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Abstract

Broadacre and row crop farming in Australia uses no-till and minimum-till farm-

ing systems which have led to the overuse of specific herbicides for weed control,

causing resistance to those specific herbicides to build-up in weeds. Automatic

weed spot spraying can help reduce resistance build-up by specifically detect-

ing weeds for targeted control with alternative herbicides, hence breaking the

resistance cycle. Existing commercial weed spot sprayers are only capable of dis-

tinguishing green from brown, i.e. plant material in a fallow situation, and image

analysis research for weed discrimination typically was not developed for com-

mercial on-farm conditions. The research in this thesis has developed a real-time,

real-world machine vision spot spray system that can operate at groundspeeds up

to 20 km/h and discriminate green from green (i.e. weed from crop) under com-

mercial conditions for two very different crop types and size scales, specifically

sugarcane (grass-like) and pyrethrum (broadleaf).

Occlusion of a weed leaf by another leaf or plant is a major impediment for

real-world operation of a machine vision weed spot sprayer. A Depth Colour

Segmentation Algorithm (DCSA) has been developed which combines depth data

and colour image data to segment individual leaves from each other, based on

pixel connectedness in height and colour, providing an accuracy when occluded

of greater than 99%. The DCSA has a filtering capability that can reduce the

amount of data requiring further analysis by an observed 83% for sugarcane and

53% for pyrethrum.
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Existing feature extraction techniques have been evaluated in the thesis and have

been shown to be unsatisfactory in discriminating weed from crop especially when

the weed and crop are similar species. e.g. grass-like weed (guinea grass) from

grass-like crop (sugarcane). Depth features were added to the extracted features

of a local binary pattern function, improving the accuracy from 63% to 90% for

pyrethrum identification, and showing that depth data combined with 2D data

can improve the discrimination result. Additional real-world custom algorithms

have been developed to achieve an identification accuracy of 87% (where 86% of

the weed was occluded) with a 3.5% false positive rate for sugarcane. The Depth,

Colour, Size and Spatial (DCSS) algorithm developed for pyrethrum achieved

98% accuracy for pyrethrum identification with a 1.2% false positive rate.

Real-time functionality has been obtained by the development of a Synchronised

Parallel Processing (SPP) technique. The SPP technique maintains a high frame

rate (which determines the maximum groundspeed) by assigning the workload

in a permanently allocated pipeline synchronised by the incoming video image.

Calculations for sugarcane and pyrethrum show that speeds up to 18.5 and 17.2

km/h respectively are achievable based on the algorithms developed and a higher

core count CPU (six cores were used in the calculation) would achieve higher

groundspeeds. The gains from the additional processing availability provided by

SPP can be used to achieve a higher groundspeed, or undertake additional image

analysis, if required.

It is concluded that the machine vision components developed in this thesis com-

prise a real-time, real-world machine vision spot sprayer that can operate at

commercial groundspeeds up to 20 km/h and discriminate weed from crop.
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Chapter 1

Introduction and Overview

As farming practices in Australian agriculture have changed, so too have weed

control methods. Callow et al. (2010) state that the increased uptake of conser-

vation farming practices has seen an increase in herbicide usage for the control of

weeds. The increase in chemical usage is causing selective breeding of tolerance

characteristics (also known as ‘resistance’ in the farming industries) to the chem-

ical groups1 used for weed control, in successive generations of the weeds. Callow

et al. (2010) propose that a strategy to break this tolerance is to use a herbicide

from a different chemical group with a different killing action and/or mechanical

cultivation.

Automatic spot spraying2 of weeds can be used to achieve cost effective weed

control with herbicides (Cropoptics Australia 2012) but current commercial tech-

nologies are limited to differentiating green from brown i.e. a weed in a fallow3

situation.

1Herbicides are classified into groups from A to N, based upon their killing action

(Queensland Department of Primary Industries & Fisheries 2005).
2The spot application of a herbicide to an individual or small patch of weed or crop.
3Land that is left unseeded with crop and weed free during a growing season (Encyclopedia

Britannica 2013).
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Machine vision has the potential to determine a plant’s species in real-time based

on the analysis of the plant’s visual features, and this may allow a rotation of her-

bicides to be used in controlling weeds and so break the resistance cycle. There

has been considerable research in individual species identification by machine

vision, as cited by Slaughter et al. (2008) and Ji et al. (2009) in their reviews

on machine vision weed identification. However, both reviews found that the

machine vision weed identification research undertaken to date had been devel-

oped for controlled conditions, and is consequently not suitable for achieving a

workable commercial solution with general application.

1.1 Research aim

The aim of the research presented in this thesis is to develop a ‘real-time’ precision

in-field sensing system that can discriminate crop from weed for the purpose of

automatic weed spot spraying and weed mapping4 in a practical agricultural

setting. The scope of this thesis does not include the physical spray application

system.

1.2 Hypothesis

The hypothesis of this research is that the identification of plant leaves in three

dimensional (3D) space will improve image segmentation and isolate individual

plants from occlusions5 for further more intensive identification analysis.

