1, as expected.

The results in Figures 5.4, 5.5, 5.6 and 5.7 demonstrate this method is stable for both
Case 1 and Case 2 as the values of (;/(y do not grow but instead remain bounded above

and below by 1 and —1 respectively.
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GG

Figure 5.4: Case 2 the predicted ratios (;/¢o from Equation (5.169), with (o = 1, for various
of 7 is shown for Ay = 1/p9(y). Note the ratios {;/¢o for j = 1,...,5 and logg2 < v <1
are bounded above by 1 and below by —1. The ratios for v = 0.1,0.2,...,1 decay to zero.

Arrows show the direction of increasing ~.

50

Figure 5.5: Case 2 the predicted ratios (; /(o from Equation (5.169), with {y = 1 for various of
«v is shown for A, = 27. Note the ratios ¢;/{p for j =1,...,5 and logz 2 < < 1 are bounded
above by 1 and below by —1. The ratios for v = 0.1,0.2,...,1 decay to zero. Arrows show

the direction of increasing .
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GG

Figure 5.6: Ratios ¢;/(o predicted by Equation (5.169) with (o = 1 for various of v in Case 2
where A, = 2l08s2 5 =1,...,4 and logs 2 < v < 1, the magnitude of the ratios is less than 1.

The arrows show the direction of increasing ~.

e

Figure 5.7: The predictions from Equation (5.169) of the ratio ¢;/{o with (o = 1 for various
of v is shown for Case 1 where A; =1, j=1,...,100 and v = 0,0.1,0.2,...,1 . The arrow

shows the direction of increasing ~.

5.5.3 Stability Analysis of the KBMC3 Scheme

In this section we investigate the stability of the KBMC3 scheme by using Von Neumann
stability analysis. Similar to Section 5.5.1, we again let uf and vlj be the approximate

solution of the Equations (5.58) and (5.60), we then have

. : Az /s :
(w —uly) = R (v +0l), (5.195)
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and

g+1 ]+1 J J -1
+u; u; +uy_q DAY ~
A2t T Bar(+9) { ki (7) (0] = vil1) + @5(9) (vi = viy)
7

1 . _ +1
oA g Li—k () [vf“ — ol (T vfﬁf)] } + [f|j_%2 . (5.196)
7

The errors, using Equations (5.24), (5.25), (5.131) as well as Equations (5.195) and (5.196)

satisfy the equations

. . Az; ) )
(63 - 65—1> Ty (E? +€3_1) =0, (5.197)
and
j+1 j+1 j j 1
+e6, 6 tTe DAY | 0 o N _
AT 2At Az T(1+7) { () (& = &) + 800 (50— ei)
g I R B 3

TRz 2 k() [eFt — ey — (eFt = eb )] } (5.198)

again with zero boundary conditions. We again omit the truncation errors (in Equa-
tions (5.197) and (5.198), however in the later section we will include them to show the

convergence rate of the numerical method.

As before we let eg = Cjei/q”i, and s{ = fjei/qxi, where ¢’ is the imaginary number, /—1,
q is a real spatial wave number, Equations (5.197) and (5.198) can then be rewritten as

ACL‘,L'
2

(Cj—i—leilqwi . Cj-}-l@ilq(xiiA:Ci)) — (Sj_i'_lei/qzi + §j+1ei/q(zifA!L‘i)> , (5199)

and

2At (Cj“e "t G (WM)> 2At (CJ G Mi))

DAt . . y y
) i'qr; i'q(x;—Ax;) -~ i'qr; i'q(xi—Axy)
+Axif‘(1 ) { i () (506’ o€ ) +a;(v) (516’ 1€ )
+ E M; k(Y [§k+16 W el ATTAT) (5k—16i/q“ - fk—lei/q(xFAzi)ﬂ }
(5.200)

Using Equation (5.199) and simplifying, we obtain the recursive equation for ;1
- 1 — 6_i,wA-7:i . 1 _ e—’i,wai N
G+1=¢G +p <1+ei’wmi> Ki(7)Co + P <1_|_€mm> a;(7)C

ﬁ 1— e*’L "wAx;
+ 5 1+ et PN Z Hj—k Ck-i—l Ck—l] ) (5201)
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where p is defined in Equation (5.137). Now using Equation (5.138) in Equation (5.201)

gives the recurrence relation for ¢;1

G+1=¢ — U, [/’vj(Y)Co +a;(v)G + 5 ZM; ) (Cr1 — Ck—l)] : (5.202)

where the coefficient U, is defined in Equation (5.141), and the weights a;(v), iz;(7), and
r;(7) are given earlier by Equations (5.55), (5.57), and (5.61) respectively.

When j > 2, the recurrence relation in Equation (5.202) can be rewritten as

j—1
Gjy1 = 1+1§Uq {< -U, < 7 >> G — U, [wlj(v)Co + @2 (7)1 + ;@3j—k(7)gk] } :
(5.203)

or

Cjr1 = (1 — 27_1]\(1) G — Aq 4P1j(’7)<0 + 9023'('7)51 + Z@%-k(’)’)@c] ) (5.204)

where the coefficient /vXq is defined by

ST (5.205)

and the weights are defined as

o1,(0) = K5 = 5 (7 = (G = 1))
-1
v (i+3) - (i+3) +r-3@ -G, (5.200)
£2,(1) = @51 — 3 (1= 1) — (G~ 2)")
—(i+3) ~ -5 G- - G-, (5207)
and

py(1) = 3 G +2)7 = G417 =7+ (= 1)7]. (5.208)

Note for 0 < U, < co then A, in Equation (5.205) satisfies the inequality 0 < A, < 2.
We next consider lemma which will help in showing the stability of the KBMC3 method.

Lemma 5.5.7. The weights ¢1,(7), 2;(7) and ¢3,() defined earlier in Equations (5.206),
(5.207) and (5.208) respectively are negative if 0 < v < 1 or zero if v = 1.
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Proof. To show ¢1; < 0, we first rewrite Equation (5.206) as
LN
‘Plj('Y):'Y(J+2> —<J+2> +7 =50 =017

G IR (O R e

Now using the binomial expansion and simplifying, we have

smj('Y):v(J'Jr;)v_l—<j+;>W (]+ ) +Z<>< >k<j+;)7_k
_%jv_,_ jv_,_;Z() k vk
(1) 2@ () () - aE e
“(+3) B @) (r2) g e

Using the result from Appendix B.2, we then have

(]

NI ST
SRR o] o

Now for 0 < v <1 the term ~ (j + %)7_1 < 44771, we then obtain the upper bound for

the weight 1,(7)
- . ’)/F(k—’}’) 1 ¥ . 1 7=k 1 N2k y—k
P <= 2= [<2) <H2> DT ] (5.212)

For 0 < 7 < 1 the binomial coefficient

Tk —
M >0, (5.213)

is positive since the Gamma function for positive argument is positive.

The term {(%)k (j + %)ka + %(—1)%]'7_’“ is also positive Vk > 2, we then conclude that

for 0 <y <1 ¢1;(y) <O0.If v =1 then ¢y,(v) = 0.
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To show second, ¢2;(7) is also negative, we rewrite Equation (5.207) as

eai) = (i+3) —3" =5 (G107 G- 2)

() (o)) oo e

and then use the binomial expansion of the second and fourth terms to find

= () 0+ E O 6+

EQE (R s

= =
Using Equation (B.7) in Equation (5.215), we then obtain
ory(1) = - :,1 WDy (2) (42) (5.216)
3 : e (O R i
-S| (+3) e

For 57 > 2, the term

() (5+2) G-t < (B) Gt

2 2
< (-1 <(;>k - 1) , (5.217)

is bounded and since for k > 1, the term (%)k — 1 < 0, we then conclude that the weight

p2;(7) for 0 <~ < 1is also negative. If v = 1 then ¢g;(7) = 0.

Finally, by the second result in Lemma 5.5.4, we have

i () > w1 (v) > pi2(7), (5.218)

and then rewriting ¢3;(7) in terms of ju;(+) we have

1

3,0 = 3 li2(1) = 1] < 5 l13(0) = ()] <, (5.219)

which shows ¢3;(7) <0if 0 <~ < 1. If y =1, then p3;(y) = 0. O
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Proposition 5.5.8. Let (j, where j =1,2,3,..., M, be the solution of Equation (5.202),

then we have

1G] < 1ol (5.220)

ifOS/u\qglandO<'y§1.

Proof. We use the mathematical induction method to prove the relation in Equation (5.220).
For simplicity we assume (5 > 0. The case () < 0 can be handled in analogous manner

to the method below.

Setting j = 1 in Equation (5.202), we find the value for (;
1 Nt o1y
= _ _|1- hl B
T, ) [ b (7 (2) <2> >] ¢

(-l

2y

1
7 +1
U.(z)"

The second term is positive and so (7 is bounded above by (g

=[1- Co. (5.221)

2y

GQ=[1-—F——[¢ <. (5.222)
— +1
LACIN
Since for 0 <y <1 and 0 <, < oo, we also have
2y
U.(3)"
and so
2
G=|1- 177+1 G0 > —Co- (5.224)
U.(3)"
Combining the results in Equations (5.222) and (5.224), we have
2y
_CO < 1-— 1 +1 CO < COa (5225)
U, (3)"

and so (; is bounded by

—Co < ¢1 < (o, (5.226)
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or

[STRGIE (5.227)

Hence Equation (5.220) is true for j = 1.

