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Abstract

Fractional partial differential equations have been developed in many different fields such

as physics, finance, fluid mechanics, viscoelasticity, engineering and biology. These models

are used to describe anomalous diffusion. The main feature of these equations is their

nonlocal property, due to the fractional derivative, which makes their solution challenging.

However, analytic solutions of the fractional partial differential equations either do not

exist or involve special functions, such as the Fox (H–function) function (Mathai & Saxena

1978) and the Mittag–Leffler function (Podlubny 1998) which are difficult to evaluate.

Consequently, numerical techniques are required to find the solution of fractional partial

differential equations.

This thesis can be considered as two parts, the first part considers the approximation

of the Riemann–Liouville fractional derivative and the second part develops numerical

techniques for the solution of linear and nonlinear fractional partial differential equations

where the fractional derivative is defined as a Riemann–Liouville derivative.

In the first part we modify the L1 scheme, developed initially by Oldham & Spanier

(1974), to develop the three schemes which will be defined as the C1, C2 and C3 schemes.

The accuracy of each method is considered. Then the memory effect of the fractional

derivative due to nonlocal property is discussed. Methods of reduction of the computation

L1 scheme are proposed using regression approximations.

In the second part of this study, we consider numerical solution schemes for linear frac-

tional partial differential equations. Here the numerical approximation schemes are de-

veloped using an approximation of the fractional derivative and a spatial discretisation

scheme. In this thesis the L1, C1, C2, C3 fractional derivative approximation schemes, de-



ii

veloped in the first part of the thesis, are used in conjunction with either the Centred–finite

difference scheme, the Dufort–Frankel scheme or the Keller Box scheme. The stability of

these numerical schemes are investigated via the technique of the Fourier analysis (Von

Neumann stability analysis). The convergence of each the numerical schemes is also dis-

cussed. Numerical tests were used to confirm the accuracy and stability of each proposed

method.

In the last part of the thesis numerical schemes are developed to handle nonlinear partial

differential equations and systems of nonlinear fractional partial differential equations. We

considered two models of a reversible reaction in the presence of anomalous subdiffusion.

The Centred–finite difference scheme and the Keller Box methods are used to spatially

discretise the spatial domain in these schemes. Here the L1 scheme and a modification

of the L1 scheme are used to approximate the fractional derivative. The accuracy of the

methods are discussed and the convergence of the scheme are demonstrated by numerical

experiments. We also give numerical examples to illustrate the efficiency of the proposed

scheme.

Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative, Grünwald-

Letnikov fractional derivative, fractional subdiffusion equation, fractional advection-diffusion

equation, accuracy, stability and convergence, L1 approximation, numerical method.
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Notation used in this thesis.

Chapter 1

γ The anomalous diffusion exponent.

Kγ Anomalous diffusion coefficient.

D,K1,γ Diffusion coefficient.

f(x, t) Source function.

g(x) Initial condition.

ϕ1(t), ϕ2(t) Fixed (Dirchlet) boundary conditions.

k1 Forward reaction rate.

k−1 Reverse reaction rate.

A(x, t), B(x, t), C(x, t) Concentrations of each chemical species.

L1−γ
t Non-standard/modified fractional derivative operator.



Notation xliv

Chapter 2

p The fractional derivative order.

νl Scaled weights for the L1 scheme.

Al(p), Bl(p), αj(p), β
∗
j (p), µ∗j (p), Scaled weights for the C1 scheme.

β̃j(p), µ̃j(p), ν̃l Scaled weights for the C2 scheme.

α̂j(p), β̂j(p), µ̂j(p), ν̂l Scaled weights for the C3 scheme.

ϑ(j, p) Error bound coefficient for the L1 scheme.

Υ(j, p) Error bound coefficient for the C1 scheme.

ϑ̂(j, p) Error bound coefficient for the C2 scheme.

K(j, p) Error bound coefficient for the C3 scheme.

R̂ Approximate order of convergence in ∆t.

ζ(s, a) The Hurwitz Zeta function.

Mn Maximum absolute value of the second derivative.

ℵj(p) Scaled weights for the L1∗ scheme.

~j(p), ℵj(p) Scaled weights for the RL1 scheme.

k(j, n, p) Error bound coefficient for the L1∗ scheme.

k̂(j, n, p) Error bound coefficient for the RL1 scheme.
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β0, β1, β2 Fitting parameters of the regression line.

Is(p, q) The Incomplete Beta function.

B(p, q) The Beta function.
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xi Spatial grid points.

tj Temporal grid points.
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∗
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ui Approximate solution.

Ui Exact solution.
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τi,j Scaled truncation error.

ζj Von Neumann stability variable.
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$j(γ) Stability weight.
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R2 Approximate order of convergence in ∆t.

Chapter 4
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xi Spatial grid points.
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ui Approximate solution.
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τi,j Scaled truncation error.
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Chapter 5
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ui Approximate solution.
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Chapter 6

γ Anomalous diffusion exponent.

A(x, t), B(x, t), C(x, t) Concentration Chemical species.

k1 Forward reaction rate.

k−1 Reverse reaction rate.

L1−γ
t Non-standard/modified fractional derivative operator.

d, d̂ Diffusion coefficients.

yk(x, t), k = 1, 2, 3 Auxiliary functions for Model Type 2.

β̃j(γ), µ̃j(γ) Scaled weights for the KBMC2 scheme.

βj(γ), µj(γ) Scaled weights for the IML1 scheme.

τi,j Truncation error.
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Chapter 1

Introduction and Literature

Review

1.1 Background

Anomalous subdiffusion is a physical phenomenon which is observed in many systems

which involving trapping, binding or macromolecular crowding. In recent years, exam-

ples of anomalous diffusion have been discovered in many different fields such as fluid me-

chanics (Chen, Wei, Sui, Zhang & Zheng 2011, Elbeleze, Kılıçman & Taib 2013), physics

(Metzler & Klafter 2000b), engineering, and biology (Atangana & Alabaraoye 2013, Roul

2013). Anomalous diffusion is characterised by the asymptotic long-time behaviour of the

mean-squared displacement of the form

〈∆x2(t)〉 ∼ 2Kγ

Γ(1 + γ)
∆tγ (1.1)

where γ is the anomalous diffusion exponent and Kγ is the anomalous diffusion coefficient.

For standard diffusion (ordinary or Brownian motion) the exponent is γ = 1, whilst in

anomalous subdiffusion 0 < γ < 1, and in superdiffusion 1 < γ < 2. If the exponent is γ =

2, we have ballistic diffusion. Anomalous subdiffusion can be modelled using a number of

methods including Continuous Time Random Walks (CTRWs) (Metzler & Klafter 2000b),

Monte Carlo simulations (Marseguerra & Zoia 2006), Langevin equations (Porrà, Wang &

Masoliver 1996, Mura 2008), Stochastic differential equations (Metzler & Klafter 2000b,
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Mura 2008) and by using Fractional Partial Differential Equations (FPDEs) (Metzler &

Klafter 2000b).

A Fractional Partial Differential Equation is a partial differential equation, which involves

a temporal fractional derivative or spatial fractional derivative. For example one of the

well-known FPDEs is the fractional subdiffusion equation, which has the form

∂f(x, t)

∂t
=

∂1−γ

∂t1−γ

(
∂2f(x, t)

∂x2

)
, (1.2)

where the anomalous exponent γ lies in the interval 0 < γ < 1.

Another example is the fractional superdiffusion equation, which has the form:

∂f(x, t)

∂t
= K

∂βf(x, t)

∂ |x|β
, (1.3)

where the exponent β lies in the range 1 < β < 2. In Equations (1.2) and (1.3), ∂1−γ

∂t1−γ and

∂β

∂|x|β are fractional partial derivatives of temporal and spatial type respectively. Baeumer,

Kovács & Meerschaert (2007) considered the fractional superdiffusion equation by extend-

ing the Reproduction–Dispersal equations, where the second derivative in a diffusion or

dispersion model is replaced by a fractional derivative of order 1 < β < 2.

A fractional derivative is an extension of the familiar derivative operator ∂nf(t)
∂tn by re-

placing the integer value n with a non-integer parameter p which can also be denoted as

∂pf(t)
∂tp or Dp

t f(t) (Samko, Kilbas & Marichev 1993, Podlubny 1998). Definitions of several

common fractional derivatives are given in the next section.

1.2 Different types of Fractional Derivatives

There are several definitions of fractional derivatives of the order p, the Riemann–Liouville

fractional derivative, the Caputo fractional derivative, the Grünwald–Letnikov fractional

derivative and the Riesz fractional derivative (Gorenflo & Mainardi 1998, Podlubny 1998,

Li & Zeng 2015). Note p can also defined as a complex number or variable, but in

this research we focus on p being a real number. In the following some definitions are

introduced.

Definition 1.2.1. The left and right Riemann–Liouville fractional derivatives of order
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p > 0 of the given function f(t), t ∈ (a, b) are defined respectively as (Li & Zeng 2015);

RLD
p
a,tf(t) =

1

Γ(n− p)
dn

dtn

∫ t

a

f(τ)

(t− τ)p−n+1
dτ , (1.4)

and

RLD
p
t,bf(t) =

(−1)n

Γ(n− p)
dn

dtn

∫ b

t

f(τ)

(τ − t)p−n+1
dτ , (1.5)

where Γ(.) is the Euler’s Gamma function, with n ∈ Z+ satisfies n− 1 < p < n.

Definition 1.2.2. The left and right Caputo fractional derivatives of order p > 0 of the

given function f(t), t ∈ (a, b) are defined respectively as (Li & Zeng 2015);

CD
p
a,tf(t) =

1

Γ(n− p)

∫ t

a

f (n)(τ)

(t− τ)p−n+1
dτ , (1.6)

and

CD
p
t,bf(t) =

(−1)n

Γ(n− p)

∫ b

t

f (n)(τ)

(τ − t)p−n+1
dτ , (1.7)

where n ∈ Z+ satisfies n− 1 < p < n.

Definition 1.2.3. The left and right Grünwald–Letnikov fractional derivatives of order

p > 0 of the given function f(t), t ∈ (a, b) are defined respectively as (Li & Zeng 2015);

GLD
p
a,tf(t) = lim

h→0
Nh=t−a

h−p
N∑
k=0

(−1)k
(
p

k

)
f(t− kh) , (1.8)

and

GLD
p
t,bf(t) = lim

h→0
Nh=b−t

h−p
N∑
k=0

(−1)k
(
p

k

)
f(t+ kh) . (1.9)

Definition 1.2.4. The left and right fractional integrals (or left and right Riemann–

Liouville integrals) with order p > 0 of the given function f(t), t ∈ (a, b) are defined

respectively as (Li & Zeng 2015);

D−pa,t f(t) = RLD
−p
a,t f(t) =

1

Γ(p)

∫ t

a
f(τ)(t− τ)p−1dτ , (1.10)

and

D−pb,t f(t) = RLD
p
t,bf(t) =

1

Γ(p)

∫ b

t
f(τ)(τ − t)p−1dτ . (1.11)
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Definition 1.2.5. The Riesz derivative with order p > 0 of the given function f(t),

t ∈ (a, b) is defined as (Li & Zeng 2015)

RZD
pf(t) = − 1

2 cos
(pπ

2

) (RLDp
a,tf(t) + RLD

p
t,bf(t)

)
, (1.12)

where p 6= 2n+ 1, n = 0, 1, .... The Riesz derivative is sometimes denoted by ∂pf(t)
∂|t|p .

It should be noted that the definition of the Riemann–Liouville fractional derivative in

Equation (1.4) and the definition of the Caputo fractional derivative in Equation (1.6) are

different but they are related in Laplace space. For example the fractional derivative of a

constant function f(t) = 1, using the Caputo definition is zero, but using the Riemann–

Liouville definition is not zero, that is

CD
p
a,t(1) = 0, and RLD

p
a,t(1) =

t−p

Γ(1− p)
. (1.13)

However, the Grünwald-Letnikov and Riemann–Liouville definitions have been shown to

be equivalent (Podlubny 1998).

The Riemann–Liouville derivative and the Caputo derivative of the function f(t) have

the following relation

RLD
p
a,tf(t) = CD

p
a,tf(t) +

n−1∑
k=0

f (k)(a)(t− a)k−p

Γ(k + 1− p)
, (1.14)

where n ∈ Z+ satisfies n− 1 < p < n and f(t) is integrable on [a, t].

1.3 Focus of the Research

The focus of this research is to find the numerical solution of partial differential equation

of fractional order such as:

∂u(x, t)

∂t
=

∂1−γ

∂t1−γ

(
D
∂2u(x, t)

∂x2
+Kγ

∂u(x, t)

∂x

)
+ f(x, t) (1.15)

along with the initial and boundary conditions

u(x, 0) = g(x), 0 ≤ x ≤ L, (1.16)

u(0, t) = ϕ1(t) and u(L, t) = ϕ2(t), 0 ≤ t ≤ T, (1.17)
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where D > 0, Kγ > 0, the fractional order 0 < γ ≤ 1, and f(x, t) is a given source

function. The fractional derivative in Equation (1.15) can be discretised by using the

L1 scheme (Oldham & Spanier 1974) or by using a modification of L1 scheme (given

in Chapter 2). The centred finite difference scheme, the Dufort–Frankel, or the Keller

Box methods will be used to discretise the second spatial derivative (or diffusion term)

respectively in Chapters 3, 4, and 5.

In this work we develop an alternative numerical method based upon the Keller Box

Method for Equation (1.15). This scheme extends the standard approach to the fractional

case where the Riemann-Liouville definition of the fractional derivative is used instead

of the Caputo definition used by Al-Shibani, Ismail & Abdullah (2012). We also use

a modification of the L1 scheme to approximate the fractional derivative instead of the

Grünwald–Letnikov approximation used by Al-Shibani et al. (2012).

Other examples to be considered in this research, in Chapter 6, are models of reversible

reactions. Let A, B and C be three chemical species undergoing a reversible reaction,

A+B 
 C ( the double arrow symbol 
 indicates that the reaction is reversible). In the

absence of diffusion, the governing equations for A and B reduce to the reaction kinetic

equations

dA

dt
= −k1AB + k−1C , (1.18)

dB

dt
= −k1AB + k−1C , (1.19)

and
dC

dt
= k1AB − k−1C , (1.20)

where k1 is the forward reaction rate constant and k−1 is the reverse reaction rate. These

equations correspond to the reaction, A and B reacting together to form species C,

A+B → C, if k−1 = 0.

Reversible reactions, in the presence of subdiffusion can be modelled by the system of

fractional reaction–diffusion equations by using the CTRW model in Henry & Wearne

(2000), which we will denote as Model Type 1,

∂A(x, t)

∂t
= D

∂2

∂x2

(
∂1−γA(x, t)

∂t1−γ

)
− k1A(x, t)B(x, t) + k−1C(x, t) , (1.21)
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∂B(x, t)

∂t
= D

∂2

∂x2

(
∂1−γB(x, t)

∂t1−γ

)
− k1A(x, t)B(x, t) + k−1C(x, t) , (1.22)

and

∂C(x, t)

∂t
= D

∂2

∂x2

(
∂1−γC(x, t)

∂t1−γ

)
+ k1A(x, t)B(x, t)− k−1C(x, t) . (1.23)

Another model, which we call Model Type 2, has been derived by Angstmann, Donnelly

& Henry (2013a) is of the form

∂A(x, t)

∂t
= D

∂2

∂x2

[
e−k1

∫ t
0 B(x,s)ds ∂

1−γ

∂t1−γ

(
ek1

∫ t
0 B(x,s)dsA(x, t)

)]
− k1A(x, t)B(x, t) + k−1C(x, t) , (1.24)

∂B(x, t)

∂t
= D

∂2

∂x2

[
e−k1

∫ t
0 A(x,s)ds ∂

1−γ

∂t1−γ

(
ek1

∫ t
0 A(x,s)dsB(x, t)

)]
− k1A(x, t)B(x, t) + k−1C(x, t) , (1.25)

and

∂C(x, t)

∂t
= D

∂2

∂x2

[
e−k−1t ∂

1−γ

∂t1−γ

(
ek−1tC(x, t)

)]
+ k1A(x, t)B(x, t)− k−1C(x, t) . (1.26)

This equation involves the non–standard fractional derivative operator L1−γ
t f(t)

L1−γ
t f(t) = e−k1

∫ t
0 B(x,s)ds ∂

1−γ

∂t1−γ

(
ek1

∫ t
0 B(x,s)dsf(t)

)
. (1.27)

The current methods for approximating fractional derivatives will need to be modified

to approximate the operator in Equation (1.27). We consider numerical solutions for

Equations (1.21) – (1.23) and Equations (1.24) – (1.26), by applying the Keller Box

method with the modification of the L1 scheme (developed in Chapter 5) and the Implicit

finite difference with the L1 scheme (IML1) in Chapter 6.

One of the major issues in evaluating fractional derivatives numerically is the cost of the

evaluation of the convolution sum. This computational cost increases as the number of

time steps increases, which becomes significant for a large number of time steps. This

is not as significant for problems involving only space–fractional derivatives, on a finite

domain, as the computational domain is not normally growing and so the computational

cost does not increase. We do acknowledge that if it is on infinite domain the computa-

tional cost is significant. One way to reduce this computational cost is to eliminate the
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tail of the integral known as the short memory principle (Deng 2007b). This takes advan-

tage of the fact that the integral in the fractional derivative is weighted mainly around

the time t, that is the most recent history of the function f(t), with the earlier history

near t = 0 being weighted less.

In Chapter 2, we consider methods such as the short memory principle, the reduction of

the computation of L1 scheme, and regression methods (the Linear regression method,

the Quadratic regression method and the Nonlinear regression method) to reduce the cost

of the evaluation of the convolution sum.

1.4 The Aim and Thesis Objectives

Recently fractional differential equations have attracted attention in the areas of science

and engineering. The main feature of these types of equations is their nonlocal property in

time or space. It is known that the integer order of the differential operator is a local op-

erator, however the fractional operator is a non-local operator (Podlubny 1998, Diethelm,

Ford & Freed 2004). The non-locality of the fractional derivative is quite attractive from

the physical aspect as it allows us to model phenomena with memory effects. However,

there is a fundamental problem related with all fractional differential operators, not only

the Riemann–Liouville in Equation (1.4), in contrast with the differential operators of

integer order which is its non-locality. Computationally, this non-locality leads to higher

computational effort and storage requirements.

This research proposes developing numerical techniques to solve FPDEs. It will help de-

velop more efficient (less computationally expensive) methods to approximate the Riemann–

Liouville fractional derivatives whilst maintaining accuracy of their approximation. These

approximation methods will be combined with finite–difference spatial discretisation meth-

ods to help more efficiently solve FPDEs. The advantages of such an approach are:

1. The numerical approximation is more useful where the analytical method is either

unavailable or difficult to evaluate such as those that require the evaluation of the

Fox or H-function.

2. It will enable the development of flexible and more accurate computational methods
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to solve a variety of fractional partial differential equations.

3. It will help determine more computationally efficient methods and help reduce the

computational effort and slow down involved in evaluating the memory sum.

Thesis Objectives

In the present research, using numerical analysis for linear and nonlinear fractional partial

differential equation, the objectives of this thesis are given below.

1. To develop a numerical scheme to find the approximate solution of Equation (1.15),

Equations (1.21) - (1.23) and Equations (1.24) - (1.26).

2. To develop new accurate numerical methods for solving linear and nonlinear frac-

tional partial differential equations.

3. To investigate a more efficient way to approximate fractional derivative whilst main-

taining accuracy.

4. To discover the accuracy, convergence, and stability of these numerical schemes.

1.5 Previous Work

Fractional differential equations have acquired popularity in the area of science and engi-

neering and have increasingly been used to model problems in physical processes, biology,

finance, fluid mechanics and many other processes. In fluid mechanics for example Chen

et al. (2011) demonstrated the feasibility and efficiency in the approximate solutions of

the time–fractional diffusion and wave equation by using the generalised differential trans-

form method. Elbeleze et al. (2013) investigated the unsteady flows of viscoelastic fluids

through a channel tube and solutions for velocity field using a fractional Burgers model

and a fractional generalised Burgers model.

There are also several types of the fractional partial differential equation which are in-

teresting in the area of physics such as the fractional diffusion-advection equation, the
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fractional kinetic equation, and the fractional Fokker–Planck equation. The fractional

Fokker–Planck equation takes into account the effect of an external force (Metzler &

Klafter 2000b) which is given by

∂P

∂t
=

∂1−γ

∂t1−γ

(
Kγ

∂2

∂x2
− 1

ηγ

∂

∂x
F (x, t)

)
P (x, t) , (1.28)

where the fractional derivative operates on the forcing term F (x, t). An alternative model,

where the fractional derivative does not act on the forcing term is given by (i.e. as in

Equation (1.24) with A = P and k1 = 0)

∂P (x, t)

∂t
=

(
D
∂2

∂x2
− ∂

∂x
F (x, t)

)[
∂1−γ

∂t1−γ
P (x, t)

]
. (1.29)

In the area of biology, Roul (2013) considered the analytical and numerical solutions for

the time-fractional biological population model

∂αu(x, y, t)

∂tα
=
∂2u2(x, y, t)

∂x2
+
∂2u2(x, y, t)

∂y2
+ g(u(x, y, t)) , (1.30)

where the fractional derivative were described by the definition of Caputo derivative and

0 < α ≤ 1. The homotopy perturbation method was applied to the model given in

Equation (1.30) with, in the special case of α = 1 the general solution reduces to the

diffusion solution. Roul (2013) concluded that the homotopy–perturbation method is

an effective and very powerful method for obtaining analytical solutions of a wide class

of problems involving fractional derivatives. Atangana & Alabaraoye (2013) similarly

demonstrated that the homotopy decomposition method (HDM) is a powerful and efficient

tool for a solution of system of fractional partial differential equations that arose in the

model for HIV (Human Immune Virus) infection of CD4+T cells.

Cable equations with fractional order temporal operators have been introduced to model

electrotonic properties of spiny neuronal dendrites (Henry, Langlands & Wearne 2008,

Langlands, Henry & Wearne 2009). These equations were derived from Nernst–Planck

equations with fractional order operators to model the anomalous subdiffusion that arises

from trapping properties of dendritic spines (Henry et al. 2008). The solution of the

fractional cable equations are given as a functions of scaling parameters for infinite cables

and semi-infinite cables with instantaneous current injections (Langlands et al. 2009).

The authors show that electrotonic properties and firing rates of nerve cells are altered

by anomalous subdiffusion, and they suggest electrophysiological experiments to calibrate

and validate such models.
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Langlands, Henry & Wearne (2011) modeled the subdiffusion by using two different ap-

proaches leading to two different fractional cable equations

Model I
∂V

∂T
= γ

∂γ−1

∂T γ−1

(
∂2V

∂x2

)
− µ2k

∂k−1(V )

∂T k−1
, (1.31)

and

Model II
∂V

∂T
=

∂1−γ

∂T 1−γ

(
∂2V

∂X2

)
− µ2∂

1−k(V )

∂T 1−k . (1.32)

They also presented the fundamental solutions on finite and semi-finite domains.

The fractional chemotaxis equation was developed by Langlands & Henry (2010). They

provided a new class of models for biological transport influenced by chemotactic forc-

ing, macro–molecular crowding and traps. In this research they considered two separate

equations which are similar to the fractional Fokker–Planck equation in Equation (1.28),

∂u

∂t
=

∂1−γ

∂t1−γ

(
Dγ

∂2

∂x2
u(x, t)− χγ

∂

∂x

(
∂c(x, t)

∂x
u(x, t)

))
, (1.33)

and

∂u

∂t
=

∂1−γ

∂t1−γ
Dγ

∂2u(x, t)

∂x2
− χγ

∂

∂x

(
∂c(x, t)

∂x

∂1−γu(x, t)

∂t1−γ

)
, (1.34)

where the motion is influenced by the chemotactic forcing term

F (x, t) = −χγ
∂c(x, t)

∂x
. (1.35)

The fractional Fokker-Planck equation with space-time dependent forcing was derived

by Henry, Langlands & Straka (2010). Angstmann, Donnelly & Henry (2013a) present

a derivation of the generalized master equation for an ensemble of particles undergoing

reactions whilst being subject to an external force field. They show reductions to a range

of well–known models such as the fractional reaction diffusion equation and the fractional

Fokker–Planck equation.

The CTRW model has also been extended to the networks including the effects of re-

action (Angstmann, Donnelly & Henry 2013b) and forces (Angstmann, Donnelly, Henry

& Langlands 2013). Recently Angstmann, Donnelly, Henry & Langlands (2016) intro-

duced a mathematical network model to simulate a pathogenic protein neurodegenerative

disease in the brain taking into account the anomalous transport. The set of reaction

kinetics equations on the nodes of a network was used to model the proliferation and
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accumulation of the pathogenic proteins. The model predicts the disease extends as a

propagating front over the brain and the anomalous behavior leads to the difference in

the concentration of pathogenic proteins.

1.5.1 Analytical Solution of FPDEs

The analytic solutions of FPDEs have been considered recently by a number of researchers.

These include the fractional diffusion equation (Mainardi 1996, Wyss 1986, Metzler &

Klafter 2000a, Agrawal 2002, Jiang, Liu, Turner & Burrage 2012), the fractional reaction–

diffusion equation (Henry & Wearne 2000, Langlands, Henry & Wearne 2008), the frac-

tional time-space differential equation (Duan 2005, Huang & Liu 2005, Zhang & Zhang

2011), and space fractional diffusion equations (Zhang & Liu 2007, Shen, Liu, Anh &

Turner 2008, Muslih & Agrawal 2010).

The solution of the fractional diffusion equation can be written in terms of Fox’s H-

function (Mainardi, Pagnini & Saxena 2005). Wyss (1986) applied the Mellin transform

to the fractional diffusion equation, with the solution given in terms of Fox’s H-function

diffusion. Later Metzler & Klafter (2000b) found the solution for the fractional time

and space equation in terms of Fox’s H-function by using Mellin and Laplace transforms.

Liu, Anh, Turner & Zhuang (2003) derived the solution of the time fractional advection–

dispersion equation

∂γu(x, t)

∂tγ
= −v∂u(x, t)

∂x
+D

∂2u(x, t)

∂x2
, (1.36)

where (x, t) ∈ IR+ × IR+ and 0 < γ ≤ 1, by using a variable transformation, Mellin

and Laplace transforms, and the properties of Fox’s H-function (Mathai, Saxena &

Haubold 2010). The Green’s solution of space–time fractional advection–dispersion equa-

tion was derived by Huang & Liu (2005). The method of characteristics can also be

applied to solving fractional partial differential equations as in Wu (2011).

The fractional diffusion–wave equation can be expressed in term of an auxiliary function

by using Laplaces method which was based on Cauchy and Signalling problems (Mainardi

1996). Anh & Leonenko (2000) applied Gaussian and non-Gaussian scenarios to find the

rescaled solutions to the equation given singular random initial data.

In 2001, Anh and Leonenko used a similar method to solve fractional diffusion and frac-

tional kinetic equations. Agrawal (2002) considered a time fractional diffusion-wave equa-
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tion in a bounded spatial domain. The space-time Riesz fractional partial differential

equation with periodic conditions

∂αu(x, t)

∂tα
=
∂βu(x, t)

∂|x|β
, where (x, t) ∈ IR+ × IR+ , (1.37)

was considered by Zhang & Liu (2007). They found the fundamental solution of the

equation using a Fourier and Laplace transforms. Shen et al. (2008) considered a Riesz

Fractional Advection–Dispersion Equation (RFADE),

∂u(x, t)

∂t
= A

∂αu(x, t)

∂|x|α
+B

∂βu(x, t)

∂|x|β
, where (x, t) ∈ IR+ × IR+ , (1.38)

where 0 < α < 1, and 1 < β < 2, which is derived from the kinetics of chaotic dynamics.

Shen et al. (2008) derived the fundamental solution for the RFADE and generated a dis-

crete random walk model for this RFADE.

Muslih & Agrawal (2010) used the Fourier transform method to solve the fractional Pois-

son equation with Riesz fractional derivative of order α,

(−4)
α
2 =

ρ

ε0
, where 1 < α ≤ 2 . (1.39)

Recently, Momani & Odibat (2007) proposed the homotopy perturbation method for

linear inhomogeneous fractional partial differential equations and compared this method

with the variational iteration method. The authors found that the homotopy methods

were more effective and convenient. The linear and nonlinear problem can be solved

by using the homotopy analysis method (Xu, Liao & You 2009). The same method

has been achieved for computing the approximate analytical solution of nonlinear partial

differential equations of fractional order (Roul 2013).

Most fractional differential equations do not have exact solutions, so numerical techniques

are required to approximate the solution of fractional partial differential equations because

the closed form analytic solutions either do not exist or involve special functions, such

as the Fox (H-function) function and the Mittag–Leffler function (Podlubny 1998), which

are difficult to evaluate. For instance the solution of the fractional diffusion equation

∂u(x, t)

∂t
= Kγ

∂1−γ

∂t1−γ

(
∂2u(x, t)

∂x2

)
, (1.40)

by using the separation of variables, can be written as

u(x, t) =
∞∑
n=0

cnXn(x)Eγ(−Kγλ
2
nt
γ), (1.41)
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where Xn(x) and λn are the eigenfunction and eigenvalue of the problem and Eγ(z) is

the Mittag–Leffler function (Klafter & Sokolov 2011). As a consequence many researchers

have developed numerical schemes to approximate the solution of fractional partial differ-

ential equations. In the next subsection we give a review of the numerical methods used

to approximate the solution of fractional partial differential equations.

1.5.2 Numerical Solution for Linear and Nonlinear FPDEs

The numerical solution of fractional partial differential equations has been developed in

several ways by using the Finite Difference method (Chen, Liu & Burrage 2008, Murio

2008, Hu & Zhang 2012, Sweilam, Khader & Mahdy 2012, Tadjeran 2007, Tadjeran &

Meerschaert 2007), the Adomian Decomposition method (Dhaigude & Birajdar 2012, Di-

ethelm & Ford 2002), the Predictor–Corrector method (Diethelm & Ford 2002), the

Finite Element method (Deng 2008, Jiang & Ma 2013), and Numerical Quadrature

(Diethelm 1997, Murio 2008). The majority of these numerical methods either use the

Grünwald–Letnikov approximation or the L1 scheme to approximate the fractional deriva-

tive. However, there are other techniques used to approximate the fractional derivative

such as the Spline method (Pedas & Tamme 2011, Li 2012) and the Collocation method

(Rawashdeh 2006, Hesameddini & Asadollahifard 2016).

The finite difference method can be used to numerically approximate the second spa-

tial derivative. This method has been used to develop both explicit numerical methods

(Yuste & Acedo 2005, Shen & Liu 2005, Liu, Zhuang, Anh, Turner & Burrage 2007, Chen,

Liu, Anh & Turner 2012, Liu, Dong, Lewis & He 2015) and implicit numerical methods

(Langlands & Henry 2005, Liu et al. 2007, Chen et al. 2008, Murio 2008, Chen et al. 2012).

Explicit methods require less computation per time-step compared to implicit methods

due to their requirement to solve systems of equations in the implicit case especially in

two or three dimensions. However there is a stability problem when explicit methods are

used to approximate the solution of the fractional partial differential equations.

For instance Yuste & Acedo (2005) proposed an explicit numerical scheme based on the

finite difference method for the fractional diffusion equation, given by Equation (1.40),

where the fractional derivative is a Riemann–Liouville derivative, defined previously given

in Equation (1.4), and where the Grünwald-Letnikov approximation scheme (given in
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Chapter 2), was used to approximate the fractional derivative. The numerical method

was only conditionally stable for the equation, and they did not give the convergence of

the method. Later Langlands & Henry (2005) considered an implicit numerical method

for the fractional diffusion equation, Equation (1.40), developed using the L1 approxi-

mation (Oldham & Spanier 1974) for the fractional derivative: here they discussed the

accuracy and stability of the numerical method and showed the method was stable and

the accuracy of the fractional derivative was of the order 1+γ in time. Stability was later

proven by Chen, Liu, Turner & Anh (2007) using the Energy 2–norm approach.

Murio (2008) developed the implicit method for the fractional diffusion equation, in Equa-

tion (1.40). The proposed method incorporated the Caputo derivative, Equation (1.6),

and the fractional derivative was approximated by using a quadrature formula. The

Fourier analysis method was used to show the method was unconditionally stable, and

that it was first–order in time and second–order in space. Zhuang, Liu, Anh & Turner

(2008) also proposed an implicit numerical method for the anomalous subdiffusion equa-

tion. The stability analysis was investigated by the Energy method and the convergence

order was O(τ + h2), that is first–order in time and second–order in space.

Liu et al. (2007) developed implicit and explicit methods for the space-and time-fractional

advection dispersion equation on a finite domain and considered the stability and conver-

gence of these methods. They proved the implicit method was unconditionally stable, but

the explicit method was only conditionally stable. The convergence order for both implicit

and explicit methods was first–order in time and first–order in space. Chen et al. (2008)

applied the finite difference method for the fractional reaction subdiffusion equation

∂u(x, t)

∂t
=

∂1−γ

∂t1−γ

(
kγ

∂2

∂x2
u(x, t)− ku(x, t)

)
+ f(x, t) , (1.42)

where 0 < γ ≤ 1, and k > 0. The relationship between the Riemann–Liouville and the

Grünwald–Letnikov definitions of fractional derivatives was used to evaluate the fractional

derivative with the Grünwald–Letnikov approximation. The discrete Fourier method was

used to show the method is unconditionally stable and the accuracy of the proposed

method was discussed and the convergence order was found to be O(τ + h2). Chen et al.

(2012) also used explicit and implicit methods to solve the two-dimensional fractional

order anomalous subdiffusion equation. In this work they considered the case where the

anomalous exponent α varied with x and t and also investigated the convergence and

stability for these methods.
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The semi–implicit numerical scheme, which is a modification of the Euler method, was

used by Yu, Deng & Wu (2013) for a fractional reaction-diffusion equation. The stability

and convergence of the method were investigated and the method was found to be first

order accurate in time and second–order accurate in space. Ding & Li (2013) also de-

veloped two classes of finite difference schemes for the reaction subdiffusion equation by

using a mixed spline function in space. The stability analysis was investigated, showing

that the method is unconditionally stable and convergent of order O(τ + h2).

Cao, Li & Chen (2015) derived a high–order compact finite difference scheme for solving

the fractional reaction subdiffusion equation

CD
α
t u(x, t) = Kα

∂2

∂x2
u(x, t)− Cαu(u, x, t) + f(x, t) , (1.43)

with a Neumann boundary condition, 0 < α < 1, Kα > 0 is the diffusion coefficient,

Cα > 0 is the constant reaction rate, and CD
α
t is Caputo derivative. The compact finite

difference method through the L2–norm was unconditionally stable and convergent with

order O(τ2−α + h4), where τ is the temporal step size, and h is the spatial step size.

Recently, Mustapha, Abdallah, Furati & Nour (2016) considered a piecewise-linear time

stepping discontinuous Galerkin method to solve the fractional diffusion equation with

variable coefficients numerically. The fractional derivative was defined as a Caputo frac-

tional derivative of order µ where µ ∈ (0, 1). The stability and convergence of the method

was investigated and the method was found to be second–order in time and second–order

in space.

Dehghan, Abbaszadeh & Mohebbi (2016) developed a numerical technique for solving

time fractional diffusion wave equation by using a meshless Galerkin method to approx-

imate the spatial derivative with Robin boundary conditions. The fractional derivative

was defined by Caputo fractional derivative of order α where α ∈ (1, 2). The numerical

method was unconditionally stable by using Energy method and the convergence of the

method is first–order in space and order 3− α in time.

Al-Shibani, Ismail & Abdullah (2013) used the compact Dufort–Frankel method for solv-

ing time fractional diffusion equation

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
+ f(x, t) , (1.44)

where f(x, t) is a source term and 0 < α < 1 in which the fractional derivative was
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approximated by Grünwald–Letnikov approximation. Liao, Zhang, Zhao & Shi (2014)

also constructed a new explicit Dufort–Frankel method for the fractional subdiffusion

equation

∂u(x, t)

∂t
= Kγ 0D

1−γ
t

∂2u(x, t)

∂x2
+ f(x, t) , (1.45)

where Kγ > 0 and 0D
1−γ
t is Jumarie’s modified Riemann–Liouville form of the fractional

derivative (Jumarie 2006) given by

0D
1−γ
t u(x, t) =

1

Γ(γ)

∂

∂t

∫ t

0

u(x, τ)− u(x, 0)

(t− τ)1−γ dτ , 0 < γ < 1 . (1.46)

To approximate the fractional derivative, the Grünwald–Letnikov approximation was ap-

plied for the first time step and then the L1 approximation was used for the subsequent

time steps. The method was found to be convergent under the same time–step, consistency

condition, required by the classical Dufort–Frankel scheme. In addition, the stability of

the method was established in the sense of a discrete Energy method. In Chapter 4, we de-

velop a Dufort–Frankel-based scheme for Equation (1.15). In this equation the fractional

derivative is defined by Riemann–Liouville derivative given in Equation (1.4) instead of

the modified Riemann–Liouville derivative in Equation (1.46) as in Liao et al. (2014) or

Caputo derivative as in Al-Shibani et al. (2013). In this work the fractional derivative is

approximated using the L1 scheme instead of the Grünwald-Letnikov approximation.

The Keller Box method is an implicit numerical scheme with second order accuracy in

both space and time for the heat conduction equation, or diffusion equation (Pletcher,

Tannehill & Anderson 2012), which is also referred to as the Preissman Box scheme. This

method was developed by Keller in 1971 (Keller 1971). Al–Shibani (Al-Shibani et al. 2012)

proposed using the Keller Box method for the one dimensional time fractional diffusion

equation, where the fractional derivative was replaced by a Caputo derivative and the

Grünwald-Letnikov approximation was applied to approximate the fractional derivative.

In Chapter 5 we develop a Keller Box method for Equation (1.15). This scheme extends

the standard approach to the fractional case where the Riemann–Liouville definition of

the fractional derivative is used instead of the Caputo definition used by Al-Shibani (Al-

Shibani et al. 2012). In addition, we use a modification of the L1 scheme to approximate

the fractional derivative instead of the Grünwald–Letnikov approximation used by Al–

Shibani.
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Angstmann, Donnelly, Henry, Jacobs, Langlands & Nichols (2016) introduced an explicit

numerical method for a class of fractional reaction–subdiffusion equation of the form

∂u(x, t)

∂t
= Dα

∂2

∂x2

[
e−

∫ t
0 a(u,x,s)ds ∂

1−α

∂t1−α

(
e
∫ t
0 a(u,x,s)dsu(x, t)

)]
+ c(u, x, t)− a(u, x, t)u ,

(1.47)

where c(u, x, t) > 0, a(u, x, t) > 0, and the fractional derivative is defined by Riemann–

Liouville definition. In Chapter 6 we consider the implicit Keller Box method with the

modification of the L1 scheme to develop a numerical scheme to solve systems of fractional

reaction–subdiffusion equations, Model Type 1 given in Equations (1.21) to (1.23) and

Model Type 2 given in Equations (1.24) to (1.26). The latter system is of the form given

in Equation (1.47).

The Crank–Nicolson method is a finite difference method, which is second–order accurate

in time and in space, developed by Crank & Nicolson (1947). Tadjeran (2007) presented

the Crank–Nicolson method for the fractional diffusion equation, when the diffusion co-

efficient was dependent on time and space, which was based upon a shifted Grünwald-

Letnikov derivative approximation. Tadjeran (2007) showed by investigating stability,

this method failed if the diffusion coefficient was evaluated at the time grid points instead

of at the mid points of the temporal subinterval, that is if the diffusion coefficient was

evaluated at the two endpoints of each time subinterval during the integration process.

Tadjeran & Meerschaert (2007) obtained an unconditionally stable second–order accurate

method for the two–dimensional fractional diffusion equation in both time and space

∂u(x, y, t)

∂t
= d(x, y)

∂αu(x, y, t)

∂xα
+ e(x, y)

∂βu(x, y, t)

∂yβ
+ q(x, y, t) , (1.48)

where d(x, y) > 0 and e(x, y) > 0 are diffusion coefficients and 1 < α ≤ 2 and 1 < β ≤ 2

are fractional orders. They combined the alternating directions implicit approach with a

Crank–Nicolson discretisation and with a Richardson extrapolation scheme. The right–

shifted Grünwald–Letnikov approximation was used to approximate the fractional deriva-

tive. The stability and convergence of these methods were discussed, and both meth-

ods were shown to be unconditionally stable: furthermore, the convergence order was

O(∆t2 + ∆x + ∆y) by using the Crank–Nicolson method, while it was of the order

O(∆t2 + ∆x2 + ∆y2) with the Richardson extrapolation scheme.

Hu & Zhang (2012) proposed a similar scheme for the fourth order fractional wave equa-
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tion.
∂αu(x, t)

∂tα
+ b2

∂4u(x, t)

∂x4
= f(x, t) , x ∈ (0, L), t ∈ (0, T ), (1.49)

where 1 < α < 2 is a fractional exponent and b is a constant coefficient with a source term

f(x, t). The method was unconditionally stable in the l2–norm and the convergence order

was O(τ2−α + h2). Sweilam et al. (2012) also developed the Crank–Nicolson method to

solve linear time fractional diffusion equations involving a Caputo fractional derivative. To

study the stability, they used the standard Von Neumann stability analysis and showed

the method was unconditionally stable. They also showed the convergence order was

O(τ + h2), that is first–order in time and second–order in space.

The Adomian Decomposition method (Adomian 1988) is an analytical/numerical approx-

imation method for solving partial differential equations. Diethelm & Ford (2002) used

the Adomian decomposition method for the Bagley-Torvik equation of fractional order as

Ay′′(t) +BD
3
2
∗ y(t) + Cy(t) = f(t) , (1.50)

where Dq
∗ denotes the fractional differential operator of order q ∈ IN, defined through the

Caputo derivative, and the convergence order was found to be O(h
3
2 ). Wang (2006) used a

similar method for the fractional KdV–Burgers equation with time and spatial fractional

derivatives

∂αu(x, t)

∂tα
+ εu

∂βu(x, t)

∂xβ
+ η

∂2u(x, t)

∂x2
+ ϑ

∂3u(x, t)

∂x3
= 0 , t > 0 , (1.51)

where ε, η and ϑ are parameters, α > 0 and β ≤ 1. The fractional derivatives were

described in the sense of the Caputo derivative. The method was shown to generate

more realistic series solutions that generally converge rapidly in real physical problems.

Yu, Liu, Anh & Turner (2008) have also used the Adomian Decomposition method to

construct explicit solutions of the linear and non-linear time-space fractional reaction-

diffusion equations.

Finite element methods are numerical schemes for solving an integral or differential equa-

tions. Deng (2008) developed a finite element method for solving the space and time

fractional Fokker–Planck equation, the stability and error were also discussed. Deng

(2008) showed the accuracy of this method was of order 2−α in time and µ in space i.e.,

O(k2−α + hµ) where α ∈ (0, 1) and µ ∈ (1, 2). Recently, a moving finite element method
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was employed for the time fractional partial differential equation which was based on

non-uniform meshes in both time and space (Jiang & Ma 2013). This method was proven

to be unconditionally stable and accurate to order 2 − α in time and order r in space,

where 0 < α < 1 and r ≥ 2.

A quadrature formula (numerical integration formula) can also be used to evaluate the

approximation of an integral defining the fractional derivative. Diethelm (1997) proposed

the implicit algorithm based on a quadrature formula for solving the fractional differential

equation. Murio (2008) investigated a similar quadrature formula for the definition of the

Caputo derivative for the fractional diffusion equation.

Diethelm, Ford & Freed (2002) successfully constructed a Predictor–Corrector method

for a fractional differential equation through the definition of the Caputo derivative. The

way to use this method is to first rewrite the fractional ordinary differential equation

as a Volterra Integral Equation and then use the Rectangle rule for the Predictor step,

and the Trapezoid rule for the Corrector step. The convergence order of the predictor-

corrector approach was min(2, 1 + α), where α > 1. They also discussed the accuracy

and reduction of the computation cost where some techniques presented such as the

Richardson extrapolation and the short memory principle.

Deng (2007a) presented an improved version of the Predictor–Corrector algorithm with

the accuracy increased to min(2, 1 + 2α), where α > 1, and half of the computational

cost when compared to the algorithm in Diethelm et al. (2004). Deng (2007b) proposed

the short memory principle after using the nested meshes in Ford & Simpson (2001).

By combining the short memory principle and the Predictor–Corrector approach, the

computational cost was minimized to O(h−1 log(h−1)). In this work we investigate the

short-memory approach for the fractional derivative by reduction of the computation of

the L1 scheme, the fractional derivative is defined by the Riemann–Liouville derivative.

We also used a new approach to reduce the computation cost by using regression methods

in Chapter 2.

Other numerical methods are proposed by several researchers. Liu, Anh & Turner (2004)

used the Method of Lines technique for discretising the space–fractional Fokker–Planck

equations by using backward differentiation formulas. Similarly, Deng (2007a) applied

this method for time fractional Fokker–Planck equations involving the Caputo fractional
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derivatives. A numerical scheme was proposed by Chen, Liu, Turner, Anh & Chen (2013)

for a variable-order nonlinear reaction subdiffusion equation with a Riemann–Liouville

derivative of variable-order. The stability of this method was investigated using Fourier

analysis and shown to be unconditionally stable. The method was also found to be

accurate of order two in time and in space.

Baeumer, Kovács & Sankaranarayanan (2015) recently considered the approximate solu-

tion of the space fractional partial differential equation

∂u(x, t)

∂t
= (−1)q+1∂

αu(x, t)

∂xα
, (1.52)

with 2q − 1α < 2q + 1, q ∈ IN where the shifted Grünwald–Letnikov approximation

was used to approximate the fractional derivative. The stability and convergence of the

method were discussed and the method was shown to be unconditionally stable.

Recently, Hesameddini & Asadollahifard (2016) considered a new method based on the

sinc function for the time fractional diffusion equation Equation (1.44) without source

term. The Energy method was used to show the method is stable and the method was

found to be convergent under the time-step O(τ2−α).

1.6 Overview of the Thesis

This thesis is organized as follows:

Chapter 1 presents a description of the problem, a literature review, the motivation

for the present study, and a concise review on the analytical and numerical solution

methods for fractional partial differential equations including their application areas.

The objectives of the present research are also summarised in this chapter.

Chapter 2 describes approximation methods for the fractional derivative. In this chap-

ter we focus on the L1 approximation scheme (Oldham & Spanier 1974). From the

L1 scheme we develop three schemes that we use in the present research, denoted

as the C1, C2, and C3 schemes. Another method considered to approximate the

fractional derivative was Romberg Integration. We also discuss the short memory

principle for the numerical evaluation of fractional derivatives.
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Chapter 3 develops a numerical scheme to solve the fractional subdiffusion equation

with a source term using the C1 approximation and the centred finite difference

scheme. In this chapter the accuracy analysis, consistency and convergence of the

method are presented with the stability analysis conducted using Von Neumann

stability analysis. Numerical tests are also used to confirm the accuracy and stability

of the proposed method with examples being given.

Chapter 4 develops a numerical scheme for the fractional subdiffusion equation with a

source term using the L1 scheme with the Dufort–Frankel method. Here the accu-

racy analysis is presented and the stability analysis is again determined using the

Von Neumann stability analysis. The convergence of the method is also discussed.

Numerical tests are used of the proposed method with examples being given.

Chapter 5 uses the Keller Box method to develop a numerical solution scheme for the

fractional subdiffusion equation with a source term. Here we consider the use of

three approximation schemes of the L1, C2, and C3 schemes to evaluate the frac-

tional derivative. A numerical scheme for the fractional advection equation with

source term is also developed by using the Keller Box method along with the C2

scheme. The stability analysis of each proposed method was investigated by Von-

Neumann stability analysis. The accuracy and the convergence of each of the pro-

posed methods were also tested. In addition, numerical tests are also used to confirm

the accuracy and stability results of the proposed methods.

Chapter 6 develops two numerical schemes for solving a nonlinear fractional reaction

diffusion equation by using two methods; the finite difference discretisation scheme

with the L1 scheme and the Keller Box method with the C2 scheme. The accuracy

analysis and the convergence of the proposed methods are tested. Results from the

proposed numerical methods for both models are determined by using numerical

simulations.

Chapter 7 discusses the conclusions of the thesis work, and gives some recommendations

for future work.



Chapter 2

Approximation Methods of the

Fractional Derivative

2.1 Introduction

In this chapter, we consider approximation methods to evaluate fractional derivative

numerically. In particular we look for approximations for the Riemann–Liouville fractional

derivative definition

RLD
p
0,tf(t) =

1

Γ(n− p)
dn

dtn

∫ t

0

f(τ)

(t− τ)p−n+1
dτ. (2.1)

The fractional derivative of f(t) in the definition of Riemann–Liouville fractional deriva-

tive, Equation (2.1), depends upon f(t) at the times [0, t], which means that the fractional

derivative of function f(t) depends on the historical behavior of f(t) (Podlubny 1998).

One of the main approximations of the Riemann–Liouville fractional derivative is L1

scheme (Oldham & Spanier 1974). We give definition of the function f(t) which is used

further in this chapter.

Definition 2.1.1. A real function f(t), t > 0, is said to be in the space Cl, l ∈ IR, if

there exists a real number p > l, such that f(t) = tpf∗(t), where f∗(t) ∈ C(0,∞), and it

is said to be in the space Ckl iff f (k)(t) ∈ Cl, k ∈ IN (Podlubny 1998, Momani 2006).

In this chapter, we develop three schemes based upon the L1 scheme (Oldham & Spanier
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1974), the C1, C2, and C3 schemes. We also consider the accuracy of the L1 scheme as

well as for the three modifications is investigated and numerical results are given. We also

consider Romberg Integration to approximate the fractional derivative, again based on

the Riemann–Liouville fractional derivative definition. In addition, we study the short–

memory principle in two different ways; reduction of the L1 scheme and using regression

approximation. There are more recent methods used to approximate the fractional deriva-

tive which is Spline method as in (Pedas & Tamme 2011, Li 2012) and Collocation method,

based on the sinc function, as in (Hesameddini & Asadollahifard 2016). Another method

to approximate the fractional derivative is the Grünwald-Letnikov approximation based

upon the Grünwald-Letnikov definition, given by Equation (1.8) in Chapter 1.

2.2 Grünwald–Letnikov Scheme

As mentioned in the introduction, one method to approximate the fractional derivatives

numerically is the Grünwald–Letnikov approximation. The approximation of Grünwald–

Letnikov fractional derivative given in Definition 1.2.3 can be written as (Lubich 1986,

Podlubny 1998, Yuste & Acedo 2005)

GLD
p
t f(t) = ∆t−p

[t/∆t]∑
k=0

wpkf(t− k∆t) +O(∆tr), (2.2)

where ∆t is the time step and r is the order of the approximation which depends on the

weight wpk chosen. If r = 1, we have the first order approximation and wpk is the kth

coefficient of zk in the power series expansion of (1− z)p, that is

(1− z)p =
∞∑
k=0

wpkz
k, (2.3)

or in particular

wpk = (−1)k
(
p

k

)
, (2.4)

where

wp0 = 1. (2.5)
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Higher order approximations are available, such as the second–order approximation where

the weights, wpk, are found from the power series (Lubich 1986)(
3

2
− 2z +

1

2
z2

)p
=

∞∑
k=0

wpkz
k. (2.6)

The coefficients wpk in Equation (2.6) can be computed by using Fourier Transforms (Podlubny

1998). The Grünwald–Letnikov derivative (GL scheme), given in Chapter 1 by Defini-

tion 1.2.3, was modified by (Meerschaert & Tadjeran 2004) for the case of right–hand and

left–hand fractional derivatives which are given in Equations (1.8) and (1.9) respectively.

The estimate of the accuracy of the GL scheme, using the weights wpk given by Equa-

tion (2.3), was tested on the functions

f(t) =


tk, where t > 0, and k = 2, 3, 4

1− et + t3, where t > 0

1 + tγ , where t > 0

(2.7)

to approximate the fractional derivative of order p = 1 − γ at time t = 1 and the value

γ = 0.1, . . . , 0.9. Note the function f(t) = 1 + tγ was chosen here to represent the first

two terms of a Mittag–Leffler function which occur in the separation of variables solution

Equation (1.41), where the derivatives become singular near t = 0 for this function.

The error is plotted as a function of ∆t on double logarithmic scale plot given in Figures 2.1

– 2.5. From these results which we see, as ∆t is decreased, the error decreases for each

value of γ. We also note the error decreases in magnitude as the value of γ increases for

a fixed ∆t value. This is also reflected in the results shown in Table 2.1, for example

in case f(t) = t2 the maximum error occurs where γ = 0.1 which is 8.598 × 10−3, and

the minimum error occurs where γ = 0.9 which is 9.444 × 10−4. Also for the functions

f(t) = t3, t4, and 1 − et + t3 the maximum error occurs for γ = 0.1 and the minimum

error occurs for γ = 0.9. But for function f(t) = 1 + tγ we see the minimum error occurs

for γ = 0.9 and the maximum error occurs for γ = 0.4. As shown in the Figures 2.1 – 2.5,

the slope of the lines matches asymptotically the slope of 1 of the dashed lines shown in

each figure indicating a first order approximation.
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Figure 2.1: (Color online) The absolute error in using the GL scheme to evaluate the fractional

derivative of order 1 − γ for the function f(t) = t2 at time t = 1.0. Results are shown for

γ = 0.1, . . . , 0.9 where γ increases in the direction of the arrow and dashed lines show lines of

slop γ for comparison.

Figure 2.2: (Color online) The absolute error in using the GL scheme for the fractional

derivative of order 1 − γ of the function f(t) = t3 at time t = 1.0. Results are shown for

γ = 0.1, . . . , 0.9 where γ increases in the direction of the arrow, and dashed lines show lines

of slop γ for comparison.



2.2 Grünwald–Letnikov Scheme 26

Figure 2.3: (Color online) The absolute error in using the GL scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = t4 at the time t = 1.0. Results are shown for

γ = 0.1, . . . , 0.9 where γ increases in the direction of the arrow and dashed lines show lines of

slop γ for comparison.

Figure 2.4: (Color online) The absolute error in using the GL scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = 1− et + t3, where γ = 0.1, . . . , 0.9 and time

t = 1.0. The value γ increases in the direction of the arrow and dashed lines show lines of

slop γ for comparison.
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Figure 2.5: (Color online) The absolute error in using the GL scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = 1 + tγ at the time t = 1.0 for γ = 0.1, . . . , 0.9,

where γ increases in the direction of the arrow. Dashed lines show lines of slop γ for compar-

ison.

Table 2.1: The comparison of the absolute error in evaluating the fractional derivative of order

1 − γ for the functions f(t), Equation (2.7), at time t = 1.0 by using the GL scheme where

γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ f(t) = t2 f(t) = t3 f(t) = t4 f(t) = 1− et + t3 f(t) = 1 + tγ

γ = 0.1 8.598e–03 2.338e–02 4.441e–02 1.213e–02 1.600e–04

γ = 0.2 7.917e–03 1.974e–02 3.580e–02 9.608e–03 4.100e–04

γ = 0.3 7.086e–03 1.631e–02 2.830e–02 7.351e–03 5.833e–04

γ = 0.4 6.142e–03 1.313e–02 2.184e–02 5.394e–03 6.395e–04

γ = 0.5 5.124e–03 1.023e–02 1.634e–02 3.754e–03 5.900e–04

γ = 0.6 4.066e–03 7.610e–03 1.169e–02 2.432e–03 4.660e–04

γ = 0.7 2.999e–03 5.284e–03 7.817e–03 1.419e–03 3.075e–04

γ = 0.8 1.950e–03 3.247e–03 4.632e–03 6.940e–04 1.530e–04

γ = 0.9 9.444e–04 1.490e–03 2.053e–03 2.317e–04 4.177e–05

In this thesis we have concentrated on the L1 approximation scheme (Oldham & Spanier

1974) as this scheme is exact for the linear function whereas the Grünwald–Letnikov

approximation scheme is not exact. In the next sections we will give the L1 approximation

and discuss its accuracy.
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2.3 L1 Scheme

The L1 scheme can be used to approximate the fractional derivative of order p with

0 < p ≤ 1. This scheme was originally developed by Oldham & Spanier (1974). In

this method the function f(t) is defined as a piecewise linear, and the Riemann–Liouville

derivative given in Equation (2.1) with n = 1 is written as

dpf(t)

dtp
=

1

Γ(1− p)
d

dt

∫ t

0

f(τ)

(t− τ)p
dτ. (2.8)

The L1 approximation scheme (Oldham & Spanier 1974) is found, after rewriting Equa-

tion (2.8) as

dpf(t)

dtp
=

t−p

Γ(1− p)
f0 +

1

Γ(1− p)

∫ t

0

df(τ)

dτ

dτ

(t− τ)p
. (2.9)

The integral is then split into equally–spaced time points, tk = k∆t (1 ≤ k ≤ j), to give[
dpf(t)

dtp

∣∣∣∣
t=tj

=
t−pj

Γ(1− p)
f0 +

1

Γ(1− p)

j−1∑
k=0

∫ (k+1)∆t

k∆t

df(τ)

dτ

dτ

(tj − τ)p
, (2.10)

where in each interval, k∆t ≤ τ ≤ (k+1)∆t the derivative is then assumed to be constant

and is approximated by a first order finite difference approximation. The approximation

is then given as[
dpf(t)

dtp

∣∣∣∣
t=tj

≈
t−pj

Γ(1− p)
f0 +

1

Γ(1− p)

j−1∑
k=0

(fk+1 − fk)
∆t

∫ (k+1)∆t

k∆t
(tj − τ)p, (2.11)

which after evaluation of the integral, gives the L1 approximation scheme[
dpf(t)

dtp

∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

{
(1− p)
jp

f0 +

j−1∑
k=0

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p]} .

(2.12)

Langlands & Henry (2005) used the L1 scheme to approximate the fractional derivative

to develop the implicit method to solve fractional subdiffusion equation. We will follow

their approach to evaluate the accuracy of the L1 scheme in Section 2.4.

The L1 scheme in Equation (2.12) can be rewritten as[
dpf(t)

dtp

∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

[
(1− p)
jp

f0 +

j∑
k=0

νj−kf(k∆t)

]
, (2.13)
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where the weight νl is defined by

νl =


1 if l = 0,

(j − 1)1−p − j1−p if l = j,

(l − 1)1−p − 2l1−p + (l + 1))1−p if 1 ≤ l ≤ j − 1.

(2.14)

To evaluate the L1 approximation of the functions f(t) = 1 and f(t) = t at time tj , we

need the following Lemmas to show the accuracy of the L1 scheme.

Lemma 2.3.1. Given the weights νj−k defined in Equation (2.14), and j ≥ n, we have

1.
j∑

k=n

νj−k = (j − (n− 1))1−p − (j − n)1−p, if n ≥ 1, and

2.
j∑

k=n

νj−k = 0, if n = 0.

Proof. For n ≥ 1 using the definition of the weights in Equation (2.14), we have

j∑
k=n

νj−k =

j−1∑
k=n

νj−k + ν0

=

j−1∑
k=n

[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p

]
+ 1

=

j∑
k=n+1

(j − k)1−p − 2

j−1∑
k=n

(j − k)1−p +

j−2∑
k=n−1

(j − k)1−p + 1

= 1 +

j−2∑
k=n+1

(j − k)1−p − 2(j − n)1−p − 2− 2

j−2∑
k=n+1

(j − k)1−p

+ (j − (n− 1))1−p + (j − n)1−p +

j−2∑
k=n+1

(j − k)1−p + 1

= (j − (n− 1))1−p − (j − n)1−p. (2.15)

Hence result (1) holds.

For n = 0 and using Equation (2.15) with n = 1 we have

j∑
k=0

νj−k = (j − 1)1−p − j1−p +

j∑
k=1

νj−k

= (j − 1)1−p − j1−p +
(
j1−p − (j − 1)1−p)

= 0. (2.16)

There for the second result (2) also holds.
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Lemma 2.3.2. Given the weights νj−k defined in Equation (2.14), with j ≥ n, we have

1.
j∑

k=n

kνj−k = n(j − (n− 1))1−p − (n− 1)(j − n))1−p, if n ≥ 1, and

2.
j∑

k=n

kνj−k = j1−p, if n = 0.

Proof. For n ≥ 1 using the definition of the weights in Equation (2.14), we have

j∑
k=n

kνj−k =

j−1∑
k=n

kνj−k + jν0

=

j−1∑
k=n

k(j − (k + 1))1−p − 2

j−1∑
k=n

k(j − k)1−p +

j−1∑
k=n

k(j − (k − 1))1−p + j

=

j∑
k=n+1

(k − 1)(j − k)1−p − 2

j−1∑
k=n

k(j − k)1−p +

j−2∑
k=n−1

(k + 1)(j − k)1−p + j

=

j∑
k=n+1

k(j − k)1−p − 2

j−1∑
k=n

k(j − k)1−p +

j−2∑
k=n−1

k(j − k)1−p

+

j−2∑
k=n−1

(j − k)1−p −
j∑

k=n+1

(j − k)1−p + j

= (j − 1) +

j−2∑
k=n+1

k(j − k)1−p − 2n(j − n)1−p − 2(j − 1)− 2

j−2∑
k=n+1

k(j − k)1−p

+ (n− 1)(j − (n− 1))1−p + n(j − n)1−p +

j−2∑
k=n+1

k(j − k)1−p + (j − (n− 1))1−p

+ (j − n)1−p +

j−2∑
k=n+1

(j − k)1−p −
j−2∑

k=n+1

(j − k)1−p − 1 + j

= −n(j − n)1−p + (n− 1)(j − (n− 1))1−p + (j − (n− 1))1−p + (j − n)1−p

= n(j − (n− 1))1−p − (n− 1)(j − n)1−p. (2.17)

Hence result (1) holds. To show the second result we have

j∑
k=0

kνj−k = 0 +

j∑
k=1

kνj−k. (2.18)

By using Equation (2.17) with n = 1 gives

j∑
k=0

kνj−k = j1−p, (2.19)

and so result (2) also holds.
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2.4 Accuracy of the L1 Scheme

In this section the accuracy of L1 scheme, in Equation (2.12), is estimated at t = tj . To

do this we follow the approach of Langlands & Henry (2005) by assuming f(t) can be

expanded in Taylor series around t = 0 with an integral remainder term, that is

f(t) = f(0) + tf ′(0) +

t∫
0

f ′′(τ)(t− τ)dτ. (2.20)

Now taking the fractional derivative of Equation (2.20) with respect to the t, and then

evaluating at time t = tj we find

[
dpf(t)

dtp

∣∣∣∣
t=tj

= f(0)

[
dp(1)

dtp

∣∣∣∣
t=tj

+ f ′(0)

[
dp(t)

dtp

∣∣∣∣
t=tj

+

 dp
dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
t=tj

= f(0)
t−pj

Γ (1− p)
+ f ′(0)

t1−pj

Γ (2− p)
+
dp

dtp

 tj∫
0

f ′′(τ)(tj − τ)dτ

 . (2.21)

To evaluate the last term in Equation (2.21) we use the following result in Podlubny

(1998), for the fractional derivative of a convolution

dp

dtp

t∫
0

K(t− τ)f(τ)dτ =

t∫
0

dpK(τ)

dτp
f(t− τ)dτ + lim

τ→+0
f(t− τ)

dp−1K(τ)

dτp−1
. (2.22)

Then the fractional derivative of the last term in Equation (2.21) takes the form dp
dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
t=tj

=

tj∫
0

dp(τ)

dτp
f ′′(tj − τ)dτ + lim

τ→+0
f ′′(tj − τ)

dp−1(τ)

dτp−1
.

(2.23)

The limit in the last term on the right of Equation (2.23) is zero if 0 < p < 1. Changing

the integration variable in the integral on the right hand side by setting s = tj − τ , and

so ds = −dτ , we then find dp
dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
t=tj

=

tj∫
0

dp(tj − s)
dsp

f ′′(s) ds

=

tj∫
0

f ′′(s)
(tj − s)1−p

Γ(2− p)
ds. (2.24)
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The exact value of the fractional derivative of f(t) in Equation (2.21) is then given by

[
dpf(t)

dtp

∣∣∣∣
t=tj

= f0

t−pj
Γ (1− p)

+ f ′(0)
t1−pj

Γ (2− p)
+

tj∫
0

f ′′(s)
(tj − s)1−p

Γ(2− p)
ds. (2.25)

The accuracy of the L1 scheme can now be determined by comparing the exact value

with the value obtained from the L1 approximation. Thus we need to evaluate the L1

fractional approximation operating on the functions 1, t, and the convolution integral in

Equation (2.20). Now we evaluate the L1 approximation of the function f(t) = 1 at time

tj , which is given by[
dp(1)

dtp

∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

[
(1− p)
jp

(1) +

j∑
k=0

νj−k(1)

]
, (2.26)

which, using Lemma 2.3.1 with n = 0, simplifies to[
dp(1)

dtp

∣∣∣∣j
L1

=
∆t−p

Γ(2− p)
(1− p)j−p =

(j∆t)−p

Γ(1− p)
=

t−pj
Γ(1− p)

. (2.27)

The L1 approximation for function f(t) = t at time tj is[
dp(t)

dtp

∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

[
(1− p)
jp

(0) +

j∑
k=0

νj−kk∆t

]
=

∆t1−p

Γ(2− p)

j∑
k=0

kνj−k. (2.28)

Using Lemma 2.3.2 with n = 0, we then have the result[
dp(t)

dtp

∣∣∣∣j
L1

=
∆t−p

Γ(2− p)
j1−p =

(j∆t)1−p

Γ (2− p)
=

t1−pj

Γ (2− p)
. (2.29)

We note here the results for f(t) = 1 and f(t) = t are exact for the L1 scheme.

Now applying the L1 approximation to the convolution integral in Equation (2.20) gives

[
dp

dtp

(∫ t

0
f ′′(s)(t− s)ds

)∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

(1− p)j−p lim
t→0

t∫
0

f ′′(s)(t− s)ds

+

j∑
k=0

νj−k

k∆t∫
0

f ′′(s)(k∆t− s)ds

 . (2.30)

The limit in the first term on the right of Equation (2.30) is zero if f ′′(t) is a well–behaved

function of t. Now by dividing the interval into equal ∆t steps, we then have

[
dp

dtp

(∫ t

0
f ′′(s)(t− s)ds

)∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

j∑
k=1

νj−k

k−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)(k∆t− s)ds. (2.31)
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Interchanging the order of summation and simplifying, we then have the L1 approximation

of fractional derivative of the convolution integral

[
dp

dtp

(∫ t

0
f ′′(s)(t− s)ds

)∣∣∣∣j
L1

=
∆t−p

Γ(2− p)

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

νj−k(k∆t− s)ds. (2.32)

Now using Lemmas 2.3.1 and 2.3.2 with n = l + 1, we can evaluate the summation

j∑
k=l+1

νj−k (k∆t− s) = (j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s). (2.33)

Letting

Lj,l,p(s) = (j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s), (2.34)

then the L1 approximation of f(t) in Equation (2.20) becomes

[
dpf(t)

dtp

∣∣∣∣j
L1

= f0

t−pj
Γ(1− p)

+ f ′(0)
t1−pj

Γ(2− p)
+

∆t−p

Γ(2− p)

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)Lj,l,p(s)ds. (2.35)

The value of the L1 approximation in Equation (2.35) can now be compared with the

exact value of the fractional derivative given by Equation (2.21). The absolute error can

now be evaluated as∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ =

∣∣∣∣∣∣∣f0

t−pj
Γ (1− p)

+ f ′(0)
t1−pj

Γ (2− p)
+

 t∫
0

f ′′(s)
(t− s)1−p

Γ(2− p)
ds

∣∣∣∣∣∣
t=tj

−f0

t−pj
Γ (1− p)

− f ′(0)
t1−pj

Γ (2− p)
− ∆t−p

Γ (2− p)

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)Lj,l,p(s)ds

∣∣∣∣∣∣∣ , (2.36)

which simplifies to∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ =
1

Γ (2− p)

∣∣∣∣∣∣∣
j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)
[
(tj − s)1−p −∆t−pLj,l,p(s)

]
ds

∣∣∣∣∣∣∣ .
(2.37)

Then Equation (2.37) can be written as follows∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ ≤ 1

Γ (2− p)

j−1∑
l=0

(l+1)∆t∫
l∆t

|f ′′(s)|
∣∣(tj − s)1−p −∆t−pLj,l,p(s)

∣∣ ds,
(2.38)
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since ∣∣∣∣∣∣
b∫
a

f(x)g(x)dx

∣∣∣∣∣∣ ≤
b∫
a

|f(x)| |g(x)| dx. (2.39)

Now we let the maximum absolute value of the second derivative in the interval

[l∆t, (l + 1)∆t] be given by

Ml = max
l∆t≤s≤(l+1)∆t

∣∣f ′′(s)∣∣ , (2.40)

then Equation (2.38) becomes

∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ ≤ 1

Γ (2− p)

j−1∑
l=0

Ml

(l+1)∆t∫
l∆t

∣∣(tj − s)1−p −∆t−pLj,l,p(s)
∣∣ ds.
(2.41)

It is shown in Appendix B.1 that the term (tj − s)1−p −∆t−pLj,l,p(s) is positive and so

we can drop the absolute sign. Evaluating the integral in Equation (2.41), we have

(l+1)∆t∫
l∆t

(tj − s)1−p ds =
∆t2−p

2− p

[
(j − l)2−p − (j − (l + 1))2−p

]
, (2.42)

and

(l+1)∆t∫
l∆t

Lj,l,s(p)ds =

(l+1)∆t∫
l∆t

[
(j − l)1−p ((l + 1)∆t− s)− (j − (l + 1))1−p (l∆t− s)

]
ds

=

(l+1)∆t∫
l∆t

[
(j − l)1−p (l + 1)∆t− (j − (l + 1))1−p (l∆t)

]
ds

−
(l+1)∆t∫
l∆t

[
(j − l)1−p − (j − (l + 1))1−p

]
s ds

=
∆t2

2

[
(j − l)1−p − (j − (l + 1))1−p

]
. (2.43)

Inserting these results in Equation (2.41), we obtain∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ ≤ ∆t2−p

(2− p)Γ (2− p)

j−1∑
l=0

Ml

[
(j − l)2−p − (j − (l + 1))2−p

−2− p
2

[
(j − l)1−p − (j − (l + 1))1−p

]]
. (2.44)
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Let M = max ({Mi; i = 0, 1, 2, ..., j}), and then simplifying Equation (2.44) gives∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ (2.45)

≤ M∆t2−p

Γ(3− p)

j−1∑
l=0

[
(j − l)1−p

(
j − l − 2− p

2

)
− (j − (l + 1))1−p

(
j − l − 1 +

2− p
2

)]
,

which can be rewritten as∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ ≤ M∆t2−p

Γ(3− p)

j∑
l=1

[
l1−p

(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)]
.

(2.46)

We then evaluate the summation as

j∑
l=1

[
l1−p

(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)]

=

j∑
l=1

l1−p
(
l − 1 +

p

2

)
−

j−1∑
l=0

l1−p
(
l + 1− p

2

)

= j1−p
(
j − 1 +

p

2

)
+

j−1∑
l=1

l1−p
(
l − 1 +

p

2

)
−

j−1∑
l=1

l1−p
(
l + 1− p

2

)

= j1−p
(
j − 1 +

p

2

)
+ (p− 2)

j−1∑
l=1

l1−p

=
1

2

[
j1−p (2j − (2− p))− 2(2− p)

j−1∑
l=1

l1−p

]
. (2.47)

The estimate error is then given by∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ ≤ C∆t2−p, (2.48)

where C is constant

C =
Mϑ(j, p)

2Γ(3− p)
(2.49)

and ϑ(j, p) is defined by

ϑ(j, p) = j1−p (2j − (2− p))− 2(2− p)
j−1∑
l=1

l1−p. (2.50)

In Equation (2.50), we have ϑ(j, 0) = 0 and ϑ(j, 1) = 1. If 0 < p ≤ 1 then ϑ(j, p) is

bounded 0 ≤ ϑ(j, p) ≤ 1 as shown in Figure. 2.6. Furthermore in Appendix B.3 it can be

shown the sum in Equation (2.46) is bounded. Using Equation (B.26) we find ϑ(j, p) is

bounded above by

ϑ(j, p) ≤ p

2
ζ (1 + p, 1) , (2.51)
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where ζ (1 + p, 1) is the Hurwitz Zeta function (Apostol et al. 1951). This is the same

bound given by Langlands & Henry (2005). Hence the error is bounded by a constant

independent of t and so shows the L1 approximation scheme is of order O(∆t2−p) for

function that can be expanded as in Equation (2.20).

Figure 2.6: (Color online) The value of ϑ(j, p) in Equation (2.50) is shown versus p for

varying number of time steps j = 10, 102, . . . , 106, where j increases in the direction of the

arrow. These results show ϑ(j, p) is bounded above by 1.

The estimate of the accuracy of the L1 scheme was tested on the functions given by

Equation (2.7), with p = 1− γ with γ = 0.1, . . . , 0.9. The error is plotted as a function of

∆t on double logarithmic scale plot given in Figures 2.7 – 2.11. We see as ∆t is decreased

the error decreases for each value of p as expected. In these figures we note the error

decreases in magnitude as γ increases for a fixed ∆t value. This is also seen in the results

shown in Table 2.2.

As shown in the Figures 2.7 – 2.11, the slope of the lines match asymptotically the slope

of 1 + γ of the dashed lines shown in the figure as expected.
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Figure 2.7: (Color online) The absolute error in using the L1 scheme to evaluate the fractional

derivative of order 1− γ on the function f(t) = t2 at time t = 1.0 given for γ = 0.1, . . . , 0.9.

Note γ increases in the direction of the arrow and the dashed lines show lines of slope 1 + γ

for comparison.

Figure 2.8: (Color online) The absolute error, ε, in the L1 approximation of the fractional

derivative of order 1− γ on the function f(t) = t3 at time t = 1.0 given for γ = 0.1, . . . , 0.9.

Note γ increases in the direction of the arrow. Dashed lines show lines of slope 1 + γ for

comparison.



2.4 Accuracy of the L1 Scheme 38

Figure 2.9: (Color online) The absolute error in using the L1 scheme to evaluate the fractional

derivative of order 1 − γ for the function f(t) = t4. Results are shown for γ = 0.1, . . . , 0.9

at the time t = 1.0 and γ increases in the direction of the arrow. Dashed lines show lines of

slope 1 + γ for comparison.

Figure 2.10: (Color online) The absolute error in using the L1 scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = 1− et + t3, where γ = 0.1, . . . , 0.9 and time

t = 1.0. Note γ increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + γ for comparison.
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Figure 2.11: (Color online) The absolute error in using the L1 scheme to evaluate the fractional

derivative of order 1 − γ for the function f(t) = 1 + tγ at the time t = 1.0. The results are

shown for γ = 0.1, . . . , 0.9, and γ increases in the direction of the arrow. Dashed lines show

lines of slope 1 + γ for comparison.

In Table 2.2 we see that the maximum error occurs where γ = 0.1 for f(t) = t2 of

magnitude 4.98× 10−3 and the minimum error occurs when γ = 0.9 which is 1.4× 10−5.

Also, for the functions f(t) = t3, t4, 1−et+ t3 and 1+ tγ the maximum error again occurs

where γ = 0.1 and the minimum error occurs where γ = 0.9.

Table 2.2: The comparison of the absolute error in the L1 approximation of the fractional

derivative of order p = 1 − γ of the function f(t), given by Equation (2.7), at time t = 1.0

where γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ f(t) = t2 f(t) = t3 f(t) = t4 f(t) = 1− et + t3 f(t) = 1 + tγ

γ = 0.1 4.982e–03 1.489e–02 2.966e–02 8.141e–03 4.519e–04

γ = 0.2 2.702e–03 8.057e–03 1.603e–02 4.406e–03 4.366e–04

γ = 0.3 1.448e–03 4.307e–03 8.553e–03 2.354e–03 3.082e–04

γ = 0.4 7.665e–04 2.269e–03 4.492e–03 1.239e–03 1.871e–04

γ = 0.5 3.989e–04 1.172e–03 2.310e–03 6.396e–04 1.018e–04

γ = 0.6 2.025e–04 5.883e–04 1.152e–03 3.205e–04 4.980e–05

γ = 0.7 9.836e–05 2.812e–04 5.458e–04 1.528e–04 2.120e–05

γ = 0.8 4.359e–05 1.218e–04 2.336e–04 6.590e–05 7.150e–06

γ = 0.9 1.494e–05 4.049e–05 7.641e–05 2.180e–05 1.370e–06



2.4 Accuracy of the L1 Scheme 40

We verify the accuracy of the approximate scheme by computing the absolute error be-

tween the exact value of the fractional derivative and the estimate value of the fractional

derivative by using

e∞(∆t) =

∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣M − [ dpdtp f(t)

∣∣∣∣M
Ap

∣∣∣∣∣ . (2.52)

Numerical accuracy is studied for γ = 0.1, . . . , 0.9, and the approximate order of conver-

gence in ∆t, R̂, was estimated by computing

R̂ = log2[e∞(2∆t)/e∞(∆t)]. (2.53)

In Table 2.3, the error and order of convergence estimate are given for the fractional

derivative of order 1 − γ for the function f(t) = 1 + tγ by using Equations (2.52) and

(2.53) for the L1 scheme. The results are shown for time t = 1.0, it can be seen numerically

that the L1 scheme is of order O(∆t1+γ).

Table 2.3: Numerical accuracy in ∆t of the L1 scheme applied to the function f(t) = 1 + tγ ,

and R̂ is order of convergence.

γ = 0.1 γ = 0.2 γ = 0.3

∆t e∞(∆t) R̂ e∞(∆t) R̂ e∞(∆t) R̂

1/1000 3.960e–05 – 3.065e–05 – 1.734e–05 –

1/2000 1.847e–05 1.1 1.334e–05 1.2 7.038e–06 1.3

1/4000 8.613e–06 1.1 5.802e–06 1.2 2.857e–06 1.3

1/8000 4.018e–06 1.1 2.525e–06 1.2 1.160e–06 1.3

1/16000 1.874e–06 1.1 1.099e–06 1.2 4.710e–07 1.3

γ = 0.4 γ = 0.5 γ = 0.6

1/1000 8.454e–06 – 3.710e–05 – 1.474e–06 –

1/2000 3.201e–06 1.4 1.311e–06 1.5 4.872e–07 1.6

1/4000 1.212e–06 1.4 4.636e–07 1.5 1.610e–07 1.6

1/8000 4.593e–07 1.4 1.639e–07 1.5 5.316e–08 1.6

1/16000 1.740e–07 1.4 5.795e–08 1.5 1.755e–08 1.6

γ = 0.7 γ = 0.8 γ = 0.9

1/1000 5.165e–07 – 1.460e–07 – 2.402e–08 –

1/2000 1.601e–07 1.7 4.271e–08 1.8 6.683e–09 1.9

1/4000 4.959e–08 1.7 1.246e–08 1.8 1.853e–09 1.9

1/8000 1.534e–08 1.7 3.66e–09 1.8 5.115e–10 1.9

1/16000 4.739e–09 1.7 1.054e–09 1.8 1.412e–10 1.9
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2.5 Modification of the L1 Scheme

In this section, we consider three modifications of the L1 scheme: the C1 scheme, the

C2 scheme, and the C3 scheme. We will discuss the development of these schemes in the

next sections and we will show the accuracy of each of these methods.

2.5.1 C1 Scheme

In this subsection, we modify the L1 scheme given by Equation (2.9) to estimate the

fractional derivative at time t = tj . We will refer to this method as the C1 scheme. The

Riemann–Liouville derivative is first rewritten as given in Equation (2.9)

dpf(t)

dtp
=

t−p

Γ(1− p)
f0 +

1

Γ(1− p)

∫ t

0

df(τ)

dτ

dτ

(t− τ)p
. (2.54)

Then the integral is split into equally–spaced time points, tk = k∆t (1 ≤ k ≤ j). As

in Figure 2.12 where, in each interval, the integral over (k − 1)∆t ≤ τ ≤ (k + 1)∆t is

repeated twice, except for the integral over the intervals [0,∆t] and [(j − 1)∆t, j∆t]. We

add the integral over these two regions and then take half of the integral to approximate

the integral in Equation (2.54).

Figure 2.12: Intervals used to evaluate the integral in Equation (2.54).
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Then the first modification of the L1 approximation, the C1 approximation scheme, is

then given by[
dpf(t)

dtp

∣∣∣∣
C1

=
t−pj

Γ(1− p)
f0 +

1

2Γ(1− p)

{
j−1∑
k=1

∫ (k+1)∆t

(k−1)∆t

df(τ)

dτ

dτ

(tj − τ)p

+

∫ ∆t

0

df(τ)

dτ

dτ

(tj − τ)p
+

∫ j∆t

(j−1)∆t

df(τ)

dτ

dτ

(tj − τ)p

}
. (2.55)

In the L1 scheme the approximation of the first derivative was based on first order differ-

ence scheme. However it should be noted the approximation

f ′(τ) ≈ fk+1 − fk
∆τ

, (2.56)

is second–order accurate if considered at the midpoint τ = tk−1/2 = 1
2 (tk + tk−1) and an

approximation of the form∫ 1

0
f ′(τ)w(τ)dτ ≈

M∑
k=1

fk − fk−1

∆τ

∫ tk

tk−1

w(τ)dτ, (2.57)

will also be second–order accurate if f ′′′(t) is bounded.

In our modification we use a second–order accurate finite difference approximation over

the intervals (k − 1)∆t ≤ τ ≤ (k + 1)∆t and the first–order accurate finite difference

approximation over the intervals [0,∆t] and [(j − 1)∆t, j∆t]. The approximation is then

given by[
dpf(t)

dtp

∣∣∣∣
C1

=
t−pj

Γ(1− p)
f0 +

1

2Γ(1− p)

{(
f (∆t)− f0

∆t

)∫ ∆t

0

dτ

(tj − τ)p
(2.58)

+

j−1∑
k=1

(
f ((k + 1) ∆t)− f ((k − 1) ∆t)

2∆t

)∫ (k+1)∆t

(k−1)∆t

dτ

(tj − τ)p

+

(
f (j∆t)− f ((j − 1) ∆t)

∆t

)∫ j∆t

(j−1)∆t

dτ

(tj − τ)p

}
.

Evaluating the integrals, we then have[
dp

dtp
f(t)

∣∣∣∣j
C1

=
t−pj

Γ(1− p)
f (0) +

1

2Γ(1− p)

{
(2.59)

∆t−p

2(1− p)

j−1∑
k=1

[f ((k + 1) ∆t)− f ((k − 1) ∆t)]
[
(j − (k − 1))1−p − (j − (k + 1)∆t)1−p

]
+

∆t−p

(1− p)
[f (∆t)− f (0)]

[
j1−p − (j − 1)1−p

]
+

∆t−p

1− p
[f (j∆t)− f ((j − 1) ∆t)]

}
,
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which can be rewritten in the form[
dpf(t)

dtp

∣∣∣∣j
C1

=
(∆t)−p

2Γ (2− p)

{
β∗j (p)f0 + αj(p)f1 + (fj − fj−1) +

j−1∑
k=1

µ∗j−k(p) (fk+1 − fk−1)

}
.

(2.60)

For j > 1, Equation (2.60) becomes[
dpf(t)

dtp

∣∣∣∣j
C1

=
∆t−p

2Γ(2− p)

[
β∗j (p)f0 +

j−1∑
k=0

Aj−k(p)fk+1 +

j∑
k=1

Bj−k(p)fk−1

]
, (2.61)

where the weights are defined by

Aj−k(p) =


αj(p) if k = 0,

1 + 1
221−p if k = j − 1,

1
2

[
(j − k + 1)1−p − (j − k − 1)1−p

]
if 1 ≤ k ≤ j − 2,

(2.62)

Bj−k(p) =


−1 if k = j,

−1
2

[
(j − k + 1)1−p − (j − k − 1)1−p

]
if 1 ≤ k ≤ j − 1,

(2.63)

αj(p) = j1−p − (j − 1)1−p, (2.64)

and

β∗j (p) = 2(1− p)j−p − αj . (2.65)

As before we denote the function value at t = k∆t as

fk = f (k∆t) . (2.66)

In Section 2.6.1, the accuracy of the C1 approximation scheme will be evaluated, before

that though we need the following Lemmas.

Lemma 2.5.1. Given the weights Aj−k(p) defined in Equation (2.62) and for j ≥ n ≥ 1,

we have

1.
j−1∑
k=n

Aj−k(p) = 1
2

[
(j − (n− 1)1−p + (j − n)1−p + 1

]
,

2.
j−1∑
k=n

kAj−k(p) = −1+ 1
2

[
n(j−(n−1))1−p+(n−1)(j−n)1−p+j+2

∑j−1
k=n(j−k)1−p

]
.
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Proof. Using the definition in Equation (2.62), we have

j−1∑
k=n

Aj−k(p) = 1 +
1

2
21−p +

1

2

j−2∑
k=n

[
(j − (k − 1))1−p − (j − (k + 1))1−p]

= 1 +
1

2
21−p +

1

2

[
j−3∑

k=n−1

(j − k)1−p −
j−1∑

k=n+1

(j − k)1−p

]

= 1 +
1

2
21−p +

1

2

[
(j − (n− 1))1−p + (j − n)1−p − 1− 21−p]

=
1

2

[
(j − (n− 1))1−p + (j − n)1−p + 1

]
. (2.67)

Then the first result (1) holds.

To show the second result, with Equation (2.62), we have

j−1∑
k=n

kAj−k(p) = (j − 1)

(
1 +

1

2
21−p

)
+

1

2

j−2∑
k=n

k
[
(j − (k − 1))1−p − (j − (k + 1))1−p]

= (j − 1)
(
1 + 2−p

)
+

1

2

[
j−3∑

k=n−1

(k + 1)(j − k)1−p −
j−1∑

k=n+1

(k − 1)(j − k)1−p

]

= (j − 1)
(
1 + 2−p

)
+

1

2

[
n(j − (n− 1))1−p + (n+ 1)(j − n)1−p

−(j − 2)− (j − 3)21−p + 2

j−3∑
k=n+1

(j − k)1−p

]

= −1 +
1

2

[
n(j − (n− 1))1−p + (n− 1)(j − n)1−p + j + 2

j−1∑
k=n

(j − k)1−p

]
.

(2.68)

Hence the second result (2) also holds.

Lemma 2.5.2. Given the weight Bj−k(p) defined in Equation (2.63) and for j ≥ n ≥ 1,

we have

1.
j∑

k=n

Bj−k(p) = −1
2

[
(j − (n− 1))1−p + (j − n)1−p + 1

]
, and

2.
j∑

k=n

kBj−k(p) = −1
2

[
n(j − (n− 1))1−p + (n− 1)(j − n)1−p + j + 2

∑j−1
k=n(j − k)1−p

]
.
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Proof. Similar to Lemma 2.5.1, using the definition in Equation (2.63), we have

j∑
k=n

Bj−k(p) = −1− 1

2

j−1∑
k=n

[
(j − (k − 1))1−p − (j − (k + 1))1−p]

= −1− 1

2

[
j−2∑

k=n−1

(j − k)1−p −
j∑

k=n+1

(j − k)1−p

]

= −1− 1

2

[
(j − (n− 1))1−p + (j − n)1−p − 1

]
= −1

2

[
(j − (n− 1))1−p + (j − n)1−p + 1

]
. (2.69)

Then the first result (1) holds.

Likewise using Equation (2.63), we have

j∑
k=n

kBj−k(p) = j(−1)− 1

2

j−1∑
k=n

k
[
(j − (k − 1))1−p − (j − (k + 1))1−p] (2.70)

= −j − 1

2

[
j−2∑

k=n−1

(k + 1)(j − k)1−p −
j∑

k=n+1

(k − 1)(j − k)1−p

]

= −j − 1

2

[
n(j − (n− 1))1−p + (n+ 1)(j − n)1−p − (j − 2) + 2

j−2∑
k=n+1

(j − k)1−p

]

= −1

2

[
n(j − (n− 1))1−p + (n− 1)(j − n)1−p + j + 2

j−1∑
k=n

(j − k)1−p

]
,

and so the second result (2) also holds.