4The recording of the weed and its latitude and longitude so that it can be displayed on

geographic information software for evaluation.
5An occlusion is where parts of plants and/or stubble overlap each other from the viewpoint

of the camera.
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1.3 Specific research objectives

The objectives of this research are as follows:

1. To develop an algorithm/s that incorporates 2D (colour) and depth data

from video streams to achieve weed discrimination from crop in a real-

time, real-world environment (Section 1.9) at commercially realistic ground-

speeds.

2. To demonstrate that the addition of depth data to a suitable image analysis

technique can achieve weed discrimination from crop in a commercially

acceptable operational window, i.e. at a range of crop growth stages, in a

real-time, real-world environment.

3. To evaluate the performance of the developed technique under a range of

real-world environment conditions; in particular with respect to 3D space

versus 2D, or depth, on their own.

4. To demonstrate that the system is adaptable to a range of crops under

practical commercial conditions.

1.4 Farming industries targeted

Particular emphasis was placed on the sugarcane (Saccharum officinarum) (Ap-

pendix C.1) and pyrethrum (Saccharum officinarum) (Appendix C.2) farming

industries with preliminary evaluation on sorghum (Sorghum bicolor) and mung

beans (Vigna radiata). All crops are illustrated in Figure 1.1.

Grass and broadleaf crops are the principal crop categories in the broadacre and

row crop farming sectors in Australian farming. Sugarcane and pyrethrum are

representative of a grass-like crop and a broadleaf-like crop respectively as well as
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(a) Sorghum at mid season growth stage. (b) pyrethrum at early stage growth.

(c) Sugarcane mid-season growth stage. (d) Mung bean at early season growth stage.

Figure 1.1: Example of crops evaluated.

being of very different physical scale. The techniques developed in this research

must be able to operate in the real-world environment of conservation farming,

which has varying field conditions e.g. soil type, stubble cover, crop height and

weed type.

1.5 Background – Conservation farming prac-

tices

The motivation for the research reported in this thesis arises from the need to

improve conservation farming practices.



1.5 Background – Conservation farming practices 5

Conservation farming, which can also be referred to as conservation agriculture,

was first evaluated in the 1940s in the United States as a means of soil erosion con-

trol (Fergal 2010). Figure 1.2 highlights erosion during the ‘dustbowl’ conditions

in the U.S. in the 1940s. There have been advances in machinery and herbicides

during the 1960s, 1970s and the 1980s which have accelerated the uptake of this

farming practice (Fergal 2010).

Figure 1.2: ‘Dustbowl’ in the U.S 1940s (Wilson 2013).

Conservation farming is defined by the The United Nations Food & Agricultural

Organisation (2012) as a farming philosophy that strives for a sustainable farming

environment as well as improved farming profitability. These goals are achieved

through three main principles: minimum soil disturbance, permanent soil cover

and crop rotations. The Department of Primary Industries NSW (2009) states

that the significant benefits of conservation farming are:

• An improvement in controlling erosion from both wind and water.

• Increased water storage and retention. The stubble (crop residue) cover
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decreases the formation of crust on the surface of the soil which aids in water

infiltration. The stubble cover also produces a buffer for soil temperatures

which decreases evaporation.

• Increased soil biological activity, organic matter and organisms.

• Improved soil structure due to less tilling6.

• Increased nitrogen content over time.

Common conservation farming practices in the Australian broadacre, row crop,

sugar and pyrethrum farming industries are labeled ‘no-till’ and ‘minimum-till’.

No-till farming is a strategy where there is no tilling of the soil. The seed is

planted through the residue (stubble) on the soil surface. The stubble should

be maintained at the highest possible density and all weed control is done with

herbicides. This approach maximises the benefits of conservation farming but is

critically dependent upon effective herbicide usage.

Minimum-tillage is where farmers may sometimes utilise tilling7 for weed control,

preparation of the seed bed and seeding. Minimum-till generally incorporates

some weed control by herbicides to reduce the overall amount of tilling required.

1.6 Background – Herbicide delivery systems

Herbicide weed control is achieved by the use of a boomspray which sprays herbi-

cide onto the weeds. Boomsprays can be used to spray both herbicides and nutri-

ents on fallow, crop, and between the rows of crop in row crop farming. Typical

boom sprayers in the Australian marketplace with their operating groundspeed

ranges, are:

6Tilling is the disturbance of the soil.
7Weed control is achieved with tilling by disturbing the root zone of the soil and cutting the

plant’s roots to kill the plant.
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• self propelled, 15-35 km/h (Figure 1.3);

• trailed, 5-25 km/h (Figure 1.4); and

• between row shielded sprayer, 0-10 km/h (Figure 1.5).

Figure 1.3: Agchem high clearance sprayer (Croplands Australia Ltd 2013).

Figure 1.4: Croplands trailing boom (Croplands Australia Ltd 2013).
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Figure 1.5: Wylie row crop shielded sprayer (Wylie sprayers Inc 2013).

1.6.1 Herbicide resistance

One of the challenges of minimum and no-till farming practices is the shift in

weed spectrum that has occurred due to herbicide resistant (hard to kill) weeds.