For j = 2, we have from Equation (5.202)

G=G-1, { [7 (;’)“ -(3) -+

which after simplifying becomes

e b (o

o + <(g>7 - 1> G+ % (G2 — Co]} , (5.228)

(33 () o}

(5.229)
For 0 < U, < oo and 0 <+ <1 the coefficient term of (p obeys
3\7 1 3\
0< ‘Uf <> —-—~7<> <1 (5.230)
1+1y, [\2) 2 2
We also have
3\7
3\7 _q ¥
0< Mw §2<<3> —1) <1, (5.231)
1+ 354, 2
and
0< ———<1 (5.232)
1+ 35U,
The coefficient of (; then satisfies
1— 3\ _1q ¥
1> Uq“f) >;31—2<<3> —{)20. (5.233)
1+ 1y, 2
From Equations (5.232) and (5.233), we conclude that
1-— EN |
0< Yy ((5) )gL (5.234)

145U,
Now using Equation (5.226), the first term in Equation (5.229) satisfies

(1_@,((;)”—1)) o (1—Uq<<§>”—1>> e (1—%((3)“”) G

1+5U, 1+ 35U, 1+ 1y,

(5.235)
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Equation (5.229) then becomes

@sujwﬂ&—%<@y—0+m<gf—;~(®7j}@ (5.230)

which then simplifies to

371
G 1= G ) (5.237)

(1 + QUq)

The second term is positive and so {3 is bounded above by (g
-1
Ugy (%)fy

<|1—-2F—2rf < (p. 5.238
C2_< (1+10) Co <o ( )

Considering the lower bound, we have

mm{l_%((;)u) +Uq((g)”_;_v(;)”1)}<_<0>.

(5.239)
In similar way, we obtain the inequality
-1 y—1
Uy (3) U (5
G>|(1- % (—Co) = % — 1] Go. (5.240)
(1 + §Uq) (1 + §Uq)
Since 0 < U, < 00, 0 <y < 1and (2)'77 > 0 then
2
0< quv <L <, (5.241)
(1+3Uy) (3) (3)
and so we have
3\7-1
-1< M —-1<1, (5.242)
(1 + §Uq)
as 0 < U, < o0, 0 <~y < 1. We then have
-1
U7 (3)
@z(‘l—l@z—m (5.243)
(1+3U,)
and so
—C0 < <G or |G <Gl (5.244)

and so Equation (5.220) is true for j = 2.

We now assume that

(o< (<G for n=1,2..k (5.245)
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and then need to show that

—Co0 < Get1 < o (5.246)

From (5.204) we have

k—1
Chyr = (1 —27'A ) G — [(Plk;('Y)CO + oo (NG + D s (NG| (5.247)
=2

By using Lemma 5.5.7, we know —p1,(y) > 0, —p2,(y) > 0, and —ps3;(7) > 0, but the
sign of the first term (1 — 27*1/VXq> may be positive or negative and so we consider two

cases to check the stability, which are

L(1-2714,) 2 0,and 0 < 4, < 1

2 (1-2714,) <0,and 1< A, <2

Case 1

v}

For 0 <y<1land 0 <A, <1 occurs when 1 — 27_11qu > (0. From Equations (5.245) and
(5.247), we have

(1 _ 2%1]\(1) (—¢o) < (1 o1} ) G < (1 ol ) Co, (5.248)
Ay (=01:(0) (=C0) < Ag (=p1(7)) o < By (—01:(7)) o, (5.249)
Ag (—02,(7)) (=G0) < Ag (—02,(1) G < Ay (—p21,(7)) o (5.250)
and
k-1 k—1 k—1

)

A (—e3() (=G0) S Ag > (=03 (M)) G <A (—esp(0) G- (5.251)
!

Il
)
o~
Il
¥
o~
Il
2o

Adding these equations, we then have

Chr1 = (1 - 27_1]&;) Gk — Ay

ke
P1x(7)C0 + P2, (V)C1 + Z <P3k—l(7)Cl]

< {1—2“]\q+]\q(—<p1k(v))+1\ (—par(7) + Aq ZSO3I<: Wy } (5.252)
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Next we evaluate the summation, where ¢3;(7) is given in Equation (5.208), we then find

o
—_
e
—

(—esra()) = (k=07 =(k=1-1) = (k=1+2)"+ (k=1+1)]

l

[(k—2)Y — k7 +27]. (5.253)

[
I\

||
no
N = N

Then using Equations (5.206) and (5.207) with the result in Equation (5.253), Equa-
tion (5.252) becomes

. (1 1\ 1\
Ck+1§{1—27—1Aq+Aq<2[k7—(k—1)7]+<k+2> —k7—7<k+2> )

1

X, (2 [(k—m—(k—z)um— <k+;ﬂ> b5 (k=2 — k7 4 2] & }co

(5.254)

Equation (5.254) simplifies to

y 1\
Cht1 < (1 —Agy (k + 2) > Co- (5.255)

Since the second term is positive then (11 is bounded above by (j

v ’y_l
Chet1 < (1 —Agy (’f + ;) ) Co < Co- (5.256)

Considering the lower bound we have

Chr1 = (1 - 27_1/v\q) G — Mg

P15(7)C0 + p21(V)C1 + Z wzk_z(W)Cl]

2{1—2”—1Aq+ﬁq<—solk<v>>+A< P21(7)) + A, ngkl } ~Co), (5.257)

which simplifies to

Cht1 = (1 — Kgv <k + >71> (—C) = (Aw (k + ;)71 - 1) Co- (5.258)

Since, for 0 < v < 1,0 < /qu <1, and k£ > 0 we have 0 < (k—l— %)l_ﬂ/ < 1 then we have

N | =

inequality
y 1\t
0<Ayy (k + 2) <1, (5.259)

or

. 1\ !
1< Ay <l<: + 2) —1<o. (5.260)
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The lower bound of (41 is then

N 1\ !
Cht1 = (Acﬂ (k + 2> - 1) Co > —Co (5.261)
and so

—C0 < Cog1 < Co or |Cug1| < (G0l (5.262)

Hence, if 0 < Aq <1 and (1 — 27_1]\q> > 0, Equation (5.220) is satisfied for j = k + 1,
and hence for all j € IN, which shows the numerical method is stable for this range of

parameters.

Case 2
Case 2 occurs when 1 — 2”‘1]\(1 <0Ogiven 0 <y <land 1l < ijq < 2. Using Equa-
tions (5.245) and (5.247), we have the bounds

(1 - 27—1]\q) Go < (1 - 27—1]\q) G < (1 . 27—1]\61) (—Co), (5.263)
Ay (—01:(0) (=) < Ag (—p1(7)) o < By (—01:(7)) o, (5.264)
Ay (=026 (1)) (—C0) < Ag (—2,()) ¢1 < Ry (—02(7)) Co, (5.265)
and
k—1 k—1 k—1

A (=03r1(1) (=G0) A (—ommi(M)) G <A Y (—03r(7)) G- (5.266)
l

||
N
o~
||
)
o~
||
o

Using these results, we find the upper bound for (4

Chr1 = (1 - 27_1]\q> Gk — Ay

k-1
o111 + P2V + Y (P3k—l(7)Cl]
=2

k-1
< {271&1 — 1+ Ag(—p1(7)) + Ag(—p21,(7)) + A, Z 803k—l(’7)} Co-  (5.267)
1—2

Using the weights in Equations (5.206) and (5.207), with the result in Equation (5.253),
Equation (5.267) then becomes

o o ol v—1
Cet1 < {271Aq—1+Aq (;[k”—(k—l)vh— <k+;> _kv_7<k+;> )

#hy (3 [6- 07— -2 e = (ke 5) ] )+ 127 -0 424, b

(5.268)
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which after simplifying becomes

o N 1\ 1!
Cry1 < (Aq27 —1-Ayy (k + 2) ) Co- (5.269)

Considering the lower bound we have

k—1
Cht1 = (1 - 2W_1Aq> G — Ay [@11@(7)@ + p2:(7)C + Z@Skz(V)Q]

> {27_1]\(1—14'/u\q(—901k(7))+/\( 21,(7)) + Ag Esﬁsk 1y } —Co), (5.270)

which reduces to

o o 1\ 7L
Cht1 = (AqT/ —1—-Ayy (k + 2> ) (—Co)- (5.271)
Then (41 is bounded by
—Pg(v.ky Ag)Co < G < Py, K, Rg)Go (5.272)
where
o o o 1\ 7!
P(v:k Ag) = Ag27 — 1 — Agy (k + 2) : (5.273)

The value of ﬁ(fy,k,j&q) is not bounded by 1 for all values of Aq, k and v as shown in
Figure 5.8. Unlike Case 1, we cannot conclude from this analysis that the method is
stable. However these bounds are lower and upper bounds on the actual values of (; and
the actual values of (; may be indeed still satisfy Proposition 5.5.8. In the next section we
demonstrate the method is stable by evaluating the solution of the recurrence relationship

in Equation (5.247) numerically. O

24

Figure 5.8: The predicted of j(v,k, A,) for v =0,0.1,0.2,...,1, k = 1000 and A, = 2.
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5.5.4 Numerical Solution of the Recurrence Relationship

Similar to method the KBMC2, we investigate the solution of the recurrence relationship
in Equation (5.247) by numerical evaluation for both Case 1 and Case 2, where the value
of v lies in the range 0 < v < 1 and the 0 < /vXq < 2. For Case 1, these results are shown
in Figure 5.9 for 5 =1,...,6, vy =0.1,...,1 and Aq = 1. Similar results for Case 2 with
/v\q =2 and ju\q = 2177 are shown in Figures 5.10 and 5.11 respectively. From these results
the KBMC3 method is stable for both Case 1 and Case 2 as the values of (;/(p do not
grow but instead remain bounded above and below by 1 and —1 respectively. Comparing

Figures 5.9 and 5.10 we see if /v\q = 1 the ratios decay faster than if /vXq =2.