Corollary 2.5.3. From Lemmas 2.5.1 and 2.5.2, 1 ≤ n ≤ j − 1, we have the following

results

1.
j−1∑
k=n

Aj−k(p) +
j∑

k=n

Bj−k(p) = 0,

2.
j−1∑
k=n

Aj−k(p)−
j∑

k=n

Bj−k(p) = (j − (n− 1))1−p + (j − n)1−p,

3.
j−1∑
k=n

kAj−k(p) +
j∑

k=n

kBj−k(p) = −1, and

4.
j−1∑
k=n

kAj−k(p)−
j∑

k=n

kBj−k(p) = −1 + n(j − (n− 1))1−p + (n− 1)(j − n)1−p

+j + 2
j−1∑
k=n

(j − k)1−p.
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2.5.2 C2 Scheme

In this subsection, we modify the L1 approximation in Equation (2.12), to approximate

the fractional derivative at t = tj+ 1
2

instead of at the time t = tj . Recently a similar

scheme was given by Liu, Li & Liu (2016). As in L1 scheme we begin by rewriting the

Riemann–Liouville derivative, given by Equation (2.1) with n = 1, in the form[
dp

dtp
f(t)

∣∣∣∣
t=t

j+ 1
2

=

[
t−p

Γ(1− p)
f0

∣∣∣∣
t=t

j+ 1
2

+
1

Γ(1− p)

[∫ t

0

df(τ)

dτ
(t− τ)−pdτ

∣∣∣∣
t=t

j+ 1
2

. (2.71)

Next we split the integral into two with one integral over the interval τ ∈ [0, tj ] and the

other over the interval τ ∈ [tj , tj+ 1
2
]

[
dp

dtp
f(t)

∣∣∣∣
t=t

j+ 1
2

=
(tj+ 1

2
)−p

Γ(1− p)
f0 +

1

Γ(1− p)

∫ tj

0

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ

+
1

Γ(1− p)

∫ t
j+ 1

2

tj

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ. (2.72)

We then further split the integral interval τ ∈ [0, tj ] into equally–spaced time steps with

tj = j∆t (1 ≤ j ≤M) to give[
dp

dtp
f(t)

∣∣∣∣
t=t

j+ 1
2

=
(tj+ 1

2
)−p

Γ(1− p)
f0 +

1

Γ(1− p)

j∑
k=1

∫ k∆t

(k−1)∆t

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ (2.73)

+
1

Γ(1− p)

∫ (j+ 1
2

)∆t

j∆t

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ.

In each interval, the integer–order time derivative, as in Oldham & Spanier (1974), is

then approximated using a first-order finite difference approximation

[
dp

dtp
f(t)

∣∣∣∣
t=t

j+ 1
2

≈
(tj+ 1

2
)−p

Γ(1− p)
f0 +

f
(
tj+ 1

2

)
− f (tj)

Γ(1− p)1
2∆t

∫ (j+ 1
2

)∆t

j∆t

(
tj+ 1

2
− τ
)−p

dτ

+
1

Γ(1− p)

j∑
k=1

(
f(tk)− f(tk−1)

∆t

)∫ k∆t

(k−1)∆t

(
tj+ 1

2
− τ
)−p

dτ, (2.74)

which after simplifying can be written in the form[
dpf(t)

dtp

∣∣∣∣j+ 1
2

C2

=
∆t−p

Γ(2− p)

{
β̃j(p)f0 + 2

(
1

2

)1−p (
f
(
tj+ 1

2

)
− f (tj)

)
+

j∑
k=1

µ̃j−k(p) (f (tk)− f (tk−1))

}
, (2.75)
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where the weights are defined by

β̃j(p) = (1− p)
(
j +

1

2

)−p
, (2.76)

and

µ̃j(p) =

(
j +

3

2

)1−p
−
(
j +

1

2

)1−p
. (2.77)

We refer to the modified method given in Equations (2.75) – (2.77) as the C2 scheme.

The scheme can be written as[
dpf(t)

dtp

∣∣∣∣j+ 1
2

C2

=
t−p
j+ 1

2

Γ(1− p)
f0 +

∆t−p

Γ(2− p)

j∑
k=0

ν̃j−kfk +
2
(

1
2

)1−p
∆t−p

Γ(2− p)
fj+ 1

2
, (2.78)

with the weights ν̃l is defined by

ν̃l =



(
l − 1

2

)1−p − (l + 1
2

)1−p
if l = j,(

3
2

)1−p − 3
(

1
2

)1−p
if l = 0,(

l + 3
2

)1−p − 2
(
l + 1

2

)1−p
+
(
l − 1

2

)1−p
if 1 ≤ l ≤ j − 1.

(2.79)

In Section 2.6.2, the accuracy of the C2 approximation scheme will be evaluated. The

following Lemmas will be used in that process.

Lemma 2.5.4. Given the weights ν̃l defined in Equation (2.79), and j ≥ n, we have

1.
j∑

k=0

ν̃j−k = −2
(

1
2

)1−p
, and

2.
j∑

k=n

ν̃j−k = −2
(

1
2

)1−p
+
(
j − (n− 1) + 1

2

)1−p − (j − (n− 1)− 1
2

)1−p
, if n ≥ 1 .

Proof. For the case n ≥ 1, using the definition of the weights in Equation (2.79), we have

j∑
k=n

ν̃j−k =

j−1∑
k=n

ν̃j−k + ν̃0

=

j−1∑
k=n

[(
j − k +

3

2

)1−p
− 2

(
j − k +

1

2

)1−p
+

(
j − k − 1

2

)1−p
]

+

(
3

2

)1−p
− 3

(
1

2

)1−p

=

j−1∑
k=n

(
j − (k − 1) +

1

2

)1−p
−

j−1∑
k=n

(
j − k +

1

2

)1−p

−

[
j−1∑
k=n

(
j − (k − 1)− 1

2

)1−p
−

j−1∑
k=n

(
j − k − 1

2

)1−p
]

+

(
3

2

)1−p
− 3

(
1

2

)1−p

= −2

(
1

2

)1−p
+

(
j − (n− 1) +

1

2

)1−p
−
(
j − (n− 1)− 1

2

)1−p
. (2.80)
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Hence the second result (2) holds.

To show the first result also holds we have, from Equation (2.79),

j∑
k=0

ν̃j−k = ν̃0 +

j∑
k=1

ν̃j−k

=

(
j − 1

2

)1−p
−
(
j +

1

2

)1−p
+

j∑
k=1

ν̃j−k, (2.81)

which by using Equation (2.80) with n = 1, gives

j∑
k=0

ν̃j−k =

(
j − 1

2

)1−p
−
(
j +

1

2

)1−p
− 2

(
1

2

)1−p
+

(
j +

1

2

)1−p
−
(
j − 1

2

)1−p

= −2

(
1

2

)1−p
. (2.82)

Hence the first result (1) also holds.

Lemma 2.5.5. Given the weights ν̃j−k defined in Equation (2.79), with j ≥ n, we have

1.
j∑

k=0

kν̃j−k =
(
j + 1

2

)1−p − 2
(
j + 1

2

) (
1
2

)1−p
, and

2.
j∑

k=n

kν̃j−k = n
(
j − (n− 1) + 1

2

)1−p − (n− 1)
(
j − n+ 1

2

)1−p − 2
(
j + 1

2

) (
1
2

)1−p
,

if n ≥ 1.

Proof. For n ≥ 1, using the definition of the weights in Equation (2.79), we have

j∑
k=n

kν̃j−k =

j−1∑
k=n

kν̃j−k + jν̃0

=

j−1∑
k=n

k

(
j − (k − 1) +

1

2

)1−p
− 2

j−1∑
k=n

k

(
j − k +

1

2

)1−p
+

j−1∑
k=n

k

(
j − (k + 1) +

1

2

)1−p

+ j

[(
3

2

)1−p
− 3

(
1

2

)1−p
]

=

j−2∑
k=n−1

(k + 1)

(
j − k +

1

2

)1−p
− 2

j−1∑
k=n

k

(
j − k +

1

2

)1−p
+

j∑
k=n+1

(k − 1)

(
j − k +

1

2

)1−p

+ j

[(
3

2

)1−p
− 3

(
1

2

)1−p
]

= n

(
j − (n− 1) +

1

2

)1−p
− (n− 1)

(
j − n+

1

2

)1−p
− 2

(
j +

1

2

)(
1

2

)1−p
, (2.83)
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then result (2) holds.

The first result can also be shown to be true, by using Equation (2.83) with n = 1, to

obtain

j∑
k=0

kν̃j−k = 0 +

j∑
k=1

ν̃j−k =

(
j +

1

2

)1−p
− 2

(
j +

1

2

)(
1

2

)1−p
(2.84)

and so result (1) also holds.

2.5.3 C3 Scheme

In this section another modification of the L1 approximation will be considered by esti-

mating the fractional derivative at time tj+ 1
2
. In similar manner, as in Oldham & Spanier

(1974), we begin by rewriting the Riemann–Liouville derivative in the form given in Equa-

tion (2.71). Unlike the C2 scheme we first split the integral domain in Equation (2.71)

into the two intervals [0, t 1
2
] and [t 1

2
, tj+ 1

2
] instead which gives

[
dpf(t)

dtp

∣∣∣∣
t=t

j+ 1
2

=
t−p
j+ 1

2

Γ(1− p)
f0 +

1

Γ(1− p)

∫ t
j+ 1

2

0

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ

=
t−p
j+ 1

2

Γ(1− p)
f0 +

1

Γ(1− p)

∫ t 1
2

0

df(τ)

dτ

(
tj+ 1

2
− τ
)−p

dτ

+
1

Γ(1− p)

∫ t
j+ 1

2

t 1
2

df(τ)

dτ

(
tj+ 1

2
− τ
)−p

dτ. (2.85)

We then further split the integral interval τ ∈ [t 1
2
, tj+ 1

2
] into equally-spaced time steps

with tj+ 1
2

=
(
j + 1

2

)
∆t (1 ≤ j ≤M) to give

[
dp

dtp
f(t)

∣∣∣∣
t=t

j+ 1
2

=
t−p
j+ 1

2

Γ(1− p)
f0 +

1

Γ(1− p)

j∑
k=1

∫ (k+ 1
2

)∆t

(k− 1
2

)∆t

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ

+
1

Γ(1− p)

∫ 1
2

∆t

0

df(τ)

dτ
(tj+ 1

2
− τ)−pdτ. (2.86)

Again in each interval the integer–order time derivative is then approximated using first

and second–order finite difference approximations[
dp

dtp
f(t)

∣∣∣∣
t=t

j+ 1
2

≈
t−p
j+ 1

2

Γ(1− p)
f0 +

f
(
t 1

2

)
− f(t0)

Γ(1− p)1
2∆t

∫ 1
2

∆t

0

(
tj+ 1

2
− τ
)−p

dτ (2.87)

+
1

Γ(1− p)

j∑
k=1

f
(
tk+ 1

2

)
− f

(
tk− 1

2

)
∆t

∫ (k+ 1
2)∆t

(k− 1
2)∆t

(
tj+ 1

2
− τ
)−p

dτ,
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which after simplifying can be written in the form[
dpf(t)

dtp

∣∣∣∣j+ 1
2

C3

=
∆t−p

Γ(2− p)

{
β̂j(p)f0 + 2α̂j(p)f 1

2
+

j∑
k=1

µ̂j−k(p)
(
fk+ 1

2
− fk− 1

2

)}
, (2.88)

where the weights are defined by

α̂j(p) =

(
j +

1

2

)1−p
− j1−p, (2.89)

β̂j(p) = (1− p)
(
j +

1

2

)−p
− 2α̂j , (2.90)

and

µ̂j(p) = (j + 1)1−p − j1−p. (2.91)

We refer to this modified method, given in Equations (2.88) – (2.91), as the C3 scheme.

The scheme can be written as[
dpf(t)

dtp

∣∣∣∣
C3

=
∆t−p

Γ(2− p)

[
β̂jf0 +

j∑
k=0

ν̂j−kfk+ 1
2

]
, (2.92)

where the weights ν̂l are defined by

ν̂l =


1 if l = j,

2α̂j − (j1−p − (j − 1)1−p if l = 0,

(l + 1)1−p − 2l1−p + (l − 1)1−p if 1 ≤ l ≤ j − 1,

(2.93)

and α̂j and β̂j are as defined in Equations (2.89) and (2.90) respectively. In Section 2.6.3

the accuracy of the C3 approximation scheme will be evaluated, in which we will need

the following two Lemmas.

Lemma 2.5.6. Given the weights ν̂j−k defined in Equation (2.93), and j ≥ n, we have

1.
j∑

k=0

ν̂j−k = 2α̂j , and

2.
j∑

k=n

ν̂j−k = (j − (n− 1))1−p − (j − n)1−p, if n ≥ 1 .
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Proof. For n ≥ 1 using the definition of the weights in Equation (2.93), we have

j∑
k=n

ν̂j−k =

j−1∑
k=n

ν̂j−k + 1

=

j−1∑
k=n

[
(j − (k − 1))1−p − 2 (j − k)1−p + (j − (k + 1))1−p

]
+ 1

=

j−2∑
k=n−1

(j − k)1−p −
j−1∑
k=n

(j − k)1−p −

[
j−1∑
k=n

(j − k)1−p −
j∑

k=n+1

(j − k)1−p

]
+ 1

= (j − (n− 1))1−p − 1− (j − n)1−p + 1

= (j − (n− 1))1−p − (j − n)1−p . (2.94)

Hence result (2) holds. To show the first result, we have

j∑
k=0

ν̂j−k = 2α̂j − (j1−p − (j − 1)1−p) +

j∑
k=1

ν̂j−k, (2.95)

which, by using Equation (2.94) with n = 1, we find

j∑
k=0

ν̂j−k = 2α̂j − (j1−p − (j − 1)1−p) + j1−p − (j − 1)1−p . (2.96)

Then result (1) also holds.

Lemma 2.5.7. Given the weights ν̂j−k defined in Equation (2.93), with j ≥ n, we have

1.
j∑

k=0

kν̂j−k = j1−p, and

2.
j∑

k=n

kν̂j−k = n (j − (n− 1))1−p − (n− 1) (j − n)1−p, if n ≥ 1.
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Proof. For n ≥ 1 using the definition of the weights in Equation (2.93), we have

j∑
k=n

kν̂j−k =

j−1∑
k=n

kν̂j−k + j(1)

=

j−1∑
k=n

k (j − (k − 1))1−p − 2

j−1∑
k=n

k (j − k)1−p +

j−1∑
k=n

k (j − (k + 1))1−p + j

=

j−2∑
k=n−1

(k + 1) (j − k)1−p − 2

j−1∑
k=n

k (j − k)1−p +

j∑
k=n+1

(k − 1) (j − k)1−p + j

=

j−2∑
k=n−1

(k + 1) (j − k)1−p − 2

j−1∑
k=n

(k + 1) (j − k)1−p + 2

j−1∑
k=n

(j − k)1−p

+

j∑
k=n+1

(k + 1) (j − k)1−p − 2

j∑
k=n+1

(j − k)1−p + j

= n (j − (n− 1))1−p + (n+ 1) (j − n)1−p − 2(n+ 1) (j − n)1−p − 2j + 2j + 2 (j − n)1−p

= n (j − (n− 1))1−p − (n− 1) (j − n)1−p . (2.97)

The result (2) holds. Using the previous result with n = 1 to show first part of the lemma,

we have

j∑
k=0

kν̂j−k = 0 +

j∑
k=1

ν̂j−k = j1−p. (2.98)

and so we see result (1) also holds.

2.6 Accuracy of the Modified L1 Schemes

In this section, we consider the accuracy of the modified L1 schemes: the C1 scheme

given in Equations (2.61) – (2.63), the C2 scheme in Equations (2.75) – (2.77), and the

C3 scheme in Equations (2.88) – (2.91). We will discuss the accuracy of each scheme

in the following sections. In each section we assume that f(t), f ∈ C2[0,∞), can be

expanded in Taylor series around t = 0 with an integral remainder term, that is

f(t) = f0 + tf ′(0) +

t∫
0

f ′′(τ)(t− τ)dτ. (2.99)
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2.6.1 Accuracy of the C1 Scheme

In this subsection, we consider the accuracy of the C1 scheme given in Equations (2.61)

– (2.63), where tj = j∆t, and 0 < p < 1. The value of fractional derivative of (2.99) is

given by

dpf(tj)

dtp
= f0

t−pj
Γ (1− p)

+ f ′(0)
t1−pj

Γ (2− p)
+

tj∫
0

f ′′(s)
(tj − s)1−p

Γ(2− p)
ds, (2.100)

as shown previously in Equation (2.25). The accuracy of the C1 scheme can now be

determined by comparing the exact value in Equation (2.100) with the value obtained

using the C1 scheme. Thus we need to evaluate the C1 fractional approximation operating

on the functions 1, t, and the convolution integral in Equation (2.99).

The C1 approximation scheme given by Equations (2.61) – (2.63) of the function f(t) = 1

at time tj , is[
dp(1)

dtp

∣∣∣∣j
C1

=
∆t−p

2Γ(2− p)

[(
2(1− p)j−p − αj(p)

)
(1) +

j−1∑
k=0

Aj−k(p)(1) +

j∑
k=1

Bj−k(p)(1)

]

=
∆t−p

2Γ(2− p)

[(
2(1− p)j−p − αj(p)

)
+ αj(p) +

j−1∑
k=1

Aj−k(p) +

j∑
k=1

Bj−k(p)

]
,

(2.101)

which upon using Corollary 2.5.3 with n = 1, we then have[
dp(1)

dtp

∣∣∣∣j
C1

=
∆t−p

2Γ(2− p)
{

2(1− p)j−p − αj(p) + αj(p) + 0
}

=
∆t−p

2Γ(2− p)
[
2(1− p)j−p

]
=

(j∆t)−p

Γ(1− p)

=
tj
−p

Γ(1− p)
. (2.102)

The C1 scheme’s approximation for function f(t) = t at time tj is[
dp(t)

dtp

∣∣∣∣j
C1

=
∆t−p

2Γ(2− p)

[
β∗j (p)(0) +

j−1∑
k=0

Aj−k(p) (k + 1) ∆t+

j∑
k=1

Bj−k(p) (k − 1) ∆t

]

=
∆t1−p

2Γ(2− p)

[
αj(p) +

j−1∑
k=1

kAj−k(p) +

j∑
k=1

kBj−k(p) +

j−1∑
k=1

Aj−k(p)−
j∑

k=1

Bj−k(p)

]
,

(2.103)
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using Corollary 2.5.3 with n = 1 and Equation (2.64), we obtain[
dp(t)

dtp

∣∣∣∣j
C1

=
∆t1−p

2Γ(2− p)

{(
j1−p − (j − 1)1−p

)
−1 + j1−p + (j − 1)1−p + 1

}
=

∆t1−p

2Γ(2− p)
(
2j1−p)

=
(j∆t)1−p

Γ(2− p)

=
tj

1−p

Γ(2− p)
. (2.104)

Now we apply the C1 scheme’s approximation to the convolution integral
t∫

0

f ′′(s)(t− s)ds

in Equation (2.99) which gives[
dp

dtp

∫ t

0
f ′′(s) (t− s) ds

∣∣∣∣j
C1

=
∆t−p

2Γ (2− p)

β∗j (p) lim
t→0

t∫
0

f ′′(s)(t− s)ds (2.105)

+

j−1∑
k=0

Aj−k(p)

(k+1)∆t∫
0

f ′′(s)((k + 1)∆t− s)ds+

j∑
k=1

Bj−k(p)

(k−1)∆t∫
0

f ′′(s)((k − 1)∆t− s)ds

 .

Note the limit in the first term on the right is zero if f ′′(t) is a well–behaved function of

t and so we have[
dp

dtp

∫ t

0
f ′′(s) (t− s) ds

∣∣∣∣j
C1

=
∆t−p

2Γ (2− p)


j−1∑
k=0

Aj−k(p)

(k+1)∆t∫
0

f ′′(s)((k + 1)∆t− s)ds

+

j∑
k=2

Bj−k(p)

(k−1)∆t∫
0

f ′′(s)((k − 1)∆t− s)ds

 . (2.106)

Now by dividing the integration interval into equal ∆t steps, we then have[
dp

dtp

∫ t

0
f ′′(s) (t− s) ds

∣∣∣∣j
C1

=
∆t−p

2Γ (2− p)


j−1∑
k=0

Aj−k(p)

k∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)((k + 1)∆t− s)ds

+

j∑
k=2

Bj−k(p)

k−2∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)((k − 1)∆t− s)ds

 , (2.107)

and then by changing the order of summation and simplifying, we obtain[
dp

dtp

∫ t

0
f ′′(s) (t− s) ds

∣∣∣∣j
C1

=
∆t−p

2Γ (2− p)


j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j−1∑
k=l

Aj−k(p)((k + 1)∆t− s)ds

+

j−2∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+2

Bj−k(p)((k − 1)∆t− s)ds

 . (2.108)
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Equation (2.108) becomes[
dp

dtp

∫ t

0
f ′′(s) (t− s) ds

∣∣∣∣j
C1

=
∆t−p

2Γ (2− p)

(1 + 2−p
) j∆t∫
(j−1)∆t

f ′′(s)(j∆t− s)ds+

j−2∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)ψl(s)ds

 , (2.109)

where ψl(s) is defined as

ψl(s) =

j−1∑
k=l

Aj−k(p)((k + 1)∆t− s) +

j∑
k=l+2

Bj−k(p)((k − 1)∆t− s). (2.110)

Evaluating ψl(s) we have

ψl(s) =

[
j−1∑
k=l

kAj−k(p) +

j∑
k=l+2

kBj−k(p)

]
∆t+

[
j−1∑
k=l

Aj−k(p)−
j∑

k=l+2

Bj−k(p)

]
∆t

−

[
j−1∑
k=l

Aj−k(p) +

j∑
k=l+2

Bj−k(p)

]
s

=
∆t

2

[
l
(
(j − (l − 1))1−p − (j − (l + 1))1−p)+ (l + 1)

(
(j − l)1−p − (j − (l + 2))1−p)]

+
∆t− s

2

[(
(j − (l − 1))1−p − (j − (l + 1))1−p)+

(
(j − l)1−p − (j − (l + 2))1−p)]

+

[
j−1∑
k=l+2

kAj−k(p) +

j∑
k=l+2

kBj−k(p)

]
∆t+

[
j−1∑
k=l+2

Aj−k(p)−
j∑

k=l+2

Bj−k(p)

]
∆t

−

[
j−1∑
k=l+2

Aj−k(p) +

j∑
k=l+2

Bj−k(p)

]
s. (2.111)

Using Corollary 2.5.3 with n = l + 2, we have

ψl(s) =
∆t

2

[
l
(
(j − (l − 1))1−p − (j − (l + 1))1−p)+ (l + 1)

(
(j − l)1−p − (j − (l + 2))1−p)]

+
∆t− s

2

[(
(j − (l − 1))1−p − (j − (l + 1))1−p)+

(
(j − l)1−p − (j − (l + 2))1−p)]

+ [−1]∆t+
[
(j − (l + 1))1−p + (j − (l + 2))1−p + 1

]
∆t− [0]s, (2.112)

which after simplifying becomes

ψl(s) =
l∆t− s

2

[
(j − l)1−p + (j − (l − 1))1−p − (j − (l + 1))1−p − (j − (l + 2))1−p]

+
∆t

2

[
2(j − l)1−p + (j − (l − 1))1−p + (j − (l + 1))1−p] . (2.113)

The value of the C1 scheme’s approximation in Equation (2.61) can now be compared

with the value of exact value of the fractional derivative in Equation (2.100). The error
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can be evaluated as follows∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
C1

∣∣∣∣∣ =

∣∣∣∣∣∣f0

t−pj
Γ (1− p)

+ f ′(0)
t1−pj

Γ (2− p)
+

j∆t∫
0

f ′′(s)
(tj − s)1−p

Γ(2− p)
ds

− f0

t−pj
Γ (1− p)

− f ′(0)
t1−pj

Γ (2− p)
− ∆t−p

2Γ (2− p)

(1 + 2−p
) j∆t∫
(j−1)∆t

f ′′(s)(j∆t− s)ds

+

j−2∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)ψl(s)ds


∣∣∣∣∣∣∣ , (2.114)

where the first terms cancel, we then have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
C1

∣∣∣∣∣
=

1

Γ (2− p)

∣∣∣∣∣∣∣
j∆t∫

(j−1)∆t

f ′′(s)

[
(tj − s)1−p − ∆t−p

2

(
1 + 2−p

)
(j∆t− s)

]
ds

+

j−2∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

[
(tj − s)1−p − ∆t−p

2
ψl(s)

]
ds

∣∣∣∣∣∣∣ . (2.115)

Using Equation (2.39) in Equation (2.115) we then have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣
≤ 1

Γ (2− p)

j∆t∫
(j−1)∆t

|f ′′(s)|
∣∣∣∣(tj − s)1−p − ∆t−p

2

(
1 + 2−p

)
(j∆t− s)

∣∣∣∣ ds
+

j−2∑
l=0

(l+1)∆t∫
l∆t

|f ′′(s)|
∣∣∣∣(tj − s)1−p − ∆t−p

2
ψl(s)

∣∣∣∣ ds. (2.116)

We now let the maximum absolute value of the second derivative in the interval

[l∆t, (l + 1)∆t] be given by

Ml = max
l∆t≤s≤(l+1)∆t

∣∣f ′′(s)∣∣ , (2.117)

then Equation (2.116) becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1

∣∣∣∣∣ ≤ Mj

Γ (2− p)

j∆t∫
(j−1)∆t

∣∣∣∣(t− s)1−p − ∆t−p

2

(
1 + 2−p

)
(j∆t− s)

∣∣∣∣ ds
+

j−2∑
l=0

Ml

(l+1)∆t∫
l∆t

∣∣∣∣(t− s)1−p − ∆t−p

2
ψl(s)

∣∣∣∣ ds. (2.118)
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We know from Appendix B.4 that both terms in the absolute value functions are nonneg-

ative. Dropping the absolute value and then evaluating the integrals in Equation (2.118),

we then have

j∆t∫
(j−1)∆t

(tj − s)1−p ds =
∆t2−p

2− p
, and

j∆t∫
(j−1)∆t

(tj − s) ds =
∆t2

2
, (2.119)

(l+1)∆t∫
l∆t

(tj − s)1−p ds =
∆t2−p

2− p
[
(j − l)2−p − (j − (l + 1))2−p] , (2.120)

and

(l+1)∆t∫
l∆t

ψl(s) ds

=

(l+1)∆t∫
l∆t

l∆t− s
2

[
(j − l)1−p + (j − (l − 1))1−p − (j − (l + 1))1−p − (j − (l + 2))1−p] ds

+

(l+1)∆t∫
l∆t

∆t

2

[
2(j − l)1−p + (j − (l − 1))1−p + (j − (l + 1))1−p] ds

= −∆t2

4

[
(j − l)1−p + (j − (l − 1))1−p − (j − (l + 1))1−p − (j − (l + 2))1−p]

+
∆t2

2

[
2(j − l)1−p + (j − (l − 1))1−p + (j − (l + 1))1−p]

=
∆t2

4

[
3(j − l)1−p + (j − (l − 1))1−p + 3(j − (l + 1))1−p + (j − (l + 2))1−p] . (2.121)

If we now let M = max ({Mi; i = 0, 1, 2, ..., j}), and then use the value of the above

integrals in Equation (2.118), we then have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
C1

∣∣∣∣∣
=

M∆t2−p

(2− p)Γ (2− p)

{[
1− 2− p

4

(
1 + 2−p

)]
+

j−2∑
l=0

[
(j − l)2−p − (j − (l + 1))2−p

−2− p
8

[
3(j − l)1−p + (j − (l − 1))1−p + 3(j − (l + 1))1−p + (j − (l + 2))1−p]]}

=
M∆t2−p

(2− p)Γ (2− p)

{[
1− 2− p

4

(
1 + 2−p

)]
+

j∑
k=2

[
k2−p − (k − 1)2−p

−2− p
8

[
3k1−p + (k + 1)1−p + 3(k − 1)1−p + (k − 2)1−p]]} . (2.122)
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Evaluating the summations

j∑
k=2

(
k2−p − (k − 1)2−p) =

j∑
k=2

k2−p −
j−1∑
k=1

k2−p = j2−p − 1, (2.123)

and

j∑
k=2

[
3k1−p +(k + 1)1−p + 3(k − 1)1−p + (k − 2)1−p]

= 3

j∑
k=2

k1−p +

j+1∑
k=3

k1−p + 3

j−1∑
k=1

k1−p +

j−2∑
k=0

k1−p

= 3
(
21−p + j1−p + (j − 1)1−p)+ (j + 1)1−p + j1−p + (j − 1)1−p

+ 3
(
1 + 21−p + (j − 1)1−p)+ 1 + 21−p + 8

j−2∑
3

k1−p

= 4j1−p + (j + 1)1−p − (j − 1)1−p − 4− 21−p + 8

j−1∑
1

k1−p, (2.124)

we then find ∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
C1

∣∣∣∣∣ ≤ C∆t2−p, (2.125)

where C = MΥ(j,p)
Γ(3−p) , and Υ(j, p) is given by

Υ(j, p) =

[
1− 2− p

4

(
1 + 2−p

)]
+ j2−p − 1 (2.126)

− (2− p)
8

[
4j1−p + (j + 1)1−p − (j − 1)1−p − 4− 21−p + 8

j−1∑
k=1

k1−p

]

=

(
j1−p

[
j − 2− p

2

]
− (2− p)

j−1∑
k=1

k1−p

)
+

2− p
8

(
(j − 1)1−p − (j + 1)1−p)+

2− p
4

,

or

Υ(j, p) =
1

2

[
ϑ(j, p) +

2− p
4

(
(j − 1)1−p − (j + 1)1−p)+

2− p
2

]
. (2.127)

In Equation (2.127), we have Υ(j, 0) = 0, and Υ(j, 1) = 3
4 . If 0 < p ≤ 1 then Υ(j, p) is

bounded 0 ≤ Υ(j, p) ≤ 3
4 as shown in Figure 2.13. Compared with the L1 scheme we see

the first term in Equation (2.127) is bounded by

ϑ(j, p) ≤ p

2
ζ (1 + p, 1) . (2.128)

After using this result and since the term
(
(j − 1)1−p − (j + 1)1−p), as shown in Ap-

pendix B.5, is bounded by −21−p, we obtain the bound of Υ(j, p), of

Υ(j, p) ≤ p

4
ζ (1 + p, 1) +

2− p
4

(
1− 2−p

)
. (2.129)
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This verifies this scheme is of order O(∆t2−p) for any function that can be expanded as

a Taylor series around t = 0 as in Equation (2.99).

Figure 2.13: (Color online) The value of Υ(j, p) in Equation (2.127) as shown versus p for

varying number of time steps j = 10, 102, 103, . . . , 106, where j increases in the direction of

the arrow. These results show Υ(j, p) is bounded above by 3
4 for all 0 ≤ p ≤ 1.

The estimate of the accuracy of the C1 scheme was tested on the functions given in

Equation (2.7). The error is plotted as a function of ∆t on double logarithmic scale plot

as given in Figures 2.14 – 2.18. We see the error decreases for each value of γ as ∆t is

decreased, and the slope of the lines match asymptotically the slope of 1+γ of the dashed

lines.

In Table 2.4, we see that the maximum error occurs when γ = 0.1 and the minimum error

occurs when γ = 0.9, except for the function f(t) = 1 + tγ where the maximum error

occurs when γ = 0.2. For small ∆t the error is of order O(∆t2−p).
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Figure 2.14: (Color online) The absolute error found by using the C1 scheme to evaluate the

fractional derivative of order p = 1−γ, where 0 < γ ≤ 1, of function f(t) = t2 at time t = 1.0.

The error is given for γ = 0.1, . . . , 0.9, where γ increases in the direction of the arrow. Dashed

lines show lines of slope 1 + γ for comparison.

Figure 2.15: (Color online) The value of the absolute error in using C1 scheme to approximate

the fractional derivative of order 1 − γ for the function f(t) = t3 at the time t = 1.0, with

γ = 0.1, . . . , 0.9. The value of γ increases in the direction of the arrow and the dashed lines

show lines of slope 1 + γ for comparison.
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Figure 2.16: (Color online) The absolute error in using the C1 scheme to estimate the frac-

tional derivative of order 1 − γ for the function f(t) = t4 shown at the time t = 1.0, for

γ = 0.1, . . . , 0.9. The value of γ increases in the direction of the arrow. Dashed lines show

lines of slope 1 + γ for comparison.

Figure 2.17: (Color online) The absolute error in using the C1 scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = 1− et + t3, where γ = 0.1, . . . , 0.9 and time

t = 1.0. Note γ increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + γ for comparison.
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Figure 2.18: (Color online) The absolute error in using the C1 scheme to evaluate the fractional

derivative of order 1 − γ for the function f(t) = 1 + tγ at the time t = 1.0. The results are

shown for γ = 0.1, . . . , 0.9, and γ increases in the direction of the arrow. Dashed lines show

lines of slope 1 + γ for comparison.

Table 2.4: The comparison of the absolute error in the C1 scheme estimate of the fractional

derivative of order p = 1− γ of the functions f(t) in Equation (2.7) at the time t = 1.0 with

γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ f(t) = t2 f(t) = t3 f(t) = t4 f(t) = 1− et + t3 f(t) = 1 + tγ

γ = 0.1 7.964e–03 2.371e–02 4.710e–02 1.297e–02 7.268e–04

γ = 0.2 4.626e–03 1.372e–02 2.718e–02 7.501e–03 7.542e–04

γ = 0.3 2.671e–03 7.878e–03 1.555e–02 4.303e–03 5.748e–04

γ = 0.4 1.529e–03 4.474e–03 8.782e–03 2.441e–03 3.785e–04

γ = 0.5 8.645e–04 2.499e–03 4.872e–03 1.361e–03 2.241e–04

γ = 0.6 4.778e–04 1.359e–03 2.624e–03 7.381e–04 1.194e–04

γ = 0.7 2.528e–04 7.037e–04 1.343e–03 3.807e–04 5.530e–05

γ = 0.8 1.217e–04 3.295e–04 6.194e–04 1.773e–04 2.020e–05

γ = 0.9 4.500e–05 1.178e–04 2.175e–04 6.300e–05 4.140e–06

The approximate order of convergence in ∆t given in Table 2.5, we give the error and

order of convergence estimate for the fractional derivative of order 1 − γ of the function

f(t) = 1 + tγ . The results are shown for γ = 0.1, . . . , 0.9 with time t = 1.0, we see the C1

scheme is also of order O(∆t1+γ).
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Table 2.5: Numerical accuracy in ∆t of the C1 scheme applied to the function f(t) = 1 + tγ ,

where R̂ is order of convergence.

γ = 0.1 γ = 0.2 γ = 0.3

∆t e∞(∆t) R̂ e∞(∆t) R̂ e∞(∆t) R̂

1/1000 6.338e–05 – 5.264e–05 – 3.216e–05 –

1/2000 2.955e–05 1.1 2.289e–05 1.2 1.304e–06 1.3

1/4000 1.378e–05 1.1 9.955e–06 1.2 5.292e–06 1.3

1/8000 6.426e–06 1.1 4.332e–06 1.2 2.148e–06 1.3

1/16000 2.997e–06 1.1 1.885e–06 1.2 8.721e–07 1.3

γ = 0.4 γ = 0.5 γ = 0.6

1/1000 1.703e–05 – 8.170e–06 – 3.563e–06 –

1/2000 6.446e–06 1.4 2.888e–06 1.5 1.180e–06 1.6

1/4000 2.441e–06 1.4 1.021e–06 1.5 3.902e–07 1.6

1/8000 9.243e–07 1.4 3.610e–07 1.5 1.290e–07 1.6

1/16000 3.501e–07 1.4 1.277e–07 1.5 4.261e–08 1.6

γ = 0.7 γ = 0.8 γ = 0.9

1/1000 1.373e–06 – 4.254e–07 – 7.607e–08 –

1/2000 4.273e–07 1.7 1.253e–07 1.8 2.137e–08 1.9

1/4000 1.327e–07 1.7 3.675e–08 1.8 5.973e–09 1.9

1/8000 4.114e–08 1.7 1.075e–08 1.8 1.662e–09 1.9

1/16000 1.274e–08 1.7 3.135e–09 1.8 4.611e–10 1.9

2.6.2 Accuracy of the C2 Scheme

Here we determine the accuracy of the fractional derivative approximation at t = tj+ 1
2

given by the C2 scheme in Equations (2.75) – (2.77). To do this we follow a similar

approach to that used for the C1 scheme.

To estimate the accuracy we compare the results of taking the Riemann–Liouville frac-

tional derivative of the function f(t) in Equation (2.99) with the approximate result

obtained by applying the C2 scheme, in Equations (2.78) – (2.79), to the same function.

The exact expression of the of the fractional derivative in Equation (2.99) is given by
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Equation (2.25), by replacing tj by tj+ 1
2

we then have

[
dpf(t)

dtp

∣∣∣∣j+ 1
2

= f0

t−pj+1/2

Γ (1− p)
+ f ′(0)

t1−p
j+ 1

2

Γ (2− p)
+

t
j+ 1

2∫
0

f ′′(s)
(tj+ 1

2
− s)1−p

Γ(2− p)
ds. (2.130)

Next we apply the C2 fractional approximation scheme on the functions 1, t, and the

convolution integrals in Equation (2.99) at the time t = tj+ 1
2
.

The C2 approximation of the function f(t) = 1 at time tj+ 1
2
, is given by

[
dp(1)

dtp

∣∣∣∣
C2

=
t−p
j+ 1

2

Γ(1− p)
(1) +

∆t−p

Γ(2− p)

j∑
k=0

ν̃j−k(1) +
2
(

1
2

)1−p
∆t−p

Γ(2− p)
(1), (2.131)

which simplifies, after using the first result of Lemma 2.5.4, to

[
dp(1)

dtp

∣∣∣∣
C2

=
t−p
j+ 1

2

Γ(1− p)
+

∆t−p

Γ(2− p)

[
−2

(
1

2

)1−p
+ 2

(
1

2

)1−p
]

=
t−p
j+ 1

2

Γ(1− p)
. (2.132)

The C2 approximation for function f(t) = t at time tj+ 1
2

is

[
dp(t)

dtp

∣∣∣∣
C2

= 0 +
∆t−p

Γ(2− p)

j∑
k=0

ν̃j−k(γ)(k∆t) +
2
(

1
2

)1−p
∆t−p

Γ(2− p)

((
j +

1

2

)
∆t

)

=
∆t1−p

Γ(2− p)

{
j∑

k=0

kν̃j−k(γ) + 2

(
1

2

)1−p(
j +

1

2

)}
. (2.133)

Using the first result of Lemma 2.5.5, we then have the result[
dp(t)

dtp

∣∣∣∣ =
∆t1−p

Γ (2− p)

[(
j +

1

2

)1−p
− 2

(
j +

1

2

)(
1

2

)1−p
+ 2

(
j +

1

2

)(
1

2

)1−p
]

=
t1−p
j+ 1

2

Γ (2− p)
. (2.134)

Applying the C2 approximation to the convolution in Equation (2.99) gives

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
C2

=
(∆t)−p

Γ (2− p)

(1− p)
(
j +

1

2

)−p
lim
t→0

t∫
0

f ′′(τ)(t− τ)dτ

+2

(
1

2

)1−p
(j+ 1

2)∆t∫
0

f ′′(τ)
(
tj+ 1

2
− τ
)
dτ +

j∑
k=0

ν̃j−k

k∆t∫
0

f ′′(τ) (k∆t− τ) dτ

 . (2.135)

The limit in the first term on the right in (2.135) is zero if f ′′(t) is a well–behaved function

as mentioned earlier. Now dividing the integration interval, [0, j∆t], into equal ∆t steps
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and the integral interval from τ = j∆t to τ =
(
j + 1

2

)
∆t, we then have

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
j+ 1

2

C2

=
∆t−p

Γ(2− p)

2

(
1

2

)1−p
(j+ 1

2
)∆t∫

j∆t

f ′′(τ)

((
j +

1

2

)
∆t− τ

)
dτ

+2

(
1

2

)1−p j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(τ)

((
j +

1

2

)
∆t− τ

)
dτ +

j∑
k=0

ν̃j−k

k−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(τ) (k∆t− τ) dτ

 .

(2.136)

Upon simplifying this expression we have

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
j+ 1

2

C2

=
∆t−p

Γ(2− p)

2

(
1

2

)1−p
(j+ 1

2
)∆t∫

j∆t

f ′′(τ)
(
tj+ 1

2
− τ
)
dτ

+

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(τ)

[
j∑

k=l+1

ν̃j−k (k∆t− τ) + 2

(
1

2

)1−p (
tj+ 1

2
− τ
)]

dτ

 . (2.137)

Now using Lemmas 2.5.4 and 2.5.5, with n = l + 1, we evaluate the summation to find

j∑
k=l+1

ν̃j−k(γ) (k∆t− τ) = 2

(
1

2

)1−p (
τ − tj+ 1

2

)
+

(
j − l +

1

2

)1−p
((l + 1)∆t− τ)

−
(
j − l − 1

2

)1−p
(l∆t− τ). (2.138)

The C2 approximation of the fractional derivative of f(t), in Equation (2.99), is then

given by

[
dpf(t)

dtp

∣∣∣∣
C2

= f0

t−p
j+ 1

2

Γ(1− p)
+ f ′(0)

t1−p
j+ 1

2

Γ(2− p)
(2.139)

+
∆t−p

Γ(2− p)

{
2

(
1

2

)1−p
(j+ 1

2
)∆t∫

j∆t

f ′′(τ)
(
tj+ 1

2
− τ
)
dτ +

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(τ)

[(
j − l +

1

2

)1−p
((l + 1)∆t− τ)−

(
j − l − 1

2

)1−p
(l∆t− τ)

]
dτ

}
.

The value of the C2 approximation in Equation (2.139) can now compared with the exact
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value of the fractional derivative in Equation (2.130). The absolute error is given by∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ (2.140)

=

∣∣∣∣∣∣∣∣
t−pj+1/2

Γ(1− p)
f0 +

t1−pj+1/2

Γ(2− p)
f ′(0) +

t
j+ 1

2∫
0

f ′′(τ)
(tj+ 1

2
− τ)1−p

Γ(2− p)
dτ −

t−pj+1/2

Γ(1− p)
f0

−
t1−pj+1/2

Γ (2− p)
f ′(0)− ∆t−p

Γ(2− p)

2

(
1

2

)1−p
(j+ 1

2
)∆t∫

j∆t

f ′′(τ)

((
j +

1

2

)
∆t− τ

)
dτ

+

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(τ)

[(
j − l +

1

2

)1−p
((l + 1)∆t− τ)−

(
j − l − 1

2

)1−p
(l∆t− τ)

]
∣∣∣∣∣∣∣ ,

which reduces to∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ (2.141)

=

∣∣∣∣∣∣∣
1

Γ(2− p)


(j+ 1

2
)∆t∫

j∆t

f ′′(τ)

[
(tj+ 1

2
− τ)1−p −

(
∆t

2

)−p (
tj+ 1

2
− τ
)]

dτ

+

j−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(τ)

(
(tj+ 1

2
− τ)1−p −∆t−p

[(
j − l +

1

2

)1−p
((l + 1)∆t− τ)

−
(
j − l − 1

2

)1−p
(l∆t− τ)

])
ds

}∣∣∣∣∣ .
Now using the inequality Equation (2.39) we then have∣∣∣∣∣

[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ (2.142)

≤ 1

Γ(2− p)


(j+ 1

2
)∆t∫

j∆t

∣∣f ′′(τ)
∣∣ ∣∣∣∣∣(tj+ 1

2
− τ)1−p −

(
∆t

2

)−p (
tj+ 1

2
− τ
)∣∣∣∣∣ dτ

+

j−1∑
l=0

(l+1)∆t∫
l∆t

|f ′′(τ)|

∣∣∣∣∣(tj+ 1
2
− τ)1−p −∆t−p

[(
j − l +

1

2

)1−p
((l + 1)∆t− τ)

−
(
j − l − 1

2

)1−p
(l∆t− τ)

]∣∣∣∣∣ ds
}
.

Now we let the maximum absolute value of the second derivative in the interval

[j∆t, (j + 1/2)∆t] be denoted by

M∗
j+ 1

2

= max
j∆t≤s≤(j+ 1

2
)∆t

∣∣f ′′(s)∣∣ , (2.143)
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and in the intervals [l∆t, (l + 1)∆t] by

Ml = max
l∆t≤s≤(l+1)∆t

∣∣f ′′(s)∣∣ . (2.144)

Then from Equation (2.142) we have the inequality∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ (2.145)

≤
M∗
j+ 1

2

Γ(2− p)

(j+ 1
2

)∆t∫
j∆t

∣∣∣∣∣(tj+ 1
2
− τ)1−p −

(
∆t

2

)−p (
tj+ 1

2
− τ
)∣∣∣∣∣ dτ

+
1

Γ(2− p)

j−1∑
l=0

Ml

(l+1)∆t∫
l∆t

∣∣∣∣∣(tj+ 1
2
− τ)1−p −∆t−p

[(
j − l +

1

2

)1−p
((l + 1)∆t− τ)

−
(
j − l − 1

2

)1−p
(l∆t− τ)

]∣∣∣∣∣ ds.
Now we know, from Appendix B.6, each term in the absolute value functions is positive

and so we can drop the absolute value sign. Evaluating the integrals in Equation (2.145),

we obtain the bound on the error∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ ≤ M∗
j+ 1

2

∆t2−p

(2− p)Γ(2− p)

[(
1

2

)2−p
− 2− p

4

(
1

2

)1−p
]

+
∆t2−p

(2− p)Γ(2− p)

j−1∑
l=0

Ml

[(
j − l +

1

2

)2−p
−
(
j − l − 1

2

)2−p

−(2− p)
2

[(
j − l +

1

2

)1−p
+

(
j − l − 1

2

)1−p
]]

. (2.146)

If we further let M = max
(
{Mi; i = 0, 1, 2, ..., j}

⋃
{M∗

j+ 1
2

}
)

, and then simplifying we

obtain∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ ≤ M∆t2−p

Γ(3− p)

{(
1

2

)1−p ∣∣∣p
4

∣∣∣ (2.147)

+

j−1∑
l=0

∣∣∣∣∣
(
j − l +

1

2

)1−p(
j − l − 1− p

2

)
−
(
j − l − 1

2

)1−p(
j − l +

1− p
2

)∣∣∣∣∣
}
.

Evaluating the sum in Equation (2.147) we find

j−1∑
l=0

[(
j − l +

1

2

)1−p(
j − l − 1− p

2

)
−
(
j − l − 1

2

)1−p(
j − l +

1− p
2

)]
(2.148)

=

(
j +

1

2

)1−p(
j − 1− p

2

)
−
(

3− p
2

)(
1

2

)1−p
− (2− p)

j−1∑
k=1

(
k +

1

2

)1−p
.
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The estimate error is then given by∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C2

∣∣∣∣∣ ≤ C∆t2−p, (2.149)

where C is constant

C =
Mϑ̂(j, p)

Γ(3− p)
, (2.150)

and ϑ̂(j, p) is defined by

ϑ̂(j, p) =
p

4

(
1

2

)1−p
+

(
j +

1

2

)1−p(
j − 1− p

2

)
−
(

3− p
2

)(
1

2

)1−p

− (2− p)
j−1∑
k=1

(
k +

1

2

)1−p
. (2.151)

In Equation (2.151), we have ϑ̂(j, 0) = 1
4 , and ϑ̂(j, 1) = 0. If 0 ≤ p ≤ 1 then ϑ̂(j, p) is

bounded 0 ≤ ϑ̂(j, p) ≤ 1
4 as shown in Figure 2.19. Furthermore in Appendix B.7 it can

be shown this sum in Equation (2.148) is bounded and ϑ̂(j, p) is bounded above by

ϑ̂(j, p) ≤ p

4

(
1

2

)1−p
+
p

2
ζ

(
1 + p,

3

2

)
, (2.152)

after using the bound given by Equation (B.72).

Hence the error is bounded by a constant independent of t and so demonstrates that the

approximation scheme is of order O(∆t2−p) assuming the scheme is applied to a function

that can be expanded as in Equation (2.99).

Figure 2.19: (Color online) The value of ϑ̂(j, γ) in Equation (2.151) is shown versus p for

varying number of time steps j = 10, 102, 103, . . . , 106, where j increases in the direction of

the arrow. These results show ϑ̂(j, γ) is bounded above by 1
4 for all 0 ≤ p ≤ 1.
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The estimate of the accuracy of the C2 scheme was tested on the functions given in

Equation (2.7). The error in the value of the fractional derivative, for each function, is

again shown in the double logarithmic scale plots given in Figures 2.20 – 2.24. We also

see the error is decreases for each value of γ as the value of ∆t is decreased, and we see

the slope of the lines match asymptotically the slope of 1 + γ of the dashed lines shown

in the figure as expected.

From Table 2.6, for the function f(t) = t2, we see that the maximum error of 2.45× 10−3

occurs for γ = 0.1 and the minimum error of 1.10× 10−5 occurs for γ = 0.9. Also, for the

functions f(t) = t3, t4, 1− et + t3 and 1 + tγ the minimum error again occurs for γ = 0.9

and the maximum error occurs for γ = 0.1.

Figure 2.20: (Color online) The absolute error, ε, in the C2 approximation of the frac-

tional derivative of order 1 − γ on the function f(t) = t2 at the time t = 1.0 given for

γ = 0.1, 0.2, 0.3 . . . , 0.8, 0.9. Note γ increases in the direction of the arrow, and dashed lines

show lines of slope 1 + γ for comparison.
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Figure 2.21: (Color online) The absolute error in the C2 scheme approximation of the order

1 − γ fractional derivative of the function f(t) = t3 shown at the time t = 1.0 with γ =

0.1, . . . , 0.9. The value of γ increases in the direction of the arrow, and for comparison we

show lines of slope 1 + γ as a dashed lines.

Figure 2.22: (Color online) The absolute error found by using the C2 scheme approximation

of the fractional derivative of order 1 − γ on the function f(t) = t4 at the time t = 1.0, and

for γ = 0.1, . . . , 0.9. The value of γ increases in the direction of the arrow. Dashed lines show

lines of slope 1 + γ for comparison.
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Figure 2.23: (Color online) The absolute error in using the C2 scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = 1− et + t3, where γ = 0.1, . . . , 0.9 and time

t = 1.0. Note γ increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + γ for comparison.

Figure 2.24: (Color online) The absolute error in using the C2 scheme to evaluate the fractional

derivative of order 1 − γ for the function f(t) = 1 + tγ at the time t = 1.0. The results are

shown for γ = 0.1, . . . , 0.9, and γ increases in the direction of the arrow. Dashed lines show

lines of slope 1 + γ for comparison.
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Table 2.6: The comparison of the absolute error in the estimate of the fractional derivative of

order p = 1 − γ by using the C2 scheme on the functions f(t) in Equation (2.7) at the time

t = 1.0 where γ = 0.1, ..., 0.9 and ∆t = 0.01.

Operator f(t) = t2 f(t) = t3 f(t) = t4 f(t) = 1− et + t3 f(t) = 1 + tγ

γ = 0.1 2.451e–03 7.292e–03 1.447e–02 3.988e–03 3.399e–04

γ = 0.2 1.330e–03 3.943e–03 7.804e–03 2.156e–03 3.287e–04

γ = 0.3 7.268e–04 2.142e–03 4.222e–03 1.170e–03 2.337e–04

γ = 0.4 3.990e–04 1.165e–03 2.284e–03 6.359e–04 1.437e–04

γ = 0.5 2.189e–04 6.313e–04 1.228e–03 3.438e–04 7.970e–05

γ = 0.6 1.187e–04 3.364e–04 6.477e–04 1.827e–04 4.000e–05

γ = 0.7 6.216e–05 1.722e–04 3.273e–04 9.310e–05 1.750e–05

γ = 0.8 2.981e–05 8.024e–05 1.501e–04 4.310e–05 6.080e–06

γ = 0.9 1.103e–05 2.868e–05 5.265e–05 1.530e–05 1.200e–06

The approximate order of convergence in ∆t was estimated by using Equation (2.53).

The error and order of convergence estimate was used for function f(t) = 1 + tγ . The

results are shown in Table 2.7 for γ = 0.1, . . . , 0.9 with time t = 1.0, it can be seen that

the C2 scheme is of order O(∆t1+γ).
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Table 2.7: Numerical accuracy in ∆t of the C2 scheme used for the function f(t) = 1 + tγ ,

and R̂ is order of convergence.

γ = 0.1 γ = 0.2 γ = 0.3

∆t e∞(∆t) R̂ e∞(∆t) R̂ e∞(∆t) R̂

1/1000 2.957e–05 – 2.291e–05 – 1.305e–05 –

1/2000 1.378e–05 1.1 9.960e–06 1.2 5.294e–06 1.3

1/4000 6.427e–06 1.1 4.333e–06 1.2 2.148e–06 1.3

1/8000 2.998e–06 1.1 1.885e–06 1.2 8.722e–07 1.3

1/16000 1.398e–06 1.1 8.205e–07 1.2 3.541e–07 1.3

γ = 0.4 γ = 0.5 γ = 0.6

1/1000 6.451e–06 – 2.891e–06 – 1.180e–06 –

1/2000 2.442e–06 1.4 1.022e–06 1.5 3.903e–07 1.6

1/4000 9.245e–07 1.4 3.611e–07 1.5 1.290e–07 1.6

1/8000 3.502e–07 1.4 1.277e–07 1.5 4.261e–08 1.6

1/16000 1.327e–07 1.4 4.513e–08 1.5 1.407e–08 1.6

γ = 0.7 γ = 0.8 γ = 0.9

1/1000 4.276e–07 – 1.253e–07 – 2.138e–08 –

1/2000 1.327e–07 1.7 3.676e–08 1.8 5.975e–09 1.9

1/4000 4.115e–08 1.7 1.075e–08 1.8 1.663e–09 1.9

1/8000 1.274e–08 1.7 3.135e–09 1.8 4.609e–10 1.9

1/16000 3.939e–09 1.7 9.124e–10 1.8 1.274e–10 1.9

2.6.3 Accuracy of the C3 Scheme

In this subsection, we determine the accuracy of the fractional derivative approximation

at t = tj+ 1
2

given by the C3 scheme in Equations (2.88) – (2.91). We again follow the

approach of Langlands & Henry (2005) by assuming f(t), f ∈ C2[0,∞), can be expanded

as in Equation (2.99). We likewise compare the results of taking the exact fractional

derivative of f(t) given in Equation (2.130) with the approximate result obtained by

applying the C3 scheme in Equation (2.88) to the same function.

Similar to before we apply the C3 fractional approximation scheme on the functions 1, t,

and the convolution integral in Equation (2.99) at the time t = tj+ 1
2
.
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The C3 approximation of the function f(t) = 1 in Equation (2.99) is.[
dp(1)

dtp

∣∣∣∣j+ 1
2

C3

=
∆t−p

Γ(2− p)

[
β̂j(1) +

j∑
k=0

ν̂j−k(1)

]
, (2.153)

which, upon simplifying, after using Lemma 2.5.6, reduces to[
dp(1)

dtp

∣∣∣∣j+ 1
2

C3

=
∆t−p

Γ(2− p)

[
(1− p)

(
j +

1

2

)−p
− 2α̂j + 2α̂j

]

=
∆t−p

Γ(2− p)
(1− p)

(
j +

1

2

)−p
=

((
j + 1

2

)
∆t
)−p

Γ(1− p)

=
t−p
j+ 1

2

Γ(1− p)
. (2.154)

The C3 approximation acting upon f(t) = t is[
dp(t)

dtp

∣∣∣∣j+ 1
2

C3

= 0 +
∆t−p

Γ(2− p)

j∑
k=0

ν̂j−k

(
k +

1

2

)
∆t

=
∆t1−p

Γ(2− p)

{
j∑

k=0

kν̂j−k +
1

2

j∑
k=0

ν̂j−k

}
. (2.155)

Using Lemma 2.5.6 and 2.5.7, we then have the result[
dp(t)

dtp

∣∣∣∣j+ 1
2

C3

=
∆t1−p

Γ(2− p)

{
j1−p +

1

2
(2α̂j)

}
=

∆t1−p

Γ(2− p)

{
j1−p +

(
j +

1

2

)1−p
− j1−p

}

=

((
j + 1

2

)
∆t
)1−p

Γ(2− p)

=
t1−p
j+ 1

2

Γ (2− p)
. (2.156)

Finally applying the C3 approximation to the convolution in Equation (2.99) gives

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
j+ 1

2

C3

=
∆t−p

Γ (2− p)

β̂j lim
t→0

t∫
0

f ′′(τ)(t− τ)dτ

+

j∑
k=0

ν̂j−k

(k+ 1
2)∆t∫

0

f ′′(τ)

((
k +

1

2

)
∆t− τ

)
dτ

 . (2.157)
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The limit is again zero if f ′′(t) is a well–behaved function of t, and so the C3 approximation

of the convolution is then

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
j+ 1

2

C3

=
∆t−p

Γ (2− p)

j∑
k=0

ν̂j−k

(k+ 1
2)∆t∫

0

f ′′(τ)

((
k +

1

2

)
∆t− τ

)
dτ.

(2.158)

Now by dividing the integration interval into equal ∆t steps and simplifying and we then

have

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
j+ 1

2

C3

=
∆t−p

Γ (2− p)

{ j∑
k=0

ν̂j−k

k∑
l=1

(l+ 1
2)∆t∫

(l− 1
2)∆t

f ′′(τ)

((
k +

1

2

)
∆t− τ

)
dτ

+

j∑
k=0

ν̂j−k

∫ 1
2

∆t

0
f ′′(τ)

((
k +

1

2

)
∆t− τ

)
dτ

}
. (2.159)

Changing the order of summation, Equation (2.159) becomes

dp

dtp

 t∫
0

f ′′(τ)(t− τ)dτ

∣∣∣∣∣∣
C3

=
∆t−p

Γ (2− p)


j∑
l=1

(l+ 1
2)∆t∫

(l− 1
2)∆t

f ′′(τ)

j∑
k=l

ν̂j−k

((
k +

1

2

)
∆t− τ

)
dτ

+

j∑
k=0

ν̂j−k

∫ 1
2

∆t

0
f ′′(τ)

((
k +

1

2

)
∆t− τ

)
dτ

}
. (2.160)

The C3 approximation of f(t) in Equation (2.99) is then given by[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

= f0

t−p
j+ 1

2

Γ(1− p)
+ f ′(0)

t1−p
j+ 1

2

Γ(2− p)
(2.161)

+
∆t−p

Γ (2− p)


j∑
l=1

(l+ 1
2)∆t∫

(l− 1
2)∆t

f ′′(τ)

j∑
k=l

ν̂j−k

((
k +

1

2

)
∆t− τ

)
dτ

+

∫ 1
2

∆t

0
f ′′(τ)

j∑
k=0

ν̂j−k

((
k +

1

2

)
∆t− τ

)
dτ

}
.

Now using Lemmas 2.5.6 and 2.5.7, with n = l, we have

j∑
k=l

ν̂j−k

((
k +

1

2

)
∆t− τ

)
= (j − (l − 1))1−p

((
l +

1

2

)
− τ
)
− (j − l)1−p

((
l − 1

2

)
− τ
)

= LC3,p(j, l, τ), (2.162)

and

j∑
k=0

ν̂j−k

((
k +

1

2

)
∆t− τ

)
= ∆t(j1−p + α̂j)− 2α̂jτ. (2.163)
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The value of the C3 approximation, in Equation (2.161), is now compared with the exact

value of the fractional derivative given by Equation (2.130). The absolute error is then∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣ (2.164)

=

∣∣∣∣∣∣∣∣
t−pj+1/2

Γ(1− p)
f0 +

t1−pj+1/2

Γ(2− p)
f ′(0) +

t
j+ 1

2∫
0

f ′′(τ)
(tj+ 1

2
− τ)1−p

Γ(2− p)
dτ −

t−pj+1/2

Γ(1− p)
f0 −

t1−pj+1/2

Γ(2− p)
f ′(0)

− ∆t−p

Γ (2− p)


j∑
l=1

(l+ 1
2)∆t∫

(l− 1
2)∆t

f ′′(τ)LC3,p(j, l, τ)dτ +

∫ 1
2

∆t

0
f ′′(τ)

[
∆t(j1−p + α̂j)− 2α̂jτ

]
dτ


∣∣∣∣∣∣∣∣ ,

Which can be written as∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣ (2.165)

=
1

Γ(2− p)

∣∣∣∣∣∣∣∣
j∑
l=1

(l+ 1
2)∆t∫

(l− 1
2)∆t

f ′′(τ)
[
(t− τ)1−p −∆t−pLC3,p(j, l, τ)

]
dτ

+

∫ 1
2

∆t

0
f ′′(τ)

[
(t− τ)1−p −∆t−p

(
∆t(j1−p + α̂j)− 2α̂jτ

)]
dτ

∣∣∣∣∣ .
Using Equation (2.39), we then have the inequality∣∣∣∣∣

[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣ (2.166)

≤ 1

Γ(2− p)

{ j∑
l=1

(l+ 1
2)∆t∫

(l− 1
2)∆t

|f ′′(τ)|
∣∣(t− τ)1−p −∆t−pLC3,p(j, l, τ)

∣∣ dτ
+

∫ 1
2

∆t

0
|f ′′(τ)|

∣∣∣∣(t− τ)1−p −∆t−p
(

∆t(j1−p + α̂j)− 2α̂jτ

)∣∣∣∣dτ
}
.

Similar to before we let the maximum absolute value of the second derivative in the

intervals [0, 1
2∆t] and [

(
l − 1

2

)
∆t,

(
l + 1

2

)
∆t] be denoted respectively by

Ml+ 1
2

= max
(l− 1

2)∆t≤s≤(l+ 1
2)∆t

∣∣f ′′(s)∣∣ , (2.167)

and

M 1
2

= max
0≤s≤ 1

2
∆t

∣∣f ′′(s)∣∣ . (2.168)
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Then the bound of the absolute error becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣ (2.169)

≤ 1

Γ(2− p)

{ j∑
l=1

Ml+ 1
2

(l+ 1
2)∆t∫

(l− 1
2)∆t

∣∣(t− τ)1−p −∆t−pLC3,p(j, l, τ)
∣∣ dτ

+M 1
2

∫ 1
2

∆t

0

∣∣∣∣(t− τ)1−p −∆t−p
(

∆t(j1−p + α̂j)− 2α̂jτ

)∣∣∣∣dτ
}
.

We know, from Appendix B.8, that each term in the absolute value functions in Equa-

tion (2.169) is positive, then by evaluating the integrals in (2.169) and letting

M = max{Mi; i = 0, 1, 2, ..., j + 1
2}, we obtain the result∣∣∣∣∣

[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣ ≤ M∆t1−p

Γ(3− p)

{
j∑
l=1

[
(j − l + 1)2−p − (j − l)2−p

−(2− p)
[[
l(j − (l − 1))1−p − (l − 1)(j − l)1−p]− (l − 1

2

)[
(j − (l − 1))1−p − (j − l)1−p]]]

+

[(
j +

1

2

)2−p
− j2−p − 2− p

4

(
j1−p +

(
j +

1

2

)1−p
)]}

, (2.170)

or upon simplifying∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣
≤ M∆t1−p

(2− p)Γ(2− p)

{
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l=1

[
(j − l + 1)1−p

(
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2

)
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(
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2
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+
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1

2

)1−p(
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1

2
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4

)
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(
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4
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(
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p

2

)
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(
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2
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2
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4
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2
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4
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. (2.171)

After simplifying, the estimate of the error becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j+ 1
2

−
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dp

dtp
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2
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∣∣∣∣∣
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(2− p)Γ(2− p)

{
j−1∑
l=0
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2

)
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2
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+

[(
j +

1

2

)1−p (
j +

p

4

)
− j1−p

(
j +

1

2
− p

4

)]}
. (2.172)
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Now we evaluate the sum in Equation (2.172) to give

j−1∑
l=0

[
(l + 1)1−p

(
l +

p

2

)
− l1−p

(
l + 1− p

2

)]

=

j∑
l=1

l1−p
(
l − 1 +

p

2

)
−

j−1∑
l=0

l1−p
(
l + 1− p

2

)

= j1−p
(
j − 1 +

p

2

)
+

j−1∑
l=1

l1−p
(
l − 1 +

p

2

)
−

j−1∑
l=1

l1−p
(
l + 1− p

2

)

= j1−p
(
j − 1 +

p

2

)
+ (p− 2)

j−1∑
l=1

l1−p. (2.173)

The estimate error is then given by∣∣∣∣ dpdtp f(t)

∣∣∣∣j+ 1
2

− dp

dtp
f(t)

∣∣∣∣j+ 1
2

C3

∣∣∣∣∣ ≤ C∆t2−p, (2.174)

where C is the constant

C =
MK(j, p)

Γ(3− p)
, (2.175)

and K(j, p) is defined by

K(j, p) = j1−p
(
j − 1 +

p

2

)
+ (p− 2)

j−1∑
l=1

l1−p

+

(
j +

1

2

)1−p(
j +

1

2
− 2− p

4

)
− j1−p

(
j +

2− p
4

)
. (2.176)

In Equation (2.176), we have K(j, 0) = 0, and K(j, 1) = 1
2 . For 0 < p ≤ 1 the constant

K(j, p) is bounded by 0 ≤ K(j, p) ≤ 1
2 as shown in Figure 2.25. In Appendix B.9 we show

this sum, in Equation (2.176), is bounded and hence K(j, p) is bounded above by

K(j, p) ≤ p− 4

4

(
1

2

)1−p
+
p− 2

4
+
p

2
ζ (1 + p, 1) , (2.177)

after using Equations (B.91) and (B.105). Hence the error is bounded by a constant

independent of t and so demonstrates that the approximation scheme is of order O(∆t2−p).
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Figure 2.25: (Color online) The value of K(j, p) in Equation (2.176) as shown versus p for

varying number of time steps are j = 10, 102, 103, . . . , 106, where j increases in the direction

of the arrow. These results show K(j, p) is bounded by 1
2 for all 0 ≤ p ≤ 1.

The estimate of the accuracy of the C3 scheme was tested on the functions f(t), given in

Equation (2.7), at the time t = 1.0 and p = 1 − γ when γ = 0.1, . . . , 0.9. We again see

the error appears to be linear on a log-log plot which shows error behaves as

ε ∼ C∆t1+γ

for some constant C. In Figures 2.26 – 2.30, we see as ∆t is decreased the error also

decreases for each value of γ, and the slope of the lines match asymptotically the slope of

1 + γ of the dashed lines as shown in the figure. In Table 2.8, we see that the maximum

error occurs where γ = 0.1 for all functions f(t) and the minimum error occurs for γ = 0.9.
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Figure 2.26: (Color online) The value of the absolute error found by using the C3 scheme to

approximate the fractional derivative of order 1− γ of the function f(t) = t2 at time t = 1.0.

The error is shown for γ = 0.1, . . . , 0.9, where the value of γ increases in the direction of the

arrow, and the dashed lines show lines of slope 1 + γ for comparison. For small ∆t the error

is of order O(∆t1+γ).

Figure 2.27: (Color online) The absolute error in the estimate of the C3 approximation of the

fractional derivative of order 1 − γ of the function f(t) = t3 shown at t = 1.0. The error is

shown for γ = 0.1, . . . , 0.9 with γ increases in the direction of the arrow. Dashed lines show

lines of slope 1 + γ for comparison.
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Figure 2.28: (Color online) The value of the absolute error in the estimate of the fractional

derivative of order 1 − γ for the function f(t) = t4 found by using the C3 approximation at

the time t = 1.0, and for γ = 0.1, . . . , 0.9. Note the value of γ increases in the direction of the

arrow. Dashed lines show lines of slope 1 + γ for comparison.

Figure 2.29: (Color online) The absolute error in using the C3 scheme to evaluate the fractional

derivative of order 1− γ for the function f(t) = 1− et + t3, where γ = 0.1, . . . , 0.9 and time

t = 1.0. Note γ increases in the direction of the arrow, and the dashed lines show lines of

slope 1 + γ for comparison.
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Figure 2.30: (Color online) The absolute error in using the C3 scheme to evaluate the fractional

derivative of order 1−γ for the function f(t) = 1+tγ at the time t = 1.0 with γ = 0.1, . . . , 0.9,

and γ increases in the direction of the arrow. Dashed lines show lines of slope 1 + γ for

comparison.

Table 2.8: The comparison of the absolute error in the estimate of the order 1− γ fractional

derivative of the functions f(t), Equation (2.7), at time t = 1.0 where γ = 0.1, ..., 0.9 and

∆t = 0.01 by using the C3 approximation.

γ f(t) = t2 f(t) = t3 f(t) = t4 f(t) = 1− et + t3 f(t) = 1 + tγ

γ = 0.1 4.982e–03 1.481e–02 2.985e–02 8.103e–03 3.399e–04

γ = 0.2 2.701e–03 8.020e–03 1.585e–02 4.385e–03 3.287e–04

γ = 0.3 1.448e–03 4.287e–03 8.475e–03 2.344e–03 2.337e–04

γ = 0.4 7.665e–04 2.258e–03 4.451e–03 1.234e–03 1.437e–04

γ = 0.5 3.989e–04 1.166e–03 2.288e–03 6.365e–04 7.970e–05

γ = 0.6 2.024e–04 5.855e–04 1.141e–03 3.189e–04 4.000e–05

γ = 0.7 9.830e–05 2.798e–04 5.407e–04 1.520e–04 1.750e–05

γ = 0.8 4.360e–05 1.212e–04 2.314e–04 6.560e–05 6.080e–06

γ = 0.9 1.490e–05 4.030e–05 7.570e–05 2.170e–05 1.200e–06

The absolute error and order of convergence estimated of the fractional derivative of order

1− γ for the function f(t) = 1 + tγ are shown in Table 2.9. To estimate the convergence

we used Equation (2.53), from the results given in Table 2.9 for γ = 0.1, . . . , 0.9 with time

t = 1.0, we see that the C3 scheme is of order O(∆t1+γ).
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Table 2.9: Numerical accuracy in ∆t of the C3 scheme applied to the function f(t) = 1 + tγ ,

and R̂ is order of convergence.

γ = 0.1 γ = 0.2 γ = 0.3

∆t e∞(∆t) R̂ e∞(∆t) R̂ e∞(∆t) R̂

1/1000 2.957e–05 – 2.291e–05 – 1.305e–05 –

1/2000 1.378e–05 1.1 9.960e–06 1.2 5.294e–06 1.3

1/4000 6.427e–06 1.1 4.333e–06 1.2 2.148e–06 1.3

1/8000 4.484e–06 1.1 1.885e–06 1.2 8.723e–07 1.3

1/16000 1.398e–06 1.1 8.205e–07 1.2 3.541e–07 1.3

γ = 0.4 γ = 0.5 γ = 0.6

1/1000 6.451e–06 – 2.891e–06 – 1.180e–06 –

1/2000 2.442e–06 1.4 1.022e–06 1.5 3.903e–07 1.6

1/4000 9.245e–07 1.4 3.611e–07 1.5 1.290e–07 1.6

1/8000 3.502e–07 1.4 1.277e–07 1.5 4.261e–08 1.6

1/16000 1.327e–07 1.4 4.513e–08 1.5 1.407e–08 1.6

γ = 0.7 γ = 0.8 γ = 0.9

1/1000 4.276e–07 – 1.253e–07 – 2.138e–08 –

1/2000 1.327e–07 1.7 3.676e–08 1.8 5.975e–09 1.9

1/4000 4.115e–08 1.7 1.075e–08 1.8 1.662e–09 1.9

1/8000 1.274e–08 1.7 3.135e–09 1.8 4.609e–10 1.9

1/16000 3.939e–09 1.7 9.124e–10 1.8 1.274e–10 1.9

We conclude that from these results that the accuracy of the L1 scheme, C1 scheme, C2

scheme and C3 scheme approximations are the same order of 1 + γ, where p = 1 − γ.

We see in the Tables 2.2, 2.4, 2.6, and 2.8 the minimum error occurs for γ = 0.9 and the

maximum error occurs for γ = 0.1. We also note that, from Figures 2.7 – 2.11, 2.14 – 2.18,

2.20 – 2.24, and 2.26 – 2.30, the error decreases as the value of ∆t is decreased for each

value of γ. We also see, from these results, that the C2 scheme is a better approximation

as it is more accurate in magnitude than the other schemes.
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2.7 Romberg Integration

In this section, we use Romberg Integration (Mathews & Fink 1999) to help approximate

the integral in Equation (2.9) to evaluate the fractional derivative. We consider the use of

Romberg Integration because it may give a higher order accuracy and the other benefit is

that we can evaluate the estimates iteratively. Because of the singularity of the function

f ′(τ)(t− τ)−p we need to rewrite the integral as∫ t

0
f ′(τ)(t− τ)−pdτ =

∫ t

0

(
f ′(τ)− f ′(t)

)
(t− τ)−pds+

∫ t

0
f ′(t)(t− τ)−pdτ

=

∫ t

0

(
f ′(τ)− f ′(t)

)
(t− τ)−pdτ + f ′(t)

∫ t

0
(t− τ)−pdτ. (2.178)

The last integral can be evaluated as∫ t

0
(t− τ)−pdτ = −

[
(t− τ)1−p

1− p

∣∣∣∣t
0

=
t1−p

1− p
. (2.179)

Equation (2.178) is then given by∫ t

0
f ′(τ)(t− τ)−pdτ =

∫ t

0

(
f ′(τ)− f ′(t)

)
(t− τ)−pdτ + f ′(t)

t1−p

1− p
. (2.180)

Let

g(τ, t) =
(
f ′(τ)− f ′(t)

)
(t− τ)−p, (2.181)

then we have∫ t

0
f ′(τ)(t− τ)−pdτ =

∫ ∆t

0
g(τ, t)dτ +

∫ (j−1)∆t

∆t
g(τ, t)dτ +

∫ j∆t

(j−1)∆t
g(τ, t)dτ + f ′(t)

t1−p

1− p
.

(2.182)

To evaluate the integral from τ = (j − 1)∆t to τ = j∆t, we use the finite difference

approximation of f ′(τ), to find∫ j∆t

(j−1)∆t
g(τ, t)dτ =

∫ j∆t

(j−1)∆t

(
f ′(τ)− f ′(t)

)
(t− τ)−pdτ

≈
(
f(j∆t)− f((j − 1)∆t)

∆t
− f ′(t)

)[
−(t− τ)1−p

1− p

∣∣∣∣j∆t
(j−1)∆t

=

(
f(j∆t)− f((j − 1)∆t)

∆t
− f ′(t)

)
∆t1−p

1− p

=
∆t−p

1− p
(f(j∆t)− f((j − 1)∆t))− ∆t1−p

1− p
f ′(t), (2.183)
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and the integral from τ = 0 to τ = ∆t, gives∫ ∆t

0
g(τ, t)dτ =

∫ ∆t

0

(
f ′(τ)− f ′(t)

)
(t− τ)−pdτ

≈
(
f(∆t)− f(0)

∆t

)[
t1−p − (t−∆t)1−p

1− p

]
− f ′(t)

[
t1−p − (t−∆t)1−p

1− p

]
.

(2.184)

To evaluate the second integral in Equation (2.182) from τ = ∆t to τ = (j − 1)∆t, we

use Romberg integration (Mathews & Fink 1999) by setting a = ∆t, b = (j − 1)∆t, and

with hn = (b− a)/2n−1. We then have∫ b

a
g(τ, t)dτ ≈ In,k + ε, (2.185)

The one and two-interval Composite Trapezoidal approximations of this integral are

I1,1 =
b− a

2
[g(a, t) + g(b, t)] , (2.186)

for one interval, and

I2,1 =
b− a

4

[
g(a, t) + 2g

(
a+ b

2
, t

)
+ g(b, t)

]
, (2.187)

for two intervals. The Composite Trapezoidal rule of subinterval n is given by

In,1 =
hn
2

g(a, t) + 2
2n−1−1∑
i=1

g(τi, t) + g(b, t)

 , (2.188)

where τi = a + ih. For n > 1 we split the summation into two summations containing

odd numbered terms and containing even numbered terms like so

In,1 =
hn
2

g(a, t) + 2
2n−2∑
i=1

g(a+ (2i− 1)h, t) + 2
2n−2−1∑
i=1

g(a+ 2ih, t) + g(b, t)


=
hn
2

g(a, t) + 2

2n−2−1∑
i=1

g(a+ 2ih, t) + g(b, t)

+ hi

2n−2∑
i=1

g(a+ (2i− 1)h, t)

=
1

2
In−1,1 + hn

2n−2−1∑
i=1

g(a+ (2i− 1)h, t). (2.189)

For 2 ≤ k ≤ n, we can use Richardson Extrapolation (Richardson 1911, Mathews &

Fink 1999)

In,k = In,k−1 +
In,k−1 − In−1,k−1

4k−1 − 1
. (2.190)

For instance, to obtain I3,2 we can apply Richardson Extrapolation in Equation (2.190)

using I2,1 and I3,1. There is a significant decrease in error in using the estimate In,2
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as it has fourth-order accuracy and In,2 is computed using half the step size of In−1,2.

This follows from the error term in the Composite Trapezoidal Rule is O(h2), and in the

Richardson is O(h6) (Kress 1998).

In using Romberg Integration to approximate the integral in Equation (2.185) we currently

use a set number of subintervals n and order k.

Using Equations (2.183), (2.184) and In,k in Equation (2.190) into Equation (2.9), we

then have the RInt approximation at t = tj[
dpf(t)

dtp

∣∣∣∣
RInt

=
1

Γ(2− p)

{[
(1− p)t−pj −

(
t1−pj − (tj −∆t)1−p

∆t

)]
f0 +

[
t1−pj − (tj −∆t)1−p

∆t

]
f1

+
(
(tj −∆t)1−p −∆t1−p

)
f ′(tj) + ∆t−p (fj − fj−1)

}
+

1

Γ(1− p)
In,k .

(2.191)

Using the finite difference method to approximate the first order derivative, we then

obtain the approximation[
dpf(t)

dtp

∣∣∣∣
RInt

=
∆t−p

Γ(2− p)

{[
(1− p)j−p −

(
j1−p − (j − 1)1−p)] f0 +

[
j1−p − (j − 1)1−p] f1

+ (j − 1)1−p (fj − fj−1)

}
+

1

Γ(1− p)
In,k . (2.192)

where fj = f(j∆t). The RInt scheme (given in Equation (2.191)) was tested on the

function f(t) given in Equation (2.7) at time t = 1.0 with p = 1−γ when γ = 0.1, . . . , 0.9.

The error of the approximation is plotted as a function of ∆t on double logarithmic scale

plot given in Figures 2.31 – 2.35. Here the I10,2 estimate of the integral was used.

We see in Figures 2.31 – 2.35, the error decreases as ∆t decreases and for small ∆t the

error is of order O(∆t1+γ). We also see the slope of the lines match asymptotically the

slope of 1 + γ of the dashed lines. The comparison of the absolute error for each function

given in Table 2.10. We see in Table 2.10, the maximum error occurs where γ = 0.1 for

all functions f(t) and the minimum error occurs for γ = 0.9.
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Figure 2.31: (Color online) The value of the absolute error found by using the RInt scheme,

Equation (2.191), to approximate the order 1−γ fractional derivative of the function f(t) = t2

at t = 1.0. Results are shown for γ = 0.1, . . . , 0.9, and the value of γ increases in the direction

of the arrow. For comparison we show lines of slope 1 + γ as the dashed lines.

Figure 2.32: (Color online) The absolute error in the estimate of the RInt approximation,

Equation (2.191), found for the fractional derivative of the function f(t) = t3 of order 1 − γ

at t = 1.0. The error is shown for γ = 0.1, . . . , 0.9 with γ increases in the direction of the

arrow and the dashed lines show lines of slope 1 + γ for comparison.
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Figure 2.33: (Color online) The value of the absolute error of the fractional derivative of order

1 − γ for the function f(t) = t4 found by using the RInt approximation, Equations (2.191),

at the time t = 1.0, and for γ = 0.1, . . . , 0.9. Note the value of γ increases in the direction of

the arrow. Dashed lines show lines of slope 1 + γ for comparison.

Figure 2.34: (Color online) The absolute error in using the RInt approximation, Equa-

tions (2.191), to evaluate the fractional derivative of order 1 − γ for the function f(t) =

1 − et + t3, where γ = 0.1, . . . , 0.9 and time t = 1.0. Note γ increases in the direction of the

arrow, and the dashed lines show lines of slope 1 + γ for comparison.
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Figure 2.35: (Color online) The absolute error in using the RInt approximation, Equa-

tions (2.191), to evaluate the fractional derivative of order 1 − γ, where γ = 0.1, . . . , 0.9,

for the function f(t) = 1 + tγ at the time t = 1.0. Note γ increases in the direction of the

arrow, and the dashed lines show lines of slope 1 + γ for comparison.

Table 2.10: The comparison of the absolute error in the estimate of the fractional derivative

of order 1 − γ on the functions f(t), Equation (2.7), at the time t = 1.0 with γ = 0.1, ..., 0.9

and ∆t = 0.01 by using the RInt scheme approximation.

γ f(t) = t2 f(t) = t3 f(t) = t4 f(t) = 1− et + t3 f(t) = 1 + tγ

γ = 0.1 4.886e–03 1.461e–02 2.913e–02 7.992e–03 4.428e–04

γ = 0.2 2.578e–03 7.709e–03 1.537e–02 4.216e–03 4.157e–04

γ = 0.3 1.331e–03 3.981e–03 7.934e–03 2.177e–03 2.820e–04

γ = 0.4 6.699e–04 2.003e–03 3.991e–03 1.095e–03 1.624e–04

γ = 0.5 3.260e–04 9.745e–04 1.942e–03 5.330e–04 8.250e–05

γ = 0.6 1.516e–04 4.530e–04 9.026e–04 2.478e–04 3.691e–05

γ = 0.7 6.575e–05 1.965e–04 3.915e–04 1.075e–04 1.413e–05

γ = 0.8 2.524e–05 7.543e–05 1.503e–04 4.124e–05 4.142e–06

γ = 0.9 7.246e–06 2.162e–05 4.307e–05 1.181e–05 6.831e–07

In Table 2.11, we show the convergence result in ∆t of the fractional derivative of order

1− γ for the function f(t) = 1 + tγ , where γ = 0.1, . . . , 0.9 and the I20,2 estimate of the

integral was used with time t = 1.0. From the results given in Table 2.11, we obtain the

prediction accuracy of 1 + γ in time.
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Table 2.11: Numerical accuracy in ∆t of the RInt scheme applied to the function f(t) = 1+tγ ,

where R̂ is order of convergence.

γ = 0.1 γ = 0.2 γ = 0.3

∆t e∞(∆t) R̂ e∞(∆t) R̂ e∞(∆t) R̂

1/1000 3.882e–05 – 2.920e–05 – 1.587e–05 –

1/2000 1.810e–05 1.1 1.271e–05 1.2 6.444e–06 1.3

1/4000 8.444e–06 1.1 5.530e–06 1.2 2.617e–06 1.3

1/8000 3.939e–06 1.1 2.407e–06 1.2 1.063e–06 1.3

1/16000 1.838e–06 1.1 1.048e–06 1.2 4.316e–07 1.3

γ = 0.4 γ = 0.5 γ = 0.6

1/1000 7.319e–06 – 2.975e–05 – 1.065e–06 –

1/2000 2.773e–06 1.4 1.052e–06 1.5 3.513e–07 1.6

1/4000 1.050e–06 1.4 3.717e–07 1.5 1.158e–07 1.6

1/8000 3.980e–07 1.4 1.314e–07 1.5 3.821e–08 1.6

1/16000 1.509e–07 1.4 4.648e–08 1.5 1.261e–08 1.6

γ = 0.7 γ = 0.8 γ = 0.9

1/1000 3.241e–07 – 7.603e–07 – 9.832e–09 –

1/2000 9.974e–08 1.7 2.183e–08 1.8 2.634e–09 1.9

1/4000 3.069e–08 1.7 6.268e–09 1.8 7.056e–10 1.9

1/8000 9.447e–09 1.7 1.800e–09 1.8 1.891e–10 1.9

1/16000 2.910e–09 1.7 5.176e–10 1.8 5.081e–11 1.9

2.8 The Short Memory Principle

The value of a fractional derivative of a given function f(t), see Definitions 1.2.1 – 1.2.3,

depends on the function values in the interval 0 ≤ τ ≤ t and so the fractional derivative

of function f(t) depends on the historical behavior of the function f(t) (Podlubny 1998).

It should be noted that to use the fractional derivative approximations, as in Equa-

tions (2.12), (2.60), (2.75) and (2.88), the history of the function f(t) needs to be stored

and the convolution sum needs to be evaluated. One of the major issues in evaluating

fractional derivatives numerically is the cost of the evaluation of this convolution sum.

This computational cost increases as the number of time steps increases, becoming sig-

nificant for a large number of time steps. This is not as significant for problems involving
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space-fractional derivatives as the domain does not grow and so the computational cost

does not increase. One way to reduce this computational cost is to eliminate the tail of

the integral, known as the short memory principle (Podlubny 1998). This takes advantage

of the fact that the integral in the fractional derivative is weighted mainly around the

time t, that is the most recent history of the function f(t), with earlier history near t = 0

contributing less to the value of the fractional derivative.

The idea behind the short memory principle is to consider only the most recent history

of the f(t) when evaluating the fractional derivative. That is only in the interval [t−T, t]

where T is the memory length

aD
p
t f(t) ≈ t−TD

p
t f(t), (t > a+ T ). (2.193)

Podlubny (1998) shows that the truncation error is given by

ε ≤ MT p

Γ(1− p)
,

with a fixed integral length T , if |f(t)| ≤ M for a < t < b and where p is the fractional

derivative order.

Ford & Simpson (2001) introduce a short-memory principle for the Caputo derivative,

and show that the truncation error is given by

ε ≤ M

Γ(2− p)
(
t1−p − T 1−p) ,

where p ∈ (n− 1, n), n ∈ IN. Deng (2007b) extended the effective range of short memory

principle from p ∈ (0, 1) to p ∈ (0, 2), where the integral interval [0, tn] split as follows

[0, tn] = [0, tn − qmτ ] ∪ [tn − qmτ, tn − qm−1τ ] ∪ ... ∪ [tn − q2τ, tn − qτ ] ∪ [tn − qτ, tn],

where τ = h, h ∈ IR+, m, , q ∈ IN and qmτ ≤ tn < qm+1τ . Deng (2007b) implemented the

numerical computation by using the Predictor–Corrector approach, as in Diethelm et al.

(2002), where 0 < p < 1. The convergent order was found to be order 1 + p in time.

In this section, we introduce a short-memory principle for the Riemann–Liouville frac-

tional derivative in Equation (2.8) by using Equation (2.12). We also consider regression

methods to approximate the early history given in Equation (2.9) instead of ignoring this

early history. We will discuss this in the next sections.
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2.9 Reduction of the Computation of the L1 Scheme

In this section, we consider reduction of the computation of the L1 scheme following

the short memory principle approach. To do this we suppose that the summation in

Equation (2.12) starts from k = n instead of k = 0. We refer to this approximation as

the L1∗ scheme and it is given, for n < j, as follows[
dpf(t)

dtp

∣∣∣∣j
L1∗

=
tj
−p

Γ(1− p)
f0 +

∆t−p

Γ(2− p)

j−1∑
k=n

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p] ,

(2.194)

again we denote fj = f(j∆t). We can rewrite L1∗ scheme, if 1 ≤ n < j, as[
dpf(t)

dtp

∣∣∣∣j
L1∗

=
∆t−p

Γ(2− p)

{
(1− p)j−pf0 +

j∑
k=n

ℵj−k(p)fk

}
, (2.195)

where the weights ℵl(p) are defined by

ℵl(p) =


(j − (n+ 1))1−p − (j − n)1−p if l = j − n,

(l − 1)1−p − 2l1−p + (l + 1)1−p if 1 ≤ l ≤ j − (n+ 1),

1 if l = 0.

(2.196)

To evaluate the L1∗ at the functions 1 and t we need the following lemma.
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Lemma 2.9.1. Given the weights ℵj−k(p) defined in Equation (2.196), and n < j, we

have

1.
j∑

k=n

ℵj−k(p) = 0, and

2.
j∑

k=n

kℵj−k(p) = (j − n)1−p.