The overuse of a chemical group, or too low an application rate, for weed control

causes selective breeding of tolerance characteristics to that chemical group in

successive generations (Callow et al. 2010).

Figure 1.6 is a diagrammatic representation of the resistance cycle. Figure 1.6A

shows the weeds being sprayed with a chemical at a rate that a weed with natural

resistance can tolerate. All the other weeds die but the naturally resistant weed

sets seed, shown as a single plant in Figure 1.6B. The weeds grown from the

seeds are sprayed again and there are more naturally resistant weeds as shown in

Figure 1.6C and the seed set cycle repeats. Figure 1.6D shows that at the end of

several cycles most of the weeds are naturally resistant.
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Figure 1.6: Herbicide resistance evolution flow chart, based on University of

Minnesota (2008).
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Known control methods (Callow et al. 2010) are either the application of a herbi-

cide from a chemical group, with a different killing action, to that of the herbicide

to which the weeds have become resistant, or mechanical disturbance by tilling.

This is effective because changes of chemical group, when undertaking the spray-

ing application in Figure 1.6C, will redirect the resistance cycle to Figure 1.6A,

never arriving at Figure 1.6D, thereby permitting the reuse of the original herbi-

cide.

One means to control weeds that is promoted by the Cotton Research Devel-

opment Corporation (CRDC), the Grains Research Development Corporation

(GRDC) and the Sugar industry is to implement an Integrated Weed Manage-

ment strategy (IWM), as explained below in Section 1.6.2.

1.6.2 Integrated Weed Management (IWM)

Cotton CRC Australia (2010) define IWM as the use of numerous weed con-

trol tools and strategies in a long term plan to reduce the weed seed bank and

control weed competition for crops. A weed may survive a single weed control

approach but the chance of its survival is greatly reduced when faced with sev-

eral different approaches. An IWM is summarised by a cycle of four categories

(Australian Weed Management 2004) and shown in Figure 1.7.
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• identify weeds 

• map weeds and features 
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achieve priorities using 
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• keep a long term view 

 

Monitor and review 

• map weeds  

• assess impacts of actions 

• find out what has worked and 

what has not 

• revise plan if objectives not 

being met 

 

Figure 1.7: Weed management plan (adapted from Australian Weed Management

(2004)).

Weed identification/spot spraying technology can become an extra tool in the

IWM toolbox by: (i) providing an automated means of site assessment (weed

identification); (ii) implementing a strategy of spot spraying with herbicides; and

(iii) monitoring and reviewing by mapping the species.
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1.7 Automated spot spraying

Spot spraying is the spot application of a herbicide to an individual, or small

patch, of weed or crop. The process can be manual (triggered by a person with

a backpack sprayer) or automated through a boom sprayer to allow the farmer

to cover a large amount of farmland. Machine vision identification of weeds can

be found in the literature as early as 1983 (Haggar et al. 1983) and commercial

automated spot spraying has been available in Australia since 1984 (Cropoptics

Australia 2012). Farmer testimonies indicate chemical savings of between 50%

and 90% over the course of keeping a fallow weed free using an automated spot

sprayer (Cropoptics Australia 2012).

Commercially available weed detection technologies (Figures 1.8 and 1.9) for au-

tomated spot spraying are limited to distinguishing plant from background (i.e.

soil and/or stubble) and are outlined in Appendix B.

Figure 1.8: Boomspray equipped with Weedseeker technology (reproduced from

Cropoptics Australia (2012)).

Figure 1.9: Boomspray equipped with Weed-It technology (reproduced from

Croplands Australia Ltd (2013)).
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Identifying the presence of vegetation allows the spot spraying of weeds in a

fallow situation (Figure 1.10), i.e. plant from background, but not weeds in a

crop (Figure 1.11), or individual plant species (plant from plant).

The algorithms developed in this research are able to identify weeds in a crop

situation by overcoming the issues of occlusion, thereby not relying on weeds

being on a soil or stubble background to be identified.

Figure 1.10: Fallowed paddock with wheat stubble and large weeds image taken

at Felton, Qld Australia, July 2011.
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Figure 1.11: Sugarcane field with grass weeds in the front of the rows image

taken at ‘Fairymead’ farm, Bundaberg Australia, August 2012.

1.8 Machine vision for plant recognition

The literature review (Chapter 2) describes the methods and techniques that

have been used to achieve weed from crop discrimination. The diversity of the

literature shows that a large knowledge base exists for machine vision techniques

including a combination of depth, spatial, spectral, shape and texture features.

A further requirement for a machine vision plant identification system, when

incorporated into a automated spot sprayer, is real-time operation. Real-time

operation requires the machine vision system to determine a correct result within

a fixed amount of time (Lin & Burke 1992). Failure to achieve this can result in

weeds being missed by the detection system.

1.9 Real-time computation and (agricultural) real-

world conditions

Lin & Burke (1992) stated that a “real-time computer must produce a correct
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result within a specified time” and West (2001) defines a real-time system as

a system where “the results will be provided when they are needed”. Hence a

real-time, field deployable machine vision system for weed identification must be

able to discriminate crop from weed as it progresses along the field at an effective

working speed determined by the type of spraying being done, the crop and

the ground conditions. Real-world conditions provide a myriad of variations: in

stubble covers, plants at differing growth stages, and plants with different levels

of health. For the purposes of this research, real-world conditions do not include

rain, dew, high wind or high temperature, as the operator would not be spraying

in these conditions (Primary Industries Standing Committee 82 2002).