5%

Figure 5.9: The predictions of the ratio (;/(y found from Equation (5.247), with ¢, = 1.
Results are shown for Case 1, where j =1,...,6,v=0.1,...,0.9 and /u\q = 1. Note the ratios

;/Co is less than 1 where the value of v decreases in the direction of the arrow.
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Figure 5.10: The predictions from Equation (5.247) of the ratio ¢;/(o with (o = 1 is shown
for Case 2, where /v\q = 2. Note the ratios (;/{p for j =1,...,7, and v = 0.1,...,0.9 is less

than 1 and the value of v decreases in the direction of the arrow.

e

Figure 5.11: The predictions from Equation (5.247) of the ratio (;/¢o with (o = 1 is shown
for Case 2, where ijq = 2177, Note the ratios ¢; /(o for j =1,...,6, and v =0.1,...,0.9. The

value of v decreases in the direction of the arrow.

5.5.5 Stability Analysis of the KBML1 Scheme

In similar manner to Sections 5.5.1 and 5.5.3, we again use Von Neumann stability anal-

ysis to assess the stability of the KBML1 scheme. The recurrence equation for ¢; using
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Equation (5.71) is

j—1
G =G¢-1—Ug {Bj(v)co + ) k() [Gra1 — Ck]} : (5.274)
k=0
which can be rewritten as
j—1
G = (1 - Aq) i1 — Ag [ (71)¢0 + ij—k('Y)(k] , (5.275)
k=1
where
o Uq
Ay = T Uq’ (5.276)

0< Aq <1, and U, as defined in Equation (5.141). The weights are defined as

aj(v) =" = (), (5.277)

and
wi () = pj+1(y) = 15 (7)- (5.278)

We now show the recurrence relationship in Equation (5.275) is stable.

Proposition 5.5.9. Let (;, where j = 1,2,3,..., M, be the solution of Equation (5.275)
then

Gl < 16l (5.279)

for all 0 < A, < 1.

Proof. We use the mathematical induction to prove the relation in Equation (5.279). For

simplicity we assume (p > 0. Consider the case j = 1, we have from Equation (5.275)

a=(1-4n) (5.280)
First we note the term in the bracket satisfies
1—Any <1, (5.281)

as the second term is positive and so (; is bounded above by (j

G = (1 - f\w) o < Co- (5.282)
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SinceO<7§1and0§Aq§1then

A~

1-Apy>1—-7>0> -1, (5.283)
and so
(1= (1 - f\qv) Go > —Co. (5.284)
Hence for 0 < v <1 we have
—Go < (1 - Aq’Y) o < Co, (5.285)
and so
—Co < 1 < Co, (5.286)
or
¢1] < 1Gol- (5.287)

Hence Equation (5.279) is satisfied for j = 1.

We now assume that
—(0 < <¢ for n=12..k (5.288)
and then need to show that
=G0 < Gr1 < Co- (5.289)

From Equation (5.275), we have

k
Ce1 = (1 - [\q) Co — Agbur1 (7)o — Ay Z%#H(’Y)Cl- (5.290)
=1

Note from Lemma 5.5.5 we have —agy1 > 0 and —w;_p11(y) > 0. In addition for
0 < Aq < 1 the term 1 — Aq > 0. Using Equation (5.288), we then obtain the upper
bound

k—1
Crt1 < (1 — Ay = Agara(7) — A, ijkJrl('Y)) Co- (5.291)
=1

Evaluating the summation of weights w;_j1(7) defined in Equation (5.278), we find

k
Y wikri(y) = (k+1)7T -k —1. (5.292)
=1
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Using this result and Equation (5.277) in Equation (5.291), we then find
Corr < (1 —Agy (ki + 1)7‘1) G. (5.293)
Since the second term is positive then (;41 is bounded above by (y
Cor1 < (1 —Agy (k + 1)7—1) ¢o < Co (5.294)
We now consider the lower bound. Since —(y < ¢, for n =1,...,k then we also have
k—1
Chr1 > (1 — Ay — Moy () = Ag ij—k+1(7)> (—¢Co), (5.295)
=1
which, after simplifying, becomes
Copr > — (1 —Agy (b + 1)7*1> Co- (5.296)
Noting 0 < A, <1,0<y<1land 0< (k+1)""7 <1 for k > 1, we have
0<1-Apy(k+1)"1<1. (5.297)
We then have the lower bound
G 2 = (1= Ay (B +1)77") G0 = ~Go. (5.298)
Therefore combining Equations (5.294) and (5.298), we then have
—Go < (1 — Ay (k + 1)7_1> o < Cos (5.299)
and so we obtain
=G0 < CGrt1 < Go- (5.300)

Equation (5.279) is then true for j = k£ + 1 and hence for all j > 1. According to

Von Neumann stability analysis the numerical method KBML1 is then unconditionally

stable.

5.5.6 Numerical Solution of the Recurrence Relationship

O

In this section again, by direct evaluation, we investigate the solution of the recurrence

relationship in Equation (5.275), for the parameter values Aq =1 and Aq = 1/2. Calcula-

tions were performed for v = 0.1,...,0.9 and j = 100 time steps. These results are shown
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in Figures 5.12 and 5.13 for Aq =1 and f\q = 1/2 respectively. From these results this
method is stable as the ratio remains less than 1, as expected, and also remains positive,
unlike the previous methods in this chapter. Comparing Figures 5.12 and 5.13 we see if

A, = 1 the ratios decay faster than if A, = 1/2.

6t

Figure 5.12: The ratio ¢; /o predictions from Equation (5.275) with {, = 1 for v =0.1,...,0.9
and [\q = 1. Note the ratios (j/(o remain less than 1. The value of v decreases in the direction

of the arrow.
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Figure 5.13: The ratio (;/{y predictions from Equation (5.275), with {; = 1, for v =
0.1,...,0.9 and A, = 1/2. Note the ratios (;/Co, for j = 1,...,100 and 0 < v < 1, re-

main less than 1. The value of v decreases in the direction of the arrow.
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5.6 Convergence of the Numerical Methods

In this section, the convergence of the numerical methods given by Equations (5.52),

(5.70) and (5.88) is considered similar to Chapters 3 and 4. First we let the error
= U/ —ul, (5.301)
where i =1,2,...,N and j =0,1,2,..., M, again we define the following grid functions

. EZ ifl‘e(:Ei,laml'+li|ai:1327"'7N7
F(x) = 2 2 (5.302)

0 ifzel0,82]U(L -4 L],

and
i( ) R{ ifa;e(wi_;,:ci+;],i:1,2,...,N, ( )
R (x) = 2 2 5.303
0 ifzel0, 55U -4 L],
where ¢ = 1,2,..., N. Then expanding EZJ and Rg in Fourier series we have
i .
= > &WemE . §=0,1,2,..., M, (5.304)
l=—o0
and
Ri(z)= Y nm(De™™ ™/t j=0,1,2,...,M, (5.305)
l=—c0
where
IR .
&) = 1 / B ()e= 2o/ L gy, (5.306)
0
and
IR ’
ni(l) = L/ RI(x)e "2/ g, (5.307)
0

Next we applied the Parseval identity (Spiegel 1965, Spiegel 1991), we then have

N

|1E9 g = (meﬂ?) :(i |gj(z)|2> . j=0,1,2,..., M, (5.308)

l=—00

and

[SIE
=

' N-1 )
1727 ]|2 = (Z Aﬂ?!Ri!Q)

i=1

:(Z nj(m?) ,  j=0,1,2,...,M. (5.309)

l=—
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Now we assume that

B = e A, (5.310)
and

R} = p;el AT, (5.311)
where ¢ = 27l/L is a real spatial wave number and 7’ is the imaginary number, i’ = \/—1.

From Equation (5.301), we note that E® = 0, which satisfies the equation

&0 = &(l) = 0. (5.312)

By the convergence of the series on the right hand side (5.309) there is a positive constant

c; such that

nil = (D] < ¢jlml = cilm @I, 7=1,2,..., M. (5.313)
We then obtain
Injl < clm(l)], j=12,..., M, (5.314)
where
c= 1%‘%}1{\4{%}' (5.315)

We will discuss the convergence of each scheme in the following sections.