Proof. Using the definition of the weights in Equation (2.196), we then have

j∑
k=n

ℵj−k(p) = (j − (n+ 1))1−p − (j − n)1−p + 1

+

j−1∑
k=n+1

[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p

]
= (j − (n+ 1))1−p − (j − n)1−p + 1

+

j∑
r1=n+2

(j − r1)1−p −
j−1∑

k=n+1

(j − k)1−p −

[
j−1∑

k=n+1

(j − k)1−p −
j−2∑
r2=n

(j − r2)1−p

]

= (j − (n+ 1))1−p − (j − n)1−p + 1 + 0 +

j−1∑
r1=n+2

(j − r1)1−p − (j − (n+ 1))1−p

−
j−1∑

k=n+2

(j − k)1−p −

[
1 +

j−2∑
k=n+1

(j − k)1−p − (j − n)1−p −
j−2∑

r2=n+1

(j − r2)1−p

]

= 0. (2.197)

Hence the first result holds. We now show the second result also holds

j∑
k=n

kℵj−k(p) = n
[
(j − (n+ 1))1−p − (j − n)1−p

]
+ j

+

j−1∑
k=n+1

k
[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p

]

= n
[
(j − (n+ 1))1−p − (j − n)1−p

]
+ j +

j−1∑
k=n+1

k (j − (k + 1))1−p

− 2

j−1∑
k=n+1

k (j − k)1−p +

j−1∑
k=n+1

k (j − (k − 1))1−p , (2.198)
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and rewriting the first and last sums, we find

j∑
k=n

kℵj−k(p) = n
[
(j − (n+ 1))1−p − (j − n)1−p

]
+ j +

j∑
r1=n+2

(r1 − 1) (j − r1)1−p

− 2

j−1∑
k=n+1

k(j − k)1−p +

j−2∑
r2=n

(r2 + 1) (j − r2)1−p

= n
[
(j − (n+ 1))1−p − (j − n)1−p

]
+ j +

j∑
r1=n+2

r1(j − r1)1−p

−
j−1∑

k=n+1

k(j − k)1−p −

[
j−1∑

k=n+1

k(j − k)1−p −
j−2∑
r2=n

r2(j − r2)1−p

]

−
j∑

r1=n+2

(j − r1)1−p +

j−2∑
r2=n

(j − r2)1−p

= n
[
(j − (n+ 1))1−p − (j − n)1−p

]
+ j − (n+ 1) (j − (n+ 1))1−p − (j − 1)

+ n(j − n)1−p − 1 + (j − n)1−p + (j − (n+ 1))1−p

= (j − n)1−p. (2.199)

Hence result (2) also holds.

We note there is a problem with the L1∗ approximation. We note it is exact for f(t) = 1,

i.e. [
dp(1)

dtp

∣∣∣∣j
L1∗

=
tj
−p

Γ(1− p)
(1) +

∆t1−p

Γ(2− p)

j−1∑
k=n

ℵj−k(p), (2.200)

and by using first result in Lemma 2.9.1, we have the exact value of the derivative[
dp(1)

dtp

∣∣∣∣j
L1∗

=
t−pj

Γ(1− p)
. (2.201)

But for f(t) = t we have the approximation[
dp(t)

dtp

∣∣∣∣j
L1∗

=
tj
−p

Γ(1− p)
(0) +

∆t1−p

Γ(2− p)

j−1∑
k=n

kℵj−k(p)

=
∆t1−p

Γ(2− p)

j−1∑
k=n

kℵj−k(p). (2.202)
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Now evaluating the summation, by using the second result in Lemma 2.9.1, we find[
dp(t)

dtp

∣∣∣∣j
L1∗

=
∆t1−p

Γ(2− p)
(j − n)1−p

=
(j∆t− n∆t)1−p

Γ(2− p)

=
(tj − tn)1−p

Γ(2− p)
. (2.203)

When we compare this result with the exact fractional derivative of the function f(t) = t,

dpf(t)
dtp = t1−p

Γ(2−p) , we have an error unlike when the full L1 scheme is used. To remedy this

we add an extra term
1

Γ(2− p)
[
tj

1−p − (tj − tn)1−p] f ′(0)

to Equation (2.194). We then have the approximation[
dpf(t)

dtp

∣∣∣∣ =
tj
−p

Γ(1− p)
f0 +

1

Γ(2− p)
[
tj

1−p − (tj − tn)1−p] f ′(0)

+
∆t−p

Γ(2− p)

j−1∑
k=n

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p] , (2.204)

which we will refer to as the RL1 scheme. Equation (2.204) can be rewritten as[
dpf(t)

dtp

∣∣∣∣j
RL1

=
tj
−p

Γ(1− p)
f0 +

1

Γ(2− p)
[
tj

1−p − (tj − tn)1−p] f ′(0)

+
∆t−p

Γ(2− p)

{
fj +

[
(j − (n+ 1))1−p − (j − n)1−p] fn

+

j−1∑
k=n+1

fk
[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p]} , (2.205)

or, upon using the first order finite difference approximation for f ′(0), as[
dpf(t)

dtp

∣∣∣∣j
RL1

=
∆t−p

Γ(2− p)

{[
(1− p)j−p − j1−p + (j − n)1−p] f0 +

[
j1−p − (j − n)1−p] f1

+ fj +
[
(j − (n+ 1))1−p − (j − n)1−p] fn

+

j−1∑
k=n+1

fk
[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p]} . (2.206)

If n > 0 the RL1 scheme can be rewritten as[
dpf(t)

dtp

∣∣∣∣j
RL1

=
∆t−p

Γ(2− p)

{
~(p)f0 +

[
j1−p − (j − n)1−p] f1 +

j∑
k=n

ℵj−k(p)fk

}
, (2.207)

where ~(p)

~(p) = (1− p)j−p − j1−p + (j − n)1−p, (2.208)

and the weights ℵj−k(p) are given in Equation (2.196). In the next section we give the

accuracy of the RL1 scheme and the L1∗ scheme.
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2.10 Accuracy of the RL1 and L1∗ Schemes

In this section, we determine the accuracy of the fractional approximation RL1 and L1∗

schemes given by Equations (2.204) and (2.195) at time t = tj and 0 < p < 1. We again

follow the approach of Langlands & Henry (2005) by assuming f(t) can be expanded as

in Equation (2.20). The value of the fractional derivative of Equation (2.20) is given by

Equation (2.25).

2.10.1 Accuracy of the L1∗ Scheme

In this section, we consider the accuracy of L1∗ scheme given in Equations (2.195) and

(2.196). As shown previously in Section 2.6, the accuracy of L1∗ can now be determined

by comparing the exact value in Equation (2.25) with the value obtained using the L1∗

scheme. Now we need to evaluate the L1∗ fractional approximation operating on the

functions 1, t and the convolution integral in Equation (2.20).

In Equations (2.201) and (2.203) we found the L1∗ fractional approximation operating

on the functions 1 and t.

We now apply the L1∗ fractional approximation on the convolution integral, to find

[
dp

dtp

(∫ t

0
f ′′(s)(t− s)ds

)∣∣∣∣j
L1∗

=
∆t−p

Γ(2− p)

(1− p)j−p lim
t→0

t∫
0

f ′′(s)(t− s)ds

+

j∑
k=n

ℵj−k(p)
k∆t∫
0

f ′′(s)(k∆t− s)ds

 . (2.209)

Note the limit in the first term on the right is zero if f(t) is a well–behaved function of t.

By dividing the integration interval into equal ∆t steps, we have

dp

dtp

[∫ t

0
f ′′(s)(t− s)ds

∣∣∣∣j
L1∗

=
∆t−p

Γ(2− p)

j∑
k=n

ℵj−k(p)
k−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)(k∆t− s)ds, (2.210)
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and then by changing the order of summation, we obtain the expression

dp

dtp

[∫ t

0
f ′′(s)(t− s)ds

∣∣∣∣j
L1∗

=
∆t−p

Γ(2− p)


n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=n

ℵj−k(p)(k∆t− s)ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

ℵj−k(p)(k∆t− s)ds

 . (2.211)

Then the L1∗ scheme approximation for the function f(t) is then given[
dpf(t)

dtp

∣∣∣∣
L1∗

=
t−pj

Γ(1− p)
f0 +

(tj − tn)1−p

Γ(2− p)
f ′(0)

+
∆t−p

Γ(2− p)


n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=n

ℵj−k(p)(k∆t− s)ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

ℵj−k(p)(k∆t− s)ds

 . (2.212)

The value of the L1∗ approximation scheme in Equation (2.212) can now be compared

with the value of exact of the fractional derivative in Equation (2.25). The error can be

evaluated as follows∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ =

∣∣∣∣∣f0

t−pj
Γ (1− p)

+ f ′(0)
t1−pj

Γ (2− p)
+

tj∫
0

f ′′(s)
(tj − s)1−p

Γ(2− p)
ds

− f0

t−pj
Γ (1− p)

− f ′(0)
(tj − tn)1−p

Γ (2− p)
− ∆t−p

Γ(2− p)


n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=n

ℵj−k(p)(k∆t− s)ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

ℵj−k(p)(k∆t− s)ds


∣∣∣∣∣∣∣ , (2.213)

which, after simplifying, becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ =

∣∣∣∣ 1

Γ (2− p)

(
t1−pj − (tj − tn)1−p

)
f ′(0)

1

Γ(2− p)


n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

[
(tj − s)1−p −∆t−p

j∑
k=n

ℵj−k(p)(k∆t− s)

]
ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

[
(tj − s)1−p −∆t−p

j∑
k=l+1

ℵj−k(p)(k∆t− s)

]
ds


∣∣∣∣∣∣∣ . (2.214)
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To evaluate the summations
∑j

k=l+1 ℵj−k(p) and
∑j

k=l+1 kℵj−k(p) we need the following

two Lemmas.

Lemma 2.10.1. Given the weights ℵj−k(p) defined in Equation (2.196), and n ≤ l+1 ≤ j,

we then have
j∑

k=l+1

ℵj−k(p) = (j − l)1−p − (j − (l + 1))1−p . (2.215)

Proof. By using Equation (2.196), we have

j∑
k=l+1

ℵj−k(p) = 1 +

j−1∑
k=l+1

[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p

]

= 1 +

j−1∑
k=l+1

(j − (k + 1))1−p − 2

j−1∑
k=l+1

(j − k)1−p +

j−1∑
k=l+1

(j − (k − 1))1−p ,

(2.216)

and, after rewriting the first and last sums, we find

j∑
k=l+1

ℵj−k(p) = 1 +

j∑
r1=l+2

(j − r1)1−p −
j−1∑
k=l+1

(j − k)1−p −

 j−1∑
k=l+1

(j − k)1−p −
j−2∑
r2=l

(j − r2)1−p


= 1 + 0 +

j−1∑
r1=l+2

(j − r1)1−p − (j − (l + 1))1−p −
j−1∑
k=l+2

(j − k)1−p

−

1 +

j−2∑
k=l+1

(j − k)1−p − (j − l)1−p −
j−2∑

r2=l+1

(j − r2)1−p


= (j − l)1−p − (j − (l + 1))1−p . (2.217)

Hence the result in Equation (2.215) is correct.

Lemma 2.10.2. Given the weights ℵj−k(p) defined in Equation (2.196), and k < j, then

j∑
k=l+1

kℵj−k(p) = (l + 1)(j − l)1−p − l (j − (l + 1))1−p . (2.218)
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Proof. By using Equation (2.196), we have

j∑
k=l+1

kℵj−k(p) = j +

j−1∑
k=l+1

k
[
(j − (k + 1))1−p − 2(j − k)1−p + (j − (k − 1))1−p

]

= j +

j−1∑
k=l+1

k (j − (k + 1))1−p − 2

j−1∑
k=l+1

k (j − k)1−p

+

j−1∑
k=l+1

k (j − (k − 1))1−p , (2.219)

then, after rewriting the first and last sums, we find

j∑
k=l+1

kℵj−k(p) = j +

j∑
r1=l+2

(r1 − 1) (j − r1)1−p − 2

j−1∑
k=l+1

k(j − k)1−p

+

j−2∑
r2=l

(r2 + 1) (j − r2)1−p

= j +

j∑
r1=l+2

r1(j − r1)1−p −
j−1∑
k=l+1

k(j − k)1−p −

[
j−1∑
k=l+1

k(j − k)1−p

−
j−2∑
r2=l

r2(j − r2)1−p

− j∑
r1=l+2

(j − r1)1−p +

j−2∑
r2=l

(j − r2)1−p

= j − (l + 1) (j − (l + 1))1−p − (j − 1) + l(j − l)1−p − 1

+ (j − l)1−p + (j − (l + 1))1−p

= (l + 1)(j − l)1−p − l (j − (l + 1))1−p . (2.220)

Hence the result in Equation (2.218) is true.

Now using Lemmas 2.9.1, 2.10.1, and 2.10.2, then the summations in Equation (2.214)

are given by

j∑
k=n

ℵj−k(p)(k∆t− s) = ∆t(j − n)1−p, (2.221)

and

j∑
k=l+1

ℵj−k(p)(k∆t− s) = (j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s). (2.222)

Using the inequality ∣∣∣∣∫ f(x)dx

∣∣∣∣ ≤ ∫ |f(x)| dx (2.223)
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Equation (2.214) then becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ ≤ 1

Γ (2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)| (2.224)

+
1

Γ(2− p)

n−1∑
l=0

(l+1)∆t∫
l∆t

∣∣f ′′(s)∣∣ ∣∣(tj − s)1−p −∆t1−p(j − n)1−p∣∣ ds
+

1

Γ(2− p)

j−1∑
l=n

(l+1)∆t∫
l∆t

∣∣f ′′(s)∣∣ ∣∣(tj − s)1−p −∆t−p
[
(j − l)1−p((l + 1)∆t− s)

−(j − (l + 1))1−p(l∆t− s)
]∣∣ ds.

Let the maximum absolute value of the second derivative in each interval [l∆t, (l+ 1)∆t]

where l = 0, . . . , j − 1, by

Ml = max
l∆t≤s≤(l+1)∆t

∣∣f ′′(s)∣∣ . (2.225)

The bound then becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ ≤ 1

Γ (2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)| (2.226)

+
1

Γ(2− p)

n−1∑
l=0

Ml

(l+1)∆t∫
l∆t

∣∣(tj − s)1−p −∆t1−p(j − n)1−p∣∣ ds
+

1

Γ(2− p)

j−1∑
l=n

Ml

(l+1)∆t∫
l∆t

∣∣(tj − s)1−p −∆t−p
[
(j − l)1−p((l + 1)∆t− s)

−(j − (l + 1))1−p(l∆t− s)
]∣∣ ds.

We conclude that the term

(tj − s)1−p −∆t1−p(j − n)1−p = (tj − s)1−p − (tj − tn)1−p,

is positive since f(x) = x1−p is an increasing function of x and for 0 ≤ l ≤ n − 1 and

l∆t < s < (l + 1)∆t we have 0 < s < tn < tj and so tj > tj − s > tj − tn > 0. Also it

is shown in Appendix B, Section B.1, that the term in the absolute value function in the

second integrand is positive and so we can drop the absolute sign in both integrals.

Evaluating the integrals in Equation (2.226), we have

(l+1)∆t∫
l∆t

(tj − s)1−p ds =

[
− (tj − s)2−p

2− p

∣∣∣∣∣
(l+1)∆t

l∆t

=
(∆t)2−p

2− p

[
(j − l)2−p − (j − l − 1)2−p

]
, (2.227)
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(l+1)∆t∫
l∆t

[l∆t− s] ds =

[
l∆ts− s2

2

∣∣∣∣(l+1)∆t

l∆t

=

[
l(∆t)2 − 2l + 1

2
(∆t)2

]
= −∆t2

2
, (2.228)

and

(l+1)∆t∫
l∆t

[(l + 1)∆t− s] ds =

[
(l + 1)∆ts− s2

2

∣∣∣∣(l+1)∆t

l∆t

=

[
(l + 1)(∆t)2 − 2l + 1

2
(∆t)2

]
=

∆t2

2
. (2.229)

Inserting the value of the integrals into Equation (2.226) and then letting

M = max{Ml; l = 0, 1, 2, ..., j}, we have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ ≤ 1

Γ (2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)| (2.230)

+
∆t2−pM

(2− p)Γ(2− p)

{
n−1∑
l=0

[
(j − l)2−p − (j − l − 1)2−p − (2− p)(j − n)1−p

]

+

j−1∑
l=n

[
(j − l)2−p − (j − (l + 1))2−p − 2− p

2

[
(j − l)1−p + (j − (l + 1))1−p]]} .

Evaluating the summations

n−1∑
l=0

[
(j − l)2−p − (j − (l + 1))2−p

]
=

n−1∑
l=0

(j − l)2−p −
n∑
l=1

(j − l)2−p

= j2−p − (j − n)2−p , (2.231)

j−1∑
l=n

[
(j − l)2−p − (j − (l + 1))2−p

]
=

j−1∑
l=n

(j − l)2−p −
j∑

l=n+1

(j − l)2−p

= (j − n)2−p, (2.232)

j−1∑
l=n

[
(j − l)1−p + (j − (l + 1))1−p

]
=

j−1∑
l=n

(j − l)1−p +

j∑
l=n+1

(j − l)1−p

= (j − n)1−p + 2

j−1∑
l=n+1

(j − l)1−p , (2.233)
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and using these results in Equation (2.230), we then have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ ≤ 1

Γ (2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)| (2.234)

+
∆t2−pM

(2− p)Γ(2− p)

{
j2−p − (j − n)2−p − (2− p)n(j − n)1−p + (j − n)2−p

−2− p
2

[
(j − n)1−p + 2

j−1∑
l=n+1

(j − l)1−p

]}
.

Equation (2.234) simplifies to∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ ≤ 1

Γ(2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)| (2.235)

+
∆t2−pM

Γ(3− p)

j2−p − 2− p
2

(j − n)1−p(2n+ 1)− (2− p)
j−(n+1)∑
k=1

k1−p


=

1

Γ(2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)|+ ∆t2−pM

2Γ(3− p)

[
j1−p(2j − (2− p))− 2(2− p)

j−1∑
k=1

k1−p

]

+
∆t2−pM

2Γ(2− p)

j1−p − (j − n)1−p(2n+ 1) + 2

j−1∑
k=j−n

k1−p

 . (2.236)

The estimate error is then given by∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
L1∗

∣∣∣∣∣ ≤ 1

Γ(2− p)

∣∣∣t1−pj − (tj − tn)1−p
∣∣∣ |f ′(0)|+ C∆t2−p + C∗n∆t2−p,

(2.237)

where C is defined by

C =
Mϑ(j, p)

2Γ(3− p)
, (2.238)

and ϑ(j, p) is given by Equation (2.50). The bound of C is given by Equations (2.49) and

(2.51). The value of C∗n is given by

C∗n =
Mκ(j, n, p)

2Γ(2− p)
, (2.239)

where κ(j, n, p) is

κ(j, n, p) = j1−p − (j − n)1−p(2n+ 1) + 2

j−1∑
k=j−n

k1−p. (2.240)

In Equation (2.240), we have κ(j, n, 0) = n2 and κ(j, n, 1) = 0. For 0 ≤ p ≤ 1 the constant

κ(j, n, p) is bounded by 0 ≤ κ(j, n, p) ≤ n2 as shown in Figure 2.36. Another bound can
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be found by sitting j = n, which gives

κ(j, j, p) = j1−p + 2

j−1∑
k=0

k1−p

≤ j1−p + 2

j−1∑
k=1

(j − 1)1−p

≤ j1−p + 2(j − 1)2−p. (2.241)

This shows the term C∗n∆t2−p is of order t2−p as an upper bound. We see the error

increases in Equation (2.237), so this suggests that just by adding the extra term in

Equation (2.204) does not improve the accuracy even though makes it exact for linear

functions of time.

In Figures 2.36 – 2.38, we show the value of κ(j, n, p) given in Equation (2.240) against

p, where p = 0, . . . , 1. In Figure 2.36 we set j = 1000 and varied n = 50l, where

l = 1, 2, . . . , 8. We see the value of κ(j, n, p) increases as n increases in the direction of

the arrow. Whilst in Figure 2.37 when n is fixed and varying j = 10k where k = 2, 3, 4, 5

and 6, the value of κ(j, n, p) decreases as j increases in the direction of the arrow. We

also note that the value of κ(j, n, p) increases as p decreases, we see that the maximum

value of κ(j, n, p) occurs for p = 0 and the minimum value of κ(j, n, p) occurs for p = 1.

We show the maximum value of the κ(j, n, p) in Figure 2.38 for n = j = 1, . . . , 10. We

note the value of κ(j, n, p) increases as j increases in the direction of arrow, as suggested

by the upper bound in Equation (2.241).
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Figure 2.36: The value of κ(1000, n, p) in Equation (2.240) is shown against p for varying

values of n = 50l, where l = 1, 2, . . . , 8. The value of n increases in the direction of the arrow.

Note the value of κ(1000, n, p) increases as p, 0 ≤ p ≤ 1, decreases.

Figure 2.37: The value of κ(j, 50, p) in Equation (2.240) is shown against p for 0 ≤ p ≤ 1 for

fixed n = 50 and j = 10k where k = 2, 3, 4, 5 and 6. The value of κ(j, 50, p) decreases as j

increases in the direction of the arrow.
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Figure 2.38: The maximum value of κ(j, j, p) in Equation (2.240) is shown against p for

0 ≤ p ≤ 1 for n = j = 1, . . . , 10. The value of κ(j, j, p) increases as j increases in the direction

of the arrow.

The accuracy of the L1∗ scheme was estimated by comparing the fractional derivative

of order p = 1 − γ, for γ = 0.1, . . . , 0.9, of the function f(t) = tk, for exponents k =

2, 2.5, 3, 3.5, and 4, at the time t = 1.0. The error is plotted as a function of n for each

function in Figures 2.39 through to 2.43. Also the comparison of the absolute error is

given in Table 2.12, where we have set j = 100 and n = 100. We see that the maximum

error occurs for γ = 0.5 for functions f(t) = t2 and f(t) = t2.5, and the minimum error

occurs for γ = 0.1. Whilst the maximum error occurs for γ = 0.4 for functions f(t) = t3,

f(t) = t3.5, and f(t) = t4.

In Figure 2.39, we see the error does not increase immediately for all γ values when n

is small. For example for γ = 0.1 the error only begins to increase when n = 20. Thus

suggests we can use the L1∗ scheme with n = 1, . . . , 20 without introducing a large error

for n > 20. Whilst for γ = 0.9 the error begins to increase for n > 2, which is not as

good as γ = 0.1. We also see in Figure 2.43 for the value γ = 0.1 the error only begins to

increase when n > 70, so we can use the L1∗ scheme with n = 1, . . . , 70, to still maintain

the same level of error. But for the case γ = 0.9 the error begins to increase for n > 6, so

we can only ignore a smaller number of terms for case γ = 0.9 compared with the number

that can be ignored for γ = 0.1. We see similar behaviour in Figures 2.40 and 2.41.

From these figures it appears we can ignore more terms as the power of t increases. This
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is most likely due to the fact the value of M = max(f ′′(x)) and f ′(0) being smaller as

the power increases. From Table 2.12 and the Figures 2.39 – 2.43, we conclude that the

error increases as n increases (as we ignore more history), and the minimum error occurs

for n is near zero. This is to be expected as n = 0 is similar to the L1 scheme.

Figure 2.39: The absolute error in using the L1∗ scheme, Equation (2.194), for the fractional

derivative of order 1 − γ of the function f(t) = t2, at time t = 1.0, with j = 100 and

n = 1, . . . , j. Results are shown for γ = 0.1, . . . , 0.9 where γ increases in the direction of the

arrow.

Figure 2.40: The absolute error in using the L1∗ scheme, Equation (2.194), for the fractional

derivative of order 1 − γ of the function f(t) = t2.5, at time t = 1.0, with j = 100 with

n = 1, . . . , 100. Results are shown for γ = 0.1, . . . , 0.9 where γ increases in the direction of

the arrow.



2.10 Accuracy of the RL1 and L1∗ Schemes 107

Figure 2.41: The absolute error in using the L1∗ scheme, Equation (2.194), to evaluate the

fractional derivative of order 1− γ for function f(t) = t3, at time t = 1.0. Results shown for

j = 100, with n = 1, . . . , 100 for γ = 0.1, . . . , 0.9 where γ increases in the direction of the

arrow.

Figure 2.42: The absolute error in using the L1∗ scheme, Equation (2.194), for the fractional

derivative of order 1 − γ of the function f(t) = t3.5, at time t = 1.0, with the time step

j = 100 where n = 1, . . . , 100. Results are shown for γ = 0.1, . . . , 0.9 where γ increases in the

direction of the arrow.
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Figure 2.43: The absolute error in using the L1∗ scheme, Equation (2.194), to evaluate the

fractional derivative of order 1− γ for function f(t) = t4, at time t = 1.0. Results shown for

j = 100, n = 1, . . . , 100, and for value γ = 0.1, . . . , 0.9 where γ increases in the direction of

the arrow.

Table 2.12: The comparison of the absolute error for functions f(t) = tk, k = 2, 2.5, 3, 3.5,

and 4 at time t = 1.0 with n = 100, j = 100, and ∆t = 0.01 using the L1∗ scheme to evaluate

the 1− γ order fractional derivative, where γ = 0.1, ..., 0.9.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 5.914e–01 6.790e–01 7.604e–01 8.369e–01 9.0951e–01

γ = 0.2 9.524e–01 1.076e–00 1.188e–00 1.290e–00 1.386e–00

γ = 0.3 1.157e–00 1.288e–00 1.405e–00 1.510e–00 1.607e–00

γ = 0.4 1.255e–00 1.375e–00 1.482e–00 1.578e–00 1.664e–00

γ = 0.5 1.280e–00 1.382e–00 1.470e–00 1.549e–00 1.619e–00

γ = 0.6 1.259e–00 1.337e–00 1.405e–00 1.463e–00 1.515e–00

γ = 0.7 1.208e–00 1.262e–00 1.309e–00 1.348e–00 1.383e–00

γ = 0.8 1.139e–00 1.172e–00 1.198e–00 1.220e–00 1.239e–00

γ = 0.9 1.062e–00 1.074e–00 1.0836e–00 1.091e–00 1.096e–00

2.10.2 Accuracy of the RL1 Scheme

In this section, we determine the accuracy of the fractional derivative at time t = tj

and 0 < p < 1 given by the RL1 scheme in Equation (2.207). We again compare the
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result of taking the exact fractional derivative of f(t) given in Equation (2.25) with

approximate result obtained by RL1 scheme in Equation (2.207). Similar to before we

apply the RL1 approximation scheme on the functions 1, t and the convolution integrals

in Equation (2.20) at time t = tj .

The RL1 approximation of the function f(t) = 1 at time t = tj , is given by[
dp(1)

dtp

∣∣∣∣
RL1

=
∆t−p

Γ(2− p)

{[
(1− p)j−p − j1−p + (j − n)1−p] (1)

+
[
j1−p − (j − n)1−p] (1) +

j∑
k=n

ℵj−k(p)(1)

}

=
∆t−p

Γ(2− p)

{
(1− p)j−p +

j∑
k=n

ℵj−k(p)

}
. (2.242)

Using the first result of Lemma 2.9.1, Equation (2.242) becomes[
dp(1)

dtp

∣∣∣∣j
RL1

=
∆t−p

Γ(2− p)
(1− p)j−p

=
t−pj

Γ(1− p)
, (2.243)

which is exact for f(t) = 1.

We next use the RL1 approximation on f(t) = t[
dp(t)

dtp

∣∣∣∣
RL1

=
∆t−p

Γ(2− p)

{
0 +

[
j1−p − (j − n)1−p] (∆t) +

j∑
k=n

(k∆t)ℵj−k(p)

}

=
∆t1−p

Γ(2− p)

{
j1−p − (j − n)1−p +

j∑
k=n

kℵj−k(p)

}
, (2.244)

which after using Lemma 2.9.1, we then have the result[
dp(t)

dtp

∣∣∣∣j
RL1

=
∆t1−p

Γ(2− p)
{
j1−p − (j − n)1−p + (j − n)1−p}

=
(j∆t)1−p

Γ(2− p)

=
t1−pj

Γ(2− p)
, (2.245)
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which is also exact for f(t) = t.

We now we apply the RL1 approximation on the convolution integral

dp

dtp

[∫ t

0
f ′′(s)(t− s)ds

∣∣∣∣j
RL1

=
∆t−p

Γ(2− p)

[(1− p)j−p − j1−p + (j − n)1−p] lim
t→0

t∫
0

f ′′(s)(t− s)ds

+
[
j1−p − (j − n)1−p] ∆t∫

0

f ′′(s)(∆t− s)ds+

j∑
k=n

ℵj−k(p)
k∆t∫
0

f ′′(s)(k∆t− s)ds

 .

(2.246)

The limit is again zero if f ′′(t) is a well behaved function of t. Now by dividing the

integration interval into equal ∆t steps, we then have

dp

dtp

[∫ t

0
f ′′(s)(t− s)ds

∣∣∣∣j
RL1

=
∆t−p

Γ(2− p)

{[
j1−p − (j − n)1−p] ∆t∫

0

f ′′(s)(∆t− s)ds

+

j∑
k=n

ℵj−k(p)
k−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)(k∆t− s)ds

 . (2.247)

Then by changing the order of summation, we obtain

dp

dtp

[∫ t

0
f ′′(s)(t− s)ds

∣∣∣∣j
RL1

=
∆t−p

Γ(2− p)

{[
j1−p − (j − n)1−p] ∆t∫

0

f ′′(s)(∆t− s)ds

+
n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=n

ℵj−k(p)(k∆t− s)ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

ℵj−k(p)(k∆t− s)ds

 . (2.248)

The RL1 approximation of function f(t) in Equation (2.20) then becomes[
dpf(t)

dtp

∣∣∣∣j
RL1

=
t−pj f0

Γ (1− p)
+
t1−pj f ′(0)

Γ (2− p)
+

∆t−p

Γ(2− p)

[j1−p − (j − n)1−p] ∆t∫
0

f ′′(s)(∆t− s)ds

+

n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=n

ℵj−k(p)(k∆t− s)ds+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

ℵj−k(p)(k∆t− s)ds

 .

(2.249)

The value of the RL1 approximation in Equation (2.249) will be now compared with the

exact value of the fractional derivative given by Equation (2.25). The absolute error is
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then given by∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ =

∣∣∣∣∣f0

t−pj
Γ (1− p)

+ f ′(0)
t1−pj

Γ (2− p)
+

j∆t∫
0

f ′′(s)
(t− s)1−p

Γ(2− p)
ds

− f0

t−pj
Γ (1− p)

− f ′(0)
t1−pj

Γ (2− p)
− ∆t−p

Γ(2− p)

[j1−p − (j − n)1−p] ∆t∫
0

f ′′(s)(∆t− s)ds

+
n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=n

ℵj−k(p)(k∆t− s)ds+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

j∑
k=l+1

ℵj−k(p)(k∆t− s)ds


∣∣∣∣∣∣∣ ,

(2.250)

or by∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ =
1

Γ(2− p)

∣∣∣∣∣∣
∆t−p

[
(j − n)1−p − j1−p] ∆t∫

0

f ′′(s)(∆t− s)ds

+
n−1∑
l=0

(l+1)∆t∫
l∆t

f ′′(s)

[
(t− s)1−p −∆t−p

j∑
k=n

ℵj−k(p)(k∆t− s)

]
ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)

[
(t− s)1−p −∆t−p

j∑
k=l+1

ℵj−k(p)(k∆t− s)

]
ds


∣∣∣∣∣∣∣ . (2.251)

Now using Lemmas 2.9.1, 2.10.1 and 2.10.2, the summations simplify to

j∑
k=n

ℵj−k(p)(k∆t− s) = ∆t(j − n)1−p, (2.252)

and

j∑
k=l+1

ℵj−k(p)(k∆t− s) = (j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s). (2.253)

The absolute error of the RL1 scheme is then∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ (2.254)

=
1

Γ(2− p)

∣∣∣∣∣∣
∆t∫
0

f ′′(s)
[
(t− s)1−p −∆t−p

(
∆tj1−p +

(
(j − n)1−p − j1−p) s)] ds

+

n−1∑
l=1

(l+1)∆t∫
l∆t

f ′′(s)
[
(t− s)1−p −∆t1−p(j − n)1−p] ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

f ′′(s)
[
(t− s)1−p −∆t−p

[
(j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s)

]]
ds

∣∣∣∣∣∣∣ .
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Noting ∣∣∣∣∣∣
b∫
a

f(x)g(x)dx

∣∣∣∣∣∣ ≤
b∫
a

|f(x)| |g(x)| dx, (2.255)

we then have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ (2.256)

≤ 1

Γ(2− p)


∆t∫
0

|f ′′(s)|
∣∣(t− s)1−p −∆t−p

(
∆tj1−p +

(
(j − n)1−p − j1−p) s)∣∣ ds

+
n−1∑
l=1

(l+1)∆t∫
l∆t

|f ′′(s)|
∣∣(t− s)1−p −∆t1−p(j − n)1−p∣∣ ds

+

j−1∑
l=n

(l+1)∆t∫
l∆t

|f ′′(s)|
∣∣(t− s)1−p −∆t−p

[
(j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s)

]∣∣ ds
 .

Let the maximum absolute value of the second derivative in each interval [l∆t, (l+ 1)∆t]

and [0,∆t] by

Ml = max
l∆t≤s≤(l+1)∆t

∣∣f ′′(s)∣∣ , (2.257)

and

M1 = max
0≤s≤∆t

∣∣f ′′(s)∣∣ . (2.258)

Then from Equation (2.256) we have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ (2.259)

≤ 1

Γ(2− p)

M1

∆t∫
0

∣∣(t− s)1−p −∆t−p
(
∆tj1−p +

(
(j − n)1−p − j1−p) s)∣∣ ds

+

n−1∑
l=1

Ml

(l+1)∆t∫
l∆t

∣∣(t− s)1−p −∆t1−p(j − n)1−p∣∣ ds
+

j−1∑
l=n

Ml

(l+1)∆t∫
l∆t

∣∣(t− s)1−p −∆t−p
[
(j − l)1−p((l + 1)∆t− s)− (j − (l + 1))1−p(l∆t− s)

]∣∣ ds
 .
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By Appendix B.1, the term in the absolute value sign in each integrand is positive, and

so evaluating these integrals gives

(l+1)∆t∫
l∆t

[
(tj − s)1−p −∆t1−p(j − n)1−p

]
ds =

[
− (tj − s)2−p

2− p
−∆t1−p(j − n)1−ps

∣∣∣∣∣
(l+1)∆t

l∆t

=
(∆t)2−p

2− p

[
(j − l)2−p − (j − (l + 1))2−p

]
−∆t2−p(j − n)1−p, (2.260)

(l+1)∆t∫
l∆t

[l∆t− s] ds =

[
l∆ts− s2

2

∣∣∣∣(l+1)∆t

l∆t

=

[
l − 2l + 1

2

]
(∆t)2 = −∆t2

2
, (2.261)

(l+1)∆t∫
l∆t

[(l + 1)∆t− s] ds =

[
(l + 1)∆ts− s2

2

∣∣∣∣(l+1)∆t

l∆t

=

[
(l + 1)− 2l + 1

2

]
(∆t)2 =

∆t2

2
,

(2.262)

∆t∫
0

(tj − s)1−p ds =

[
− (tj − s)2−p

2− p

∣∣∣∣∣
∆t

0

=
(∆t)2−p

2− p

[
j2−p − (j − 1)2−p

]
, (2.263)

and

∆t∫
0

[
∆tj1−p +

(
(j − n)1−p − j1−p) s] ds =

∆t2

2

(
j1−p + (j − n)1−p) . (2.264)

Now we let M = max{Mi; l = 0, 1, 2, ..., j}, and using Equations (2.260) – (2.264) in

Equation (2.259), we then have∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ (2.265)

≤ M∆t2−p

(2− p)Γ(2− p)

{
j2−p − (j − 1)2−p − 2− p

2

(
j1−p + (j − n)1−p)

+
n−1∑
l=1

(
(j − l)2−p − (j − (l + 1))2−p − (2− p)(j − n)1−p

)

+

j−1∑
l=n

[
(j − l)2−p − (j − (l + 1))2−p − 2− p

2

[
(j − l)1−p + (j − (l + 1))1−p]]} .

Evaluating the summations, we find

n−1∑
l=1

[
(j − l)2−p − (j − (l + 1))2−p

]
=

n−1∑
l=1

(j − l)2−p −
n∑
l=2

(j − l)2−p

= (j − 1)2−p − (j − n)2−p , (2.266)
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j−1∑
l=n

[
(j − l)2−p − (j − (l + 1))2−p

]
=

j−1∑
l=n

(j − l)2−p −
j∑

r=n+1

(j − r)2−p

= (j − n)2−p , (2.267)

and

j−1∑
l=n

[
(j − l)1−p + (j − (l + 1))1−p

]
= (j − n)1−p + 2

j−1∑
l=n+1

(j − l)1−p . (2.268)

Substituting these in Equation (2.265), we then have the bound∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ ≤ M∆t2−p

(2− p)Γ(2− p)


j1−p

(
j − 2− p

2

)
− (2− p)

j−1)∑
k=1

k1−p


−(2− p)n (j − n)1−p + (2− p)

j−1∑
k=j−n

k1−p


=

M∆t2−p

2Γ(3− p)

j1−p (2j − (2− p))− 2(2− p)
j−1)∑
k=1

k1−p


+
M∆t2−p

Γ(2− p)

 j−1∑
k=j−n

k1−p − n (j − n)1−p

 . (2.269)

Equation (2.269) becomes∣∣∣∣∣
[
dp

dtp
f(t)

∣∣∣∣j − [ dpdtp f(t)

∣∣∣∣j
RL1

∣∣∣∣∣ ≤ C∆t2−p + Ç∗n∆t2−p, (2.270)

where C is a constant and defined by

C =
Mϑ(j, p)

2Γ(3− p)
, (2.271)

where ϑ(j, p) is given by Equation (2.50). The bound for value of C is given by Equa-

tions (2.49) to (2.51). Ç∗n is defined by

Ç∗n =
Mκ̂(j, n, p)

Γ(2− p)
, (2.272)

where κ̂(j, n, p)

κ̂(j, n, p) =

j−1∑
k=j−n

k1−p − n (j − n)1−p . (2.273)
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In Equation (2.273), we have κ̂(j, n, 0) = n
2 (2j − n− 1), and κ̂(j, n, 1) = 0, as shown in

Figure 2.44. Another bound can be found by sitting j = n, which gives

κ̂(j, j, p) =

j−1∑
k=0

k1−p

≤
j−1∑
k=1

(j − 1)1−p

≤ (j − 1)2−p. (2.274)

This shows the term Ç∗n∆t2−p is of order t2−p as an upper bound. Again we see the error

increases in Equation (2.270), so this suggests that reduction of the computation of the

L1 scheme does not improve the accuracy.

In Figures 2.44 – 2.46, we show the value of κ̂(j, n, p) given in Equation (2.273) against p,

for 0 ≤ p ≤ 1. In Figure 2.44 the number of time steps is fixed to j = 1000 and the value

of n is varied with n = 50l, where l = 1, 2, . . . , 8. We note that the maximum value occurs

where n near the value of j, we also see the value of κ̂(j, n, p) increases as n increases,

and the minimum value occurs for n is near zero. In Figure 2.45, we show the value of

the κ̂(j, n, p) against p, for fixed n = 50 and j = 10k where k = 2, 3, 4, 5 and 6. The value

of κ̂(j, n, p) decreases as j increases for fixed n. In addition, the magnitude of the value

of κ̂(j, n, p) increases as p decreases. We also show in Figure 2.46 the maximum value of

the κ̂(j, n, p) occurs when n = j. We note the value of κ̂(j, n, p) increases as j increases

as suggested by the upper bound in Equation (2.274).
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Figure 2.44: The value of κ̂(j, n, p) in Equation (2.273) is shown against p, for 0 ≤ p ≤ 1,

for varying number of n = 50l, where l = 1, 2, . . . , 8 and j = 1000. Note n increases in the

direction of the arrow.

Figure 2.45: The value of κ̂(j, n, p) in Equation (2.273) is shown against p, for 0 ≤ p ≤ 1, for

fixed n = 50 and j = 10k where k = 2, 3, 4, 5 and 6. The value of κ̂(j, n, p) decreases as j

increases in the direction of the arrow for fixed n.
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Figure 2.46: The value of κ̂(j, n, p) in Equation (2.273) is shown against p, for 0 ≤ p ≤ 1, for

n = j = 1, . . . , 10. The value of κ̂(j, j, p) increases as j increases in the direction of the arrow.

The accuracy of the RL1 scheme was estimated by comparing the fractional derivative of

order p = 1− γ of the functions f(t) = tk, (k = 2, 2.5, 3, 3.5, and 4) evaluated at the time

t = 1.0. Results are shown for varying exponents γ = 0.1, . . . , 0.9.

In Figure 2.47, the error does not increase immediately for small n. We see for γ = 0.1

the error starts increase when n > 20, so for this case we could start at n = 20, if we use

the RL1 scheme as the error does not change dramatically for n = 1, 2, . . . , 20. Whilst in

Figure 2.48, we see the error only begins to increase, for γ = 0.1, when n > 70 which is

better and so we can ignore the first 70 terms in this case. But for the value γ = 0.9 the

error begins to increase sooner for n > 2 which is not good as γ = 0.1. We also see the

similar behaviour in Figures 2.49 –2.51. That is as the power of t increases we can ignore

more terms as mentioned for the L1∗ scheme.

The absolute error for given functions are compared in Table 2.13, where j = 100. From

Table 2.13 and the Figures 2.47 and 2.51, we obtained similar error estimate results found

by using the L1∗ approximation scheme.



2.10 Accuracy of the RL1 and L1∗ Schemes 118

Figure 2.47: The absolute error in using the RL1 scheme, in Equation (2.270), to approximate

the fractional derivative of order 1 − γ of the function f(t) = t2, at the time t = 1.0, using

j = 100 time steps, n = 1, . . . , 100 and γ = 0.1, . . . , 0.9. In the figure γ increases in the

direction of the arrow.

Figure 2.48: The absolute error in using the RL1 scheme, Equation (2.270), to approximate

the fractional derivative of order 1− γ of the function f(t) = t2.5, at the time t = 1.0, using

100 time steps for n = 1, . . . , 100 and γ = 0.1, . . . , 0.9. The value γ increases in the direction

of the arrow.
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Figure 2.49: The absolute error in using the RL1 scheme, in Equation (2.270), to evaluate

the fractional derivative of order 1− γ for function f(t) = t3, at the time t = 1.0. Results are

shown for j = 100, n = 1, . . . , 100 and γ = 0.1, . . . , 0.9 where γ increases in the direction of

the arrow.

Figure 2.50: The absolute error in using the RL1 scheme, Equation (2.270), to approximate

the fractional derivative of order 1− γ of the function f(t) = t3.5, at time t = 1.0, using 100

time steps and for n = 1, . . . , 100 and γ = 0.1, . . . , 0.9 where γ increases in the direction of

the arrow.
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Figure 2.51: The absolute error in using the RL1 scheme, in Equation (2.270), to evaluate the

fractional derivative of order 1− γ for function f(t) = t4, at time t = 1.0. Results are shown

for j = 100, n = 1, . . . , j and γ = 0.1, . . . , 0.9 where γ increases in the direction of the arrow.

Table 2.13: The comparison of the absolute error in the RL1 approximate estimate of the

fractional derivative of order 1− γ of the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at time

t = 1.0 where γ = 0.1, ..., 0.9, n = 100, j = 100 and ∆t = 0.01.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 5.914e–01 6.790e–01 7.604e–01 8.369e–01 9.0951e–01

γ = 0.2 9.524e–01 1.076e–00 1.188e–00 1.290e–00 1.386e–00

γ = 0.3 1.157e–00 1.288e–00 1.405e–00 1.510e–00 1.607e–00

γ = 0.4 1.255e–00 1.375e–00 1.482e–00 1.578e–00 1.664e–00

γ = 0.5 1.280e–00 1.382e–00 1.470e–00 1.549e–00 1.619e–00

γ = 0.6 1.258e–00 1.337e–00 1.405e–00 1.463e–00 1.515e–00

γ = 0.7 1.208e–00 1.262e–00 1.309e–00 1.348 e–00 1.383e–00

γ = 0.8 1.139e–00 1.172e–00 1.198e–00 1.220e–00 1.239e–00

γ = 0.9 1.062e–00 1.074e–00 1.0836e–00 1.091e–00 1.096e–00

From the results given in Tables 2.12 and 2.13 and Figures 2.39 – 2.43, and Figures 2.47

– 2.51, we see that the L1∗ scheme and RL1 scheme are not good approximations, since

the error increases as the value of n increases for each value of γ.

In the next sections, we consider the regression approximation to approximate the early
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history. We also estimate the error given by these approximations.

2.11 Regression Methods

In this section, we consider regression methods to approximate the early history given

in Equation (2.9). Now we use regression to approximate f ′(τ) in Equation (2.9) in the

interval τ = 0 to τ = T instead of ignoring this contribution to the integral as in short

memory approach. We begin by rewriting the integral in Equation (2.9) as∫ t

0
f ′(τ)(t− τ)−pdτ =

∫ T

0
f ′(τ)(t− τ)−pdτ +

∫ t

T
f ′(τ)(t− τ)−pdτ, (2.275)

where T = n∆t and t = j∆t. We then have

dpf(t)

dtp
=

t−p

Γ(1− p)
f0 +

1

Γ(1− p)

∫ T

0
f ′(τ)(t− τ)−pdτ +

1

Γ(1− p)

∫ t

T
f ′(τ)(t− τ)−pdτ.

(2.276)

In the following analysis we introduce three different functions to approximate the function

f(τ) in the first integral in this equation.

2.11.1 Linear Regression Approximation

To evaluate the first integral in Equation (2.275) we first used the Linear Regression to

approximate the function f(τ) for 0 ≤ τ ≤ T , that is with

f(τ) = β0 + β1τ, (2.277)

where β1 is the slope and β0 is the intercept point of the regression line. We used a

piecewise linear approximation for the second integral as in the L1 approximation. We

then have∫ t

0
f ′(τ)(t− τ)−pdτ = β1

∫ T

0
(t− τ)−pdτ +

j−1∑
k=n

∫ (k+1)∆t

k∆t
f ′(τ)(t− τ)−pdτ

=
β1

1− p
[
t1−p − (t− T )1−p]+

∆t−p

1− p

j−1∑
k=n

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p] .

(2.278)
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The approximation of the fractional derivative, which will be denoted as LRA, is then

given by[
dpf(t)

dtp

∣∣∣∣
LRA

=
t−p

Γ(1− p)
f0 +

β1

Γ(2− p)
(
t1−p − (t− T )1−p)

+
∆t−p

Γ(2− p)

j−1∑
k=n

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p] . (2.279)

Using Equation (2.195), then Equation (2.279) can be rewritten as[
dpf(t)

dtp

∣∣∣∣j
LRA

=

[
dpf(t)

dtp

∣∣∣∣j
L1∗

+
∆t1−pβ1

Γ(2− p)
(
j1−p − (j − n)1−p) . (2.280)

The accuracy of the LRA scheme was tested by comparing the exact value of the fractional

derivative of the function f(t) = tk, for k = 2, 2.5, 3, 3.5, and 4, with the value from

the LRA approximation. The exact and approximate value of fractional derivative was

estimated at time t = 1. The error in the fractional derivative estimate using j = 100 time

steps is shown in Figures 2.52, 2.53, . . . , and 2.56 against the value n, where 1 ≤ n ≤ j,

for various values of γ = 0.1, . . . , 0.9.

From Table 2.14, and Figures 2.52 – 2.56, we conclude that the maximum error occurs

when n approaches j. That is as we approximate more history, using regression, the error

increases.

From the results shown in Figures 2.52 – 2.56, we conclude that if we do ignore some terms

for small n the error does not increase immediately. For example in Figure 2.52 the error

only begins to increase for n > 51 when γ = 0.1 and for n > 47 when γ = 0.2, 0.3, 0.4.

But in the case γ = 0.5 the error increases earlier for n > 9 and increases for n > 12 in

the cases of γ = 0.6 and 0.7. Whilst for the cases γ = 0.8 and 0.9 the error increases from

n = 0.
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Figure 2.52: The value of the absolute error in using the LRA scheme, Equation (2.279), to

approximate the fractional derivative of order 1 − γ of function f(t) = t2, at time t = 1.0.

The results are shown n = 1, . . . , 100 and γ = 0.1, . . . , 0.9 where γ increases in the direction

of the arrow.

Figure 2.53: The value of the absolute error in using the LRA scheme, Equation (2.279), to

estimate the fractional derivative of order 1− γ of function f(t) = t2.5, at time t = 1.0. The

results are shown for n = 1, . . . , 100 and γ = 0.1, . . . , 0.9 where γ increases in the direction of

the arrow.
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Figure 2.54: The value of the absolute error by using Equation (2.279), to evaluate the

fractional derivative of order 1− γ of function f(t) = t3, at time t = 1.0, n = 1, . . . , 100 and

γ = 0.1, . . . , 0.9 where γ increases in the direction of the arrow.

Figure 2.55: The value of the absolute error by using Equation (2.279), to evaluate the

fractional derivative of order 1− γ of function f(t) = t3.5, at time t = 1.0, n = 1, . . . , 100 and

γ = 0.1, . . . , 0.9 where γ increases in the direction of the arrow.
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Figure 2.56: The value of the absolute error in using the LRA scheme, Equation (2.279),

to evaluate the fractional derivative of order 1 − γ of function f(t) = t4, at time t = 1.0,

n = 1, . . . , 100. Results are shown for γ = 0.1, . . . , 0.9 where γ increases in the direction of

the arrow.

Table 2.14: The comparison of the absolute error in the LRA scheme estimate of the fractional

derivative of order 1− γ of the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at the time t = 1.0

for γ = 0.1, ..., 0.9, n = 100, j = 100, and ∆t = 0.01.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 2.112e–01 3.200e–01 4.240e–01 5.223e–01 6.152e–01

γ = 0.2 3.099e–01 4.690e–01 6.190e–01 7.586e–01 8.883e–01

γ = 0.3 3.396e–01 5.158e–01 6.810e–01 8.338e–01 9.744e–01

γ = 0.4 3.253e–01 4.978e–01 6.595e–01 8.083e–01 9.444e–01

γ = 0.5 2.847e–01 4.420e–01 5.895e–01 7.249e–01 8.482e–01

γ = 0.6 2.309e–01 3.667e–01 4.951e–01 6.128e–01 7.198e–01

γ = 0.7 1.720e–01 2.845e–01 3.920e–01 4.910e–01 5.809e–01

γ = 0.8 1.135e–01 2.030e–01 2.903e–01 3.714e–01 4.451e–01

γ = 0.9 5.888e–02 1.270e–01 1.958e–01 2.606e–01 3.200e–01
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2.11.2 Quadratic Regression Approximation

Another way to approximate the first integral in Equation (2.275) is to use the Quadratic

Regression to fit the function f(τ) by

f(τ) = β0 + β1τ + β2τ
2, (2.281)

in the interval τ ∈ [0, T ] where β1, β2 and β0 are fitting parameters of the regression line.

We again use piecewise linear approximation, as per the L1 scheme, for the integral over

τ ∈ [T, t]. ∫ t

0
f ′(τ)(t− τ)−pdτ = β1

∫ T

0
(t− τ)−pdτ + 2β2

∫ T

0
τ(t− τ)−pdτ

+

j−1∑
k=n

∫ (k+1)∆t

k∆t
f ′(τ)(t− τ)−pdτ. (2.282)

Now evaluating the integral, setting u = t− τ , we then have∫ T

0
τ(t− τ)−pdτ = −

∫ t−T

t
(t− u)u−pdu (2.283)

=

∫ t

t−T
(t− u)u−pdu

=

[
t
u1−p

1− p
− u2−p

2− p

∣∣∣∣t
t−T

= t
t1−p

1− p
− t2−p

2− p
− t(t− T )1−p

1− p
+

(t− T )2−p

2− p

=
t2−p

(1− p)(2− p)
+

(t− T )1−p

(1− p)(2− p)
((1− p)(t− T )− (2− p)t)

=
1

(1− p)(2− p)
[
t2−p − (t+ (1− p)T ) (t− T )1−p] .

Using this approximation in Equation (2.9) we have the approximation for the fractional

derivative[
dpf(t)

dtp

∣∣∣∣ =
t−p

Γ(1− p)
f0 +

β1

Γ(2− p)
[
t1−p − (t− T )1−p]

+
2β2

(1− p)(2− p)Γ(2− p)
[
t2−p − (t+ (1− p)T )(t− T )1−p]

+
∆t−p

Γ(2− p)

j−1∑
k=n

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p] . (2.284)
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Using Equation (2.195), then Equation (2.284) can be rewritten in terms of the L1∗

scheme as[
dpf(t)

dtp

∣∣∣∣
QRA

=

[
dpf(t)

dtp

∣∣∣∣j
L1∗

+
β1

Γ(2− p)
[
t1−p − (t− T )1−p]

+
2β2

(1− p)Γ(3− p)
[
(t+ (1− p)T )(t− T )1−p − t2−p

]
. (2.285)

We denote this approximation as the QRA scheme. Similar to the LRA scheme, the

accuracy of the QRA scheme is estimated by comparing the exact value of the fractional

derivative of order 1 − γ of the functions f(t) = tk, where k = 2, 2.5, 3, 3.5, and 4, with

the value obtained from the QRA approximation. The error is plotted as a function of n

on log-log plot in Figures 2.57, 2.58, 2.59, 2.60, and 2.61.

The approximation and the exact values are evaluated for time t = 1.0 using 100 time

steps, for n changing from 1 to 100, and γ = 0.1, . . . , 0.9. In Figures 2.57, 2.58, 2.59,

2.60, and 2.61, we can see the error increases as n increases. For instance we note for

γ = 0.3 the minimum error of 1.72 × 10−5 occurs in Figure 2.57. While in Figure 2.61

the minimum error is 1.84× 10−5 for n = 21 when γ = 0.8. From these figures we expect

similar behaviour to the LRA scheme except, unlike the LRA scheme, there are for larger

n values where the error is smaller than when n = 0 as seen in Table 2.16.

The comparison of the absolute errors is also shown in Table 2.15. We note that the

maximum error occurs where γ = 0.9 for functions f(t) = tk and the minimum error

occurs where γ = 0.1. From the results shown in Figures 2.57 – 2.61, we note that if

we ignore some terms for n small, then the error does not increase immediately as n is

increased. For example in Figure 2.57 the error increases only when n > 10 for γ = 0.1,

and for case γ = 0.9 the error also only increases when n > 2. We note though that the

optimal choice n (where the error is smallest) may occur for n = 0, as in the L1∗, RL1,

LRA, but for an intermediate value n.
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Figure 2.57: The value of the absolute error in using Equation (2.284) to evaluate the fractional

derivative of order 1 − γ of the function f(t) = t2 at time t = 1. The error increases as n

increases for large n and the value of γ increases in the direction of the arrow.

Figure 2.58: The value of the absolute error in evaluating the fractional derivative of order

1− γ of the function f(t) = t2.5 at t = 1 by using Equation (2.284). Note as n increases the

error increases for large n and the value of γ increases in the direction of the arrow.
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Figure 2.59: The value of the absolute error in evaluating the fractional derivative of order

1 − γ of the function f(t) = t3 at t = 1 by using Equation (2.284). Note as n increases the

error increases for large n and γ increases in the direction of the arrow.

Figure 2.60: The value of the absolute error in evaluating the fractional derivative of order

1− γ of the function f(t) = t3.5 at t = 1 by using Equation (2.284). Note as n increases the

error increases for large n and the value of γ increases in the direction of the arrow.
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Figure 2.61: The value of the absolute error in using Equation (2.284) to evaluate the fractional

derivative of order 1−γ of the function f(t) = t4 at time t = 1, for large n the error increases

as n increases. Note γ increases in the direction of the arrow.

Table 2.15: The comparison of the absolute error in the QRA scheme estimate of the fractional

derivative of order 1− γ of the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at the time t = 1.0

for γ = 0.1, ..., 0.9, n = 100, j = 100, and ∆t = 0.01.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 5.268e–00 6.721e–00 7.630e–00 8.160e–00 8.428e–00

γ = 0.2 3.795e–00 4.806e–00 5.415e–00 5.747e–00 5.887e–00

γ = 0.3 2.695e–00 3.384e–00 3.780e–00 3.976e–00 4.035e–00

γ = 0.4 1.880e–00 2.336e–00 2.582e–00 2.686e–00 2.695e–00

γ = 0.5 1.279e–00 1.568e–00 1.710e–00 1.753e–00 1.733e–00

γ = 0.6 8.387e–01 1.008e–00 1.077e–00 1.082e–00 1.046e–00

γ = 0.7 5.174e–01 6.014e–01 6.214e–01 6.014e–01 5.570e–01

γ = 0.8 2.848e–01 3.089e–01 2.952e–01 2.599e–01 2.124e–01

γ = 0.9 1.180e–01 1.003e–01 6.413e–02 1.958e–02 2.812e–02
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Table 2.16: The comparison minimum absolute error in the QRA scheme estimate of the

fractional derivative of order 1 − γ of the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at the

time t = 1.0 for γ = 0.1, ..., 0.9, j = 100, and ∆t = 0.01.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 6.920e–04 9.302e–04 3.220e–05 7.455e–04 1.458e–04

γ = 0.2 2.129e–04 4.040e–05 2.825e–04 6.164e–04 4.713e–04

γ = 0.3 2.695e–04 6.070e–05 1.589e–04 4.404e–04 1.368e–04

γ = 0.4 3.580e–04 1.458e–04 1.500e–05 2.280e–05 4.750e–05

γ = 0.5 5.330e–05 1.430e–06 6.080e–05 5.480e–05 1.697e–04

γ = 0.6 5.530e–05 3.240e–06 5.410e–05 2.500e–05 7.900e–05

γ = 0.7 1.740e–05 2.390e–05 3.860e–05 2.020e–05 4.480e–05

γ = 0.8 3.470e–05 1.470e–05 4.350e–06 2.010e–05 1.840e–05

γ = 0.9 1.780e–05 1.050e–06 5.160e–06 4.400e–06 9.050e–05

2.11.3 Nonlinear Regression Approximation

To evaluate the first integral in Equation (2.275) we use the Nonlinear Regression model

to approximate the function f(τ)

y = β0 + β1τ
1−p, (2.286)

for 0 ≤ τ ≤ T . Here β1 and β0 are constant parameters. The solution of the frac-

tional subdiffusion equation is in term Mittag–Leffler function which is the power series

of t1−p, so we choose the same type of function as in Equation (2.286) to approximate the

function f(τ). As in the other schemes in this section we again use the piecewise linear

approximation for the integral over T ≤ τ ≤ t. Splitting the integrals into two, we have∫ t

0
f ′(τ)(t− τ)−pdτ = (1− p)β1

∫ T

0
τ−p(t− τ)−pdτ +

j−1∑
k=n

∫ (k+1)∆t

k∆t
f ′(τ)(t− τ)−pdτ.

(2.287)
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We now evaluate the integral
∫ T

0 τ−p(t− τ)−pdτ , by setting τ = tu and simplifying∫ T

0
τ−p(t− τ)−pdτ =

∫ T/t

0
t−pu−p(t− tu)−ptdu

= t1−2p

∫ T/t

0
u−p(1− u)−pdu

= t1−2pB(1− p, 1− p)IT
t
(1− p, 1− p), (2.288)

where IT
t
(1 − p, 1 − p) is the Incomplete Beta function (Thompson, Pearson, Comrie &

Hartley 1941, Temme 1975)

IT
t
(1− p, 1− p) =

1

B(1− p, 1− p)

∫ T/t

0
u−p(1− u)−pdu, (2.289)

and the Beta function (Abramowitz, Stegun et al. 1966) is given by

B(1− p, 1− p) =

∫ 1

0
u−p(1− u)−pdu =

(Γ(1− p))2

Γ(2− 2p)
. (2.290)

Using Equation (2.288), in Equation (2.9), we then have the approximation[
dpf(t)

dtp

∣∣∣∣ =
t−p

Γ(1− p)
f0 +

β1

Γ(2− p)
t1−2pB(1− p, 1− p)IT

t
(1− p, 1− p)

+
∆t−p

Γ(2− p)

j−1∑
k=n

(fk − fk+1)
[
(j − (k + 1))1−p − (j − k)1−p] . (2.291)

Now using Equation (2.195), Equation (2.291) simplifies to[
dpf(t)

dtp

∣∣∣∣
NLRA

=

[
dpf(t)

dtp

∣∣∣∣j
L1∗

+
β1

Γ(2− p)
t1−2pB(1− p, 1− p)IT

t
(1− p, 1− p). (2.292)

We denote this approximation as the NLRA scheme. Similar to the LRA scheme and the

QRA scheme, the estimate of the error was found by comparing the exact value of the

fractional derivative of order 1 − γ for functions f(t) = tk, where k = 2, 2.5, 3, 3.5, and

4, with the value obtained from the NLRA approximation scheme. The error is plotted

as a function of n on log-log plot in Figures 2.62 – 2.66. The approximation and the

exact value are evaluated for time t = 1.0 using 100 time steps with n changing from 1 to

100 for γ = 0.1, . . . , 0.9. We can see in Figures 2.62, 2.63, 2.64, 2.65, and 2.66 the error

increases as n increases, for large n. We also note in Table 2.17 that the maximum error

occurs when γ = 0.9 for each function and the minimum error occurs when γ = 0.1.

In Figure 2.62 the error is still the same where n is small, we see for the value γ =

0.1, . . . , 0.6 the error increases where n > 3. Similar to the QRA scheme, we see there are
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some values of n which give smaller errors than if we use the full L1 scheme. The smaller

error of 5.001× 10−4 occurs for n = 26 when γ = 0.6 and when n = 96 for γ = 0.4 and is

8.042× 10−3. We also see the error increases where n > 7 for γ = 0.7 and for γ = 0.8, 0.9

when n > 2.

From results shown in Figures 2.62 through to 2.66 and Table 2.18, we see for some values

of γ there is a smaller error than when intermediate values of n are used rather than n = 0.

For example in Figure 2.66 the smallest error occurs when n = 26 and γ = 0.5 which is

1.563× 10−6.

Figure 2.62: The value of the absolute error in using the NLRA scheme, Equation (2.291), to

approximate the fractional derivative of order 1− γ of the function f(t) = t2 at time t = 1.0.

Here 100 time steps were taken with n varying from 1 to 100 and γ = 0.1, . . . , 0.9. The error

increases as n increases and the value of γ increases in the direction of the arrow.
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Figure 2.63: The value of the absolute error in evaluating the fractional derivative of order

1 − γ of the function f(t) = t2.5, at time t = 1.0 by using Equation (2.291). The results are

shown for j = 100, n = 1, . . . , j and γ = 0.1, . . . , 0.9, and the error increase as n increases and

the value of γ increases in the direction of the arrow.

Figure 2.64: The value of the absolute error in evaluating the fractional derivative of order

1 − γ of the function f(t) = t3, at time t = 1.0 by using Equation (2.291). The results are

shown for j = 100, n = 1, . . . , j and γ = 0.1, . . . , 0.9, and the error increase as n increases and

the value of γ increases in the direction of the arrow.
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Figure 2.65: The value of the absolute error in evaluating the fractional derivative of order

1 − γ of the function f(t) = t3.5, at time t = 1.0 by using Equation (2.291). The results are

shown for j = 100, n = 1, . . . , j and γ = 0.1, . . . , 0.9, and the error increase as n increases.

Note γ increases in the direction of the arrow.

Figure 2.66: The value of the absolute error in using Equation (2.291) to evaluate the fractional

derivative of order 1 − γ of the function f(t) = t4, at time t = 1.0. Results shown for 100

time steps, n = 1, . . . , 100 and γ = 0.1, . . . , 0.9 and γ increases in the direction of the arrow.
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Table 2.17: The comparison of the absolute error in the estimate of the fractional derivative

of order 1− γ using the NLRA scheme on the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at

the time t = 1.0 for γ = 0.1, ..., 0.9, n = 100, j = 100, and ∆t = 0.01.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 15.74e–00 13.34e–00 11.50e–00 10.04e–00 8.852e–00

γ = 0.2 4.623e–00 3.759e–00 3.072e–00 2.509e–00 2.039e–00

γ = 0.3 1.152e–00 7.344e–01 3.899e–01 9.952e–02 1.498e–01

γ = 0.4 2.385e–01 4.767e–01 6.786e–01 8.525e–01 1.005e–00

γ = 0.5 8.214e–01 9.719e–01 1.101e–00 1.214e–00 1.313e–00

γ = 0.6 1.049 e–00 1.148e–00 1.233e–00 1.307e–00 1.371e–00

γ = 0.7 1.112e–00 1.175e–00 1.228e–00 1.274e–00 1.315e–00

γ = 0.8 1.095e–00 1.131e–00 1.160e–00 1.186e–00 1.207e–00

γ = 0.9 1.041e–00 1.055e–00 1.066e–00 1.074e–00 1.081e–00

Table 2.18: The comparison minimum absolute error in the NLRA scheme estimate of the

fractional derivative of order 1 − γ of the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at the

time t = 1.0 for γ = 0.1, ..., 0.9, j = 100, and ∆t = 0.01.

γ f(t) = t2 f(t) = t2.5 f(t) = t3 f(t) = t3.5 f(t) = t4

γ = 0.1 5.533e–03 1.304e–02 1.652e–02 5.234e–03 3.607e–04

γ = 0.2 3.029e–03 5.660e–03 1.413e–03 2.297e–03 1.640e–05

γ = 0.3 1.639e–03 3.058e–03 7.133e–04 6.099e–04 6.175e–04

γ = 0.4 8.755e–04 1.035e–03 4.974e–04 2.274e–04 1.051e–04

γ = 0.5 4.598e–04 8.360e–05 2.200e–04 5.950e–05 1.560e–06

γ = 0.6 2.354e–04 1.890e–05 1.021e–04 8.611e–04 1.314e–03

γ = 0.7 1.153e–04 2.100e–04 3.291e–04 4.719e–04 6.381e–04

γ = 0.8 5.150e–05 9.250e–05 1.436e–04 2.045e–04 2.750e–04

γ = 0.9 1.780e–05 3.130e–05 4.800e–05 6.780e–05 9.050e–05

In Tables 2.14, 2.15 and 2.17 we obtained results for the estimate of the fractional deriva-

tive of the functions f(t) = tk, k = 2, 2.5, 3, 3.5, and 4 at time t = 1.0, if we set n = j.

We see the minimum error occurs for γ = 0.9 and the maximum error occurs for γ = 0.1.

From the results given in Figures 2.52 – 2.56, Figures 2.57 – 2.61, and Figures 2.62 – 2.66,

we see that the LRA scheme is a better approximation as overall it introduces less error
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as the value of n increases for each value of γ. However, in the NLRA and QRA schemes

for some values of n a smaller error occurs when a specific intermediate value of n is used,

as shown in Tables 2.16 and 2.18.

2.12 Results and Discussion

In this section, we compare the results from the modifications of L1 scheme with the

L1 scheme and Romberg integration, and also we compare the results from the memory

principle effect scheme with Regression methods. Each scheme was compared by looking

at the error in their approximations of the fractional derivative of order 1 − γ of the

function f(t) given in Equation (2.7), for γ = 0.1, ..., 0.9 at the time t = 1.0.

The L1, C1, C2, C3 and Romberg Integration Schemes

The fractional derivative approximations given by Equations (2.2), (2.12), (2.60), (2.75),

(2.88), and (2.191), were compared. From Tables 2.19 through to 2.22 we see that the C2

approximation introduces the smallest error in most cases, for 0 < γ < 1, when compared

with the L1, C1, C3 and Romberg integration (where k = 2) schemes. It was only in the

cases γ = 0.8, and γ = 0.9, for all functions where Romberg integration performed better.

In Table 2.23 we see the smallest error appear for the C2 scheme where γ = 0.1, . . . , 0.5,

whilst for γ = 0.6, . . . , 0.9 the smallest error occurs for the Romberg integration scheme.

Improvement in these results my be made if we use higher order Romberg approximation

(k > 2) but this is left to future work.
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Table 2.19: The comparison absolute error of the fractional derivative approximation of order

1− γ of function f(t) = t2 at time t = 1.0 for γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ GL L1 C1 C2 C3 RInt (k=2)

γ = 0.1 8.60e–03 4.98e–03 7.96e–03 2.45e–03 4.98e–03 4.89e–03

γ = 0.2 7.92e–03 2.70e–03 4.63e–03 1.33e–03 2.70e–03 2.58e–03

γ = 0.3 7.09e–03 1.45e–03 2.67e–03 7.27e–04 1.45e–03 1.33e–03

γ = 0.4 6.14e–03 7.67e–04 1.53e–03 3.99e–04 7.67e–04 6.70e–04

γ = 0.5 5.12e–03 3.99e–04 8.65e–04 2.19e–04 3.99e–04 3.26e–04

γ = 0.6 4.07e–03 2.03e–04 4.78e–04 1.19e–04 2.02e–04 1.52e–04

γ = 0.7 3.00e–03 9.84e–05 2.53e–04 6.22e–05 9.83e–05 6.58e–05

γ = 0.8 1.95e–03 4.36e–05 1.22e–04 2.98e–05 4.36e–05 2.52e–05

γ = 0.9 9.44e–04 1.49e–05 4.50e–05 1.10e–05 1.49e–05 7.24e–06

Table 2.20: The comparison absolute error of the fractional derivative approximation of order

1− γ of function f(t) = t3 at time t = 1.0 for γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ GL L1 C1 C2 C3 RInt (k=2)

γ = 0.1 2.34e–02 1.49e–02 2.37e–02 7.29e–03 1.48e–02 1.46e–02

γ = 0.2 1.97e–02 8.06e–03 1.37e–02 3.94e–03 8.02e–03 7.71e–03

γ = 0.3 1.63e–02 4.31e–03 7.88e–03 2.14e–03 4.29e–03 3.98e–03

γ = 0.4 1.31e–02 2.27e–03 4.47e–03 1.17e–03 2.26e–03 2.00e–03

γ = 0.5 1.02e–02 1.17e–03 2.50e–03 6.31e–04 1.17e–03 9.75e–04

γ = 0.6 7.61e–03 5.88e–04 1.36e–03 3.36e–04 5.86e–04 4.53e–04

γ = 0.7 5.28e–03 2.81e–04 7.04e–04 1.72e–04 2.80e–04 1.97e–04

γ = 0.8 3.25e–03 1.22e–04 3.30e–04 8.02e–05 1.21e–04 7.54e–05

γ = 0.9 1.49e–03 4.05e–05 1.18e–04 2.87e–05 4.03e–05 2.16e–05
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Table 2.21: The comparison absolute error of the fractional derivative approximation of order

1− γ of function f(t) = t4 at time t = 1.0 for γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ GL L1 C1 C2 C3 RInt (k=2)

γ = 0.1 4.44e–02 2.97e–02 4.71e–02 1.45e–02 2.94e–02 2.91e–02

γ = 0.2 3.58e–02 1.60e–02 2.72e–02 7.80e–03 1.59e–02 1.54e–02

γ = 0.3 2.83e–02 8.55e–03 1.56e–02 4.22e–03 8.48e–03 7.93e–03

γ = 0.4 2.18e–02 4.49e–03 8.78e–03 2.28e–03 4.45e–03 3.99e–03

γ = 0.5 1.63e–02 2.31e–03 4.87e–03 1.23e–03 2.29e–03 1.94e–03

γ = 0.6 1.17e–02 1.15e–03 2.62e–03 6.48e–04 1.14e–03 9.03e–04

γ = 0.7 7.82e–03 5.46e–04 1.34e–03 3.27e–04 5.41e–04 3.92e–04

γ = 0.8 4.63e–03 2.34e–04 6.19e–04 1.50e–04 2.31e–04 1.50e–04

γ = 0.9 2.05e–03 7.64e–05 2.18e–04 5.27e–05 7.57e–05 4.31e–05

Table 2.22: The comparison absolute error of the fractional derivative approximation of order

1− γ of function f(t) = 1− et + t3 at time t = 1.0 for γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ GL L1 C1 C2 C3 RInt (k=2)

γ = 0.1 1.21e–02 8.14e–03 1.30e–02 3.99e–03 8.10e–03 7.992e–03

γ = 0.2 9.61e–03 4.41e–03 7.50e–03 2.16e–03 4.39e–03 4.216e–03

γ = 0.3 7.35e–03 2.35e–03 4.30e–03 1.17e–03 2.34e–03 2.177e–03

γ = 0.4 5.39e–03 1.24e–03 2.44e–03 6.36e–04 1.23e–03 1.095e–03

γ = 0.5 3.75e–03 6.40e–04 1.36e–03 3.44e–04 6.37e–04 5.330e–04

γ = 0.6 2.43e–03 3.21e–04 7.38e–04 1.83e–04 3.19e–04 2.478e–04

γ = 0.7 1.42e–03 1.53e–04 3.81e–04 9.31e–05 1.52e–04 1.075e–04

γ = 0.8 6.94e–04 6.59e–05 1.77e–04 4.31e–05 6.56e–05 4.124e–05

γ = 0.9 2.32e–04 2.18e–05 6.30e–05 1.53e–05 2.17e–05 1.181e–05
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Table 2.23: The comparison absolute error of the fractional derivative approximation of order

1− γ of function f(t) = 1 + tγ at time t = 1.0 for γ = 0.1, ..., 0.9 and ∆t = 0.01.

γ GL L1 C1 C2 C3 RInt (k=2)

γ = 0.1 1.60e–04 4.52e–04 7.27e–04 3.40e–04 3.40e–04 4.428e–04

γ = 0.2 4.10e–04 4.37e–04 7.54e–04 3.29e–04 3.29e–04 4.157e–04

γ = 0.3 5.83e–04 3.08e–04 5.75e–04 2.34e–04 2.34e–04 2.820e–04

γ = 0.4 6.40e–04 1.87e–04 3.79e–04 1.44e–04 1.44e–04 1.624e–04

γ = 0.5 5.90e–04 1.02e–04 2.24e–04 7.97e–05 7.97e–05 8.250e–05

γ = 0.6 4.66e–04 4.98e–05 1.19e–04 4.00e–05 4.00e–05 3.691e–05

γ = 0.7 3.08e–04 2.12e–05 5.53e–05 1.75e–05 1.75e–05 1.413e–05

γ = 0.8 1.53e–04 7.15e–06 2.02e–05 6.08e–06 6.08e–06 4.142e–06

γ = 0.9 4.18e–04 1.37e–06 4.14e–06 1.20e–06 1.20e–06 6.831e–07

Short Memory and Regression Schemes

Here we compare the results found in the fractional derivative approximations, given by

the L1∗, RL1, LRA, QRA, NLRA schemes in Equations (2.194), (2.206), (2.279), (2.284)

and (2.291) respectively. In Tables 2.24 – 2.26, and Tables 2.27 – 2.29, it can be seen that,

if we approximate the first part of the integral by regression, as given by Equation (2.276),

the errors are smaller rather than ignoring the early history of f(t).

Note by choosing j = n = 100 we are attempting to approximate all the early history.

However, if we choose to only approximate half of the integration interval (by setting

n = 50) we see the estimates are better, as seen by comparing the n = 50 and n = 100

cases.

We also see that if the function f(t) is linear, and if we do not ignore the first part in the

integral, there is no error in the approximation, whilst if we do ignore the early history

(of the linear function) then error is introduced. We also note, if linear regression is used

to approximate the early history, that there is less error in the estimate then the other

regression methods or by ignoring the early history as shown in Tables 2.24, 2.25, and

2.26.

However for all methods the error, in the approximation, increases as more of the history
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of f(t) is ignored (i.e. as n increases). But using regression was found to be better than

if we ignore the early history.

If we choose the value of n where the error is smallest, as given in Tables 2.30 – 2.32, we

see that the QRA scheme performs better when compared with the L1∗, RL1, LRA, and

NLRA schemes, instead.

Table 2.24: The comparison absolute error of the fractional derivative approximation of order

1 − γ of the function f(t) = t2 at time t = 1.0 for γ = 0.1, ..., 0.9, n = 100, j = 100, and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 5.91e–01 5.91e–01 2.11e–01 5.27e–00 1.57e+01

γ = 0.2 9.52e–01 9.52e–01 3.10e–01 3.80e–00 4.62e–00

γ = 0.3 1.16e–00 1.16e–00 3.40e–01 2.70e–00 1.15e–00

γ = 0.4 1.26e–00 1.26e–00 3.25e–01 1.88e–00 2.39e–01

γ = 0.5 1.28e–00 1.28e–00 2.85e–01 1.28e–00 8.21e–01

γ = 0.6 1.26e–00 1.26e–00 2.31e–01 8.39e–01 1.05e–00

γ = 0.7 1.21e–00 1.21e–00 1.72e–01 5.17e–01 1.11e–00

γ = 0.8 1.14e–00 1.14e–00 1.14e–01 2.85e–01 1.10e–00

γ = 0.9 1.06e–00 1.06e–00 5.89e–02 1.18e–01 1.04e–00

Table 2.25: The comparison absolute error of the fractional derivative approximation of order

1 − γ of the function f(t) = t3 at time t = 1.0 for γ = 0.1, ..., 0.9, n = 100, j = 100 and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 7.60e–01 7.60e–01 4.24e–01 7.63e–00 1.15e+01

γ = 0.2 1.19e–00 1.19e–00 6.19e–01 5.42e–00 3.07e–00

γ = 0.3 1.41e–00 1.41e–00 6.81e–01 3.78e–00 3.90e–01

γ = 0.4 1.48e–00 1.48e–00 6.60e–01 2.58e–00 6.79e–01

γ = 0.5 1.47e–00 1.47e–00 5.90e–01 1.71e–00 1.10e–00

γ = 0.6 1.41e–00 1.41e–00 4.95e–01 1.08e–00 1.23e–00

γ = 0.7 1.31e–00 1.31e–00 3.92e–01 6.21e–01 1.23e–00

γ = 0.8 1.20e–00 1.20e–00 2.90e–01 2.95e–01 1.16e–00

γ = 0.9 1.08e–00 1.08e–00 1.96e–01 6.41e–02 1.07e–00



2.12 Results and Discussion 142

Table 2.26: The comparison absolute error of the fractional derivative approximation of order

1 − γ of the function f(t) = t4 at time t = 1 for γ = 0.1, ..., 0.9, n = 100, j = 100 and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 9.10e–01 9.10e–01 6.15e–01 8.43e–00 8.85e–00

γ = 0.2 1.39e–00 1.39e–00 8.88e–01 5.89e–00 2.04e–00

γ = 0.3 1.61e–00 1.61e–00 9.74e–01 4.04e–00 1.50e–01

γ = 0.4 1.66e–00 1.66e–00 9.44e–01 2.70e–00 1.01e–00

γ = 0.5 1.62e–00 1.62e–00 8.48e–01 1.73e–00 1.31e–00

γ = 0.6 1.52e–00 1.52e–00 7.20e–01 1.05e–00 1.37e–00

γ = 0.7 1.38e–00 1.38e–00 5.81e–01 5.57e–01 1.32e–00

γ = 0.8 1.24e–00 1.24e–00 4.45e–01 2.12e–01 1.21e–00

γ = 0.9 1.20e–00 1.10e–00 3.20e–01 2.81e–02 1.08e–00

Table 2.27: The comparison absolute error of the fractional derivative approximation of order

1 − γ of the function f(t) = t2 at time t = 1.0 for γ = 0.1, ..., 0.9, n = 50, j = 100, and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 4.24e–02 4.18e–02 9.58e–03 4.11e–01 1.64e+01

γ = 0.2 7.63e–02 7.49e–02 1.04e–02 4.42e–01 4.38e–00

γ = 0.3 1.09e–01 1.07e–01 1.15e–02 4.68e–01 1.45e–00

γ = 0.4 1.40e–01 1.37e–01 1.22e–02 4.88e–01 4.55e–01

γ = 0.5 1.67e–01 1.64e–01 1.25e–02 5.01e–01 6.82e–02

γ = 0.6 1.91e–01 1.87e–01 1.21e–02 5.08e–01 9.61e–02

γ = 0.7 2.10e–01 2.05e–01 1.10e–02 5.09e–01 1.72e–01

γ = 0.8 2.24e–01 2.20e–01 9.38e–03 5.04e–01 2.09e–01

γ = 0.9 2.34e–01 2.29e–01 7.31e–03 4.94e–01 2.28e–01
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Table 2.28: The comparison absolute error of the fractional derivative approximation of order

1 − γ of the function f(t) = t3 at time t = 1.0 for γ = 0.1, ..., 0.9, n = 50, j = 100 and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 3.55e–02 3.55e–02 2.12e–02 3.11e–01 6.00e–00

γ = 0.2 4.66e–02 4.65e–02 1.79e–02 3.29e–01 1.61e–01

γ = 0.3 5.97e–02 5.97e–02 1.72e–02 3.46e–01 5.27e–01

γ = 0.4 7.31e–02 7.31e–02 1.76e–02 3.60e–01 1.54e–01

γ = 0.5 8.55e–02 8.54e–02 1.81e–02 3.70e–01 5.66e–03

γ = 0.6 9.61e–02 9.61e–02 1.85e–02 3.76e–01 5.90e–02

γ = 0.7 1.05e–01 1.05e–01 1.84e–02 3.77e–01 8.96e–02

γ = 0.8 1.11e–01 1.11e–01 1.78e–02 3.74e–01 1.05e–01

γ = 0.9 1.15e–01 1.15e–01 1.68e–02 3.67e–01 1.13e–01

Table 2.29: The comparison absolute error of the fractional derivative approximation of order

1 − γ of the function f(t) = t4 at time t = 1.0 for γ = 0.1, ..., 0.9, n = 50, j = 100 and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 4.25e–02 4.25e–02 3.64e–02 1.96e–01 2.32e–00

γ = 0.2 3.69e–02 3.69e–02 2.45e–02 1.96e–01 6.15e–01

γ = 0.3 3.72e–02 3.72e–02 1.89e–02 2.00e–01 1.95e–01

γ = 0.4 4.04e–02 4.04e–02 1.65e–02 2.05e–01 5.02e–02

γ = 0.5 4.46e–02 4.46e–02 1.56e–02 2.10e–01 7.92e–03

γ = 0.6 4.88e–02 4.88e–02 1.54e–02 2.12e–01 3.37e–02

γ = 0.7 5.24e–02 5.24e–02 1.52e–03 2.13e–01 4.61e–02

γ = 0.8 5.51e–02 5.51e–02 1.49e–02 2.11e–01 5.25e–02

γ = 0.9 5.68e–02 5.68e–02 1.44e–02 2.08e–01 5.58e–02
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Table 2.30: The comparison minimum absolute error of the fractional derivative approxima-

tion of order 1− γ of the function f(t) = t2 at time t = 1.0 for γ = 0.1, ..., 0.9, j = 100, and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 5.53e–03 5.53e–03 5.53e–03 6.92e–04 5.53e–03

γ = 0.2 3.03e–03 3.03e–03 3.03e–03 2.13e–04 3.03e–03

γ = 0.3 1.64e–03 1.64e–03 1.64e–03 3.58e–04 1.64e–03

γ = 0.4 8.76e–04 8.76e–04 8.76e–04 2.24e–04 8.76e–04

γ = 0.5 4.60e–04 4.60e–04 4.60e–04 5.33e–05 4.60e–04

γ = 0.6 2.35e–04 2.35e–04 2.35e–04 5.53e–05 2.35e–04

γ = 0.7 1.15e–04 1.15e–04 1.15e–04 1.74e–05 1.15e–04

γ = 0.8 5.15e–05 5.15e–05 5.15e–05 3.47e–05 5.15e–05

γ = 0.9 1.78e–05 1.78e–05 1.78e–05 1.78e–05 1.78e–05

Table 2.31: The comparison minimum absolute error of the fractional derivative approxima-

tion of order 1 − γ of the function f(t) = t3 at time t = 1.0 for γ = 0.1, ..., 0.9, j = 100 and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 1.65e–02 1.65e–02 1.65e–02 3.22e–05 1.65e–02

γ = 0.2 9.03e–03 9.03e–03 9.03e–01 2.83e–04 1.41e–03

γ = 0.3 4.87e–03 4.87e–03 4.87e–03 1.59e–04 7.13e–04

γ = 0.4 2.59e–03 2.59e–03 2.59e–03 1.50e–05 4.97e–04

γ = 0.5 1.35e–03 1.35e–03 1.35e–03 6.08e–05 2.20e–04

γ = 0.6 6.83e–04 6.83e–04 6.83e–04 5.41e–05 1.02e–04

γ = 0.7 3.29e–04 3.29e–04 3.29e–04 3.86e–05 3.29e–04

γ = 0.8 1.44e–04 1.44e–04 1.44e–04 4.35e–06 1.44e–04

γ = 0.9 4.80e–05 4.80e–05 4.80e–05 5.16e–06 4.80e–05
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Table 2.32: The comparison minimum absolute error of the fractional derivative approxima-

tion of order 1 − γ of the function f(t) = t4 at time t = 1.0 for γ = 0.1, ..., 0.9, j = 100 and

∆t = 0.01.

γ L1∗ RL1 LRA QRA NLRA

γ = 0.1 3.29e–02 3.29e–02 3.29e–02 1.46e–04 3.61e–03

γ = 0.2 1.80e–02 1.80e–02 1.80e–02 4.71e–04 1.64e–04

γ = 0.3 9.67e–03 9.67e–03 9.67e–03 1.37e–04 6.18e–04

γ = 0.4 5.12e–03 5.12e–03 5.12e–03 4.75e–05 1.05e–04

γ = 0.5 2.66e–03 2.66e–03 2.68e–03 1.70e–04 1.56e–06

γ = 0.6 1.34e–03 1.34e–03 1.34e–03 7.90e–05 1.31e–03

γ = 0.7 6.38e–04 6.38e–04 6.38e–04 4.48e–05 6.38e–04

γ = 0.8 2.75e–04 2.75 e–04 2.75e–04 1.84e–05 2.75e–04

γ = 0.9 9.05e–05 9.05e–05 9.05e–05 9.05e–05 9.05e–05

2.13 Conclusion

In this chapter, we described the approximation of the fractional derivative and we focused

on the L1 scheme (Oldham & Spanier 1974). We modified the L1 scheme to develop

the C1, C2, and C3 schemes. The accuracy of each of these approximations for the

order p fractional derivative was found to be of order O(∆t2−p). The numerical tests

on powers of t verified the accuracy of each of these approximations. From these results

we conclude that the C2 scheme is more accurate when compared with the L1, C1, C3

and Romberge integration (k = 2) schemes. We also considered short memory based

approximate fractional derivatives of order p, the L1∗ and RL1 schemes. The accuracy of

each these approximations was discussed, and the numerical tests on powers of t compared

with the exact fractional derivative to verify the accuracy of each of these methods.

In future work a stopping criterion based upon the convergence of integral estimates will

be used to shorten the number of the steps, n, required. We will analyse the accuracy of

the Romberg Integration analytically and this method also needs to be incorporated into

a full numerical method.
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In addition, the Regression methods, LRA, QRA and NLR schemes, are used to approx-

imate the fractional derivative by using regressions to approximate the early history in

the integral in Equation (2.276) instead of ignoring this history. We conclude that using

linear regression is a better approximation to reduce the error that accrues if we ignore

the early history. It is also easier to determine what value of n should be used.

These approximations can be potentially implemented in the full numerical solution. The

advantage of using LRA over using the full L1 scheme is that we no longer need to

evaluate the complete convolution sum but rather need only update the estimate of the

slope parameter. This can be done iteratively whilst the full convolution sum cannot. The

QRA method outperforms the LRA scheme when the optimal value n is used. However

the LRA is more predictable in deciding when to truncate the sum.



Chapter 3

Implicit Numerical Method:

IMC1 Scheme

3.1 Introduction

Many researchers have investigated ways of finding the solution of fractional partial differ-

ential equations (FPDEs) such as analytical solutions (Wyss 1986, Mainardi 1996, Henry

& Wearne 2000, Metzler & Klafter 2000b, Langlands et al. 2008) and numerical solutions

(Diethelm & Ford 2002, Langlands & Henry 2005, Deng 2008, Murio 2008, Dhaigude &

Birajdar 2012, Chen et al. 2013). Some analytic solutions are known but they are difficult

to evaluate. Most fractional partial differential equations do not have exact solutions and

so consequently numerical techniques must be used to obtain their approximate solutions.