In a review of autonomous robotic weed control systems, Slaughter et al. (2008)

found that:

• the main obstacle holding back the commercial success of robotic weed

control systems is the lack of robust weed detection;

• much of the research had been done under ideal conditions with correct

identification results of between 65% and 95%, but that these results were

not repeatable under field trials;

• the most common problem was occlusion of weeds from other plants; and

• variation in leaf appearance can vary greatly in the same species as a result

of plant health, physical trauma, shadows and daytime conditions.

In addition Ji et al. (2009) and Slaughter et al. (2008) found that most research

to date used static images whereas a real-time system must use a video stream.
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1.9.1 Overcoming limitations in real-time weed identifica-

tion – Occlusion

As noted above in Section 1.9, Slaughter et al. (2008) determined that the most

significant source of error for identification of weeds based on imaging systems is

occlusions. Occlusions create errors in segmentation as traditional segmentation

techniques cannot find the edge between the overlapping leaves to separate them

into individual components. Occlusions can change the perceived shape of the

segmented plant component by making segmented components look larger or

smaller (if the plant is occluded by stubble or other plants).

Research presented in this thesis demonstrates that the addition of depth informa-

tion can allow automated weed discrimination to use the heights of plants, leaves

and stubble to reconstruct individual leaves and/or remove unwanted leaves. This

is demonstrated in the sequence of images in Figure 1.12. Typically, colour im-

ages of weeds (Figure 1.12(a)) are segmented into a binary image containing green

pixels and background pixels (Figure 1.12(b)). Visual identification of individual

plants leaves in the binary image is not possible when leaves overlap one another as

the overlapping leaves combine in the same segmented component. However, with

combined colour and depth segmentation (Figure 1.12(c)) overlapping leaves may

be separated. As a result, the proportion of error in leaf shape determinations

is reduced, and correspondingly the proportion of error in weed identification.

Details of combined depth and colour segmentation are presented in Chapter 5.

1.9.2 Overcoming limitations in real-time weed identifica-

tion – Real-time requirements

By definition, real-time systems must work within processing time constraints.

Figure 1.13 shows a block diagram of a real-time machine vision system. Each of

the functions in Figure 1.13 are required to happen within a specified time. To
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(a) Colour image of sugarcane and guinea grass to be segmented. The red

circle encloses an example of multiple overlapping leaves

(b) Binarised image of (a).

(c) New colour/ depth segmentation technique applied to image (a).

Figure 1.12: Image sequence highlighting occlusions and segmentation by colour

and combined colour and depth.
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address these constraints, a new processing technique for image analysis of weeds

has been developed and evaluated in this thesis (Chapter 7). The new process-

ing technique incorporates parallel computing methodologies in the Microsoft R©

software development platform, as well as hardware pipelining of the plant iden-

tification process in Figure 1.13, to maximise the processing time available.

The hardware pipelining strategies leverage off concepts developed for image anal-

ysis on logic devices (Field Programmable Gate Arrays (FPGAs) and Complex

Programmable Logic Devices (CPLDs)) and can be implemented in micropro-

cessors using the multi-core architecture available from CPU manufacturers (e.g.

Intel R©) as set out in Chapter 7.

Figure 1.13: Real-time machine vision block diagram, displaying the complete

spot spray system incorporated by the outer block and the plant identification

incorporated by in the inner block.

1.10 Innovation and novelty

The novel research contributions reported in this thesis are as follows:

1. A colour and depth segmentation algorithm (Chapter 5).

2. A real-time implementation of a rotationally invariant Local Binary Pattern

(Chapter 6 and Appendix F).
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3. A real-time synchronous pipeline processing technique (Chapter 7).

4. The integration of the innovations above with traditional image feature

extraction techniques and classifiers (Chapter 6).

The techniques of items 1 and 3 have been evaluated by Fisher, Adams, Kelly

(FAK Patent Attorneys) for novelty and patentability (Appendix D). The out-

come of the evaluation was that patent protection should be sought and the

University of Southern Queensland has been actively pursuing this along with a

commercialisation strategy and a commercial partner. Hence publication of the

novel techniques in open literature has been limited. A provisional patent and

PCT patent have been lodged and are itemised in the Publications section.

1.11 Dissertation chapter outline

The research undertaken for this thesis is aimed at developing a real-time, real-

world automatic spot spray system to spray weed from crop. A complete real-time

spot spray system comprises five main areas which are addressed in Chapters 4

to 6 with the real-time capability in Chapter 7 and algorithm portability in Chap-

ter 8.

Chapter 2 is a literature review of current machine vision techniques that have

been applied to weed identification. The chapter reviews segmentation of plant

from background, identification based on shape, texture, spectral differences and

3D imagery. Strengths and weaknesses in the current research were determined

from this review with limitations of processing speed, occlusion and inconsistent

illumination being highlighted as issues that need to be addressed.