5.6.1 Convergence of the KBMC2 Scheme

In this section, we will discuss the convergence of the KBMC2 scheme. In Equation (5.52)

we define
RIT =T (207 — o207 + = vt - v ; [fié + fHé] (5.316)

DAL 1\” , - 1 ‘
B oot

DA |~ 1\7 1 . j N )
_mm{ﬂjm‘w r2(5) (80 - 8207) + X st [p20F - 2202
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where 5§Uij is defined as in Equation (5.90), and according to C2 scheme, we note that

AT papt [~ 1\ I
[W o TA47) {@‘(’Y)fo +2 (2> (fj+% - fj) + };Mjk(w (fe = fr-1)

+ O(AtT ™). (5.317)

Now applying Equations (5.94) — (5.98) and (5.317), we then have

j+1_ [9U I+ 9= (U [t i+3 1+ 2
R == - D — —[fl: * +O(At Az®). 5.318
G| -ol5= (5E)] -witrowtvian. e
From Equation (5.318), we have
RITY = O(A Y + Az?) (5.319)
where i =1,2,...,Nand j =1,2,..., M, since i, j are finite, there is a positive constant
c1 for all 4, j such that
IR < e (AT 4 Az?). (5.320)
In Equation (5.316) we have
Az?2U7 T + 407 = A2?52U7 + 4U7 + 2t { Py f ] +4AtRIT (5.321)

ADAY |~ 50 1 2+l <2p77 27k s277k—1
+M{ﬁj(7)5xm+<2> (6U 5U)+Zu] [5U — 52U }

Subtracting Equation (5.52) from Equation (5.321), gives

Az?2 BT 4 4ETT = A2?62E) + AE! + 4AtRIT! (5.322)
ADALY |~ 9.0 INY (ot cop 2k <2 k-1
+ m {BJ(’Y)ész + <2> (6IEZ - 5:1:Ez> + ZMJ [5 E 51Ez :| :

Using Equations (5.310) and (5.311) in (5.322), we then obtain

- At
§it1=2¢; _)‘q{ 0+2M3 v) (€ — &k 1]} T—v iﬁ;rl(l)vd‘ (5.323)
q q\2

The coefficient Xq is given by

5 V,d
-V v, (3)d

(5.324)

where d is as defined in Equation (5.53), and

A
V, = sin? <qu> . (5.325)
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When j > 1, Equation (5.323) can be rewritten as

Atnj
1= Vy+dV (3)"

~ i1
§j1 = [1 - Xqrﬁo(W)] & — g {@(7)50 + Z@j—kﬁ)&k} + (5.326)
=1

where the weights o () and w; () are given in Equations (5.143) and (5.144) respectively.

Lemma 5.6.1. Given 0 < v < 1 and 0 < V,d < oo then the parameter Xq given in
Equation (5.324) is bounded by
0< A <27, (5.327)

Ay = v (5.328)

For 0 <V, <1 and 0 < V,d < oo, we then have 0 < 1;;;" < 00. Consequently, we have

the bound 0 < Xq <27, O

Proposition 5.6.2. Let {; be the solution of Equation (5.323). Then there exists a

positive constant co such that
’5]‘ < 02]'At’771‘7 j = 1>2>"'7M7 (5329)

if 0 < Ay < min(1/fip(7),27) and 0 <~ < 1.

Proof. From Equations (5.309) and (5.320), we obtain

R[]z < coVNAz(ATY + Az?) = ey VL(ALTY + Az?), (5.330)
where 5 = 1,2,..., M. We use mathematical induction to prove the relation in Equa-

tion (5.329), and consider the case j = 0. From Equation (5.323) and using Equa-
tion (5.312), we have

- At
TV V(B

&1 (5.331)

since 0 <V, <1 and d > 0, we obtain

At

<
= T v

yIm| < Atjm| < caAt|ml. (5.332)
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Suppose that
1&n] < canAt|m], n=12,...k (5.333)

For 0 < v <1 and dV; > 0, from Equation (5.326), we have

k-1
kg1l < ’1 - )\qﬁo(V)‘ 16kl + Ag =k ()] €] + Ay Y I=@k—i(7)] €]
=1
At
+ . 5.334
e vy | o34

Now using Equations (5.312) and (5.333) into Equation (5.334), gives

1
1-V+V,(3)d

k-1
€kt1] < caAt {)1 - Aqﬁo(v)‘ kg > 1=@e(7)] +
=1

}Im!-

(5.335)

The sign of the first term (1 — Xqﬂo('y)) may be positive or negative. Also for 0 < v < 1

and V,d > 0, which is satisfied since

1
0< <1 5.336
TVt (3)Td T 250

By Lemma 5.5.5 the weight w;(y) is negative then —w;(y) > 0, we then evaluate the
summation in Equation (5.335) by

k—1

k-1
S U (=k1() =Y Uik-1-1(y) = Fie—1(7)]
=1

=1

k-1
= (k=) [in1() = Fin(7)]
n=1

k=2
=k (po(v) — Hr—1(7)) — [ i (y) — (k= 1)pag-1(v)

=0
- 1\” 1\”
= kuo(vy) — (k + 2) + <2> . (5.337)
We need to consider two cases.

Case 1

Case 1 occurs if the first term satisfies

(1= Rafio()) = 0. (5.338)
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Using Equation (5.337) into Equation (5.335), we then have

a| < eatht { 1] k40 17000 = (14 5) + (5) | * =53y

k+ = Im| — ca AN [(k:+1)7 <1>q’ | (5.339)
—c o i . (5.
LV, 1 Vyd ()7 | 25 2 2) | ™M

Since for 0 < v < 1 we have (k‘ + %)7 — (%)7 > 0, and by using Equation (5.336), we then

S CgAt

conclude that forn =%k +1
€et1] < c2AL(k + 1)[m]. (5.340)

Hence if 0 < Xq < 27 and (1 - Xqﬁo(’y)> > 0 then Equation (5.329) is satisfied for all

j > 0. The proof of the proposition is completed for case 1.

Case 2

Case 2 occurs if the first term satisfies

(1 - Xqﬁo(’y)) <o0. (5.341)

From Lemma 5.6.1 we have 0 < Xq < 2% and 0 < 7 < 1, then using Equation (5.337) in

Equation (5.335), we then have

}Iml

k1] < oAt { [XqﬂO(V) - 1} k+ g [’fﬁO(V) - (k? + ;)W + (;)W} +1T v, +1qu(1)7} |
2

S CQAt

23 fio(1)k + ! 1] — es AR [(ml)7 (1>q| |
. N 1
< AU ig(v)k + 1) |ml, (5.342)

since for0 <y <land 0 < Xq < 27, the term 0 < 2771 [ig(y) < 4. We then conclude that

forn=k+1
Err1]| < dea Atk + 1)|m, (5.343)

but this does not satisfy the assumption in Equation (5.333) and so convergence in this

case cannot be confirmed. O
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5.6.2 Convergence of the KBMC3 Scheme

In this section similar to Section 5.6.1, we will discuss the convergence of the KBMC3

scheme, in Equation (5.70) we assume that

Az? ~ 1[ el 1
J+1 _ 277j+1 2777 I 37AR" il _ 2 3 J+3
R =L (2077 — 6207 + = [UZ - uf] > [f ; +fi+%} (5.344)
DACa5(y) [0 | <2070 2 1}
— = |0;U; +6;U; —20;U72
FI) [ "
y—-1 _1
DAt ZNJ {; <5§Uik+1 _ 5§Uik:—l) _ <52Uk+2 5§Uik 2>}

DAt | ~1
T ){BJ() 0+ 2a;(y 52U2+Zu] < vkt st 2)}

where 5§Ug is given by Equation (5.90), and according to the C3 scheme, we have

A PTE pArt [ .
| = S S B o+ 280 fy + D k() (Fas — fisy) p +O(AET).
[dth s T+9) )" j Za [ -
(5.345)
Now using Equations (5.94) — (5.98) and (5.345), Equation (5.344) becomes
. . 1
. oU ]-‘r% = /92U Jjt+3 1
RIf'=|=| -D — —[fI777 + O(At + Az?). 5.346
o G o oo
We then have
RITY = O(AY + Az?) (5.347)
where i =1,2,...,N and j =1,2,..., M, since i, j are finite, there is a positive constant
cq for all 7, j such that
R < e (AT 4 Az?). (5.348)
In Equation (5.344) we have
41 il
Az?52U7H 4 aUIt = A2?52U7 + aU7 + 2t [ Iy ffjf} (5.349)
2 2

4DAY . 2170 2771 217k+1 277k—1 J+1
+ Tt {&](7)5mUi+a3 )O2UL + - Zu] y) |20k - 20kt b aneRIT,

subtracting (5.70) from (5.349), gives
Az 2B/ 4 4RI = A2?52E) + AE! (5.350)

4DAY 2 170 2 1 2 rk+1 2 k-1 J+1
+M{n](7)5mEi+ N2EF + = Zu] [5E — 52E! } +AALRITY,
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Using Equations (5.310) and (5.311) in (5.350) gives

~ 1 4 Atnj+1
§i+1 =85 — Aq {fij(’y)io +a;(r)&+ 5 ; Y) [Ek+1 — €k—1]} + 1—7JVq’ (5.351)
where V; is given in Equation (5.325), and X is defined as
~ V;Zd
= .352

where d is as define in Equation (5.53), for Vyd > 0 and 0 < V; < 1, then /):q > 0. When

j > 2, Equation (5.351) can be written as

q| (R (7) = 11-1(7)/2) &o

1
§i+1 = HXqMAO(’Y)/Q{ <1— qu( )/2>

+ (@5 () — Bj-2(7)/2) §1+Z% k(7)Ek

k=2

+ Atnﬁl} (5.353)

where the weights a;(v), 1i;(v) and k;(7y) are given in Equations (5.55), (5.57) and (5.61),
and ¢;(7) is given in Equation (5.208).

Proposition 5.6.3. Let {; be the solution of Equation (5.351). Then there exists a

positive constant co such that
’5]‘ < CQjAt’T}l‘, j = 1,2,...,M. (5354)

if Ay < 2/7i1(7) and 0 < y < 1.