In this chapter, we consider a finite difference solution scheme for the fractional subdif-

fusion equation with a source term given by Equation (1.15), where Kγ = 0, which we

repeat here as

∂u(x, t)

∂t
= D

∂1−γ

∂t1−γ

(
∂2u(x, t)

∂x2

)
+ f(x, t) (3.1)

with the initial condition

u(x, 0) = g(x), 0 ≤ x ≤ L, (3.2)
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and the boundary conditions

u(0, t) = ϕ1(t) and u(L, t) = ϕ2(t), 0 ≤ t ≤ T, (3.3)

where D > 0, 0 < γ ≤ 1 and f(x, t) is a given source function. We also suppose that

u(x, t) ∈ U(Ω) is the exact solution for the fractional subdiffusion equation (3.1), where

Ω = {(x, t)|0 ≤ x ≤ L, 0 ≤ t ≤ T} , (3.4)

and

U(Ω) =

{
u(x, t)

∣∣∣∣∂4u(x, t)

∂x4
,
∂3u(x, t)

∂x2∂t
,
∂2u(x, t)

∂t2
∈ C(Ω)

}
. (3.5)

We approximate the second-order spatial derivative by using second-order centred finite

difference approximation. The centred difference at time step j around the point i is[
∂2u

∂x2

∣∣∣∣j
i

≈
uji+1 − 2uji + uji−1

∆x2 . (3.6)

The time derivative on the left of Equation (3.1), can be approximated using a Centred–

finite difference, as in Figure 3.1,[
∂u

∂t

∣∣∣∣j
i

≈
uj+1
i − uj−1

i

2∆t
, (Central Method) (3.7)

a forward finite difference [
∂u

∂t

∣∣∣∣j
i

≈
uj+1
i − uji

∆t
, (Explicit) (3.8)

or a backward finite difference[
∂u

∂t

∣∣∣∣j
i

≈
uji − u

j−1
i

∆t
, (Implicit). (3.9)

Both explicit or implicit numerical schemes can be derived using these approximations

similar to the standard (non-fractional) partial differential equation. Explicit methods

evaluate the right hand of Equation (3.1) at the current time, whilst implicit methods

evaluate the right hand side at the new time level. Implicit methods require the solution

of systems of equations to update their solution.
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Figure 3.1: Geometric interpretation of the finite difference approximation of the time deriva-

tive.

3.2 Derivation of the Numerical Method (IMC1 Method)

An implicit numerical method for the fractional diffusion equation was derived by Lang-

lands & Henry (2005), where the fractional derivative was approximated by using the L1

approximation (Oldham & Spanier 1974). In this section, we describe the derivation of a

modified implicit method for the fractional subdiffusion equation.

In this modified method the finite difference scheme is used to approximate the second

spatial derivative. Instead of the L1 scheme, the C1 scheme, given in Chapter 2 by Equa-

tion (2.60), is used to approximate the fractional derivative of order p = 1−γ at the time

tj = j∆t. Using the approximation in Equation (3.6) for the second spatial derivative

and Equation (3.9) to approximate the first temporal derivative in Equation (3.1), we

arrive at the scheme

uji − u
j−1
i

∆t
=

D∆tγ−1

2∆x2Γ(1 + γ)

{
β∗j (γ)

(
u0
i+1 − 2u0

i + u0
i−1

)
(3.10)

+ aj(γ)
(
u1
i+1 − 2u1

i + u1
i−1

)
+
[(
uji+1 − 2uji + uji−1

)
−
(
uj−1
i+1 − 2uj−1

i + uj−1
i−1

)]
+

1

2

j−1∑
k=1

µ∗j−k(γ)
[(
uk+1
i+1 − 2uk+1

i + uk+1
i−1

)
−
(
uk−1
i+1 − 2uk−1

i + uk−1
i−1

)]}
+ f ji ,
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Equation (3.10) can be written as

uji = uj−1
i +

D∆tγ

2Γ(1 + γ)

{
β∗j (γ)δ2

xu
0
i + aj(γ)δ2

xu
1
i + δ2

xu
j
i − δ

2
xu

j−1
i

+

j−1∑
k=1

µ∗j−k(γ)
[
δ2
xu

k+1
i − δ2

xu
k−1
i

]}
+ f ji , (3.11)

where δ2
xu

j
i is defined as

δ2
xu

j
i =

uji+1 − 2uji + uji−1

∆x2
, (3.12)

which uji is the numerical approximation of the solution U ji = u(xi, tj) at the discrete grid

point (xi, tj), ∆x is the spatial grid-step size, ∆t is the time-step size, and f ji = f(xi, tj)

is the numerical approximation of the source term. We refer to this approximation as

IMC1 scheme. Equation (3.10) can be rewritten in matrix form as

A∗u j = A∗u j−1 + c + ∆t f j , (3.13)

where

A∗ =



1 0 0 . . . 0 0 0

−ρ 1 + 2ρ −ρ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −ρ 1 + 2ρ −ρ

0 0 0 . . . 0 0 1


, (3.14)

and

c = ρβ∗j (γ)u0 + ρaj(γ)u1 + ρ

j−1∑
k=1

µ∗j−k(γ)
(
uk+1 − uk−1

)
. (3.15)

In Equations (3.14) and (3.15) the term ρ is given by

ρ =
D∆tγ

2∆x2Γ(1 + γ)
, (3.16)

where the weights aj(γ), β∗j (γ) and µ∗j (γ) are given by

aj(γ) = jγ − (j − 1)γ , (3.17)

β∗j (γ) = 2γjγ−1 − aj(γ), (3.18)

and

µ∗j (γ) =
1

2
[(j + 1)γ − (j − 1)γ ] . (3.19)
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3.3 Accuracy of the IMC1 Method

Here we determine the truncation error accuracy of IMC1 numerical scheme. Now from

Equation (3.11) we have

1

∆t

[
uji − u

j−1
i

]
=

D∆tγ−1

2Γ(1 + γ)

{
β∗j (γ)δ2

xu
0
i + aj(γ)δ2

xu
1
i + δ2

xu
j
i − δ

2
xu

j−1
i (3.20)

+

j−1∑
k=1

µ∗j−k(γ)
[
δ2
xu

k+1
i − δ2

xu
k−1
i

]}
+ f(xi, tj).

The first term on the right hand side of Equation (3.20) is the C1 approximation, Equa-

tion (2.60), with u(t) replaced by δ2
xui(t)[

∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j
i,C1

=
D∆tγ−1

2Γ(1 + γ)

{
β∗j (γ)δ2

xu
0
i + aj(γ)δ2

xu
1
i + δ2

xu
j
i − δ

2
xu

j−1
i

+

j−1∑
k=1

µ∗j−k(γ)
[
δ2
xu

k+1
i − δ2

xu
k−1
i

]}
, (3.21)

and so Equation (3.20) can be written

1

∆t

[
uji − u

j−1
i

]
= D

[
∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j
i,C1

+ f(xi, tj). (3.22)

Now taking the Taylor series expansion around the point xi = i∆x in space, we then have

δ2
xU

j
i '

[
∂2U

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4U

∂x4

∣∣∣∣j
i

+O(∆x4). (3.23)

Also taking the Taylor series expansion around the point tj = j∆t gives

U ji − U
j−1
i

∆t
'
[
∂U

∂t

∣∣∣∣j
i

+O(∆t), (3.24)

and so we have[
∂U

∂t

∣∣∣∣j
i

+O(∆t) = D

[
∂1−γ

∂t1−γ

(
∂2U

∂x2
+

∆x2

12

[
∂4U

∂x4

∣∣∣∣j
i

+O(∆x4)

)∣∣∣∣∣
j

i,C1

+ f(xi, tj) (3.25)

= D

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i,C1

+
D∆x2

12

[
∂1−γM(t)

∂t1−γ

∣∣∣∣j
i,C1

+ f(xi, tj),

where

M(t) = max
(i−1)∆x≤x≤(i+1)∆x

∣∣∣∣∂4U

∂x4

∣∣∣∣ . (3.26)

Adding and subtracting the exact fractional derivative, we find[
∂U

∂t

∣∣∣∣j
i

= D

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

+ f(xi, tj) +O(∆t) +O(∆x2) (3.27)

+D

[[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i,C1

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

]
.
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From Equation (2.125) the last term[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i,C1

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

(3.28)

is O(∆t1+γ) but the Equation (3.27) also includes O(∆t) terms, and so we then find the

truncation error, τi,j , is first order in time and second order in space, that is

τi,j = O(∆t) +O(∆x2). (3.29)

3.4 Consistency

The numerical approximation for the fractional subdiffusion equation is consistent, if we

can show that the truncation approaches zero as ∆x → 0 and ∆t → 0, that is we let

uji ≈ U
j
i = u(xi, tj), then

lim
∆x→0
∆t→0

(uji − U
j
i ) = lim

∆x→0
∆t→0

τi,j = 0. (3.30)

From Equation (3.29), we have

lim
∆x→0
∆t→0

τi,j = 0. (3.31)

This shows that the IMC1 method is consistent with the original fractional partial differ-

ential equation.

3.5 Stability Analysis

In this section, the stability of the modified implicit numerical method (IMC1) in Equa-

tion (3.10) is considered by using Von Neumann stability analysis. Before this we first

rewrite Equations (3.10) – (3.19) as

uji = uj−1
i + ρβ∗j (γ)

(
u0
i+1 − 2u0

i + u0
i−1

)
+ ρaj(γ)

(
u1
i+1 − 2u1

i + u1
i−1

)
(3.32)

+ ρ
(
uji+1 − 2uji + uji−1

)
− ρ

(
uj−1
i+1 − 2uj−1

i + uj−1
i−1

)
+ ρ

j∑
r=2

µ∗j−r+1(γ)
(
uri+1 − 2uri + uri−1

)
− ρ

j−2∑
p=0

µ∗j−p−1(γ)
(
upi+1 − 2upi + upi−1

)
+ ∆tf ji .
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Now let U ji be the exact solution of the Equation (3.1) and satisfying Equation (3.32),

we then have

U ji = U j−1
i + ρβ∗j (γ)

(
U0
i+1 − 2U0

i + U0
i−1

)
+ ρaj(γ)

(
U1
i+1 − 2U1

i + U1
i−1

)
(3.33)

+ ρ
(
U ji+1 − 2U ji + U ji−1

)
− ρ

(
U j−1
i+1 − 2U j−1

i + U j−1
i−1

)
+ ρ

j∑
r=2

µ∗j−r+1(γ)
(
U ri+1 − 2U ri + U ri−1

)
− ρ

j−2∑
p=0

µ∗j−p−1(γ)
(
Upi+1 − 2Upi + Upi−1

)
+ ∆tf ji + ∆tRji .

The error is then given by

εji = U ji − u
j
i , (3.34)

and so the error satisfies the equation

εji = εj−1
i + ρβ∗j (γ)

(
ε0i+1 − 2ε0i + ε0i−1

)
+ ρaj(γ)

(
ε1i+1 − 2ε1i + ε1i−1

)
(3.35)

+ ρ
(
εji+1 − 2εji + εji−1

)
− ρ

(
εj−1
i+1 − 2εj−1

i + εj−1
i−1

)
+ ρ

j∑
r=2

µ∗j−r+1(γ)
(
εri+1 − 2εri + εri−1

)
− ρ

j−2∑
p=0

µ∗j−p−1(γ)
(
εpi+1 − 2εpi + εpi−1

)
.

In Equation (3.35) we set the truncation error to zero (in stability analysis the truncation

error is not required), but later in Section 3.6 we will use the truncation error to show

the convergence rate of the numerical method.

To investigate the stability by Von Neumann stability analysis, we let

εji = ζje
i′qi∆x, (3.36)

where i′ is the imaginary number,
√
−1, q is a real spatial wave number and

ei
′q∆x = cos (q∆x) + i′ sin (q∆x) . (3.37)

Using Equation (3.36) in Equation (3.35) gives the equation for ζj

ζje
i′qi∆x = ζj−1e

i′qi∆x + ρ

{
β∗j (γ)

(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζ0 (3.38)

+ aj

(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζ1 +

(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζj

−
(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζj−1 +

j∑
r=2

µ∗j−r+1(γ)
(
ei
′q(i+1)∆x − 2ei

′qi∆x

+ei
′q(i−1)∆x

)
ζr −

j−2∑
p=0

µ∗j−p−1(γ)
(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζp

}
,
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which can be rewritten as

ζj = ζj−1 + ρ

{
β∗j (γ)

(
ei
′q∆x − 2 + e−i

′q∆x
)
ζ0 + aj(γ)

(
ei
′q∆x − 2 + e−i

′q∆x
)
ζ1 (3.39)

+
(
ei
′q∆x − 2 + e−i

′q∆x
)
ζj −

(
ei
′q∆x − 2 + e−i

′q∆x
)
ζj−1

+

j∑
r=2

µ∗j−r+1(γ)
(
ei
′q∆x − 2 + e−i

′q∆x
)
ζr −

j−2∑
p=0

µ∗j−p−1(γ)
(
ei
′q∆x − 2 + e−i

′q∆x
)
ζp

}
.

Noting

ei
′q∆x − 2 + e−i

′q∆x = −2 (1− cos(q∆x)) = −4 sin2

(
q∆x

2

)
. (3.40)

Equation (3.39) can then be rewritten as

ζj = ζj−1 −4 sin2

(
q∆x

2

)
ρ

{
β∗j (γ)ζ0 + ajζ1 + ζj − ζj−1

+

j∑
r=2

µ∗j−r+1(γ)ζr −
j−2∑
p=0

µ∗j−p−1(γ)ζp

}
. (3.41)

Setting

vq = 4 sin2

(
q∆x

2

)
ρ, (3.42)

for j ≥ 1, Equation (3.41) becomes

ζj = ζj−1 − λq
{
β∗j (γ)ζ0 + aj(γ)ζ1 +

j∑
r=2

µ∗j−r+1(γ)ζr −
j−2∑
p=0

µ∗j−p−1(γ)ζp

}
, (3.43)

where

λq =
vq

1 + vq
. (3.44)

For 0 ≤ vq <∞, λq satisfies the inequality 0 ≤ λq ≤ 1.

For j ≥ 3, Equation (3.43) can be rewritten as

ζj =
1

1 + 2γ−1λq

{(
1 +

1

2
(1− 3γ)λq

)
ζj−1 + λq

(
1

2
(jγ − (j − 2)γ)− β∗j (γ)

)
ζ0 (3.45)

+λq

(
1

2
((j − 1)γ − (j − 3)γ)− aj(γ)

)
ζ1 − λq

j−2∑
2

$j−r(γ)ζr

}
,

where the weight $j(γ) is defined as

$j(γ) =
1

2
[(j + 2)γ − 2jγ + (j − 2)γ ] . (3.46)

We next consider the following lemmas which will aid in showing the stability of our

numerical method.
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Lemma 3.5.1. Let aj(γ) = jγ − (j − 1)γ , where j ≥ 1 and 0 < γ < 1 then aj satisfies:

1. aj(γ) > 0, and,

2. aj(γ) > aj+1(γ).

Proof. To show aj(γ) > 0, we have

aj(γ) = jγ − (j − 1)γ = jγ
[
1−

(
j − 1

j

)γ]
, (3.47)

but

0 ≤ j − 1

j
< 1, (3.48)

when j ≥ 1 and so

0 ≤
(
j − 1

j

)γ
< 1, (3.49)

and

0 < 1−
(
j − 1

j

)γ
≤ 1. (3.50)

Hence from Equation (3.47) we have 0 < aj(γ) ≤ jγ since jγ > 0 and so aj(γ) > 0.

To prove the second result we let f1(y) = (y − 1)γ and f2(y) = yγ−(y − 1)γ . We will show

these functions, f1(y) and f2(y), are monotonically increasing and decreasing functions

respectively of y, for γ ∈ (0, 1).

Since

df1(y)

dy
= γ (y − 1)γ−1

=
γ

(y − 1)1−γ > 0, (3.51)

we can conclude, for y ≥ 1 and 0 < γ < 1, that the function f1(y) is a monotonically

increasing function in y.

Finding the derivative of f2(y) we have

df2(y)

dy
= γyγ−1 − γ (y − 1)γ−1 . (3.52)

Now since

y1−γ > (y − 1)1−γ ,
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as f1(y) is an increasing function for 0 < γ < 1, then

1

y1−γ <
1

(y − 1)1−γ . (3.53)

Hence

df2(y)

dy
≤ γ

(y − 1)1−γ −
γ

(y − 1)1−γ < 0 (3.54)

and so the function f2(y) is a monotonically decreasing function of y, for 0 < γ < 1.

Setting y = j we then have

aj(γ) = jγ − (j − 1)γ

> (j + 1)γ − ((j + 1)− 1)γ

> aj+1(γ). (3.55)

Hence results (1) and (2) hold for 0 < γ < 1.

Lemma 3.5.2. The coefficients $j(γ), defined in Equation (3.46) for 0 < γ ≤ 1 and

j ≥ 2, obey the constraint $j(γ) ≤ 0.

Proof. First we can write $j(γ) in terms of aj(γ) (defined in Lemma 3.5.1)

$j(γ) =
1

2

[(
(j + 2)γ − (j + 1)γ + (j + 1)γ − jγ

)
−
(
jγ − (j − 1)γ + (j − 1)γ − (j − 2)γ

)]
=

1

2

[
aj+2(γ) + aj+1(γ)−

(
aj(γ) + aj−1(γ)

)]
. (3.56)

By Lemma 3.5.1 we have aj+2(γ) < aj+1(γ) < aj(γ), and so

$j(γ) <
1

2

[
2aj+1(γ)− aj(γ)− aj−1(γ)

]
<

1

2

[
aj(γ)− aj−1(γ)

]
. (3.57)

Since aj(γ) < aj−1(γ), then we have the result $j(γ) < 0.

If γ = 1, then $j(γ) = 0, for j ≥ 2 by direct substitution.

Lemma 3.5.3. If b̂j = 1
2 (jγ − (j − 2)γ)−β∗j (γ), where β∗j (γ) is defined in Equation (3.18)

and 0 < γ ≤ 1, then b̂j > 0, for j ≥ 2.

Proof. By using Equation (3.18), we then rewrite b̂j as follows

b̂j =
1

2
(aj(γ) + aj−1(γ))−

(
2γjγ−1 − aj(γ)

)
=

1

2
(aj(γ) + aj−1(γ))− 2γjγ−1 + aj(γ). (3.58)
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By using Lemma 3.5.1, we have aj−1(γ) > aj(γ), and so

b̂j > 2aj(γ)− 2γjγ−1 = 2
(
aj − γjγ−1

)
. (3.59)

From Appendix B.10, we have γjγ−1−aj(γ) < 0 then aj(γ)−γjγ−1 > 0, and we conclude

that b̂j > 0, ∀j ≥ 2.

Lemma 3.5.4. Given bj = 1
2 [(j − 1)γ − (j − 3)γ ] − aj(γ) where aj(γ) defined in Equa-

tion (3.17) and 0 < γ < 1, then bj > 0, ∀j ≥ 3.

Proof. Rewrite bj as follows

bj =
1

2
(aj−1(γ) + aj−2(γ))− aj(γ) (3.60)

and using the result aj−2(γ) > aj−1(γ) from Lemma 3.5.1 twice we then have

bj >
1

2
(aj−1(γ) + aj−1(γ))− aj(γ)

= aj−1(γ)− aj(γ) > 0. (3.61)

We then conclude that bj > 0, ∀j ≥ 3.

We now consider the stability of our scheme.

Proposition 3.5.5. Let ζj , where j = 1, 2, ...,M be the solutions of Equation (3.43),

then

|ζj | ≤ |ζ0| . (3.62)

Proof. We use mathematical induction method to prove the relation in Equation (3.62).

We assume ζ0 > 0, and first consider the case j = 1. From Equation (3.43) we have

ζ1 = ζ0 − λq(β∗1(γ)ζ0 + a1(γ)ζ1) . (3.63)

Using β∗1(γ) = 2γ − 1 and a1(γ) = 1, gives

(1 + λq)ζ1 = [1− λq(2γ − 1)]ζ0, (3.64)

which can be simplified to

ζ1 =

(
1− 2γλq

1 + λq

)
ζ0. (3.65)
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Since the second term in the bracket is positive then ζ1 is bounded above by ζ0, that is

ζ1 =

(
1− 2γλq

1 + λq

)
ζ0 ≤ ζ0. (3.66)

In addition, for 0 ≤ λq ≤ 1, we have

0 ≤ 2γλq
1 + λq

≤ γ, (3.67)

so

1 ≥ 1− 2γλq
1 + λq

≥ 1− γ ≥ 0 ≥ −1, (3.68)

and we conclude that

ζ1 =

(
1− 2γλq

1 + λq

)
ζ0 ≥ −ζ0, (3.69)

hence

−ζ0 ≤ ζ1 ≤ ζ0, (3.70)

or

|ζ1| < |ζ0|. (3.71)

So Equation (3.62) is true for j = 1.

In the case j = 2, from Equation (3.43), we have

ζ2 = ζ1 − λq
[
β∗2(γ)ζ0 + a2(γ)ζ1 + 2γ−1ζ2 − 2γ−1ζ0

]
. (3.72)

Then using Equations (3.17) – (3.19), we find

ζ2 =
1

1 + 2γ−1λq

{
[1− λq(2γ − 1)] ζ1 − λq

(
2γ2γ−1 − 2γ + 1− 2γ−1

)
ζ0

}
. (3.73)

Since for 0 ≤ λq ≤ 1 and 0 < γ ≤ 1, we have 2γ − 1 > 0, we see the coefficient of ζ1 obeys

the inequality

0 ≤ 2− 2γ ≤ 1− λq(2γ − 1) ≤ 1. (3.74)

In addition since ζ1 ≤ ζ0 we have

ζ2 ≤
1

1 + 2γ−1λq

{
[1 + λq(1− 2γ)]− λq

(
2γ2γ−1 − 2γ + 1− 2γ−1

)}
ζ0 (3.75)

≤
(

1− γ2γλq
1 + 2γ−1λq

)
ζ0. (3.76)

Since the second term in the brackets is positive then ζ2 is bounded above by ζ0

ζ2 =

(
1− γ2γλq

1 + 2γ−1λq

)
ζ0 < ζ0. (3.77)
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Since we also have −ζ0 ≤ ζ1, then from Equation (3.73)

ζ2 ≥
1

1 + 2γ−1λq

{
1 + λq(1− 2γ) + λq

(
2γ2γ−1 − 2γ + 1− 2γ−1

)}
(−ζ0), (3.78)

which simplifies to

ζ2 ≥ −
(

1 +
λq (2 + 2γ(γ − 3))

1 + 2γ−1λq

)
ζ0. (3.79)

For 0 ≤ λq ≤ 1 and since −2 < 2γ(γ − 3) < −1 for 0 < γ < 1, we have

λq (2 + 2γ(γ − 3))

1 + 2γ−1λq
≤ 2 + 2γ(γ − 3)

1 + 2γ−1
, (3.80)

and for 0 < γ ≤ 1

−1 ≤ 2 + 2γ(γ − 3)

1 + 2γ−1
≤ −2/3 < 0. (3.81)

So we then have

0 ≤ 1 +
λq(2 + 2γ(γ − 3))

1 + 2γ−1λq
≤ 1, (3.82)

which gives the bound

ζ2 ≥ −
(

1 +
λq (2 + 2γ(γ − 3))

1 + 2γ−1λq

)
ζ0 ≥ −ζ0. (3.83)

We then conclude that

−ζ0 ≤ ζ2 ≤ ζ0, (3.84)

or

|ζ2| ≤ |ζ0|. (3.85)

So Equation (3.62) is also true for j = 2.

We now assume that

−ζ0 ≤ ζn ≤ ζ0, for n = 1, 2, ..., k, (3.86)

and then need to show that

−ζ0 ≤ ζk+1 ≤ ζ0. (3.87)

From Equation (3.45) we have

ζk+1 =
1

1 + 2γ−1λq

{[
1 +

1

2
(1− 3γ)λq

]
ζk + λq

[
1

2
(kγ − (k − 2)γ)− β∗k(γ)

]
ζ0

+λq

[
1

2
((k − 1)γ − (k − 3)γ)− ak(γ)

]
ζ1 + λq

k−2∑
l=2

(−$k−l(γ))ζl

}
. (3.88)
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In Lemma 3.5.2 we have shown $l(γ) < 0 therefore −$l(γ) > 0, and for 0 ≤ λq ≤ 1 and

0 < γ ≤ 1 the coefficient of ζk satisfies

0 <
1

2
(3− 3γ) ≤ 1 +

1

2
(1− 3γ)λq ≤ 1.

By using Lemmas 3.5.3 and 3.5.4 with Equation (3.86), where ζn ≤ ζ0, then Equa-

tion (3.88) becomes

ζk+1 ≤
1

1 + 2γ−1λq

{
1 +

1

2
(1− 3γ)λq + λq

[
1

2
(kγ − (k − 2)γ)− β∗k(γ)

]
+λq

[
1

2
((k − 1)γ − (k − 3)γ)− ak(γ)

]
+ λq

k−2∑
l=2

(−$k−l(γ))

}
ζ0. (3.89)

Now evaluating the summation in Equation (3.89), gives

k−2∑
l=2

(−$k−l(γ)) =
1

2

k−2∑
l=2

[−(k − l + 2)γ + 2(k − l)γ − (k − l − 2)γ ]

=
1

2

[
−
k−4∑
l=0

(k − l)γ +

k−2∑
l=2

(k − l)γ +

(
k−2∑
l=2

(k − l)γ −
k∑
l=4

(k − l)γ
)]

=
1

2
[−kγ − (k − 1)γ + (k − 2)γ + (k − 3)γ + 2γ + 3γ − 1] . (3.90)

Using this result in Equation (3.89), we find

ζk+1 ≤
1

1 + 2γ−1λq

{
1 +

1

2
(1− 3γ)λq + λq

[
1

2
(kγ − (k − 2)γ)− β∗k(γ)

]
+ λq

[
1

2
((k − 1)γ − (k − 3)γ)− ak(γ)

]
+
λq
2

[3γ + 2γ − 1− kγ − (k − 1)γ + (k − 2)γ + (k − 3)γ ]

}
ζ0, (3.91)

which can be simplified to

ζk+1 ≤
(

1− 2γkγ−1λq
1 + 2γ−1λq

)
ζ0. (3.92)

Since the second term is positive then ζj+1 is bounded above by ζ0

ζk+1 <

(
1− 2γkγ−1λq

1 + 2γ−1λq

)
ζ0 < ζ0. (3.93)

Since −ζ0 ≤ ζn then Equation (3.88) becomes

ζk+1 ≥
1

1 + 2γ−1λq

{
1 +

1

2
(1− 3γ)λq + λq

[
1

2
(kγ − (k − 2)γ)− β∗k(γ)

]
+λq

[
1

2
((k − 1)γ − (k − 3)γ)− ak(γ)

]
− λq

k−2∑
l=2

$k−l(γ)

}
(−ζ0), (3.94)
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which can be simplified to

ζk+1 ≥ −
(

1− 2γkγ−1λq
1 + 2γ−1λq

)
ζ0, (3.95)

we then have

ζk+1 ≥ −
(

1− 2γkγ−1λq
1 + 2γ−1λq

)
ζ0 ≥ −ζ0. (3.96)

So Equation (3.62) is true for n = k + 1 that is

−ζ0 < ζk+1 < ζ0, (3.97)

or

|ζk+1| < |ζ0|. (3.98)

Then for all n ∈ IN Equation (3.62) is true. Hence according to Von Neumann stability

analysis the numerical method is unconditionally stable.

3.5.1 Numerical Solution of the Recurrence Relationship

In this section we investigate the solution of the recurrence relationship in Equation (3.43)

by direct evaluation, where 0 < γ < 1. The ratio ζj/ζ0 is shown in Figure 3.2 against j

(where j = 1, . . . , 100) for various values of γ = 0.1, . . . , 0.9 when λq = 1. Also the ratio

ζj/ζj−1 is plotted as a loglog plot given in Figure 3.3. From these results this method is

stable as the ratio is less than 1, as predicted.

Figure 3.2: Prediction of ζj/ζ0 found from numerically evaluating the recurrence relation in

Equation (3.43). Results are shown for 100 time steps, λq = 1 and γ = 0.1, . . . , 0.9. In this

figure γ increases in the direction of the arrow.
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Figure 3.3: Results of ζj/ζj−1 found from Equation (3.43) for j = 1, . . . , 100, λq = 1 and

γ = 0.1, . . . , 0.9. In this figure γ increases in the direction of the arrow.

3.6 Convergence of the IMC1 Method

In this section, we consider the the convergence of the IMC1 scheme, we follow the

approach as in Chen, Liu, Anh & Turner (2010) by defining

Rji =
U ji − U

j−1
i

∆t
− D∆tγ−1

2Γ(1 + γ)

{
β∗j (γ)δ2

xU
0
i + aj(γ)δ2

xU
1
i + δ2

xU
j
i − δ

2
xU

j−1
i

+

j−1∑
k=1

µ∗j−k(γ)
[
δ2
xU

k+1
i − δ2

xU
k−1
i

]}
− f ji , (3.99)

where δ2
xU

j
i is defined as in Equation (3.12), from the C1 scheme we note that[

d1−γf(t)

dt1−γ

∣∣∣∣j
C1

=
∆tγ−1

2Γ(1 + γ)

{
β∗j (γ)f0 + aj(γ)f1 + fj − fj−1

+

j−1∑
k=1

µ∗j−k(γ) [fk+1 − fk−1]

}
+O(∆t1+γ). (3.100)

Now using Equations (3.23), (3.24) and (3.100) in to Equation (3.99), we then have

Rji =
∂U ji
∂t
− f ji +O(∆t)−D ∆tγ−1

2Γ(1 + γ)

{
β∗j (γ)

∂2U0
i

∂x2
+ aj(γ)

∂2U1
i

∂x2
+
∂2U ji
∂x2

−
∂2U j−1

i

∂x2

+

j−1∑
k=1

µ∗j−k(γ)

[
∂2Uk+1

i

∂x2
−
∂2Uk−1

i

∂x2

]
+O(∆x2)

}
+O(∆t1+γ)

=

[
∂U

∂t

∣∣∣∣j
i

−D
[
∂1−γ

∂1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

− f ji +O(∆t+ ∆x2). (3.101)
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According to the Equation (3.101), we have

Rji = O(∆t+ ∆x2) , (3.102)

where i = 1, 2, . . . , N and j = 1, 2, . . . ,M , since i, j are finite, there is a positive constant

c1 for all i, j such that

|Rji | ≤ c1(∆t+ ∆x2). (3.103)

Let

Eji = U ji − u
j
i (3.104)

where i = 1, 2, . . . , N and j = 0, 1, 2, . . . ,M . From Equation (3.99) we have

U ji = U j−1
i +

∆tγ

2Γ(1 + γ)

{
β∗j (γ)δ2

xU
0
i + aj(γ)δ2

xU
1
i + δ2

xU
j
i − δ

2
xU

j−1
i

+

j−1∑
k=1

µ∗j−k(γ)
[
δ2
xU

k+1
i − δ2

xU
k−1
i

]}
+∆tf ji + ∆tRji . (3.105)

Subtracting (3.11) from (3.105), we then have the following error equation

Eji = Ej−1
i +

∆tγ

2Γ(1 + γ)

{
β∗j (γ)δ2

xE
0
i + aj(γ)δ2

xE
1
i + δ2

xE
j
i − δ

2
xE

j−1
i

+

j−1∑
k=1

µ∗j−k(γ)
[
δ2
xE

k+1
i − δ2

xE
k−1
i

]}
+∆tRji . (3.106)

For i = 1, 2, . . . , N we define the following grid function

Ej(x) =


Eji if x ∈

(
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . , N

0 if x ∈
[
0, ∆x

2

]⋃ (
L− ∆x

2 , L
]
,

(3.107)

and

Rj(x) =


Rji if x ∈

(
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . , N

0 if x ∈
[
0, ∆x

2

]⋃ (
L− ∆x

2 , L
] (3.108)

respectively and then Eji and Rji can be expanded in Fourier series as

Ej(x) =
∞∑

l=−∞
ξj(l)e

i′2πlx/L, j = 0, 1, 2, . . . ,M (3.109)

and

Rj(x) =

∞∑
l=−∞

ηj(l)e
i′2πlx/L, j = 0, 1, 2, . . . ,M (3.110)
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where

ξj(l) =
1

L

∫ L

0
Ej(x)e−i

′2πlx/Ldx, (3.111)

and

ηj(l) =
1

L

∫ L

0
Rj(x)e−i

′2πlx/Ldx. (3.112)

Next we applying the Parseval identity (Spiegel 1965, Spiegel 1991), we then have

‖Ej‖2 =

(
N−1∑
i=1

∆x|Eji |
2

) 1
2

=

( ∞∑
l=−∞

|ξj(l)|2
) 1

2

, j = 0, 1, 2, . . . ,M (3.113)

and

‖Rj‖2 =

(
N−1∑
i=1

∆x|Rji |
2

) 1
2

=

( ∞∑
l=−∞

|ηj(l)|2
) 1

2

, j = 0, 1, 2, . . . ,M. (3.114)

Now we assume that

Eji = ξje
i′qi∆x, (3.115)

and

Rji = ηje
i′qi∆x, (3.116)

where q = 2πl/L and i′ =
√
−1. Using Equations (3.115) and (3.116) in (3.106) gives

ξj = ξj−1 − vq

{
β∗j (γ)ξ0 + aj(γ)ξ1 + ξj − ξj−1 +

j−1∑
k=1

µ∗j−k(γ) [ξk+1 − ξk−1]

}
+ ∆tηj ,

(3.117)

where vq is defined as in Equation (3.42). Equation (3.117) becomes

ξj = ξj−1 −
vq

1 + vq

{
β∗j (γ)ξ0 + aj(γ)ξ1 +

j−1∑
k=1

µ∗j−k(γ) [ξk+1 − ξk−1]

}
+

∆tηj
1 + vq

. (3.118)

For j ≥ 3, Equation (3.117) can be rewritten as

ξj =
1

1 + 2γ−1λq

{(
1 +

1

2
(1− 3γ)λq

)
ξj−1 + λq

(
1

2
(jγ − (j − 2)γ)− β∗j (γ)

)
ξ0

+λq

(
1

2
((j − 1)γ − (j − 3)γ)− aj(γ)

)
ξ1 − λq

j−2∑
2

$j−r(γ)ξr + ∆tηj

}
, (3.119)

where the weight $j(γ) is defined as in Equation (3.46), and also λq is defined as in

Equation (3.44).
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Proposition 3.6.1. Let ξj be the solution of Equation (3.118). Then there exists a

positive constant c2 such that

|ξj | ≤ c2j∆t|η1|, (3.120)

where j = 1, 2, . . . ,M .

Proof. From Equation (3.104), we note that E0 = 0, we then have.

ξ0 = ξ0(l) = 0. (3.121)

From Equations (3.103) and (3.114), we obtain

‖Rj‖2 ≤ c2

√
N∆x(∆t+ ∆x2) = c2

√
L(∆t+ ∆x2), (3.122)

where j = 1, 2, . . . ,M , and on the right hand side (3.114) by the convergence of the series

there is a positive constant cj such that

|ηj | ≡ |ηj(l)| ≤ cj |η1| ≡ cj |η1(l)|, j = 1, 2, . . . ,M. (3.123)

We then obtain

|ηj | ≤ c2|η1(l)|, j = 1, 2, . . . ,M, (3.124)

where

c2 = max
1≤j≤M

{cj}. (3.125)

Now using mathematical induction, starting with j = 1, from Equation (3.118), we have(
1 +

vq
1 + vq

)
ξ1 =

∆tηj
1 + vq

, (3.126)

Equation (3.126) becomes

ξ1 =
1

1 + 2vq
∆tη1, (3.127)

since 1 + 2vq > 0, we obtain

|ξ1| ≤
1

1 + 2vq
∆t|η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (3.128)

For j = 2, from Equation (3.118), we have

ξ2 = ξ1 −
vq

1 + vq

[
β∗2(γ)ξ0 + a2(γ)ξ1 + 2γ−1ξ2 − 2γ−1ξ0

]
+

∆tη2

1 + vq
, (3.129)
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which upon using Equation (3.127) in Equation (3.129), is then given by

ξ2 =
∆t

(1 + 2vq)(1 + vq + vq2γ−1)
[(1 + vq(2− 2γ))η1 + (1 + 2vq)η2]

=
∆t

1 + vq + vq2γ−1

[(
1− vq2

γ

1 + 2vq

)
η1 + η2

]
, (3.130)

since |η2| ≤ c2|η1|, we then obtain

|ξ2| ≤
∆t

1 + vq + vq2γ−1

[∣∣∣∣1− vq2
γ

1 + 2vq

∣∣∣∣+ c2

]
|η1|

≤ (1 + c2)

1 + vq + vq2γ−1
∆t|η1|

≤ 2c2∆t|η1|. (3.131)

Suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k − 1. (3.132)

For 0 < γ < 1 and vq > 0, from Equation (3.119), we have

|ξk| ≤
1

1 + 2γ−1λq

{ ∣∣∣∣1 +
1

2
(1− 3γ)λq

∣∣∣∣ |ξk−1|+ λq

∣∣∣∣12 (kγ − (k − 2)γ)− β∗k(γ)

∣∣∣∣ |ξ0|

+λq

∣∣∣∣12 ((k − 1)γ − (k − 3)γ)− ak(γ)

∣∣∣∣ |ξ1|+ λq

k−2∑
l=2

| −$k−l(γ)||ξl|+ ∆t|ηk|

}
.

(3.133)

In Lemma 3.5.2 we have shown $l(γ) < 0 therefore −$l(γ) > 0, and in Lemma 3.5.4 the

coefficient 1
2 [(k − 1)γ − (k − 3)γ ] − ak(γ) is positive. For 0 ≤ λq ≤ 1 and 0 < γ ≤ 1 the

coefficient of ξk−1 satisfies

0 <
1

2
(3− 3γ) ≤ 1 +

1

2
(1− 3γ)λq ≤ 1.

Equation (3.133) becomes after using Equation (3.132)

|ξk| ≤
c2∆t

1 + 2γ−1λq

{[
1 +

1

2
(1− 3γ)λq

]
(k − 1) + λq

(
1

2
((k − 1)γ − (k − 3)γ)− ak(γ)

)
+λq

k−2∑
l=2

(−l$k−l(γ)) + 1

}
|η1|. (3.134)

Now evaluating the summation in Equation (3.134), gives

k−2∑
l=2

(−l$k−l(γ)) =
1

2

k−2∑
l=2

l [−(k − l + 2)γ + 2(k − l)γ − (k − l − 2)γ ]

=
1

2

[
−
k−4∑
l=0

(l + 2)(k − l)γ +

k−2∑
l=2

l (k − l)γ +

[
k−2∑
l=2

l (k − l)γ −
k∑
l=4

(l − 2)(k − l)γ
]]

=
1

2
[−2kγ − 3(k − 1)γ + (k − 3)γ + k(2γ + 3γ − 1)− (3γ − 3)] . (3.135)
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Using this result in Equation (3.134), we then have

|ξk| ≤
c2∆t

1 + 2γ−1λq

{[
1 +

1

2
(1− 3γ)λq

]
(k − 1) + λq

(
1

2
((k − 1)γ − (k − 3)γ)− (kγ − (k − 1)γ)

)
+
λq
2

[−2kγ − 3(k − 1)γ + (k − 3)γ + k(3γ + 2γ − 1)− (3γ − 3)] + 1

}
|η1|

=
c2∆t

1 + 2γ−1λq

{[
1 +

1

2
(1− 3γ)λq

]
(k − 1) + λq

(
−2kγ +

1

2
[(3γ + 2γ − 1)k + (3− 3γ)]

)
+ 1

}
|η1|

=
c2∆t

1 + 2γ−1λq

{
k(1 + λq2

γ−1) + λq (1− 2kγ)
}
|η1|

= c2∆tk|η1| −
c2∆tλq (2kγ − 1)

1 + 2γ−1λq
|η1|

≤ c2∆tk|η1|. (3.136)

We then conclude that for n = k

|ξk| ≤ c2k∆t|η1| (3.137)

and hence for all n ∈ IN we have |ξn| ≤ c2n∆t|η1|. The proof of the proposition is

completed.

Theorem 3.6.2. Let u(x, t) ∈ U(Ω) be the exact solution for the fractional subdiffusion

equation. Then the numerical scheme (3.10) – (3.19) is convergent with the convergence

order O(∆t+ ∆x2).

Proof. Using Equations (3.103), (3.113), (3.114), Proposition 3.6.1, and j∆t ≤ T , we then

have

‖Ej‖2 ≤ c2j∆t‖R1‖ ≤ c1c2j∆t
√
L(∆t+ ∆x2) ≤ C(∆t+ ∆x2) (3.138)

where C = c1c2T
√
L.

3.7 Numerical Examples and Results

In this section, we provide three examples of the implementation the implicit scheme,

IMC1, where the analytic solution is known. For each example we compare graphically

the numerical prediction against the exact solution. We also verify the accuracy of the
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implicit scheme by computing the maximum norm of the error between the numerical

estimate uMi and the exact solution u(xi, tM ) using the infinity norm

e∞(∆t,∆x) = max
1≤i≤N

| uMi − u(xi, tM ) | . (3.139)

Numerical accuracy is studied for varying time and spatial steps sizes in the cases of

γ = 0.1, 0.5, 0.9, and 1. The approximate order of convergence in ∆x, R1, was estimated

by computing the term

R1 = log2 [e∞(∆t, 2∆x)/e∞(∆t,∆x)] , (3.140)

and the approximate order of convergence in ∆t, R2, was estimated by computing the

term

R2 = log2 [e∞(2∆t,∆x)/e∞(∆t,∆x)] . (3.141)

This scheme was implemented in MATLAB R2014a (see Appendix C.2) using the linsolve

subroutine to solve the system of linear equations.

Example 3.7.1. Consider the following fractional subdiffusion equation with a source

term

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ sin(πx)

[
2t+ π2

(
tγ−1

Γ(γ)
+

2tγ+1

Γ(2 + γ)

)]
, (3.142)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = sin(πx), u(0, t) = 0, u(L, t) = 0, (3.143)

where 0 < x < L, t > 0, L = 1. The exact solution of Equation (3.142) given the

conditions in Equation (3.143), is

u(x, t) =
(
1 + t2

)
sin(πx). (3.144)

In Tables 3.1 and 3.2 we give the error and order of convergence estimates for this example.

To estimate the convergence in space we kept ∆t fixed at 10−3 whilst varying the value

of ∆x. To estimate the convergence in time we kept ∆x fixed at 10−3 whilst varying ∆t.

From the results shown in Tables 3.1 and 3.2 it can be seen that the implicit method

IMC1 is of order O(∆x2) and O(∆t).
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Table 3.1: Numerical accuracy in ∆x of the IMC1 scheme applied to Example 3.7.1 with

∆t = 10−3 and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.32 e–00 – 0.41e–00 – 0.42e–00 – 0.42e–00 –

1/4 0.75e–01 2.11 0.95e–01 2.11 0.99e–01 2.12 0.96e–02 2.12

1/8 0.19e–01 2.01 0.23 e–01 2.03 0.24e–01 2.03 0.24e–01 2.03

1/16 0.49e–02 1.93 0.59e–02 2.00 0.59e–02 2.00 0.59e–02 2.00

1/32 0.15e–02 1.72 0.15e–02 1.96 0.15e–02 1.97 0.15e–02 1.97

Table 3.2: Numerical accuracy in ∆t of the IMC1 scheme applied to Example 3.7.1 with

∆x = 10−3 and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.11e–00 – 0.37e–01 – 0.13e–01 – 0.10e–01 –

1/20 0.52e–01 1.06 0.15e–01 1.26 0.61e–02 1.11 0.51e–02 1.00

1/40 0.25e–01 1.07 0.64e–02 1.27 0.29e–02 1.08 0.25e–02 1.00

1/80 0.12e–01 1.08 0.27e–02 1.25 0.14e–02 1.05 0.13e–02 1.00

1/160 0.55e–02 1.08 0.12e–02 1.22 0.67e–03 1.03 0.64e–03 1.00

A comparison of the exact solution and the numerical solution of Equation (3.10) in the

case of the fractional exponent γ = 0.5 at the times t = 0.25, 0.5, 0.75 and 1.0 is shown

in Figure 3.4. It can be seen that, the approximate solution obtained from the numerical

scheme is in good agreement with the exact solution. Results are not shown here for other

values of γ, but the exact solution is the same for all γ in this and in the next example.
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Figure 3.4: A comparison of the exact solution and the numerical solution of Equation (3.142)

shown at the times t = 0.25, 0.5, 0.7 and 1.0, for γ = 0.5, and time step ∆t = 10−3.

The numerical solution of Equation (3.142) for fractional exponent γ = 0.5, time t = 1.0

and ∆t = 10−2 is shown in Figure 3.5.

Figure 3.5: The numerical solution by the IMC1 scheme for Equation (3.142) shown for

0 ≤ t ≤ 1, and 0 ≤ x ≤ 1 in the case γ = 0.5.

Example 3.7.2. Consider the following fractional subdiffusion equation with the source

term
∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ 2ext

[
1− tγ

Γ(2 + γ)

]
, (3.145)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = 0, 0 < x < L, u(0, t) = t2, u(L, t) = et2, (3.146)
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where t > 0 and L = 1. The exact solution of Equations (3.145) and (3.146) is

u(x, t) = ext2. (3.147)

The absolute error and order of convergence estimated for this example are shown in

Tables 3.3 and 3.4. To estimate the convergence in space we again kept ∆t fixed at

10−3 whilst varying ∆x and kept ∆x fixed at 10−3 whilst varying ∆t to estimate the

convergence in time. From the results given in Tables 3.3 and 3.4, we see again that the

approximate truncation order of the IMC1 scheme, given in Equation (3.10), is of order

in space O(∆x2) and O(∆t) in time.

Table 3.3: Numerical accuracy in ∆x of the IMC1 scheme applied to Example 3.7.2 with

∆t = 10−3 and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.38e–02 – 0.36e–02 – 0.34e–02 – 0.34e–02 –

1/4 0.98e–03 1.96 0.94e–03 1.95 0.90e–03 1.94 0.89e–03 1.94

1/8 0.25e–03 1.98 0.24e–03 1.96 0.23e–03 1.95 0.23e–03 1.95

1/16 0.65e–04 1.93 0.67e–04 1.86 0.64e–04 1.86 0.63e–04 1.86

1/32 0.19e–04 1.79 0.22e–04 1.59 0.21e–04 1.58 0.21e–04 1.58

Table 3.4: Numerical accuracy in ∆t of the IMC1 scheme applied to Example 3.7.2 with

∆x = 10−3 and R2 is order of convergence.

γ = 0.2 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.45e–02 – 0.15e–01 – 0.21e–01 – 0.21e–01 –

1/20 0.31e–02 0.53 0.86e–02 0.85 0.11e–01 0.98 0.11e–01 1.00

1/40 0.20e–02 0.65 0.46e–02 0.89 0.54e–02 0.99 0.53e–02 1.00

1/80 0.12e–02 0.74 0.24e–02 0.93 0.27e–02 0.99 0.27e–02 1.00

1/160 0.68e–03 0.80 0.13e–02 0.95 0.14e–02 1.00 0.13e–02 1.00

In Figure 3.6 we show the comparison of the exact solution and the numerical solution at

the times t = 0.25, 0.5, 0.75 and 1.0, and for the fractional exponent γ = 0.5. Again we

see the numerical estimate is in agreement with the exact solution.
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Figure 3.6: A comparison of the exact solution and the numerical solution for Equation (3.145)

at different times t = 0.25, 0.5, 0.75, and 1.0 with γ = 0.5 and ∆t = 10−3.

The numerical solution of Equation (3.145) for fractional exponent γ = 0.5, for 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 with ∆t = 10−2 is shown in Figure 3.7.

Figure 3.7: The numerical solution by the IMC1 scheme for Equation (3.145) for 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 in case γ = 0.5 and ∆t = 10−2.

Example 3.7.3. Consider the following fractional subdiffusion equation

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
, (3.148)

with the initial and fixed boundary conditions

u(x, 0) = sin(πx), u(0, t) = 0, u(L, t) = 0 (3.149)
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where 0 < x < L, t > 0, L = 1. The exact solution of Equation (3.148) subject to the

initial and boundary condition is

u(x, t) = sin(πx)Eγ(−π2tγ). (3.150)

In this example we need to evaluate the Mittag–Leffler function, Eγ(z), (Podlubny 1998)

with γ = 0.5 and γ = 1.0. To do this we rewrite the Mittag–Leffler function E1/2(z) in

terms of known functions in MATLAB. The exact solution for γ = 0.5 then is given by

u(x, t) = sin(πx) exp(π4t) erfc(π2tγ) (3.151)

and for γ = 1.0 by

u(x, t) = sin(πx) exp(−π2t), (3.152)

which can be evaluated in MATLAB.

In Figure 3.8 we show the comparison of the exact solution and the numerical solution

at the time t = 0.25, 0.5, 0.75 and 1.0 with ∆t = 10−4. We also give a comparison at

x = 0.5, u(0.5, t) for 0 ≤ t ≤ 1 in Figure 3.9. We see the numerical estimate lags behind

the exact solution as evidenced in Figures 3.8 and 3.9.

In this example we also give the error and order of convergence estimates; For the con-

vergence in space we kept ∆t fixed at 10−7 whilst varying ∆x and for the convergence in

time we kept ∆x fixed at 10−3 whilst varying ∆t. From the results shown in Table 3.5 it

can be seen that, where γ = 0.5, we are not able to get the order of accuracy predicted in

Section 3.3. A potential reason for this (and the lag seen in Figures 3.8 and 3.9) is that

the first and second derivatives at t = 0 are not bounded in this example. Therefore the

assumption in Section 2.6.1 in Chapter 2, that we can expanded the solution as a Taylor

series around t = 0 is not satisfied. By decreasing ∆t we are in fact trying to approximate

this singularity at t = 0 more closely but this is difficult to do numerically.

In Table 3.6 we show the convergence results in ∆x, keeping ∆t = 10−5 fixed, and in

∆t keeping ∆x = 10−3 fixed, in the case γ = 1. From the results given in Table 3.6, we

obtain the predicted accuracy of second order in space and first order in time. This is

because the singularity in the derivative at t = 0 does not occur in the case γ = 1.

The numerical solution of Equation (3.148) by using the IMC1 scheme for fractional

exponent γ = 0.1, 0.5, 0.9, and 1.0, and ∆t = 10−4 are shown in Figures 3.10 and 3.11
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respectively. From the results shown in these figures we see the numerical solution of

Equation (3.148) changes with the value of the exponent γ. It can be seen that the

solution, in the long term, decays faster to zero for larger values of γ compared to smaller

values of γ. However, it should be noted that the initial decay is faster for smaller values

of γ. This behavior is consistent with the behavior of the Mittag–Leffler function.

Figure 3.8: A comparison of the exact solution and the numerical solution for Equation (3.148)

at times t = 0.25, 0.5, 0.75, and 1.0 in the case γ = 0.5 and ∆t = 10−4.

Figure 3.9: A comparison of the exact solution and the numerical solution present at the mid

point x = 0.5 for Equation (3.148) with γ = 0.5 and time step ∆t = 10−4.
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(a) (b)

Figure 3.10: The numerical solution of Equation (3.148), using the IMC1 scheme, shown in

the case of the fractional exponent (a) γ = 0.1, and (b) γ = 0.5 on the domain 0 ≤ t ≤ 1, and

0 ≤ x ≤ 1 with ∆t = 10−4.

(a) (b)

Figure 3.11: The numerical solution of Equation (3.148), using the IMC1 scheme, shown in

the case of the fractional exponent (a) γ = 0.9, and (b) γ = 1 on the domain 0 ≤ t ≤ 1, and

0 ≤ x ≤ 1 with ∆t = 10−4.

Table 3.5: Numerical accuracy in ∆t and ∆x applied to Example 3.7.3 with γ = 0.5.

O(∆t) O(∆x)

∆t e∞(∆t,∆x) R2 ∆x e∞(∆t,∆x) R1

1/1000 0.11e–00 – 1/2 0.43e–00 –

1/2000 0.81e–01 0.5 1/4 0.13e–01 1.8

1/4000 0.57e–01 0.5 1/8 0.46e–02 1.5

1/8000 0.40e–01 0.5 1/16 0.25e–02 0.8

1/16000 0.28e–01 0.5 1/32 0.20e–02 0.3
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Table 3.6: Numerical accuracy in ∆t and ∆x applied to Example 3.7.3 with γ = 1.

O(∆t) O(∆x)

∆t e∞(∆t,∆x) R2 ∆x e∞(∆t,∆x) R1

1/1000 0.44e–03 – 1/2 0.17e–01 –

1/2000 0.22e–03 1.0 1/4 0.45e–02 1.9

1/4000 0.11e–03 1.0 1/8 0.12e–02 2.0

1/8000 0.55e–04 1.0 1/16 0.29e–03 2.0

1/16000 0.28 e–04 1.0 1/32 0.76e–04 2.0

3.8 Conclusion

In this chapter, we constructed the implicit method, IMC1, for the solution of the frac-

tional subdiffusion equation, where the C1 scheme was used to approximate the fractional

derivative. We have shown that the unconditional stability of the proposed method by

using Von Neumann stability analysis. The order of convergence of the method is first–

order in time and second–order in space. The numerical experiments have verified these

results, where the known solution can be expanded as a Taylor series in time around

t = 0.



Chapter 4

The Dufort–Frankel Method

4.1 Introduction

The Du Fort–Frankel method is an alternative approximation method, in which the value

at the central grid point uji at time step j, in the centred–finite difference scheme for the

second derivative, is replaced with the average of uj+1
i and uj−1

i . Al-Shibani et al. (2013)

applied the compact Dufort–Frankel method to solve the time-fractional diffusion equation

given in Equation (1.44), in which the fractional derivative was defined by the Caputo

derivative and the Grünwald-Letnikov approximation was applied to approximate the

fractional derivative. Liao et al. (2014) developed the explicit Dufort–Frankel method for

a fractional subdiffusion equation, where the fractional derivative was defined as Jumarie’s

modified Riemann–Liouville derivative (Jumarie 2006) given by Equation (1.46).

In this chapter, the Dufort–Frankel method is developed for the fractional subdiffusion

equation with the inclusion of a source term f(x, t), given by Equation (1.15), with

Kγ = 0, which we repeat here as

∂u(x, t)

∂t
= D

∂1−γ

∂t1−γ

(
∂2u(x, t)

∂x2

)
+ f(x, t), (4.1)

along with the initial and boundary conditions

u(x, 0) = g(x), 0 ≤ x ≤ L, (4.2)

u(0, t) = ϕ1(t) and u(L, t) = ϕ2(t), 0 ≤ t ≤ T, (4.3)
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where D > 0, 0 < γ ≤ 1 and f(x, t) is a given source function. In this chapter, we suppose

that u(x, t) ∈ U(Ω) is the exact solution for the fractional subdiffusion equation, where

Ω = {(x, t)|0 ≤ x ≤ L, 0 ≤ t ≤ T} , (4.4)

and

U(Ω) =

{
u(x, t)

∣∣∣∣∂4u(x, t)

∂x4
,
∂2u(x, t)

∂x2∂t
,
∂2u(x, t)

∂t2
∈ C(Ω)

}
. (4.5)

This scheme is applied to the fractional partial differential equation where the fractional

derivative is given by the Riemann–Liouville definition, instead of the Caputo definition

used by Al-Shibani et al. (2013).

To find the Dufort–Frankel scheme for Equation (4.1) we need to approximate the second

order spatial derivative and the first order time derivative. The second order spatial

derivative can be discretised using the Dufort–Frankel scheme as

∂2u (xi, tj)

∂x2
≈
uji+1 − u

j+1
i − uj−1

i + uji−1

∆x2 . (4.6)

The time derivative on the left of Equation (4.1) can be approximated using the backward

difference given by Equation (3.9) as

∂u (xi, tj)

∂t
≈
uji − u

j−1
i

∆t
. (4.7)

In the next section we develop the numerical method and in later sections we will inves-

tigate the stability, convergence and the accuracy of the numerical method and provide

examples of its use.

4.2 Dufort–Frankel Method with the L1 Scheme: DFL1

Scheme

In this section, we describe the derivation of the Dufort–Frankel method using the L1

approximation in Equation (2.12) to evaluate the fractional derivative of order 1 − γ at

time tj = j∆t. In evaluating the L1 fractional derivative approximation of the second

order spatial derivative, we use the centred difference approximation in Equation (3.6) at
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t = 0 and t = tj and the approximation in Equation (4.6) for all other times. Together

with the approximation in Equation (4.7), we then have the scheme

uji − u
j−1
i

∆t
=

D∆tγ−1

∆x2Γ(1 + γ)

{
βj(γ)

(
u0
i+1 − 2u0

i + u0
i−1

)
+
(
uji+1 − 2uji + uji−1

)
+

j−1∑
k=1

µj−k(γ)
(
uki+1 − uk+1

i − uk−1
i + uki−1

)}
+ f ji , (4.8)

where uji is the numerical approximation of the solution U ji = u(xi, tj) at the discrete grid

point (xi, tj), ∆x is the spatial grid-step size, ∆t is the time-step size and f ji = f(xi, tj)

is the numerical approximation of the source term. The weights βj(γ) and µj(γ) in

Equation (4.8) are defined by

βj(γ) = γjγ−1 − [jγ − (j − 1)γ ] , (4.9)

and

µj(γ) = (j + 1)γ − 2jγ + (j − 1)γ , (4.10)

and the term σ is defined by

σ =
D∆tγ

∆x2Γ(1 + γ)
. (4.11)

We denote this approximation, in Equations (4.8) – (4.11), as the DFL1 scheme. For

each grid point i and time step j, the approximations of the second derivative need to

be stored for the summation in Equation (4.8). The evaluation of the summation in the

Equation (4.8) is a major contributor to the computational cost that increases with each

time step.

We consider the following lemma which will use later to show the stability of our numerical

method.

Lemma 4.2.1. The coefficients βj(γ) and µj(γ) are given in Equations (4.9) and (4.10)

respectively for j ≥ 1, then βj(γ) and µj(γ) satisfy the following:

1. βj(γ) < 0, where j = 1, 2, ...,

2. µj(γ) < 0, where j = 1, 2, ....
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Proof. By the result in Appendix B.10, the first result is true, that is βj(γ) < 0.

To show the second result, we can rewrite µj(γ) as

µj(γ) = aj+1 − aj , (4.12)

where

aj = jγ − (j − 1)γ , (4.13)

then by Lemma 3.5.1 we have aj+1 < aj . Then we obtain the result µj−k < 0.

Hence the results (1) and (2) hold for 0 < γ < 1.

4.3 The Accuracy of the Dufort–Frankel Method

In this section we consider the accuracy of the numerical scheme the Dufort–Frankel

method in Equation (4.8). We let

δ2
xu

j
i =

uji+1 − 2uji + uji−1

∆x2
, (4.14)

and then rewrite Equation (4.8), noting µj−k(γ) = aj−k+1 − aj−k, as

uji − u
j−1
i

∆t
=
D∆tγ−1

Γ(1 + γ)

{
βjδ

2
xu

0
i + δ2

xu
j
i +

j−1∑
k=1

(aj−k+1 − aj−k) δ2
xu

k
i

+

j−1∑
k=1

(aj−k+1 − aj−k)

(
2uki − u

k+1
i − uk−1

i

∆x2

)}
+ f ji . (4.15)

Identifying the first term on the right hand side of Equation (4.15) as the L1 approxima-

tion, Equation (2.12), with u(t) replaced by δ2
xui(t), we then have

uji − u
j−1
i

∆t
= D

[
∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j
i,L1

+ f ji

+
D∆tγ−1

∆x2Γ(1 + γ)

j−1∑
k=1

[aj−k+1 − aj−k]
(

2uki − uk+1
i − uk−1

i

)
. (4.16)

Taking the Taylor series expansion around the point xi = i∆x and tj = j∆t in time, we

then have

U ji − U
j−1
i

∆t
≈
[
∂U

∂t

∣∣∣∣j
i

+
∆t

2!

[
∂2U

∂t2

∣∣∣∣j
i

+O(∆t2), (4.17)



4.3 The Accuracy of the Dufort–Frankel Method 181

U j+1
i ≈ U ji + ∆t

[
∂U

∂t

∣∣∣∣j
i

+
∆t2

2!

[
∂2U

∂t2

∣∣∣∣j
i

+
∆t3

3!

[
∂3U

∂t3

∣∣∣∣j
i

+O(∆t4), (4.18)

and

U j−1
i ≈ U ji −∆t

[
∂U

∂t

∣∣∣∣j
i

+
∆t2

2!

[
∂2U

∂t2

∣∣∣∣j
i

− ∆t3

3!

[
∂3U

∂t3

∣∣∣∣j
i

+O(∆t4), (4.19)

then we have

2U ji − U
j+1
i − U j−1

i = −2

([
∆t2

2!

∂2U

∂t2

∣∣∣∣j
i

+
∆t4

4!

[
∂4U

∂t4

∣∣∣∣j
i

+O(∆t6)

)
. (4.20)

Likewise expanding around the point xi = i∆x and tj = j∆t gives

δ2
xU

j
i ≈

[
∂2U

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4U

∂x4

∣∣∣∣j
i

+O(∆x4). (4.21)

Using Equations (4.17), (4.20), and (4.21) in Equation (4.16)[
∂U

∂t

∣∣∣∣j
i

+
∆t

2!

[
∂2U

∂t2

∣∣∣∣j
i

+O(∆t3) =
∂1−γ

∂t1−γ

([
∂2U

∂x2

∣∣∣∣j
i,L1

+
∆x2

12

[
∂4U

∂x4

∣∣∣∣j
i,L1

+O(∆x6)

)
+ f ji

− 2D∆tγ−1

∆x2Γ(1 + γ)

j−1∑
k=1

(aj−k+1 − aj−k)

(
∆t2

2!

[
∂2U

∂t2

∣∣∣∣k
i

+
∆t4

4!

[
∂4U

∂t4

∣∣∣∣k
i

+O(∆t6)

)
, (4.22)

and simplifying gives[
∂U

∂t

∣∣∣∣j
i

+O(∆t) =

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i,L1

+
∆x2

12

[
∂1−γM(t)

∂t1−γ

∣∣∣∣j
i,L1

+O(∆x6) + f ji

− 2D∆tγ−1

∆x2Γ(1 + γ)

j−1∑
k=1

[aj−k+1 − aj−k]
[

∆t2

2!

∂2U

∂t2
+

∆t4

4!

∂4U

∂t4
+O(∆t6)

∣∣∣∣k
i

, (4.23)

where

M(t) = max
(i−1)∆x≤x≤(i+1)∆x

[
∂4U

∂x4

]
. (4.24)

The order of the last term in Equation (4.23) is given by

2D∆tγ−1

∆x2Γ(1 + γ)

j−1∑
k=1

(aj−k+1 − aj−k)

(
∆t2

2!

[
∂2U

∂t2

∣∣∣∣k
i

+
∆t4

4!

[
∂4U

∂t4

∣∣∣∣k
i

+O(∆t6)

)

=
2D∆tγ−1

∆x2Γ(1 + γ)

j−1∑
k=1

(aj−k+1 − aj−k)O(∆t2)

= O

(
∆t1+γ

∆x2

)
. (4.25)

Adding and subtracting the exact fractional derivative, we then find[
∂U

∂t

∣∣∣∣j
i

=

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

+ f ji +O(∆t) +O(∆x2) +O

(
∆t1+γ

∆x2

)
−

{[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i,L1

}
. (4.26)
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By Equation (2.48) the term[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i,L1

(4.27)

is O(∆t1+γ) and so we obtain the truncation error for Equation (4.16) as

τi,j = O(∆t) +O(∆x2) +O

(
∆t1+γ

∆x2

)
. (4.28)

The error term O
(

∆t1+γ

∆x2

)
gives the following consistency condition

∆t1+γ

∆x2
→ 0, as ∆x→ 0 and ∆t→ 0. (4.29)

The numerical approximation for the fractional diffusion equation is consistent, if the

truncation error approaches zero as ∆t1+γ

∆x2 → 0. The proposed scheme, Equation (4.8),

is similar to the original Du Fort–Frankel scheme. That is why we had to use a small

∆t1+γ/∆x2 in order to keep the numerical solution stable. The impact of the consistency

problem of the Du Fort–Frankel method can be seen in the case of the standard diffusion

equation. When ∆t = ∆x then the solution converges to the wave equation, but if

∆t
∆x → 0, i.e consistency influences a restriction on ∆t in relation to ∆x, then the solution

converges to the diffusion equation (Gottlieb & Gustafsson 1976).

4.4 Stability Analysis

In this section, we investigate the stability of the Dufort–Frankel method by using stan-

dard Von Neumann stability analysis. Using a similar approach, as in Section 3.5 (Chap-

ter 3), we let U ji be the exact solution of the Equation (4.1) and satisfies Equation (4.8).

The error is then given by

εji = U ji − u
j
i (4.30)

and so the error satisfies the equation

εji = εj−1
i + σβj

(
ε0i+1 − 2ε0i + ε0i−1

)
+ σ

(
εji+1 − 2εji + εji−1

)
+ σ

j−1∑
k=1

[aj−k+1 − aj−k]
(
εki+1 − εk+1

i − εk−1
i + εki−1

)
, (4.31)

where the coefficient σ, βj(γ) and aj were defined previously in Equations (4.9), (4.11)

and (4.13) respectively. In Equation (4.31) we set the truncation error to zero, as in
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stability analysis the truncation error is not required, but later in Section 4.5 we include

the truncation error to show the convergence of the numerical method.

To investigate the stability by Von Neumann stability analysis, similar to Chapter 3 we

let εji = ζje
i′qi∆x, where i′ is the imaginary number,

√
−1, q is a real spatial wave number

and ei
′q∆x is defined in Equation (3.36).

Now using Equation (3.36) in Equation (4.31) gives

ζje
i′qi∆x = ζj−1e

i′qi∆x + σβj

(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζ0 (4.32)

+ σ
(
ei
′q(i+1)∆x − 2ei

′qi∆x + ei
′q(i−1)∆x

)
ζj

+ σ

j−1∑
r=1

[aj−r+1 − aj−r]
(
ζre

i′q(i+1)∆x − (ζr+1 + ζr−1)ei
′qi∆x + ζre

i′q(i−1)∆x
)
,

which simplifies to

ζj = ζj−1 + σβj

(
ei
′q∆x − 2 + e−i

′q∆x
)
ζ0 + σ

(
ei
′q∆x − 2 + e−i

′q∆x
)
ζj

+ σ

j−1∑
r=1

[aj−r+1 − aj−r]
(
ζr

(
ei
′q∆x + e−i

′q∆x
)
− (ζr+1 + ζr−1)

)
. (4.33)

Noting

ei
′q∆x − 2 + e−i

′q∆x = −2 (1− cos(q∆x)) = −4 sin2

(
q∆x

2

)
, (4.34)

ei
′q∆x + e−i

′q∆x = 2 cos(q∆x) = 2− 4 sin2

(
q∆x

2

)
, (4.35)

and letting

Vq = 4 sin2

(
q∆x

2

)
, (4.36)

where 0 ≤ Vq ≤ 4, we then have

(1 + Vqσ)ζj = ζj−1 − Vqσβjζ0 + σ

j−1∑
r=1

[aj−r+1 − aj−r] (ζr (2− Vq)− (ζr+1 + ζr−1)) ,

(4.37)

where 0 ≤ Vqσ <∞.
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For j ≥ 2, Equation (4.37) is then given by

ζj =
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2γ − 2)(2− Vq)σ)ζj−1 − Vqσβjζ0 − (2γ − 2)σζj−2

+σ

j−2∑
r=1

[aj−r+1 − aj−r] (ζr (2− Vq)− (ζr+1 + ζr−1))

}

=
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2γ − 2)(2− Vq)σ)ζj−1 − Vqσβjζ0 − (2γ − 2)σζj−2

+σ(2− Vq)
j−2∑
r=1

[aj−r+1 − aj−r] ζr − σ
j−2∑
r=1

[aj−r+1 − aj−r] (ζr+1 + ζr−1)

}
. (4.38)

In the following proposition we prove the stability of the Dufort–Frankel scheme given in

Equation (4.8).

Proposition 4.4.1. Let ζj , where j = 1, 2, ...,M , be the solutions of Equation (4.39)

then

|ζj | ≤ |ζ0| , (4.39)

if 2 ≤ Vq ≤ 4 and 0 < γ ≤ 1.

Proof. We use mathematical induction method to prove the relation in Equation (4.39).

We assume ζ0 > 0 in this analysis. In the case j = 1, Equation (4.37) gives

(1 + Vqσ)ζ1 = ζ0 − Vqσβ1(γ)ζ0. (4.40)

Noting β1(γ) = γ − 1, then Equation (4.40) becomes

ζ1 =

(
1− Vqσγ

1 + Vqσ

)
ζ0. (4.41)

Since the second term is positive, we find ζ1 is bounded above by ζ0, that is

ζ1 =

(
1− Vqσγ

1 + Vqσ

)
ζ0 ≤ ζ0. (4.42)

For 0 ≤ Vqσ <∞, since the term

0 ≤ Vqσγ

1 + Vqσ
≤ γ, (4.43)

then

0 ≥ − Vqσγ

1 + Vqσ
≥ −γ, (4.44)

we then have

1 ≥ 1− Vqσγ

1 + Vqσ
≥ 1− γ ≥ 0. (4.45)
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We then conclude that

ζ1 =

(
1− Vqσγ

1 + Vqσ

)
ζ0 ≥ 0 ≥ −ζ0, (4.46)

and so

−ζ0 ≤ ζ1 ≤ ζ0, (4.47)

or

|ζ1| < |ζ0|. (4.48)

Hence Equation (4.39) is true for j = 1.

We now assume that

−ζ0 ≤ ζn ≤ ζ0, where n = 1, 2, ..., k, (4.49)

and then need to show that

−ζ0 ≤ ζk+1 ≤ ζ0. (4.50)

From Equation (4.38) we have

ζk+1 =
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2− 2γ)(Vq − 2)σ)ζk + Vqσ(−βk+1(γ))ζ0 + (2− 2γ)σζk−1

+σ(Vq − 2)

k−1∑
r=1

[ak−r+1 − ak−r+2] ζr + σ

k−1∑
r=1

[ak−r+1 − ak−r+2] (ζr+1 + ζr−1)

}
. (4.51)

From Lemma 4.2.1 we have −βj(γ) > 0, and from Lemma 3.5.1 we have aj − aj+1 > 0,

and the term 2− 2γ > 0. Also for 2 ≤ Vq ≤ 4 the terms satisfies (Vq − 2) ≥ 0,

1

1 + (Vq + 2γ − 2)σ
> 0, (4.52)

and

1 + (2− 2γ)(Vq − 2)σ > 0. (4.53)

Equation (4.51) then becomes

ζk+1 ≤
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2− 2γ)(Vq − 2)σ) + Vqσ(−βk+1(γ)) + (2− 2γ)σ

+σ(Vq − 2)
k−1∑
r=1

[ak−r+1 − ak−r+2] + 2σ
k−1∑
r=1

[ak−r+1 − ak−r+2]

}
ζ0. (4.54)

Now evaluating the summation in Equation (4.54), gives

k−1∑
r=1

[ak−r+1 − ak−r+2] =

k−1∑
r=1

ak−r+1 −
k−2∑
r=0

ak−r+1 = a2 − ak+1, (4.55)
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where a2 = 2γ − 1 and ak+1 = (k + 1)γ − kγ . Using this result in Equation (4.54), we

then obtain the inequality

ζk+1 ≤
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2− 2γ)Vqσ − 2(2− 2γ)σ) + Vqσ(ak+1 − γ(k + 1)γ−1)

+ (2− 2γ)σ + σ(Vq − 2) [a2 − ak+1] + 2σ [a2 − ak+1]

}
ζ0, (4.56)

which can be simplified to

ζk+1 ≤
(

1− Vqσγ(k + 1)γ−1

1 + (Vq + 2γ − 2)σ

)
ζ0. (4.57)

Since the second term is positive, the value of ζj+1 is bounded above by ζ0

ζk+1 ≤
(

1− Vqσγ(k + 1)γ−1

1 + (Vq + 2γ − 2)σ

)
ζ0 ≤ ζ0. (4.58)

From Equation (4.49) we have −ζ0 ≤ ζn, then Equation (4.51) becomes

ζk+1 =
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2− 2γ)(Vq − 2)σ)ζk + Vqσ(−βk+1(γ))ζ0 + (2− 2γ)σζk−1

+σ(Vq − 2)
k−1∑
r=1

[ak−r+1 − ak−r+2] ζr + σ
k−1∑
r=1

[ak−r+1 − ak−r+2] (ζr+1 + ζr−1)

}

≥ 1

1 + (Vq + 2γ − 2)σ

{
(1 + (2− 2γ)Vqσ − 2(2− 2γ)σ) + Vqσ(ak+1 − γ(k + 1)γ−1)

+ (2− 2γ)σ + σ(Vq − 2) [a2 − ak+1] + 2σ [a2 − ak+1]

}
(−ζ0). (4.59)

which can be simplified to

ζk+1 ≥ −
(

1− Vqσγ(k + 1)γ−1

1 + (Vq + 2γ − 2)σ

)
ζ0. (4.60)

Now for 2 ≤ Vq ≤ 4 we have

0 ≤ Vqσγ(k + 1)γ−1

1 + (Vq + 2γ − 2)σ
≤ 4σγ(k + 1)γ−1

1 + (2 + 2γ)σ
, (4.61)

and for 0 < γ ≤ 1 and k ≥ 0, we also have 0 ≤ (k + 1)γ−1 ≤ 1. We then have

0 <
4σγ(k + 1)γ−1

1 + (2 + 2γ)σ
≤ 4σγ

1 + (2 + 2γ)σ
, (4.62)

which gives the inequality

1 ≥ 1− 4σγ(k + 1)γ−1

1 + (2 + 2γ)σ
≥ 1− 4σγ

1 + (2 + 2γ)σ
≥ 1− 4γ

2 + 2γ
≥ 0. (4.63)

Then the bound for ζk+1 becomes

ζk+1 ≥ −
(

1− Vqσγ(k + 1)γ−1

1 + (Vq + 2γ − 2)σ

)
ζ0 ≥ −ζ0, (4.64)
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and so

−ζ0 < ζk+1 < ζ0, (4.65)

or

|ζk+1| < |ζ0|. (4.66)

Hence if 2 ≤ Vq ≤ 4 then Equation (4.39) is satisfied which means the numerical method

is stable. This method is only conditionally stable as evidenced by the results of the next

section.

4.4.1 Numerical Solution of the Recurrence Relationship

In this section, we investigate the solution of the recurrence relationship in Equation (4.37)

by direct evaluation, where 0 < γ < 1. The ratio ζj/ζ0 is plotted on a double logarithmic

scale. These results are shown in Figures 4.1 to 4.4 against j, where we have taken

j = 1, 2, ..., 100 time steps, with the value of Vq = 1, 1.5, 2 and 4. The value of σ used is

given by Equation (4.11) with ∆t = 10−2 and ∆x = 10−2.

From the results shown, for the cases of Vq = 2 and 4 in Figures 4.1 and 4.2, this method

is stable as the ratio remains less than 1. Consequently, these results suggest this method

is stable, where 2 ≤ Vq ≤ 4, as the ratio remains less than 1.

Whilst we see in Figure 4.3 for the case Vq = 1.5 and 0.5 ≤ γ ≤ 0.9 the ratio is less than

1 but for 0.1 ≤ γ < 0.5 the ratio is bigger than 1. We also note in Figure 4.4, for the case

Vq = 1 and 0.7 ≤ γ ≤ 0.9, the ratio is less than 1 but for 0.1 ≤ γ < 0.7 the ratio is bigger

than 1. We conclude that for 0 ≤ Vq < 2 this method is stable for some values of γ only.
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Figure 4.1: The value of the ratio ζj/ζ0 predicted by evaluating Equation (4.33). Results are

shown for 100 time steps, Vq = 4, and γ = 0.1, . . . , 0.9. Note the value of γ increases in the

direction of the arrow.

Figure 4.2: The value of the ratio ζj/ζ0 found from recurrence relation in Equation (4.33).

Results are shown for 100 time steps, Vq = 2, and γ = 0.1, . . . , 0.9. Note the value of γ

increases in the direction of the arrow.
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Figure 4.3: The value of the ratio ζj/ζ0 predicted by evaluating Equation (4.33). Results are

shown for 100 time steps, Vq = 1.5, and γ = 0.1, . . . , 0.9.

Figure 4.4: The value of the ratio ζj/ζ0 found from recurrence relation in Equation (4.33).

Results are shown for 100 time steps, Vq = 1, and γ = 0.1, . . . , 0.9.
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4.5 Convergence of the DFL1 Method

In this section, we consider the convergence of the DFL1 scheme. Following the approach

of Chen et al. (2010), in Equation (4.8) we let

Rji =
U ji − U

j−1
i

∆t
− D∆tγ−1

Γ(1 + γ)

{
βj(γ)δ2

xU
0
i + δ2

xU
j
i +

j−1∑
k=1

µj−k(γ)δ2
xU

k
i

}

− D∆tγ−1

∆x2Γ(1 + γ)

j−1∑
k=1

[aj−k+1 − aj−k]
(

2Uki − Uk+1
i − Uk−1

i

)
− f ji , (4.67)

where δ2
xU

j
i is as defined in Equation (4.14). Noting that

U ji − U
j−1
i

∆t
=
∂U ji
∂t

+O(∆t), (4.68)

δ2
xU

j
i

∆x2
=
∂2U ji
∂x2

+O(∆x2), (4.69)

and we also have

2U ji − U
j+1
i − U j−1

i = −2

([
∆t2

2!

∂2U

∂t2

∣∣∣∣j
i

+O(∆t4)

)
, (4.70)

and from the L1 scheme we note that[
d1−γf(t)

dt1−γ

∣∣∣∣j
L1

=
D∆tγ−1

Γ(1 + γ)

{
βj(γ)f0 + fj +

j−1∑
k=1

µj−k(γ)fk

}
. (4.71)

Now applying Equation (4.67) – (4.71), we then have

Rji =

[
∂U

∂t

∣∣∣∣j
i

−D
[
∂1−γ

∂1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

+
D∆tγ+1

∆x2Γ(1 + γ)

j−1∑
k=1

[aj−k+1 − aj−k]− f ji +O(∆t+ ∆x2)

=

[
∂U

∂t

∣∣∣∣j
i

−D
[
∂1−γ

∂1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

+
D [aj − a1]

Γ(1 + γ)

(
∆tγ+1

∆x2

)
− f ji +O(∆t+ ∆x2). (4.72)

According to the Equation (4.72), we have

Rji = O

(
∆t+ ∆x2 +

∆tγ+1

∆x2

)
, i = 1, 2, . . . , N, j = 1, 2, . . . ,M, (4.73)

since i, j are finite, there is a positive constant c1 for all i, j such that

|Rji | ≤ c1

(
∆t+ ∆x2 +

∆tγ+1

∆x2

)
. (4.74)

Let the error

Eji = U ji − u
j
i , (4.75)
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where i = 1, 2, . . . , N and j = 0, 1, 2, . . . ,M . In Equation (4.67) we have

U ji = U j−1
i +

D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xU
0
i + δ2

xU
j
i +

j−1∑
k=1

µj−k(γ)δ2
x
∗
Uki

}
+ ∆tf ji + ∆tRji ,

(4.76)

where

δ2
x
∗
U ji =

U ji+1 − U
j+1
i − U j−1

i + U ji−1

∆x2
. (4.77)

Subtracting (4.8) from (4.76) gives

Eji = Ej−1
i +

D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xE
0
i + δ2

xE
j
i +

j−1∑
k=1

µj−k(γ)δ2
x
∗
Eki

}
+ ∆tRji . (4.78)

For i = 1, 2, . . . , N using a similar grid function as given in Chapter 3, Section 3.6, by

Equations (3.107) and (3.108) respectively, and then Eji and Rji can be expanded in

Fourier series as in Equations (3.109) and (3.110). Again the Parseval identity can be

used to give Equations (3.113) and (3.114).

Now with q = 2πl/L, we assume that

Eji = ξje
i′qi∆x, (4.79)

and

Rji = ηje
i′qi∆x. (4.80)

Using Equations (4.79) and (4.80) in (4.78) gives

(1 + Vqσ)ξj = ξj−1 − Vqσβjξ0 + σ

j−1∑
l=1

[aj−l+1 − aj−l] (ξl (2− Vq)− (ξl+1 + ξl−1)) + ∆tηj ,

(4.81)

where Vq = 4 sin2(q∆x/2) ≥ 0.

For j ≥ 2, Equation (4.81) can be rewritten as

ξj =
1

1 + (Vq + 2γ − 2)σ

{
(1 + (2γ − 2)(2− Vq)σ)ξj−1 − Vqσβjξ0 − (2γ − 2)σξj−2

+σ(2− Vq)
j−2∑
r=1

[aj−r+1 − aj−r] ξr − σ
j−2∑
r=1

[aj−r+1 − aj−r] (ξr+1 + ξr−1) + ∆tηj

}
, (4.82)

where the weights aj(γ) and aj+1(γ) are given in Equation (4.13).
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Proposition 4.5.1. Let ξj be the solution of Equation (4.81). Then there exists a positive

constant c2 such that

|ξj | ≤ c2j∆t|η1|, where j = 1, 2, . . . ,M (4.83)

if 2 ≤ Vq ≤ 4 and 0 < γ ≤ 1.

Proof. From Equation (4.75), noting that E0 = 0, we then have ξ0 = ξ0(l) = 0.

From the Equations (4.74) and (3.114), we obtain

‖Rj‖2 ≤ c2

√
N∆x

(
∆t+ ∆x2 +

∆tγ+1

∆x2

)
= c2

√
L

(
∆t+ ∆x2 +

∆tγ+1

∆x2

)
, (4.84)

where j = 1, 2, . . . ,M , and by the convergence of the series on the right hand side Equa-

tion (3.114) there is a positive constant cj such that

|ηj | ≡ |ηj(l)| ≤ cj |η1| ≡ cj |η1(l)|, j = 1, 2, . . . ,M. (4.85)

We then obtain

|ηj | ≤ c2|η1(l)|, j = 1, 2, . . . ,M, (4.86)

where

c2 = max
1≤j≤M

{cj}. (4.87)

Now using the mathematical induction. In Equation (4.81) for j = 1 we have

(1 + Vqσ) ξ1 = ∆tηj , (4.88)

Equation (4.88) becomes

ξ1 =
1

1 + Vqσ
∆tη1, (4.89)

since 0 < 1
1+Vqσ

≤ 1, we obtain

|ξ1| ≤
1

1 + Vqσ
∆t|η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (4.90)

Suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k − 1. (4.91)
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For 0 < γ < 1, 2 ≤ Vq ≤ 4 and Vqσ > 0, from Equation (4.82), we have

|ξk| ≤
1

1 + (Vq + 2γ − 2)σ

{
|1 + (2γ − 2)(2− Vq)σ||ξk−1|+ | − Vqσβk||ξ0|+ (2− 2γ)σ|ξk−2|

+|σ(2− Vq)|
k−2∑
l=1

|ak−l+1 − ak−l| |ξl|+ σ

k−2∑
l=1

|ak−l − ak−l+1| (|ξl+1|+ |ξl−1|) + ∆t|ηk|

}
.

(4.92)

For 2 ≤ Vq ≤ 4, σ > 0, and 0 < γ ≤ 1, then the first term in the brackets satisfies

1 + (2− 2γ)(Vq − 2)σ

1 + (Vq + 2γ − 2)σ
> 0,

and for 0 < γ ≤ 1, the term 2 − 2γ > 0. By Lemma 3.5.1 we also have aj+1 < aj .

Applying Equation (4.91) in Equation (4.92), gives

|ξk| ≤
c2∆t

1 + (Vq + 2γ − 2)σ

{
(1 + (2− 2γ)(Vq − 2)σ) (k − 1) + (2− 2γ)σ(k − 2) (4.93)

+σ(Vq − 2)

k−2∑
l=1

l [ak−l − ak−l+1] + σ

k−2∑
l=1

2l [ak−l − ak−l+1] + 1

}
|η1|

=
c2∆t

1 + (Vq + 2γ − 2)σ

{
k + (2γ − 2)σk + Vqσ

[
(2− 2γ)(k − 1) +

k−2∑
l=1

l (ak−l − ak−l+1)

]}
|η1|.

Evaluating the summation in Equation (4.92) gives

k−2∑
l=1

l [ak−l − ak−l+1] =
k−2∑
l=1

lak−l −
k−2∑
l=1

lak−l+1

= a2(k − 1)−
k∑
l=2

al. (4.94)

Using this results, where a2 = 2γ − 1, in Equation (4.92), we then have

|ξk| ≤
c2∆t

1 + (Vq + 2γ − 2)σ

{
k + (2γ − 2)σk + Vqσ

[
(2− 2γ)(k − 1) + a2(k − 1)−

k∑
l=2

al

]}
|η1|

≤ c2∆t

1 + (Vq + 2γ − 2)σ

{
k + (2γ − 2)σk + Vqσ(k − 1)− σVq

k∑
l=2

al

}
|η1|. (4.95)

We note that
∑k

l=2 al = kγ − 1 and so Equation (4.95) becomes

|ξk| ≤ c2∆tk|η1| −
c2∆tVqσk

γ

1 + (Vq + 2γ − 2)σ
|η1|

≤ c2∆tk|η1|. (4.96)

We then conclude that, for n = k

|ξk| ≤ c2∆tk|η1|. (4.97)

Hence for all n ∈ IN, and if 2 ≤ Vq ≤ 4 and 0 < γ ≤ 1, we have |ξn| ≤ c2n∆t|η1|.
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Theorem 4.5.2. Let u(x, t) ∈ U(Ω) be the exact solution for the fractional subdiffusion

equation. Then the numerical scheme (4.8) – (4.11) is convergent with the converge order

O
(

∆t+ ∆x2 + ∆tγ+1

∆x2

)
, if 2 ≤ Vq ≤ 4 and 0 < γ ≤ 1.

Proof. Using Equations (4.74), (3.113), (3.114), Proposition 4.5.1, and j∆t ≤ T , we then

have

‖Ej‖2 ≤ c2j∆t‖R1‖ ≤ c1c2j∆t
√
L

(
∆t+ ∆x2 +

∆tγ+1

∆x2

)
≤ C

(
∆t+ ∆x2 +

∆tγ+1

∆x2

)
(4.98)

where C = c1c2T
√
L.

4.6 Numerical Examples and Results

To verify the accuracy of our scheme, we compute the maximum norm of the error between

the numerical estimate, given by Equation (4.8), and the exact solution

e∞(∆t,∆x) = max
1≤i≤N

∣∣uMi − u(xi, tM )
∣∣ , (4.99)

for two examples where the exact solution is known. Numerical accuracy is tested for

various time and spatial steps sizes in the cases γ = 0.3, 0.5, 0.7, 0.9, and 1. The

estimated convergence order, R1, recorded as order of convergence in ∆x, is estimated by

computing

R1 = log2 [e∞(∆t, 2∆x)/e∞(∆t,∆x)] .

This scheme is implemented in MATLAB R2014a (see Appendix C.3) using the linsolve

subroutine to solve the system of algebraic equations.

Example 4.6.1. Consider the following fractional subdiffusion equation with a source

term

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ sin(πx)

[
2t+ π2

(
tγ−1

Γ(γ)
+

2tγ+1

Γ(2 + γ)

)]
, (4.100)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = sin(πx), u(0, t) = 0, u(L, t) = 0. (4.101)
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The exact solution of (4.100) given the conditions (4.101) is

u(x, t) =
(
1 + t2

)
sin(πx). (4.102)

Numerical accuracy of the DFL1 methods in Equation (4.8) is tested for different time

steps that is ∆t = O(∆x), ∆t = O(∆x2) and ∆t = O(∆x3) for the fractional exponent

values γ = 0.3, 0.5, 0.7, 0.9, and 1.0. In Tables 4.2 and 4.3 we see the consistency

condition, ∆t1+γ

∆x2 → 0 as ∆t → 0 and ∆x → 0, is satisfied and so the expected second

order is obtained. However when ∆t = 10−5∆x the consistency condition is not satisfied

and here the expected second order result is not obtained as seen in Table 4.1. Note

the negative order appear in Table 4.1 for γ = 0.3 and ∆x = 1/16 where the error is

very large. Also the results for γ = 0.3 where ∆x = 1/32 and ∆x2 = 1/32 could not be

obtained in Tables 4.1 and 4.2.

A comparison of the exact solution and the numerical solution at t = 0.25, 0.5, 0.75,

and 1.0 for γ = 0.9 with the time steps j = 1000, is shown in Figure 4.5. We see the

numerical method, DFL1, estimate is in agreement with the exact solution, with respect

to the consistency condition in DFL1 scheme (we have taken ∆t1+γ/∆x2 = 0.8).

Table 4.1: Numerical accuracy in ∆x of the Dufort–Frankel scheme, Equation (4.8), with

∆t = 10−5∆x and R1 is order of convergence.

γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 1.14e–02 – 1.26e–03 – 1.01e–04 – 7.22e–05 – 1.87e–06 –

1/4 3.57e–03 1.67 3.87e–04 1.70 2.92e–05 1.80 1.97e–05 1.88 4.97e–07 1.91

1/8 9.78e–04 1.87 1.09e–04 1.83 7.85e–06 1.90 5.08e–06 1.95 1.26e–07 1.98

1/16 2.27e+03 -21.1 2.93e–05 1.89 2.04e–06 1.94 1.29e–06 1.98 3.17e–08 2.00

1/32 – – 7.67e–06 1.93 5.25e–07 1.97 3.25e–07 1.99 7.92e–09 2.00
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Table 4.2: Numerical accuracy in ∆x of the Dufort–Frankel scheme, Equation (4.8), with

∆t = 10−5∆x2 and R1 is order of convergence.

γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 1.41e–02 – 1.46e–03 – 1.10e–04 – 7.40e–06 – 1.87e–06 –

1/4 4.86e–03 1.54 4.63e–04 1.65 3.21e–05 1.77 2.02e–06 1.87 4.97e–07 1.91

1/8 1.43e–03 1.77 1.29e–04 1.85 8.50e–06 1.92 5.19e–07 1.96 1.26e–07 1.98

1/16 4.04e–04 1.86 3.38e–05 1.93 2.17e–06 1.97 1.31e–07 1.99 3.17e–08 2.00

1/32 – – 8.66e–06 1.97 5.48e–07 1.99 3.28e–08 2.00 7.91e–09 2.00

Table 4.3: Numerical accuracy in ∆x of the Dufort–Frankel scheme, Equation (4.8), with

∆t = 10−5∆x3 and R1 is order of convergence.

γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 1.67e–02 – 1.62e–03 – 1.62e–04 – 7.53e–05 – 1.87e–05 –

1/4 5.80e–03 1.51 5.08e–04 1.67 3.35e–05 1.80 2.05e–05 1.88 4.97e–06 1.91

1/8 1.67e–03 1.79 1.37e–04 1.89 8.69e–06 1.95 5.22e–06 1.97 1.26e–06 1.98

1/16 4.46e–04 1.90 3.50e–05 1.96 2.19e–06 1.99 1.31e–06 1.99 3.17e–07 2.00

1/32 1.23e–04 1.95 8.82e–06 1.99 5.50e–07 2.00 3.28e–07 2.00 7.93e–08 2.00

Figure 4.5: A comparison of the exact solution and the numerical solution present for equa-

tion (4.100) at different time t = 1.0, 0.25, 0.5, and 0.75, for γ = 0.9 with the time steps

j = 1000, and ∆t1+γ/∆x2 = 0.8.
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Example 4.6.2. Consider the following fractional subdiffusion equation with the source

term
∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ 2ext

[
1− tγ

Γ(2 + γ)

]
, (4.103)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = 0, u(0, t) = t2, u(L, t) = et2. (4.104)

The exact solution of Equation (4.103) given the conditions (4.104) is

u(x, t) = ext2. (4.105)

Numerical accuracy of the Dufort–Frankel method is again tested for different time steps

that is ∆t = O(∆x), ∆t = O(∆x2) and ∆t = O(∆x3) for γ = 0.3, 0.5, 0.7, 0.9 and 1.0.

The results are given in Tables 4.4 and 4.6, we see the DFL1 scheme is of order one in

space when ∆t = O(∆x), of order two when ∆t = O(∆x2), and of order three when

∆t = O(∆x3).

Table 4.4: Numerical accuracy in ∆x of the Dufort–Frankel scheme, Equation (4.8), with

∆t = 10−6∆x and R1 is order of convergence.

γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 8.20e–21 – 8.24e–21 – 8.24e–21 – 8.24e–21 – 8.24e–21 –

1/4 5.27e–21 0.64 5.29e–21 0.64 5.29e–21 0.64 5.29e–21 0.64 5.29e–21 0.64

1/8 2.99e–21 0.82 3.00e–21 0.82 3.00e–21 0.82 3.00e–21 0.82 3.00e–21 0.82

1/16 1.77e–21 0.76 1.59e–21 0.91 1.60e–21 0.91 1.60e–21 0.91 1.60e–21 0.91

1/32 1.28e–21 0.46 8.20e–22 0.96 8.23e–22 0.96 8.23e–22 0.96 8.23e–22 0.96

Table 4.5: Numerical accuracy in ∆x of the Dufort–Frankel scheme, Equation (4.8), with

∆t = 10−6∆x2 and R1 is order of convergence.

γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 4.10e–21 – 4.12e–21 – 4.12e–21 – 4.12e–21 – 4.12e–21 –

1/4 1.32e–21 1.64 1.32e–21 1.64 1.32e–21 1.64 1.32e–21 1.64 1.32e–21 1.64

1/8 3.68e–22 1.84 3.75e–22 1.82 3.75e–22 1.82 3.75e–22 1.82 3.75e–22 1.82

1/16 1.00e–22 1.87 9.96e–23 1.91 9.98e–23 1.91 9.98e–23 1.91 9.98e–23 1.91

1/32 2.95e–23 1.87 2.56e–23 1.96 2.57e–23 1.96 2.57e–23 1.96 2.57e–23 1.96
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Table 4.6: Numerical accuracy in ∆x of the Dufort–Frankel scheme, Equation (4.8), with

∆t = 10−6∆x3 and R1 is order of convergence.

γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9 γ = 1.0

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 2.05e–21 – 2.06e–21 – 2.06e–21 – 2.06e–21 – 2.06e–21 –

1/4 3.29e–22 2.64 3.31e–22 2.64 3.31e–22 2.64 3.31e–22 2.64 3.31e–22 2.64

1/8 4.52e–23 2.86 4.68e–23 2.82 4.69e–23 2.82 4.69e–23 2.82 4.69e–23 2.82

1/16 5.98e–24 2.92 6.22e–24 2.91 6.23e–24 2.91 6.23e–24 2.91 6.23e–24 2.91

1/32 7.93e–25 2.91 7.98e–25 2.96 8.04e–25 2.96 8.04e–25 2.96 8.04e–25 2.96

A comparison of the exact solution and the numerical solution at t = 10−6, 7.5 × 10−7,

5×10−7, and 2.5×10−7, γ = 0.5 is shown in Figure 4.6, it is apparent that the numerical

method, DFL1, estimate is in agreement with the exact solution, with respect to the

consistency condition in DFL1 scheme, we have taken ∆t1+γ/∆x2 = 10−10.

Figure 4.6: A comparison of the exact solution and the numerical solution present for equa-

tion (4.103) at the times t1 = 10−6, t2 = 0.75× 10−6, t3 = 0.5× 10−6, and t4 = 0.25× 10−6,

with γ = 0.5 and ∆t1+γ/∆x2 = 10−10.
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4.7 Conclusion

In this chapter, we constructed an implicit method based upon the Dufort–Frankel dis-

cretisation scheme for the solution of the fractional subdiffusion equation with a source

term, where the L1 scheme was used to approximate the fractional derivative. We have

proved the stability of the DFL1 scheme by using Von Neumann stability analysis, if

2 ≤ Vq ≤ 4 but the scheme appears to be unstable if 0 ≤ Vq < 2. The DFL1 scheme is

also shown only to be conditionally consistent, that is we to ensure the ratio ∆t1+γ/∆x2

is small to be consistent with the original equation. The numerical experiments have

verified our results.

We conclude that the method that we considered in Chapter 3, IMC1 scheme, is bet-

ter than DFL1 scheme. The DFL1 method is only conditionally consistent and these

consistency problems affect the stability and the convergence of the method. We see in

Chapter 5 we will obtain a better method than the IMC1 scheme and the DFL1 scheme.



Chapter 5

Keller Box Method

5.1 Introduction

The Keller Box method is an implicit numerical scheme which is second order accurate in

both space and time for the Heat conduction equation or the Diffusion equation (Pletcher

et al. 2012)
∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (5.1)

It is sometimes referred to as the Preissman Box scheme and was developed by Keller in

1971 (Keller 1971). The idea of Keller Box method is to replace the higher derivatives by

first derivatives via the introduction of an additional variable. Following the Keller Box

approach, as in Pletcher et al. (2012), Equation (5.1) can be written as a system of first

order equations

∂u(x, t)

∂x
= v(x, t), (5.2)

and

∂u(x, t)

∂t
= D

∂v(x, t)

∂x
. (5.3)

To approximate these equations by using the central difference method at the point

x = xi− 1
2

and at the time t = tj+ 1
2
. The resulting equations are

uji − u
j
i−1

∆xi
= vj

i− 1
2

, (5.4)
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and

uj+1

i− 1
2

− uj
i− 1

2

∆tj+1
= D

v
j+ 1

2
i − vj+

1
2

i−1

∆xi
. (5.5)

The grid points used in the Keller Box scheme for Equations (5.4) and (5.5) are shown in

Figure 5.1.

Figure 5.1: The grid points used in the Keller Box method (a) shows the grid points for the

Box scheme, (b) the difference molecule for evaluation vj
i− 1

2

in equation (5.4), and (c) the

difference molecule for equation (5.5).

After replacing the values v
j+ 1

2
i and vj

i− 1
2

terms by their corresponding temporal and

spatial averages, we have

uji − u
j
i−1

∆xi
=
vji + vji−1

2
, (5.6)

and

uj+1
i + uj+1

i−1

∆tj+1
= D

vj+1
i − vj+1

i−1

∆xi
+
uji + uji−1

∆tj+1
+D

vji − v
j
i−1

∆xi
. (5.7)

The strategy of the modified method is to express v’s in the term u’s. Then the term vji−1

can be eliminated by using Equation (5.6) into Equation (5.7), becomes

uj+1
i + uj+1

i−1

∆tj+1
= 2D

vj+1
i

∆xi
− 2D

uj+1
i − uj+1

i−1

∆x2
i

+
uji + uji−1

∆tj+1
+ 2D

vji
∆xi

− 2D
uji − u

j
i−1

∆x2
i

. (5.8)

In a similar way by replacing i with i + 1 in Equations (5.6) and (5.7), we then have

equation

uj+1
i+1 + uj+1

i

∆tj+1
= 2D

uj+1
i+1 − u

j+1
i

∆x2
i+1

− 2D
vj+1
i

∆xi+1
+
uji+1 + uji

∆tj+1
+ 2D

uji+1 − u
j
i

∆x2
i+1

− 2D
vji

∆xi+1
.

(5.9)
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Multiplying Equation (5.8) by ∆xi and Equation (5.9) by ∆xi+1, then the terms vj+1
i

and vji can be eliminated. After adding the two, the resulting equations

Aiu
j+1
i+1 +Biu

j+1
i + Ciu

j+1
i−1 = Di, (5.10)

where

Ai =
∆xi+1

∆tj+1
− 2D

∆xi+1
, Ci =

∆xi
∆tj+1

− 2D

∆xi
, (5.11)

Bi =
∆xi+1

∆tj+1
+

∆xi
∆tj+1

+
2D

∆xi+1
+

2D

∆xi
, (5.12)

Di =
∆xi+1

∆tj+1
(uji+1 + uji ) +

∆xi
∆tj+1

(uji + uji−1) + 2D
uji−1 − u

j
i

∆xi
+ 2D

uji+1 − u
j
i

∆xi+1
. (5.13)

In the case of constant grid spacing ∆xi = ∆x and time spacing ∆tj = ∆t, Equa-

tions (5.10) – (5.13), after multiplying both side by ∆t/∆x, we then have(
uj+1
i+1 + 2uj+1

i + uj+1
i−1

)
− 2D∆t

∆x2

(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

)
(5.14)

=
(
uji+1 + 2uji + uji−1

)
+

2D∆t

∆x2

(
uji+1 − 2uji + uji−1

)
.

Al-Shibani (Al-Shibani et al. 2013) proposed a Keller Box method for the one dimensional

time fractional diffusion equation

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
+ f(x, t), (5.15)

where 0 < α < 1 in which the fractional derivative was replaced by a Caputo derivative,

and the Grünwald-Letnikov approximation was applied to approximate the fractional

derivative.

In this chapter we develop an alternative numerical method to Al-Shibani using the

Keller Box method for the modified version of the fractional subdiffusion equation, Equa-

tion (1.15) with the inclusion of a source term f(x, t)

∂u(x, t)

∂t
= D

∂1−γ

∂t1−γ

(
∂2u(x, t)

∂x2

)
+ f(x, t), (5.16)

and for the fractional advection-diffusion equation

∂u(x, t)

∂t
=

∂1−γ

∂t1−γ

(
D
∂2u(x, t)

∂x2
+Kγ

∂u(x, t)

∂x

)
+ f(x, t), (5.17)
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where D > 0, Kγ > 0, and 0 < γ ≤ 1. Both equations are to be solved on the finite

spatial domain 0 ≤ x ≤ L and for times 0 ≤ t ≤ T subject to the following the initial and

Dirchlet boundary conditions

u(x, 0) = g(x), 0 ≤ x ≤ L, (5.18)

u(0, t) = ϕ1(t) and u(L, t) = ϕ2(t), 0 ≤ t ≤ T. (5.19)

We suppose that u(x, t) ∈ U(Ω) is the exact solution for the fractional subdiffusion

equation and the fractional advection-diffusion equation, where

Ω = {(x, t)|0 ≤ x ≤ L, 0 ≤ t ≤ T} , (5.20)

and

U(Ω) =

{
u(x, t)

∣∣∣∣∂4u(x, t)

∂x4
,
∂3u(x, t)

∂x2∂t
,
∂2u(x, t)

∂t2
∈ C(Ω)

}
. (5.21)

This scheme is applied to the fractional case where the Riemann-Liouville definition of the

fractional derivative is used instead of Caputo definition used by Al-Shibani (Al-Shibani

et al. 2013). In addition, we use a modification of the L1 scheme (Oldham & Spanier 1974)

to approximate the fractional derivative instead of the Grünwald-Letnikov approximation

used by Al-Shibani et al. (2013). In Section 5.2, we derive the numerical solution schemes

for Equation (5.16) and in later sections we investigate the stability, convergence, and the

accuracy of these implicit numerical methods and give examples of their implementation.

In Section 5.7, we also develop the modified scheme for the fractional advection-diffusion

equation in Equation (5.17), which again is based upon the Keller Box method for the

standard diffusion equation but extended to the fractional case. We also investigate the

accuracy of this numerical method and provide examples of its application.

5.2 Derivation of the Numerical Method for the Fractional

Subdiffusion Equation

In this section, we develop an implicit numerical scheme using the Keller Box method to

spatially discretise Equation (5.16) and a modification of the L1 scheme to approximate
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the Riemann-Liouville fractional derivative. For positive integers M and N , we define

the spatial grid points, xi as {xi| 0 = x1 < x2 < x3 < · · · < xN−1 < xN = L}, denote the

spatial grid spacing as ∆xi = xi − xi−1, and the equally spaced temporal points as

tj = j∆t, for j = 0, 1, ...,M with ∆t = T/M which denotes the time step.

To approximate the fractional derivative in the following numerical method we either use

the L1 scheme (Oldham & Spanier 1974), the C2 scheme or the C3 scheme (which were

developed earlier in Chapter 2) instead of the Grünwald–Letnikov approximation used

in Al-Shibani et al. (2013). In Section 5.2.1, we develop a scheme using the C2 scheme

(KBMC2), in Section 5.2.2 we develop a scheme using the C3 scheme (KBMC3), and in

Section 5.2.3 we use the L1 scheme (KBML1).

An alternative to the Keller Box method is the Crank–Nicolson scheme; both methods

are second-order accurate in space and time. In the fractional case, a generalised Crank–

Nicolson scheme could be constructed using the C2 or C3 approximation scheme for the

fractional derivative. One advantage of the Keller Box method is that it can more easily

accommodate non-uniform spatial grid points. Another advantage of Keller Box scheme

is that it can be constructed using the L1 scheme, whilst we cannot use the Crank–

Nicolson scheme with L1 scheme. In the Crank–Nicolson method we will need to evaluate

the average of the fractional derivative on the right hand side of Equation (5.16) at the

current and previous time steps. But the L1 scheme is not bounded at t = 0 and so we

cannot take the average t = 0 and t = ∆t using the fractional derivative values.

In the KBMC2 and KBMC3 schemes, following the Keller Box approach, we approximate

Equation (5.16) at the point x = xi− 1
2

and time t = tj+ 1
2[

∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D

[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j+
1
2

i− 1
2

+ f
(
xi− 1

2
, tj+ 1

2

)
. (5.22)

First we define the first spatial derivative in Equation (5.22) by similar to the standard

diffusion case

v =
∂u

∂x
. (5.23)

We then obtain a system of two first order equations[
∂u

∂x

∣∣∣∣j
i− 1

2

= [v|j
i− 1

2

, (5.24)
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and [
∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D

[
∂1−γ

∂t1−γ

(
∂v

∂x

)∣∣∣∣j+
1
2

i− 1
2

+ f
(
xi− 1

2
, tj+ 1

2

)
. (5.25)

The grid points for Equations (5.23) and (5.25) are shown in Figure 5.1. We will discuss

the discretisation of the fractional partial differential equations using the Keller Box

method in the next sections.

5.2.1 Keller Box Method with the C2 Scheme: the KBMC2 Scheme

In this section, the numerical scheme for solving Equation (5.16) will be developed using

the Keller Box method combined with the C2 approximation scheme for the fractional

derivative given earlier in Equation (2.75) in Chapter 2, with p = 1− γ, which we repeat

here as[
d1−γu(t)

dt1−γ

∣∣∣∣j+
1
2

C2

=
∆tγ−1

Γ(1 + γ)

{
β̃j(γ)u(0) + 2

(
1

2

)γ (
u
(
tj+ 1

2

)
− u (tj)

)
(5.26)

+

j∑
k=1

µ̃j−k(γ) [u (tk)− u (tk−1)]

}
,

with the weights

β̃j(γ) = γ

(
j +

1

2

)γ−1

, (5.27)

and

µ̃j(γ) =

(
j +

3

2

)γ
−
(
j +

1

2

)γ
. (5.28)

We will refer to this scheme as the KBMC2 scheme. We now use Equation (5.26) to

approximate the fractional derivative in Equation (5.25) to give[
∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

=
D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)

[
∂v

∂x

∣∣∣∣0
i− 1

2

+ 2

(
1

2

)γ ([∂v
∂x

∣∣∣∣j+ 1
2

i− 1
2

−
[
∂v

∂x

∣∣∣∣j
i− 1

2

)
(5.29)

+

j∑
k=1

µ̃j−k(γ)

([
∂v

∂x

∣∣∣∣k
i− 1

2

−
[
∂v

∂x

∣∣∣∣k−1

i− 1
2

)}
+ [f |j+

1
2

i− 1
2

.

Now we use the centred-finite difference scheme to approximate the first order spatial

derivatives in Equations (5.24) and (5.29)

vj+1

i− 1
2

=

[
∂u

∂x

∣∣∣∣j+1

i− 1
2

≈
uj+1
i − uj+1

i−1

∆xi
, (5.30)
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and [
∂v

∂x

∣∣∣∣j
i− 1

2

≈
vji − v

j
i−1

∆xi
. (5.31)

We also use a centred-finite difference for the first order time derivative in Equation (5.25)

[
∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

≈
uj+1

i− 1
2

− uj
i− 1

2

∆t
. (5.32)

Using these approximations in Equations (5.24) and (5.25) gives

uj+1
i − uj+1

i−1

∆xi
= [v|j+1

i− 1
2

, (5.33)

and

uj+1

i− 1
2

− uj
i− 1

2

∆t
=
D∆tγ−1

Γ(1 + γ)

β̃j(γ)

(
v0
i − v0

i−1

∆xi

)
+ 2

(
1

2

)γvj+ 1
2

i − vj+
1
2

i−1

∆xi

 (5.34)

−2

(
1

2

)γ (vji − vji−1

∆xi

)
+

j∑
k=1

µ̃j−k(γ)

(
vki − vki−1

∆xi
−
vk−1
i − vk−1

i−1

∆xi

)}
+ [f |j+

1
2

i− 1
2

.

Now replacing the values v
j+ 1

2
i and vj

i− 1
2

terms, in Equations (5.33) and (5.34), by their

corresponding temporal and spatial averages

v
j+ 1

2
i =

vji + vj+1
i

2
, and vj

i− 1
2

=
vji + vji−1

2
, (5.35)

we then have

uj+1
i − uj+1

i−1

∆xi
=
vj+1
i + vj+1

i−1

2
, (5.36)

and

uj+1
i + uj+1

i−1

2∆t
−
uji + uji−1

2∆t
(5.37)

=
D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
v0
i − v0

i−1

)
+ 2

(
1

2

)γ (vji + vj+1
i

2
−
vji−1 + vj+1

i−1

2

)

−2

(
1

2

)γ (
vji − v

j
i−1

)
+

j∑
k=1

µ̃j−k(γ)
(
vki − vki−1 −

(
vk−1
i − vk−1

i−1

))}
+ [f |j+

1
2

i− 1
2

.

Equation (5.37) can then be simplified to

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
v0
i − v0

i−1

)
+

(
1

2

)γ [(
vj+1
i − vj+1

i−1

)
−
(
vji − v

j
i−1

)]
+

j∑
k=1

µ̃j−k(γ)
[
vki − vki−1 −

(
vk−1
i − vk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

. (5.38)
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Using Equation (5.36) we have

vji−1 =
2

∆xi

(
uji − u

j
i−1

)
− vji , (5.39)

which, when combined with Equation (5.38), gives an equation between uji and vji

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

2D∆tγ−1

∆xiΓ(1 + γ)

{
− β̃j(γ)

∆xi

(
u0
i − u0

i−1

)
+ β̃jv

0
i (5.40)

− 1

∆xi

(
1

2

)γ (
uj+1
i − uj+1

i−1

)
+

(
1

2

)γ
vj+1
i +

1

∆xi

(
1

2

)γ (
uji − u

j
i−1

)
−
(

1

2

)γ
vji

− 1

∆xi

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 −

(
uk−1
i − uk−1

i−1

)]
+

j∑
k=1

µ̃j−k(γ)
(
vki − vk−1

i

)}
+ [f |j+

1
2

i− 1
2

.

In a similar manner, by replacing i with i+ 1 in Equations (5.36) and (5.37), we have the

equations

uj+1
i+1 − u

j+1
i

∆xi+1
=
vj+1
i+1 + vj+1

i

2
, (5.41)

and

uj+1
i+1 + uj+1

i

2∆t
−
uji+1 + uji

2∆t
(5.42)

=
D∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

(
v0
i+1 − v0

i

)
+ 2

(
1

2

)γ (vji+1 + vj+1
i+1

2
−
vji + vj+1

i

2

)

−2

(
1

2

)γ (
vji+1 − v

j
i

)
+

j∑
k=1

µ̃j−k(γ)
(
vki+1 − vki −

(
vk−1
i+1 − v

k−1
i

))}
+ [f |j+

1
2

i+ 1
2

.

As before we solve Equation (5.41) to find vji+1

vji+1 =
2

∆xi+1

(
uji+1 − u

j
i

)
− vji , (5.43)

and use this result in Equation (5.42) to give a second equation between uji and vji

uj+1
i+1 + uj+1

i

2∆t
=
uji+1 + uji

2∆t
+

2D∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

∆xi+1

(
u0
i+1 − u0

i

)
− β̃j(γ)v0

i (5.44)

+
1

∆xi+1

(
1

2

)γ (
uj+1
i+1 − u

j+1
i

)
−
(

1

2

)γ
vj+1
i − 1

∆xi+1

(
1

2

)γ (
uji+1 − u

j
i

)
+

(
1

2

)γ
vji

+
1

∆xi+1

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]
−

j∑
k=1

µ̃j−k(γ)
(
vki − vk−1

i

)}
+ [f |j+

1
2

i+ 1
2

.
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Now multiplying Equation (5.40) by ∆xi and Equation (5.44) by ∆xi+1 and then adding

the two, we obtain the equation

∆xi
2∆t

(
uj+1
i + uj+1

i−1

)
+

∆xi+1

2∆t

(
uj+1
i+1 + uj+1

i

)
(5.45)

=
∆xi
2∆t

(
uji + uji−1

)
+

∆xi+1

2∆t

(
uji+1 + uji

)
+

2D∆tγ−1

Γ(1 + γ)

{
− β̃j(γ)

∆xi

(
u0
i − u0

i−1

)
+ β̃j(γ)v0

i

− 1

∆xi

(
1

2

)γ (
uj+1
i − uj+1

i−1

)
+

(
1

2

)γ
vj+1
i +

1

∆xi

(
1

2

)γ (
uji − u

j
i−1

)
−
(

1

2

)γ
vji

− 1

∆xi

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 − (uk−1

i − uk−1
i−1 )

]
+

j∑
k=1

µ̃j−k(γ)
(
vki − vk−1

i

)}
+ ∆xi [f |j+

1
2

i− 1
2

+
2D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)

∆xi+1

(
u0
i+1 − u0

i

)
− β̃j(γ)v0

i +
1

∆xi+1

(
1

2

)γ (
uj+1
i+1 − u

j+1
i

)
−
(

1

2

)γ
vj+1
i

− 1

∆xi+1

(
1

2

)γ (
uji+1 − u

j
i

)
+

(
1

2

)γ
vji −

j∑
k=1

µ̃j−k(γ)
(
vki − vk−1

i

)

+
1

∆xi+1

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}
+ ∆xi+1 [f |j+

1
2

i+ 1
2

.

This equation can then be simplified to give the equation for uji at each grid point xi and

time step tj

∆xi
2∆t

(
uj+1
i + uj+1

i−1

)
+

∆xi+1

2∆t

(
uj+1
i+1 + uj+1

i

)
(5.46)

=
∆xi
2∆t

(
uji + uji−1

)
+

∆xi+1

2∆t

(
uji+1 + uji

)
+

2D∆tγ−1

∆xiΓ(1 + γ)

{
− β̃j(γ)

(
u0
i − u0

i−1

)
−
(

1

2

)γ (
uj+1
i − uj+1

i−1

)
+

(
1

2

)γ (
uji − u

j
i−1

)
−

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 − (uk−1

i − uk−1
i−1 )

]}

+
2D∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

(
u0
i+1 − u0

i

)
+

(
1

2

)γ (
uj+1
i+1 − u

j+1
i

)
−
(

1

2

)γ (
uji+1 − u

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}
+ ∆xi [f |j+

1
2

i− 1
2

+ ∆xi+1 [f |j+
1
2

i+ 1
2

.

Equation (5.46) can also be written as a system of equations

Aiu
j+1
i+1 + Eiu

j+1
i +Biu

j+1
i−1 = Ci + ∆xi [f |j+

1
2

i− 1
2

+ ∆xi+1 [f |j+
1
2

i+ 1
2

, (5.47)

with the coefficients

Ai =
∆xi+1

2∆t
− 2D∆tγ−1

∆xi+1Γ(1 + γ)

(
1

2

)γ
, (5.48)

Bi =
∆xi
2∆t

− 2D∆tγ−1

∆xiΓ(1 + γ)

(
1

2

)γ
, (5.49)
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Ei =
∆xi + ∆xi+1

2∆t
+

2D∆tγ−1

Γ(1 + γ)

(
1

2

)γ [ 1

∆xi
+

1

∆xi+1

]
, (5.50)

and

Ci = Aiu
j
i+1 + Eiu

j
i +Biu

j
i−1

+
2D∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

(
u0
i+1 − u0

i

)
+

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}

− 2D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
u0
i − u0

i−1

)
+

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 −

(
uk−1
i − uk−1

i−1

)]}
.

(5.51)

In the case of constant grid spacing ∆xi = ∆x, Equations (5.47) – (5.51), after multiplying

both sides by 2∆t/∆x, reduces to(
uj+1
i+1 + 2uj+1

i + uj+1
i−1

)
−
(

1

2

)γ
d
(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

)
(5.52)

=
(
uji+1 + 2uji + uji−1

)
−
(

1

2

)γ
d
(
uji+1 − 2uji + uji−1

)
+ d β̃j(γ)

(
u0
i+1 − 2u0

i + u0
i−1

)
+ d

j∑
k=1

µ̃j−k(γ)
[
uki+1 − 2uki + uki−1 −

(
uk−1
i+1 − 2uk−1

i + uk−1
i−1

)]
+ 2∆t

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
,

where

d =
4D∆tγ

∆x2Γ(1 + γ)
. (5.53)

If we set γ = 1, noting β̃j(1) = 1 and µ̃j−k(1) = 1, Equation (5.52) simplifies to the

Equation (5.14), which is the Keller Box method (Pletcher et al. 2012) when applied to

the diffusion equation with a source term.

5.2.2 Keller Box Method with the C3 Scheme: the KBMC3 Scheme

In this section, we now use the C3 scheme approximation instead for the fractional deriva-

tive given in Chapter 2 by Equations (2.88) – (2.91), where p = 1− γ,[
d1−γu(t)

dt1−γ

∣∣∣∣j+
1
2

C3

=
∆tγ−1

Γ(1 + γ)

{
β̂j(γ)u(0) + 2α̂j(γ)u

(
t 1

2

)
+

j∑
k=1

µ̂j−k(γ)
[
u
(
tk+ 1

2

)
− u

(
tk− 1

2

)]}
,

(5.54)

where the weights are defined by

α̂j(γ) =

(
j +

1

2

)γ
− jγ , (5.55)
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β̂j(γ) = γ

(
j +

1

2

)γ−1

− 2α̂j , (5.56)

and

µ̂j(γ) = (j + 1)γ − jγ . (5.57)

We will refer to this method as the KBMC3 scheme. Using a similar process, as given in

the previous section, we approximate the fractional derivative in Equation (5.25) using

Equations (5.54) – (5.57), and Equation (5.25) is replaced by the equations

uji − u
j
i−1

∆xi
=
vji + vji−1

2
, (5.58)

and

uj+1
i + uj+1

i−1

2∆t
−
uji + uji−1

2∆t
=

D∆tγ−1

∆xiΓ(1 + γ)

{
β̂j(γ)

(
v0
i − v0

i−1

)
+ 2α̂j(γ)

[
v0
i + v1

i

2
−
v0
i−1 + v1

i−1

2

]
+

1

2

j∑
k=1

µ̂j−k(γ)
([
vki + vk+1

i −
(
vki−1 + vk+1

i−1

)]
−
[
vki + vk−1

i −
(
vki−1 + vk−1

i−1

)])}
+ [f |j+

1
2

i− 1
2

.

(5.59)

Equation (5.59) is then simplified to give

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

D∆tγ−1

∆xiΓ(1 + γ)

{
κj(γ)

(
v0
i − v0

i−1

)
+ α̂j(γ)

(
v1
i − v1

i−1

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[
vk+1
i − vk+1

i−1 − (vk−1
i − vk−1

i−1 )
]}

+ [f |j+
1
2

i− 1
2

, (5.60)

where the weight is defined as

κj(γ) = β̂j(γ) + α̂j(γ)

= γ

(
j +

1

2

)γ−1

−
(
j +

1

2

)γ
+ jγ . (5.61)

Solving Equation (5.58) to find vji−1 and combining with Equation (5.60) gives

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

D∆tγ−1

∆xiΓ(1 + γ)

{
κj(γ)

[
v0
i −

(
2
u0
i − u0

i−1

∆xi
− v0

i

)]
(5.62)

+ α̂j(γ)

[
v1
i −

(
2
u1
i − u1

i−1

∆xi
− v1

i

)]
+

1

2

j∑
k=1

µ̂j−k(γ)

[
vk+1
i −

(
2
uk+1
i − uk+1

i−1

∆xi
− vk+1

i

)

−

(
vk−1
i −

(
2
uk−1
i − uk−1

i−1

∆xi
− vk−1

i

))]}
+ f

j+ 1
2

i− 1
2

,
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which can be further simplified to

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

2D∆tγ−1

∆xiΓ(1 + γ)

{
κj(γ)v0

i −
κj(γ)

∆xi

(
u0
i − u0

i−1

)
(5.63)

+ α̂j(γ)v1
i −

α̂j(γ)

∆xi

(
u1
i − u1

i−1

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[
vk+1
i − vk−1

i

]

− 1

2∆xi

j∑
k=1

µ̂j−k(γ)
[(
uk+1
i − uk+1

i−1

)
−
(
uk−1
i − uk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

.

In a similar manner, by replacing i by i+ 1 in Equations (5.58) and (5.60) we then have

uji+1 − u
j
i

∆xi+1
=
vji+1 + vji

2
, (5.64)

and

uj+1
i+1 + uj+1

i

2∆t
=
uji+1 + uji

2∆t
+

D∆tγ−1

∆xi+1Γ(1 + γ)

{
κj(γ)

(
v0
i+1 − v0

i

)
(5.65)

+α̂j(γ)
(
v1
i+1 − v1

i

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[
vk+1
i+1 − v

k+1
i − (vk−1

i+1 − v
k−1
i )

]}
+ [f |j+

1
2

i+ 1
2

.

Solving Equation (5.64) to find vji+1 and then using in Equation (5.65) gives

uj+1
i+1 + uj+1

i

2∆t
=
uji+1 + uji

2∆t
+

2D∆tγ−1

∆xi+1Γ(1 + γ)

{
κj(γ)

∆xi+1

(
u0
i+1 − u0

i

)
− κj(γ)v0

i (5.66)

+
α̂j(γ)

∆xi+1

(
u1
i+1 − u1

i

)
− α̂j(γ)v1

i −
1

2

j∑
k=1

µ̂j−k(γ)
[
vk+1
i − vk−1

i

]

+
1

2∆xi+1

j∑
k=1

µ̂j−k(γ)
[
uk+1
i+1 − u

k+1
i −

(
uk−1
i+1 − u

k−1
i

)]}
+ [f |j+

1
2

i+ 1
2

.

Multiplying Equation (5.63) by ∆xi and Equation (5.66) by ∆xi+1, and then adding the

two, we then obtain the equation

∆xi
2∆t

[
uj+1
i + uj+1

i−1

]
+

∆xi+1

2∆t

[
uj+1
i+1 + uj+1

i

]
=

∆xi
2∆t

[
uji + uji−1

]
+

∆xi+1

2∆t

[
uji+1 + uji

]
+

2D∆tγ−1

Γ(1 + γ)

{
κj(γ)v0

i −
κj

∆xi

(
u0
i − u0

i−1

)
+ α̂j(γ)v1

i −
α̂j(γ)

∆xi

(
u1
i − u1

i−1

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[
vk+1
i − vk−1

i

]
− 1

2∆xi

j∑
k=1

µ̂j−k(γ)
[(
uk+1
i − uk+1

i−1

)
−
(
uk−1
i − uk−1

i−1

)]}

+
2D∆tγ−1

Γ(1 + γ)

{
κj(γ)

∆xi+1

(
u0
i+1 − u0

i

)
− κj(γ)v0

i +
α̂j(γ)

∆xi+1

(
u1
i+1 − u1

i

)
− α̂j(γ)v1

i

−1

2

j∑
k=1

µ̂j−k(γ)
[
vk+1
i − vk−1

i

]
+

1

2∆xi+1

j∑
k=1

µ̂j−k(γ)
[
uk+1
i+1 − u

k+1
i −

(
uk−1
i+1 − u

k−1
i

)]}

+ ∆xi [f |j+
1
2

i− 1
2

+ ∆xi+1 [f |j+
1
2

i+ 1
2

. (5.67)
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Multiplying both sides of Equation (5.67) by 2∆t and simplifying, we then obtain the

system of equations

∆xiu
j+1
i−1 + (∆xi + ∆xi+1)uj+1

i + ∆xi+1u
j+1
i+1 = Ci + 2∆t

[
∆xif

j+ 1
2

i− 1
2

+ ∆xi+1f
j+ 1

2

i+ 1
2

]
,

(5.68)

where

Ci = ∆xiu
j
i−1 + (∆xi + ∆xi+1)uji + ∆xi+1u

j
i+1 −

4D∆tγ−1

∆xiΓ(1 + γ)

{
κj
(
u0
i − u0

i−1

)
(5.69)

+α̂j(γ)
(
u1
i − u1

i−1

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[(
uk+1
i − uk+1

i−1

)
−
(
uk−1
i − uk−1

i−1

)]}

+
4D∆tγ−1

∆xi+1Γ(1 + γ)

{
κj(γ)

(
u0
i+1 − u0

i

)
+ α̂j(γ)

(
u1
i+1 − u1

i

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[
uk+1
i+1 − u

k+1
i −

(
uk−1
i+1 − u

k−1
i

)]}
.

In the case of constant grid spacing ∆xi = ∆x, Equations (5.68) – (5.69) after multiplying

both sides by 1/∆x, reduces to(
uj+1
i−1 + 2uj+1

i + uj+1
i+1

)
=
(
uji−1 + 2uji + uji+1

)
+ dκj(γ)

(
u0
i−1 − 2u0

i + u0
i+1

)
(5.70)

+ dα̂j(γ)
(
u1
i−1 − 2u1

i + u1
i+1

)
+
d

2

j∑
k=1

µ̂j−k(γ)
[(
uk+1
i−1 − 2uk+1

i + uk+1
i+1

)
−
(
uk−1
i−1 − 2uk−1

i + uk−1
i+1

)]
+ 2∆t

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
,

where d is as defined in Equation (5.53). In the standard diffusion case, γ = 1, we again

get a similar equation to that given by Equation (5.14) with the source term.

5.2.3 Keller Box Method with the L1 Scheme: the KBML1 Scheme

In this section, the numerical scheme for solving Equation (5.16) will be developed by

applying the Keller Box method together with the L1 scheme approximation for the

fractional derivative. We refer to this implicit method as the KBML1 scheme. Here we

approximate Equation (5.16) at the point x = xi− 1
2

and time t = tj that is

[
∂u

∂t

∣∣∣∣j
i− 1

2

= D

[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j
i− 1

2

+ f
(
xi− 1

2
, tj

)
. (5.71)
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The L1 scheme (given in Chapter 2 by Equation (2.12) for p = 1− γ), is[
d1−γu(t)

dt1−γ

∣∣∣∣j
L1

=
∆tγ−1

Γ(1 + γ)

{
βj(γ)u(0) +

j−1∑
k=0

µj−k(γ) [u(tk+1)− u(tk)]

}
, (5.72)

where the weights are defined by

βj(γ) = γjγ−1, (5.73)

and

µj(γ) = jγ − (j − 1)γ . (5.74)

Similar to Sections 5.2.1 and 5.2.2, we again define the first spatial derivative by[
∂u

∂x

∣∣∣∣j
i− 1

2

= [v|j
i− 1

2

. (5.75)

Approximating the fractional derivative using Equations (5.72) – (5.74), we then have[
∂u

∂t

∣∣∣∣j
i− 1

2

=
D∆tγ−1

Γ(1 + γ)

{
βj(γ)

[
∂v

∂x

∣∣∣∣0
i− 1

2

+

j−1∑
k=0

µj−k(γ)

([
∂v

∂x

∣∣∣∣k+1

i− 1
2

−
[
∂v

∂x

∣∣∣∣k
i− 1

2

)}
+ f j

i− 1
2

.

(5.76)

Note instead of evaluating at time t = tj+ 1
2

we evaluate the equation at the time t = tj .

Approximating the first order spatial and time derivative in Equations (5.75) and (5.76)

by using the finite difference scheme, in Chapter 3 given by Equation (3.9), and applying

the spatial averages, given by Equation (5.35), we then obtain the algebraic equations for

uji and vji

uji − u
j
i−1

∆xi
=
vji + vji−1

2
, (5.77)

and

uji + uji−1

2∆t
−
uj−1
i + uj−1

i−1

2∆t
=

D∆tγ−1

∆xiΓ(1 + γ)

{
βj(γ)

(
v0
i − v0

i−1

)
(5.78)

+

j−1∑
k=0

µj−k(γ)
[(
vk+1
i − vk+1

i−1

)
−
(
vki − vki−1

)]}
+ [f |j

i− 1
2

.

Combining Equation (5.77) with Equation (5.78), gives

uji + uji−1

2∆t
=
uj−1
i + uj−1

i−1

2∆t
+

D∆tγ−1

∆xiΓ(1 + γ)

{
βj(γ)

(
v0
i −

[
2
u0
i − u0

i−1

∆xi
− v0

i

])
(5.79)

+

j−1∑
k=0

µj−k(γ)

[(
vk+1
i −

[
2
uk+1
i − uk+1

i−1

∆xi
− vk+1

i

])
−

(
vki −

[
2
uki − uki−1

∆xi
− vki

])]}
+ [f |j

i− 1
2
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which can be simplified to

uji + uji−1

2∆t
=
uj−1
i + uj−1

i−1

2∆t
+

2D∆tγ−1

∆xiΓ(1 + γ)

{
−βj(γ)

∆xi

(
u0
i − u0

i−1

)
+ βjv

0
i (5.80)

− 1

∆xi

j−1∑
k=1

µj−k(γ)
[(
uk+1
i − uk+1

i−1

)
−
(
uki − uki−1

)]
+

j−1∑
k=0

µj−k(γ)
(
vk+1
i − vki

)}
+ [f |j

i− 1
2

.

In similar manner, by replacing i with i+ 1 in Equations (5.77) and (5.78), we have

uji+1 − u
j
i

∆xi+1
=
vji+1 + vji

2
, (5.81)

and

uji+1 + uji
2∆t

−
uj−1
i+1 + uj−1

i

2∆t
=

D∆tγ−1

∆xi+1Γ(1 + γ)

{
βj(γ)

(
v0
i+1 − v0

i

)
(5.82)

+

j−1∑
k=0

µj−k(γ)
[(
vk+1
i+1 − v

k+1
i

)
−
(
vki+1 − vki

)]}
+ [f |j

i+ 1
2

.

Combining Equation (5.81) with Equation (5.82) gives another equation involving uji and

vji

uji+1 + uji
2∆t

=
uj−1
i+1 + uj−1

i

2∆t
+

D∆tγ−1

∆xi+1Γ(1 + γ)

{
βj(γ)

([
2
u0
i+1 − u0

i

∆xi+1
− v0

i

]
− v0

i

)

+

j−1∑
k=0

µj−k(γ)

[([
2
uk+1
i+1 − u

k+1
i

∆xi+1
− vk+1

i

]
− vk+1

i

)
−

([
2
uki+1 − uki

∆xi+1
− vki

]
− vkj

)]}

+ [f |j
i+ 1

2

. (5.83)

This equation is then simplified to

uji+1 + uji
2∆t

=
uj−1
i+1 + uj−1

i

2∆t
+

2D∆tγ−1

∆xi+1Γ(1 + γ)

{
βj(γ)

∆xi+1

(
u0
i+1 − u0

i

)
− βj(γ)v0

i

+
1

∆xi+1

j−1∑
k=0

µj−k(γ)
[(
uk+1
i+1 − u

k+1
i

)
−
(
uki+1 − uki

)]
−

j−1∑
k=0

µj−k(γ)
(
vk+1
i − vki

)}

+ [f |j
i+ 1

2

. (5.84)
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Now multiplying Equation (5.80) by ∆xi and Equation (5.84) by ∆xi+1 and then adding

the two gives the equation for uji at each grid point i and time step j

∆xi
2∆t

(
uji + uji−1

)
+

∆xi+1

2∆t

(
uji+1 + uji

)
=

∆xi
2∆t

(
uj−1
i + uj−1

i−1

)
+

∆xi+1

2∆t

(
uj−1
i+1 + uj−1

i

)
− 2D∆tγ−1

∆xiΓ(1 + γ)

{
βj(γ)

(
u0
i − u0

i−1

)
+

j−1∑
k=0

µj−k(γ)
[(
uk+1
i − uk+1

i−1

)
−
(
uki − uki−1

)]}

+
2D∆tγ−1

∆xi+1Γ(1 + γ)

{
βj(γ)

(
u0
i+1 − u0

i

)
+

j−1∑
k=0

µj−k(γ)
[(
uk+1
i+1 − u

k+1
i

)
−
(
uki+1 − uki

)]}

+ ∆xi [f |j
i− 1

2

+ ∆xi+1 [f |j
i+ 1

2

. (5.85)

Multiplying both sides by 2∆t, Equation (5.85) is then given by system of equations

∆xiu
j
i−1 + (∆xi+1 + ∆xi+1)uji + ∆xi+1u

j
i+1 = Ci + 2∆t

(
∆xi+1 [f |j

i+ 1
2

+ ∆xi [f |j
i− 1

2

)
,

(5.86)

where

Ci = ∆xiu
j−1
i−1 + (∆xi+1 + ∆xi+1)uj−1

i + ∆xi+1u
j−1
i+1 (5.87)

− 4D∆tγ

∆xiΓ(1 + γ)

{
βj(γ)

(
u0
i − u0

i−1

)
+

j−1∑
k=0

µj−k(γ)
[(
uk+1
i − uk+1

i−1

)
−
(
uki − uki−1

)]}

+
4D∆tγ

∆xi+1Γ(1 + γ)

{
βj(γ)

(
u0
i+1 − u0

i

)
+

j−1∑
k=0

µj−k(γ)
[(
uk+1
i+1 − u

k+1
i

)
−
(
uki+1 − uki

)]}
.

In the case of constant grid spacing ∆xi = ∆x, Equations (5.86) and (5.87) reduce to the

equation

(uji−1 + 2uji + uji+1) = (uj−1
i+1 + 2uj−1

i + uj−1
i−1 ) + dβj(γ)(u0

i+1 − 2u0
i + u0

i−1) (5.88)

+ d

j−1∑
k=0

µj−k(γ)
[(
uk+1
i+1 − 2uk+1

i + uk+1
i−1

)
−
(
uki+1 − 2uki + uki−1

)]
+ 2∆t

(
f j
i+ 1

2

+ f j
i− 1

2

)
,

where d is as defined previously by Equation (5.53).

If we set γ = 1, Equation (5.88) reduces to(
uji+1 + 2uji + uji−1

)
− 2D∆t

∆x2

(
uji+1 − 2uji + uji−1

)
=
(
uj−1
i+1 + 2uj−1

i + uj−1
i−1

)
(5.89)

+ 2∆t
[
f
(
xi− 1

2
, tj

)
+ f

(
xi+ 1

2
, tj

)]
,

since βj(1) = 1 and µj−k(1) = 1. Equation (5.89) is the Keller Box method (Pletcher

et al. 2012) for the non–fractional diffusion equation with a source term.
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5.3 The Accuracy of the Numerical Methods

In this section, we consider the consistency and the order of accuracy of the three numer-

ical schemes KBMC2, KBMC3, and KBML1 methods given by Equations (5.52), (5.70)

and (5.88) respectively. Similar to Chapter 3, we let

δ2
xu

j
i =

uji+1 − 2uji + uji−1

∆x2
, (5.90)

to aid in the analysis of each scheme.

5.3.1 Accuracy of the KBMC2 Scheme

We now determine the truncation error of the KBMC2 scheme. First using Equa-

tion (5.90) in Equation (5.52) we then have

∆x2

4∆t

[
δ2
xu

j+1
i − δ2

xu
j
i

]
+

1

∆t

[
uj+1
i − uji

]
(5.91)

=
D∆tγ−1

Γ(1 + γ)

{(
1

2

)γ [(
δ2
xu

j+1
i − δ2

xu
j
i

)
− 2

(
δ2
xu

j+ 1
2

i − δ2
xu

j
i

)]}
+

1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
+
D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)δ2

xu
0
i + 2

(
1

2

)γ (
δ2
xu

j+ 1
2

i − δ2
xu

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
δ2
xu

k
i − δ2

xu
k−1
i

]}
.

Next we identify the term in the third line of Equation (5.91) as the C2 approximation,

Equation (5.26), with u(t) replaced by δ2
xu(t). We can then further rewrite Equation (5.91)

as

∆x2

4∆t

[
δ2
xu

j+1
i − δ2

xu
j
i

]
+

1

∆t

[
uj+1
i − uji

]
= D

[
∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j+

1
2

C2,i

+
1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
+

(
1
2

)γ
D∆tγ−1

Γ(1 + γ)

[
δ2
xu

j+1
i + δ2

xu
j
i − 2δ2

xu
j+ 1

2
i

]
. (5.92)

Adding and subtracting the exact value of the fractional derivative, Equation (5.92) then

becomes

1

∆t

[
uj+1
i − uji

]
= D

[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j+
1
2

i

+
1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
− ∆x2

4∆t

[
δ2
xu

j+1
i − δ2

xu
j
i

]
+D

[
∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j+

1
2

C2,i

−D
[
∂1−γ

∂t1−γ
∂2u

∂x2

∣∣∣∣j+
1
2

i

+

(
1

2

)γ D∆tγ−1

Γ(1 + γ)

[
δ2
xu

j+1
i + δ2

xu
j
i − 2δ2

xu
j+ 1

2
i

]
.

(5.93)
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Now taking the Taylor series expansion around the point (xi, tj), we have

δ2
xU

j
i '

[
∂2U

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4U

∂x4

∣∣∣∣j
i

+O(∆x4). (5.94)

Expanding the Taylor series around the point (xi, tj+ 1
2
), we find

1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
' f j+

1
2

i +
∆x2

8

[
∂2f

∂x2

∣∣∣∣j+
1
2

i

+O(∆x4), (5.95)

δ2
xU

j+1
i + δ2

xU
j
i − 2δ2

xU
j+ 1

2
i ' ∆t2

4

[
∂4U

∂x2∂t2

∣∣∣∣j+
1
2

i

+
∆x2∆t2

48

[
∂6U

∂x4∂t2

∣∣∣∣j+
1
2

i

+O(∆t4),

(5.96)

and

U j+1
i − U ji

∆t
'
[
∂U

∂t

∣∣∣∣j+ 1
2

i

+
∆t2

24

[
∂3U

∂t3

∣∣∣∣j+
1
2

i

+O(∆t4). (5.97)

We also have

∆x2

4∆t

[
δ2
xU

j+1
i − δ2

xU
j
i

]
' ∆x2

4

[
∂3U
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∂5U
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2

i

+O(∆t4) +O(∆x4).

(5.98)

Combining these approximations with Equation (5.93) gives[
∂U

∂t

∣∣∣∣j+ 1
2

i

= D

[
∂1−γ

∂t1−γ

(
∂2U
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)∣∣∣∣j+
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i
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) +O(∆t1+γ) +O(∆x2)
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+
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, (5.99)

where M(t) is defined by

M(t) = max
(i−1)∆x≤x≤(i+1)∆x

∣∣∣∣∂4U

∂x4

∣∣∣∣ . (5.100)

By Equation (2.149) the term[[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

C2,i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

]
(5.101)

is O(∆t1+γ), we then get the truncation error, τ
(1)
i,j , of Equation (5.52), is order 1 + γ in

time and second order in space, that is

τ
(1)
i,j = O(∆t1+γ) +O(∆x2). (5.102)



5.3 The Accuracy of the Numerical Methods 218

5.3.2 Accuracy of the KBMC3 Scheme

We now also determine the truncation error of the KBMC3 scheme. First using Equa-

tion (5.90) in Equation (5.70) we then have

∆x2

4∆t
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]
. (5.103)

Next recognising the terms on the third line in Equation (5.103) as the C3 approximation,

Equation (5.54), with u(t) replaced by δ2
xu(t), we can then rewrite Equation (5.103) as
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. (5.104)

Adding and subtracting the value of the exact fractional derivative then gives
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. (5.105)

Now taking the Taylor series expansion around the point (xi, tk) using Equations (5.94)

gives

δ2
xU

k+1
i − δ2

xU
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i ' 2∆t
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∂(δ2
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and so
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2
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Using these expansions, along with those in Equations (5.94) – (5.98) and Equation (5.96)

with j = 0, Equation (5.105) then becomes
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(5.109)
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.

We note the term
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is of order O(∆t1+γ), and the term
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)∣∣∣∣j+
1
2

i

+
D∆x2

12

[
∂1−γM(t)

∂t1−γ

∣∣∣∣j+
1
2

C3,i

,

where

M(t) = max
(i−1)∆x≤x≤(i+1)∆x

∣∣∣∣∂4U

∂x4

∣∣∣∣ . (5.113)

By Equation (2.174) we note[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

C3,i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

(5.114)
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is O(∆t1+γ) we then get the truncation error is of order 1 + γ in time and second order

in space i.e.

τ
(2)
i,j = O(∆t1+γ) +O(∆x2), (5.115)

where τ
(2)
i,j is the truncation error of Equation (5.70).

5.3.3 Accuracy of the KBML1 Scheme

Here we determine the truncation error of the KBML1 scheme. Rewriting Equation (5.88)

using Equation (5.90), we have

∆x2

4∆t

[
δ2
xu

j
i − δ

2
xu

j−1
i

]
+

1

∆t

[
uji − u

j−1
i

]
=

D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xu
0
i +

j−1∑
k=0

µj−k(γ)
(
δ2
xu

k+1
i − δ2

xu
k
i

)}
+

1

2

[
f j
i− 1

2

+ f j
i+ 1

2

]
. (5.116)

Recognising the first term in the right–hand side as the L1 approximation given by Equa-

tion (5.72) with u(t) replaced by δ2
xu(t). Equation (5.116) becomes

∆x2

4∆t

[
δ2
xu

j
i − δ

2
xu

j−1
i

]
+

1

∆t

[
uji − u

j−1
i

]
= D

[
∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j
L1,i

+
1

2

[
f j
i− 1

2

+ f j
i+ 1

2

]
.

(5.117)

Now adding and subtracting the exact fractional derivative we then have

∆x2

4∆t

[
δ2
xu

j
i − δ

2
xu

j−1
i

]
+

1

∆t

[
uji − u

j−1
i

]
(5.118)

= D

[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j
i

+D

[
∂1−γ

∂t1−γ
(
δ2
xu
)∣∣∣∣j
L1,i

−D
[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j
i

+
1

2

[
f j
i− 1

2

+ f j
i+ 1

2

]
.

Expanding the Taylor series around the point (xi, tj), we have

U ji − U
j−1
i ' ∆t

[
∂U

∂t

∣∣∣∣j
i

− ∆t2

12

[
∂2U

∂t2

∣∣∣∣j
i

+O(∆t3). (5.119)

We also have

δ2
xU

j−1
i ' δ2

xU
j
i −∆t

[
∂

∂t
(δ2
xU)

∣∣∣∣j
i

+
∆t2

12

[
∂2

∂t2
(δ2
xU)

∣∣∣∣j
i

+O(∆t3), (5.120)

and so

δ2
xU

j
i − δ

2
xU

j−1
i ' ∆t

[
∂

∂t
(δ2
xU)

∣∣∣∣j
i

− ∆t2

12

[
∂2

∂t2
(δ2
xU)

∣∣∣∣j
i

+O(∆t3). (5.121)
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Using Equations (5.94), (5.95), (5.119) and (5.121) in Equation (5.118), we then have

∆x2

4∆t

[
∆t

[
∂(δ2

xU)

∂t

∣∣∣∣j
i

+O(∆t2)

]
+

1

∆t

[
∆t

[
∂U

∂t

∣∣∣∣j
i

+O(∆t2)

]
(5.122)

= D

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

+ f ji +
1

4

∆x2

2!

[
∂2f

∂x2

∣∣∣∣j
i

+O(∆x4)

+D

[
∂1−γ

∂t1−γ

(
∂2U

∂x2
+

∆x2

12

∂4U

∂x4
+O(∆x4)

)∣∣∣∣j
L1,i

−D
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

.

This equation is then simplified to[
∂U

∂t

∣∣∣∣j
i

= D

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

+ f ji +
D∆x2

12

[
∂1−γM(t)

∂t1−γ

∣∣∣∣j
L1,i

(5.123)

+D

[[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
L1,i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

]
+O(∆x2) +O(∆t),

where

M(t) = max
(i−1)∆x≤x≤(i+1)∆x

∣∣∣∣∂4U

∂x4

∣∣∣∣ . (5.124)

By Equation (2.48) in Chapter 2 we note that the term[[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
L1,i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

]
(5.125)

is O(∆t1+γ), we then get the truncation error is first order in time and second order in

space i.e.

τ
(3)
i,j = O(∆t) +O(∆x2), (5.126)

where τ
(3)
i,j is the truncation error of Equation (5.88).

5.4 Consistency of the Numerical Methods

A numerical approximation scheme for the fractional diffusion equation is consistent, if we

can show the truncation approaches zero as ∆t→ 0 and ∆x→ 0. Let uji ≈ U
j
i = u(xi, tj)

then

lim
∆t→0
∆x→0

(uji − U
j
i ) = lim

∆t→0
∆x→0

τi,j = 0. (5.127)

From Equations (5.102), (5.115), and (5.126) we see this condition is satisfied, that is

lim
∆t→0
∆x→0

τi,j = 0. (5.128)

This means the KBMC2, KBMC3, and KBML1 numerical methods are consistent with

the original fractional partial differential equation.
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5.5 Stability Analysis of the Numerical Methods

In this section, the stability of the numerical methods in Equations (5.52), (5.70) and

(5.88) is considered by using Von Neumann stability analysis. We will discuss the stability

of each scheme in the following sections.

5.5.1 Stability Analysis of the KBMC2 Scheme

To investigate the stability by Von Neumann stability analysis, we let uji and vji be the

approximate solution of the Equations (5.36) and (5.37), and so we have(
uj+1
i − uj+1

i−1

)
=

∆xi
2

(
vj+1
i + vj+1

i−1

)
, (5.129)

and

uj+1
i + uj+1

i−1

2∆t
− D∆tγ−1

∆xiΓ(1 + γ)

(
1

2

)γ (
vj+1
i − vj+1

i−1

)
=
uji + uji−1

2∆t

+
D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
v0
i − v0

i−1

)
−
(

1

2

)γ (
vji − v

j
i−1

)
+

j∑
k=1

µ̃j−k(γ)
[
vki − vki−1 −

(
vk−1
i − vk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

. (5.130)

The errors then are given by

εji = U ji − u
j
i , and εji = V j

i − v
j
i , (5.131)

where U ji and V j
i are the exact solution of Equations (5.24) and (5.25). These errors

satisfy the equations (
εj+1
i − εj+1

i−1

)
− ∆xi

2

(
εj+1
i + εj+1

i−1

)
= 0, (5.132)

and

εj+1
i + εj+1

i−1

2∆t
− D∆tγ−1

∆xiΓ(1 + γ)

(
1

2

)γ (
εj+1
i − εj+1

i−1

)
=
εji + εji−1

2∆t

+
D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
ε0
i − ε0

i−1

)
−
(

1

2

)γ (
εji − ε

j
i−1

)
+

j∑
k=1

µ̃j−k(γ)
[
εki − εki−1 −

(
εk−1
i − εk−1

i−1

)]}
(5.133)
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with zero boundary conditions. In Equations (5.132) and (5.133) we set the truncation

error to zero, but later in the convergence section, we will use the truncation error to find

the convergence rate of the numerical method.

Let εji = ζje
i′qxi , and εji = ξje

i′qxi , where i′ is the imaginary number,
√
−1, q is a real

spatial wave number. Equations (5.132) and (5.133) can then be rewritten as(
ζj+1e

i′qxi − ζj+1e
i′q(xi−∆xi)

)
=

∆xi
2

(
ξj+1e

i′qxi + ξj+1e
i′q(xi−∆xi)

)
, (5.134)

and

1

2∆t

(
ζj+1e

i′qxi + ζj+1e
i′q(xi−∆xi)

)
− D∆tγ−1

∆xiΓ(1 + γ)

(
1

2

)γ (
ξj+1e

i′qxi − ξj+1e
i′q(xi−∆xi)

)
=

1

2∆t

(
ζje

i′qxi + ζje
i′q(xi−∆xi)

)
+

D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
ξ0e

i′qxi − ξ0e
i′q(xi−∆xi)

)
−
(

1

2

)γ (
ξje

i′qxi − ξjei
′q(xi−∆xi)

)
+

j∑
k=1

µ̃j−k(γ)
[
ξke

i′qxi − ξkei
′q(xi−∆xi)

−
(
ξk−1e

i′qxi − ξk−1e
i′q(xi−∆xi)

)]}
. (5.135)

Using Equation (5.134) in Equation (5.135), and simplifying, we obtain the recursive

equation for ζj+1

ζj+1 − ρ̂
(

1

2

)γ (1− e−i′w∆xi

1 + e−i′w∆xi

)2

ζj+1 = ζj − ρ̂
(

1

2

)γ (1− e−i′w∆xi

1 + e−i′w∆xi

)2

ζj

+ ρ̂

(
1− e−i′w∆xi

1 + e−i′w∆xi

)2

β̃j(γ)ζ0 + ρ̂

(
1− e−i′w∆xi

1 + e−i′w∆xi

)2 j∑
k=1

µ̃j−k(γ) [ζk − ζk−1] , (5.136)

where

ρ̂ =
4∆tγ

Γ(1 + γ)(∆xi)2
. (5.137)

Noting (
1− e−i′q∆xi
1 + e−i′q∆xi

)2

=
− sin2(q∆xi)

(1 + cos(q∆xi))
2 = − tan2

(
q∆xi

2

)
, (5.138)

Equation (5.136) then becomes

ζj+1 = ζj − Λq

{
β̃j(γ)ζ0 +

j∑
k=1

µ̃j−k(γ) [ζk − ζk−1]

}
. (5.139)

Here the coefficient Λq is defined by

Λq =
U̧q

1 +
(

1
2

)γ
U̧q

, (5.140)
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and U̧q is defined by

U̧q = ρ̂ tan2

(
q∆xi

2

)
, (5.141)

where 0 ≤ U̧q <∞.

When j ≥ 1, the recurrence relation in Equation (5.139) can be rewritten as

ζj+1 = [1− Λqµ̃0(γ)] ζj − Λq

{
α̃j(γ)ζ0 +

j−1∑
k=1

ω̃j−k(γ)ζk

}
, (5.142)

with the weights

α̃j(γ) = β̃j(γ)− µ̃j−1(γ), (5.143)

and

ω̃j(γ) = µ̃j(γ)− µ̃j−1(γ), (5.144)

where β̃j(γ) and µ̃j(γ) are defined earlier in Equations (5.27) and (5.28) respectively.

We consider the following lemmas which will help in showing the stability of our numerical

method.

Lemma 5.5.1. Given 0 < γ ≤ 1 and 0 ≤ U̧q < ∞ then the parameter Λq given in

Equation (5.146) is bounded by

0 ≤ Λq ≤ 2γ . (5.145)

Proof. Note Equation (5.140) can be written as

Λq = 2γ
(

1− 2γ

2γ + U̧q

)
. (5.146)

The second term 2γ/[2γ + U̧q] is always positive and it is bounded between 0 and 1 as

0 ≤ U̧q < 1. Consequently, we have the bound 0 ≤ Λq ≤ 2γ .

Lemma 5.5.2. (adapted from Zhuang et al. (2008))

Let f(x) = xγ − (x− 1)γ , where x ≥ 1, then f(x) satisfies:

1. f(x) > 0, and

2. f(x) > f(x+ 1).
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Proof. To show f(x) > 0, we have

f(x) = xγ − (x− 1)γ = xγ
[
1−

(
x− 1

x

)γ]
, (5.147)

but

0 ≤ x− 1

x
< 1, (5.148)

when x ≥ 1 and so

0 ≤
(
x− 1

x

)γ
< 1, (5.149)

or

0 < 1−
(
x− 1

x

)γ
≤ 1. (5.150)

Hence from Equation (5.147) we have 0 < f(x) ≤ xγ since xγ > 0 and so f(x) > 0.

To prove the second result, we let f1(x) = xγ and f2(x) = xγ − (x− 1)γ . We will

show the functions f1(x) and f2(x) are monotonically increasing and decreasing functions

respectively, when γ ∈ (0, 1).

Since

df1(x)

dx
= γxγ−1 =

γ

x1−γ > 0, (5.151)

we can conclude, for x ≥ 0 and 0 < γ < 1, that the function f1(x) is monotonically

increasing function in x.

Differentiating f2(x) with respect to x we find

df2(x)

dx
= γxγ−1 − γ (x− 1)γ−1 . (5.152)

Now since

x1−γ > (x− 1)1−γ ,

as f1(x) is an increasing function for 0 < γ < 1, then

1

x1−γ <
1

(x− 1)1−γ . (5.153)

Hence

df2(x)

dx
= γxγ−1 − γ (x− 1)γ−1

≤ γ

(x− 1)1−γ −
γ

(x− 1)1−γ < 0 (5.154)
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and so the function f2(x) is a monotonically decreasing function of x, for 0 < γ < 1. Now

we have, for x ≥ 1,

f(x) = xγ − (x− 1)γ > (x+ 1)γ − ((x+ 1)− 1)γ = f(x+ 1). (5.155)

Hence results (1) and (2) hold for 0 < γ < 1.

Lemma 5.5.3. Let g1(x) = γxγ−1−xγ + (x− 1)γ , and g2(x) = (x+ 1)γ − 2xγ + (x− 1)γ

where x ≥ 1 and 0 < γ < 1, then g1(x) and g2(x) satisfy the following:

1. g1(x) < 0, where x ≥ 1, and

2. g2(x) < 0, where x ≥ 1.

Proof. First apply the binomial expansion to (x− 1)γ then g1(x) becomes

g1(x) = γxγ−1 − xγ +

∞∑
k=0

 γ

n

 (−1)nxγ−n

=
∞∑
n=2

 γ

n

 (−1)nxγ−n. (5.156)

Now by rewriting the binomial coefficient, using the result in Appendix B.2, we then find

g1(x) =

∞∑
n=2

γΓ(n− γ)

n!Γ(1− γ)
(−1)2n−1xγ−n

= −
∞∑
n=2

γΓ(n− γ)

n!Γ(1− γ)
xγ−n, (5.157)

since (−1)2n−1 = −1.

For n ≥ 2 and 0 < γ ≤ 1 the term

γΓ(n− γ)

n!Γ(1− γ)
> 0,

is positive since the Gamma function is positive for positive arguments. Also the term

xγ−n > 0 is positive and so we then conclude that g1(x) < 0.

By the second result of Lemma 5.5.2

g2(x) = f(x+ 1)− f(x) < f(x)− f(x) = 0, (5.158)

then g2(x) < 0. Hence results (1) and (2) hold for 0 < γ < 1.
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Lemma 5.5.4. For 0 < γ < 1 given the weights µj(γ) = jγ − (j − 1)γ , for j ≥ 1, and

µ̃j(γ) =
(
j + 3

2

)γ − (j + 1
2

)γ
, for j ≥ 0, then µj(γ) and µ̃j(γ) satisfy:

1. µj(γ) > 0, where j ≥ 1,

2. µj(γ) > µj+1(γ), where j ≥ 1,

3. µ̃j(γ) > 0, where j ≥ 0, and

4. µ̃j(γ) > µ̃j+1(γ), where j ≥ 0.

Proof. Using results (1) and (2) from Lemma 5.5.2 with x = j, we find results (1) and

(2) above hold. Similarly setting x = j + 3
2 we find results (3) and (4) above hold from

results (1) and (2) in Lemma 5.5.2.

Lemma 5.5.5. For j ≥ 1 and 0 < γ ≤ 1 given

α̃j(γ) = γ

(
j +

1

2

)γ−1

−
(
j +

1

2

)γ
+

(
j − 1

2

)γ
,

αj(γ) = γjγ−1 − jγ + (j − 1)γ ,

ω̃j(γ) =

(
j +

3

2

)γ
− 2

(
j +

1

2

)γ
+

(
j − 1

2

)γ
,

and

ωj(γ) = (j + 1)γ − 2jγ + (j − 1)γ

then the weights αj(γ), α̃j(γ), ωj(γ) and ω̃j(γ) are negative if 0 < γ < 1 and zero

otherwise.

Proof. Setting x = j + 1
2 in results (1) and (2) of Lemma 5.5.3 we see αj(γ) < 0, and

α̃j(γ) < 0. Similarly by using Lemma 5.5.3 with x = j, we have from results (1), ω̃j(γ) < 0

and from (2) ωj(γ) < 0.

If γ = 1 we have αj(γ) = 0, α̃j(γ) = 0, ω̃j(γ) = 0 and ωj(γ) = 0.

Proposition 5.5.6. Let ζj , where j = 0, 1, 2, ...,M , be the solution of Equation (5.139),

then we have

| ζj |≤| ζ0 |, (5.159)

if 0 ≤ Λq ≤ min(1/µ̃0(γ), 2γ) and 0 < γ ≤ 1.
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Proof. We use the mathematical induction method to prove the relation in Equation (5.159).

For simplicity we assume ζ0 > 0. The case ζ0 < 0 can be handled in analogous manner

to the method below.

Consider the case j = 1 in Equation (5.139), where we have

ζ1 = ζ0 − Λqγ

(
1

2

)γ−1

ζ0

=

(
1− Λqγ

(
1

2

)γ−1
)
ζ0. (5.160)

First we note

1− Λqγ

(
1

2

)γ−1

≤ 1, (5.161)

is automatically satisfied as the second term on the left is positive and so

ζ1 =

(
1− Λqγ

(
1

2

)γ−1
)
ζ0 ≤ ζ0. (5.162)

We now consider the inequality

1− Λqγ

(
1

2

)γ−1

≥ −1, (5.163)

which is satisfied if
2γ

γ
≥ Λq.

However since 0 < γ < 1 and using Lemma 5.5.1 then Equation (5.163) is satisfied. We

then have

ζ1 =

(
1− Λqγ

(
1

2

)γ−1
)
ζ0 ≥ −ζ0. (5.164)

Hence for 0 < γ < 1,

− ζ0 ≤ ζ1 ≤ ζ0, (5.165)

or

| ζ1 | ≤ | ζ0 | (5.166)

and so Equation (5.159) is true for j = 1.

We now assume

−ζ0 ≤ ζn ≤ ζ0, for n = 1, 2, . . . , k (5.167)
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and then need to show that

−ζ0 < ζk+1 < ζ0. (5.168)

From Equation (5.142), we have

ζk+1 = [1− Λqµ̃0(γ)] ζk − Λq

{
α̃k(γ)ζ0 +

k−1∑
l=1

ω̃k−l(γ)ζl

}
. (5.169)

Note by using Lemma 5.5.5, we have −ω̃j−k(γ) > 0 and −α̃k(γ) > 0. However the sign of

the first term (1− Λqµ̃0(γ)) may be positive or negative and so we need to consider two

cases when checking the stability.

These cases are

1. (1− Λqµ̃0(γ)) ≥ 0, and 0 ≤ Λq ≤ 2γ , and

2. (1− Λqµ̃0(γ)) ≤ 0, and 0 ≤ Λq ≤ 2γ .

The range of values of Λq and γ which satisfy each case is shown in Figure 5.2.

Figure 5.2: The range of values of Λq and γ for both cases to be considered when testing the

stability of the KBMC2 scheme.

Case 1

Case 1 occurs if the first term satisfies

(1− Λqµ̃0(γ)) ≥ 0 (5.170)



5.5 Stability Analysis of the Numerical Methods 230

then we have, from Equations (5.167) and (5.169),

(1− Λqµ̃0(γ)) (−ζ0) ≤ (1− Λqµ̃0(γ)) ζk ≤ (1− Λqµ̃0(γ)) ζ0, (5.171)

Λq (−α̃k(γ)) (−ζ0) ≤ Λq (−α̃k(γ)) ζ0 ≤ Λq (−α̃k(γ)) ζ0, (5.172)

and

Λq

k−1∑
l=1

(−ω̃k−l(γ)) (−ζ0) ≤ Λq

k−1∑
l=1

(−ω̃k−l(γ)) ζl ≤ Λq

k−1∑
l=1

(−ω̃k−l(γ)) ζ0. (5.173)

Using these results, we have the expression for the upper bound for ζk+1

ζk+1 = (1− Λqµ̃0(γ)) ζk − Λq

{
α̃k(γ)ζ0 +

k−1∑
l=1

ω̃k−l(γ)ζl

}

≤

(
1− Λqµ̃0(γ) + Λq (−α̃k(γ)) + Λq

k−1∑
l=1

(−ω̃k−l(γ))

)
ζ0. (5.174)

Next we evaluate the summation, where ω̃j(γ) is given in Equation (5.144), to find

k−1∑
l=1

(−ω̃k−l(γ)) =
k−1∑
l=1

[µ̃k−l−1(γ)− µ̃k−l(γ)]

=
k−1∑
n=1

[µ̃n−1(γ)− µ̃n(γ)]

= µ̃0(γ)− µ̃k−1(γ). (5.175)

Using Equation (5.143) with the result in Equation (5.175), Equation (5.174) becomes

ζk+1 ≤

(
1− Λqγ

(
k +

1

2

)γ−1
)
ζ0. (5.176)

Since the second term, in the brackets, is positive then ζk+1 is bounded above by ζ0

ζk+1 ≤

(
1− Λqγ(

k + 1
2

)1−γ
)
ζ0 ≤ ζ0. (5.177)

Considering the lower bound we have, after using Equations (5.171) – (5.173),

ζk+1 = (1− Λqµ̃0(γ)) ζk − Λq

{
α̃k(γ)ζ0 +

k−1∑
l=1

ω̃k−l(γ)ζl

}

≥

(
1− Λqµ̃0(γ) + Λq (−α̃k(γ)) + Λq

k−1∑
l=1

(−ω̃k−l(γ))

)
(−ζ0). (5.178)
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In a similar way, we obtain the inequality

ζk+1 ≥

(
1− Λqγ

(
k +

1

2

)γ−1
)

(−ζ0) =

(
Λqγ

(
k +

1

2

)γ−1

− 1

)
ζ0. (5.179)

Since 0 < γ < 1 and
(
k + 1

2

)1−γ
> 0 for k ≥ 0 then

0 ≤ Λqγ(
k + 1

2

)1−γ ≤ 2γ−1Λqγ, (5.180)

which satisfies

−1 ≤ Λqγ(
k + 1

2

)1−γ − 1 ≤ 2γ−1Λqγ − 1, (5.181)

as 0 ≤ Λq ≤ 2 and 0 < γ < 1. We then have

ζk+1 ≥

(
Λqγ(

k + 1
2

)1−γ − 1

)
ζ0 ≥ −ζ0, (5.182)

and so

−ζ0 ≤ ζk+1 ≤ ζ0 or |ζk+1| ≤ |ζ0|, (5.183)

which shows Equation (5.159) is true for j = k + 1.

Hence if 0 ≤ Λq ≤ 2γ and (1− Λqµ̃0(γ)) > 0 then Equation (5.159) is satisfied, for all

j ≥ 0 which means the numerical method is stable for this range of parameters.

Case 2

Case 2 occurs if

(1− Λqµ̃0(γ)) < 0. (5.184)

We then have from Equations (5.167) and (5.169)

(1− Λqµ̃0(γ)) ζ0 ≤ (1− Λqµ̃0(γ)) ζk ≤ (1− Λqµ̃0(γ)) (−ζ0), (5.185)

Λq (−α̃k(γ)) (−ζ0) ≤ Λq (−α̃k(γ)) ζ0 ≤ Λq (−α̃k(γ)) ζ0, (5.186)

and

Λq

k−1∑
l=1

(−ω̃k−l(γ)) (−ζ0) ≤ Λq

k−1∑
l=1

(−ω̃k−l(γ)) ζl ≤ Λq

k−1∑
l=1

(−ω̃k−l(γ)) ζ0. (5.187)
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Adding these equations we find

ζk+1 ≤ (1− Λqµ̃0(γ)) (−ζ0) + Λq (−α̃k(γ)) ζ0 + Λq

k−1∑
l=1

(−ω̃k−l(γ)) ζ0. (5.188)

Then using the value of α̃k, given in Equation (5.143), and the summation, given in

Equation (5.175), in Equation (5.174) we obtain the inequality

ζk+1 ≤

(
2Λqµ̃0(γ)− 1− Λqγ

(
k +

1

2

)γ−1
)
ζ0. (5.189)

Considering the lower bound, we have

ζk+1 ≥ (1− Λqµ̃0(γ)) (ζ0) + Λq (−α̃k(γ)) (−ζ0) + Λq

k−1∑
l=1

(−ω̃k−l(γ)) (−ζ0). (5.190)

Then, again using Equations (5.143) and (5.175), Equation (5.174) becomes

ζk+1 ≥

(
2Λqµ̃0(γ)− 1− Λqγ

(
k +

1

2

)γ−1
)

(−ζ0). (5.191)

Therefore ζk+1 is bounded by

−ρ(γ, k,Λq)ζ0 ≤ ζk+1 ≤ ρ(γ, k,Λq)ζ0, (5.192)

where

ρ(γ, k,Λq) = 2Λqµ̃0(γ)− 1− Λqγ

(
k +

1

2

)γ−1

. (5.193)

Unlike Case 1, the value of ρ(γ, k,Λq) is not bounded by 1 for all values of Λq, k and

γ, see Figure 5.3. As a result we cannot conclude from this analysis that the method is

stable. However these bounds are lower and upper bounds on the actual values of ζk and

the actual values of ζk may be indeed still satisfy Proposition 5.5.6.

In the next section we demonstrate the method is stable by evaluating the solution of the

recurrence relationship in Equation (5.169) numerically.

Note if γ = 1 the solution of Equation (5.169) is

ζk = (1− Λq)
kζ0, (5.194)

which is bounded if 0 ≤ Λq < 2 for both Case 1 and Case 2. So proposition 5.5.6 is true

if γ = 1.
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Figure 5.3: The predicted of ρ(γ, k,Λq) for γ = 0, 0.1, 0.2, . . . , 1, k = 1000 and Λq = 2γ .

5.5.2 Numerical Solution of the Recurrence Relationship

In this section, we investigate the solution of the recurrence relationship in Equation (5.169)

by numerical evaluation for both Case 1 and Case 2.

For Case 2 the value of γ lies in the range log3 2 ≤ γ ≤ 1 where γ = log3 2 is the γ value

at the intersection of Λq = 2γ and Λq = 1/µ̃0(γ) curves. Figures 5.4, 5.5, and 5.6 show

the results of simulating Equation (5.169) against j for 0 ≤ γ ≤ 1 with Λq = 1/µ̃0(γ),

Λq = 2γ , and Λq = 2log3 2 respectively. We see from Figure 5.4 the value of the ratio ζj/ζ0

decays quickly to zero but does undergo some initial oscillations. Meanwhile in Figure 5.5

we see the values of ζj/ζ0 also oscillates but decays to zero if 0 < γ < 1. We also see

similar behavior when we choose Λq = 2log3 2 as shown in Figure 5.6. Note though that in

the case of γ = 1 we have the solution ζj/ζ0 = (1 − Λq)
j , which for Λq = 2 will oscillate

between −1 and 1 without decaying as shown in Figure 5.5.

For Case 1, shown in Figure 5.7, we give the results for Λq = 1 with γ in the range

0 < γ ≤ 1 and j = 0, . . . , 100. We see from Figure 5.7 the value of the ratio ζj/ζ0 decays

quickly to zero. We conclude that this method for Λq = 1 is stable as the ratio is positive

and is less than 1, as expected.

The results in Figures 5.4, 5.5, 5.6 and 5.7 demonstrate this method is stable for both

Case 1 and Case 2 as the values of ζj/ζ0 do not grow but instead remain bounded above

and below by 1 and −1 respectively.
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Figure 5.4: Case 2 the predicted ratios ζj/ζ0 from Equation (5.169), with ζ0 = 1, for various

of γ is shown for Λq = 1/µ̃0(γ). Note the ratios ζj/ζ0 for j = 1, . . . , 5 and log3 2 ≤ γ ≤ 1

are bounded above by 1 and below by −1. The ratios for γ = 0.1, 0.2, . . . , 1 decay to zero.

Arrows show the direction of increasing γ.

Figure 5.5: Case 2 the predicted ratios ζj/ζ0 from Equation (5.169), with ζ0 = 1 for various of

γ is shown for Λq = 2γ . Note the ratios ζj/ζ0 for j = 1, . . . , 5 and log3 2 ≤ γ ≤ 1 are bounded

above by 1 and below by −1. The ratios for γ = 0.1, 0.2, . . . , 1 decay to zero. Arrows show

the direction of increasing γ.
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Figure 5.6: Ratios ζj/ζ0 predicted by Equation (5.169) with ζ0 = 1 for various of γ in Case 2

where Λq = 2log3 2, j = 1, . . . , 4 and log3 2 ≤ γ ≤ 1, the magnitude of the ratios is less than 1.

The arrows show the direction of increasing γ.

Figure 5.7: The predictions from Equation (5.169) of the ratio ζj/ζ0 with ζ0 = 1 for various

of γ is shown for Case 1 where Λq = 1, j = 1, . . . , 100 and γ = 0, 0.1, 0.2, . . . , 1 . The arrow

shows the direction of increasing γ.

5.5.3 Stability Analysis of the KBMC3 Scheme

In this section we investigate the stability of the KBMC3 scheme by using Von Neumann

stability analysis. Similar to Section 5.5.1, we again let uji and vji be the approximate

solution of the Equations (5.58) and (5.60), we then have(
uji − u

j
i−1

)
=

∆xi
2

(
vji + vji−1

)
, (5.195)
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and

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

D∆tγ−1

∆xiΓ(1 + γ)

{
κj(γ)

(
v0
i − v0

i−1

)
+ α̂j(γ)

(
v1
i − v1

i−1

)
+

1

2∆xi

j∑
k=1

µ̂j−k(γ)
[
vk+1
i − vk+1

i−1 − (vk−1
i − vk−1

i−1 )
]}

+ [f |j+
1
2

i− 1
2

. (5.196)

The errors, using Equations (5.24), (5.25), (5.131) as well as Equations (5.195) and (5.196)

satisfy the equations (
εji − ε

j
i−1

)
− ∆xi

2

(
εji + εji−1

)
= 0, (5.197)

and

εj+1
i + εj+1

i−1

2∆t
=
εji + εji−1

2∆t
+

D∆tγ−1

∆xiΓ(1 + γ)

{
κj(γ)

(
ε0
i − ε0

i−1

)
+ α̂j(γ)

(
ε1
i − ε1

i−1

)
+

σ

2∆xi

j∑
k=1

µ̂j−k(γ)
[
εk+1
i − εk+1

i−1 −
(
εk−1
i − εk−1

i−1

)]}
, (5.198)

again with zero boundary conditions. We again omit the truncation errors (in Equa-

tions (5.197) and (5.198), however in the later section we will include them to show the

convergence rate of the numerical method.

As before we let εji = ζje
i′qxi , and εji = ξje

i′qxi , where i′ is the imaginary number,
√
−1,

q is a real spatial wave number, Equations (5.197) and (5.198) can then be rewritten as(
ζj+1e

i′qxi − ζj+1e
i′q(xi−∆xi)

)
=

∆xi
2

(
ξj+1e

i′qxi + ξj+1e
i′q(xi−∆xi)

)
, (5.199)

and

1

2∆t

(
ζj+1e

i′qxi + ζj+1e
i′q(xi−∆xi)

)
=

1

2∆t

(
ζje

i′qxi + ζje
i′q(xi−∆xi)

)
+

D∆tγ−1

∆xiΓ(1 + γ)

{
κj(γ)

(
ξ0e

i′qxi − ξ0e
i′q(xi−∆xi)

)
+ α̂j(γ)

(
ξ1e

i′qxi − ξ1e
i′q(xi−∆xi)

)
+

1

2

j∑
k=1

µ̂j−k(γ)
[
ξk+1e

i′qxi − ξk+1e
i′q(xi−∆xi) −

(
ξk−1e

i′qxi − ξk−1e
i′q(xi−∆xi)

)]}
.

(5.200)

Using Equation (5.199) and simplifying, we obtain the recursive equation for ζj+1

ζj+1 = ζj + ρ̂

(
1− e−i′w∆xi

1 + e−i′w∆xi

)2

κj(γ)ζ0 + ρ̂

(
1− e−i′w∆xi

1 + e−i′w∆xi

)2

α̂j(γ)ζ1

+
ρ̂

2

(
1− e−i′w∆xi

1 + e−i′w∆xi

)2 j∑
k=1

µ̂j−k(γ) [ζk+1 − ζk−1] , (5.201)
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where ρ̂ is defined in Equation (5.137). Now using Equation (5.138) in Equation (5.201)

gives the recurrence relation for ζj+1

ζj+1 = ζj − U̧q

[
κj(γ)ζ0 + α̂j(γ)ζ1 +

1

2

j∑
k=1

µ̂j−k(γ) (ζk+1 − ζk−1)

]
, (5.202)

where the coefficient U̧q is defined in Equation (5.141), and the weights α̂j(γ), µ̂j(γ), and

κj(γ) are given earlier by Equations (5.55), (5.57), and (5.61) respectively.

When j ≥ 2, the recurrence relation in Equation (5.202) can be rewritten as

ζj+1 =
1

1 + 1
2U̧q

{(
1− U̧q

(
2γ − 1

2

))
ζj − U̧q

[
ϕ1j(γ)ζ0 + ϕ2j(γ)ζ1 +

j−1∑
k=2

ϕ3j−k(γ)ζk

]}
,

(5.203)

or

ζj+1 =
(

1− 2γ−1Λ̆q

)
ζj − Λ̆q

[
ϕ1j(γ)ζ0 + ϕ2j(γ)ζ1 +

j−1∑
k=2

ϕ3j−k(γ)ζk

]
, (5.204)

where the coefficient Λ̆q is defined by

Λ̆q =
U̧q

1 + 1
2U̧q

, (5.205)

and the weights are defined as

ϕ1j(γ) = κj(γ)− 1

2
(jγ − (j − 1)γ)

= γ

(
j +

1

2

)γ−1

−
(
j +

1

2

)γ
+ jγ − 1

2
(jγ − (j − 1)γ) , (5.206)

ϕ2j(γ) = α̂j(γ)− 1

2
((j − 1)γ − (j − 2)γ)

=

(
j +

1

2

)γ
− jγ − 1

2
((j − 1)γ − (j − 2)γ) , (5.207)

and

ϕ3j(γ) =
1

2
[(j + 2)γ − (j + 1)γ − jγ + (j − 1)γ ] . (5.208)

Note for 0 ≤ U̧q <∞ then Λ̆q in Equation (5.205) satisfies the inequality 0 ≤ Λ̆q ≤ 2.

We next consider lemma which will help in showing the stability of the KBMC3 method.

Lemma 5.5.7. The weights ϕ1j(γ), ϕ2j(γ) and ϕ3j(γ) defined earlier in Equations (5.206),

(5.207) and (5.208) respectively are negative if 0 < γ < 1 or zero if γ = 1.
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Proof. To show ϕ1j < 0, we first rewrite Equation (5.206) as

ϕ1j(γ) = γ

(
j +

1

2

)γ−1

−
(
j +

1

2

)γ
+ jγ − 1

2
(jγ − (j − 1)γ)

= γ

(
j +

1

2

)γ−1

−
(
j +

1

2

)γ
+

((
j +

1

2

)
− 1

2

)γ
− 1

2
jγ +

1

2
(j − 1)γ . (5.209)

Now using the binomial expansion and simplifying, we have

ϕ1j(γ) = γ

(
j +

1

2

)γ−1

−
(
j +

1

2

)γ
+

(
j +

1

2

)γ
+
∞∑
k=1

(
γ

k

)(
−1

2

)k (
j +

1

2

)γ−k
− 1

2
jγ +

1

2
jγ +

1

2

∞∑
k=1

(
γ

k

)
(−1)kjγ−k

= γ

(
j +

1

2

)γ−1

+

∞∑
k=1

(
γ

k

)(
−1

2

)k (
j +

1

2

)γ−k
+

1

2

∞∑
k=1

(
γ

k

)
(−1)kjγ−k

= γ

(
j +

1

2

)γ−1

+

∞∑
k=1

(
γ

k

)[(
−1

2

)k (
j +

1

2

)γ−k
+

1

2
(−1)kjγ−k

]
. (5.210)

Using the result from Appendix B.2, we then have

ϕ1j(γ) = γ

(
j +

1

2

)γ−1

+
∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)
(−1)k−1

[(
−1

2

)k (
j +

1

2

)γ−k
+

1

2
(−1)kjγ−k

]

= γ

(
j +

1

2

)γ−1

−
∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)

[(
1

2

)k (
j +

1

2

)γ−k
+

1

2
(−1)2kjγ−k

]

= γ

(
j +

1

2

)γ−1

− γ

2

(
j +

1

2

)γ−1

− γ

2
jγ−1

−
∞∑
k=2

γΓ(k − γ)

k!Γ(1− γ)

[(
1

2

)k (
j +

1

2

)γ−k
+

1

2
(−1)2kjγ−k

]
. (5.211)

Now for 0 < γ ≤ 1 the term γ
(
j + 1

2

)γ−1 ≤ γjγ−1, we then obtain the upper bound for

the weight ϕ1j(γ)

ϕ1j(γ) < −
∞∑
k=2

γΓ(k − γ)

k!Γ(1− γ)

[(
1

2

)k (
j +

1

2

)γ−k
+

1

2
(−1)2kjγ−k

]
. (5.212)

For 0 < γ ≤ 1 the binomial coefficient

γΓ(k − γ)

k!Γ(1− γ)
> 0, (5.213)

is positive since the Gamma function for positive argument is positive.