Chapter 3 is concerned with data collection. Data was collected from sugar-

cane crops at ‘Fairymead’ farm Bundaberg, Queensland Australia and pyrethrum

crops by Botanical Resources Australia in Tasmania. Additional data to evaluate
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portability of the algorithms was collected from sorghum and mung bean crops

on the Darling Downs in Queensland Australia.

Chapter 4 outlines the methodology of a real-time machine vision system for

weed identification in agriculture highlighting five steps (Figure 1.13). The chap-

ter includes discussion of step 1, image acquisition and pre-processing. Pre-

processing colour and depth images for a real-time system involves image remap-

ping algorithms and procedures to ensure that an object appears in the same

image co-ordinates in the colour images and the depth image. The remapping

procedures discussed are for overlaying the depth and colour images accounting

for the offset in the images due to the mounting distance between the cameras;

and the time offset between the images due to timing differences in the cameras

and the groundspeed of the system.

Chapter 5 addresses step 2 in the machine vision methodology outlined in Chap-

ter 4, the segmentation of plant and background pixels. The chapter highlights

the limited use of existing segmentation techniques, when applied to crop and

weed segmentation in real-world conditions, and then discusses the novel Depth

Colour Segmentation Algorithm (DCSA) developed in this thesis. The chapter

describes the operation of the DCSA and the DCSA’s filtering capabilities. The

remainder of the chapter evaluates the application of the DCSA in sugarcane and

pyrethrum, showcasing the DCSA’s capabilities with respect to occlusion.

Chapter 6 considers the steps 3 (feature extraction) and 4 (classification) in

the machine vision methodology outlined in Chapter 4. Existing (published) 2D

feature extraction and classification techniques for weed-from-crop identification

in real-world conditions are evaluated and found to be unsatisfactory. The chapter

then outlines new techniques developed specifically for sugarcane and cotton in

this thesis, which include colour and depth information. A methodology for

evaluating the new feature extraction and classification techniques, to determine

the most effective technique is developed and applied to the results of field trials

in commercial sugarcane and pyrethrum cropping.
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Chapter 7 details real-time processing and how processing speed limitations

may be overcome. The limitations are outlined and expanded upon with a new

technique developed that allows significant additional processing when compared

to sequential processing, or typical parallel processing techniques. A performance

assessment is undertaken on sugarcane and pyrethrum field data.

Chapter 8 addresses the application of the DCSA technique to two additional

crops, sorghum and mung beans, highlighting the DCSA’s real-time capability to

effectively isolate plant components when occluded. This chapter illustrates the

DCSA’s portability to other crops in the Australian no-till farming sector, and

its ability to operate in real-time, real-world conditions.

Chapter 9 sets out the conclusions and the possibilities for further work. The

conclusion addresses the objectives individually to show how each objective has

been successfully met. Further work looks at what more needs to be done to

enhance practical commercial spot spraying.

Appendices

The seven appendices comprise:

A – Glossary of terms.

B – Commercial spot sprayers.

C – Introduction to sugarcane and pyrethrum farming practices.

D – Patent attorney opinion.

E – Hardware system patent.

F – Real-time LBP implementation.

G – Side shift hitch operation for row guidance.
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Chapter 2

Literature review for weed

identification with machine vision

2.1 Introduction

Machine vision can potentially identify weeds in real-time by using spectral in-

formation as well as spatial information where spatial information refers to a

plant’s position with respect to the crop row. The research reviewed in this chap-

ter demonstrates that machine vision techniques have been used successfully to

determine plant identification under particular operational conditions. These op-

erational conditions are of limited use in the commercial world of farming due

to real-world conditions (Slaughter et al. 2008). For example Tian et al. (1997)

developed a system that operated at a specific (cotyledon) growth stage, how-

ever climatic conditions and external work pressures mean that it is not always

possible for farmers to get onto the fields at a specific growth stage.

Machine vision systems may comprise one or more imaging devices that provide

spectral and spatial data. Common 2D imaging cameras use a Charge Coupled

Device (CCD) or Complementary Metal-Oxide Semiconductor (CMOS) image
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sensor. CCD and CMOS image sensors can be used to provide spectral data

from 400 nm up to 1100 nm depending on the sensitivity of the image sensor,

typically in wide wavelength bands. Hyperspectral cameras can provide spectral

information about an image in bands down to as low as 1.64 nm (Zhang et al.

2012).

Machine vision analysis can make use of a plant’s physical and visual features in

order to determine its species, based upon a combination of the plant’s spatial,

spectral, shape and texture properties. More recently, machine vision techniques

have included three dimensional data to achieve a more consistent result, based

on plant height data alone, or in combination with spectral, shape and texture

analysis.

The machine vision literature review presented in this chapter falls into seven

broad categories which are:

• segmentation of plant from background;

• identification based on shape;

• identification based on texture;

• identification based on spectral differences;

• identification based on spatial positioning;

• identification based on 3D imagery; and

• real-time implementations.