Proof. From Equations (5.309) and (5.348), we conclude that
IR ||o < oV NAZ(AL + Az?) = coVL(AL + Az?), (5.355)

where j =1,2,..., M. We use mathematical induction to prove Equation (5.354).
First start with j = 0, and then using Equation (5.312), Equation (5.351) becomes

At
= — . 5.356
C T v A (5590

since Qp(vy) = (%)7, 0<V,<1and Xq > 0, we obtain

At
1=V (143 (3))

|&1] < Im| < Atjm| < coAtfm]. (5.357)
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For j =1, from Equation (5.351) and using Equation (5.356), we have

G=8&-2 {fﬂ(’Y)&o +a(M& + 5 Zug V) (k1 — §k—1]}

A
= (1-R0)) & - o+ 5 }m
~ At 15 At
= (1 — Aqa1(7)> ((1 AT anm)) n — q§2 1 ang. (5.358)

+1—V}1772

Equation (5.358) simplifies to
At 1—2a
&l < . { Ai“)+@%m (5.359)
(1-vy) (1+ %Aq) 1+ Agdo(y
Now rewrite the term as
R =+ ()
since 0 < Xq < 00, then we have
0< 5411(7) 4;@0(7) < @1(72+a0(7)
=+ ao(7) ao(7)
q
Now for 0 < v < 1, we have
ao(7)

aM+GM) | < 1, and then we conclude that

Uiq-l-ao(ﬂ

we then obtain the bound of

1+ o)At
oo < —LERE o At (5.362)
(1-vy) (1+13%)
Wherefor0<)\q<ooandO<Vq<1,W6have0<m<1.
Hence for n = 2 we have |£3] < 2coAt|n|
Suppose that
(5.363)

n=12,...,k.

[€n] < conAt|m],
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For 0 <y <1 and Xq > 0, from Equation (5.353) we then have

1 =~ ~ .
1] < HMW{ 1= Rafis(1)/2] 6] + R [n-1(3)/2 = ()] [0

k—

g [Bie—2(7)/2 = ()| [€1] + X Z — pp—1(y H&|+At|77k+1|} (5.364)
=2

Now using Equations (5.312) and (5.363), we then have

co At

|€t1] <
1+ )‘qMO(’Y /

{ \1 . xqﬁlm/z\ E R i 2(2)/2 — Gx(v)

The sign of the first term 1—Xqﬁ1 (7)/2 may be positive or negative. Also for 0 < v < 1 and

>\ > 0, we have 0 < m < 1. From Lemma 5.5.7 we have [jix—2(7)/2 — ar(v)] >0

and ¢;(y) <0, then —¢;(y) > 0, we then evaluate the summation to find

k—1 k—1
S U puni(0) = 5 S Lk = L 2)7 o (k= 1+ 1) + (k= 1) = (h — 1= 1]
= 1 l:il k—1 k—1 k—1
2[ DUk —14+27+ > Uk —1+1)7+> Uk —1)7 — l(k—z—m]
=2 =2 =2 =2
1 k— 2
2[ k—1+1) — k" + (k —12’Y+Z 1)+ 2(k 2)7]
=1
% Lok (k- 1)+ (k—2)7 + 14 27A]. (5.366)

We need to consider two cases.

Case 1

Case 1 occurs if the first term satisfies

(1-Xm)/2) 20 (5.367)
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Using Equation (5.366) in Equation (5.365), we then have
At ~1 ~ |1 1\”
el < 22 { (1= Rg @ =) e R, [ (=17 = -2 - (k4 5) - #))]
~1
Jr/\q5 [—2k" — (k—1)" 4+ (k—2)" +1+27k] + 1} Im |

CQAt ~ 1 ~ 1
= — — A=k — 1
ey ; [k AqQk /\q<k+2> +A + ]Iml

_ 1‘jiit [(k+1) <1+Xq;> ~ A <k+ <k+;>v>} [m]

< CQAt(k -+ 1)|171|. (5368)

We then conclude that for n =k +1

|€k+1| < CQAt(k‘ + 1)"/]1‘, (5369)

Hence all j > 0 if ( q,ul( )/2> > 0 then Equation (5.354) is satisfied. The proof of

the proposition is completed for case 1.

Case 2

Case 2 occurs if the first term satisfies

(1-Xm()/2) <0 (5.370)

>
»n
o
IN
>
IN

27 and 0 < 7 < 1, then using Equation (5.366) in Equation (5.365), we then

[ha| < ﬁéj; { (Xq; (27 —1) - 1) k+ A B ((k—1)" = (k—2)7) — <<k+ ;)7 _ kv)]

~ 1
+/\q— =2k —(k—1)" 4+ (k—2)" + 14+ 27k] + 1} I |

At [5 <1 N 1
= 2 [/\q27k—<)\q+1>k—)\q<k+ ) + A5 +1} A
2 2

)\quy E+1
Ag2”

since for 0 < v < 1 and /)\\q > 0 then the term 1 < <1+)\ - — 1) < 3. We then conclude

A (k:+ 5)
SRS

S CzAt

| — caAt— Iml, (5.371)

a2

a2

that

Ehr] < 27 e At(k + 1)|m). (5.372)

The result for the second case cannot satisfy Equation (5.354), since we obtain a constant

which is bigger than the constant given in Equation (5.363). O
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5.6.3 Convergence of the KBML1 Scheme

In this section similar to Sections 5.6.1 and 5.6.2, we will discuss the convergence of the

KBMC3 scheme, in Equation (5.88) we assume that

Rl = fzt 2u] — o207 + Ai v - v (5.373)

DAt 11 .5 ;
— 22 Bi(y)82U? 7) (2UF = 2UF) b = o Sy
1—1(1_’_7){ +Z/'LJ T 2 f17%+fl+% )
where 6§Uij is given by Equation (5.90), and according to the L1 scheme, we have

df ()P
[ dtt=

AT .
I :mTy fOJFZ% ) [frer1 — fu] p + O(AETY). (5.374)

Now using Equations (5.94), (5.95), (5.119) and (5.121), Equation (5.373) becomes

. [ouf RN AY
i |19 _p — [ At + Az?). .
We then have
R = O(At + Az?), i=1,2,...,N, j=1,2,...,M, (5.376)

since i, j are finite, there is a positive constant ¢; for all ¢, j such that
IRI| < e1(At + Az?). (5.377)
In Equation (5.373) we have

Az?252U7 +4U) = Az?5207 71 4 4U7 T 4 24 [f z 4 f ] (5.378)

i—1
ADAE [ ka1 !
ety {ﬁj( S2U0 + E 1k (5 U! 5in) +AALR!.

Subtracting (5.88) from (5.378) gives

Az?2E! + AE!) = Ax®02E] " 4 4ET! (5.379)

ADALY ,
— 7)62E? ) (02EF! — 52EF ANLR’.
+P(1+7){ +ZM] ( €T z) + ()

Using Equations (5.310) and (5.311) in (5.379), we then have

(1= Vo) = (1= Vi1 — Vy { 60+ZM; 7) (€1 — fk]}+At77ja (5.380)
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where V; is given by Equations (5.325). Equation (5.381) can be written as

1

STV v

j—1
{(1 — V&1 = Vad [a()€o + > wik(1&k | + Atnj} . (5.381)
k=1

where j = 1,2,..., M, and the weights «;(7), and w;(7) are given in Equations (5.277)
and (5.278) respectively.

Proposition 5.6.4. Let {; be the solution of Equation (5.381). Then there exists a

positive constant co such that

&1 < cejAtim|,  j=1,2,..., M. (5.382)

Proof. From Equations (5.309) and (5.377), we get
R[]z < coVNAz(At + Ax?) = eoVL(At + Az?),  j=1,2,..., M. (5.383)

We apply the mathematical induction to prove the relation given in (5.382). For j = 0,
using Equation (5.312) in Equation (5.381), we then have

S=1C Vfi Vod ™ (5.384)
since 0 <V, < 1 and U, > 0, Equation (5.443) becomes
At
[&1] < mmﬂ < Atfm| < c2At|ml. (5.385)
Now suppose that
1&n] < canAt|m|, n=12,...,k—1. (5.386)
For 0 <y <1 and U, > 0, from Equation (5.381), we have
1 k—1
€] < m {\1 = Vall&r—1l + Vad || — ar (7)o + ; | —wr—i (W&l + Ath?k\} .
(5.387)
Now using Equations (5.312) and (5.448), we then have
o) < 28 {11 V1) V3 3 — ()] + 1\} ml. (5:388)
==V, +Vd a 02
For0<vy<1,0<V,<1theterm 0 <1—V, <1, and for V,d > 0, the term
0< L. (5.389)

- - <
SVt Ved
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By Lemma 5.5.5 the weight w;(7) is negative then —w;(y) > 0. Now evaluate the sum-

mation to find

k—1 k—1
D L) =Y U=k =1+ 1)7 +2(k =) = (k=1 = 1)7]
- l:kl—l k k—2
=23 (k=D = (k=1+1)0" = (k—1-1)0
=1 =2 =0
=k —k. (5.390)

Using Equation (5.390) in Equation (5.388), we then have

CQAt
6] < T | (= Ve = 1)+ Vi (6= ) 1
At (Vy — VodkY)
= co Atk
oAtk | + e m|
§ CQAtk’T]l’. (5391)
Sincefor0<’y<1,0<Vq§1and%d>0,wehave—k7§%<0. We then
conclude that for n = k
€| < cokAt|m]. (5.392)

Hence for all n € IN we have |&,| < conAt|n;|. The proof of the proposition is completed.
O]

Theorem 5.6.5. Let u(x,t) € U(Q2) be the exact solution for the fractional subdiffusion
equation. Then the numerical scheme given by Equations (5.52), if Xq = min(zo(y),27),
and (5.70), if Xq < 2/m1(7), are convergent with order O(At'*7 4+ Az?) and Equa-
tion (5.88) is convergent with order O(At + Az?).