The term
[(

1
2

)k (
j + 1

2

)γ−k
+ 1

2(−1)2kjγ−k
]

is also positive ∀k ≥ 2, we then conclude that

for 0 < γ < 1 ϕ1j(γ) < 0. If γ = 1 then ϕ1j(γ) = 0.
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To show second, ϕ2j(γ) is also negative, we rewrite Equation (5.207) as

ϕ2j(γ) =

(
j +

1

2

)γ
− jγ − 1

2
((j − 1)γ − (j − 2)γ)

=

(
j +

1

2

)γ
−
((

j +
1

2

)
− 1

2

)γ
− 1

2
(j − 1)γ +

1

2
((j − 1)− 1)γ (5.214)

and then use the binomial expansion of the second and fourth terms to find

ϕ2j(γ) =

(
j +

1

2

)γ
−
(
j +

1

2

)γ
−
∞∑
k=1

(
γ

k

)(
−1

2

)k (
j +

1

2

)γ−k
− 1

2
(j − 1)γ +

1

2

∞∑
k=1

(
γ

k

)
(−1)k (j − 1)γ−k

= −
∞∑
k=1

(
γ

k

)(
−1

2

)k (
j +

1

2

)γ−k
+

1

2

∞∑
k=1

(
γ

k

)
(−1)k (j − 1)γ−k . (5.215)

Using Equation (B.7) in Equation (5.215), we then obtain

ϕ2j(γ) = −
∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)
(−1)k−1

(
−1

2

)k (
j +

1

2

)γ−k
(5.216)

+
1

2

∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)
(−1)2k−1 (j − 1)γ−k

=
∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)
(−1)k

(
−1

2

)k (
j +

1

2

)γ−k
+

1

2

∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)
(−1)2k−1 (j − 1)γ−k

=
∞∑
k=1

γΓ(k − γ)

k!Γ(1− γ)

[(
1

2

)k (
j +

1

2

)γ−k
− (−1)2k (j − 1)γ−k

]
.

For j ≥ 2, the term(
1

2

)k (
j +

1

2

)γ−k
− (−1)2k (j − 1)γ−k <

(
1

2

)k
(j − 1)γ−k − (−1)2k (j − 1)γ−k

< (j − 1)γ−k
((

1

2

)k
− 1

)
, (5.217)

is bounded and since for k ≥ 1, the term
(

1
2

)k − 1 < 0, we then conclude that the weight

ϕ2j(γ) for 0 < γ < 1 is also negative. If γ = 1 then ϕ2j(γ) = 0.

Finally, by the second result in Lemma 5.5.4, we have

µj(γ) > µj+1(γ) > µj+2(γ), (5.218)

and then rewriting ϕ3j(γ) in terms of µj(γ) we have

ϕ3j(γ) =
1

2
[µj+2(γ)− µj(γ)] <

1

2
[µj(γ)− µj(γ)] < 0, (5.219)

which shows ϕ3j(γ) < 0 if 0 < γ < 1. If γ = 1, then ϕ3j(γ) = 0.
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Proposition 5.5.8. Let ζj , where j = 1, 2, 3, ...,M , be the solution of Equation (5.202),

then we have

|ζj | ≤ |ζ0| , (5.220)

if 0 ≤ Λ̆q ≤ 1 and 0 < γ ≤ 1.

Proof. We use the mathematical induction method to prove the relation in Equation (5.220).

For simplicity we assume ζ0 > 0. The case ζ0 < 0 can be handled in analogous manner

to the method below.

Setting j = 1 in Equation (5.202), we find the value for ζ1

ζ1 =
1

1 + U̧q

(
1
2

)γ
[

1− U̧q

(
γ

(
1

2

)γ−1

−
(

1

2

)γ)]
ζ0

=

(
1−

U̧qγ
(

1
2

)γ−1

1 + U̧q

(
1
2

)γ
)
ζ0

=

1− 2γ
1

U̧q(
1
2)
γ + 1

 ζ0. (5.221)

The second term is positive and so ζ1 is bounded above by ζ0

ζ1 =

1− 2γ
1

U̧q(
1
2)
γ + 1

 ζ0 ≤ ζ0. (5.222)

Since for 0 < γ ≤ 1 and 0 ≤ U̧q <∞, we also have

1− 2γ
1

U̧q(
1
2)
γ + 1

≥ 1− 2γ ≥ −1, (5.223)

and so

ζ1 =

1− 2γ
1

U̧q(
1
2)
γ + 1

 ζ0 ≥ −ζ0. (5.224)

Combining the results in Equations (5.222) and (5.224), we have

−ζ0 ≤

1− 2γ
1

U̧q(
1
2)
γ + 1

 ζ0 ≤ ζ0, (5.225)

and so ζ1 is bounded by

−ζ0 ≤ ζ1 ≤ ζ0, (5.226)
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or

|ζ1| ≤ |ζ0|. (5.227)

Hence Equation (5.220) is true for j = 1.

For j = 2, we have from Equation (5.202)

ζ2 = ζ1 − U̧q

{[
γ

(
3

2

)γ−1

−
(

3

2

)γ
+ 1

]
ζ0 +

((
3

2

)γ
− 1

)
ζ1 +

1

2
[ζ2 − ζ0]

}
, (5.228)

which after simplifying becomes

ζ2 =
1(

1 + 1
2U̧q

) {[1− U̧q

((
3

2

)γ
− 1

)]
ζ1 + U̧q

[(
3

2

)γ
− 1

2
− γ

(
3

2

)γ−1
]
ζ0

}
.

(5.229)

For 0 ≤ U̧q <∞ and 0 < γ ≤ 1 the coefficient term of ζ0 obeys

0 ≤
U̧q

1 + 1
2U̧q

[(
3

2

)γ
− 1

2
− γ

(
3

2

)γ−1
]
≤ 1. (5.230)

We also have

0 ≤

(
U̧q

((
3
2

)γ − 1
)

1 + 1
2U̧q

)
≤ 2

((
3

2

)γ
− 1

)
≤ 1, (5.231)

and

0 ≤ 1

1 + 1
2U̧q

≤ 1. (5.232)

The coefficient of ζ1 then satisfies

1 ≥
1− U̧q

((
3
2

)γ − 1
)

1 + 1
2U̧q

≥ 1− 2

((
3

2

)γ
− 1

)
≥ 0. (5.233)

From Equations (5.232) and (5.233), we conclude that

0 ≤
1− U̧q

((
3
2

)γ − 1
)

1 + 1
2U̧q

≤ 1. (5.234)

Now using Equation (5.226), the first term in Equation (5.229) satisfies(
1− U̧q

((
3
2

)γ − 1
)

1 + 1
2U̧q

)
(−ζ0) ≤

(
1− U̧q

((
3
2

)γ − 1
)

1 + 1
2U̧q

)
ζ1 ≤

(
1− U̧q

((
3
2

)γ − 1
)

1 + 1
2U̧q

)
ζ0.

(5.235)
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Equation (5.229) then becomes

ζ2 ≤
1(

1 + 1
2U̧q

) {1− U̧q

((
3

2

)γ
− 1

)
+ U̧q

((
3

2

)γ
− 1

2
− γ

(
3

2

)γ−1
)}

ζ0, (5.236)

which then simplifies to

ζ2 ≤

(
1−

U̧qγ
(

3
2

)γ−1(
1 + 1

2U̧q

) ) ζ0. (5.237)

The second term is positive and so ζ2 is bounded above by ζ0

ζ2 ≤

(
1−

U̧qγ
(

3
2

)γ−1(
1 + 1

2U̧q

) ) ζ0 ≤ ζ0. (5.238)

Considering the lower bound, we have

ζ2 ≥
1(

1 + 1
2U̧q

) {1− U̧q

((
3

2

)γ
− 1

)
+ U̧q

((
3

2

)γ
− 1

2
− γ

(
3

2

)γ−1
)}

(−ζ0).

(5.239)

In similar way, we obtain the inequality

ζ2 ≥

(
1−

U̧qγ
(

3
2

)γ−1(
1 + 1

2U̧q

) ) (−ζ0) =

(
U̧qγ

(
3
2

)γ−1(
1 + 1

2U̧q

) − 1

)
ζ0. (5.240)

Since 0 ≤ U̧q <∞, 0 < γ ≤ 1 and
(

3
2

)1−γ
> 0 then

0 ≤
U̧qγ(

1 + 1
2U̧q

) (
3
2

)1−γ ≤ 2γ(
3
2

)1−γ ≤ 2, (5.241)

and so we have

−1 ≤
U̧qγ

(
3
2

)γ−1(
1 + 1

2U̧q

) − 1 ≤ 1, (5.242)

as 0 ≤ U̧q <∞, 0 < γ ≤ 1. We then have

ζ2 ≥

(
U̧qγ

(
3
2

)γ−1(
1 + 1

2U̧q

) − 1

)
ζ0 ≥ −ζ0, (5.243)

and so

−ζ0 ≤ ζ2 ≤ ζ0 or |ζ2| ≤ |ζ0|, (5.244)

and so Equation (5.220) is true for j = 2.

We now assume that

−ζ0 ≤ ζn ≤ ζ0 for n = 1, 2, ..., k (5.245)
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and then need to show that

−ζ0 ≤ ζk+1 ≤ ζ0. (5.246)

From (5.204) we have

ζk+1 =
(

1− 2γ−1Λ̆q

)
ζk − Λ̆q

[
ϕ1k(γ)ζ0 + ϕ2k(γ)ζ1 +

k−1∑
l=2

ϕ3k−l(γ)ζl

]
. (5.247)

By using Lemma 5.5.7, we know −ϕ1k(γ) > 0, −ϕ2k(γ) > 0, and −ϕ3k(γ) > 0, but the

sign of the first term
(

1− 2γ−1Λ̆q

)
may be positive or negative and so we consider two

cases to check the stability, which are

1.
(

1− 2γ−1Λ̆q

)
≥ 0, and 0 ≤ Λ̆q ≤ 1,

2.
(

1− 2γ−1Λ̆q

)
≤ 0, and 1 < Λ̆q ≤ 2.

Case 1

For 0 < γ ≤ 1 and 0 ≤ Λ̆q ≤ 1 occurs when 1− 2γ−1Λ̆q > 0. From Equations (5.245) and

(5.247), we have(
1− 2γ−1Λ̆q

)
(−ζ0) ≤

(
1− 2γ−1Λ̆q

)
ζk ≤

(
1− 2γ−1Λ̆q

)
ζ0, (5.248)

Λ̆q (−ϕ1k(γ)) (−ζ0) ≤ Λ̆q (−ϕ1k(γ)) ζ0 ≤ Λ̆q (−ϕ1k(γ)) ζ0, (5.249)

Λ̆q (−ϕ2k(γ)) (−ζ0) ≤ Λ̆q (−ϕ2k(γ)) ζ1 ≤ Λ̆q (−ϕ2k(γ)) ζ0, (5.250)

and

Λ̆q

k−1∑
l=2

(
−ϕ3k−l(γ)

)
(−ζ0) ≤ Λ̆q

k−1∑
l=2

(
−ϕ3k−l(γ)

)
ζl ≤ Λ̆q

k−1∑
l=2

(
−ϕ3k−l(γ)

)
ζ0. (5.251)

Adding these equations, we then have

ζk+1 =
(

1− 2γ−1Λ̆q

)
ζk − Λ̆q

[
ϕ1k(γ)ζ0 + ϕ2k(γ)ζ1 +

k−1∑
l=2

ϕ3k−l(γ)ζl

]

≤

{
1− 2γ−1Λ̆q + Λ̆q(−ϕ1k(γ)) + Λ̆q(−ϕ2k(γ)) + Λ̆q

k−1∑
l=2

ϕ3k−l(γ)

}
ζ0. (5.252)
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Next we evaluate the summation, where ϕ3j(γ) is given in Equation (5.208), we then find

k−1∑
l=2

(
−ϕ3k−l(γ)

)
=

1

2

k−1∑
l=2

[(k − l)γ − (k − l − 1)γ − (k − l + 2)γ + (k − l + 1)γ ]

=
1

2
[(k − 2)γ − kγ + 2γ ] . (5.253)

Then using Equations (5.206) and (5.207) with the result in Equation (5.253), Equa-

tion (5.252) becomes

ζk+1 ≤

{
1− 2γ−1Λ̆q + Λ̆q

(
1

2
[kγ − (k − 1)γ ] +

(
k +

1

2

)γ
− kγ − γ

(
k +

1

2

)γ−1
)

+Λ̆q

(
1

2

[
(k − 1)γ − (k − 2)γ + kγ −

(
k +

1

2

)γ])
+

1

2
[(k − 2)γ − kγ + 2γ ] Λ̆q

}
ζ0.

(5.254)

Equation (5.254) simplifies to

ζk+1 ≤

(
1− Λ̆qγ

(
k +

1

2

)γ−1
)
ζ0. (5.255)

Since the second term is positive then ζk+1 is bounded above by ζ0

ζk+1 ≤

(
1− Λ̆qγ

(
k +

1

2

)γ−1
)
ζ0 ≤ ζ0. (5.256)

Considering the lower bound we have

ζk+1 =
(

1− 2γ−1Λ̆q

)
ζk − Λ̆q

[
ϕ1k(γ)ζ0 + ϕ2k(γ)ζ1 +

k−1∑
l=2

ϕ3k−l(γ)ζl

]

≥

{
1− 2γ−1Λ̆q + Λ̆q(−ϕ1k(γ)) + Λ̆q(−ϕ2k(γ)) + Λ̆q

k−1∑
l=2

ϕ3k−l(γ)

}
(−ζ0), (5.257)

which simplifies to

ζk+1 ≥

(
1− Λ̆qγ

(
k +

1

2

)γ−1
)

(−ζ0) =

(
Λ̆qγ

(
k +

1

2

)γ−1

− 1

)
ζ0. (5.258)

Since, for 0 < γ < 1, 0 ≤ Λ̆q ≤ 1, and k ≥ 0 we have 0 <
(
k + 1

2

)1−γ ≤ 1 then we have

inequality

0 ≤ Λ̆qγ

(
k +

1

2

)γ−1

≤ 1, (5.259)

or

−1 ≤ Λ̆qγ

(
k +

1

2

)γ−1

− 1 ≤ 0. (5.260)
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The lower bound of ζk+1 is then

ζk+1 ≥

(
Λ̆qγ

(
k +

1

2

)γ−1

− 1

)
ζ0 ≥ −ζ0 (5.261)

and so

−ζ0 ≤ ζk+1 ≤ ζ0 or |ζk+1| ≤ |ζ0|. (5.262)

Hence, if 0 ≤ Λ̆q ≤ 1 and
(

1− 2γ−1Λ̆q

)
≥ 0, Equation (5.220) is satisfied for j = k + 1,

and hence for all j ∈ IN, which shows the numerical method is stable for this range of

parameters.

Case 2

Case 2 occurs when 1 − 2γ−1Λ̆q ≤ 0 given 0 < γ ≤ 1 and 1 < Λ̆q ≤ 2. Using Equa-

tions (5.245) and (5.247), we have the bounds(
1− 2γ−1Λ̆q

)
ζ0 ≤

(
1− 2γ−1Λ̆q

)
ζk ≤

(
1− 2γ−1Λ̆q

)
(−ζ0), (5.263)

Λ̆q (−ϕ1k(γ)) (−ζ0) ≤ Λ̆q (−ϕ1k(γ)) ζ0 ≤ Λ̆q (−ϕ1k(γ)) ζ0, (5.264)

Λ̆q (−ϕ2k(γ)) (−ζ0) ≤ Λ̆q (−ϕ2k(γ)) ζ1 ≤ Λ̆q (−ϕ2k(γ)) ζ0, (5.265)

and

Λ̆q

k−1∑
l=2

(
−ϕ3k−l(γ)

)
(−ζ0) ≤ Λ̆q

k−1∑
l=2

(
−ϕ3k−l(γ)

)
ζl ≤ Λ̆q

k−1∑
l=2

(
−ϕ3k−l(γ)

)
ζ0. (5.266)

Using these results, we find the upper bound for ζk+1

ζk+1 =
(

1− 2γ−1Λ̆q

)
ζk − Λ̆q

[
ϕ1k(γ)ζ0 + ϕ2k(γ)ζ1 +

k−1∑
l=2

ϕ3k−l(γ)ζl

]

≤

{
2γ−1Λ̆q − 1 + Λ̆q(−ϕ1k(γ)) + Λ̆q(−ϕ2k(γ)) + Λ̆q

k−1∑
l=2

ϕ3k−l(γ)

}
ζ0. (5.267)

Using the weights in Equations (5.206) and (5.207), with the result in Equation (5.253),

Equation (5.267) then becomes

ζk+1 ≤

{
2γ−1Λ̆q − 1 + Λ̆q

(
1

2
[kγ − (k − 1)γ ] +

(
k +

1

2

)γ
− kγ − γ

(
k +

1

2

)γ−1
)

+Λ̆q

(
1

2

[
(k − 1)γ − (k − 2)γ + kγ −

(
k +

1

2

)γ])
+

1

2
[(k − 2)γ − kγ + 2γ ] Λ̆q

}
ζ0,

(5.268)
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which after simplifying becomes

ζk+1 ≤

(
Λ̆q2

γ − 1− Λ̆qγ

(
k +

1

2

)γ−1
)
ζ0. (5.269)

Considering the lower bound we have

ζk+1 =
(

1− 2γ−1Λ̆q

)
ζk − Λ̆q

[
ϕ1k(γ)ζ0 + ϕ2k(γ)ζ1 +

k−1∑
l=2

ϕ3k−l(γ)ζl

]

≥

{
2γ−1Λ̆q − 1 + Λ̆q(−ϕ1k(γ)) + Λ̆q(−ϕ2k(γ)) + Λ̆q

k−1∑
l=2

ϕ3k−l(γ)

}
(−ζ0), (5.270)

which reduces to

ζk+1 ≥

(
Λ̆q2

γ − 1− Λ̆qγ

(
k +

1

2

)γ−1
)

(−ζ0). (5.271)

Then ζk+1 is bounded by

−ρ̆q(γ, k, Λ̆q)ζ0 ≤ ζk+1 ≤ ρ̆(γ, k, Λ̆q)ζ0 (5.272)

where

ρ̆q(γ, k, Λ̆q) = Λ̆q2
γ − 1− Λ̆qγ

(
k +

1

2

)γ−1

. (5.273)

The value of ρ̆(γ, k, Λ̆q) is not bounded by 1 for all values of Λ̆q, k and γ as shown in

Figure 5.8. Unlike Case 1, we cannot conclude from this analysis that the method is

stable. However these bounds are lower and upper bounds on the actual values of ζk and

the actual values of ζk may be indeed still satisfy Proposition 5.5.8. In the next section we

demonstrate the method is stable by evaluating the solution of the recurrence relationship

in Equation (5.247) numerically.

Figure 5.8: The predicted of ρ̆(γ, k, Λ̆q) for γ = 0, 0.1, 0.2, . . . , 1, k = 1000 and Λ̆q = 2.
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5.5.4 Numerical Solution of the Recurrence Relationship

Similar to method the KBMC2, we investigate the solution of the recurrence relationship

in Equation (5.247) by numerical evaluation for both Case 1 and Case 2, where the value

of γ lies in the range 0 < γ ≤ 1 and the 0 < Λ̆q ≤ 2. For Case 1, these results are shown

in Figure 5.9 for j = 1, . . . , 6, γ = 0.1, . . . , 1 and Λ̆q = 1. Similar results for Case 2 with

Λ̆q = 2 and Λ̆q = 21−γ are shown in Figures 5.10 and 5.11 respectively. From these results

the KBMC3 method is stable for both Case 1 and Case 2 as the values of ζj/ζ0 do not

grow but instead remain bounded above and below by 1 and −1 respectively. Comparing

Figures 5.9 and 5.10 we see if Λ̆q = 1 the ratios decay faster than if Λ̆q = 2.

Figure 5.9: The predictions of the ratio ζj/ζ0 found from Equation (5.247), with ζ0 = 1.

Results are shown for Case 1, where j = 1, . . . , 6, γ = 0.1, . . . , 0.9 and Λ̆q = 1. Note the ratios

ζj/ζ0 is less than 1 where the value of γ decreases in the direction of the arrow.
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Figure 5.10: The predictions from Equation (5.247) of the ratio ζj/ζ0 with ζ0 = 1 is shown

for Case 2, where Λ̆q = 2. Note the ratios ζj/ζ0 for j = 1, . . . , 7, and γ = 0.1, . . . , 0.9 is less

than 1 and the value of γ decreases in the direction of the arrow.

Figure 5.11: The predictions from Equation (5.247) of the ratio ζj/ζ0 with ζ0 = 1 is shown

for Case 2, where Λ̆q = 21−γ . Note the ratios ζj/ζ0 for j = 1, . . . , 6, and γ = 0.1, . . . , 0.9. The

value of γ decreases in the direction of the arrow.

5.5.5 Stability Analysis of the KBML1 Scheme

In similar manner to Sections 5.5.1 and 5.5.3, we again use Von Neumann stability anal-

ysis to assess the stability of the KBML1 scheme. The recurrence equation for ζj using
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Equation (5.71) is

ζj = ζj−1 − U̧q

{
βj(γ)ζ0 +

j−1∑
k=0

µj−k(γ) [ζk+1 − ζk]

}
, (5.274)

which can be rewritten as

ζj =
(

1− Λ̂q

)
ζj−1 − Λ̂q

[
αj(γ)ζ0 +

j−1∑
k=1

ωj−k(γ)ζk

]
, (5.275)

where

Λ̂q =
U̧q

1 + U̧q
, (5.276)

0 ≤ Λ̂q ≤ 1, and U̧q as defined in Equation (5.141). The weights are defined as

αj(γ) = γjγ−1 − µj(γ), (5.277)

and

ωj(γ) = µj+1(γ)− µj(γ). (5.278)

We now show the recurrence relationship in Equation (5.275) is stable.

Proposition 5.5.9. Let ζj , where j = 1, 2, 3, ...,M , be the solution of Equation (5.275)

then

|ζj | ≤ |ζ0| , (5.279)

for all 0 < Λ̂q < 1.

Proof. We use the mathematical induction to prove the relation in Equation (5.279). For

simplicity we assume ζ0 > 0. Consider the case j = 1, we have from Equation (5.275)

ζ1 =
(

1− Λ̂qγ
)
ζ0. (5.280)

First we note the term in the bracket satisfies

1− Λ̂qγ ≤ 1, (5.281)

as the second term is positive and so ζ1 is bounded above by ζ0

ζ1 =
(

1− Λ̂qγ
)
ζ0 ≤ ζ0. (5.282)
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Since 0 < γ ≤ 1 and 0 ≤ Λ̂q ≤ 1 then

1− Λ̂qγ ≥ 1− γ ≥ 0 > −1, (5.283)

and so

ζ1 =
(

1− Λ̂qγ
)
ζ0 ≥ −ζ0. (5.284)

Hence for 0 ≤ γ ≤ 1 we have

−ζ0 ≤
(

1− Λ̂qγ
)
ζ0 ≤ ζ0, (5.285)

and so

−ζ0 ≤ ζ1 ≤ ζ0, (5.286)

or

|ζ1| ≤ |ζ0|. (5.287)

Hence Equation (5.279) is satisfied for j = 1.

We now assume that

−ζ0 ≤ ζn ≤ ζ0 for n = 1, 2, ..., k (5.288)

and then need to show that

−ζ0 ≤ ζk+1 ≤ ζ0. (5.289)

From Equation (5.275), we have

ζk+1 =
(

1− Λ̂q

)
ζk − Λ̂qα̂k+1(γ)ζ0 − Λ̂q

k∑
l=1

ωk−l+1(γ)ζl. (5.290)

Note from Lemma 5.5.5 we have −αk+1 > 0 and −ωj−k+1(γ) > 0. In addition for

0 ≤ Λ̂q ≤ 1 the term 1 − Λ̂q ≥ 0. Using Equation (5.288), we then obtain the upper

bound

ζk+1 ≤

(
1− Λ̂q − Λ̂qαk+1(γ)− Λ̂q

k−1∑
l=1

ωj−k+1(γ)

)
ζ0. (5.291)

Evaluating the summation of weights ωj−k+1(γ) defined in Equation (5.278), we find

k∑
l=1

ωj−k+1(γ) = (k + 1)γ − kγ − 1. (5.292)
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Using this result and Equation (5.277) in Equation (5.291), we then find

ζk+1 ≤
(

1− Λ̂qγ (k + 1)γ−1
)
ζ0. (5.293)

Since the second term is positive then ζk+1 is bounded above by ζ0

ζk+1 ≤
(

1− Λ̂qγ (k + 1)γ−1
)
ζ0 ≤ ζ0. (5.294)

We now consider the lower bound. Since −ζ0 ≤ ζn for n = 1, . . . , k then we also have

ζk+1 ≥

(
1− Λ̂q − Λ̂qαk+1(γ)− Λ̂q

k−1∑
l=1

ωj−k+1(γ)

)
(−ζ0), (5.295)

which, after simplifying, becomes

ζk+1 ≥ −
(

1− Λ̂qγ (k + 1)γ−1
)
ζ0. (5.296)

Noting 0 ≤ Λ̂q ≤ 1, 0 ≤ γ ≤ 1 and 0 < (k + 1)1−γ ≤ 1 for k ≥ 1, we have

0 ≤ 1− Λ̂qγ (k + 1)γ−1 ≤ 1. (5.297)

We then have the lower bound

ζk+1 ≥ −
(

1− Λ̂qγ (k + 1)γ−1
)
ζ0 ≥ −ζ0. (5.298)

Therefore combining Equations (5.294) and (5.298), we then have

−ζ0 ≤
(

1− Λ̂qγ (k + 1)γ−1
)
ζ0 ≤ ζ0, (5.299)

and so we obtain

−ζ0 ≤ ζk+1 ≤ ζ0. (5.300)

Equation (5.279) is then true for j = k + 1 and hence for all j ≥ 1. According to

Von Neumann stability analysis the numerical method KBML1 is then unconditionally

stable.

5.5.6 Numerical Solution of the Recurrence Relationship

In this section again, by direct evaluation, we investigate the solution of the recurrence

relationship in Equation (5.275), for the parameter values Λ̂q = 1 and Λ̂q = 1/2. Calcula-

tions were performed for γ = 0.1, . . . , 0.9 and j = 100 time steps. These results are shown
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in Figures 5.12 and 5.13 for Λ̂q = 1 and Λ̂q = 1/2 respectively. From these results this

method is stable as the ratio remains less than 1, as expected, and also remains positive,

unlike the previous methods in this chapter. Comparing Figures 5.12 and 5.13 we see if

Λ̂q = 1 the ratios decay faster than if Λ̂q = 1/2.

Figure 5.12: The ratio ζj/ζ0 predictions from Equation (5.275) with ζ0 = 1 for γ = 0.1, . . . , 0.9

and Λ̂q = 1. Note the ratios ζj/ζ0 remain less than 1. The value of γ decreases in the direction

of the arrow.

Figure 5.13: The ratio ζj/ζ0 predictions from Equation (5.275), with ζ0 = 1, for γ =

0.1, . . . , 0.9 and Λ̂q = 1/2. Note the ratios ζj/ζ0, for j = 1, . . . , 100 and 0 < γ ≤ 1, re-

main less than 1. The value of γ decreases in the direction of the arrow.
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5.6 Convergence of the Numerical Methods

In this section, the convergence of the numerical methods given by Equations (5.52),

(5.70) and (5.88) is considered similar to Chapters 3 and 4. First we let the error

Eji = U ji − u
j
i , (5.301)

where i = 1, 2, . . . , N and j = 0, 1, 2, . . . ,M , again we define the following grid functions

Ej(x) =


Eji if x ∈

(
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . , N,

0 if x ∈
[
0, ∆x

2

]⋃ (
L− ∆x

2 , L
]
,

(5.302)

and

Rj(x) =


Rji if x ∈

(
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . , N,

0 if x ∈
[
0, ∆x

2

]⋃ (
L− ∆x

2 , L
]
,

(5.303)

where i = 1, 2, . . . , N . Then expanding Eji and Rji in Fourier series we have

Ej(x) =
∞∑

l=−∞
ξj(l)e

i′2πlx/L, j = 0, 1, 2, . . . ,M, (5.304)

and

Rj(x) =
∞∑

l=−∞
ηj(l)e

i′2πlx/L, j = 0, 1, 2, . . . ,M, (5.305)

where

ξj(l) =
1

L

∫ L

0
Ej(x)e−i

′2πlx/Ldx, (5.306)

and

ηj(l) =
1

L

∫ L

0
Rj(x)e−i

′2πlx/Ldx. (5.307)

Next we applied the Parseval identity (Spiegel 1965, Spiegel 1991), we then have

‖Ej‖2 =

(
N−1∑
i=1

∆x|Eji |
2

) 1
2

=

( ∞∑
l=−∞

|ξj(l)|2
) 1

2

, j = 0, 1, 2, . . . ,M, (5.308)

and

‖Rj‖2 =

(
N−1∑
i=1

∆x|Rji |
2

) 1
2

=

( ∞∑
l=−∞

|ηj(l)|2
) 1

2

, j = 0, 1, 2, . . . ,M. (5.309)
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Now we assume that

Eji = ξje
i′qi∆x, (5.310)

and

Rji = ηje
i′qi∆x, (5.311)

where q = 2πl/L is a real spatial wave number and i′ is the imaginary number, i′ =
√
−1.

From Equation (5.301), we note that E0 = 0, which satisfies the equation

ξ0 = ξ0(l) = 0. (5.312)

By the convergence of the series on the right hand side (5.309) there is a positive constant

cj such that

|ηj | ≡ |ηj(l)| ≤ cj |η1| ≡ cj |η1(l)|, j = 1, 2, . . . ,M. (5.313)

We then obtain

|ηj | ≤ c|η1(l)|, j = 1, 2, . . . ,M, (5.314)

where

c = max
1≤j≤M

{cj}. (5.315)

We will discuss the convergence of each scheme in the following sections.

5.6.1 Convergence of the KBMC2 Scheme

In this section, we will discuss the convergence of the KBMC2 scheme. In Equation (5.52)

we define

Rj+1
i =

∆x2

4∆t

[
δ2
xU

j+1
i − δ2

xU
j
i

]
+

1

∆t

[
U j+1
i − U ji

]
− 1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
(5.316)

− D∆tγ−1

Γ(1 + γ)

{(
1

2

)γ [(
δ2
xU

j+1
i − δ2

xU
j
i

)
− 2

(
δ2
xU

j+ 1
2

i − δ2
xU

j
i

)]}
− D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)δ2

xU
0
i + 2

(
1

2

)γ (
δ2
xU

j+ 1
2

i − δ2
xU

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
δ2
xU

k
i − δ2

xU
k−1
i

]}
.
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where δ2
xU

j
i is defined as in Equation (5.90), and according to C2 scheme, we note that[

d1−γf(t)

dt1−γ

∣∣∣∣j+
1
2

C2

=
D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)f0 + 2

(
1

2

)γ (
fj+ 1

2
− fj

)
+

j∑
k=1

µ̃j−k(γ) (fk − fk−1)

}

+O(∆t1+γ). (5.317)

Now applying Equations (5.94) – (5.98) and (5.317), we then have

Rj+1
i =

[
∂U

∂t

∣∣∣∣j+ 1
2

i

−D
[
∂1−γ

∂1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

− [f |j+
1
2

i +O(∆t1+γ + ∆x2). (5.318)

From Equation (5.318), we have

Rj+1
i = O(∆t1+γ + ∆x2) , (5.319)

where i = 1, 2, . . . , N and j = 1, 2, . . . ,M , since i, j are finite, there is a positive constant

c1 for all i, j such that

|Rj+1
i | ≤ c1(∆t1+γ + ∆x2). (5.320)

In Equation (5.316) we have

∆x2δ2
xU

j+1
i + 4U j+1

i = ∆x2δ2
xU

j
i + 4U ji + 2∆t

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
+ 4∆tRj+1

i (5.321)

+
4D∆tγ

Γ(1 + γ)

{
β̃j(γ)δ2

xU
0
i +

(
1

2

)γ (
δ2
xU

j+1
i − δ2

xU
j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
δ2
xU

k
i − δ2

xU
k−1
i

]}
,

Subtracting Equation (5.52) from Equation (5.321), gives

∆x2δ2
xE

j+1
i + 4Ej+1

i = ∆x2δ2
xE

j
i + 4Eji + 4∆tRj+1

i (5.322)

+
4D∆tγ

Γ(1 + γ)

{
β̃j(γ)δ2

xE
0
i +

(
1

2

)γ (
δ2
xE

j+1
i − δ2

xE
j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
δ2
xE

k
i − δ2

xE
k−1
i

]}
.

Using Equations (5.310) and (5.311) in (5.322), we then obtain

ξj+1 = ξj − λ̃q

{
β̃j(γ)ξ0 +

j∑
k=1

µ̃j−k(γ) [ξk − ξk−1]

}
+

∆tηj+1

1− Vq + Vq
(

1
2

)γ
d
. (5.323)

The coefficient λ̃q is given by

λ̃q =
Vqd

1− Vq + Vq
(

1
2

)γ
d
, (5.324)

where d is as defined in Equation (5.53), and

Vq = sin2

(
q∆x

2

)
. (5.325)
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When j ≥ 1, Equation (5.323) can be rewritten as

ξj+1 =
[
1− λ̃qµ̃0(γ)

]
ξj − λ̃q

{
α̃j(γ)ξ0 +

j−1∑
k=1

ω̃j−k(γ)ξk

}
+

∆tηj+1

1− Vq + dVq
(

1
2

)γ , (5.326)

where the weights α̃j(γ) and ω̃j(γ) are given in Equations (5.143) and (5.144) respectively.

Lemma 5.6.1. Given 0 < γ ≤ 1 and 0 ≤ Vqd < ∞ then the parameter λ̃q given in

Equation (5.324) is bounded by

0 ≤ λ̃q ≤ 2γ . (5.327)

Proof. From Equation (5.324), the term λ̃q can be rewritten as

λ̃q =
1

1−Vq
Vqd

+
(

1
2

)γ . (5.328)

For 0 < Vq ≤ 1 and 0 < Vqd < ∞, we then have 0 <
1−Vq
Vqd

< ∞. Consequently, we have

the bound 0 ≤ λ̃q ≤ 2γ .

Proposition 5.6.2. Let ξj be the solution of Equation (5.323). Then there exists a

positive constant c2 such that

|ξj | ≤ c2j∆t|η1|, j = 1, 2, . . . ,M, (5.329)

if 0 ≤ λ̃q ≤ min(1/µ̃0(γ), 2γ) and 0 < γ ≤ 1.

Proof. From Equations (5.309) and (5.320), we obtain

‖Rj‖2 ≤ c2

√
N∆x(∆t1+γ + ∆x2) = c2

√
L(∆t1+γ + ∆x2), (5.330)

where j = 1, 2, . . . ,M . We use mathematical induction to prove the relation in Equa-

tion (5.329), and consider the case j = 0. From Equation (5.323) and using Equa-

tion (5.312), we have

ξ1 =
∆t

1− Vq + Vqd
(

1
2

)γ η1. (5.331)

since 0 ≤ Vq ≤ 1 and d > 0, we obtain

|ξ1| ≤
∆t

1− Vq + Vqd
(

1
2

)γ |η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (5.332)
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Suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k. (5.333)

For 0 < γ < 1 and dVq > 0, from Equation (5.326), we have

|ξk+1| ≤
∣∣∣1− λ̃qµ̃0(γ)

∣∣∣ |ξk|+ λ̃q |−α̃k(γ)| |ξ0|+ λ̃q

k−1∑
l=1

|−ω̃k−l(γ)| |ξl|

+

∣∣∣∣∣ ∆t

1− Vq + Vqd
(

1
2

)γ
∣∣∣∣∣ |ηk+1| . (5.334)

Now using Equations (5.312) and (5.333) into Equation (5.334), gives

|ξk+1| ≤ c2∆t

{∣∣∣1− λ̃qµ̃0(γ)
∣∣∣ k + λ̃q

k−1∑
l=1

l |−ω̃k−l(γ)|+

∣∣∣∣∣ 1

1− Vq + Vq
(

1
2

)γ
d

∣∣∣∣∣
}
|η1| .

(5.335)

The sign of the first term
(

1− λ̃qµ̃0(γ)
)

may be positive or negative. Also for 0 < γ < 1

and Vqd > 0, which is satisfied since

0 ≤ 1

1− Vq + Vq
(

1
2

)γ
d
≤ 1. (5.336)

By Lemma 5.5.5 the weight ω̃j(γ) is negative then −ω̃j(γ) > 0, we then evaluate the

summation in Equation (5.335) by

k−1∑
l=1

l (−ω̃k−l(γ)) =
k−1∑
l=1

l [µ̃k−l−1(γ)− µ̃k−l(γ)]

=
k−1∑
n=1

(k − n) [µ̃n−1(γ)− µ̃n(γ)]

= k (µ̃0(γ)− µ̃k−1(γ))−

[
k−2∑
l=0

µ̃l(γ)− (k − 1)µ̃k−1(γ)

]

= kµ̃0(γ)−
(
k +

1

2

)γ
+

(
1

2

)γ
. (5.337)

We need to consider two cases.

Case 1

Case 1 occurs if the first term satisfies(
1− λ̃qµ̃0(γ)

)
≥ 0. (5.338)
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Using Equation (5.337) into Equation (5.335), we then have

|ξk+1| ≤ c2∆t

{[
1− λ̃qµ̃0(γ)

]
k + λ̃q

[
kµ̃0(γ)−

(
k +

1

2

)γ
+

(
1

2

)γ]
+

1

1− Vq + Vqd
(

1
2

)γ
}
|η1|

≤ c2∆t

[
k +

1

1− Vq + Vqd
(

1
2

)γ
]
|η1| − c2∆tλ̃q

[(
k +

1

2

)γ
−
(

1

2

)γ]
|η1|. (5.339)

Since for 0 < γ ≤ 1 we have
(
k + 1

2

)γ − (1
2

)γ
> 0, and by using Equation (5.336), we then

conclude that for n = k + 1

|ξk+1| ≤ c2∆t(k + 1)|η1|. (5.340)

Hence if 0 ≤ λ̃q ≤ 2γ and
(

1− λ̃qµ̃0(γ)
)
≥ 0 then Equation (5.329) is satisfied for all

j ≥ 0. The proof of the proposition is completed for case 1.

Case 2

Case 2 occurs if the first term satisfies(
1− λ̃qµ̃0(γ)

)
≤ 0. (5.341)

From Lemma 5.6.1 we have 0 ≤ λ̃q ≤ 2γ and 0 < γ < 1, then using Equation (5.337) in

Equation (5.335), we then have

|ξk+1| ≤ c2∆t

{[
λ̃qµ̃0(γ)− 1

]
k + λ̃q

[
kµ̃0(γ)−

(
k +

1

2

)γ
+

(
1

2

)γ]
+

1

1− Vq + Vqd
(

1
2

)γ
}
|η1|

≤ c2∆t

[
2λ̃qµ̃0(γ)k +

1

1− Vq + Vqd
(

1
2

)γ
]
|η1| − c2∆tλ̃q

[(
k +

1

2

)γ
−
(

1

2

)γ]
|η1|

≤ c2∆t(2γ+1µ̃0(γ)k + 1)|η1|, (5.342)

since for 0 < γ ≤ 1 and 0 ≤ λ̃q ≤ 2γ , the term 0 < 2γ+1µ̃0(γ) ≤ 4. We then conclude that

for n = k + 1

|ξk+1| ≤ 4c2∆t(k + 1)|η1|, (5.343)

but this does not satisfy the assumption in Equation (5.333) and so convergence in this

case cannot be confirmed.
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5.6.2 Convergence of the KBMC3 Scheme

In this section similar to Section 5.6.1, we will discuss the convergence of the KBMC3

scheme, in Equation (5.70) we assume that

Rj+1
i =

∆x2

4∆t

[
δ2
xU

j+1
i − δ2

xU
j
i

]
+

1

∆t

[
U j+1
i − U ji

]
− 1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
(5.344)

− D∆tγ−1α̂j(γ)

Γ(1 + γ)

[
δ2
xU

1
i + δ2

xU
0
i − 2δ2

xU
1
2
i

]
− D∆tγ−1

Γ(1 + γ)

j∑
k=1

µ̂j−k(γ)

[
1

2

(
δ2
xU

k+1
i − δ2

xU
k−1
i

)
−
(
δ2
xU

k+ 1
2

i − δ2
xU

k− 1
2

i

)]

− D∆tγ−1

Γ(1 + γ)

{
β̂j(γ)δ2

xU
0
i + 2α̂j(γ)δ2

xU
1
2
i +

j∑
k=1

µ̂j−k(γ)

(
δ2
xU

k+ 1
2

i − δ2
xU

k− 1
2

i

)}
,

where δ2
xU

j
i is given by Equation (5.90), and according to the C3 scheme, we have[

d1−γf(t)

dt1−γ

∣∣∣∣j+
1
2

C3

=
D∆tγ−1

Γ(1 + γ)

{
β̂j(γ)f0 + 2α̂j(γ)f 1

2
+

j∑
k=1

µ̂j−k(γ)
(
fk+ 1

2
− fk− 1

2

)}
+O(∆t1+γ).

(5.345)

Now using Equations (5.94) – (5.98) and (5.345), Equation (5.344) becomes

Rj+1
i =

[
∂U

∂t

∣∣∣∣j+ 1
2

i

−D
[
∂1−γ

∂1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

− [f |j+
1
2

i +O(∆t1+γ + ∆x2). (5.346)

We then have

Rj+1
i = O(∆t1+γ + ∆x2) , (5.347)

where i = 1, 2, . . . , N and j = 1, 2, . . . ,M , since i, j are finite, there is a positive constant

c1 for all i, j such that

|Rj+1
i | ≤ c1(∆t1+γ + ∆x2). (5.348)

In Equation (5.344) we have

∆x2δ2
xU

j+1
i + 4U j+1

i = ∆x2δ2
xU

j
i + 4U ji + 2∆t

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
(5.349)

+
4D∆tγ

Γ(1 + γ)

{
κj(γ)δ2

xU
0
i + α̂j(γ)δ2

xU
1
i +

1

2

j∑
k=1

µ̂j−k(γ)
[
δ2
xU

k+1
i − δ2

xU
k−1
i

]}
+ 4∆tRj+1

i ,

subtracting (5.70) from (5.349), gives

∆x2δ2
xE

j+1
i + 4Ej+1

i = ∆x2δ2
xE

j
i + 4Eji (5.350)

+
4D∆tγ

Γ(1 + γ)

{
κj(γ)δ2

xE
0
i + α̂j(γ)δ2

xE
1
i +

1

2

j∑
k=1

µ̂j−k(γ)
[
δ2
xE

k+1
i − δ2

xE
k−1
i

]}
+ 4∆tRj+1

i .
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Using Equations (5.310) and (5.311) in (5.350) gives

ξj+1 = ξj − λ̂q

{
κj(γ)ξ0 + α̂j(γ)ξ1 +

1

2

j∑
k=1

µ̂j−k(γ) [ξk+1 − ξk−1]

}
+

∆tηj+1

1− Vq
, (5.351)

where Vq is given in Equation (5.325), and λ̂q is defined as

λ̂q =
Vqd

1− Vq
, (5.352)

where d is as define in Equation (5.53), for Vqd > 0 and 0 < Vq ≤ 1, then λ̂q > 0. When

j ≥ 2, Equation (5.351) can be written as

ξj+1 =
1

1 + λ̂qµ̂0(γ)/2

{(
1− λ̂qµ̂1(γ)/2

)
ξj − λ̂q

[
(κj(γ)− µ̂j−1(γ)/2) ξ0

+ (α̂j(γ)− µ̂j−2(γ)/2) ξ1 +

j−1∑
k=2

ϕj−k(γ)ξk

]
+ ∆tηj+1

}
, (5.353)

where the weights α̂j(γ), µ̂j(γ) and κj(γ) are given in Equations (5.55), (5.57) and (5.61),

and ϕj(γ) is given in Equation (5.208).

Proposition 5.6.3. Let ξj be the solution of Equation (5.351). Then there exists a

positive constant c2 such that

|ξj | ≤ c2j∆t|η1|, j = 1, 2, . . . ,M. (5.354)

if λ̂q ≤ 2/µ̂1(γ) and 0 < γ ≤ 1.

Proof. From Equations (5.309) and (5.348), we conclude that

‖Rj‖2 ≤ c2

√
N∆x(∆t+ ∆x2) = c2

√
L(∆t+ ∆x2), (5.355)

where j = 1, 2, . . . ,M . We use mathematical induction to prove Equation (5.354).

First start with j = 0, and then using Equation (5.312), Equation (5.351) becomes

ξ1 =
∆t

(1− Vq)(1 + λ̂qα̂0(γ))
η1. (5.356)

since α̂0(γ) =
(

1
2

)γ
, 0 ≤ Vq < 1 and λ̂q > 0, we obtain

|ξ1| ≤
∆t

(1− Vq)
(

1 + λ̂q
(

1
2

)γ) |η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (5.357)
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For j = 1, from Equation (5.351) and using Equation (5.356), we have

ξ2 = ξ1 − λ̂q

{
κ1(γ)ξ0 + α̂1(γ)ξ1 +

1

2

1∑
k=1

µ̂j−k(γ) [ξk+1 − ξk−1]

}
+

∆t

1− Vq
η2

=
(

1− λ̂qα̂1(γ)
)
ξ1 −

1

2
λ̂qξ2 +

∆t

1− Vq
η2

=
(

1− λ̂qα̂1(γ)
)( ∆t

(1− Vq)(1 + λ̂qα̂0(γ))

)
η1 −

1

2
λ̂qξ2 +

∆t

1− Vq
η2. (5.358)

Equation (5.358) simplifies to

|ξ2| ≤
∆t

(1− Vq)
(

1 + 1
2 λ̂q

) {∣∣∣∣∣ 1− λ̂qα̂1(γ)

1 + λ̂qα̂0(γ))

∣∣∣∣∣+ c2

}
|η1|. (5.359)

Now rewrite the term as

1− λ̂qα̂1(γ)

1 + λ̂qα̂0(γ))
= 1− α̂1(γ) + α̂0(γ)

1

λ̂q
+ α̂0(γ)

, (5.360)

since 0 < λ̂q <∞, then we have

0 <
α̂1(γ) + α̂0(γ)

1

λ̂q
+ α̂0(γ)

<
α̂1(γ) + α̂0(γ)

α̂0(γ)
.

Now for 0 < γ ≤ 1, we have

α̂1(γ) + α̂0(γ)

α̂0(γ)
= 1 +

α̂1(γ)

α̂0(γ)
< 2, (5.361)

where α̂1(γ) =
(

3
2

)γ − 1 and α̂0(γ) =
(

1
2

)γ
, which is satisfies

1 > 1− α̂1(γ) + α̂0(γ)
1
Uq

+ α̂0(γ)
> −1,

we then obtain the bound of

∣∣∣∣1− α̂1(γ)+α̂0(γ)
1
Uq

+α̂0(γ)

∣∣∣∣ ≤ 1, and then we conclude that

|ξ2| ≤
(1 + c2)∆t

(1− Vq)
(

1 + 1
2 λ̂q

) |η1| ≤ 2c2∆t|η1|, (5.362)

where for 0 < λ̂q <∞ and 0 < Vq < 1, we have 0 < 1

(1−Vq)(1+ 1
2
λ̂q)

< 1.

Hence for n = 2 we have |ξ2| ≤ 2c2∆t|η1|.

Suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k. (5.363)
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For 0 < γ < 1 and λ̂q > 0, from Equation (5.353) we then have

|ξk+1| ≤
1

1 + λ̂qµ̂0(γ)/2

{∣∣∣1− λ̂qµ̂1(γ)/2
∣∣∣ |ξk|+ λ̂q |µ̂k−1(γ)/2− κk(γ)| |ξ0|

+λ̂q |µ̂k−2(γ)/2− α̂k(γ)| |ξ1|+ λ̂q

k−1∑
l=2

| − ϕk−l(γ)||ξl|+ ∆t|ηk+1|

}
. (5.364)

Now using Equations (5.312) and (5.363), we then have

|ξk+1| ≤
c2∆t

1 + λ̂qµ̂0(γ)/2

{∣∣∣1− λ̂qµ̂1(γ)/2
∣∣∣ k + λ̂q |µ̂k−2(γ)/2− α̂k(γ)|

+λ̂q

k−1∑
l=2

l| − ϕk−l(γ)|+ 1

}
|η1|. (5.365)

The sign of the first term 1−λ̂qµ̂1(γ)/2 may be positive or negative. Also for 0 < γ < 1 and

λ̂q > 0, we have 0 ≤ 1

1+λ̂qµ̂0(γ)/2
≤ 1. From Lemma 5.5.7 we have [µ̂k−2(γ)/2− α̂k(γ)] > 0

and ϕj(γ) < 0, then −ϕj(γ) > 0, we then evaluate the summation to find

k−1∑
l=2

l (−ϕk−l(γ)) =
1

2

k−1∑
l=2

l [−(k − l + 2)γ + (k − l + 1)γ + (k − l)γ − (k − l − 1)γ ]

=
1

2

[
−
k−1∑
l=2

l(k − l + 2)γ +
k−1∑
l=2

l(k − l + 1)γ +
k−1∑
l=2

l(k − l)γ −
k−1∑
l=2

l(k − l − 1)γ

]

=
1

2

[
−
k−2∑
l=1

(k − l + 1)γ − kγ + (k − 1)2γ +
k∑
l=3

(k − l)γ + 2(k − 2)γ

]

=
1

2
[−2kγ − (k − 1)γ + (k − 2)γ + 1 + 2γk] . (5.366)

We need to consider two cases.

Case 1

Case 1 occurs if the first term satisfies(
1− λ̂qµ̂1(γ)/2

)
≥ 0. (5.367)
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Using Equation (5.366) in Equation (5.365), we then have

|ξk+1| ≤
c2∆t

1 + λ̂q
1
2

{(
1− λ̂q

1

2
(2γ − 1)

)
k + λ̂q

[
1

2
((k − 1)γ − (k − 2)γ)−

((
k +

1

2

)γ
− kγ

)]
+λ̂q

1

2
[−2kγ − (k − 1)γ + (k − 2)γ + 1 + 2γk] + 1

}
|η1|

=
c2∆t

1 + λ̂q
1
2

[
k − λ̂q

1

2
k − λ̂q

(
k +

1

2

)γ
+ λ̂q

1

2
+ 1

]
|η1|

=
c2∆t

1 + λ̂q
1
2

[
(k + 1)

(
1 + λ̂q

1

2

)
− λ̂q

(
k +

(
k +

1

2

)γ)]
|η1|

≤ c2∆t(k + 1)|η1|. (5.368)

We then conclude that for n = k + 1

|ξk+1| ≤ c2∆t(k + 1)|η1|, (5.369)

Hence all j ≥ 0 if
(

1− λ̂qµ̂1(γ)/2
)
≥ 0 then Equation (5.354) is satisfied. The proof of

the proposition is completed for case 1.

Case 2

Case 2 occurs if the first term satisfies(
1− λ̂qµ̂1(γ)/2)

)
≤ 0. (5.370)

As 0 ≤ λ̂q ≤ 2γ and 0 < γ < 1, then using Equation (5.366) in Equation (5.365), we then

have

|ξk+1| ≤
c2∆t

1 + λ̂q
1
2

{(
λ̂q

1

2
(2γ − 1)− 1

)
k + λ̂q

[
1

2
((k − 1)γ − (k − 2)γ)−

((
k +

1

2

)γ
− kγ

)]
+λ̂q

1

2
[−2kγ − (k − 1)γ + (k − 2)γ + 1 + 2γk] + 1

}
|η1|

=
c2∆t

1 + λ̂q
1
2

[
λ̂q2

γk −
(
λ̂q

1

2
+ 1

)
k − λ̂q

(
k +

1

2

)γ
+ λ̂q

1

2
+ 1

]
|η1|

≤ c2∆t

[(
λ̂q2

γ

1 + λ̂q
1
2

− 1

)
k + 1

]
|η1| − c2∆t

λ̂q
(
k + 1

2

)γ
1 + λ̂q

1
2

|η1|, (5.371)

since for 0 < γ ≤ 1 and λ̂q > 0 then the term 1 ≤
(

λ̂q2γ

1+λ̂q
1
2

− 1

)
≤ 3. We then conclude

that

|ξk+1| ≤ 2γ+1c2∆t(k + 1)|η1|. (5.372)

The result for the second case cannot satisfy Equation (5.354), since we obtain a constant

which is bigger than the constant given in Equation (5.363).
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5.6.3 Convergence of the KBML1 Scheme

In this section similar to Sections 5.6.1 and 5.6.2, we will discuss the convergence of the

KBMC3 scheme, in Equation (5.88) we assume that

Rji =
∆x2

4∆t

[
δ2
xU

j
i − δ

2
xU

j−1
i

]
+

1

∆t

[
U ji − U

j−1
i

]
(5.373)

− D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xU
0
i +

j−1∑
k=0

µj−k(γ)
(
δ2
xU

k+1
i − δ2

xU
k
i

)}
− 1

2

[
f j
i− 1

2

+ f j
i+ 1

2

]
,

where δ2
xU

j
i is given by Equation (5.90), and according to the L1 scheme, we have[

d1−γf(t)

dt1−γ

∣∣∣∣j
L1

=
∆tγ−1

Γ(1 + γ)

{
βj(γ)f0 +

j−1∑
k=0

µj−k(γ) [fk+1 − fk]

}
+O(∆t1+γ). (5.374)

Now using Equations (5.94), (5.95), (5.119) and (5.121), Equation (5.373) becomes

Rji =

[
∂U

∂t

∣∣∣∣j
i

−D
[
∂1−γ

∂1−γ

(
∂2U

∂x2

)∣∣∣∣j
i

− [f |ji +O(∆t+ ∆x2). (5.375)

We then have

Rji = O(∆t+ ∆x2), i = 1, 2, . . . , N, j = 1, 2, . . . ,M, (5.376)

since i, j are finite, there is a positive constant c1 for all i, j such that

|Rji | ≤ c1(∆t+ ∆x2). (5.377)

In Equation (5.373) we have

∆x2δ2
xU

j
i + 4U ji = ∆x2δ2

xU
j−1
i + 4U j−1

i + 2∆t

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
(5.378)

+
4D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xU
0
i +

j−1∑
k=0

µj−k(γ)
(
δ2
xU

k+1
i − δ2

xU
k
i

)}
+ 4∆tRji .

Subtracting (5.88) from (5.378) gives

∆x2δ2
xE

j
i + 4Eji = ∆x2δ2

xE
j−1
i + 4Ej−1

i (5.379)

+
4D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xE
0
i +

j−1∑
k=0

µj−k(γ)
(
δ2
xE

k+1
i − δ2

xE
k
i

)}
+ 4∆tRji .

Using Equations (5.310) and (5.311) in (5.379), we then have

(1− Vq)ξj = (1− Vq)ξj−1 − Vqd

{
βj(γ)ξ0 +

j−1∑
k=0

µj−k(γ) [ξk+1 − ξk]

}
+ ∆tηj , (5.380)
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where Vq is given by Equations (5.325). Equation (5.381) can be written as

ξj =
1

1− Vq + Vqd

{
(1− Vq)ξj−1 − Vqd

[
αj(γ)ξ0 +

j−1∑
k=1

ωj−k(γ)ξk

]
+ ∆tηj

}
, (5.381)

where j = 1, 2, . . . ,M , and the weights αj(γ), and ωj(γ) are given in Equations (5.277)

and (5.278) respectively.

Proposition 5.6.4. Let ξj be the solution of Equation (5.381). Then there exists a

positive constant c2 such that

|ξj | ≤ c2j∆t|η1|, j = 1, 2, . . . ,M. (5.382)

Proof. From Equations (5.309) and (5.377), we get

‖Rj‖2 ≤ c2

√
N∆x(∆t+ ∆x2) = c2

√
L(∆t+ ∆x2), j = 1, 2, . . . ,M. (5.383)

We apply the mathematical induction to prove the relation given in (5.382). For j = 0,

using Equation (5.312) in Equation (5.381), we then have

ξ1 =
∆t

1− Vq + Vqd
η1, (5.384)

since 0 < Vq < 1 and Uq > 0, Equation (5.443) becomes

|ξ1| ≤
∆t

1− Vq + Vqd
|η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (5.385)

Now suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k − 1. (5.386)

For 0 < γ < 1 and Uq > 0, from Equation (5.381), we have

|ξk| ≤
1

|1− Vq + Vqd|

{
|1− Vq||ξk−1|+ Vqd

[
| − αk(γ)||ξ0|+

k−1∑
l=1

| − ωk−l(γ)||ξl|

]
+ ∆t|ηk|

}
.

(5.387)

Now using Equations (5.312) and (5.448), we then have

|ξk| ≤
c2∆t

|1− Vq + Vqd|

{
|1− Vq|(k − 1) + Vqd

k−1∑
l=1

l| − ωk−l(γ)|+ 1|

}
|η1|. (5.388)

For 0 < γ < 1, 0 < Vq < 1 the term 0 < 1− Vq ≤ 1, and for Vqd > 0, the term

0 ≤ 1

1− Vq + Vqd
≤ 1. (5.389)
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By Lemma 5.5.5 the weight ωj(γ) is negative then −ωj(γ) > 0. Now evaluate the sum-

mation to find

k−1∑
l=1

l (−ωk−l(γ)) =

k−1∑
l=1

l [−(k − l + 1)γ + 2(k − l)γ − (k − l − 1)γ ]

= 2

k−1∑
l=1

(k − l)lγ −
k∑
l=2

(k − l + 1)lγ −
k−2∑
l=0

(k − l − 1)lγ

= k − kγ . (5.390)

Using Equation (5.390) in Equation (5.388), we then have

|ξk| ≤
c2∆t

1− Vq + Vqd

[
(1− Vq)(k − 1) + Vqd (k − kγ) + 1

]
|η1|

= c2∆tk|η1|+
r1∆t (Vq − Vqdkγ)

1− Vq + Vqd
|η1|

≤ c2∆tk|η1|. (5.391)

Since for 0 < γ < 1, 0 < Vq ≤ 1 and Vqd > 0, we have −kγ ≤ (Vq−Vqd kγ)
1−Vq+Vqd < 0. We then

conclude that for n = k

|ξk| ≤ c2k∆t|η1|. (5.392)

Hence for all n ∈ IN we have |ξn| ≤ c2n∆t|η1|. The proof of the proposition is completed.

Theorem 5.6.5. Let u(x, t) ∈ U(Ω) be the exact solution for the fractional subdiffusion

equation. Then the numerical scheme given by Equations (5.52), if λ̃q = min(µ̃0(γ), 2γ),

and (5.70), if λ̂q ≤ 2/µ̂1(γ), are convergent with order O(∆t1+γ + ∆x2) and Equa-

tion (5.88) is convergent with order O(∆t+ ∆x2).

Proof. Using Equations (5.308) and (5.309) with Equation (5.320) and Proposition 5.6.2

or with Equation (5.348) and Proposition 5.6.3, j∆t ≤ T , we then obtain

‖Ej‖2 ≤ c2∆tk‖R1‖ ≤ c1c2j∆t
√
L(∆t1+γ + ∆x2) ≤ C(∆t1+γ + ∆x2), (5.393)

but with Equation (5.377) and Proposition 5.6.4, j∆t ≤ T , gives the order

‖Ej‖2 ≤ c2j∆t‖R1‖ ≤ c1c2j∆t
√
L(∆t+ ∆x2) ≤ C(∆t+ ∆x2), (5.394)

where C = c1c2T
√
L.
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5.7 Solution of Fractional Advection-Diffusion Equation (FADE)

by the KBMC2 Scheme

5.7.1 Derivation of the Numerical Method for FADE

In this section a numerical scheme for solving Equation (5.17) will be developed based

upon the Keller Box method and the C2 scheme approximation for the fractional deriva-

tive given in Equation (5.26). We refer to this approximation as the KBMC2-FADE

scheme. Similar to the KBMC2 scheme in Section 5.2.1, we approximate Equation (5.17)

at the point
(
xi− 1

2
, tj+ 1

2

)
as

[
∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D

[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j+
1
2

i− 1
2

+Kγ

[
∂1−γ

∂t1−γ

(
∂u

∂x

)∣∣∣∣j+
1
2

i− 1
2

+ f
(
xi− 1

2
, tj+ 1

2

)
. (5.395)

Using a similar process, as given in Section 5.2.1, we approximate the fractional derivative

in Equation (5.395) using Equations (5.26) – (5.28), and then Equation (5.395) is replaced

by the equation

uji − u
j
i−1

∆xi
=
vji + vji−1

2
, (5.396)

and

uj+1
i + uj+1

i−1

2∆t
−
uji + uji−1

2∆t
=

D∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
v0
i − v0

i−1

)
+ 2

(
1

2

)γ (vji + vj+1
i

2
−
vji−1 + vj+1

i−1

2

)
− 2

(
1

2

)γ (
vji − v

j
i−1

)
+

j∑
k=1

µ̃j−k(γ)
[
vki − vki−1 −

(
vk−1
i − vk−1

i−1

)]}
+

Kγ∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
u0
i − u0

i−1

)
+ 2

(
1

2

)γ (uji + uj+1
i

2
−
uji−1 + uj+1

i−1

2

)
− 2

(
1

2

)γ (
uji − u

j
i−1

)
+

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 −

(
uk−1
i − uk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

, (5.397)

where the weights, β̃j(γ) and µ̃j−k(γ), are as defined previously in Equations (5.27) and

(5.28). Using Equation (5.396) in Equation (5.397) then gives an equation between ui
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and vi

uj+1
i + uj+1

i−1

2∆t
− Kγ∆tγ−1

∆xiΓ(1 + γ)

(
1

2

)γ (
uj+1
i − uj+1

i−1

)
=
uji + uji−1

2∆t

+
2D∆tγ−1

∆xiΓ(1 + γ)

{
−β̃j(γ)

∆xi

(
u0
i − u0

i−1

)
+ β̃j(γ)v0

i −
1

∆xi

(
1

2

)γ (
uj+1
i − uj+1

i−1

)
+

(
1

2

)γ
vj+1
i +

1

∆xi

(
1

2

)γ (
uji − u

j
i−1

)
−
(

1

2

)γ
vji +

j∑
k=1

µ̃j−k(γ)
(
vki − vk−1

i

)

− 1

∆xi

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 −

(
uk−1
i − uk−1

i−1

)]}

+
Kγ∆tγ−1

∆xiΓ(1 + γ)

{
β̃j(γ)

(
u0
i − u0

i−1

)
−
(

1

2

)γ (
uji − u

j
i−1

)
+

j∑
k=1

µ̃j−k(γ)
[
uki − uki−1 −

(
uk−1
i − uk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

. (5.398)

Similarly by replacing i by i+ 1 in Equation (5.396) and (5.397), we have the equations

uji+1 − u
j
i

∆xi+1
=
vji+1 + vji

2
, (5.399)

and

uj+1
i+1 + uj+1

i

2∆t
−
uji+1 + uji

2∆t
=

D∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

(
v0
i+1 − v0

i

)
+ 2

(
1

2

)γ (vji+1 + vj+1
i+1

2
−
vji + vj+1

i

2

)
− 2

(
1

2

)γ (
vji+1 − v

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
vki+1 − vki −

(
vk−1
i+1 − v

k−1
i

)]}
+

Kγ∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

(
u0
i+1 − u0

i

)
+ 2

(
1

2

)γ (uji+1 + uj+1
i+1

2
−
uji + uj+1

i

2

)
− 2

(
1

2

)γ (
uji+1 − u

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}
+ [f |j+

1
2

i+ 1
2

. (5.400)
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Solving Equation (5.399) to find vjj+1 and then combining with Equation (5.400) gives a

second equation involving ui and vi

uj+1
i+1 + uj+1

i

2∆t
− 2Kγ∆tγ−1

∆xi+1Γ(1 + γ)

(
1

2

)γ (
uj+1
i+1 − u

j+1
i

)
=
uji+1 + uji

2∆t

+
2D∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

∆xi+1

(
u0
i+1 − u0

i

)
− β̃j(γ)v0

i +
1

∆xi+1

(
1

2

)γ (
uj+1
i+1 − u

j+1
i

)
−
(

1

2

)γ
vj+1
i − 1

∆xi+1

(
1

2

)γ (
uji+1 − u

j
i

)
+

(
1

2

)γ
vji −

j∑
k=1

µ̃j−k(γ)
(
vki − vk−1

i

)

+
1

∆xi+1

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}
+

Kγ∆tγ−1

∆xi+1Γ(1 + γ)

{
β̃j(γ)

(
u0
i+1 − u0

i

)
−
(

1

2

)γ (
uji+1 − u

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}
+ [f |j+

1
2

i+ 1
2

. (5.401)

Now multiplying Equation (5.398) by ∆xi and Equation (5.401) by ∆xi+1, and adding

the two gives the equation for uji at each grid point i and time step j

∆xi
2∆t

[
uj+1
i + uj+1

i−1

]
+

∆xi+1

2∆t

[
uj+1
i+1 + uj+1

i

]
− Kγ∆tγ−1

Γ(1 + γ)

(
1

2

)γ [(
uj+1
i+1 − u

j+1
i

)
+
(
uj+1
i − uj+1
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. (5.402)

Equation (5.402) can be rewritten as

Aiu
j+1
i+1 +Diu

j+1
i +Biu

j+1
i−1 = Ci + ∆xi [f |j+

1
2

i− 1
2

+ ∆xi+1 [f |j+
1
2

i+ 1
2

, (5.403)
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where

Ai =
∆xi+1

2∆t
− Kγ∆tγ−1

Γ(1 + γ)

(
1

2

)γ
− 2D∆tγ−1

∆xi+1Γ(1 + γ)

(
1

2

)γ
, (5.404)

Bi =
∆xi
2∆t

− Kγ∆tγ−1

Γ(1 + γ)

(
1

2

)γ
+

2D∆tγ−1

∆xiΓ(1 + γ)

(
1

2

)γ
, (5.405)

Di =
∆xi + ∆xi+1

2∆t
+

2D∆tγ−1

Γ(1 + γ)

(
1

2

)γ [ 1

∆xi
+

1

∆xi+1

]
, (5.406)

and

Ci = Aiu
j
i+1 +Diu

j
i +Biu

j
i−1 + β̃j(γ)

(
aiu

0
i+1 − ciu0
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0
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)
+
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k
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(
aiu
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i−1

)]
. (5.407)

In Equation (5.407) the constants, ai, bi, and ci, are given by

ai =
Kγ∆tγ−1

Γ(1 + γ)
+

2D∆tγ−1

∆xi+1Γ(1 + γ)
, (5.408)

bi =
2D∆tγ−1

∆xiΓ(1 + γ)
− Kγ∆tγ−1

Γ(1 + γ)
, (5.409)

and

ci =
2D∆tγ−1

Γ(1 + γ)

[
1

∆xi
+

1

∆xi+1

]
. (5.410)

In the case of constant grid spacing ∆xi = ∆x, Equations (5.403) – (5.410) after simpli-

fying, reduce to the equation(
uj+1
i+1 + 2uj+1

i + uj+1
i−1

)
−
(

1

2

)γ [
(d1 + d2)uj+1
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+
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)
, (5.411)

where

d1 =
4D∆tγ

∆x2Γ(1 + γ)
, and d2 =

2Kγ∆tγ

∆xΓ(1 + γ)
. (5.412)
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5.7.2 Accuracy of the Numerical Method

In this section, we consider the accuracy of the numerical scheme KBMC2-FADE method

given by Equation (5.411). First we let

4xu
j
i =

uji+1 − u
j
i−1

2∆x
, (5.413)

and then rewrite Equation (5.411) as

∆x2

4∆t
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+
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+
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+ f
j+ 1

2

i+ 1
2

]
, (5.414)

where δ2
xu

j
i is defined in Equation (5.90). Noting the terms on the fourth and fifth lines

in Equation (5.414) as the C2 approximation (5.26) with u(t) replaced by δ2
xu(t) and by

4xu(t) respectively, we can further rewrite Equation (5.414) as

∆x2

4∆t

[
δ2
xu
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]
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1
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. (5.415)
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Adding and subtracting the exact fractional derivative, Equation (5.415) becomes
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. (5.416)

Taking the Taylor series expansion around the point xi = i∆x in space, we have

4xU
j
i '

[
∂U

∂x

∣∣∣∣j
i

+
∆x2

12

[
∂3U

∂x3
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i

+O(∆x4). (5.417)

Also expanding the Taylor series around the point (xi, tj+ 1
2
), we find

4xU
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j
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(5.418)

Using Equations (5.94) – (5.98), and Equations (5.417) and (5.418) in Equation (5.416),

we then have[
∂U

∂t

∣∣∣∣j+ 1
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+O(∆x4). (5.419)
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This equation is then simplified to[
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(5.420)

where

M = max
(i−1)∆x≤x≤(i+1)∆x

∣∣∣∣∂4U

∂x4

∣∣∣∣ , and M∗ = max
(i−1)∆x≤x≤(i+1)∆x

∣∣∣∣∂3U

∂x3

∣∣∣∣ . (5.421)

By Equation (2.149) we note the terms[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
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, (5.422)

and [
∂1−γ

∂t1−γ

(
∂U

∂x
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1
2

C2,i

−
[
∂1−γ

∂t1−γ

(
∂U

∂x

)∣∣∣∣j+
1
2

i

, (5.423)

are both O(∆t1+γ). Consequently the truncation error, τi,j , is then of order 1 + γ in time

and second order in space, i.e.

τi,j = O(∆t1+γ) +O(∆x2). (5.424)

5.7.3 Consistency of the Numerical Method

The numerical approximation for the fractional advection–differential equation is consis-

tent, since as in previous sections, the truncation error in Equation (5.424) obeys the

limit

lim
∆t→0
∆x→0

τi,j = 0. (5.425)

This means that the KBMC2-FADE method is consistent with the original fractional

partial differential equation, in Equation (5.17) .
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5.7.4 Convergence of the KBMC2-FADE Scheme

In this section similar Sections 5.6.1 – 5.6.3, we will discuss the convergence of the

KBMC2-FADE scheme, in Equation (5.411) we assume that
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]
(5.426)
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+
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,

where δ2
xU

j
i and 4xU

j
i are given by Equation (5.90) and (5.413) respectively. The last

two terms in the right hand represent the C2 approximation (5.26) with U(t) replaced by

δ2
xU(t) and 4xU(t). Using Equations (5.94) – (5.98), and Equations (5.417) and (5.418),

Equation (5.426) becomes
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(5.427)

We then have

Rj+1
i = O(∆t1+γ + ∆x2), i = 1, 2, . . . , N, j = 1, 2, . . . ,M, (5.428)

since i, j are finite, there is a positive constant c1 for all i, j such that

|Rj+1
i | ≤ c1(∆t1+γ + ∆x2). (5.429)

From Equation (5.426) we have(
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i , (5.430)
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where σ1 and σ2 are given by

σ1 =
4D∆tγ
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, and σ2 =
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. (5.431)

Subtracting (5.411) from (5.430) gives(
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Using Equations (5.310) and (5.311) in (5.432), we then have[(
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2

(
1

2

)γ
i sin(q∆x)

]
ξj

+

(
d2

2
i sin(q∆x)− d1 sin2

(
q∆x

2

)){
β̃j(γ)ξ0 +

j∑
k=1

µ̃j−k(γ) [ξk − ξk−1]

}
+ ∆tηj+1,

where d1 and d2 are defined in Equation (5.412), and

δ2
xE

j
i =

1

∆x2

(
−4 sin2

(
q∆x

2

))
ei
′qi∆xξj (5.434)

and

4xE
j
i =

1

2∆x
(2i sin (q∆x)) ei

′qi∆xξj (5.435)

Equation (5.433) simplifies to

ξj+1 = ξj − Ũq

{
β̃j(γ)ξ0 +

j∑
k=1

µ̃j−k(γ) [ξk − ξk−1]

}
+

∆t

1 + z
ηj+1, (5.436)

where

z = sin2

(
q∆x

2

)((
1

2

)γ
d1 − 1

)
− d2

2

(
1

2

)γ
sin(q∆x)i, (5.437)

where 0 < sin2
(
q∆x

2

)
< 1 and −1 < sin(q∆x) < 1. The coefficient Ũq is given by

Ũq =
d1 sin2 (q∆x/2)− d2

2 sin(q∆x)i

1 + sin2 (q∆x/2)
((

1
2

)γ
d1 − 1

)
− d2

2

(
1
2

)γ
sin(q∆x)i

= 2γ

(
1
2

)γ [
d1 sin2 (q∆x/2)− d2

2 sin(q∆x)i
]

1 + sin2 (q∆x/2)
((

1
2

)γ
d1 − 1

)
− d2

2

(
1
2

)γ
sin(q∆x)i

, (5.438)
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Equation (5.438) simplifies to

Ũq = 2γ
[
x+ z

1 + z

]
, (5.439)

where z is given in Equation (5.437), x = sin2 (q∆x/2) and 0 ≤ x ≤ 1. Equation (5.436)

can be written as

ξj+1 =
[
1− Ũqµ̃0(γ)

]
ξj − Ũq

{
α̃j(γ)ξ0 +

j−1∑
l=1

ω̃j−l(γ)ξl

}
+

∆t

1 + z
ηj+1, (5.440)

where the weights µ̃0(γ), α̃j(γ) and ω̃j(γ) are given in Equations (5.28), (5.143) and

(5.144) respectively.

Conjecture 5.7.1. Let ξj be the solution of Equation (5.440). Then there exist a positive

constant c2 such that

|ξj | ≤ c2j∆t|η1|, j = 1, 2, . . . ,M, (5.441)

if Re(z) > 0 (d1 ≥ 2γ), where z is given by Equation (5.437).

Proof. From Equations (5.309) and (5.429), we obtain

‖Rj‖2 ≤ c2

√
N∆x(∆t1+γ + ∆x2) = c2

√
L(∆t1+γ + ∆x2), (5.442)

where j = 1, 2, . . . ,M . We use mathematical induction to prove the relation in Equa-

tion (5.441), consider the case j = 0. From Equation (5.440) and using Equation (5.312),

we have

ξ1 =
∆t

1 + z
η1, (5.443)

by using Lemma B.11.1, we have

|ξ1| ≤
∣∣∣∣ ∆t

1 + z

∣∣∣∣ |η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (5.444)

Hence Equation (5.441) is true for j = 0.

Now for case j = 1, from Equation (5.440) we then have

ξ2 =
[
1− Ũqµ̃0(γ)

]
ξ1 +

∆t

1 + z
η2, (5.445)
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by using Lemma B.11.1 and Equation (5.444) gives

|ξ2| ≤
∣∣∣1− Ũqµ̃0(γ)

∣∣∣ |ξ1|+
∣∣∣∣ ∆t

1 + z

∣∣∣∣ |η1|

≤ c2∆t
[∣∣∣1− Ũqµ̃0(γ)

∣∣∣+ 1
]
|η1|. (5.446)

From Lemma B.11.3 the term
∣∣∣1− Ũqµ̃0(γ)

∣∣∣ ≤ 1, we then conclude that

|ξ2| ≤ c22∆t|η1|. (5.447)

Hence for j = 1 Equation (5.440) is satisfied.

Suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k. (5.448)

From Equation (5.440), we have

|ξk+1| ≤
∣∣∣1− Ũqµ̃0(γ)

∣∣∣ |ξk|+ ∣∣∣Ũq∣∣∣
∣∣∣∣∣
k−1∑
l=1

(−ω̃k−l(γ))

∣∣∣∣∣ |ξl|+
∣∣∣∣ ∆t

1 + z

∣∣∣∣ |ηk+1| . (5.449)

Now using Equations (5.312) and (5.448) in to Equation (5.449), gives

|ξk+1| ≤ c2∆t

{∣∣∣1− Ũqµ̃0(γ)
∣∣∣ k +

∣∣∣Ũq∣∣∣
∣∣∣∣∣
k−1∑
l=1

(−ω̃k−l(γ))

∣∣∣∣∣ l +

∣∣∣∣ 1

1 + z

∣∣∣∣
}
|η1| . (5.450)

Since the weight −ω̃k−l(γ) is positive, and using Lemmas B.11.1, B.11.2 and B.11.3,

Equation (5.450) becomes

|ξk+1| ≤ c2∆t(k + 1) |η1|+ c2∆t |η1| 2γ
k−1∑
l=1

l(−ω̃k−l(γ)), (5.451)

after evaluating the summation, we then have

|ξk+1| ≤ c2∆t(k + 1) |η1|+ c2∆t [k(3γ − 1)− (2k + 1)γ + 1] |η1| , (5.452)

From the analysis, it can be seen that through the mathematical induction the relation

given in Equation (5.441) may not be satisfied, but in later Section 5.8 we have estimated

the convergence order numerically.
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5.8 Numerical Examples and Results

In this section, we provide three examples of the implementation of the four Keller Box

based schemes, KBMC2, KBMC3, KBML1, and KBMC2-FADE on problems where the

analytic solution is known. For each example we compare graphically the numerical

predictions against the exact solution. We also verify the accuracy of our scheme by

computing the maximum norm of the error between the numerical estimate and the exact

solution at the time t = tM .

These schemes are implemented in MATLAB R2014a (see Appendix C.4) using the lin-

solve subroutine to solve the system of algebraic equations.

Example 5.8.1. Consider the following fractional subdiffusion equation with a source

term

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ sin(πx)

[
2t+ π2

(
tγ−1

Γ(γ)
+

2tγ+1

Γ(2 + γ)

)]
, (5.453)

and the fractional advection–diffusion equation with source term

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2
+
∂u

∂x

)
+ 2t sin(πx) +

(
π2 sin(πx)− π cos(πx)

)( tγ−1

Γ(γ)
+

2tγ+1

Γ(2 + γ)

)
,

(5.454)

which will be solved on the domain 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 subject to the initial and

fixed boundary conditions

u(x, 0) = sin(πx), u(0, t) = 0, u(1, t) = 0. (5.455)

The exact solution of Equations (5.453) and (5.454) given the conditions (5.455) is

u(x, t) =
(
1 + t2

)
sin(πx). (5.456)

The error and order of convergence estimates found from applying the KBMC2, KBMC3

and KBML1 schemes on Equations (5.453) subject to Equation (5.455) are given in Ta-

bles 5.1 – 5.6 respectively. Results for Equation (5.454) are given in Tables 5.7 and 5.8.

To estimate the convergence in space we kept ∆t fixed at 10−3 whilst varying ∆x. To

estimate the convergence in time we kept ∆x fixed at 10−3 whilst varying ∆t.

From the results shown in Tables 5.1 – 5.4, 5.7 and 5.8, it can be seen that the KBMC2,

KBMC3 and KBMC2-FADE schemes appear to be of orderO(∆x2) andO(∆t1+γ). Whilst
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the KBML1 method is appears to be of order O(∆x2) and O(∆t), as shown by the results

in Tables 5.5 and 5.6.

Table 5.1: Numerical accuracy in ∆x of the KBMC2 scheme applied to Example 5.8.1 with

∆t = 10−3, where R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.17e–00 – 0.20e–00 – 0.19e–00 – 0.19e–00 –

1/4 0.32e–01 2.36 0.39e–01 2.37 0.37e–01 2.40 0.36e–01 2.41

1/8 0.76 e–02 2.09 0.92e–02 2.10 0.86e–02 2.11 0.84e–02 2.11

1/16 0.19e–02 2.01 0.23e–02 2.02 0.21e–02 2.03 0.21e–02 2.03

1/32 0.49e–03 1.94 0.57e–03 2.00 0.52e–03 2.01 0.51e–03 2.01

Table 5.2: Numerical accuracy in ∆t of the KBMC2 scheme applied to Example 5.8.1 with

∆x = 10−3, where R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.49e–02 – 0.60e–02 – 0.29e–02 – 0.25e–02 –

1/20 0.22e–02 1.16 0.20e–02 1.60 0.75e–03 1.96 0.63e–03 2.00

1/40 0.10e–03 1.14 0.66e–03 1.58 0.19e–03 1.95 0.16 e–03 2.00

1/80 0.46e–03 1.12 0.22e–03 1.56 0.51e–04 1.94 0.40e–04 1.99

1/160 0.21e–03 1.11 0.77e–04 1.54 0.13e–04 1.91 0.10e–04 1.94

Table 5.3: Numerical accuracy in ∆x of the KBMC3 scheme applied to Example 5.8.1 with

∆t = 10−3, and R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.17e–00 – 0.20e–00 – 0.19e–00 – 0.19e–00 –

1/4 0.32e–01 2.36 0.39e–01 2.37 0.37e–01 2.40 0.36e–01 2.41

1/8 0.75e–02 2.11 0.92e–02 2.10 0.86e–02 2.11 0.84e–02 2.11

1/16 0.17e–02 2.10 0.23e–02 2.03 0.21e–02 2.03 0.21e–02 2.03

1/32 0.34e–03 2.35 0.56e–03 2.01 0.52e–03 2.01 0.51e–03 2.01
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Table 5.4: Numerical accuracy in ∆t of the KBMC3 scheme applied to Example 5.8.1 with

∆x = 10−3, where R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.61e–01 – 0.11e–01 – 0.14e–02 – 0.25e–02 –

1/20 0.29e–01 1.05 0.44e–02 1.33 0.30e–03 2.22 0.63e–03 2.00

1/40 0.14e–01 1.07 0.17e–02 1.40 0.62e–04 2.28 0.16e–03 2.00

1/80 0.66e–02 1.08 0.61e–03 1.43 0.12e–04 2.36 0.39e–04 2.00

1/160 0.31 e–02 1.09 0.223e–03 1.46 0.20e–05 2.47 0.10e–04 1.99

Table 5.5: Numerical accuracy in ∆x of the KBML1 scheme applied to Example 5.8.1 where

∆t = 10−3, and R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.16e–00 – 0.20e–00 – 0.19e–00 – 0.19e–00 –

1/4 0.29e–01 2.40 0.39e–01 2.37 0.37e–01 2.40 0.36e–01 2.41

1/8 0.63e–02 2.22 0.90e–02 2.12 0.84e–02 2.13 0.82e–02 2.13

1/16 0.97e–03 2.68 0.21e–02 2.11 0.20e–02 2.11 0.19e–02 2.11

1/32 0.32e–03 1.64 0.38e–03 2.43 0.37e–03 2.39 0.37e–03 2.38

Table 5.6: Numerical accuracy in ∆t of the KBML1 scheme applied to Example 5.8.1 with

∆x = 10−3, where R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.74e–01 – 0.24e–01 – 0.11e–01 – 0.10e–01 -

1/20 0.35e–01 1.08 0.10e–01 1.23 0.55e–02 1.05 0.51e–02 1.00

1/40 0.17e–01 1.08 0.44e–02 1.20 0.27e–02 1.03 0.25e–02 1.00

1/80 0.78e–02 1.08 0.20e–02 1.18 0.13e–02 1.02 0.13e–02 1.00

1/160 0.37e–02 1.08 0.88e–03 1.14 0.66e–03 1.01 0.63e–03 1.00
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Table 5.7: Numerical accuracy in ∆x of the KBMC2-FADE scheme applied to Example 5.8.1

with ∆t = 10−3, and R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.17e–00 – 0.20e–00 – 0.19e–00 – 0.19e–00 –

1/4 0.31e–01 2.41 0.38e–01 2.42 0.36e–01 2.45 0.35e–01 2.46

1/8 0.74e–02 2.07 0.91e–02 2.07 0.84e–02 2.08 0.83e–02 2.08

1/16 0.19e–02 2.00 0.22e–02 2.01 0.21e–02 2.02 0.20e–02 2.02

1/32 0.48e–03 1.94 0.56e–03 2.00 0.52e–03 2.00 0.51e–03 2.00

Table 5.8: Numerical accuracy in ∆t of the KBMC2-FADE scheme applied to Example 5.8.1,

where ∆x = 10−3, and R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/20 0.22e–02 – 0.20e–02 – 0.75e–03 – 0.63e–03 –

1/40 0.10e–02 1.14 0.66e–03 1.58 0.19e–03 1.95 0.16e–03 2.00

1/80 0.46e–03 1.12 0.22e–03 1.56 0.50e–04 1.94 0.40e–04 1.99

1/160 0.21e–03 1.11 0.77e–04 1.54 0.13e–04 1.91 0.10e–04 1.95

1/320 0.98e–04 1.11 0.27e–04 1.51 0.40e–05 1.80 0.30e–05 1.80

The results of the solution of Equation (5.453) for the fractional exponent γ = 0.5, and

0 ≤ x ≤ 1, time 0 ≤ t ≤ 1 and ∆t = 10−3, by using the KBMC2, KBMC3, and KBML1

schemes are shown in Figures 5.14(a), 5.16(a) and 5.18(a) respectively, and for γ = 1 are

shown in Figures 5.15(a), 5.17(a) and 5.19(a) respectively. The numerical solution for

Equation (5.454), found using the KBMC2-FADE scheme, is shown in Figure 5.20(a) for

γ = 0.5 and in Figure 5.21(a) for γ = 1.

A comparison of the exact solution (shown as solid red lines) and the numerical solution

(shown as blue dots) of Equation (5.453), using the KBMC2 scheme, in the case the

fractional exponent γ = 0.5 at the times t = 0.25, 0.50, 0.75, and 1.00, is shown in Fig-

ure 5.14(b), and for γ = 1 is shown in Figure 5.15(b). Similarly in Figures 5.16(b), 5.18(b)

and 5.20(b), the results of applying the KBMC3, KBML1 and KBMC2-FADE schemes are

compared with the exact solution for γ = 0.5 at the same time. Figures 5.17(b), 5.19(b)

and 5.21(b) show the results for γ = 1. It can be seen that the approximate solutions
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obtained from all numerical schemes are in good agreement with the exact solution.

Results are not shown here for other values of γ. However the exact solution is the same

for all values of γ for both fractional partial differential equations in this example. Due

to the order of accuracy we don’t see much of a difference between the predicted values

and the exact solution, when they are compared in the case of different γ values.

(a) (b)

Figure 5.14: Numerical results of applying the KBMC2 method to solve Equation (5.453) in

the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1,

and in (b) the exact solution (red line) is compared with the approximation solution(blue

dots) at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.15: Numerical results of applying the KBMC2 method to solve Equation (5.453) in

the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, and

in (b) the exact solution (red line) is compared with the approximation solution (blue dots)

at the times t = 0.25, 0.50, 0.75, and 1.
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(a) (b)

Figure 5.16: Numerical results of applying the KBMC3 method to solve Equation (5.453) in

the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1,

and in (b) the exact solution (red line) is compared with the approximation solution (blue

dots) at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.17: Numerical results of applying the KBMC3 method to solve Equation (5.453) in

the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, and

in (b) the exact solution (red line) is compared with the approximation solution (blue dots)

at the times t = 0.25, 0.50, 0.75, and 1.
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(a) (b)

Figure 5.18: Numerical results of applying the KBML1 method to solve Equation (5.453) in

the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1,

and in (b) the exact solution (red line) is compared with the approximation solution (blue

dots) at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.19: Numerical results of applying the KBML1 method to solve Equation (5.453) in

the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, and

in (b) the exact solution (red line) is compared with the approximation solution (blue dots)

at the times t = 0.25, 0.50, 0.75, and 1.
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(a) (b)

Figure 5.20: Numerical results of applying the KBMC2-FADE method to solve Equa-

tion (5.454) in the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1

and 0 ≤ x ≤ 1, and in (b) the exact solution (red line) is compared with the approximation

solution (blue dots) at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.21: Numerical results of applying the KBMC2-FADE method to solve Equa-

tion (5.454) in the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1

and 0 ≤ x ≤ 1, and in (b) the exact solution (red line) is compared with the approximation

solution (blue dots) at the times t = 0.25, 0.50, 0.75, and 1.

Example 5.8.2. Consider the following fractional subdiffusion equation with the source

term
∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ 2ext

[
1− tγ

Γ(2 + γ)

]
, (5.457)

and fractional advection–differential equation with a source term

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2
+
∂u

∂x

)
+ 2ext

[
1− 2tγ

Γ(2 + γ)

]
, (5.458)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = 0, u(0, t) = t2, u(L, t) = et2, (5.459)
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where 0 ≤ x ≤ L, 0 ≤ t ≤ 1 and L = 1.