2.2 Segmentation

Segmentation is a common first step in machine vision analysis for individual

plant identification. The purpose of segmentation is to reduce the amount of
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data to be analysed by removing all background pixels, therefore leaving only

plant pixels. Figure 2.1 displays the spectral properties of a typical green leaf, in

which green (approximately 550 nm) reflectance is higher than red (approximately

650 nm) or blue (approximately 450 nm) reflectances. Green plants also exhibit

a distinct ‘red edge’ between red (approximately 650 nm) wavelengths and Near

Infra-Red (NIR) wavelengths at approximately 750 nm and higher. This ‘red

edge’ is not as significant in non-green vegetation such as shown in the straws

and soil traces in Figure 2.2.

Figure 2.1: Green plant spectral properties from Noble & Brown (2002)

displaying the typical leaf reflectance curve between 400 nm and 2500 nm.
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Figure 2.2: Stubble and plant spectral properties from Langer et al. (2006). A

distinct red edge is noticeable on the spectrum of green rye and dandelions but

not on straw, soil and dry stems.

Piron et al. (2008) found that the best wavelengths for segmentation when deter-

mining weeds in carrots were centered on 450 nm, 550 nm and 700 nm which are

very close to the wavelengths of an RGB camera at 450 nm, 550 nm, and 650 nm

respectively. Typical low cost CCD and CMOS cameras do not have sensitivity

above 1100 nm so discrimination of weeds based on reflectance above 1100 nm

using typical low-cost cameras is not possible.

Segmentation is a critical step in the image analysis process and the features

that need to be isolated in the image determine the segmentation technique used.

Segmentation based on colour is a common approach. Woebbecke et al. (1995)

evaluated several colour algorithms for segmentation. The evaluated algorithms

used the intensity levels of the red (R), green (G) and blue (B) channels of the

image and included: R−G, G−B, G−B
abs(R−G)

and 2G−R−B (also referred to as

‘excess green’) and found that the 2G−R−B was most effective.

Recent research using the excess green technique includes Swain et al. (2011), who
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used excess green to segment images for use in an active shape modeling classifica-

tion techniques. Jeon et al. (2011) used normalised excess green and an Artificial

Neural Network (ANN) for outdoor operation. Sabeenian & Palanisamy (2009)

used an offset excess green segmentation with texture analysis and Jafari et al.

(2006) applied excess green to segment the image to be used in a discriminant

function evaluation. The cited literature shows that excess green (and variants)

can offer a computationally fast and efficient means of segmenting plant pixels

from background pixels, useful for real-time systems.

Li & Chen (2010) used the Otsu method of thresholding (Otsu 1979) of the hue

channel of a HSI image for segmentation. Perez et al. (2000) used the differ-

ences between the green and red spectral reflectances by producing a normalised

vegetation index and then applying a threshold. Langer et al. (2006) developed

a Difference Index with Red Threshold (DIRT) which uses the same spectral

bands as the Normalized Difference Vegetation Index (NDVI) but gives a better

response on mulched fields.

2.2.1 Illumination effects on segmentation

Reviews on machine vision analysis in real-world settings have found that light-

ing has been a major factor contributing to errors in classification. Lighting

conditions have an effect on the image analysis through changes in intensity,

white balance and shadows (Slaughter et al. 2008, Jin & Tang 2009, Noble &

Brown 2002, Hong et al. 2012). In outdoor situations the light source can vary

from 2000 K in the morning to 8000 K in the shade with white daylight being ap-

proximately 5600 K (Lowel Education Centre 2012) dependent upon cloud cover

and time of day.

El-Faki et al. (2000) evaluated the effects of illumination and soil moisture as

sources of error and found that illumination has a significant effect on correct

segmentation, whereas soil moisture did not. Slaughter et al. (2008) found that
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illumination was second only to occlusion as a limiting factor for effective machine

vision applications. Baron et al. (2002) determined that the ‘red edge’ could

segment effectively but that changing daytime conditions such as cloud cover

affected the visible spectrum (VIS) and NIR spectrum differently and this had a

significant impact on the accuracy.

2.2.1.1 Alternate colour spaces

In the research literature, there has been significant research effort applied to over-

coming the changing nature of outdoor lighting and the degradation on segmen-

tation quality caused to RGB-based segmentation techniques. Applying different

colour spaces and algorithms has been evaluated to address changing daytime

conditions. Bai et al. (2013) segmented plant matter from background by mor-

phology modeling in the CIE L*a*B* colour space with accuracy of 87% from a

dataset of 56 images. Tang et al. (2000) used a genetic algorithm (GA) in the

Hue, Saturation and Intensity (HSI) colour space called GAHSI on images with

both bright and shadowed regions and achieved similar performance (90%) to

cluster analysis-based segmentation on images acquired under uniform lighting

conditions.

In summary changing the colour space displayed varying capabilities to segment

using alternate colour spaces under differing illumination but all techniques in-

creased the computational complexity compared to excess green or thresholding.