Proof. Using Equations (5.308) and (5.309) with Equation (5.320) and Proposition 5.6.2
or with Equation (5.348) and Proposition 5.6.3, jAt < T, we then obtain
| E7 |2 < caAtk||Ry|| < creaj AVI(ALHY 4+ Ax?) < C(ALTY + Az?), (5.393)
but with Equation (5.377) and Proposition 5.6.4, jAt < T, gives the order
| E9||y < eaj At|Ry|| < creaj AVI(AL + Az?) < C(At + Az?), (5.394)

where C' = ¢1¢oTVL. ]
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5.7 Solution of Fractional Advection-Diffusion Equation (FADE)
by the KBMC2 Scheme

5.7.1 Derivation of the Numerical Method for FADE

In this section a numerical scheme for solving Equation (5.17) will be developed based
upon the Keller Box method and the C2 scheme approximation for the fractional deriva-
tive given in Equation (5.26). We refer to this approximation as the KBMC2-FADE
scheme. Similar to the KBMC2 scheme in Section 5.2.1, we approximate Equation (5.17)

at the point (:Ei_%,tﬁ%) as

ou |tz L [0 (9
[875 L [8751—’7 <ax2>

71—
Using a similar process, as given in Section 5.2.1, we approximate the fractional derivative

it3

Ak 917 [ Ou
i—3 h [(%1_7 (8$>

+/ (2t ) (5.395)

N

-1
=3

in Equation (5.395) using Equations (5.26) — (5.28), and then Equation (5.395) is replaced

by the equation

Jj_ .7 J J
U u;_q v; +v;_q

‘ = 5.396
A, 5 (5.396)
and
j+1 j+1 j j _
ui Fws wtu, DAY {5-(7) (W0 — o0 )
2At 2At Az, T(14~) U7 vt

P 1\’ “g+”g+l_”g—1+vﬁ1l _ g NG
2 2 2 2 i Vi

+iﬁj—k(7) [uf —uf g — (uf‘l - ufjf)} } + [flff : (5.397)

k=1

where the weights, Ej () and fij_i(7), are as defined previously in Equations (5.27) and
(5.28). Using Equation (5.396) in Equation (5.397) then gives an equation between u;
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and v;
J+1 +u3+1 K, A1 1 ¥ ( i1 j+1> - uz +ug_1
2At Az D(1+7) \2 i i-1) = T oA
2DAEY1L —Bj(y) 0 0 ~ 0 1 1\ 1
Azil(1+7) { g, (0 u) 500 = 1 (2) (“z Ui 1)
\" ; 1 /1N, . . N e )
+ <2> o™+ Axs <2> (“f - Uffl) - (2> ol +) k() (Uf — vy 1)
' k=1

S ik <uf-1—uf:f>]}

; Aff(fw (B (- (;) u! )

+Zuj () b =l ) — (™ } + T (5.398)
Similarly by replacing i by i + 1 in Equation (5.396) and (5.397), we have the equations

—ul + !
Z+1 1 ’L+1 (5399)

- )

Az 2

and
3111 +ul " ug+1 +ul _ DAp!
2At 2At A.’EZ+1F (1+7)

j+1
iy 1\ z+1+vz+1 v; +U] 9 1 7 i
2 2 2 Z K
oF ok

(5.400)
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Solving Equation (5.399) to find vg 41 and then combining with Equation (5.400) gives a
second equation involving u; and v;

did e aArt 1y
2

2At AJTZ‘_HF(l + ’)/)
2DAt ! B; ~ 1 1\, . .
{200 ) - Bt g (3) (et )

_|_
Az D(1+7) | Az

_»<1)”1J+1_»11(1>7(ugJ-—ug)+-<;)”vg-§fz@_Md>(ﬁﬂ—vf‘ﬁ

2 v A?L‘iJrl 2

1 ~ k ( k-1 k—l)} K, A1 ~ 0 0
- T i i — U +—— ; il — Uy
Avir 2 fij—k(7) [u b1 U Uiy — U A D1 £7) Bi(v) (upp, — uf)
N\ (i J o k k k=1 _ k-1 it+3
_ <2) (ui+1 - uz> +> ii-k(7) [uiﬂ —uf - (ui+1 — o} )} FUEE. (G40
k=1

Now multiplying Equation (5.398) by Az; and Equation (5.401) by Az;4+1, and adding

the two gives the equation for uf at each grid point ¢ and time step j

Az 1] L AT [ e ] KA (TN (”1 ﬁl)
2At[ Sl }+ 2At [ Uiy T }_ T(1+4) \2 [ Yirr — W

+1 +1 +1 +1 +1 +1
K3 K3

1+~
_ Bz Azipy [ il 2DA ! = 0 0
N [ul +ui‘1} oA [ui“ } Az, T(1+7) {BJ(V) (uf = uiy)

() () e i -t - (-]

2
B A0 s ) (0 — )—(1)7<u7—u1 )+§j:ﬁ- () [ —
Do) |7 T g A ) e i e

(=)} ot (B - ) - (5) (1)
+§ﬁj—k(7) [Ufﬂ —uf - (uf;f _ uf—lﬂ } + % {EJ(’V) (U?H — u?)

~(3) () + D) ok k- (k)]

2
1
+ Az [f IZ P4 Az [f W (5.402)
2
Equation (5.402) can be rewritten as
il T
Ad T 4 Dd ™ 4 Bt = € + A [f\jﬁg + Azigg [f]jé, (5.403)
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where
. K. A v—1 vy y—1
2At L(1++) \2) Az T(1+7) \2
Az;  K,A07L /1\7  2DA0L /1)”
B, = Br K Ty 2bar (1) (5.405)
2At T(1+79) \2 Az;I'(1+7) \ 2
Az; + ASUZ'_H 2DAL /1\7 1 1
D; = = — ) 4
2At F(l + ’)/) 2 Ax; * Az (5 06)
and

C; = A'ug—i-l + Dzuz + Biug_l + Ej (7) (@iudyq — ciud + biud )

Ax; * Az

J
+ 3l k() [adk = e+ bl — (el — ™ 4 nud)] L (5.407)
k=1
In Equation (5.407) the constants, a;, b;, and ¢;, are given by
KA1 2DA 1
;= + , 5.408
“ I'(1+7) Az 1 T'(1+7) ( )
2DAL K, A1
= - =1 : (5.409)
AzI'(1+7) T(1+7)
and
2DAE T 1 1
{ } . (5.410)

ci =
O T(1+7)
In the case of constant grid spacing Az; = Az, Equations (5.403) — (5.410) after simpli-

fying, reduce to the equation

1\” . .
( ull) +2ult + JH) (2> [(dl + da) u] z+1 — 2dyul ™ + (dy — dg)ufiﬂ
. . . 1\” . . .
= (ulyy +20] +ul_y) - <2> [+ do) = 2]+ (dy — dp)ul_y|
+ ’ﬁ}( ) (e + da)ufy — 2diuf + (di — da)uf_,)
+ Zu] [ (dq + dg) Uiy — 2d1u + (dy — dg)uf_l

+1 1
— <(d1 +do)uf T = 2diuf Tt + (dy — do)ulf )} + 2At (f r fjjf) : (5.411)

where
4DAY 2K, AtY
dl=———— d dy = — 11— 5.412
YT AZI(1 4 ) o 7 Aal(1+7) ( )
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5.7.2 Accuracy of the Numerical Method

In this section, we consider the accuracy of the numerical scheme KBMC2-FADE method

given by Equation (5.411). First we let

(5.413)

and then rewrite Equation (5.411) as

AZ* [9 j11 o j Lo
Taq o =0 “l g o ]
_ DA (o2ul*! — o2uf) — 2 (82" — B2
1+,y X 1 X 1 x
| Kyan J“—Au)—Q R A BN
1+,y> 2 x 7 x g

DAH— 7 41 ; I
T {/3] )32u 0+2(2> <6§u§*2—6§uz)+zw_k<w [6@5—6@?‘1}

k=1
KA ) 0 1\” it+3 j z k k-1
+ T+ () Aguy + 2 5 Ngu; 2 — DNl ) + Z,uj_k(y) [Azui — Aguy; }
v k=1
1 4l a1
+3 [fjff + jjﬂ : (5.414)

where 53“{ is defined in Equation (5.90). Noting the terms on the fourth and fifth lines
in Equation (5.414) as the C2 approximation (5.26) with u(t) replaced by d2u(t) and by

Azu(t) respectively, we can further rewrite Equation (5.414) as
Ax? [52u4+1 520 } L b [ j+1 ug} DA! } ! (52uj+1 _52uq’>
4AE LF At ! 1+'y ’ v

_9 5§uj+% B 5§uj +K A1 ]_;_1 ) Y NSy i+3 _ Aruj
1 (3 F(l + ,.y ’l, (]
+

1—v j+2 1—v 1 1
0 0 [fj_“ + f.”f] . (5.415)

1
2

2,
P [8t1—7 (%) g (Lati) 3T

S A

1
C2,i C2,i 2
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Adding and subtracting the exact fractional derivative, Equation (5.415) becomes
1 -1
Az? 2, J+1 2,7 1 g+l J 0" (Pu\["? 0" (du\['"?
1At [5 o } Y’ [u ul} =P ar (8952 o e \ae ),
(0 00 e 4]
1 +,7 2 (2 (2 (2 7
K AN 1 1 ]+1 A ) 9 A ]+2 _A u]
T1+7) L\2 v

1 L1
o= T2 o= /9% Jj+3
|:at1 (5 U,z) oy —D |:at1_’y (83;2> i
o aE: O (Ou\[TE 1 et el
+ K, [8t1—7 (Dgu;) o - K, [(%1_7 <8:v> i t5 [fi_; + fi%} . (5.416)

Taking the Taylor series expansion around the point x; = iAx in space, we have

8£j

oY 4
o i+ TREE i—i—O(Ax ). (5.417)

, 2 13771
AmUij:[ M[@U

Also expanding the Taylor series around the point (z;, b1 ), we find
2

. . . i+3
AU 4+ A UT —20,U]

(NI

2 3
~ ATt [ U + O(Ath).

itz AR2AR [ U
8:68152@.