The exact solution of Equations (5.457) subject to the condition (5.459) is

u(x, t) = ext2. (5.460)

The error and order of convergence estimates for this example, by using the KBMC2,

KBMC3, and KBML1 methods for Equation (5.457) and the KBMC2–FADE method for

Equation (5.458), are shown in Tables 5.9 – 5.16. To estimate the convergence in space, we

again kept ∆t fixed at 10−3 whilst varying ∆x, and to estimate the convergence in time we

kept ∆x fixed at 10−3 whilst varying ∆t. From the results given in Tables 5.13 and 5.14,

we see the approximate truncation order of the KBML1 scheme is again of order O(∆x2),

and O(∆t). The results in Tables 5.9 – 5.12 show the truncation order of the KBMC2 and

KBMC3 schemes are of order O(∆x2) and O(∆t1+γ). Likewise in Tables 5.15 and 5.16,

we see that the KBMC2-FADE scheme has the same order of O(∆x2) and O(∆t1+γ).

Table 5.9: Numerical accuracy in ∆x of the KBMC2 scheme applied to Example 5.8.2 where

∆t = 10−3, and R1 is the order of convergence in ∆x .

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.88e–02 – 0.11e–01 – 0.15e–01 – 0.14e–01 –

1/4 0.21e–02 2.06 0.27e–02 2.07 0.33e–02 2.07 0.34e–02 2.07

1/8 0.52e–03 2.03 0.66e–03 2.02 0.81e–03 2.02 0.85e–03 2.02

1/16 0.13e–03 2.04 0.17e–03 2.00 0.20e–03 1.99 0.21e–03 1.99

1/32 0.27e–04 2.22 0.41e–04 2.03 0.51e–04 2.00 0.53e–04 2.00

Table 5.10: Numerical accuracy in ∆t of the KBMC2 scheme applied to Example 5.8.2 with

∆x = 10−3, where R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.10e–02 – 0.13e–02 – 0.62e–03 – 0.53e–03 –

1/20 0.46e–03 1.16 0.42e–03 1.60 0.16e–03 1.96 0.132e–03 2.00

1/40 0.21e–03 1.14 0.14e–03 1.58 0.41e–04 1.96 0.33e–04 2.00

1/80 0.97e–04 1.13 0.47e–04 1.56 0.11e–04 1.96 0.80e–05 2.01

1/160 0.45e–04 1.12 0.16e–04 1.55 0.30e–05 1.97 0.20e–05 2.03
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Table 5.11: Numerical accuracy in ∆x of the KBMC3 scheme applied to Example 5.8.2 with

∆t = 10−3, and R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.89e–02 – 0.11e–01 – 0.14e–01 – 0.14e–01 –

1/4 0.22e–02 2.04 0.27e–02 2.08 0.33e–02 2.07 0.34e–02 2.07

1/8 0.55e–03 1.98 0.27e–02 2.07 0.81e–03 2.02 0.85e–03 2.02

1/16 0.15e–03 1.85 0.17e–03 1.99 0.20e–03 1.99 0.21e–03 2.00

1/32 0.52e–04 1.54 0.42e–04 1.99 0.51e–04 2.00 0.53e–04 2.00

Table 5.12: Numerical accuracy in ∆t of the KBMC3 scheme applied to Example 5.8.2 with

∆x = 10−3, and R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.13e–01 – 0.23e–02 – 0.30e–03 – 0.53e–03 –

1/20 0.62e–02 1.05 0.92e–03 1.33 0.64e–04 2.23 0.13e–03 2.00

1/40 0.30e–02 1.07 0.35e–03 1.39 0.13e–04 2.28 0.33e–04 2.00

1/80 0.14e–02 1.08 0.13e–03 1.43 0.30e–05 2.38 0.80e–05 2.00

1/160 0.65e–03 1.10 0.47e–04 1.46 0.10e–06 2.58 0.20e–05 2.01

Table 5.13: Numerical accuracy in ∆x of the KBML1 scheme applied to Example 5.8.2, where

∆t = 10−3, and R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.94e–02 – 0.16e–01 – 0.19e–01 – 0.21e–01 –

1/4 0.22e–02 2.08 0.36e–02 2.09 0.46e–02 2.08 0.50e–02 2.07

1/8 0.51e–03 2.13 0.82e–03 2.15 0.11e–02 2.12 0.12e–02 2.11

1/16 0.83e–04 2.61 0.12e–03 2.73 0.19e–03 2.52 0.21e–03 2.46

1/32 0.23e–04 1.83 0.52e–04 1.52 0.35e–04 2.39 0.27e–04 2.94
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Table 5.14: Numerical accuracy in ∆t of the KBML1 scheme applied to Example 5.8.2 with

∆x = 10−3, and R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 0.60e–02 – 0.18e–01 – 0.21e–01 – 0.21e–01 –

1/20 0.35e–02 0.79 0.97e–02 0.92 0.11e-01 0.99 0.11e–01 1.00

1/40 0.20e–02 0.83 0.50e–02 0.95 0.54e–02 0.99 0.53e–02 1.00

1/80 0.11e–02 0.86 0.26e–02 0.97 0.27e–02 1.00 0.27e–02 1.00

1/160 0.59e–03 0.88 0.13e–02 0.98 0.14e–02 1.00 0.13e–02 1.00

Table 5.15: Numerical accuracy in ∆x of the KBMC2-FADE scheme applied to Example 5.8.2

with ∆t = 10−3, and R1 is the order of convergence in ∆x.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 0.68e–02 – 0.92e–02 – 0.12e–01 – 0.13e–01 –

1/4 0.16e–02 2.06 0.22e–02 2.06 0.28e–02 2.06 0.30e–02 2.06

1/8 0.39e–03 2.04 0.54e–03 2.02 0.70e–03 2.02 0.74e–03 2.01

1/16 0.90e–04 2.14 0.13e–03 2.02 0.17e–03 2.01 0.19e–03 2.00

1/32 0.14e–04 2.72 0.32e–04 2.07 0.43e–04 2.01 0.46e–04 2.00

Table 5.16: Numerical accuracy in ∆t of the KBMC2-FADE scheme applied to Example 5.8.2

with ∆x = 10−3, and R2 is the order of convergence in ∆t.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/20 0.92e–03 – 0.82e–03 – 0.32e–03 – 0.26e–03 –

1/40 0.42e–03 1.14 0.28e–03 1.58 0.81e–04 1.96 0.66e–04 2.00

1/80 0.19e–03 1.13 0.93e–04 1.56 0.21e–04 1.96 0.16e–04 2.00

1/160 0.89e–04 1.12 0.32e–04 1.55 0.50e–05 1.96 0.40e–05 2.01

1/320 0.41e–04 1.11 0.11e–04 1.54 0.10e–05 1.98 0.10e–05 2.05

The numerical solution of Equation (5.457) versus 0 ≤ x ≤ 1, time 0 ≤ t ≤ 1 in the

case γ = 0.5 by using the KBMC2, KBMC3 and KBML1 schemes, are shown part (a)

of Figures 5.22, 5.24, and 5.26 respectively and in the case γ = 1 are shown in part (a)

of Figures 5.23, 5.25, and 5.27 respectively, where ∆t = 10−3. The numerical solution
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of Equation (5.458) for γ = 0.5 by using the KBMC2-FADE scheme is shown in Fig-

ure 5.28(a) and for γ = 1 is shown in Figure 5.29(a).

In part (b) of Figures 5.22, 5.24, 5.26, and 5.28, for γ = 0.5, and Figures 5.23, 5.25,

5.27 and 5.29, for γ = 1, we show the comparison of the exact solution (shown as solid

red lines) and the numerical estimate found using the KBMC2, KBMC3, KBML1 and

KBMC2-FADE methods (shown as blue dots) at the times t = 0.25, 0.5, 0.75, and 1.00.

Again we see the numerical estimates from all schemes are in agreement with the exact

solution.

(a) (b)

Figure 5.22: Numerical results of applying the KBMC2 method to solve Equation (5.457) in

the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1,

and in (b) the exact solution (red line) is compared with the approximation solution (blue

dots) at the times t = 0.25, 0.50, 0.75, and 1.
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(a) (b)

Figure 5.23: Numerical results of applying the KBMC2 method to solve Equation (5.457) in

the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, and

in (b) the exact solution (red line) is compared with the approximation solution (blue dots)

at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.24: Numerical results of applying the KBMC3 method to solve Equation (5.457) in

the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1,

and in (b) the exact solution (red line) is compared with the approximation solution (blue

dots) at the times t = 0.25, 0.50, 0.75, and 1.
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(a) (b)

Figure 5.25: Numerical results of applying the KBMC3 method to solve Equation (5.457) in

the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, and

in (b) the exact solution (red line) is compared with the approximation solution (blue dots)

at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.26: Numerical results of applying the KBML1 method to solve Equation (5.457) in

the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1,

and in (b) the exact solution (red line) is compared with the approximation solution (blue

dots) at the times t = 0.25, 0.50, 0.75, and 1.
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(a) (b)

Figure 5.27: Numerical results of applying the KBML1 method to solve Equation (5.457) in

the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, and

in (b) the exact solution (red line) is compared with the approximation solution (blue dots)

at the times t = 0.25, 0.50, 0.75, and 1.

(a) (b)

Figure 5.28: Numerical results of applying the KBMC2-FADE method to solve Equa-

tion (5.458) in the case γ = 0.5. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1

and 0 ≤ x ≤ 1, and in (b) the exact solution (red line) is compared with the approximation

solution (blue dots) at the times t = 0.25, 0.50, 0.75, and 1.



5.8 Numerical Examples and Results 293

(a) (b)

Figure 5.29: Numerical results of applying the KBMC2-FADE method to solve Equa-

tion (5.458) in the case γ = 1. In (a) the numerical solution u(x, t) is given for 0 ≤ t ≤ 1

and 0 ≤ x ≤ 1, and in (b) the exact solution (red line) is compared with the approximation

solution (blue dots) at the times t = 0.25, 0.50, 0.75, and 1.

Example 5.8.3. Consider the following fractional subdiffusion equation

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
, (5.461)

with the initial and fixed boundary conditions

u(x, 0) = sin(πx), u(0, t) = 0, u(1, t) = 0 (5.462)

where 0 ≤ x ≤ 1, 0 ≤ t. The exact solution of Equations (5.461) is

u(x, t) = sin(πx)Eγ(−π2tγ). (5.463)

The exact solution for the case γ = 0.5 and 1.0 are given in Chapter 3 by Equations (3.151)

and (3.152) respectively.

In Figures 5.30 – 5.32, we show the comparison of the exact solution and the numerical

solution at the times t = 0.25, 0.5, 0.75, and 1.0 with ∆t = 10−4 by using the KBMC2,

KBMC3, and KBML1 schemes. Also the comparison of the solution at x = 0.5, u(0.5, t),

at time t = 1.0 are shown in Figures 5.33 – 5.35. We see the numerical estimate in

Figures 5.33 – 5.35 lags behind the exact solution. The KBMC2 scheme appears to better

predict these values though when compared with the KBML1 scheme.
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The numerical solutions of Equation (5.461) for fractional exponent γ = 0.1, 0.5, 0.9, and

1.0, with ∆t = 10−4, found by using the KBMC2, KBMC3, and KBML1 schemes are

shown in Figures 5.37, 5.39 and 5.41 respectively. From the results shown in these figures

we see the numerical solution of Equation (5.461) changes with the value of the exponent

γ. It can be seen that the solution, in the long term, decays faster to zero for larger

values of γ compared to smaller values of γ. However, it should be noted that the initial

decay is faster for smaller values of γ. This behavior is consistent with the behavior of

the Mittag–Leffler function as mentioned earlier in Chapter 3.

Figure 5.30: A comparison of the exact solution and the numerical solution, using the KBMC2

scheme, for Equation (5.461) shown at times t = 0.25, 0.5, 0.75, and 1.0 in the case γ = 0.5

and ∆t = 10−4. Time increases in the direction of arrow.

Figure 5.31: A comparison of the exact solution and the numerical solution, using the KBMC3

scheme, for Equation (5.461) shown at times t = 0.25, 0.5, 0.75, and 1.0 in the case γ = 0.5

and ∆t = 10−4. Time increases in the direction of arrow.
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Figure 5.32: A comparison of the exact solution and the numerical solution, using the KBML1

scheme, for Equation (5.461) shown at times t = 0.25, 0.5, 0.75, and 1.0 in the case γ = 0.5

and ∆t = 10−4. Time increases in the direction of arrow.

Figure 5.33: A comparison of the exact solution and the numerical solution, using the KBMC2

scheme, present at the mid point x = 0.5 for Equation (5.461) with γ = 0.5 and time step

∆t = 10−4.
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Figure 5.34: A comparison of the exact solution and the numerical solution, using the KBMC3

scheme, present at the mid point x = 0.5 for Equation (5.461) with γ = 0.5 and time step

∆t = 10−4.

Figure 5.35: A comparison of the exact solution and the numerical solution, using the KBML1

scheme, present at the mid point x = 0.5 for Equation (5.461) with γ = 0.5 and time step

∆t = 10−4.
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(a) (b)

Figure 5.36: The numerical solution of Equation (5.461) using the KBMC2 scheme shown here

in the case of the fractional exponent (a) γ = 0.1, and (b) γ = 0.5 on the domain 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 using with ∆t = 10−4.

(a) (b)

Figure 5.37: The numerical solution of Equation (5.461) using the KBMC2 scheme shown here

in the case of the fractional exponent (a) γ = 0.9, and (b) γ = 1 on the domain 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 using with ∆t = 10−4.
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(a) (b)

Figure 5.38: The numerical solution of Equation (5.461) using the KBMC3 scheme shown here

in the case of the fractional exponent (a) γ = 0.1, and (b) γ = 0.5 on the domain 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 using with ∆t = 10−4.

(a) (b)

Figure 5.39: The numerical solution of Equation (5.461) using the KBMC3 scheme shown here

in the case of the fractional exponent (a) γ = 0.9, and (b) γ = 1 on the domain 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 using with ∆t = 10−4.
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(a) (b)

Figure 5.40: The numerical solution of Equation (5.461) using the KBML1 scheme shown here

in the case of the fractional exponent (a) γ = 0.1, and (b) γ = 0.5 on the domain 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 using with ∆t = 10−4.

(a) (b)

Figure 5.41: The numerical solution of Equation (5.461) using the KBML1 scheme shown here

in the case of the fractional exponent (a) γ = 0.9, and (b) γ = 1 on the domain 0 ≤ t ≤ 1,

and 0 ≤ x ≤ 1 using with ∆t = 10−4.

Example 5.8.4. Consider the following fractional advection–diffusion equation

∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2
+
∂u

∂x

)
, (5.464)

with the initial and fixed boundary conditions

u(x, 0) = e−x/2 sin(nπx), u(0, t) = 0, u(1, t) = 0 (5.465)

where 0 ≤ x ≤ 1, 0 ≤ t. The exact solution of Equations (5.464), given (5.465), is

u(x, t) = e−x/2 sin(nπx)Eγ(−λ2
nt
γ), (5.466)
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where λ2
n = (1+4n2π2)/4 with n = 1 and Eγ(z) is the Mittag–Leffler function (Podlubny

1998).

We show the comparison of the exact solution and the numerical solution at the time

t = 0.25, 0.5, 0.75 and 1.0 with ∆t = 10−4 by using the KBMC2–FADE scheme, in

Figure 5.42. The comparison at x = 0.5, u(0.5, t) at time t = 10−4 is given in Figure 5.43;

we see the numerical estimate again lags behind the exact solution. This difference is

more prominent than the difference seen in the previous example for the subdiffusion

equation.

As we mentioned before in Chapter 3, a potential reason for this (and the lag seen in

Figures 5.42) is that the first and second derivatives at t = 0 are not bounded in this

example. Thus the assumption in Section 2.6.1 (in Chapter 2) that we can expand the

solution as a Taylor series around t = 0 is not satisfied. When ∆t is decreased, we

are in fact trying to approximate this singularity more closely but this is difficult to do

numerically.

The results from the KBMC2–FADE scheme for Equation (5.464) given γ = 0.1, 0.5, 0.9,

and 1, and ∆t = 10−4 are shown in Figures 5.44 and 5.45 respectively. Similar to Exam-

ple 5.8.3 again we see the numerical solution of Equation (5.464) changes with the value

of the exponent γ. From the results shown in Figures 5.44 and 5.45 again the solution

decays faster to zero for larger values of γ compared to smaller values of γ.

Figure 5.42: A comparison of the exact solution and the numerical solution for Equa-

tion (5.464), using the KBMC2–FADE scheme, shown at times t = 0.25, 0.5, 0.75, and

1.0 in the case γ = 0.5 and ∆t = 10−4. Time increases in the direction of arrow.
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Figure 5.43: A comparison of the exact solution and the numerical solution present at the

mid point x = 0.5 for Equation (5.464), using the KBMC2-FADE scheme, with γ = 0.5 and

time step ∆t = 10−4.

(a) (b)

Figure 5.44: The numerical solution of Equation (5.464) using the KBMC2–FADE scheme

shown here in the case of the fractional exponent (a) γ = 0.1, and (b) γ = 0.5 on the domain

0 ≤ t ≤ 1, and 0 ≤ x ≤ 1 using with ∆t = 10−4.
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(a) (b)

Figure 5.45: The numerical solution of Equation (5.464) using the KBMC2–FADE scheme

shown here in the case of the fractional exponent (a) γ = 0.9, and (b) γ = 1 on the domain

0 ≤ t ≤ 1, and 0 ≤ x ≤ 1 using with ∆t = 10−4.

5.9 Conclusion

In this work, we constructed three Keller Box numerical schemes; the KBMC2, KBMC3

and KBML1 schemes for the solution of fractional subdiffusion equation. These schemes

used the C2, C3, and the L1 approximation to estimate the Riemann–Liouville fractional

derivative at the time t = tj for the KBML1 scheme and t = tj+ 1
2

for the KBMC2 and

KBMC3 schemes. The accuracy of KBMC2 and KBMC3 methods were found to be order

1 + γ in time and second order in space, whilst the accuracy of the KBML1 method was

found again to be second order in space but only first order in time.

The stability of the KBMC2 method has been proved when 0 < Λq < min( 1
µ̃0(γ) , 2

γ) and

0 ≤ γ ≤ 1 and demonstrated numerically when 1
µ̃0(γ) < Λq ≤ 2γ and log3 2 ≤ γ ≤ 1.

We have also proved the stability of the KBMC3 method in the case where 0 < Λ̆q ≤ 1

and 0 < γ ≤ 1, and demonstrated the method is also stable numerically in case when

1 < Λ̆q ≤ 2. We have shown the KBML1 method is unconditionally stable using Von

Neumann stability analysis. The convergence analysis of these methods are discussed.

We show that the KBMC2 scheme, if λ̃q = min(µ̃0(γ), 2γ), and the KBMC3 scheme, if

0 < λ̂q ≤ 2/µ̂1(γ), are both convergent with order 1+γ in time and second order in space.

But for the KBMC2–FADE schemes the convergence order, 1+γ in time and second order,

was confirmed numerically. We also show the KBML1 method is convergent with first
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order in time and second order in space.

We conclude that the KBMC2 and KBMC3 method is more accurate in ∆t than KBML1

method especially when applied to the subdiffusion equation with no source term. The

KBMC2 was also used for the fractional advection–diffusion equation and, similar to the

KBMC2 and KBMC3 schemes, it was found to be second order in space and 1 + γ in

time. The convergence orders were confirmed in the test examples for these methods

where there was a source term and the exact solution is known and can be evaluated in

MATLAB R2014a.

In addition, the numerical schemes, KBMC2, KBMC3, KBML1, and KBMC2–FADE

schemes, for fractional subdiffusion and subdiffusion advection equations, where the source

term is zero, are compared with the exact solution. We see the numerical estimate lags

behind the exact solution. The numerical solutions in these cases decay faster to zero

for larger values of γ compared to smaller values of γ as predicted by the behaviour of

the Mittag–Leffler function for 0 < γ < 1. We conclude that using the KBMC2 scheme

is better method than the KBMC3 and KBML1 methods for all the examples given.

Although both the KBMC2 and KBMC3 schemes perform better than the KBML1 scheme

when applied to the subdiffusion equation.



Chapter 6

Solving a System of Nonlinear

Fractional Differential Equation

6.1 Introduction

Fractional reaction subdiffusion equations have been found from Continuous Time Ran-

dom Walk models which take into account the effect of long–tailed waiting time densities

(i.e anomalous subdiffusion) on the reaction process (Henry & Wearne 2000, Seki, Wo-

jcik & Tachiya 2003, Angstmann, Donnelly & Henry 2013a, Angstmann, Donnelly &

Henry 2013b, Angstmann, Donnelly, Henry & Langlands 2016). Reaction diffusion equa-

tion provide a description of pattern formation in-homogeneous media since few realistic

physical and biological systems are spatially homogeneous (Henry & Wearne 2002). The

study of the solution of a fractional reaction–subdiffusion equations has become more

prominent and important since there is growing estimation that anomalous diffusion is in

fact ubiquitous in nature (Eliazar & Klafter 2011). But analytic solution of such equations

are seldom available and so numerical techniques are needed.

In this chapter, we extend the Keller Box scheme, KBMC2 in Chapter 5, Section 5.2.1,

to find the solution of systems of nonlinear fractional reaction–subdiffusion equations.

We also develop another scheme, based upon the implicit scheme of Langlands & Henry

(2005) to solve the same equations. These schemes were used to solve two fractional
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reaction–subdiffusion equation models. The first model, which we will denote as Model

Type 1, is based upon the model by Henry & Wearne (2000) which is given by

∂A(x, t)

∂t
= D

∂2

∂x2

(
∂1−γA(x, t)

∂t1−γ

)
− k1A(x, t)B(x, t) + k−1C(x, t), (6.1)

∂B(x, t)

∂t
= D

∂2

∂x2

(
∂1−γB(x, t)

∂t1−γ

)
− k1A(x, t)B(x, t) + k−1C(x, t), (6.2)

and

∂C(x, t)

∂t
= D

∂2

∂x2

(
∂1−γC(x, t)

∂t1−γ

)
+ k1A(x, t)B(x, t)− k−1C(x, t). (6.3)

Here the reaction term is simply added to the subdiffusion equation (given by Equa-

tions (1.21) – (1.23) in Chapter 1). The solution of the Model Type 1 in the case

C → A + B was found by Langlands et al. (2009) in the infinite domain, the result

of a negative value was predicted which is physically unrealistic. From this we consider

the second model, which we will denote as Model Type 2, is based upon a more re-

cent model from Angstmann, Donnelly & Henry (2013a) which has a modified fractional

operator (given by Equations (1.24) – (1.26) in Chapter 1)

∂A(x, t)

∂t
= D

∂2

∂x2

[
e−k1

∫ t
0 B(x,s)ds ∂

1−γ

∂t1−γ

(
ek1

∫ t
0 B(x,s)dsA(x, t)

)]
− k1A(x, t)B(x, t) + k−1C(x, t), (6.4)

∂B(x, t)

∂t
= D

∂2

∂x2

[
e−k1

∫ t
0 A(x,s)ds ∂

1−γ

∂t1−γ

(
ek1

∫ t
0 A(x,s)dsB(x, t)

)]
− k1A(x, t)B(x, t) + k−1C(x, t), (6.5)

and

∂C(x, t)

∂t
= D

∂2

∂x2

[
e−k−1t ∂

1−γ

∂t1−γ

(
ek−1tC(x, t)

)]
+ k1A(x, t)B(x, t)− k−1C(x, t). (6.6)

Both of these models attempt to model the reversible reaction

A+B 
 C (6.7)

in the presence of anomalous subdiffusion where A, B, and C are three chemical species.

In the absence of diffusion (a homogeneous environment) the governing equations for the

concentrations of A, B, and C for both models reduce to the reaction kinetic equations

dA

dt
= −k1AB + k−1C, (6.8)
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dB

dt
= −k1AB + k−1C, (6.9)

and
dC

dt
= −k−1C + k1AB, (6.10)

where k1 is reaction rate constant (forward rate), k−1 is reverse reaction rate (backward

rate). If k−1 = 0 then A and B react together to form species C with no reverse reaction

i.e. A+B → C.

In Sections 6.2 and 6.5, the numerical schemes are developed for Model Type 1 and Model

Type 2. We investigate the accuracy of these schemes, respectively, in Sections 6.4 and 6.7

for both models. We note the method in Cuesta, Lubich & Palencia (2006) could be used

to discretise the equations for Model Type 1 by integrating both sides first. However, for

Model Type 2, it is difficult to integrate both sides of equation because of the modified

fractional operator and so this method will not work for this model.

6.2 Model Type 1

The fractional reaction–subdiffusion equation model in the case of a reversible reaction,

in the presence of anomalous subdiffusion, is given by Equations (6.1) – (6.3). We refer

to this model as a Model Type 1, which is based upon the reaction–subdiffusion model

proposed by Henry & Wearne (2000).

6.3 Numerical Solution of Model Type 1

In this section, we develop two numerical schemes to solve Model Type 1. The first uses

the Keller Box method with the C2 scheme, KBMC2, and the second uses the implicit

method with the L1 scheme.
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6.3.1 The Keller Box Scheme: KBMC2 Scheme

In this section, the numerical scheme for solving Model Type 1 will be developed based

upon the Keller Box method with the C2 scheme approximation for the fractional deriva-

tive given in Chapter 2 by Equation (2.75). Similar to the KBMC2 scheme in Section 5.2.1,

Chapter 5, we approximate each equation of Model Type 1 at the point
(
xi− 1

2
, tj+ 1

2

)
as

[
∂A

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D
∂2

∂x2

[
∂1−γA

∂t1−γ

∣∣∣∣j+
1
2

i− 1
2

− k1 [AB|j+
1
2

i− 1
2

+ k−1 [C|j+
1
2

i− 1
2

, (6.11)

[
∂B

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D
∂2

∂x2

[
∂1−γB

∂t1−γ

∣∣∣∣j+
1
2

i− 1
2

− k1 [AB|j+
1
2

i− 1
2

+ k−1 [C|j+
1
2

i− 1
2

, (6.12)

[
∂C

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D
∂2

∂x2

[
∂1−γC

∂t1−γ

∣∣∣∣j+
1
2

i− 1
2

+ k1 [AB|j+
1
2

i− 1
2

− k−1 [C|j+
1
2

i− 1
2

. (6.13)

Following the approach in Chapter 5 Section 5.2.1, we have found the following equation

for constant grid spacing for A[
2Aj+1

i +Aj+1
i−1 +Aj+1

i+1

]
− d

(
1

2

)γ [
Aj+1
i−1 − 2Aj+1

i +Aj+1
i+1

]
=
[
2Aji +Aji−1 +Aji+1

]
− d

(
1

2

)γ [
Aji−1 − 2Aji +Aji+1

]
+ dβ̃j(γ)

(
A0
i−1 − 2A0

i +A0
i+1

)
+ d

j∑
k=1

µ̃j−k(γ)
[(
Aki−1 − 2Aki +Aki+1

)
−
(
Ak−1
i−1 − 2Ak−1

i +Ak−1
i+1

)]
− ∆tk1

2

(
[AB|j+1

i+1 + 2 [AB|j+1
i + [AB|j+1

i−1 + [AB|ji+1 + 2 [AB|ji + [AB|ji−1

)
+

∆tk−1

2

(
[C|j+1

i+1 + 2 [C|j+1
i + [C|j+1

i−1 + [C|ji+1 + 2 [C|ji + [C|ji−1

)
. (6.14)

We find the corresponding discretised equation forB in Equation (6.2) in a similar manner,

swapping A and B, to find[
2Bj+1

i +Bj+1
i−1 +Bj+1

i+1

]
− d

(
1

2

)γ [
Bj+1
i−1 − 2Bj+1

i +Bj+1
i+1

]
=
[
2Bj

i +Bj
i−1 +Bj

i+1

]
− d

(
1

2

)γ [
Bj
i−1 − 2Bj

i +Bj
i+1

]
+ dβ̃j(γ)

(
B0
i−1 − 2B0

i +B0
i+1

)
+ d

j∑
k=1

µ̃j−k(γ)
[(
Bk
i−1 − 2Bk

i +Bk
i+1

)
−
(
Bk−1
i−1 − 2Bk−1

i +Bk−1
i+1

)]
− ∆tk1

2

[
2 [AB|j+1

i + [AB|j+1
i−1 + [AB|j+1

i+1 + 2 [AB|ji + [AB|ji−1 + [AB|ji+1

]
+

∆tk−1

2

[
2 [C|j+1

i + [C|j+1
i−1 + [C|j+1

i+1 + 2 [C|ji + [C|ji−1 + [C|ji+1

]
. (6.15)
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Finally we find the approximation of the last equation in Equation (6.3) for C, as[
2Cj+1

i + Cj+1
i−1 + Cj+1

i+1

]
− d

(
1

2

)γ [
Cj+1
i−1 − 2Cj+1

i + Cj+1
i+1

]
=
[
2Cji + Cji−1 + Cji+1

]
− d

(
1

2

)γ [
Cji−1 − 2Cji + Cji+1

]
+ dβ̃j(γ)

(
C0
i−1 − 2C0

i + C0
i+1

)
+ d

j∑
k=1

µ̃j−k(γ)
[(
Cki−1 − 2Cki + Cki+1

)
−
(
Ck−1
i−1 − 2Ck−1

i + Ck−1
i+1

)]
+

∆tk1

2

[
2 [AB|j+1

i + [AB|j+1
i−1 + [AB|j+1

i+1 + 2 [AB|ji + [AB|ji−1 + [AB|ji+1

]
− ∆tk−1

2

[
2 [C|j+1

i + [C|j+1
i−1 + [C|j+1

i+1 + 2 [C|ji + [C|ji−1 + [C|ji+1

]
, (6.16)

with

d =
4D∆tγ

∆x2Γ(1 + γ)
. (6.17)

6.3.2 The Implicit Finite Difference Scheme: IML1 Scheme

In this section, we develop the implicit finite difference scheme with the L1 scheme, in

Chapter 2 Equation (2.12), where p = 1 − γ. Using a similar approach to that used in

Langlands & Henry (2005), for the subdiffusion equation, we approximate the derivatives

in Equations (6.1) – (6.3) at the point (xi, tj) as[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D
∂2

∂x2

[
∂1−γA

∂t1−γ

∣∣∣∣j
i

, (6.18)

[
∂B

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D
∂2

∂x2

[
∂1−γB

∂t1−γ

∣∣∣∣j
i

, (6.19)

and [
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D
∂2

∂x2

[
∂1−γC

∂t1−γ

∣∣∣∣j
i

. (6.20)

We refer to this approximation as the IML1 scheme. We now approximate the second

order spatial derivative in Equations (6.18), (6.19) and (6.20) by using the centred finite

difference scheme (Equation (3.6) for the second spatial derivative), and the backward

finite difference (Equation (3.9) for the first temporal), so we have

Aji −A
j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji +

D

∆x2

{[
∂1−γA

∂t1−γ

∣∣∣∣j
i+1

− 2

[
∂1−γA

∂t1−γ

∣∣∣∣j
i

+

[
∂1−γA

∂t1−γ

∣∣∣∣j
i−1

}
,

(6.21)
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Bj
i −B

j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji +

D

∆x2

{[
∂1−γB

∂t1−γ

∣∣∣∣j
i+1

− 2

[
∂1−γB

∂t1−γ

∣∣∣∣j
i

+

[
∂1−γB

∂t1−γ

∣∣∣∣j
i−1

}
,

(6.22)

and

Cji − C
j−1
i

∆t
= k1AB − k−1C +

D

∆x2

{[
∂1−γC

∂t1−γ

∣∣∣∣j
i+1

− 2

[
∂1−γC

∂t1−γ

∣∣∣∣j
i

+

[
∂1−γC

∂t1−γ

∣∣∣∣j
i−1

}
.

(6.23)

After approximating the fractional derivative using the L1 scheme (in Chapter 2 Equa-

tion (2.12)), Equations (6.21) – (6.23) reduce to

Aji − d̂
(
Aji+1 − 2Aji +Aji−1

)
= Aj−1

i −∆tk1 [AB|ji + ∆tk−1 [C|ji

+ d̂

{
βj(γ)

(
A0
i+1 − 2A0

i +A0
i−1

)
+

j−1∑
k=1

µj−k(γ)
(
Aki+1 − 2Aki +Aki−1

)}
, (6.24)

Bj
i − d̂

(
Bj
i+1 − 2Bj

i +Bj
i−1

)
= Bj−1

i −∆tk1 [AB|ji + ∆tk−1 [C|ji

+ d̂

{
βj(γ)

(
B0
i+1 − 2B0

i +B0
i−1

)
+

j−1∑
k=1

µj−k(γ)
(
Bk
i+1 − 2Bk

i +Bk
i−1

)}
, (6.25)

and

(1 + ∆tk−1)Cji − d̂
(
Cji+1 − 2Cji + Cji−1

)
= Cj−1

i + ∆tk1 [AB|ji

+ d̂

[
βj(γ)

(
C0
i+1 − 2C0

i + C0
i−1

)
+

j−1∑
k=1

µj−k(γ)
(
Cki+1 − 2Cki + Cki−1

)}
, (6.26)

where

d̂ =
D∆tγ

∆x2Γ(1 + γ)
, (6.27)

and the weights βj(γ) and µj(γ) are given by

βj(γ) = γjγ−1 + (j − 1)γ − jγ , (6.28)

and

µj(γ) = (j − 1)γ − 2jγ + (j + 1)γ . (6.29)
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6.4 Accuracy of the Numerical Methods for Model Type 1

In this section, we consider the order of accuracy of the numerical schemes developed in

Sections 6.3.1 and 6.3.2. In the following we denote the centred–finite difference approx-

imation by the symbol δ2
xZ

δ2
xZ

j
i =

Zji+1 − 2Zji + Zji−1

∆x2
(6.30)

for Z(x, t).

6.4.1 Accuracy of the Keller Box Method

We now determine the truncation error of KBMC2 scheme for Model 1, first by using

Equation (6.30) with Z = A to rewrite Equation (6.14) as

∆x2

4∆t

[
δ2
xA

j+1
i − δ2

xA
j
i

]
+

1

∆t

[
Aj+1
i −Aji

]
=
D∆tγ−1

Γ(1 + γ)

{(
1

2

)γ [(
δ2
xA

j+1
i − δ2

xA
j
i

)
− 2

(
δ2
xA

j+ 1
2

i − δ2
xA

j
i

)]}
+
D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)δ2

xA
0
i + 2

(
1

2

)γ (
δ2
xA

j+ 1
2

i − δ2
xA

j
i

)
+

j∑
k=1

µ̃j−k(γ)
[
δ2
xA

k
i − δ2

xA
k−1
i

]}

− k1

8

[
∆x2

([
δ2
xAB

∣∣j+1

i
+
[
δ2
xAB

∣∣j
i

)
+ 4

(
[AB|j+1

i + [AB|ji
)]

+
k−1

8

[
∆x2

([
δ2
xC
∣∣j+1

i
+
[
δ2
xC
∣∣j
i

)
+ 4

(
[C|j+1

i + [C|ji
)]
. (6.31)

Identifying the second line on the right hand side of Equation (6.31) as the C2 approxi-

mation with A(t) replaced by δ2
xA(t). We can rewrite Equation (6.31) as

∆x2

4∆t

[
δ2
xA

j+1
i − δ2

xA
j
i

]
+

1

∆t

[
Aj+1
i −Aji

]
=

(
1
2

)γ
D∆tγ−1

Γ(1 + γ)

[
δ2
xA

j+1
i + δ2

xA
j
i − 2δ2

xA
j+ 1

2
i

]
+D

[
∂1−γ

∂t1−γ
(
δ2
xA
)∣∣∣∣j+

1
2

i,C2

− k1

8

[
∆x2

([
δ2
xAB

∣∣j+1

i
+
[
δ2
xAB

∣∣j
i

)
+ 4

(
[AB|j+1

i + [AB|ji
)]

+
k−1

8

[
∆x2

([
δ2
xC
∣∣j+1

i
+
[
δ2
xC
∣∣j
i

)
+ 4

(
[C|j+1

i + [C|ji
)]
. (6.32)

Taking the Taylor series expansion around the point xi = i∆x in space, we then have

δ2
xA

j
i '

[
∂2A

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4A

∂x4

∣∣∣∣j
i

+O(∆x6). (6.33)
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Likewise taking the Taylor series expansion around the point
(
xi, tj+ 1

2

)
we have

∆tγ−1

(
δ2
xA

j+1
i + δ2

xA
j
i − 2δ2

xA
j+ 1

2
i

)
' ∆tγ−1

(
∆t2

4

[
∂2

∂t2
δ2
xA

∣∣∣∣j+
1
2

i

+O(∆x2∆t2)

)
= O(∆t1+γ), (6.34)

∆x2

4∆t

[
δ2
xA

j+1
i − δ2

xA
j
i

]
' ∆x2

4∆t

(
∆t

[
∂3A

∂x2∂t

∣∣∣∣j+
1
2

i

+O(∆x2∆t)

)
= O(∆x2), (6.35)

[
∂1−γ

∂t1−γ
(
δ2
xA
)∣∣∣∣j+

1
2

i,C2

'
[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i,C2

+O(∆x2), (6.36)

[AB]j+1
i + [AB]ji ' 2 [AB]

j+ 1
2

i +O(∆t2), (6.37)

[
δ2
xAB

]j+1

i
+
[
δ2
xAB

]j
i
' 2

[
∂2(AB)

∂x2

]j+ 1
2

i

+O(∆x2) +O(∆t2), (6.38)

[
δ2
xC
]j+1

i
+
[
δ2
xC
]j
i
' 2

[
∂2C

∂x2

]j+ 1
2

i

+O(∆x2) +O(∆t2), (6.39)

Cj+1
i + Cji ' 2 [C|j+

1
2

i +O(∆t2), (6.40)

and

Aj+1
i −Aji

∆t
'
[
∂A

∂t

∣∣∣∣j+ 1
2

i

+O(∆t2). (6.41)

We also have

∆x2

4∆t

[
δ2
xA

j+1
i − δ2

xA
j
i

]
' ∆x2

[
1

4

∂

∂t
δ2
xA

j+ 1
2

i +O(∆t2)

]
=

∆x2

4

[
∂3A

∂x2∂t

∣∣∣∣j+
1
2

i

. (6.42)

Using these expansions in Equation (6.32) we find[
∂A

∂t

∣∣∣∣j+ 1
2

i

= D

[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i,C2

+O(∆x2) +O(∆t1+γ)− k1 [AB]
j+ 1

2
i + k−1C

j+ 1
2

i .

(6.43)



6.4 Accuracy of the Numerical Methods for Model Type 1 312

Now adding and subtracting the exact value of the fractional derivative, we then have[
∂A

∂t

∣∣∣∣j+ 1
2

i

=

[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i

− k1 [AB|j+
1
2

i + k−1 [C|j+
1
2

i +O(∆x2) +O(∆t1+γ)

−D

[[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i

−
[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i,C2

]
. (6.44)

By (2.149) in Chapter 2 the term[[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i

−
[
∂1−γ

∂t1−γ

(
∂2A

∂x2

)∣∣∣∣j+
1
2

i,C2

]
(6.45)

is O(∆t1+γ), we then find the truncation error is of the order 1 + γ in time and second

order in space, similar to that which was found in Chapter 5. Following a similar process,

swapping A and B we see the truncation error for Equation (6.15) is also the same.

In a similar manner, to find the truncation error accuracy of Equation (6.16), we again

use Equation (6.30), with Z = C, to find

∆x2

4∆t

[
δ2
xC

j+1
i − δ2

xC
j
i

]
+

1

∆t

[
Cj+1
i − Cji

]
=
D∆tγ−1

Γ(1 + γ)

{(
1

2

)γ [(
δ2
xC

j+1
i − δ2

xC
j
i

)
− 2

(
δ2
xC

j+ 1
2

i − δ2
xC

j
i

)]}
+
D∆tγ−1

Γ(1 + γ)

{
β̃j(γ)δ2

xC
0
i + 2

(
1

2

)γ (
δ2
xC

j+ 1
2

i − δ2
xC

j
i

)
+

j∑
k=1

µ̃j−k

[
δ2
xC

k
i − δ2

xC
k−1
i

]}

+
k1

8

[
∆x2

([
δ2
xAB

∣∣j+1

i
+
[
δ2
xAB

∣∣j
i

)
+ 4

(
[AB|j+1

i + [AB|ji
)]

− k−1

8

[
∆x2

([
δ2
xC
∣∣j+1

i
+
[
δ2
xC
∣∣j
i

)
+ 4

(
[C|j+1

i + [C|ji
)]
. (6.46)

Note the second term on the right hand side in Equation (6.46) is the C2 approximation

with C(t) replaced by δ2
xC(t). We can then rewrite Equation (6.46) as

∆x2

4∆t

[
δ2
xC

j+1
i − δ2

xC
j
i

]
+

1

∆t

[
Cj+1
i − Cji

]
=

(
1
2

)γ
D∆tγ−1

Γ(1 + γ)

[
δ2
xC

j+1
i + δ2

xC
j
i − 2δ2

xC
j+ 1

2
i

]
+D

[
∂1−γ

∂t1−γ
(
δ2
xC
)∣∣∣∣j+

1
2

i,C2

+
k1

8

[
∆x2

([
δ2
xAB

∣∣j+1

i
+
[
δ2
xAB

∣∣j
i

)
+ 4

(
[AB|j+1

i + [AB|ji
)]

− k−1

8

[
∆x2

([
δ2
xC
∣∣j+1

i
+
[
δ2
xC
∣∣j
i

)
+ 4

(
[C|j+1

i + [C|ji
)]
. (6.47)

In a similar manner to earlier, expanding the Taylor series around the point
(
xi, tj+ 1

2

)
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by using Equations (6.33) – (6.42), we then have[
∂C

∂t

∣∣∣∣j+ 1
2

i

= D

[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j+
1
2

i,C2

+O(∆x2) +O(∆t1+γ) + k1 [AB]
j+ 1

2
i − k−1C

j+ 1
2

i .

(6.48)

Adding and subtracting the exact fractional derivative, we then have[
∂C

∂t

∣∣∣∣j+ 1
2

i

= D

[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j+
1
2

i

+ k1 [AB|j+
1
2

i − k−1 [C|j+
1
2

i +O(∆x2) +O(∆t1+γ)

−D

[[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j+
1
2

i

−
[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j+
1
2

i,C2

]
. (6.49)

By Equation (2.149) we know the term[[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j+
1
2

i

−
[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j+
1
2

i,C2

]
(6.50)

isO(∆t1+γ), and hence the truncation error, τi,j , for Equation (6.16) (and Equations (6.14)

and (6.15)) is of the order 1 + γ in time and second order in space i.e.

τi,j = O(∆t1+γ) +O(∆x2). (6.51)

6.4.2 Accuracy of the Implicit Finite Difference Scheme (IML1)

To find the truncation error accuracy of the IML1 scheme in Section 6.3.2, we first rewrite

Equation (6.24), using the notation in Equation (6.30), with Z = A, as

Aji −A
j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji +D

∆tγ−1

Γ(1 + γ)

[
βj(γ)δ2

xA
0
i + δ2

xA
j
i +

j−1∑
k=1

µj−k(γ)δ2
xA

k
i

]
.

(6.52)

Note the last term in the brackets in Equation (6.52) is the L1 approximation, Equa-

tion (2.12), with A(t) replaced by δ2
xA(t). Therefore we can rewrite Equation (6.60)

as

Aji −A
j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji +D

[
∂1−γ

∂t1−γ
(
δ2
xA
)∣∣∣∣j
i,L1

. (6.53)

Now taking the Taylor series expansion around the point tj = j∆t gives

Aj+1
i −Aji

∆t
'
[
∂A

∂t

∣∣∣∣j
i

+
∆t

2!

[
∂2A

∂t2

∣∣∣∣j
i

+O(∆t2), (6.54)
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δ2
xA

j
i '

[
∂2A

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4A

∂x4

∣∣∣∣j
i

+O(∆x6), (6.55)

and using these results in Equation (6.53) we find[
∂A

∂t

∣∣∣∣j
i

+
∆t

2!

[
∂2A

∂t2

∣∣∣∣j
i

+O(∆t2) = −k1 [AB|ji + k−1 [C|ji (6.56)

+D

[
∂1−γ

∂t1−γ

([
∂2A

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4A

∂x4

∣∣∣∣j
i

+O(∆x6)

)∣∣∣∣∣
L1

.

Adding and subtracting the exact value of the fractional derivative, then gives[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D
∂2

∂x2

[
∂1−γA

∂t1−γ

∣∣∣∣j
i

+O(∆x2) +O(∆t)

−D

[[
∂2

∂x2

(
∂1−γA

∂t1−γ

)∣∣∣∣j
i

−
[
∂2

∂x2

(
∂1−γA

∂t1−γ

)∣∣∣∣j
i,L1

]
. (6.57)

Note by Equation (2.48) the term[
∂1−γA

∂t1−γ

∣∣∣∣j
i

−
[
∂1−γA

∂t1−γ

∣∣∣∣j
i,L1

(6.58)

is O(∆t1+γ), and so we have[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D

[
∂2

∂x2

(
∂1−γA

∂t1−γ

)∣∣∣∣j
i

+O(∆x2) +O(∆t). (6.59)

Hence the truncation error is first order in time and second order in space. Using similar

steps the truncation error of Equation (6.25) again is first order in time and second order

in space.

We now will consider the truncation error of Equation (6.26). Again using Equation (6.30),

with Z = C, we have

Cji − C
j−1
i

∆t
= k1 [AB|ji − k−1 [C|ji +D

∆tγ−1

Γ(1 + γ)

[
βj(γ)δ2

xC
0
i + δ2

xC
j
i +

j−1∑
k=1

µj−k(γ)δ2
xC

k
i

]
.

(6.60)

Identifying the last term in the brackets in Equations (6.60) as the L1 approximation with

C(t) replaced by δ2
xC(t), we can then rewrite Equation (6.60) as

Cji − C
j−1
i

∆t
= k1 [AB|ji − k−1 [C|ji +D

[
∂1−γ

∂t1−γ
δ2
xC

∣∣∣∣j
i,L1

. (6.61)
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Expanding the Taylor series around the point (xi, tj), using Equations (6.54) and (6.55)

with A = C, then Equation (6.61) becomes[
∂C

∂t

∣∣∣∣j
i

+
∆t

2!

[
∂2C

∂t2

∣∣∣∣j
i

+O(∆t2) = k1 [AB|ji − k−1 [C|ji (6.62)

+D

[
∂1−γ

∂t1−γ

([
∂2C

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4C

∂x4

∣∣∣∣j
i

+O(∆x6)

)∣∣∣∣∣
L1

.

Adding and subtracting the exact value of the fractional derivative, we then obtain[
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D
∂1−γ

∂t1−γ

[
∂2C

∂x2

∣∣∣∣j
i

+O(∆x2) +O(∆t)

−D

[[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j
i

−
[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j
i,L1

]
. (6.63)

Note by Equation (2.48) the term[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j
i

−
[
∂1−γ

∂t1−γ

(
∂2C

∂x2

)∣∣∣∣j
i,L1

' O(∆t1+γ), (6.64)

therefore we have[
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D

[
∂2

∂x2

(
∂1−γC

∂t1−γ

)∣∣∣∣j
i

+O(∆x2) +O(∆t). (6.65)

Hence the truncation error, τi,j , for Equations (6.24) – (6.26) is first order in time and

second order in space, that is

τi,j = O(∆x2) +O(∆t). (6.66)

6.5 Model Type 2

In this section, we consider another model, Model Type 2, of the reversible reaction

A + B � C given by Equations (6.4) – (6.6), based upon the model by Angstmann,

Donnelly & Henry (2013a). These equations include the non-standard fractional derivative

operator L1−γ
t

L1−γ
t = e−k1

∫ t
0 B(x,s)ds ∂

1−γ

∂t1−γ
ek1

∫ t
0 B(x,s)ds, (6.67)

which takes into account that reactants may be removed before diffusing. The current

methods for approximating fractional derivatives will need to be modified to approximate

the operator in Equation (6.67).
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To do this we also define the auxiliary variables

y1(x, t) = e−k1

∫ t
0 B(x,s)ds, (6.68)

y2(x, t) = e−k1

∫ t
0 A(x,s)ds, (6.69)

and

y3(x, t) = e−k−1t, (6.70)

which will be used to evaluate the non–standard fractional operator in Equation (6.67).

Taking the derivative of yr, where r = 1, 2, 3 with respect to t we then get

∂y1

∂t
= e−k1

∫ t
0 B(x,s)ds [−k1B(x, t)] = −k1B(x, t)y1(x, t), (6.71)

∂y2

∂t
= e−k1

∫ t
0 A(x,s)ds [−k1A(x, t)] = −k1A(x, t)y2(x, t), (6.72)

and

∂y3

∂t
= −k−1e

−k−1t = −k−1y3(x, t). (6.73)

The differential equations in Equations (6.71), (6.72), and (6.73) are supplemented by the

initial conditions yr(x, 0) = 1, where r = 1, 2, 3.

6.6 Numerical Solution of Model Type 2

In this section, we develops two numerical schemes to solve the equations for Model Type

2. As in Section 6.3, the first scheme is based upon the Keller Box method and the C2

scheme while the second uses the implicit method with the L1 scheme.

6.6.1 The Keller Box Scheme: KBMC2 Scheme

In this section, the numerical scheme for solving the equations for Model Type 2 will be

developed based on the Keller Box method with the C2 scheme as given in Section 5.2.1
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of Chapter 5. Here, similar to Section 6.3.1, we approximate Equations (6.4) – (6.6) and

Equations (6.71) – (6.73) at the point
(
xi− 1

2
, tj+ 1

2

)
as

[
∂A

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D
∂2

∂x2

[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i− 1
2

− k1 [AB|j+
1
2

i− 1
2

+ k−1 [C|j+
1
2

i− 1
2

, (6.74)

[
∂B

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D
∂2

∂x2

[
y2
∂1−γ

∂t1−γ

(
B

y2

)∣∣∣∣j+
1
2

i− 1
2

− k1 [AB|j+
1
2

i− 1
2

+ k−1 [C|j+
1
2

i− 1
2

, (6.75)

[
∂C

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D
∂2

∂x2

[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i− 1
2

+ k1 [AB|j+
1
2

i− 1
2

− k−1 [C|j+
1
2

i− 1
2

, (6.76)

[
∂y1

∂t

∣∣∣∣j+ 1
2

i

= −k1 [By1|
j+ 1

2
i , (6.77)

[
∂y2

∂t

∣∣∣∣j+ 1
2

i

= −k1 [Ay2|
j+ 1

2
i , (6.78)

and [
∂y3

∂t

∣∣∣∣j+ 1
2

i

= −k−1 [y3|
j+ 1

2
i . (6.79)

We now consider the discretisation of Equation (6.74) first. We define first the spatial

derivative in Equation (6.74) by

v =
∂

∂x

[
y1
∂1−γ

∂t1−γ

(
A

y1

)]
. (6.80)

Using Equation (6.80) in Equation (6.74) we get the system of equations[
∂

∂x

(
y1
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i− 1

2

= [v|j
i− 1

2

, (6.81)

and [
∂A

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D

[
∂v

∂x

∣∣∣∣j+ 1
2

i− 1
2

− k1 [AB|j+
1
2

i− 1
2

+ k−1 [C|j+
1
2

i− 1
2

. (6.82)

Approximating the first order spatial and time derivatives in Equations (6.81) and (6.82)

by using the centred finite difference scheme (as in Chapter 3 given by Equations (3.8)

and (3.9)), we then obtain the equations

1

∆xi

([
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

−
[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i−1

)
= [v|j

i− 1
2

, (6.83)
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and Aj+1

i− 1
2

−Aj
i− 1

2

∆t

 =
D

∆xi

(
v
j+ 1

2
i − vj+

1
2

i−1

)
− k1 [AB|j+

1
2

i− 1
2

+ k−1 [C|j+
1
2

i− 1
2

. (6.84)

We also approximate the terms Aj
i− 1

2

, [AB|j
i− 1

2

and Cj
i− 1

2

by the corresponding spatial

averages

Aj
i− 1

2

=
Aji +Aji−1

2
, [AB|j

i− 1
2

=
[AB|ji + [AB|ji−1

2
, and Cj

i− 1
2

=
Cji + Cji−1

2
. (6.85)

Using these averages in Equations (6.83) and (6.84), gives

1

∆xi

([
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

−
[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i−1

)
=

1

2

(
vji + vji−1

)
, (6.86)

and

1

2∆t

[(
Aj+1
i +Aj+1

i−1

)
−
(
Aji +Aji−1

)]
=

D

∆xi

(
v
j+ 1

2
i − vj+

1
2

i−1

)
(6.87)

− k1

2

(
[AB|j+

1
2

i + [AB|j+
1
2

i−1

)
+
k−1

2

(
[C|j+

1
2

i + [C|j+
1
2

i−1

)
.

Solving Equation (6.86) for vji−1, we find

vji−1 =
2

∆xi

([
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

−
[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i−1

)
− vji , (6.88)

and then combining with Equation (6.87), gives

1

2∆t

[(
Aj+1
i +Aj+1

i−1

)
−
(
Aji +Aji−1

)]
(6.89)

=
D

∆xi

{
v
j+ 1

2
i −

[
2

∆xi

([
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i

−
[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i−1

)
− vj+

1
2

i

]}

− k1

2

(
[AB|j+

1
2

i + [AB|j+
1
2

i−1

)
+
k−1

2

(
[C|j+

1
2

i + [C|j+
1
2

i−1

)
,

or

1

2∆t

[(
Aj+1
i +Aj+1

i−1

)
−
(
Aji +Aji−1

)]
(6.90)

=
2D

∆xi
v
j+ 1

2
i − 2D

∆x2
i

([
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i

−
[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i−1

)

− k1

2

(
[AB|j+

1
2

i + [AB|j+
1
2

i−1

)
+
k−1

2

(
[C|j+

1
2

i + [C|j+
1
2

i−1

)
.
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Using a similar process to the above, except now replacing i with i+1 in Equations (6.81)

and (6.82) and eliminating vji+1, we have the equation

1

2∆t

[(
Aj+1
i+1 +Aj+1

i

)
−
(
Aji+1 +Aji

)]
(6.91)

=
2D

∆x2
i+1

([
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i+1

−
[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i

)

− 2D

∆xi+1
v
j+ 1

2
i − k1

2

(
[AB|j+

1
2

i+1 + [AB|j+
1
2

i

)
+
k−1

2

(
[C|j+

1
2

i+1 + [C|j+
1
2

i

)
.

Now multiplying Equation (6.90) by ∆xi and Equation (6.91) by ∆xi+1, and adding the

two gives the equation for species A

1

2∆t

[
∆xi

(
Aj+1
i +Aj+1

i−1

)
+ ∆xi+1

(
Aj+1
i+1 +Aj+1

i

)]
(6.92)

=
1

2∆t

[
∆xi

(
Aji +Aji−1

)
+ ∆xi+1

(
Aji+1 +Aji

)]
−D

[
2

∆xi+1
+

2

∆xi

]
y1
j+ 1

2
i

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i

+
2D

∆xi+1
y1
j+ 1

2
i+1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i+1

+
2D

∆xi
y1
j+ 1

2
i−1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j+
1
2

i−1

− k1

2

[
(∆xi + ∆xi+1) [AB|j+

1
2

i + ∆xi [AB|j+
1
2

i−1

+∆xi+1 [AB|j+
1
2

i+1

]
+
k−1

2

[
(∆xi + ∆xi+1) [C|j+

1
2

i + ∆xi [C|j+
1
2

i−1 + ∆xi+1 [C|j+
1
2

i+1

]
.

Now using the C2 approximation, Equation (2.75), of the fractional derivative in Equa-

tion (6.92) we then have

1

2∆t

[
∆xi

(
Aj+1
i +Aj+1

i−1

)
+ ∆xi+1

(
Aj+1
i+1 +Aj+1

i

)]
=

1

2∆t

[
∆xi

(
Aji +Aji−1

)
+∆xi+1

(
Aji+1 +Aji

)]
+

2D∆tγ−1

Γ(1 + γ)

{
−
(

1

∆xi+1
+

1

∆xi

)
y1
j+ 1

2
i

[
β̃j(γ)

[
A

y1

∣∣∣∣0
i

+2

(
1

2

)γ ([A
y1

∣∣∣∣j+ 1
2

i

−
[
A

y1

∣∣∣∣j
i

)
+

j∑
k=1

µ̃j−k(γ)

([
A

y1

∣∣∣∣k
i

−
[
A

y1

∣∣∣∣k−1

i

)]

+
1

∆xi+1
y1
j+ 1

2
i+1

[
β̃j(γ)

[
A

y1

∣∣∣∣0
i+1

+ 2

(
1

2

)γ ([A
y1

∣∣∣∣j+ 1
2

i+1

−
[
A

y1

∣∣∣∣j
i+1

)

+

j∑
k=1

µ̃j−k(γ)

([
A

y1

∣∣∣∣k
i+1

−
[
A

y1

∣∣∣∣k−1

i+1

)]
+

1

∆xi
y1
j+ 1

2
i−1

[
β̃j(γ)

[
A

y1

∣∣∣∣0
i−1

+2

(
1

2

)γ ([A
y1

∣∣∣∣j+ 1
2

i−1

−
[
A

y1

∣∣∣∣j
i−1

)
+

j∑
k=1

µ̃j−k(γ)

([
A

y1

∣∣∣∣k
i−1

−
[
A

y1

∣∣∣∣k−1

i−1

)]}

− k1

2

[
(∆xi + ∆xi+1) [AB|j+

1
2

i + ∆xi [AB|j+
1
2

i−1 + ∆xi+1 [AB|j+
1
2

i+1

]
+
k−1

2

[
(∆xi + ∆xi+1) [C|j+

1
2

i + ∆xi [C|j+
1
2

i−1 + ∆xi+1 [C|j+
1
2

i+1

]
. (6.93)
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Now upon replacing the terms at t = tj+ 1
2

by their corresponding temporal averages

u
j+ 1

2
i =

uji + uj+1
i

2
, (6.94)

we then have the following equation given in the case of constant grid spacing ∆xi = ∆x,

as [
2Aj+1

i +Aj+1
i−1 +Aj+1

i+1

]
− d

(
1

2

)γ [
Aj+1
i−1 − 2Aj+1

i +Aj+1
i+1

]
=
[
2Aji +Aji−1 +Aji+1

]
− d

(
1

2

)γ [
Aji−1 − 2Aji +Aji+1

]
+ d

(
1

2

)γ {
y1
j
i+1

[
A

y1

∣∣∣∣j+1

i+1

−y1
j+1
i+1

[
A

y1

∣∣∣∣j
i+1

− 2y1
j
i

[
A

y1

∣∣∣∣j+1

i

+ 2y1
j+1
i

[
A

y1

∣∣∣∣j
i

+ y1
j
i−1

[
A

y1

∣∣∣∣j+1

i−1

− y1
j+1
i−1

[
A

y1

∣∣∣∣j
i−1

}

− 2d
(
y1
j+1
i + y1

j
i

)[
β̃j(γ)A0

i +

j∑
k=1

µ̃j−k(γ)

([
A

y1

∣∣∣∣k
i

−
[
A

y1

∣∣∣∣k−1

i

)]

+ d
(
y1
j+1
i+1 + y1

j
i+1

)[
β̃j(γ)A0

i+1 +

j∑
k=1

µ̃j−k(γ)

([
A

y1

∣∣∣∣k
i+1

−
[
A

y1

∣∣∣∣k−1

i+1

)]

+ d
(
y1
j+1
i−1 + y1

j
i−1

)[
β̃j(γ)A0

i−1 +

j∑
k=1

µ̃j−k(γ)

([
A

y1

∣∣∣∣k
i−1

−
[
A

y1

∣∣∣∣k−1

i−1

)]

− ∆tk1

2

(
[AB|j+1

i+1 + 2 [AB|j+1
i + [AB|j+1

i−1 + [AB|ji+1 + 2 [AB|ji + [AB|ji−1

)
+

∆tk−1

2

(
[C|j+1

i+1 + 2 [C|j+1
i + [C|j+1

i−1 + [C|ji+1 + 2 [C|ji + [C|ji−1

)
, (6.95)

where we have noted y1(x, 0) = y0
1 = 1 and d is as defined earlier in Equation (6.17).

We find the corresponding equation for species B in Equation (6.75) in a similar manner
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swapping A with B and y1 with y2. The corresponding equation for species B is given by[
2Bj+1

i +Bj+1
i−1 +Bj+1

i+1

]
− d

(
1

2

)γ [
Bj+1
i−1 − 2Bj+1

i +Bj+1
i+1

]
=
[
2Bj

i +Bj
i−1 +Bj

i+1

]
− d

(
1

2

)γ [
Bj
i−1 − 2Bj

i +Bj
i+1

]
+ d

(
1

2

)γ [
y2
j
i+1

[
B

y2

∣∣∣∣j+1

i+1

−y2
j+1
i+1

[
B

y2

∣∣∣∣j
i+1

− 2y2
j
i

[
B

y2

∣∣∣∣j+1

i

+ 2y2
j+1
i

[
B

y2

∣∣∣∣j
i

+ y2
j
i−1

[
B

y2

∣∣∣∣j+1

i−1

− y2
j+1
i−1

[
B

y2

∣∣∣∣j
i−1

]

− 2d
(
y2
j+1
i + y2

j
i

)[
β̃j(γ)B0

i +

j∑
k=1

µ̃j−k(γ)

([
B

y2

∣∣∣∣k
i

−
[
B

y2

∣∣∣∣k−1

i

)]

+ d
(
y2
j+1
i+1 + y2

j
i+1

)[
β̃j(γ)B0

i+1 +

j∑
k=1

µ̃j−k(γ)

([
B

y2

∣∣∣∣k
i+1

−
[
B

y2

∣∣∣∣k−1

i+1

)]

+ d
(
y2
j+1
i−1 + y2

j
i−1

)[
β̃j(γ)B0

i−1 +

j∑
k=1

µ̃j−k(γ)

([
B

y2

∣∣∣∣k
i−1

−
[
B

y2

∣∣∣∣k−1

i−1

)]

− ∆tk1

2

[
2 [AB|j+1

i + [AB|j+1
i−1 + [AB|j+1

i+1 + 2 [AB|ji + [AB|ji−1 + [AB|ji+1

]
+

∆tk−1

2

[
2 [C|j+1

i + [C|j+1
i−1 + [C|j+1

i+1 + 2 [C|ji + [C|ji−1 + [C|ji+1

]
, (6.96)

for a uniform mesh, noting y2(x, 0) = 1, and d is as given earlier in Equation (6.17).

We now find the approximation for Equation (6.76), using a similar process to that used

for approximating Equation (6.74). We first define the spatial derivative by

v =
∂

∂x

[
y3
∂1−γ

∂t1−γ

(
C

y3

)]
(6.97)

and then use this in Equation (6.76) to give the equations[
∂

∂x

(
y3
∂1−γ

∂t1−γ

(
C

y3

))∣∣∣∣j
i− 1

2

= [v|j
i− 1

2

, (6.98)

and [
∂C

∂t

∣∣∣∣j+ 1
2

i− 1
2

= D

[
∂v

∂x

∣∣∣∣j+ 1
2

i− 1
2

+ k1 [AB|j+
1
2

i− 1
2

− k−1 [C|j+
1
2

i− 1
2

. (6.99)

Now approximating the first order spatial and time derivatives in Equation (6.98) and

(6.99) by using centred finite difference method (as in Chapter 3 Equations (3.8) and

(3.9)), we then have

1

∆xi

([
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i

−
[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i−1

)
= [v|j

i− 1
2

, (6.100)
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and Cj+1

i− 1
2

− Cj
i− 1

2

∆t

 =
D

∆xi

(
v
j+ 1

2
i − vj+

1
2

i−1

)
+ k1 [AB|j+

1
2

i− 1
2

− k−1 [C|j+
1
2

i− 1
2

. (6.101)

Now replacing the term at the point xj
i− 1

2

by their corresponding spatial averages at i− 1

and i, gives

1

∆xi

([
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i

−
[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i−1

)
=

1

2

(
vji + vji−1

)
, (6.102)

and

1

2∆t

[(
Cj+1
i + Cj+1

i−1

)
−
(
Cji + Cji−1

)]
=

D

∆xi

(
v
j+ 1

2
i − vj+

1
2

i−1

)
+
k1

2

[
[AB|j+

1
2

i + [AB|j+
1
2

i−1

]
− k−1

2

[
[C|j+

1
2

i + [C|j+
1
2

i−1

]
. (6.103)

Eliminating vji−1 from Equations (6.102) and (6.103), we obtain the equation

1

2∆t

[(
Cj+1
i + Cj+1

i−1

)
−
(
Cji + Cji−1

)]
=

2D

∆xi
v
j+ 1

2
i − 2D

∆x2
i

([
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i

−
[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i−1

)

+
k1

2

[
[AB|j+

1
2

i + [AB|j+
1
2

i−1

]
− k−1

2

[
[C|j+

1
2

i + [C|j+
1
2

i−1

]
. (6.104)

Similarly replacing i with i+ 1 in Equations (6.98) and (6.99), we then get the equations[
∂

∂x

(
y3
∂1−γ

∂t1−γ

(
C

y3

))∣∣∣∣j
i+ 1

2

= [v|j
i+ 1

2

, (6.105)

and [
∂C

∂t

∣∣∣∣j+ 1
2

i+ 1
2

= D

[
∂v

∂x

∣∣∣∣j+ 1
2

i+ 1
2

+ k1 [AB|j+
1
2

i+ 1
2

− k−1 [C|j+
1
2

i+ 1
2

. (6.106)

Replacing the terms evaluated at the point xi+ 1
2

by their corresponding spatial average

at i and i+ 1, we then have

1

∆xi+1

([
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i+1

−
[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i

)
=

1

2

(
vji+1 + vji

)
, (6.107)

and

1

2∆t

[(
Cj+1
i+1 + Cj+1

i

)
−
(
Cji+1 + Cji

)]
=

D

∆xi+1

(
v
j+ 1

2
i+1 − v

j+ 1
2

i

)
+
k1

2

[
[AB|j+

1
2

i+1 + [AB|j+
1
2

i

]
− k−1

2

[
[C|j+

1
2

i+1 + [C|j+
1
2

i

]
. (6.108)
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Solving Equation (6.107) for vji+1 and then combining (replacing j with j + 1
2) with Equa-

tion (6.108), gives

1

2∆t

[(
Cj+1
i+1 + Cj+1

i

)
−
(
Cji+1 + Cji

)]
(6.109)

=
2D

∆x2
i+1

([
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i+1
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y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i

)

− 2D

∆xi+1
v
j+ 1

2
i +

k1

2

[
[AB|j+

1
2

i+1 + [AB|j+
1
2

i

]
− k−1

2

[
[C|j+

1
2

i+1 + [C|j+
1
2

i

]
.

Now multiplying Equation (6.104) by ∆xi and Equation (6.109) by ∆xi+1, and adding

the two, we have

1

2∆t

[
∆xi

(
Cj+1
i + Cj+1

i−1

)
+ ∆xi+1

(
Cj+1
i+1 + Cj+1

i

)]
=

1

2∆t
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(
Cji + Cji−1

)
+∆xi+1

(
Cji+1 + Cji

)]
−
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2

∆xi+1
+

2

∆xi

]
[y3|

j+ 1
2

i

[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i

+
2

∆xi+1
[y3|
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2

i+1

[
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∂t1−γ

(
C

y3
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1
2
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+
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∆xi
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2

i−1

[
∂1−γ
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(
C

y3
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+
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2

[
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(
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1
2
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1
2

i−1

)
+ ∆xi+1

(
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2

i+1 + [AB|j+
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2

i
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2
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(
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1
2
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1
2

i−1

)
+ ∆xi+1

(
[C|j+

1
2

i+1 + [C|j+
1
2

i

)]
. (6.110)

Using the fractional derivative approximation in Equation (6.110), we then find

1

2∆t

[
∆xi

(
Cj+1
i + Cj+1

i−1

)
+ ∆xi+1

(
Cj+1
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1
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(
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(
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)]
+

2D∆tγ−1

Γ(1 + γ)

{
−
[
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i
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+
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C
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∣∣∣∣k
i

−
[
C

y3

∣∣∣∣k−1

i
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+
1
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2

i+1

[
β̃j(γ)

[
C

y3

∣∣∣∣0
i+1

+ 2
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1

2
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)

+
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C

y3

∣∣∣∣k
i+1

−
[
C

y3
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+

1

∆xi
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[
β̃j(γ)
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C
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1

2
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−
[
C
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+

j∑
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C
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∣∣∣∣k
i−1
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[
C

y3
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+
k1

2

[
∆xi

(
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1
2

i + [AB|j+
1
2

i−1

)
+ ∆xi+1

(
[AB|j+

1
2

i+1 + [AB|j+
1
2

i
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2

[
∆xi

(
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1
2
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1
2
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)
+ ∆xi+1
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1
2

i+1 + [C|j+
1
2

i

)]
. (6.111)
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Replacing the terms evaluated at the point tj+ 1
2

by their corresponding temporal average

at j and j+1, and then Equation (6.111), with the case of constant grid spacing ∆xi = ∆x

and noting y3(x, 0) = y3
0 = 1, reduces to(

1 +
∆tk−1

2

)[
Cj+1
i−1 + 2Cj+1

i + Cj+1
i+1

]
− d

(
1

2
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]
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− d

(
1

2
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]
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(
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2
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j
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C
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j
i
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C
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i
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i
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C

y3
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i

+y3
j
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[
C

y3
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j+1
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[
C

y3
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}

− 2d
(
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j
i
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µ̃j−k(γ)
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C
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∣∣∣∣k
i

−
[
C

y3
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i
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+ d
(
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j
i+1

)[
β̃j(γ) [C|0i+1 +

j∑
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µ̃j−k(γ)
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C

y3

∣∣∣∣k
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−
[
C
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+ d
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j
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C

y3

∣∣∣∣k
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−
[
C
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+
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i+1 + 2 [AB|j+1
i + [AB|j+1

i−1 + [AB|ji+1 + 2 [AB|ji + [AB|ji−1

]
, (6.112)

where d is given in Equation (6.17).

Finally we find the approximation for the auxiliary variables yk(x, t), where k = 1, 2, 3,

in Equations (6.77) – (6.79). Approximating the first order time derivatives by a centred

finite difference (as in Chapter 3 Equation (3.9)), and approximating the values at t = tj+ 1
2

by their temporal average (Equation (6.94)), we then obtain the equations

y1
j+1
i = y1

j
i −

∆tk1

2

(
[By1|j+1

i + [By1|ji
)
, (6.113)

y2
j+1
i = y2

j
i −

∆tk1

2

(
[Ay2|j+1

i + [Ay2|ji
)
, (6.114)

and

y3
j+1
i = y3

j
i −

∆tk−1

2

(
y3
j+1
i + y3

j
i

)
. (6.115)

Equations (6.95), (6.96), and (6.112) along with Equations (6.113) – (6.115) form the

equations for the Keller Box method for Model Type 2.
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6.6.2 The Implicit Finite Difference Scheme: IML1 Scheme

In this section, we develop the implicit finite difference scheme using the L1 scheme given

by Equation (2.12), where p = 1− γ. We approximate the derivatives in Equations (6.4)

– (6.6) at the point (xi, tj)[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D
∂2

∂x2

[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

, (6.116)

[
∂B

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D
∂2

∂x2

[
y2
∂1−γ

∂t1−γ

(
B

y2

)∣∣∣∣j
i

, (6.117)

[
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D
∂2

∂x2

[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i

, (6.118)

and likewise for Equations (6.71) – (6.73)[
∂y1

∂t

∣∣∣∣j
i

= −k1 [By1|ji , (6.119)

[
∂y2

∂t

∣∣∣∣j
i

= −k1 [Ay2|ji , (6.120)

and [
∂y3

∂t

∣∣∣∣j
i

= −k−1 [y3|ji . (6.121)

We approximate the second order spatial derivative and the first order time derivative

in Equations (6.116) by using the centred finite difference scheme and the backward

difference scheme (given in Chapter 3 by Equations (3.6) and (3.9)), to find

Aji −A
j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji +

D

∆x2

{[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i+1

− 2

[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

+

[
y1
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i−1

}
. (6.122)
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Now using the L1 approximation, given by Equation (2.12), and simplifying, Equa-

tion (6.122) then reduces to

Aji = Aj−1
i −∆tk1 [AB|ji + ∆tk−1 [C|ji

+
D∆tγ

∆x2Γ(1 + γ)

{
[y1|ji+1

[
βj(γ)

[
A

y1

∣∣∣∣0
i+1

+

[
A

y1

∣∣∣∣j
i+1

+

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i+1

]

− 2[y1|ji

[
βj(γ)

[
A

y1

∣∣∣∣0
i

+

[
A

y1

∣∣∣∣j
i

+
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µj−k(γ)

[
A

y1

∣∣∣∣k
i

]

+[y1|ji−1

[
βj(γ)

[
A

y1

∣∣∣∣0
i−1

+

[
A

y1

∣∣∣∣j
i−1

+

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i−1

]}
. (6.123)

After simplifying we have the following equation for A

Aji − d̂
(
Aji+1 − 2Aji +Aji−1

)
= Aj−1

i −∆tk1 [AB|ji + ∆tk−1 [C|ji

+ d̂[y1|ji+1

[
βj(γ) [A|0i+1 +

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i+1

]

− 2d̂[y1|ji

[
βj(γ) [A|0i +

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i

]

+ d̂[y1|ji−1

[
βj(γ) [A|0i−1 +

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i−1

]
, (6.124)

where d̂ is given earlier in Equation (6.27). Note in the above we have used the condition

y1(x, 0) = y1
0 = 1 to simplify the equation.

We find the corresponding equation for B from Equation (6.117) by repeating similar

steps but now with B replacing A and y2 replacing y1, and so we have

Bj
i − d̂

(
Bj
i+1 − 2Bj

i +Bj
i−1

)
= Bj−1

i −∆tk1 [AB|ji + ∆tk−1 [C|ji

+ d̂[y2|ji+1

[
βj(γ) [B|0i+1 +

j−1∑
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µj−k(γ) [B|ki+1

]

− 2d̂[y2|ji

[
βj(γ) [B|0i +

j−1∑
k=1

µj−k(γ)

[
B

y2

∣∣∣∣k
i

]

+ d̂[y2|ji−1

[
βj(γ) [B|0i−1 +

j−1∑
k=1

µj−k(γ)

[
B

y2

∣∣∣∣k
i−1

]
, (6.125)

where again we have used the fact y2(x, 0) = y2
0 = 1.

We next find the approximation of Equation (6.118) in a similar way by first approximat-
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ing the integer–order derivatives

Cji − C
j−1
i

∆t
= k1AB − k−1C +

D

∆x2

{[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i+1

(6.126)

−2

[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i

+

[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i−1

}
,

and then the fractional derivative, using the L1 approximation in Equation (2.12), to find

Cji = Cj−1
i + ∆tk1 [AB|ji −∆tk−1 [C|ji

+
D∆tγ

∆x2Γ(1 + γ)

{
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+
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∣∣∣∣k
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]
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+
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+
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i

]
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[
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C
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∣∣∣∣0
i−1

+

[
C

y3

∣∣∣∣j
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+

j−1∑
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µj−k(γ)

[
C

y3

∣∣∣∣k
i−1

]}
. (6.127)

Using d̂ defined in Equation (6.27) and simplifying, we have the equation for C

(1 + ∆tk−1)Cji − d̂
(
Cji+1 − 2Cji + Cji−1

)
= Cj−1

i + ∆tk1 [AB|ji

+ d̂[y3|ji+1

[
βj(γ) [C|0i+1 +

j−1∑
k=1

µj−k(γ)

[
C

y3

∣∣∣∣k
i+1

]
− 2d̂[y3|ji

[
βj(γ) [C|0i +

j−1∑
k=1

µj−k(γ)

[
C

y3

∣∣∣∣k
i

]

+ d̂[y3|ji−1

[
βj(γ) [C|0i−1 +

j−1∑
k=1

µj−k(γ)

[
C

y3

∣∣∣∣k
i−1

]
. (6.128)

Finally we find the approximations for the auxiliary variables yk(x, t), where k = 1, 2, 3,

given in Equations (6.119) – (6.121). Now approximating the first order time deriva-

tives by using the backward difference method (as in Chapter 3 Equation (3.9)), and

rearranging we then obtain

y1
j
i = y1

j−1
i −∆tk1 [By1|ji , (6.129)

y2
j
i = y2

j−1
i −∆tk1 [Ay2|ji , (6.130)

and

y3
j
i = y3

j−1
i −∆tk−1 [y3|ji . (6.131)

Equations (6.124), (6.125), and (6.128) along with Equations (6.129) – (6.131) form the

equations for the IML1 method for Model Type 2.
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6.7 Accuracy of the Numerical Methods for Model Type 2

In this section, we consider the truncation error accuracy of the numerical schemes

KBMC2 and the IML1 method given in Section 6.6. Similar to Section 6.4 we use the

notation in Equation (6.30) to aid in the analysis of each scheme.

6.7.1 The Accuracy of the Keller Box Scheme

We now determine the truncation error of KBMC2 scheme for Model Type 2. Using the

notation in Equation (6.30), with Z = A. Equation (6.95) after rewriting becomes

∆x2

4∆t

[
δ2
xA

j+1
i − δ2

xA
j
i

]
+

1

∆t

[
Aj+1
i −Aji

]
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1

2
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j
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)}
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1

2
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. (6.132)
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Note in the above we used the identity

[(
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i +Aj+1
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∣∣∣∣j+1

i−1

− y1
j+1
i−1

[
A

y1

∣∣∣∣j
i−1

]

=

[
A

y1

∣∣∣∣j+1

i+1

(
y1
j+1
i+1 + y1

j
i+1

)
−
[
A

y1

∣∣∣∣j
i+1

(
y1
j+1
i+1 + y1

j
i+1

)
− 2

[
A

y1

∣∣∣∣j+1

i

(
y1
j+1
i + y1

j
i

)
+ 2

[
A

y1

∣∣∣∣j
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. (6.133)

After adding and subtracting the terms of the form

D∆tγ−1

∆x2Γ(1 + γ)

[
2

(
1

2

)γ (
y1
j+1
p + y1

j
p
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p

)]
(6.134)
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with p = i, i+ 1, i− 1, Equation (6.132) then becomes
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We note the terms

gp(t) =
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, (6.136)

are the C2 fractional derivative approximation at the point p, when compared with Equa-

tion (2.75), we can then rewrite the last equation in terms of the C2 fractional derivative
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approximation, i.e.
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We now let
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and

G(y1, A) =
(
y1
j+1
i+1 + y1

j
i+1

)([A
y1

∣∣∣∣j+1

i+1

− 2

[
A

y1

∣∣∣∣j+ 1
2

i+1

+

[
A

y1

∣∣∣∣j
i+1

)

− 2
(
y1
j+1
i + y1

j
i

)([A
y1

∣∣∣∣j+1

i

− 2

[
A

y1

∣∣∣∣j+ 1
2

i

+

[
A

y1

∣∣∣∣j
i

)

+
(
y1
j+1
i−1 + y1

j
i−1

)([A
y1

∣∣∣∣j+1

i−1

− 2

[
A

y1

∣∣∣∣j+ 1
2

i−1

+

[
A

y1

∣∣∣∣j
i−1

)
. (6.139)

Then Equation (6.137) can be more simply rewritten as
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Now taking the Taylor series expansion around the point xi = i∆x in space we have

δ2
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j
i '

[
∂2A

∂x2

∣∣∣∣j
i

+
∆x2

12

[
∂4A

∂x4

∣∣∣∣j
i

+O(∆x6), (6.141)

and

D

∆x2
Q(y1, A) ' 2D

[
∂2

∂x2

(
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∂t1−γ

(
A

y1

))∣∣∣∣j+
1
2

i,C2

+O(∆x2) +O(∆t2). (6.142)

Taking the Taylor series expansion around the point
(
xi, tj+ 1

2

)
in time, we have
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, (6.144)
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' O(∆x2), (6.145)
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(6.146)
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(6.147)

and

Aj+1
i −Aji
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'
[
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2

i

+O(∆t2). (6.148)

Using Equations (6.141) – (6.148), we then have[
∂A
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i

. (6.149)
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Now adding and subtracting the exact value of the fractional derivative, we then get[
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Now evaluating the spatial derivatives as[
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Equation (6.150) becomes[
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+O(∆x2) +O(∆t2) +O(∆t1+γ), (6.152)

and then combining the common terms we find[
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The terms [
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(
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−
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(6.154)
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are each of O(∆t1+γ), as shown in Chapter 2 by Equation (2.149). We then see the

truncation error from Equations (6.153) and (6.154) is order 1 + γ in time and second

order in space.

Using similar process, we find the truncation error of Equation (6.96) is again of order

1 + γ in time and second order in space.

We now find the truncation error for Equation (6.112), where we again use the notation

in Equation (6.30) with Z = C, and then add and subtract the terms of the form
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for p = i, i+ 1, and i− 1. Equation (6.112) then becomes
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. (6.156)

Note the term in the third square brackets, highlighted in blue, in Equation (6.156) is the



6.7 Accuracy of the Numerical Methods for Model Type 2 335

C2 approximation acting upon the function gp(t) =
[
C
y3

∣∣∣
p
, where p = i, i + 1, and i − 1.

Equation (6.156) can then be written as
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Using Equations (6.138) and (6.139), with C replacing A and y3 replacing y1, we then

have
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Taking the Taylor series expansion around the point
(
xi, tj+ 1

2

)
, using Equations (6.141)

– (6.148) with C replacing A and y3 replacing y1, we then have[
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Now adding and subtracting the exact value of the fractional derivative then we have[
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Now evaluating the spatial derivatives using Equation(6.151) for
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The difference between the exact and C2 approximation of the fractional derivatives in

the braces are each of O(∆t1+γ) as seen in Chapter 2 Equation (2.149), then we have[
∂C

∂t

∣∣∣∣j+ 1
2

i

= k1 [AB|j+
1
2

i − k−1 [C|j+
1
2

i +D
∂2

∂x2

[
y3
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j+
1
2

i

+O(∆x2) +O(∆t2) +O(∆t1+γ). (6.162)

We then get the truncation error, τi,j , of this equation is of order 1+γ in time and second

order in space i.e

τi,j = O(∆x2) +O(∆t1+γ). (6.163)

Now to find the accuracy order of yr
j
i , where r = 1, 2, 3, in Equations (6.113) – (6.115),

we now rewrite the equations as
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and
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j+1
i − y3

j
i

∆t
= −k−1

2

(
y3
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j
i

)
. (6.166)

Now expanding the Taylor series around the point
(
xi, tj+ 1

2

)
in time by using Equa-

tion (6.144) with By1 and Ay1 respectively replacing y1, and Equation (6.148) with yr
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replacing A, we then have the equations[
∂y1

∂t

∣∣∣∣j+ 1
2

i

+O(∆t2) = −k1

2
2

[
[By1|

j+ 1
2

i +
1

2!

(
∆t

2

)2 [ ∂2

∂t2
(By1)

∣∣∣∣j+
1
2

i

+O(∆t4)

]
,

(6.167)

[
∂y2

∂t

∣∣∣∣j+ 1
2

i

+O(∆t2) = −k1

2
2

[
[Ay2|

j+ 1
2

i +
1

2!

(
∆t

2

)2 [ ∂2

∂t2
(Ay2)

∣∣∣∣j+
1
2

i

+O(∆t4)

]
,

(6.168)

and [
∂y3

∂t

∣∣∣∣j+ 1
2

i

+O(∆t2) = −k−1

2
2

[
y3
j+ 1

2
i +

1

2!

(
∆t

2

)2 [∂2y3

∂t2

∣∣∣∣j+
1
2

i

+O(∆t4)

]
. (6.169)

These equations can be rewritten as[
∂y1

∂t

∣∣∣∣j+ 1
2

i

= −k1 [By1|
j+ 1

2
i +O(∆t2), (6.170)

[
∂y2

∂t

∣∣∣∣j+ 1
2

i

= −k1 [Ay2|
j+ 1

2
i +O(∆t2), (6.171)

and [
∂y3

∂t

∣∣∣∣j+ 1
2

i

= −k−1y3
j+ 1

2
i +O(∆t2), (6.172)

which are all of second order in time.

6.7.2 Accuracy of the Implicit Finite Difference Method (IML1)

In this subsection, we consider the accuracy of the implicit numerical method given in

Section 6.6.2. We begin by first rewriting Equation (6.124) as

Aji −A
j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji

+
D

∆x2
[y1|ji+1

{
∆tγ−1

Γ(1 + γ)

[
βj(γ)

[
A

y1

∣∣∣∣0
i+1

+

[
A

y1

∣∣∣∣j
i+1

+

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i+1

]}

− 2
D

∆x2
[y1|ji

{
∆tγ−1

Γ(1 + γ)

[
βj(γ)

[
A

y1

∣∣∣∣0
i

+

[
A

y1

∣∣∣∣j
i

+

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i

]}

+
D

∆x2
[y1|ji−1

{
∆tγ−1

Γ(1 + γ)

[
βj(γ)

[
A

y1

∣∣∣∣0
i−1

+

[
A

y1

∣∣∣∣j
i−1

+

j−1∑
k=1

µj−k(γ)

[
A

y1

∣∣∣∣k
i−1

]}
.

(6.173)



6.7 Accuracy of the Numerical Methods for Model Type 2 338

Identifying the last three terms in Equation (6.173) as the L1 approximation acting upon

the function g(t) = A
y1

, at the points i+ 1, i and i− 1, we can rewrite Equation (6.173) as

Aji −A
j−1
i

∆t
= −k1 [AB|ji + k−1 [C|ji

+
D

∆x2

{
y1
j
i+1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i+1,L1

− 2y1
j
i

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i,L1

+ y1
j
i−1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i−1,L1

}
.

(6.174)

Taking the Taylor series expansion around the point tj = j∆t for the term on the left-hand

side, gives

Aj+1
i −Aji

∆t
=

[
∂A

∂t

∣∣∣∣j
i

+
∆t

2!

[
∂2A

∂t2

∣∣∣∣j
i

+O(∆t2)

=

[
∂A

∂t

∣∣∣∣j
i

+O(∆t). (6.175)

Furthermore taking the Taylor series expansion around the point xi = i∆x in space for

the last term on the right of Equation (6.174), we have

y1
j
i+1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i+1,L1

− 2y1
j
i

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i,L1

+ y1
j
i−1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i−1,L1

= 2

{
(∆x)2

2!

[
∂2

∂x2

(
y1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+
(∆x)4

4!

[
∂4

∂x4

(
y1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+O(∆x6)

}

= ∆x2

[
∂2

∂x2

(
y1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+O(∆x4). (6.176)

Equation (6.174) then becomes[
∂A

∂t

∣∣∣∣j
i

+O(∆t) = −k1 [AB|ji + k−1 [C|ji +D

[
∂2

∂x2

(
y1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+O(∆x2).

(6.177)

Adding and subtracting the term D
[
∂2

∂x2

(
y1

∂1−γ

∂t1−γ

(
A
y1

))∣∣∣j
i

we find

[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D

[
∂2

∂x2

(
y1
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i

(6.178)

−D

{[
∂2

∂x2

(
y1
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i

−
[
∂2

∂x2

(
y1

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

}
+O(∆x2) +O(∆t),
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which after using Equation (6.151) becomes[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D

[
∂2

∂x2

(
y1
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i

+O(∆x2) +O(∆t)

−D

{
y1
j
i

[
∂2

∂x2

(
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i

+ 2

[
∂y1

∂x

∣∣∣∣j
i

[
∂

∂x

(
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i

+

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

[
∂2y1

∂x2

∣∣∣∣j
i

−

(
y1
j
i

[
∂2

∂x2

([
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+2

[
∂y1

∂x

∣∣∣∣j
i

[
∂

∂x

([
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+

[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i,L1

[
∂2y1

∂x2

∣∣∣∣j
i

)}
. (6.179)

Simplifying we then find[
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D
∂2

∂x2

[
y1
∂1−γ

∂t1−γ

(
A

y1

)]j
i

+O(∆x2) +O(∆t)

−D

{
y1
j
i

[
∂2

∂x2

(
∂1−γ

∂t1−γ

(
A

y1

)
−
[
∂1−γ

∂t1−γ
A

y1

∣∣∣∣
L1

)∣∣∣∣j
i

+ 2

[
∂y1

∂x

∣∣∣∣j
i

[
∂

∂x

(
∂1−γ

∂t1−γ

(
A

y1

)
−
[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣
L1

)∣∣∣∣j
i

+

[
∂2y1

∂x2

∣∣∣∣j
i

([
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i

−
[
∂1−γ

∂t1−γ

(
A

y1

)∣∣∣∣j
i,L1

)}
. (6.180)

Now by Equation (2.48) the terms of the form
[
∂1−γ

∂t1−γ (g)
∣∣∣j
i
−
[
∂1−γ

∂t1−γ (g)
∣∣∣j
i,L1

are of O(∆t1+γ),

then we have [
∂A

∂t

∣∣∣∣j
i

= −k1 [AB|ji + k−1 [C|ji +D

[
∂2

∂x2

(
y1
∂1−γ

∂t1−γ

(
A

y1

))∣∣∣∣j
i

+O(∆x2) +O(∆t) +O(∆t1+γ). (6.181)

We now see the truncation error for this equation is first order in time and second order

in space.