2.2.1.2 Exposure-based effects

Jafari et al. (2006) separated pixels into light and shadow categories in 300 images

for classification under outdoor lighting with an average of 85% weed identifica-

tion. A conclusion from the research was that the lit areas had higher positive

classification of weeds than the shadowed areas in the image and that two differ-
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ent classifications should be evaluated to improve the result, one for the lit area

and one for the shadowed area.

Romeo et al. (2013) developed an expert system which first classified images into

two bins; one bin was for images with satisfactory image quality for segmentation;

and a second bin was for images of poor quality. The images in bin one had a

combined segmentation technique outlined in Guijarro et al. (2011). The second

bin was down sampled and had fuzzy clustering applied to it. The results were

91% and 85% respectively over a broad range of varying daylight and the anal-

ysis times were on average 0.91 s and 1.61 s respectively, which is not real-time

applicable.

Suh et al. (2014) developed a shadow resistant technique which has produced

promising preliminary results. The process involves analysing the image to de-

termine if it contains shadows. An excess green segmentation with Otsu thresh-

olding was applied if there was no shadows. If there were shadows, an Otzu’s

3-threshold method was applied to the excess green segmentation. The average

execution time for the technique was 0.42 s.

Although the exposure based segmentation results are promising the evaluations

have not been exhaustive and require significant further testing and validation

on real-world no-till images for use in Australian farming systems.

2.2.1.3 Multiple feature extraction and classification

Jeon et al. (2011) developed a system which involved the functions of normalized

excess green conversion, statistical threshold value estimation, adaptive image

segmentation, median filter, morphological feature calculation and Artificial Neu-

ral Network (ANN) in an effort to identify weeds in outdoor illumination. The

system had an initial accuracy of 72.6% which was improved to 95% by correcting

the error source (incomplete leaves). Limitations in this research were: that all
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images were specifically non-occluded, the results for the data were good in full

shade, or no shade, however, when the images had both, the outcome was poor

in the bright area.

Tian et al. (1997) used an Environmentally Adaptive image Segmentation Algo-

rithm (EASA), to address changing lighting conditions when identifying tomato

seedlings at cotyledon growth stage, with up to 78% accuracy.

2.2.1.4 Light-restricting cover

A physical method of addressing variable lighting conditions is the addition of a

light-restricting cover such as Figure 2.3.

Figure 2.3: Three metre spot sprayer developed for plant identification and spot

spraying at the NCEA (McCarthy et al. 2012). Camera and lights are mounted

under white plastic covers with a light-restricting cover around the sprayer.

Wang et al. (2007) found that they needed to retrain their system after daytime

changes and that the addition of a light-restricting cover plus lights kept the

lighting constant and alleviated the need for continual retraining. The addition

of a light-restricting cover to the data collection and spray systems has been
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successfully achieved by Hemming & Rath (2001), Lamm et al. (2002), Astrand

& Baerveldt (2002) and Tangwongkit et al. (2006).

In reviewing the use of spectral properties in weed detection, Noble & Brown

(2002) found that changes in illumination play a major role in segmentation ef-

fectiveness, and that controlled, artificial, diffuse broadband light could eliminate

a number of the problems as well as permitting night time operation.

2.3 Weed identification based on shape

Morphological features (e.g. leaf shape) are an intuitive choice to be used in

machine vision plant identification. However, some species are very similar (e.g.

wild sorghum and sugarcane) which may make shape a poor discriminator. Shape

matching and classification can be adversely affected by occlusion, varying crop

conditions, poor segmentation and image quality (Slaughter et al. 2008).

2.3.1 Effects of occlusion

Franz et al. (1991) attempted to identify partially occluded leaves using curva-

ture to indicate leaf shape. It was found that error was caused by differing leaf

serrations and boundaries in multiple leaf images and shape could not be defined.

Tian et al. (1997) reported that occlusion was a significant source of error in

applying perimeter, centroid, horizontal and vertical dimensions with an EASA

algorithm that targeted tomato cotyledons in different lighting conditions within

an individual image.

A standard ‘erode’ morphological transformation was implemented by Lamm

et al. (2002) to address occlusion in identifying cotton plants from grass-like

weed with 78.7% accuracy and an acquisition groundspeed of 1.62 km/h.
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Gerhards & Chrisensen (2003) used chain code to extract the leaf edge features,

then transformed the chain code into a function with a standardised contour and

applied a Fourier transform to obtain leaf parameters. The leaf parameters were

then compared to a database for classification with an average identification rate

of 80% across five plant subgroups identifying occlusion as a major source of

error.

Jafari et al. (2006) found that shape analysis was susceptible to occlusions when

attempting to combine shape and colour features into a classifier but occlusion

of the leaves in the images made the shape features ineffective.

Persson & Astrand (2008) used Active Shape Matching (ASM) to discriminate

weeds from sugarbeet, achieving an accuracy of 81-87% highlighting occlusion as

a problem for correct classification.

Swain et al. (2011) used an Automated Active Shape Matching (AASM) tech-

nique with individual plant segmentation finding occlusion of leaves a source of

classification error.