48 0x30t? |,

(5.418)

Using Equations (5.94) — (5.98), and Equations (5.417) and (5.418) in Equation (5.416),

we then have

J+s = /92U i+3 = [ oU j+s ) )

ouU
ot

it3

DAY (1N [A2 [ 0'U 7 AL?AL [ U

Pl S () I L +O(AY
F'l+~) \2 4 [0x20t?|, 48 dz*ot2 |,

AT VT TA [ 6 3 A2A2 [ OU L o
L(1+7v) \2 4 [0oxz0t?|, 48 ox30t? |,

it3

0\ (U A« 98U RN o' (U
D [atl—v (8352 T g et TOBE )> i 7 [atl—v (aﬂ) l.
L1 -1
O (OU A2 U S\ |2 o faUN |2
+ &y [th ; <ax + g g T OB >) o [87517 (ax> Z.
Aa? [2f[TH
Lty ; [(%‘é oAt (5.419)
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This equation is then simplified to

ou [7+3 o= (U2 G AN AL B
P -p| L (22 K |2 (22 3 0(Ar?) + O(AIT
[8t i [&17 <8m2> i i [&17 <3$> i thi o)+ Ol :
o= (PUN\PTE [0 (92U TE AV
oo ()~ o GG )| g o= (50)
ot \ 02* /| oo 4 ott=7 \ 0x= /|, ot =7 \ 0z /| o
C[9 (U [t L DA (010M(1) | K Ac? (91 (1)
ot \ oz )|, 2 o117 2 o )
(5.420)
where
4 U
M = —_— d M* = — . 421
(i—l)Aa;?g?%{(iH)Ax ozt | (i_1)m1£3§(i+1)m Oz (5.421)
By Equation (2.149) we note the terms
1—ry 2 +5 [ al—y /a2 i+3
78 — al - 78 — 78 v , (5.422)
ott=1 \ 022 ) |y, Ot \ 022 )|
and ) .
1—v J+3 r al—y J+3
L — a—U — 78 — a—U , (5.423)
o1\ 0 ) |co,; O \ 02 /|

are both O(A#'*7). Consequently the truncation error, 7; j, is then of order 1+ in time

and second order in space, i.e.

7ij = O(At™) + O(Az?). (5.424)

5.7.3 Consistency of the Numerical Method

The numerical approximation for the fractional advection—differential equation is consis-
tent, since as in previous sections, the truncation error in Equation (5.424) obeys the
limit

lim 7;; = 0. (5.425)

At—0
Az—0

This means that the KBMC2-FADE method is consistent with the original fractional

partial differential equation, in Equation (5.17) .
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5.7.4 Convergence of the KBMC2-FADE Scheme

In this section similar Sections 5.6.1 — 5.6.3, we will discuss the convergence of the
KBMC2-FADE scheme, in Equation (5.411) we assume that

Az

Jj+1 _
B; ANt

. A 1 a1 1
207 = o2uf |+ (Uit - U] - S [fj*g + ff;] (5.426)

x| 5
DAt’Y 1

2+l 2713\ _ 27703 2r7)
N )+
7—1 ) . )
A [l o (o )
Y
DAﬂl 2770 172J’+% 277] ! 277k 277k—1
T {@ )62U! +2<2> <5$UZ. —5in> Z (1) |20 - a2ut—]

K’YAt’Y_ 3 0 A J+2 ] k k—1

where 5%U2-j and Ainj are given by Equation (5.90) and (5.413) respectively. The last
two terms in the right hand represent the C2 approximation (5.26) with U(¢) replaced by
62U (t) and A,U(t). Using Equations (5.94) — (5.98), and Equations (5.417) and (5.418),
Equation (5.426) becomes

+3 - +5 - +3 .
Rt = [%(t]j “_D [g;: <a;xg> j ’ - K, [5:1: <§Z) j : —fi”% + O(AE"™Y + Az?).
(5.427)
We then have
R = oA + Az?),  i=1,2,...,N, j=1,2...,M, (5.428)
since i, j are finite, there is a positive constant ¢; for all ¢, j such that
R < e (A + Az?). (5.429)

From Equation (5.426) we have
(Aﬁ — 01 <1) > S0 papitt - < ) AU
9 ) i ™
1 ~
= <A3:2 — 01 (2) ) 52U] +4U] — 03 <2> AU +01{Bj(’y)(5§Ui0
J
+3 " Fei(y) [5 Uk — s2Uk- 1} } + oy {5 (1) As U0+Zu] [A Uk — Afo—l]}
k=1

+ 2At [f 24 f ] +AAtRIT (5.430)
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where o1 and oy are given by

ADAEY AR, ALY

== d ==
M NI L R Ry

Subtracting (5.411) from (5.430) gives

1\”7 . . 1\7 .
<Am2 — o <2> ) S2EIT 4 4RI — oy <2> A BT
1\” . . 1\” .
— (A:p? — 0o (2> ) 02E! + AF] — o9 (2> NE]

{ V)S2ED + Zu] 7) |02EE — 2B }

(5.431)

2 {@( ) E°+ZMJ [A Ef - Afo‘l} } +AALRITY (5.432)
k=1

Using Equations (5.310) and (5.311) in (5.432), we then have

[(1 —d <;>7> <—sin2 (qéx» +1— % <2> zsin(qAa:)} i1 (5.433)
LR
+ <d22z sin(gAx) — dj sin® <q§m)> { o+ Z 1k () [k — 1]} + Atnj1,

where d; and dy are defined in Equation (5.412), and

j 1 . qAz i ai A
and
< 1 .
J . 3 i qIAT ¢
AN 5AL (2isin (¢Ax)) e & (5.435)

Equation (5.433) simplifies to

— A
§i1=¢& Uy { ¥)éo + Z,Uj ¥) [&k — & 1]} 7 _: Mj+1, (5.436)

z = sin? (qu> (@)7 dy — 1) - % <;)7sin(qAx)i, (5.437)

where 0 < sin? (qATx> < 1 and —1 < sin(¢Ax) < 1. The coefficient ﬁ; is given by

where

U — dy sin® (¢Ax/2) — % Sln(qAx)z'
" 1 sin® (gAa/2) ((3) i — 1) — % (3) sin(gda)i
(%)7 [dl sin (qAz/2) — % sm(quc)i}
L+ sin® (qAz/2) ((5)" di — 1) = F (3)" sin(qAx)i’

= (5.438)




5.7 Fractional Advection-Diffusion Equation (FADE) 276

Equation (5.438) simplifies to

(5.439)

0, — 2 [x—kz}’

1+ 2

where 2 is given in Equation (5.437), = sin? (¢Az/2) and 0 < z < 1. Equation (5.436)

can be written as

J—1
~ —~ | _ " A
Ejv1 = [1 - UqﬂO(V)} & — Uy {%’(7)50 + ij—z(w)&} +1 +tz77j+17 (5.440)
=1

where the weights fio(y), @;(y) and w;j(y) are given in Equations (5.28), (5.143) and
(5.144) respectively.

Conjecture 5.7.1. Let {; be the solution of Equation (5.440). Then there exist a positive

constant ¢y such that
’§j| < CQjAt’nl‘a .] = 1v2,"'7Ma (5441)

if Re(z) > 0 (dy > 27), where z is given by Equation (5.437).

Proof. From Equations (5.309) and (5.429), we obtain

IR |2 < oV NAz(ALHY + Az?) = o VLAY + Az?), (5.442)
where j = 1,2,..., M. We use mathematical induction to prove the relation in Equa-

tion (5.441), consider the case j = 0. From Equation (5.440) and using Equation (5.312),

we have
At
= 5.443
1= 7 it ( )
by using Lemma B.11.1, we have
At
&) < T+ Im| < Atlm| < c2At|m]. (5.444)

Hence Equation (5.441) is true for j = 0.

Now for case j = 1, from Equation (5.440) we then have

At

&= [1-Ugo(n)| & + o (5.445)
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by using Lemma B.11.1 and Equation (5.444) gives

&o] < 1= Ufioly \!&H' ‘\m

< oAt H1 - Uqﬁo(’y)‘ n 1] I (5.446)
From Lemma B.11.3 the term ‘1 - /Uvqﬁo(v)‘ <1, we then conclude that
|&2] < ca2At|m]. (5.447)
Hence for j = 1 Equation (5.440) is satisfied.
Suppose that
1€n] < canAt|m], n=12...k (5.448)

From Equation (5.440), we have

enal < |1 = Taiol)| kel + |0 |32 (<sta ‘\&H‘ il G

Now using Equations (5.312) and (5.448) in to Equation (5.449), gives

€hr1| < cAt {‘1 - /U\;ﬁO(’V)‘ k+ |Ug (—wr—1(7)

1
r— . A4
)l+’1+z}\m| (5.450)

Since the weight —wy_;(y) is positive, and using Lemmas B.11.1, B.11.2 and B.11.3,
Equation (5.450) becomes

k—1
(€] < et + 1) || + 2Bt i 20 S U=(7)), (5.451)
=1
after evaluating the summation, we then have
(€1l < Atk + 1) [m] + At [R(37 = 1) — (2k + 1)7 + 1] |m], (5.452)

From the analysis, it can be seen that through the mathematical induction the relation
given in Equation (5.441) may not be satisfied, but in later Section 5.8 we have estimated

the convergence order numerically.
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5.8 Numerical Examples and Results

In this section, we provide three examples of the implementation of the four Keller Box
based schemes, KBMC2, KBMC3, KBML1, and KBMC2-FADE on problems where the
analytic solution is known. For each example we compare graphically the numerical
predictions against the exact solution. We also verify the accuracy of our scheme by
computing the maximum norm of the error between the numerical estimate and the exact
solution at the time ¢t = t,y;.