In a similar manner, swapping A with B and y1 with y2, we see the truncation error of

Equation (6.125) is again first order in time and second order in space.

Using a similar process, we can find the truncation error accuracy of Equation (6.127).

We begin by rewriting Equation (6.127) as

Cji − C
j−1
i

∆t
= k1 [AB|ji − k−1 [C|ji (6.182)

+
D

∆x2

{
y3
j
i+1

[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i+1,L1

− 2y3
j
i

[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i,L1

+ y3
j
i−1

[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i−1,L1

}
.
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Expanding the Taylor series around the point (xi, tj) and then using Equations (6.175)

and (6.176) with C replacing A and y3 replacing y1, we then have[
∂C

∂t

∣∣∣∣j
i

+O(∆t) = k1 [AB|ji − k−1 [C|ji +D

[
∂2

∂x2

(
y3

[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣
L1

)∣∣∣∣j
i

+O(∆x2).

(6.183)

Adding and subtracting the term
[
∂2

∂x2

(
y3

∂1−γ

∂t1−γ

(
C
y3

))∣∣∣j
i

we then find

[
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D
∂2

∂x2

[
y3
∂1−γ

∂t1−γ

(
C

y3

)]j
i

(6.184)

−D

{[
∂2

∂x2

(
y3
∂1−γ

∂t1−γ

(
C

y3

))∣∣∣∣j
i

−
[
∂2

∂x2

(
y3

[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣
L1

)∣∣∣∣j
i

}
+O(∆x2) +O(∆t).

After evaluating the second spatial derivative, using Equation (6.151), and simplifying,

gives [
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D
∂2

∂x2

[
y3
∂1−γ

∂t1−γ

(
C

y3

)]j
i

+O(∆x2) +O(∆t)

−D

{
y3
j
i

[
∂2

∂x2

(
∂1−γ

∂t1−γ

(
C

y3

)
−
[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣
L1

)∣∣∣∣j
i

+ 2

[
∂y3

∂x

∣∣∣∣j
i

[
∂

∂x

(
∂1−γ

∂t1−γ

(
C

y3

)
−
[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣
L1

)∣∣∣∣j
i

+

[
∂2y3

∂x2

∣∣∣∣j
i

([
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i

−
[
∂1−γ

∂t1−γ

(
C

y3

)∣∣∣∣j
i,L1

)}
. (6.185)

Note by Equation (2.48) the difference between the exact and the L1 approximation is

O(∆t1+γ) as mentioned earlier. We then have[
∂C

∂t

∣∣∣∣j
i

= k1 [AB|ji − k−1 [C|ji +D

[
∂2

∂x2

(
y3
∂1−γ

∂t1−γ

(
C

y3

))∣∣∣∣j
i

+O(∆x2) +O(∆t) +O(∆t1+γ)

(6.186)

which shows the truncation error, τi,j , for this equation is first order in time and second

order in space i.e.

τi,j = O(∆x2) +O(∆t). (6.187)

Now to find the accuracy order of yr
j
i , where r = 1, 2, 3, in Equations (6.129) – (6.131),

now rewrite the equations as

y1
j
i − y1

j−1
i

∆t
= −k1 [By1|ji , (6.188)



6.8 Consistency of the Numerical Methods 341

y2
j
i − y2

j−1
i

∆t
= −k1 [Ay2|ji , (6.189)

and

y3
j
i − y3

j−1
i

∆t
= −k−1 [y3|ji , (6.190)

and then taking the Taylor series expansion around the point xi = i∆x in space, by using

Equation (6.175) with yr
j
i replacing Aji , we then have[

∂y1

∂t

∣∣∣∣j
i

= −k1 [By1|ji +O(∆t), (6.191)

[
∂y2

∂t

∣∣∣∣j
i

= −k1 [Ay2|ji +O(∆t), (6.192)

and [
∂y3

∂t

∣∣∣∣j
i

= −k−1 [y3|ji +O(∆t), (6.193)

which shows each is first order in time.

6.8 Consistency of the Numerical Methods for Model 1 and

Model 2

The numerical schemes for solving Model Type 1 and Model Type 2 are consistent, as

the truncation error approaches zero as ∆t→ 0 and ∆x→ 0. Hence the KBMC2 and the

IML1 methods are both consistent with the original fractional reaction diffusion equations.

6.9 Numerical Examples and Results

In this section, three examples considered of the implementation for Model type 1 and

Model Type 2 based on the KBMC2 and the IML1 schemes. For each example, the numer-

ical predictions of each model are shown. These schemes are implemented in MATLAB

R2014a (see Appendix C.5) using the fsolve subroutine to solve the system of nonlinear

equations.
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We estimate the order of convergence numerically for the KBMC2 method by computing

the maximum norm of the error between the numerical estimate and the approximate

“exact solution” at the time t = 1, by using a large number of grid points and time steps.

Example 6.9.1. In this Example we consider the solution of the ordinary differential

equation (ODE) models of the reversible reaction given by Equations (6.8) – (6.10) with

the initial conditions A(0) = 0, B(0) = 1 and C(0) = 2. We use k1 = 1, and k−1 = 1 and

we take time t ∈ [0, 10]. In Figure 6.1, we see the chemical species A and B react together

to form the reactant C and C reacts to form A and B. In Figure 6.2 we use k1 = 1, and

k−1 = 3, the results shown that the chemical species C reacts faster to form A and B.

Whilst in Figure 6.3 with k1 = 3, and k−1 = 1, we see the chemical species A and B react

together faster to form C. In each case the solution for each species quickly approaches

a steady state. Note in each case the solution for each species remains positive.

Figure 6.1: Numerical solution for ODE, where k1 = 1, k−1 = 1 and time t ∈ [0, 10].
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Figure 6.2: Numerical solution for ODE, where k1 = 1, k−1 = 3 and time t ∈ [0, 10].

Figure 6.3: Numerical solution for ODE, where k1 = 3, k−1 = 1 and time t ∈ [0, 10].

Example 6.9.2. In this Example we consider the solution of the two fractional partial

differential equation models of the reversible reaction

A+B 
 C (6.194)

in the presence of anomalous subdiffusion as given in Sections 6.2 and 6.5 for 0 ≤ x ≤ 1

and 0 ≤ t ≤ 1. For both models we use the initial conditions

A(x, 0) = (1− cos(2πx))/2,

B(x, 0) = (1− cos(2πx))/2, (6.195)

C(x, 0) = 1,
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along with the no-flux boundary conditions

∂A(0, t)

∂x
= 0,

∂B(0, t)

∂x
= 0, (6.196)

∂C(0, t)

∂x
= 0.

For Model Type 2 we also need the initial conditions

yi(0) = 1, i = 1, 2, 3. (6.197)

For both models we set the fractional exponent γ = 1/2, the forward reaction rate k1 = 1,

the backward reaction rate k−1 = 1, and the diffusion coefficient D = 1.

6.9.1 KBMC2 Predictions

Here we compare the numerical solution of Model Type 1 and Model Type 2 using the

KBMC2 scheme in Sections 6.3 and 6.6. We first use the KBMC2 scheme for Model Type

1 given by Equations (6.14), (6.15) and (6.16), with ∆t = 0.001 and ∆x = 0.02. To

include the no-flux boundary condition in both schemes we approximate the derivative

by centred finite difference at the boundary point. When we set this to zero requires we

replace the value of species A at x = −∆x with the value of A at x = ∆x. Similarly

we also replace the value of A at x = L − ∆x with x = L + ∆x. We also use same

approximation for species B and C.

The results are shown in Figures 6.4 – 6.6, similar to the preview example it can be seen

that the chemical species A and B react together to form the reactant C and C reacts

to form A and B. We also see that C decays to a homogeneous steady state, whilst A

and B increase to a homogeneous steady state. This is similar to the behaviour of the

homogeneous solution in Example 6.9.1 in Figure 6.1 at longer times.

We also show the numerical solution KBMC2 scheme for Model Type 2, Equations (6.95),

(6.96) and (6.112), under the same initial and boundary conditions for the chemical species

used for Model Type 1 in Figures 6.7 – 6.9. It can be seen that the chemical species A

and B react together to form C(x, t) and vice versa. Once again the solution behaves

similar to ODE system in Figure 6.1 for long times.
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In Figure 6.10 we give a comparison of the predicted values of A(x, t) using Model Type

1 and Model Type 2 at x = 0.5 and x = 0.9. From this figure we see similar asymptotic

behaviour from both models (Model Type 1 and Model Type 2). We also see in Figure 6.11

the difference for species A between the two models, ε = A1(0.5, t)−A2(0.5, t) at x = 0.5.

From this we see the results from Model Type 1 predicts a higher value than Model Type

2.

Figure 6.4: The predictions of A(x, t) given by the KBMC2 scheme, Section 6.3.1, for Model

Type 1.

Figure 6.5: The Model Type 1 predictions of B(x, t) using the KBMC2 scheme in Section 6.3.1.
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Figure 6.6: The Model Type 1 predictions of C(x, t) using the KBMC2 scheme, Section 6.3.1.

Figure 6.7: The Model Type 2 predictions of A(x, t) using the KBMC2 scheme, Section 6.6.1.
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Figure 6.8: The predictions of B(x, t) using the KBMC2 scheme in Section 6.6.1 for Model

Type 2.

Figure 6.9: The Model Type 2 predictions of C(x, t) using the KBMC2 scheme, Section 6.6.1.
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Figure 6.10: The comparison between Model Type 1 and Model Type 2 by using KBMC2

for species A in Equations (6.14) and (6.95) at x = 0.5 (upper two lines) and 0.9 (lower two

lines).

Figure 6.11: The estimate of the difference, ε, in the prediction for A(0.5, t) given by Model

Type 1, and Model Type 2 by using KBMC2 for Equations (6.14) and (6.95) where

ε = A1(0.5, t)−A2(0.5, t).

6.9.2 IML1 Predictions

Here we again compare the numerical solution of Model Type 1 and Model Type 2 using

the IML1 scheme in Sections 6.3 and 6.6. We use the IML1 scheme for Model Type 1

given by Equations (6.24), (6.25), and (6.26), with ∆t = 0.001 and ∆x = 0.01, also we use

the same initial conditions as in previous examples. The results are shown in Figures 6.12
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– 6.14, it can be seen again that the chemical species A and B react together to form the

reactant C and vice versa. We also see that C decays to a homogeneous steady state,

whilst A and B increase to a homogeneous steady state. Again this is similar to the ODE

prediction in Example 6.9.1 after A, B, and C here reacted a homogeneous state.

The numerical solution IML1 scheme for Model Type 2 (Equations (6.124), (6.125) and

(6.128)) was also obtained under the same initial and boundary conditions for the chem-

ical species. Again in Figures 6.15 – 6.17, it can be seen that the chemical species A

and B are react together to form C(x, t) and we also see the species A and B increase

to a homogeneous steady state, whilst C decays to a homogeneous steady state. This

behaviour is similar to the KBMC2 method predictions.

Figure 6.12: The Model Type 1 predictions of A(x, t) using the IML1 scheme.

Figure 6.13: The Model Type 1 predictions of B(x, t) using the IML1 scheme.
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Figure 6.14: The Model Type 1 predictions of C(x, t) using the IML1 scheme.

Figure 6.15: The Model Type 2 predictions of A(x, t) using the IML1 scheme.

Figure 6.16: The Model Type 2 predictions of B(x, t) using the IML1 scheme.



6.9 Numerical Examples and Results 351

Figure 6.17: The Model Type 2 predictions of C(x, t) using the IML1 scheme.

Estimation of the order of Convergence

In Figures 6.18 – 6.21 we give the difference between predictions for species A and C

at the mid point when different time steps are used for Model Type 2 and Model Type

1 respectively at time t = 1. In Figure 6.18 the value ε1 is the difference between the

estimates if ∆t = 10−2 (100 time steps) with when the time step is ∆t = 10−3 is used

(1000 time steps). The value ε2 is the difference between when ∆t = 10−3 and ∆t = 10−4

time steps are used, also the value ε3 is the difference between when ∆t = 10−4 and

∆t = 10−5 time steps are used. We see the difference between the numerical predictions

for species A decreases as the time step is decreased and appear to converge to zero as

shown by the arrows in each figure. We also see similar behaviour in Figures 6.19 – 6.21.

The error and order of convergence estimates found from applying the KBMC2 on Model

Type 2 and Model Type 1 for species A and C. The error approximated in using a long

run with a large number of time steps, with ∆t = 1.25× 10−4 and a large number of grid

points, with ∆x = 5× 10−4, to approximate the “exact solution” because we do not have

the exact solution for both models. The results are given in Tables 6.1–6.8 for species

A(x, t) and C(x, t) respectively where γ = 0.1, 0.5, 0.9 and time t = 1.0. To estimate

the convergence in space we kept ∆t fixed at 10−3 whilst varying ∆x. To estimate the

convergence in time we kept ∆x fixed at 10−3 whilst varying ∆t.
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For both species A(x, t) and C(x, t), Model Type 2, in Tables 6.2 and 6.6 we see the

numerical scheme appears to be of order O(∆x2) which compares well with the accuracy

analysis. However for Model Type 1 in Tables 6.4 and 6.8, the numerical scheme does not

appear to be second order in space.

The obtained numerical convergence order estimates do not appear to match up with the

expected order of 1 + γ in time, but the errors do decrease as ∆t is decreased showing

convergence. Note the computational time and memory requirement prohibited the run

of a very large simulation with a larger number of time and spatial points, and hence

smaller ∆x and ∆t. Therefore, the numerical predictions used to approximate the “exact

solution” to find the error may still include an error which may influence the results.

Another reason could be the spatial truncation error may not be small enough and may

also still affect the estimate of the convergence order in time. Increasing the number of

grid points may alleviate this at the expense of a large computational time. We may not

able to obtain the convergence order 1 + γ in time, since we have a system of nonlinear

equations unlike in Chapters 3,4 and 5.

We know the stability and convergence are very important requirements for a robust

numerical scheme. These models involve a very complicated set of equations and so

it is not possible to obtain exact analytical conditions for the stability and convergence.

However, we tested our scheme under different time and grid steps and found the solutions

appear to be converge. Hence we believe that our scheme does converge at least for the

range of parameters tested. We have not tested the estimate of convergence for the IML1

scheme since we are not expecting to obtain a better convergence order result given the

accuracy analysis.



6.9 Numerical Examples and Results 353

Figure 6.18: The estimate of the difference, ε, in the prediction for A(0.5, t) given by Model

Type 2 with KBMC2, where ε1 is the difference between when ∆t = 10−2 and ∆t = 10−3

time steps, ε2 is the difference between ∆t = 10−3 and ∆t = 10−4 time steps. The value ε3 is

the difference between ∆t = 10−4 and ∆t = 10−5 time steps.

Figure 6.19: The estimate of the difference, ε, in the prediction for C(0.5, t) given by Model

Type 2 with KBMC2, where ε1 is the difference between when ∆t = 10−2 and ∆t = 10−3

time steps, ε2 is the difference between ∆t = 10−3 and ∆t = 10−4 time steps. The value ε3 is

the difference between ∆t = 10−4 and ∆t = 10−5 time steps.
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Figure 6.20: The estimate of the difference, ε, in the prediction for A(0.5, t) given by Model

Type 1 with KBMC2, where ε1 is the difference between when ∆t = 10−2 and ∆t = 10−3

time steps, ε2 is the difference between ∆t = 10−3 and ∆t = 10−4 time steps. The value ε3 is

the difference between ∆t = 10−4 and ∆t = 10−5 time steps.

Figure 6.21: The estimate of the difference, ε, in the prediction for C(0.5, t) given by Model

Type 1 with KBMC2, where ε1 is the difference between when ∆t = 10−2 and ∆t = 10−3

time steps, ε2 is the difference between ∆t = 10−3 and ∆t = 10−4 time steps. The value ε3 is

the difference between ∆t = 10−4 and ∆t = 10−5 time steps.
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Table 6.1: Numerical convergence order in ∆t for Model Type 2 based of the KBMC2 scheme

for species A(x, t), and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆t e∞(∆t) R1 e∞(∆t) R1 e∞(∆t) R1

1/125 2.800e–02 – 2.455e–03 – 1.351e–04 –

1/250 2.247e–02 0.3 1.623e–03 0.6 4.646e–05 1.5

1/500 1.742e–02 0.4 1.041e–03 0.6 1.705e–06 1.5

1/1000 1.279e–02 0.5 6.320e–04 0.7 6.341e–07 1.6

1/2000 8.552e–03 0.6 3.448e–04 0.9 1.974e–07 1.7

Table 6.2: Numerical convergence order in ∆x for Model Type 2 based of the KBMC2 scheme

for species A(x, t), and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆x e∞(∆t) R2 e∞(∆t) R2 e∞(∆t) R2

1/125 1.482e–06 – 3.513e–05 – 7.189e–05 –

1/250 3.663e–07 2.0 8.781e–06 2.0 1.776e–05 2.0

1/500 8.722e–08 2.1 2.195e–06 2.0 4.228e–06 2.1

1/1000 1.746e–08 2.3 5.488e–07 2.0 8.457e–07 2.3

Table 6.3: Numerical convergence order in ∆t for Model Type 1 based of the KBMC2 scheme

for species A(x, t), and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆t e∞(∆t) R1 e∞(∆t) R1 e∞(∆t) R1

1/125 6.173e–02 – 7.211e–03 – 3.359e–05 –

1/250 4.451e–02 0.5 4.791e–03 0.6 1.642e–05 1.0

1/500 2.855e–02 0.6 3.083e–03 0.6 7.895e–06 1.1

1/1000 1.374e–02 1.1 1.878e–03 0.7 3.511e–06 1.2
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Table 6.4: Numerical convergence order in ∆x for Model Type 1 based of the KBMC2 scheme

for species A(x, t) , and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆x e∞(∆t) R2 e∞(∆t) R2 e∞(∆t) R2

1/125 8.762e–04 – 1.352e–03 – 1.389e–03 –

1/250 4.084e–04 1.1 6.295e–04 1.1 6.470e–04 1.1

1/500 1.749e–04 1.2 2.695e–04 1.2 2.77e–04 1.2

1/1000 5.828e–05 1.6 8.976e–05 1.6 9.230e–05 1.6

Table 6.5: Numerical convergence order in ∆t for Model Type 2 based of the KBMC2 scheme

for species C(x, t), and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆t e∞(∆t) R1 e∞(∆t) R1 e∞(∆t) R1

1/125 2.418e–03 – 1.466e–04 – 1.351e–05 –

1/250 1.898e–03 0.4 8.961e–05 0.7 4.646e–06 1.5

1/500 1.439e–03 0.4 5.400e–05 0.7 1.705e–06 1.5

1/1000 1.035e–03 0.5 3.129e–05 0.8 6.341e–07 1.6

1/2000 6.780e–04 0.6 1.649e–05 0.9 1.974e–07 1.7

Table 6.6: Numerical convergence order in ∆x for Model Type 2 based of the KBMC2 scheme

for species C(x, t), and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆x e∞(∆t) R2 e∞(∆t) R2 e∞(∆t) R2

1/125 2.157e–06 – 3.762e–08 – 2.028e–06 –

1/250 5.331e–07 2.0 9.407e–09 2.0 5.012e–07 2.0

1/500 1.270e–07 2.1 2.355e–09 2.0 1.193e–07 2.1

1/1000 2.551e–08 2.3 5.885e–10 2.0 2.387e–08 2.3
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Table 6.7: Numerical convergence order in ∆t for Model Type 1 based of the KBMC2 scheme

for species C(x, t), and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆t e∞(∆t) R1 e∞(∆t) R1 e∞(∆t) R1

1/125 7.400e–03 – 5.389e–04 – 9.962e–06 –

1/250 5.219e–03 0.5 3.494e–04 0.6 4.166e–06 1.3

1/500 3.277e–03 0.7 2.208e–04 0.7 1.814e–06 1.3

1/1000 1.545e–03 1.1 1.328e–04 0.7 7.600e–07 1.3

Table 6.8: Numerical convergence order in ∆x for Model Type 1 based of the KBMC2 scheme

for species C(x, t) , and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9

∆x e∞(∆t) R2 e∞(∆t) R2 e∞(∆t) R2

1/125 8.734e–04 – 1.349e–03 – 1.388e–03 –

1/250 4.077e–04 1.1 6.288e–04 1.1 6.468e–04 1.1

1/500 1.747e–04 1.2 2.693e–04 1.2 2.770e–04 1.2

1/1000 5.825e–05 1.6 8.973e–05 1.6 9.230e–05 1.6

6.9.3 Comparison between the KBMC2 Scheme and the IML1 Scheme

Here we compare the numerical solution of Model Type 2 using the KBMC2 and the

IML1 scheme, with ∆t = 0.001, ∆x = 0.01 and γ = 1
2 for 0 ≤ t ≤ 1. We also use the

same initial conditions as in the previous example. In Figures 6.22 and 6.23 we give a

comparison at x = 0.3, 0.5 and x = 0.9 for species A(x, t). We see the KBMC2 predictions

for the concentration of chemical species A appear to be lower than the predictions from

the IML1 scheme at x = 0.3 and x = 0.5 whilst being slightly higher at x = 0.9. The

numerical predictions are different, and this could be due to the order of accuracy where

the KBMC2 is of order 1 + γ in time whilst the IML1 is only first order in time. However

the asymptotic of behaviour of Model Type 2 is similar for both methods.
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Figure 6.22: The comparison between the KBMC2 scheme and the IML1 scheme for Model

Type 2 (species A) at x = 0.5 with 0 ≤ t ≤ 1.

Figure 6.23: The comparison between the KBMC2 scheme and the IML1 scheme for Model

Type 2 (species A) at x = 0.3 (upper two lines) and 0.9 (lower two lines), with 0 ≤ t ≤ 1.

Example 6.9.3. In this Example we consider the solution of the two fractional partial

differential equation models of the backward reaction only, as given in Sections 6.2 and

6.5 for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, with k1 = 0 and k−1 = 2. For both models we use the

initial condition

C(x, 0) = (1− cos(2πx))/2 (6.198)

along with boundary condition given by Equation (6.196). For Model Type 2 we also

need the initial condition

y3(0) = 1. (6.199)
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The exact solution of Model Type 1 and Model Type 2, where k1 = 0 is given in Henry,

Langlands & Wearne (2006) and Langlands et al. (2011). The exact solution for Equa-

tion (6.3), with k1 = 0, is

C(x, t) =
∞∑
n=0

an cos(λnx)
∞∑
m=0

(−k−1t)
m

m!
E

(m)
γ,1+(1−γ)m(−λ2

nt
γ), (6.200)

and for Equation (6.6), is

C(x, t) =
∞∑
n=0

an cos(λnx) exp(−k−1t)Eγ(−λ2
nt
γ), (6.201)

where λn = nπ
L .

For the initial condition in Equation (6.198) we have a0 = 1
2 , a1 = −1

2 and an = 0

otherwise. For Model Type 1 we use the KBMC2 scheme needing only Equation (6.16)

and for Model Type 2 we only need Equation (6.112) with yj3 = exp(−k−1tj).

For both models we have found the solution at t = 5 using ∆t = 0.001, γ = 0.5, k−1 = 2,

D = 1 and ∆x = 0.01. In Figures 6.24 and 6.25, we show the numerical solution of Model

Type 1 and Model Type 2 by using KBMC2 scheme under the same boundary and initial

conditions. The solution evolves to homogeneous state, for both models, and then decays

to zero.

A comparison of the value of C for Model Type 1 and Model Type 2 using the KBMC2

scheme, with the same boundary and initial conditions and γ = 1
2 is shown in Figures 6.26

and 6.27 at the points x = 0.1 and x = 0.9. We see in both figures that the predicted

solution of Model Type 1 becomes negative whilst Model Type 2 remains positive. The

result of a negative value was predicted in Langlands et al. (2009) in the infinite domain

case for Model Type 1. The negative prediction is physically unrealistic showing Model

Type 2 with the modified operator is the better model to use.

Results for comparison between the two models are not shown here for IML1 scheme,

because the order of accuracy the KBMC2 method is more accurate in ∆t than IML1

method and the focus of this chapter was the KBMC2 scheme.
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Figure 6.24: The Model Type 1 predictions of C(x, t) using the KBMC2 scheme, Section 6.6.1,

where k1 = 0, and k−1 = 2.

Figure 6.25: The Model Type 2 predictions of C(x, t) using the the KBMC2 scheme, Sec-

tion 6.3.1, where k1 = 0, and k−1 = 2.
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Figure 6.26: Comparison between Model Type 1 and Model Type 2 predictions for C(0.1, t)

by using the KBMC2 scheme for γ = 0.5, with ∆t = 0.001, k1 = 0, and k−1 = 2.

Figure 6.27: Comparison between Model Type 1 and Model Type 2 predictions for C(0.9, t)

by using the KBMC2 scheme for γ = 0.5, with ∆t = 0.001, k1 = 0, and k−1 = 2.

6.10 Conclusion

In this work, we extended the KBMC2 scheme and the IML1 scheme to the case of

systems of nonlinear fractional partial differential equations. We considered two models

of a reversible reaction in the case of anomalous subdiffusion: Model Type 1 (Henry &

Wearne 2000) and Model Type 2 (Angstmann, Donnelly & Henry 2013a). The accuracy of

the KBMC2 method was found to be order 1+γ in time and second order in space, whilst
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for the IML1 method was first order in time and second order in space. In this chapter we

conclude that the KBMC2 method is more accurate than IML1 method, given the higher

order truncation error in ∆t. The convergence of the KBMC2 scheme for both models

are demonstrated numerically, we found the difference between the numerical predictions

for species A and C decreases as the time step decreases and appear to converge to

zero. However, the expected 1 + γ order of convergence was not found. But the spatial

convergence order of two was found for Model Type 2 but not for Model Type 1.

The two models were compared for two examples given the same initial and boundary

conditions and the same anomalous exponent. From the results, similar behaviour for

both models was predicted by using the KBMC2 and IML1 schemes for short times. We

note that the Model Type 2 takes longer to run computationally when compared to Model

Type 1. This is most likely due to the need to solve a system of six differential equations

in Model Type 2 rather than three in Model Type 1. However we see for long times

the solution of Model Type 2 remains positive whilst the Model Type 1 predictions may

become negative as shown for the case of the reaction C → A + B which is physically

unrealistic.

We also compared the two numerical methods, the KBMC2 scheme and the IML1 scheme,

for solving Model Type 2. The numerical predictions were slightly different. This is likely

due to the difference in order of accuracy of both methods, as mentioned earlier. We

also note the asymptotic behaviour of the Model Type 2 is similar for both methods. We

conclude that using Model Type 2 with the modified operator is the better model than

using Model Type 1 if we require the solution to remain positive to remain realistic.



Chapter 7

Conclusions and Further Work

7.1 Research Outcomes

The main objective of this thesis is to developing numerical methods for solving fractional

partial differential equations. The fractional derivative is a nonlocal operator which has

memory-like effect which makes numerical solution of the fractional diffusion equation

challenging. Computationally this non-locality leads to higher computational effort and

storage requirements.

In Chapter 2, we considered the approximation of the Riemann–Liouville fractional deriva-

tive. There are different techniques for approximating the fractional derivative such as

the L1 scheme approximation and the Grünwald–Letnikov approximation (Oldham &

Spanier 1974, Podlubny 1998). In this thesis we have concentrated on L1 scheme as this

scheme is exact for linear function whereas the Grünwald–Letnikov approximation is not

exact. One of the significant contributions made in this chapter was the development of

the C1, C2, and C3 fractional derivative approximation schemes. These schemes were

based on the Riemann–Liouville definition assuming a piecewise linear approximation as

in the L1 scheme in Oldham & Spanier (1974). The accuracy of each these methods was

considered. It was found that the C2 and the C3 schemes have a smaller asymptotic

coefficient in the truncation error, although they have the same order as the L1 scheme.
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Another method also considered in Chapter 2 was to approximate the fractional derivative

using Romberg Integration. Here we estimated numerically the accuracy of the Romberg

Integration (where k = 2) (in future work we will analyse the approximation error ana-

lytically). The comparisons were tested for the fractional derivative approximations at

functions given by Equation (2.7) from these compression we conclude that the C2 ap-

proximation has less error for 0 < γ < 1 than the L1, C1, C3, and Romberg Integration

approximation schemes.

One of the major issues in evaluating fractional derivatives numerically is the cost of the

evaluation of the convolution sum common to all fractional derivative approximations.

The computational cost increases as the number of time steps increases when the full

history is used. In this thesis we investigated the short–memory principle approach to

evaluate fractional derivatives (Diethelm 1997, Podlubny 1998, Murio 2008). In this

approach only the most recent history is used and the tail of the integral 0 ≤ t ≤ T (or

convolution sum) is ignored.

Here we investigated the effect of ignoring the early history on the predictions by the L1

scheme. We considered short memory-based approximations of the fractional derivative

of order p, namely the L1∗ and RL1 schemes. The L1∗ approximation was not exact

for linear functions. To improve this approximation, the RL1 scheme was developed

where we added an extra term 1
Γ(2−p)

[
tj

1−p − (tj − T )1−p] f ′(0), which then made the

approximate value of the fractional derivative exact in the case of linear function similar

to the L1 approximation. We compared the error for each of these methods and we saw

that as more history is ignored the error increases.

Another method we considered was to use regression methods to approximate the early

history for 0 ≤ t ≤ T and then use the piecewise linear approximation of the L1 method

for the more recent history. We used three different approaches to approximate the early

history including linear, quadratic and nonlinear regression. We again compared the error

for each of these methods. We note that the smallest error occurs when we do not ignore

the early history in these schemes (occurs for n near zero). We also saw the error increases

as more of the early history is ignored or approximated using regression. We conclude that

using linear regression was more accurate than using quadratic or nonlinear regression.

In Chapter 3, we developed a numerical scheme for fractional subdiffusion equation with a
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source term. Here the implicit method was created by combining the C1 scheme (a mod-

ification of the L1 scheme) for the fractional derivative with the centred finite difference

schemes for the spatial derivative. Thus the scheme is similar to the implicit scheme in

Langlands & Henry (2005) for the fractional diffusion equation. In this thesis, the stabil-

ity (using Von Neumann stability analysis) and the convergence of the numerical method

was investigated theoretically. The accuracy of the method was found to be first order

in time and second order in space. The numerical experiments conducted have confirmed

these results.

In Chapter 4, we extended the implicit Dufort–Frankel method to solve the fractional

subdiffusion equation. The L1 approximation was used here to approximate the frac-

tional derivative. The proposed schemes were shown to be convergent, with an order

O
(

∆t,∆x2, ∆t1+γ

∆x2

)
but only if the consistency condition ∆t1+γ

∆x2 → 0 is satisfied will the

scheme be consistent with the original equation. The stability of the Dufort–Frankel

method was investigated by using Von Neumann stability analysis, and we have shown

the method is unconditionally stable for the parameter range 2 ≤ Vq ≤ 4. We also demon-

strated the method becomes unstable numerically when 0 < Vq < 2 and 0 < γ ≤ 1. The

convergence for the numerical method demonstrated theoretically for 2 ≤ Vq ≤ 4. Nu-

merical results were also conducted to verify the accuracy of the method. These results

confined the earlier results. To get the order of the convergence though we had to choose

a very small ∆t/∆x ratio to ensure the consistency condition was satisfied. We conclude

that this method is severely limited because the method is only conditionally consistent.

In Chapter 5, we constructed three implicit Keller Box–based numerical schemes, the

KBMC2, the KBMC3, and the KBML1 schemes for the solution of the fractional sub-

diffusion equation and the KBMC2–FADE scheme for solving the fractional advection–

diffusion equation. The L1 scheme and the modified L1 schemes, i.e. the C2 and the C3

schemes, were used to estimate the Riemann–Liouville fractional derivative at the times tj

and tj+ 1
2

respectively. The accuracy of the KBMC2, the KBMC3 and the KBMC2–FADE

methods proved to be order 1 + γ in time and second order in space. The stability of

these methods was investigated by using Von Neumann stability analysis. The stability

of the KBMC2 method was proven in the case 0 ≤ Λq ≤ min( 1
µ̃0
, 2γ) when 0 < γ ≤ 1 and

demonstrated numerically in case 1
µ̃0
< Λq ≤ 2γ and log3 2 ≤ γ ≤ 1. We have also proved
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the stability of the KBMC3 method in case 0 < Λ̆q ≤ 2 and 0 < γ ≤ 1 and demonstrated

the method is also stable numerically when 1 < Λ̆q ≤ 2 and 0 < γ ≤ 1. We have shown

the KBML1 method is unconditionally stable using Von Neumann stability analysis.

The convergence analysis was discussed, we have proved the KBMC2 scheme, in the case

λ̃q = min(µ̃0(γ), 2γ), and the KBMC3 scheme, in the case if 0 < λ̂q ≤ 2/µ̂1(γ), are con-

vergent with order 1 + γ in time and second order in space, but the KBML1 method was

shown to be second order in space and only first order in time. The convergence orders

for KBMC2–FADE scheme by using the mathematical induction was unsuccessful, but

we demonstrated the order of convergence numerically. We conclude that the KBMC2

method is more accurate than KBML1 method. The convergence orders of the KBMC2,

KBMC3, KBML1 and KBMC2–FADE schemes were confirmed when applied to three test

examples.

In Chapter 6, we extended the numerical methods in Chapter 5 to systems of nonlinear

fractional partial differential equations. The first, the KBMC2 scheme, was based upon

the Keller Box method and the second, the IML1 scheme, was based on the implicit

method in Langlands & Henry (2005). We tested these schemes on two models of the

reversible reactions, A + B 
 C, extended to the case of anomalous subdiffusion. The

accuracy of the KBMC2 method was found to be 1+γ in time and second order in space,

whilst the IML1 method was found to be only first order in time but also second order

in space. We also investigated examples for the Models Type 1 and Model Type 2, and

we saw that the chemical species A and B react together to form the reactant C, and C

reacts to form A and B. We also see that C decays to a homogeneous steady state, whilst

A and B increase to a homogeneous steady state.

The error and order of convergence estimates found from applying the KBMC2 on Model

Type 2 and Model Type 1 for species A and C. The error approximated in using a long

run with a large number of time steps with ∆t = 1.25× 10−4, and a large number of grid

points, with ∆x = 5×10−4, to approximate the exact solution because we do not have the

exact solution for both models. From the difference between the numerical predictions

for species A and C decreases as the time step is decreased and so appear to converge to

zero. We also found the numerical scheme on Model Type 2 appears to be second order in

space, but for Model Type 1 the numerical scheme does not appear to be second order in
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space. The obtained results do not appear to match up with the order that we expected

1+γ in time, but the errors do decrease as ∆t is decreased showing convergence. Note the

amount of computational time and memory required prohibited the run of a very large

simulations with a larger number of time steps and spatial points. We may not able to

obtain the convergence order 1 + γ in time since we have a system of nonlinear equation.

The numerical predictions used to approximate the exact solution to find the error may

still include an error which may influence the results.

A comparison of the results for both models given the same initial and boundary con-

ditions and the same anomalous exponent, show similar behaviour. However we see for

long times the solution of Model Type 2 remains positive whilst Model Type 1 becomes

negative for the case of the reaction C → A + B. The negative prediction is physically

unrealistic showing Model Type 2 with the modified operator is the better model to use.

However we note that Model Type 2 takes longer to run compared to Model Type 1.

7.2 Future Work

There are a number of areas in this thesis that could be pursued in the future. In par-

ticular, the accuracy analysis of the Romberg Integration and Regression approximation

schemes in Chapter 2 has been left as future work. These methods also need to be in-

corporated into the full numerical method, which will allow testing of the convergence

and stability of full methods. It could be interesting to consider higher order Romberg

Integration approximation, i.e. k ≥ 2, to obtain more accurate approximations but with

less computation.

The problem of the computational cost of the memory sum though is still an open problem.

The Regression and Romberg approximations may aid in reducing the computation if

implemented carefully. The computational cost of using Regression methods versus the

full convolution sum is somewhat mitigated by the iterative nature of the regression

predictions versus the cost of using the full summation.

As mentioned earlier in Chapter 2 there are higher order approximations for the fractional

derivative, which could be combined with the Keller Box method to give a more accurate
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scheme. Combining such approximations with the Keller Box method will give higher

order methods for both linear and nonlinear partial differential equations.

We have also only considered the solution in one spatial dimension in this thesis but

this work can be extended to the two or three dimensions. However extending to the

multi-dimensional case will increase the impact of evaluating the convolution sum. So

it is important to reduce the cost of this sum using the regression method or Romberg

integration scheme developed in this thesis.
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Appendix A

Conference Presentation in

Connection with this Research

Sh. A. Osman, (2014). Solution of Fractional Diffusion Equation, presented at 8th

Australia New Zealand Mathematics Convention, Melbourne, Australia, Dec 8–11, 2014.

Abstract

Anomalous subdiffusion is a physical phenomenon which observed in many systems that

involving trapping, binding or macromolecular crowding. In recent years, the examples of

anomalous diffusion have been discovered in many fields such as fluid mechanics, physics,

engineering and biology. Anomalous diffusion can be modelled using fractional subdiffu-

sion equation which involve a fractional derivative. The fractional derivative is a nonlo-

cal operator which has memory-like effect which makes numerical solution of fractional

subdiffusion equation challenging. In this work, we present the numerical solution for

the fractional diffusion equations. We use the Riemann-Liouville definition for the frac-

tional derivative. We approximate the fractional differential equation using a combination

of either the using piecewise linear approximation (L1 scheme) and the Dufort-Frankel

method, or the L1 scheme and the Keller Box method. The stability analysis of the

proposed methods are investigated by Von-Neumann stability analysis and the Energy

method. Numerical tests are given to show the accuracy and stability of the proposed

methods.



Appendix B

Some Supporting Information

In this appendix we evaluate some supporting information for this thesis.

B.1 Sign of the integrand in Equation (2.41)

We show the term in the first integrand of Equation (2.41)

(tj − τ)1−p −∆t−p
[
(j − l)1−p (tl+1 − τ)− (j − (l + 1))1−p (tl − τ)

]
is positive. We first let

f1(τ) = (tj − τ)1−p , (B.1)

and

f2(τ) = ∆t−p
[
(j − l)1−p (tl+1 − τ)− (j − (l + 1))1−p (tl − τ)

]
, (B.2)

where tl = l∆t and τ ∈ [tl, tl+1]. Now taking the difference between f1(τ) and f2(τ) we

then have

g(τ) = f1(τ)− f2(τ) , (B.3)

where by direction substitution we have

g(tl) = (tj − tl)γ −∆t−p
[
(j − l)1−p (tl+1 − tl)− (j − (l + 1))1−p (tl − tl)

]
= 0, (B.4)
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and

g(tl+1) = (tj − tl+1)γ −∆t−p
[
(j − l)1−p (tl+1 − tl+1)− (j − (l + 1))1−p (tl − tl+1)

]
= 0.

(B.5)

The second derivative of the function g(τ) with respect to τ is then given by

d2g(τ)

dτ2
= (1− p)(−p) (tj − τ)−p−1

= −p(1− p) (tj − τ)−p−1 . (B.6)

The value of the second derivative of g(τ) is negative, where 0 < p < 1, we conclude that

g(τ) is a concave down function of τ . Since g(tl) = g(tl+1) and g(τ) is concave down then

g(τ) > 0 for τ ∈ (tl, tl+1), i.e. g(τ) = f1(τ) − f2(τ) ≥ 0 and hence f1(τ) ≥ f2(τ) which

we can see clearly in Figure B.1.

Figure B.1: Plot of functions f1(τ) and f2(τ) showing f1(τ) ≥ f2(τ) over the range τ ∈

[tl, tl+1].
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B.2 Binomial coefficient identity

Evaluating the identity of binomial coefficient, we then have γ

k

 = (−1)k
(

k

k − γ − 1

)

= (−1)k
(k − γ − 1)!

k!(−γ − 1)!

= (−1)k
Γ(k − γ)

k! Γ(−γ)

=
(−γ)(−1)k

k!

Γ(k − γ)

(−γ)Γ(−γ)

=
γΓ(k − γ)

Γ(1− γ)

(−1)k−1

k!
. (B.7)

B.3 Bound for Equation (2.46) summation

In this section we obtain a bound for the summation in Equation (2.46), first from Equa-

tion (2.46) we have

S =

j∑
l=1

[
l1−p

(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)]
. (B.8)

Expanding (l − 1)1−p if l ≥ 1, we find

(l − 1)1−p =

∞∑
n=0

 1− p

n

 l1−p−n(−1)n. (B.9)
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Then the summation term becomes

l1−p
(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)
=l1−p

(
l − 1 +

p

2

)
−
(
l − p

2

) ∞∑
n=0

 1− p

n

 l1−p−n(−1)n

=l1−p
[(
l − 1 +

p

2

)
−
(
l − p

2

)]
−
(
l − p

2

) ∞∑
n=1

 1− p

n

 l1−p−n(−1)n

=(p− 1)l1−p −
(
l − p

2

) ∞∑
n=1

 1− p

n

 l1−p−n(−1)n

=(p− 1)l1−p −
∞∑
n=1

 1− p

n

 l2−p−n(−1)n +
p

2

∞∑
n=1

 1− p

n

 l1−p−n(−1)n

=−
∞∑
n=2

 1− p

n

 l2−p−n(−1)n +
p

2

∞∑
n=1

 1− p

n

 l1−p−n(−1)n .

(B.10)

Rewriting the first summation as

−
∞∑
n=2

 1− p

n

 l2−p−n(−1)n =
∞∑
n=1

l1−p−n(−1)n

 1− p

n+ 1

 , (B.11)

and then combining the second we obtain

l1−p
(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)
=

∞∑
n=1

l1−p−n(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 .

(B.12)

Note if n = 1 1− p

2

+
p

2

 1− p

1

 =
(1− p)(−p)

2
+
p(1− p)

2
= 0, (B.13)

and so we have if l ≥ 1

l1−p
(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)
=

∞∑
n=2

l1−p−n(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 .
(B.14)

Note the coefficient

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 (B.15)
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can be shown to be positive for 0 < 1 − p < 1 and n ≥ 2 as follows. We note from

Equation (B.7)  1− p

r

 =
(1− p)Γ(r − (1− p))

Γ(p)

(−1)r−1

r!
. (B.16)

Now using Equation (B.16) with r = n+ 1 and with r = n, we find

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n


= (−1)n

[
(1− p)Γ(n+ 1− (1− p))

(n+ 1)! Γ(p)
(−1)n +

p(1− p)Γ(n− (1− p))
2n! Γ(p)

(−1)n−1

]
=

(−1)2n(1− p)
2Γ(p)(n+ 1)!

[2Γ(n+ p)− pΓ(n− (1− p))(n+ 1)]

=
(1− p)

2Γ(p)(n+ 1)!
[2(n+ p− 1)Γ(n+ p− 1)− pΓ(n+ p− 1)(n+ 1)]

=
(1− p)Γ(n+ p− 1)

2Γ(p)(n+ 1)!
[2(n+ p− 1)− p(n+ 1)]

=
(1− p)Γ(n+ p− 1)

2Γ(p)(n+ 1)!
[(2− p)(n− 1)]

=
(1− p)(2− p)

2

Γ(n+ p− 1)

Γ(p)

(n− 1)

(n+ 1)!
. (B.17)

Since n ≥ 2 and 0 < p < 1 then all terms, including the Gamma function, are positive

and hence the coefficient in Equation (B.15) is positive. So the sum S in Equation (B.8),

after using Equation (B.14), is given by

S =

j∑
l=1

[
l1−p

(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)]

=

j∑
l=1

∞∑
n=2

l1−p−n(−1)n

 1− p

n+ 1

+
p

2

 1− p

n


=

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 j∑
l=1

l1−p−n. (B.18)
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Now

j∑
l=1

l1−p−n =

j−1∑
l=0

(l + 1)1−p−n

=

∞∑
l=0

(l + 1)1−p−n −
∞∑

l=j−1

(l + 1)1−p−n

=
∞∑
l=0

(l + 1)1−p−n −
∞∑
l=0

(l + j)1−p−n

= ζ (n− (1− p), 1)− ζ (n− (1− p), j) , (B.19)

where ζ(s, a) is the Hurwitz Zeta function (Apostol et al. 1951). So we need to evaluate

S =
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 {ζ (n− (1− p), 1)− ζ (n− (1− p), j)} .

(B.20)

As shown earlier, the coefficient is positive. In addition for s > 1 and a > 1, the Hurwitz

Zeta function is a monotonically decaying function, in both s and a, so

ζ (n− (1− p), 1)− ζ (n− (1− p), j) > 0, (B.21)

and so

S =

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 {ζ (n− (1− p), 1)− ζ (n− (1− p), j)}

≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (n− (1− p), 1)

≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (1 + p, 1) . (B.22)
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Evaluating the summations we find

∞∑
n=2

(−1)n

 1− p

n+ 1

 = −
∞∑
n=2

(−1)n+1

 1− p

n+ 1


= −

∞∑
n=3

(−1)n

 1− p

n


= −

 ∞∑
n=0

(−1)n

 1− p

n

−
 1− p

0

+

 1− p

1

−
 1− p

2


= −

[
0− 1 + (1− p)− (1− p)(−p)

2

]
=
p (1 + p)

2
, (B.23)

and

∞∑
n=2

(−1)n

 1− p

n

 =
∞∑
n=0

(−1)n

 1− p

n

−
 1− p

0

+

 1− p

1


= 0− 1 + (1− p)

= −p, (B.24)

where we have used the identity

∞∑
n=0

(−1)n

 1− p

n

 = 0. (B.25)

We now have

S ≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (1 + p, 1)

≤
[
p(1 + p)

2
+
p

2
(−p)

]
ζ (1 + p, 1)

≤ p

2
ζ (1 + p, 1) , (B.26)

which is finite for all 0 < p < 1 and hence S is bounded.

In the case of p = 0 and p = 1 the summation reduces to zero. In particular if p = 0 we

find

S =

j∑
l=1

[
l1−p

(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)]
= 0, (B.27)
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and if p = 1 we obtain the result

S =

j∑
l=1

[
l1−p

(
l − 1 +

p

2

)
− (l − 1)1−p

(
l − p

2

)]
= 0.

So is S is bounded for all 0 ≤ p ≤ 1.

B.4 The sign of the integrands in (2.116) is positive

We show the term in the first integrand of Equation (2.116)

(tj − s)1−p − ∆t−p

2

(
1 + 2−p

)
(j∆t− s)

is positive for 0 < p < 1. We first note

∆t−p

2

(
1 + 2−p

)
(j∆t− s) < ∆t−p(j∆t− s),

as 0 ≤ 1+2−p

2 ≤ 1
4 for 0 < p < 1. So we have

(tj − s)1−p − ∆t−p

2

(
1 + 2−p

)
(j∆t− s) ≥ (tj − s)1−p −∆t−p(j∆t− s).

We now define

f(s) = (tj − s)1−p −∆t−p(j∆t− s),

and show this function is positive. We note f(j∆t) = 0 and f((j−1)∆t) = 0 by direction

evaluation. We also note

d2f

ds2
= −p(1− p)(tj − s)−p−1 < 0,

and so f(s) is a concave down function of s in the interval s ∈ ((j − 1)∆t, j∆t). Hence

f(s) ≥ 0 and so the term

(tj − s)1−p − ∆t−p

2

(
1 + 2−p

)
(j∆t− s) > f(s) ≥ 0,

is positive as required. We also need to show the term

G(s) = (tj − s)1−p − ∆t−p

2
ψl(s), (B.28)

is also positive for l∆t ≤ s ≤ (l + 1)∆t. From Equation (2.115) we have

ψl(s) =
1

2
(l∆t− s)

[
(j − l)1−p + (j − (l − 1))1−p − (j − (l + 1))1−p − (j − (l + 2))1−p]

+
∆t

2

[
2(j − l)1−p + (j − (l − 1))1−p + (j − (l + 1))1−p] . (B.29)
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We note at s = l∆t, we have

∆t−p

2
ψl(l∆t) =

∆t1−p

4

[
2(j − l)1−p + (j − (l − 1))1−p + (j − (l + 1))1−p] . (B.30)

Now expanding (j − (l − 1))1−p and (j − (l + 1))1−p, we have

(j − (l − 1))1−p =
∞∑
r=0

 1− p

r

 (j − l)1−p−r, (B.31)

and

(j − (l + 1))1−p =

∞∑
r=0

 1− p

r

 (j − l)1−p−r(−1)r. (B.32)

Using these results in Equation (B.30), we find

∆t−p

2
ψl(l∆t) =

∆t1−p

4

2(j − l)1−p +

∞∑
r=0

 1− p

r

 (j − l)1−p−r (1 + (−1)r)

 .

(B.33)

which simplifies to

∆t−p

2
ψl(l∆t) =

∆t1−p

4

4(j − l)1−p + 2

∞∑
n=0

 1− p

2n

 (j − l)1−p−2n


= (j − l)1−p∆t1−p +

∆t1−p

2

∞∑
n=0

 1− p

2r

 (j − l)1−p−2n. (B.34)

Here we note the coefficient

 1− p

2n

 is negative since

 1− p

2n

 = (−1)2nΓ(2n− (1− p))
(2n)! Γ(p− 1)

=
(p− 1)(−1)2n

(2n)!

Γ(n− (1− p))
(p− 1)Γ(p− 1)

=
(p− 1)Γ(n− (1− p))

(2n)!Γ(p)
. (B.35)

Therefore we have

∆t−p

2
ψl(l∆t) < (j − l)1−p∆t1−p = (tj − l∆t)1−p

and so at s = l∆t the term in Equation (B.28) is positive, i.e. G(l∆t) > 0.
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Likewise at s = (l + 1)∆t, we have

∆t−p

2
ψl((l + 1)∆t) =

∆t1−p

4

[
(j − l)1−p + 2(j − (l + 1))1−p + (j − (l + 2))1−p] , (B.36)

which after using the expansions

(j − l))1−p = (j − (l + 1) + 1)1−p

=

∞∑
r=0

 1− p

r

 (j − (l + 1))1−p−r, (B.37)

and

(j − (l + 2))1−p = (j − (l + 1)− 1)1−p

=
∞∑
r=0

 1− p

r

 (j − (l + 1))1−p−r(−1)r, (B.38)

we then have

∆t−p

2
ψl((l + 1)∆t) =

∆t1−p

4

4(j − (l + 1))1−p +

∞∑
r=0

 1− p

r

 (j − (l + 1))1−p−r (1 + (−1)r)


= (j − (l + 1))1−p∆t1−p +

∆t1−p

2

∞∑
n=0

 1− p

2r

 (j − (l + 1))1−p−2n.

(B.39)

Since

 1− p

2r

 is negative, we then have

∆t−p

2
ψl((l + 1)∆t) < (j − (l + 1))1−p∆t1−p = (tj − (l + 1)∆t)1−p, (B.40)

and so at s = (l+1)∆t the term in Equation (B.28) is also positive, i.e. G((l+1)∆t) > 0.

So we have shown that G(s) is positive at the ends of the interval l∆t ≤ s ≤ (l + 1)∆t.

Furthermore taking the second derivative, we have

d2G

ds2
= −p(1− p)(tj − s)−p−1, (B.41)

which is negative which shows the function G(s) is concave down for l∆t ≤ s ≤ (l+ 1)∆t

and so G(s) > 0 for all s ∈ [l∆t, (l + 1)∆t] as required.
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B.5 Bound for Equation (2.127)

Here we find the bound for (k − 1)1−p − (k + 1)1−p. To show this we first use Equa-

tions (B.31) and (B.32), to find

(k − 1)1−p − (k + 1)1−p =

∞∑
n=0

 1− p

n

 k1−p−n(−1)n −
∞∑
n=0

 1− p

n

 k1−p−n(1)n

=
∞∑
n=1

 1− p

n

 k1−p−n ((−1)n − 1) . (B.42)

Note we have

1− (−1)n =

 0 if n is even,

2 if n is odd.
(B.43)

Then, using the result in Equation (B.43), we have

(k − 1)1−p − (k + 1)1−p = −2

∞∑
n=0

 1− p

2n+ 1

 k−(p+2n) . (B.44)

Since for k ≥ 1, n ≥ 0 and 0 < p ≤ 1 the term 2 ≤ 2k−(p+2n) then −2 ≥ −2k−(p+2n) and

so we obtain

(k − 1)1−p − (k + 1)1−p ≥ −2

∞∑
n=0

 1− p

2n+ 1

 = −2(2)1−p−1 = −21−p.

But if k →∞ then the term (k − 1)1−p − (k + 1)1−p → 0, so we then conclude that

−21−p ≤ (k − 1)1−p − (k + 1)1−p ≤ 0 .

B.6 Sign of the integrands in Equation (2.145)

We show the following term the first integral of Equation (2.145)

(tj+ 1
2
− τ)γ −

(
∆t

2

)γ−1 (
tj+ 1

2
− τ
)

is positive. We let

f1(τ) = (tj+ 1
2
− τ)γ , (B.45)
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and

f2(τ) =

(
∆t

2

)γ−1 (
tj+ 1

2
− τ
)
, (B.46)

where τ ∈ [tj , tj+ 1
2
]. Now taking the difference between f1(τ) and f2(τ) we then have

g(τ) = f1(τ)− f2(τ) , (B.47)

where by direct substitution

g(tj) =
(
tj+ 1

2
− tj

)γ
−
(

∆t

2

)γ−1 (
tj+ 1

2
− tj

)
= 0, (B.48)

and

g(tj+ 1
2
) =

(
tj+ 1

2
− tj+ 1

2

)γ
−
(

∆t

2

)γ−1 (
tj+ 1

2
− tj+ 1

2

)
= 0,

(B.49)

The second derivative of the function g(τ) with respect to τ is then given by

d2g(τ)

dτ2
= γ(γ − 1)

(
tj+ 1

2
− τ
)γ−2

. (B.50)

The value of the second derivative of g(τ) is negative, where 0 < γ < 1, we conclude that

g(τ) is a concave down function of τ . Since g(tj) = g(tj+ 1
2
) and g(τ) is a concave down

then g(τ) > 0 for τ ∈ (tj , tj+ 1
2
), and we can see this clearly in the Figure B.2(a), which

shows g(τ) is positive.

Also in similar manner we want to show the term in the second integral in Equa-

tion (2.145), i.e.

(tj+ 1
2
− τ)γ −∆tγ−1

[(
j − l +

1

2

)γ
(tl+1 − τ)−

(
j − l − 1

2

)γ
(tl − τ)

]
is also positive. We let

f3(τ) = ∆tγ−1

[(
j − l +

1

2

)γ
(tl+1 − τ)−

(
j − l − 1

2

)γ
(tl − τ)

]
, (B.51)

where τ ∈ [tl, tl+1] and then we take the difference between the two functions f1(τ) given

in Equation (B.45) and f3(τ)

G(τ) = f1(τ)− f3(τ), (B.52)

where by direct substitution

G(tl) =
(
tj+ 1

2
− tl

)γ
−∆tγ−1

[(
j − l +

1

2

)γ
(tl+1 − tl)−

(
j − l − 1

2

)γ
(tl − tl)

]
= 0,

(B.53)
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and

G(tl+1) =
(
tj+ 1

2
− tl+1

)γ
−∆tγ−1

[(
j − l +

1

2

)γ
(tl+1 − tl+1)−

(
j − l − 1

2

)γ
(tl − tl+1)

]
= 0 . (B.54)

The second derivative of the function G(τ) with respect to τ is

d2G(τ)

dτ2
= γ(γ − 1)

(
tj+ 1

2
− τ
)γ−2

.

For 0 < γ < 1 the second derivative of G(τ) is negative, hence G(τ) is also a concave

down function of τ . Since G(tl) = G(tl+1) and G(τ) is concave down then G(τ) > 0 for

τ ∈ (tl, tl+1), and we can see from Figure B.2(b).

Hence the difference g(τ) = f1(τ) − f2(τ) and G(τ) = f1(τ) − f3(τ) are both positive.

The terms in the integrands are therefore positive.

(a) (b)

Figure B.2: Plot of functions in the terms in the first integrand (a) f1(τ) and f2(τ), and the

term in the second integrand (b) f1(τ) and f3(τ) of Equation (2.145). Note f1(τ) ≥ f2(τ)

and f1(τ) ≥ f3(τ) over the range of τ plotted.

B.7 Bound for Equation (2.149) summation

In similar way to section B.3, we obtain a bound for the summation in Equation (2.149)

S =

j−1∑
l=0

[(
j − l +

1

2

)1−p(
j − l − 1− p

2

)
−
(
j − l − 1

2

)1−p(
j − l +

1− p
2

)]
, (B.55)
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which can be rewritten as

S =

j∑
l=1

[(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)]
. (B.56)

Expanding
(
l − 1

2

)1−p
if l ≥ 1 we find(

l − 1

2

)1−p
=

((
l +

1

2

)
− 1

)1−p

=
∞∑
n=0

 1− p

n

(l +
1

2

)1−p−n
(−1)n . (B.57)

Then the summation term becomes(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)

=

(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l +

1− p
2

) ∞∑
n=0

 1− p

n

(l +
1

2

)1−p−n
(−1)n

=

(
l +

1

2

)1−p [(
l − 1− p

2

)
−
(
l +

1− p
2

)]
−
(
l +

1− p
2

) ∞∑
n=1

 1− p

n

(l +
1

2

)1−p−n
(−1)n

=(p− 1)

(
l +

1

2

)1−p
−
(
l +

1

2
− 1

2
+

1− p
2

) ∞∑
n=1

 1− p

n

(l +
1

2

)1−p−n
(−1)n .

(B.58)

Simplifying further gives(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)

=(p− 1)

(
l +

1

2

)1−p
−
∞∑
n=1

 1− p

n

(l +
1

2

)2−p−n
(−1)n

+
p

2

∞∑
n=1

 1− p

n

(l +
1

2

)1−p−n
(−1)n

=−
∞∑
n=2

 1− p

n

(l +
1

2

)2−p−n
(−1)n

+
p

2

∞∑
n=1

 1− p

n

(l +
1

2

)1−p−n
(−1)n. (B.59)
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Combining the summations we then obtain(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)

=

∞∑
n=1

(
l +

1

2

)1−p−n
(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 . (B.60)

Note if n = 1, the first term in the summation is zero 1− p

2

+
p

2

 1− p

1

 =
(1− p)(−p)

2
+
p(1− p)

2
= 0, (B.61)

and so we have if l ≥ 1(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)

=
∞∑
n=2

(
l +

1

2

)1−p−n
(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 . (B.62)

So the sum S in Equation (B.56), after using Equation (B.62), becomes

S =

j∑
l=1

[(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)]

=

j∑
l=1

∞∑
n=2

(
l +

1

2

)1−p−n
(−1)n

 1− p

n+ 1

+
p

2

 1− p

n


=

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 j∑
l=1

(
l +

1

2

)1−p−n
. (B.63)

Now

j∑
l=1

(
l +

1

2

)1−p−n
=

j−1∑
l=0

(
l +

3

2

)1−p−n

=
∞∑
l=0

(
l +

3

2

)1−p−n
−
∞∑
l=j

(
l +

3

2

)1−p−n

=

∞∑
l=0

(
l +

3

2

)1−p−n
−
∞∑
l=0

(
l + j +

3

2

)1−p−n

= ζ

(
n− (1− p), 3

2

)
− ζ

(
n− (1− p), j +

3

2

)
, (B.64)

where ζ(s, a) is the Hurwitz Zeta function (Apostol et al. 1951). So we need to evaluate

the sum

S =

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

{ζ (n− (1− p), 3

2

)
− ζ

(
n− (1− p), j +

3

2

)}
.

(B.65)
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Note the coefficient

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 (B.66)

can be shown to be positive for 0 < 1− p < 1 and n ≥ 2 as shown earlier in Section B.3.

Since n ≥ 2 and 0 < p < 1 then all terms including the Gamma function are positive and

hence the coefficient in Eq. (B.66) is positive.

In addition for s > 1 and a > 3
2 , the Hurwitz Zeta function ζ(s, a) is a monotonically

decaying function in both s and a so

ζ

(
n− (1− p), 3

2

)
− ζ

(
n− (1− p), j +

3

2

)
> 0,

and so

S =

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

{ζ (n− (1− p), 3

2

)
− ζ

(
n− (1− p), j +

3

2

)}

≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (n− (1− p), 3

2

)

≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (1 + p,
3

2

)
. (B.67)

Evaluating the summations we find

∞∑
n=2

(−1)n

 1− p

n+ 1

 = −
∞∑
n=2

(−1)n+1

 1− p

n+ 1


= −

∞∑
n=3

(−1)n

 1− p

n


= −

 ∞∑
n=0

(−1)n

 1− p

n

−
 1− p

0

+

 1− p

1

−
 1− p

2


= −

[
0− 1 + (1− p)− (1− p)(−p)

2

]
=
p (1 + p)

2
, (B.68)
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and

∞∑
n=2

(−1)n

 1− p

n

 =

∞∑
n=0

(−1)n

 1− p

n

−
 1− p

0

+

 1− p

1


= 0− 1 + (1− p)

= −p, (B.69)

where we have used the identity

∞∑
n=0

(−1)n

 1− p

n

 = 0. (B.70)

Using Equations (B.68) and (B.70) gives

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 =

[
p(1 + p)

2
+
p

2
(−p)

]
=
p

2
. (B.71)

We now have

S ≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (1 + p,
3

2

)

≤ p

2
ζ

(
1 + p,

3

2

)
(B.72)

which is finite for all 0 < p < 1 and hence S is bounded.

In the case of p = 0 and p = 1 the summation reduces to zero. In particular if p = 0 we

find

S =

j∑
l=1

[(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)]
= 0,

and if p = 1 we obtain the result

S =

j∑
l=1

[(
l +

1

2

)1−p(
l − 1− p

2

)
−
(
l − 1

2

)1−p(
l +

1− p
2

)]
= 0.

So is the sum S is bounded for all 0 ≤ p ≤ 1.

B.8 Sign of the integrand in Equation (2.169)

We show the term in the integrand of the first integral in Equation (2.169), with p = 1−γ

(tj+ 1
2
− τ)γ −∆tγ−1

[
(j − (l − 1))γ

(
tl+ 1

2
− τ
)
− (j − l)γ

(
tl− 1

2
− τ
)]
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is positive. We let

f1(τ) = (tj+ 1
2
− τ)γ , (B.73)

and

f2(τ) = ∆tγ−1
[
(j − (l − 1))γ

(
tl+ 1

2
− τ
)
− (j − l)γ

(
tl− 1

2
− τ
)]

(B.74)

where τ ∈ [tl− 1
2
, tl+ 1

2
]. Now taking the difference between f1(τ) and f2(τ) we then have

g(τ) = f1(τ)− f2(τ) , (B.75)

where by direct substitution we have

g
(
tl− 1

2

)
=
(
tj+ 1

2
− tl− 1

2

)γ
−∆tγ−1

[
(j − (l − 1))γ

(
tl+ 1

2
− tl− 1

2

)
− (j − l)γ

(
tl− 1

2
− tl− 1

2

)]
= 0 , (B.76)

and

g
(
tl+ 1

2

)
=
(
tj+ 1

2
− tl+ 1

2

)γ
−∆tγ−1

[
(j − (l − 1))γ

(
tl+ 1

2
− tl+ 1

2

)
− (j − l)γ

(
tl− 1

2
− tl+ 1

2

)]
= 0 . (B.77)

The second derivative of the function g(τ) with respect to τ is then given by

d2g(τ)

dτ2
= γ(γ − 1)

(
tj+ 1

2
− τ
)γ−2

. (B.78)

The value of the second derivative of g(τ) is negative, where 0 < γ < 1, we conclude

that g(τ) is a concave down function of τ . Since g
(
tl− 1

2

)
= g

(
tl+ 1

2

)
= 0 and g(τ) is

concave down then g(τ) > 0 for τ ∈
(
tl− 1

2
, tl+ 1

2

)
, i.e. g(τ) = f1(τ) − f2(τ) > 0 and so

f1(τ) > f2(τ). Hence the term(
tj+ 1

2
− τ
)γ
−∆tγ−1

[
(j − (l − 1))γ

(
tl+ 1

2
− τ
)
− (j − l)γ

(
tl− 1

2
− τ
)]

is positive.

Also in similar manner we want to show the term in the second integral Equation (2.169),

i.e. (
tj+ 1

2
− τ
)γ
−∆tγ−1

(
∆t(jγ + α̂j)− 2α̂jτ

)
,

is also positive. We let

f3(τ) = ∆tγ−1

(
∆t(jγ + α̂j)− 2α̂jτ

)
, (B.79)
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where τ ∈
[
0, t 1

2

]
and α̂j is given by Equation (2.89), then we take the difference between

the two functions f1(τ), given in Equation (B.73), and f3(τ)

G(τ) = f1(τ)− f3(τ), (B.80)

where

G(0) =
(
tj+ 1

2
− 0
)γ
−∆tγ−1

(
∆t(jγ + α̂j)− 2α̂j(0)

)
= 0, (B.81)

and

G
(
t 1

2

)
=
(
tj+ 1

2
− t 1

2

)γ
−∆tγ−1

(
∆t(jγ + α̂j)− 2α̂jt 1

2

)
= 0. (B.82)

The second derivative of the function G(τ) with respect to τ gives

d2G(τ)

dτ2
= γ(γ − 1)

(
tj+ 1

2
− τ
)γ−2

.

For 0 < γ < 1 the second derivative of G(τ) is negative, hence G(τ) is concave down

function of τ . Since G(0) = G
(
t 1

2

)
and G(τ) is a concave down then G(τ) > 0 for

τ ∈
(

0, t 1
2

)
, i.e. G(τ) = f1(τ)− f3(τ) = 0 and so f1(τ) > f3(τ).

Hence the term (
tj+ 1

2
− τ
)γ
−∆tγ−1

(
∆t(jγ + α̂j)− 2α̂jτ

)
is also positive.

B.9 Bound for Equation (2.172) summation

In this section we obtain a bound for the summation in Equation (2.172), first we have

S =

j−1∑
l=0

[
(l + 1)1−p

(
l +

p

2

)
− l1−p

(
l + 1− p

2

)]
. (B.83)

Expanding l1−p if l ≥ 1 we find

(l + 1− 1)1−p =
∞∑
n=0

 1− p

n

 (l + 1)1−p−n(−1)n. (B.84)
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Then the lth term in the summation in Equation (B.83) can be rewritten as

(l + 1)1−p
(
l +

p

2

)
− l1−p

(
l + 1− p

2

)
=(l + 1)1−p

(
l +

p

2

)
−
(
l + 1− p

2

) ∞∑
n=0

 1− p

n

 (l + 1)1−p−n(−1)n

=(l + 1)1−p
[(
l +

p

2

)
−
(
l + 1− p

2

)]
−
(
l + 1− p

2

) ∞∑
n=1

 1− p

n

 (l + 1)1−p−n(−1)n

=(p− 1)(l + 1)1−p −
(
l + 1− p

2

) ∞∑
n=1

 1− p

n

 (l + 1)1−p−n(−1)n

=(p− 1)(l + 1)1−p −
∞∑
n=1

 1− p

n

 (l + 1)2−p−n(−1)n +
p

2

∞∑
n=1

 1− p

n

 (l + 1)1−p−n(−1)n

=−
∞∑
n=2

 1− p

n

 (l + 1)2−p−n(−1)n +
p

2

∞∑
n=1

 1− p

n

 (l + 1)1−p−n(−1)n . (B.85)

Combining the summations we obtain

(l + 1)1−p
(
l +

p

2

)
− l1−p

(
l + 1− p

2

)
=

∞∑
n=1

(l + 1)1−p−n(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ,

where we have rewritten the first summation as

−
∞∑
n=2

 1− p

n

 (l + 1)2−p−n(−1)n =
∞∑
n=1

 1− p

n+ 1

 (l + 1)1−p−n(−1)n.

Note if n = 1 1− p

2

+
p

2

 1− p

1

 =
(1− p)(−p)

2
+
p(1− p)

2
= 0, (B.86)

hence for n = 1 the term is zero and so we have if l ≥ 1

(l + 1)1−p
(
l +

p

2

)
− l1−p

(
l + 1− p

2

)
=

∞∑
n=2

(l + 1)1−p−n

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 .

(B.87)

Since the term (−1)n

 1− p

n+ 1

+ p
2

 1− p

n

 > 0, (for n ≥ 2 and 0 < p < 1) as

shown in Section B.3 then the term in Equation (B.87) is positive.
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So the sum S in Equation (B.83) is, after using Equation (B.87), becomes

S =

j−1∑
l=0

[
(l + 1)1−p

(
l +

p

2

)
− l1−p

(
l + 1− p

2

)]

=

j−1∑
l=0

∞∑
n=2

(l + 1)1−p−n(−1)n

 1− p

n+ 1

+
p

2

 1− p

n


=
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 j−1∑
l=0

(l + 1)1−p−n. (B.88)

Now

j−1∑
l=0

(l + 1)1−p−n =

∞∑
l=0

(l + 1)1−p−n −
∞∑
l=j

(l + 1)1−p−n

=
∞∑
l=0

(l + 1)1−p−n −
∞∑
l=0

(l + j)1−p−n

= ζ (n− (1− p), 1)− ζ (n− (1− p), j) , (B.89)

where ζ(s, a) is the Hurwitz Zeta function (Apostol et al. 1951). So we need to evaluate

the bound

S =
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 {ζ (n− (1− p), 1)− ζ (n− (1− p), j)} .

(B.90)

The coefficient is positive as shown earlier. In addition for s > 1 and a > 1, the Hurwitz

Zeta function ζ(s, a) is a monotonically decaying function in both s and a so

ζ (n− (1− p), 1)− ζ (n− (1− p), j) > 0

and so

S =

∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 {ζ (n− (1− p), 1)− ζ (n− (1− p), j)}

≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (n− (1− p), 1)

≤
∞∑
n=2

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 ζ (1 + p, 1) .

Using Equation (B.71), we then obtain the equation

S ≤ p

2
ζ (1 + p, 1) , (B.91)
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which is finite for all 0 < p < 1 and hence S is bounded.

In the case of p = 0 and p = 1 the summation reduces to zero. In particular if p = 0 we

find

S =

j∑
l=1

[
(l + 1)1−p

(
l +

p

2

)
− l1−p

(
l + 1− p

2

)]
= 0, (B.92)

and if p = 1 we obtain the result

S =

j∑
l=1

[
(l + 1)1−p

(
l +

p

2

)
− l1−p

(
l + 1− p

2

)]
= 0. (B.93)

So is S is bounded for all 0 ≤ p ≤ 1.

To show the second absolute term in Equation (2.172) is positive[(
j +

1

2

)1−p(
j +

1

2
− 2− p

4

)
− j1−p

(
j +

2− p
4

)]
> 0, (B.94)

we let

A =

(
j +

1

2

)1−p (
j +

p

4

)
− j1−p

(
j +

1

2
− p

4

)
. (B.95)

Expanding j1−p, if j ≥ 1, as we find

j1−p =

(
j +

1

2
− 1

2

)1−p
=

∞∑
n=0

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n
. (B.96)

Then the term in Equation (B.94) becomes

A =

(
j +

1

2

)1−p (
j +

p

4

)
− j1−p

(
j +

1

2
− p

4

)
(B.97)

=

(
j +

1

2

)1−p (
j +

p

4

)
−
(
j +

1

2
− p

4

) ∞∑
n=0

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n

=

(
j +

1

2

)1−p [(
j +

p

4

)
−
(
j +

1

2
− p

4

)]

−
(
j +

1

2
− p

4

) ∞∑
n=1

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n

=
1

2
(p− 1)

(
j +

1

2

)1−p
−
(
j +

1

2
− p

4

) ∞∑
n=1

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n
.
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Simplifying further gives

A =
(p− 1)

2

(
j +

1

2

)1−p
−
∞∑
n=1

 1− p

n

(j +
1

2

)2−p−n(
−1

2

)n

+
p

4

∞∑
n=1

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n

=
(p− 1)

2

(
j +

1

2

)1−p
+

(1− p)
2

(
j +

1

2

)1−p
−
∞∑
n=2

 1− p

n

(j +
1

2

)2−p−n(
−1

2

)n

+
p

4

∞∑
n=1

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n

=−
∞∑
n=2

 1− p

n

(j +
1

2

)2−p−n(
−1

2

)n

+
p

4

∞∑
n=1

 1− p

n

(j +
1

2

)1−p−n(
−1

2

)n
. (B.98)

Combining the summations we then obtain

A =

∞∑
n=1

(
j +

1

2

)1−p−n(
−1

2

)n 1

2

 1− p

n+ 1

+
p

4

 1− p

n


=
∞∑
n=1

(
j +

1

2

)1−p−n(1

2

)n+1

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 , (B.99)

where the first summation in (B.98) was rewritten as

−1

2

∞∑
n=2

 1− p

n

(j +
1

2

)2−p−n(
−1

2

)n
=
∞∑
n=1

 1− p

n+ 1

(j +
1

2

)1−p−n(
−1

2

)n+1

.

(B.100)

Note if n = 1 1− p

2

+
p

2

 1− p

1

 =
(1− p)(−p)

2
+
p(1− p)

2
= 0, (B.101)

and so we have if l ≥ 2

A =
∞∑
n=2

(
j +

1

2

)1−p−n(1

2

)n+1

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 .
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Note the coefficient

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 > 0 (B.102)

for n ≥ 2 and 0 < p < 1 as shown in Section B.3 the term in Equation (B.102) is positive.

Also the term
(
j + 1

2

)1−p−n (1
2

)n+1
is positive, hence A is positive.

To find a bound for A we note, for n ≥ 2 and 0 < p < 1 the term
(
j + 1

2

)1−p−n
< 1, and

we then have

A ≤
∞∑
n=2

(
1

2

)n+1

(−1)n

 1− p

n+ 1

+
p

2

 1− p

n

 . (B.103)

Evaluating the summations we find

∞∑
n=2

(
1

2

)n+1

(−1)n

 1− p

n+ 1
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(
1

2

)n+1

(−1)n+1

 1− p

n+ 1


= −
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n=2

(
−1

2

)n+1
 1− p

n+ 1


= −
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n=3

(
−1

2

)n 1− p

n


= −

 ∞∑
n=0

(
−1

2

)n 1− p

n

−
 1− p

0

+
1

2

 1− p

1

− 1

4

 1− p

2


= −

[(
1

2

)n
− 1 +

1

2
(1− p)− 1

4

(1− p)(−p)
2

]
=

(4 + p) (p− 1)

8
−
(

1

2

)1−p
, (B.104)

and

∞∑
n=2

(
−1

2

)n 1− p

n

 =

∞∑
n=0

(
−1

2

)n 1− p

n

−
 1− p

0

+
1

2

 1− p

1


=

(
1

2
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− 1 +

(1− p)
2

.

The bound in Equation (B.103) then becomes

A ≤

[
(4 + p) (p− 1)

8
−
(

1

2

)1−p
+
p

4

((
1

2

)1−p
− 1 +

(1− p)
2

)]
=
p− 4

4

(
1

2

)1−p
+
p− 2

4
.

(B.105)

Hence A is bounded by a constant.
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B.10 The weight βj(γ), given in Equation (4.9), is negative

Lemma B.10.1. The coefficients βj(γ) given in Equation (4.9) for j ≥ 1 then βj(γ) < 0.

Proof. First using binomial expansion on the coefficient in Equation (4.9), we then have

βj(γ) = γjγ−1 − jγ +
∞∑
k=0

(
k

γ

)
(−1)kjγ−k

=
∞∑
k=2

(
k

γ

)
(−1)kjγ−k . (B.106)

Now using the result in Equation (B.7), we then find

βj(γ) =
∞∑
k=2

γΓ(k − γ)

k!Γ(1− γ)
(−1)2k−1jγ−k

= −
∞∑
k=2

γΓ(k − γ)

k!Γ(1− γ)
jγ−k, (B.107)

since (−1)2k−1 = −1. Now for n ≥ 2 and 0 < γ ≤ 1 the term

γΓ(k − γ)

k!Γ(1− γ)
> 0,

is positive since the Gamma function is positive for positive arguments. The term jγ−n > 0

is also positive, and hence the coefficient βj(γ) is negative.

B.11 Supporting information for Chapter 5

Lemma B.11.1. The parameter z is given by Equation (5.437), satisfies

0 <

∣∣∣∣ 1

1 + z

∣∣∣∣ ≤ 1, (B.108)

if Re(z) > 0.

Proof. From Equations (5.437) we have

z = sin2 (q∆x/2)

((
1

2

)γ
d1 − 1

)
− d2

2

(
1

2

)γ
sin(q∆x)i, (B.109)
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letting a =
((

1
2

)γ
d1 − 1

)
, b = d2

(
1
2

)γ
, and x = sin2 (q∆x/2), we note here a ≥ −1 since

d1 ≥ 0. Equation (B.109) becomes

z = ax2 − b
√
x(1− x)i, (B.110)

we then have

|1 + z| =
√

1 + x (2a+ b2) + x2 (a2 − b2). (B.111)

Since 0 ≤ sin2 (q∆x/2) ≤ 1 then 0 ≤ x ≤ 1. The sign of the terms 2a+b2 and a2−b2 may

be positive or negative and so we need to consider four cases when checking the bound of

the Equation (B.108).

These cases are where

1. 2a+ b2 ≥ 0 and a2 − b2 ≥ 0,

2. 2a+ b2 ≤ 0 and a2 − b2 ≤ 0,

3. 2a+ b2 ≥ 0 and a2 − b2 ≤ 0, and

4. 2a+ b2 ≤ 0 and a2 − b2 ≥ 0.

The range of values of a and b which satisfy each case is shown in Figure B.3 .

Figure B.3: The range of values of a and b for all cases to be considered when testing the

bound of Equation (B.111)

Case 1:

If 2a + b2 ≥ 0 from 2a ≥ −b2, and a2 − b2 ≥ 0 we then have a2 ≥ b2. We then conclude
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that |1 + z| > 1 from Equation (B.111). Hence∣∣∣∣ 1

1 + z

∣∣∣∣ ≤ 1 (B.112)

Equation (B.108) is satisfied. We note Re(z) = ax2 ≥ 0 for this case.

Case 2: If 2a+ b2 ≤ 0 then 2a ≤ −b2 and a2 − b2 ≤ 0 then a2 ≤ b2

|1 + z| =
√

1 + x (2a+ b2) + x2 (a2 − b2) ≤ 1, (B.113)

and so (B.108) is not satisfied, for case 2 unless a = b = 0.

Case 3: If 2a+ b2 ≥ 0 then 2a ≥ −b2 and a2 − b2 ≤ 0 the a2 ≤ b2, we then have

|1 + z| =
√

1 + x (2a+ b2) + x2 (a2 − b2)

≥
√

1 + x2 (2a+ b2) + x2 (a2 − b2)

≥
√

1 + x2 (2a+ a2), (B.114)

since for 0 ≤ x ≤ 1 then 0 ≤ x2 ≤ x and if a > 0, (and so Re(z) ≥ 0), we then conclude

that |1 + z| ≥ 1. Hence ∣∣∣∣ 1

1 + z

∣∣∣∣ ≤ 1 (B.115)

is satisfied.

Case 4: If 2a+ b2 ≤ 0 then 2a ≤ −b2 and a2 − b2 ≥ 0 then a2 ≥ b2, we then have

|1 + z| =
√

1 + x (2a+ b2) + x2 (a2 − b2) ≤ 1 (B.116)

and so Equation (B.108) is not satisfied.

Lemma B.11.2. Given 0 < γ ≤ 1, then the parameter Ũq given in Equation (5.439) is

bounded by
∣∣∣Ũq∣∣∣ ≤ 2γ if Re(z) ≥ 0.

Proof. From Equation (5.439) we have

Ũq = 2γ
[
x+ z

1 + z

]
, (B.117)

where z = u− iv, which u and v are defined as

u = sin2 (q∆x/2)

((
1

2

)γ
d1 − 1

)
, (B.118)
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and

v =
d2

2

(
1

2

)γ
sin(q∆x), (B.119)

and x = sin2 (q∆x/2) where 0 ≤ x ≤ 1. Now taking the modulus, gives∣∣∣Ũq∣∣∣ = 2γ
∣∣∣∣x+ z

1 + z

∣∣∣∣
= 2γ

√
(x+ z)(x+ z̄)√
(1 + z)(1 + z̄)

= 2γ
√
x2 + |z|2 + x(z + z̄)√
1 + |z|2 + (z + z̄)

≤ 2γ (B.120)

since 0 ≤ x ≤ 1 and z+ z̄ = 2Re(z) = 2u ≥ 0. We then obtain the bound of
∣∣∣Ũq∣∣∣ ≤ 2γ .

Lemma B.11.3. Given 0 < γ ≤ 1, then the first term in the braces given in Equa-

tion (5.450) is bounded by
∣∣∣1− Ũqµ̃0(γ)

∣∣∣ ≤ 1 if Re(z) ≥ 0, where Ũq is defined in Equa-

tion (5.439).

Proof. From Equations (5.28) and (5.439) we have∣∣∣1− Ũqµ̃0(γ)
∣∣∣ =

∣∣∣∣1− 2γ
[
x+ z

1 + z

]((
3

2

)γ
−
(

1

2

)γ)∣∣∣∣
=

∣∣∣∣1− [x+ z

1 + z

]
(3γ − 1)

∣∣∣∣
=

∣∣∣∣(1 + x− 3γx) + (2− 3γ)z

1 + z

∣∣∣∣
=

∣∣∣∣y1 + y2z

1 + z

∣∣∣∣ , (B.121)

where z = u−iv, which u and v are defined in Equations (B.118) and (B.119) respectively,

x = sin2 (q∆x/2), y1 = 1 + x(1− 3γ) and y2 = 2− 3γ .

For 0 < γ ≤ 1 and 0 < x ≤ 1 we have −1 ≤ a1 ≤ 1 and −1 ≤ y2 ≤ 1 as shown in

Figures B.4 and B.5. Equation (B.121) becomes∣∣∣1− Ũqµ̃0(γ)
∣∣∣ =

√
(y1 + y2z)(y1 + y2z̄)√

(1 + z)(1 + z̄)

=

√
y2

1 + y2
2|z|2 + y1y2(z + z̄)√

1 + |z|2 + (z + z̄)
. (B.122)

Since y1 ≤ 1 and y2 ≤ 1 then y1y2 ≤ 1. Also z+ z̄ = 2Re(z) = 2u ≥ 0. We then conclude

that
∣∣∣1− Ũqµ̃0(γ)

∣∣∣ ≤ 1.
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Figure B.4: Bound of y1, where y1 = 1 + x(1− 3γ) with 0 < γ ≤ 1 and 0 ≤ x ≤ 1.

Figure B.5: Bound of y2, where y2 = 2− 3γ with 0 < γ ≤ 1.



Appendix C

MATLAB Codes

In this appendix, we listed the programs that used to support this thesis. These are given

on the CDROM.

C.1 Programs used for Chapter 2

In this section we give the main programs that are used to determine the accuracy of the

schemes in Chapter 2, as shown in the following table.
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The Main Programs used in Chapter 2

Directory File Description

\Chapter 2\Accuracy-GL \TestAccGL.m The accuracy of the GL scheme

\Chapter 2\Accuracy_L1 \Accuracy_L1.m The accuracy of the L1 scheme

\Chapter 2\Accuracy_L1 \RatDt_L1.m Estimate of the convergence order for the

L1 scheme

\Chapter 2\Accuracy_C1 \AccuracyC1.m The accuracy of the C1 scheme

\Chapter 2\Accuracy_C1 \RatDt_C1.m Estimate of the convergence order for the

C1 scheme

\Chapter 2\Accuracy_C2 \AccuracyC2.m The accuracy of the C2 scheme

\Chapter 2\Accuracy_C2 \RatDt_C2.m Estimate of the convergence order for the

C2 scheme

\Chapter 2\Accuracy_C3 \AccuracyC3.m The accuracy of the C2 scheme

\Chapter 2\Accuracy_C3 \RatDt_C3.m Estimate of the convergence order for the

C3 scheme

\Chapter 2\Accuracy_RInt \Accuracy_RI.m The accuracy of the RInt scheme

\Chapter 2\Accuracy_RInt \RatDt_RI.m Estimate of the convergence order for the

RInt scheme

\Chapter 2\L1star \Accuracy.m The accuracy of the L1∗ scheme

\Chapter 2\RL1 \Accuracy.m The accuracy of the RL1 scheme

\Chapter 2\LRA \Accuracy.m The accuracy of the LRA scheme

\Chapter 2\QRA \Accuracy.m The accuracy of the QRA scheme

\Chapter 2\NLRA \Accuracy.m The accuracy of the NLRA scheme

C.2 Programs used for Chapter 3

In this section, we give the main programs that are used in Chapter 3 to find the numerical

solution using the IMC1 scheme as well as determine the stability and accuracy of this

scheme. These are listed in the following table.
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The Main Programs used in Chapter 3

Directory File Description

\Chapter 3\IMC1 \IMC1.m Numerical solution by using the IMC1 scheme

\Chapter 3\IMC1 \St_C1.m Stability for the IMC1 scheme

\Chapter 3\IMC1 \RatDt.m Estimate of the convergence order for the IMC1

scheme

C.3 Programs used for Chapter 4

In this section, we give the main programs that are used in Chapter 4 to find the numerical

solution using the DFL1 scheme as well as its stability and accuracy of this scheme. These

are listed in the following table.

The Main Programs used in Chapter 4

Directory File Description

\Chapter 4\DFL1 \DuFort.m The numerical solution by using the DFL1

scheme

\Chapter 4\DFL1 \St_C1.m Stability for the DFL1 scheme

\Chapter 4\DFL1 \RatDt.m Estimate of the convergence order for the

DFL1 scheme

C.4 Programs used for Chapter 5

In this section, we give the main programs that obtain the numerical solution, stability and

accuracy for the KBMC2, KBMC3, KBML1, and KBMC2–FADE schemes in Chapter 5,

as shown in the following table.
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The Main Programs used in Chapter 5

Directory File Description

\Chapter 5\KBMC2 \SolutionKBMC2.m The numerical solution by using the KBMC2

scheme

\Chapter 5\KBMC2 \StKellerBox.m The stability for the KBMC2 scheme

\Chapter 5\KBMC2 \RatDt.m Estimate of the convergence order for the

KBMC2 scheme

\Chapter 5\KBMC3 \SolnKBMC3.m The numerical solution by using the KBMC3

scheme

\Chapter 5\KBMC3 \ST.m The stability for the KBMC3 scheme

\Chapter 5\KBMC3 \RatDt.m Estimate of the convergence order for the

KBMC3 scheme

\Chapter 5\KBML1 \SolnKeller1.m The numerical solution by using the KBML1

scheme

\Chapter 5\KBML1 \Test_Stability.m The stability for the KBML1 scheme

\Chapter 5\KBML1 \RatDt.m Estimate of the convergence order for the KBML1

scheme

\Chapter 5\FADE_C2 \Soln_FADE.m The numerical solution by using the KBMC2–

FADE scheme

\Chapter 5\FADE_C2 \RatDt.m Estimate of the convergence order for the

KBMC2–FADE scheme

C.5 Programs used for Chapter 6

In this section, we give the main programs that are used in Chapter 6 to find the numerical

solution of nonlinear fractional reaction diffusion equations by using the KBMC2 and

IML1 schemes for Model Type 1 and Model Type 2. The main programs are listed in the

following table.
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The Main Program used in Chapter 6

Directory File Description

\Chapter 6\KBMC2 \M1Soln_KBMC2.m The numerical solution by using the KBMC2 scheme

for Model Type 1

\Chapter 6\KBMC2 \RatDt.m The convergence order of the KBMC2 scheme for

Model Type 1

\Chapter 6\KBMC2 \M2Soln_KBMC2.m The numerical solution by using the KBMC2 scheme

for Model Type 2

\Chapter 6\KBMC2 \RatDt.m The convergence order of the KBMC2 scheme for

Model Type 2

\Chapter 6\IML1 \M1SolnIML1.m The numerical solution by using the IML1 scheme

for Model Type 1

\Chapter 6\IML1 \M2SolnIML1.m The numerical solution by using the IML1 scheme

for Model Type 2
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