These schemes are implemented in MATLAB R2014a (see Appendix C.4) using the lin-

solve subroutine to solve the system of algebraic equations.

Example 5.8.1. Consider the following fractional subdiffusion equation with a source

term

ou O (0% . , (T 2t
5 o (W) + sin(7x) {225 +7 (F(V) + T2+ 7)>] ; (5.453)

and the fractional advection—diffusion equation with source term

1—v 2
Z;L _ 38151—7 <8 vy 8“) + 2tsin(mz) + (7° sin(7x) — 7 cos(mx)) <

t'y—l Qt'y—l-l
822 ' Oz > ’

+
L(v)  T2+7)
(5.454)
which will be solved on the domain 0 < x < 1 and 0 <t < 1 subject to the initial and

fixed boundary conditions
u(z,0) = sin(nz), u(0,t) =0, wu(l,t)=0. (5.455)
The exact solution of Equations (5.453) and (5.454) given the conditions (5.455) is

u(z,t) = (1+¢*) sin(rz). (5.456)

The error and order of convergence estimates found from applying the KBMC2, KBMC3
and KBMLI schemes on Equations (5.453) subject to Equation (5.455) are given in Ta-
bles 5.1 — 5.6 respectively. Results for Equation (5.454) are given in Tables 5.7 and 5.8.
To estimate the convergence in space we kept At fixed at 10~ whilst varying Az. To
estimate the convergence in time we kept Az fixed at 10~2 whilst varying At.

From the results shown in Tables 5.1 — 5.4, 5.7 and 5.8, it can be seen that the KBMC2,
KBMC3 and KBMC2-FADE schemes appear to be of order O(Az?) and O(At!*+7). Whilst
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the KBML1 method is appears to be of order O(Axz?) and O(At), as shown by the results

in Tables 5.5 and 5.6.

Table 5.1: Numerical accuracy in Az of the KBMC2 scheme applied to Example 5.8.1 with

At = 1073, where R1 is the order of convergence in Ax.

v=0.1 v=0.5 v=0.9 vy=1
Az ex(At,Az) Rl ex(At,Azx) Rl ex(At,Az) Rl ex(At,Az) Rl
1/2 0.17e-00 0.20e-00 0.19e-00 0.19e-00
1/4 0.32e-01 2.36 0.39e-01 2.37 0.37e-01 2.40 0.36e-01 2.41
1/8 0.76 e-02  2.09 0.92e-02 2.10 0.86e-02 2.11 0.84e-02 2.11
1/16 0.19e-02 2.01 0.23e-02 2.02 0.21e-02 2.03 0.21e-02 2.03
1/32 0.49¢-03 1.94 0.57e-03 2.00 0.52e-03 2.01 0.51e-03 2.01

Table 5.2: Numerical accuracy in At of the KBMC2 scheme applied to Example 5.8.1 with

Ax = 1073, where R2 is the order of convergence in At.

=01 v =0.5 v=10.9 y=1
At ex(At,Az) R2  ex(At,Az) R2  ex(At,Az) R2 ex(At,Az) R2
1/10  049¢-02 - 060002 - 02902 - 02502 -
1/20 02202 116 020002 160 0.75e-03 196 0.63e-03  2.00
1/40  010e-03 114  0.66e-03 158 0.19e-03 195 0.16e03 2.00
180 0.46e-03 112 02203 156 05le04 194 040e04 1.9
1/160  0.21e-03 111  0.77¢-04 154 01304 191  0.10e-04 1.94

Table 5.3: Numerical accuracy in Az of the KBMC3 scheme applied to Example 5.8.1 with

At =1073, and R1 is the order of convergence in Ax.

v=0.1 v=0.5 v=0.9 y=1
Az ex(At,Az) Rl ex(At,Azx) Rl ex(At,Azx) Rl ex(At,Az) Rl
1/2 0.17e-00 - 0.20e-00 - 0.19e-00 - 0.19e-00 -
1/4 0.32e-01 2.36 0.39e-01 2.37 0.37e-01 2.40 0.36e-01 2.41
1/8 0.75e-02 2.11 0.92e-02 2.10 0.86e-02 2.11 0.84e-02 2.11
1/16 0.17e-02 2.10 0.23e-02 2.03 0.21e-02 2.03 0.21e-02 2.03
1/32 0.34e-03 2.35 0.56e-03 2.01 0.52e-03 2.01 0.51e-03 2.01
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Table 5.4: Numerical accuracy in At of the KBMC3 scheme applied to Example 5.8.1 with

Az = 1073, where R2 is the order of convergence in At.

v=0.1 v=0.5 v=0.9 vy=1

At exo(At,Az) R2  ex(At,Az) R2 ex(At,Az) R2 e, (At,Axr) R2

1/10 0.61e-01 - 0.11e-01 - 0.14e-02 - 0.25e-02 -

1/20 0.29e-01 1.05 0.44e-02 1.33 0.30e-03 2.22 0.63e-03 2.00
1/40 0.14e-01 1.07  0.17e-02 1.40 0.62e-04 2.28  0.16e-03 2.00
1/80 0.66e-02 1.08 0.61e-03 1.43 0.12e-04 2.36  0.39e-04 2.00
1/160  0.31e-02 1.09 0.223¢-03  1.46 0.20e-05 2.47  0.10e-04 1.99

Table 5.5: Numerical accuracy in Az of the KBML1 scheme applied to Example 5.8.1 where

At =1073, and R1 is the order of convergence in Ax.

v=0.1 v=0.5 v=20.9 vy=1

Az exo(At,Ax) Rl ex(At,Axr) Rl ex(At,Ax) Rl ex(At,Az) RI1

1/2 0.16e-00 - 0.20e-00 - 0.19e-00 - 0.19e-00 -

1/4 0.29e-01 2.40 0.39e-01 2.37 0.37e-01 2.40 0.36e-01 241
1/8 0.63e-02 2.22 0.90e-02 2.12 0.84e-02 2.13 0.82e-02 2.13
1/16 0.97e-03 2.68 0.21e-02 2.11 0.20e-02 2.11 0.19e¢-02 2.11
1/32 0.32e-03 1.64 0.38e-03 2.43 0.37e-03 2.39 0.37e-03 2.38

Table 5.6: Numerical accuracy in At of the KBML1 scheme applied to Example 5.8.1 with

Az = 1073, where R2 is the order of convergence in At.

v=0.1 v=0.5 v=0.9 vy=1

At exo(At,Az) R2 ex(At,Az) R2 ex(At,Az) R2 e, (At,Azr) R2

1/10 0.74e-01 - 0.24e-01 - 0.11e-01 - 0.10e-01 -

1/20 0.35e-01 1.08 0.10e-01 1.23 0.55e-02 1.05 0.51e-02 1.00
1/40 0.17e-01 1.08 0.44e-02 1.20 0.27e-02 1.03 0.25e-02 1.00
1/80 0.78e-02 1.08 0.20e-02 1.18 0.13e-02 1.02 0.13e-02 1.00
1/160 0.37e-02 1.08 0.88e-03 1.14 0.66e-03 1.01 0.63e-03 1.00
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Table 5.7: Numerical accuracy in Az of the KBMC2-FADE scheme applied to Example 5.8.1

with At = 1073, and R1 is the order of convergence in Azx.

v=0.1 v=0.5 v=0.9 vy=1

Az exo(At,Ax) Rl ex(At,Axr) Rl ex(At,Azx) Rl ex(At,Az) RI1

1/2 0.17e-00 - 0.20e-00 - 0.19e-00 - 0.19e-00 -

1/4 0.31e-01 2.41 0.38e-01 2.42 0.36e-01 2.45 0.35e-01 2.46
1/8 0.74e-02 2.07  0.91e-02 2.07  0.84e-02 2.08 0.83e-02 2.08
1/16 0.19e-02 2.00 0.22e-02 2.01 0.21e-02 2.02 0.20e-02 2.02
1/32 0.48e-03 1.94  0.56e-03 2.00 0.52e-03 2.00  0.51e-03 2.00

Table 5.8: Numerical accuracy in At of the KBMC2-FADE scheme applied to Example 5.8.1,

where Az = 1073, and R2 is the order of convergence in At.

v=0.1 v=0.5 v=0.9 y=1

At exo(At,Az) R2 ex(At,Ax) R2 e (At,Ax) R2 e, (At,Ax) R2

1/20 0.22e-02 - 0.20e-02 - 0.75e-03 - 0.63e-03 -

1/40 0.10e-02 1.14  0.66e-03 1.58 0.19e-03 1.95 0.16e-03 2.00
1/80 0.46e-03 1.12 0.22e-03 1.56 0.50e-04 1.94  0.40e-04 1.99
1/160 0.21e-03 1.11 0.77e-04 1.54  0.13e-04 1.91 0.10e-04 1.95
1/320 0.98e-04 1.11 0.27e-04 1.51 0.40e-05 1.80  0.30e-05 1.80

The results of the solution of Equation (5.453) for the fractional exponent v = 0.5, and
0<z<1,time0<t<1and At = 1073, by using the KBMC2, KBMC3, and KBML1
schemes are shown in Figures 5.14(a), 5.16(a) and 5.18(a) respectively, and for 7y = 1 are