2.3.2 Effects of varying crop conditions

Gliever & Slaughter (2001) evaluated a technique using a radial basis function and

a Artificial Neural Network (ANN) and achieved an accuracy of 92%. However,

misclassification resulted from hail damage or holes within the leaf and large weed

clumps that were similar size to the targeted leaves. Cerutti et al. (2011) applied

active contour models to overcome occlusion and found it possible if the model

is constrained to fit known leaf shapes.

Sogaard (2005) used ASM on seedlings up to two true leaves with results of

between 65-90% accuracy, depending on the weed species, in non-occluded images.

The technique Sogaard (2005) used is limited to an operational time window of
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several days before the plant outgrows the two-true-leaves growth stage.

Li & Chen (2010) extracted shape features from cotton and weed plants which

were then classified with an ant colony organisation algorithm (also used by

Dorigo & Blum (2005)) and support vector machine with 94% discrimination

accuracy on a limited dataset.

2.3.3 Effects of image quality

Gliever & Slaughter (2001) found that poor image quality from a single CCD

camera supplied excessive noise and was not suitable for shape feature extraction.

In a recent review, Copea et al. (2012) found that no one method of leaf classifica-

tion on its own, is the answer, as plants are diverse in size, shape and colour, and

the diversity is both between, and within species. A key conclusion from Copea

et al. (2012) was that any technique that relied on a specific set of features to

identify plants at a particular growth stage was not robust, as the set of features

may not be present at a different growth stage.

2.4 Weed identification based on image texture

Different species reflect light uniquely due to variations in leaf size, shape, angle,

reflectivity and clustering. The differences in reflected light create variation in

the received colour intensities at the image sensor, producing different textures in

the image. Textures have been used for plant identification and individual plant

segmentation with differing levels of success. Texture analysis can be categorised

into four main groups for feature extraction (Materka & Strzelecki 1998):

1. Structurally-based

Haralick (1979) stated that a structural model of texture is based upon

texture primitives (texture elements) and their appearance. Examples of
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structural techniques are ‘edge per unit area’, ‘grey level run lengths’, ‘rel-

ative extrema density’ and ‘relational trees’. These techniques are struc-

tural, as their attributes are defined, however, they are also statistical as

their spatial connectivity is determined by probability.

2. Statistically-based

Statistical techniques do not define the primitives and their structure. Sta-

tistical techniques define the textures’ properties by a pixel’s probability

distribution, and the spatial relationship with other pixel intensities in an

image (Materka & Strzelecki 1998). Statistical feature extraction can be

separated into two areas being first-order statistics and second-order statis-

tics (Tuceryan & Jain 1998).

• First-order statistics

First-order statistics are the probability of occurrence of grey levels in

an image at a random location. These statistics can be found with

histograms and do not take into account any relationship a pixel’s

intensity has with its neighboring pixels.

• Second-order statistics

Second-order statistics are based upon the relationship between a pixel’s

intensity and that of the pixels around it, i.e. the properties of pairs

of pixels. A popular second-order statistical method is the Grey Level

Co-occurrence Matrix (GLCM) (Haralick 1979).

3. Model-based

Tuceryan & Jain (1998) stated that model based methods rely on the con-

struction of a model to define the image. The model parameters contain the

qualities of the texture which allow the model to describe the texture as well

as synthesise the texture. Types of models used in plant identification have

been: fractal-based models (Plotze et al. 2005), stochastic models (Chalak

et al. 2011) and random field texture models such as Markov random fields

(Sabeenian & Palanisamy 2009).
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4. Transform-based

Transform based methods transform the image into a different space whose

co-ordinate system represents characteristics other than intensity, such as

frequency and size. Types of transforms used for texture feature extraction

are Fourier (Ghazali et al. 2008b), Gabor (Bossu et al. 2009) and wavelet

(Wu et al. 2009) transforms

The GLCM method (a second-order statistical method) is a common tool for

feature extraction and has been evaluated by a number of researchers (Meyer

et al. (1999), Ghazali et al. (2008b), Souza et al. (2008)). Meyer et al. (1999)

obtained individual species identification accuracies ranging from 30 to 77% with

processing times from 20 to 30 s. It is expected that this processing time would

be reduced with modern computer power. Souza et al. (2008) used a limited set

of input images with the GLCM and achieved results ranging from 67 to 86%.

The literature reviewed indicated that the GLCM is a commonnly used statistical

method for plant identification but with variable accuracy.

Burks et al. (2000) evaluated a Colour Co-occurrence Method (CCM) by con-

verting the RGB image to HSI and extracting features from these colour space

segments. This approach yielded a classification rate of 90% which was an im-

provement over Meyer et al. (1999).

Tian et al. (1999) used the Discrete Wavelet Transform (DWT) and the Weed

Coverage Ratio (WCR) to detect when there were weeds present in corn and

soybean crop. The analysis was based on detecting plant density compared to a

threshold (i.e. above the threshold categorised the image as weed present) and

were performed in 0.37 s and 0.037 s respectively making the WCR a viable real-

time spot spray algorithm, computationally however, the results varied with the

background between 47% and 100% which is a high level of inconsistency.

Ahmad et al. (2011) evaluated a Haar Wavelet Transform (HWT) to classify

broadleaf from narrow-leaf with an average accuracy of 94% and an analysis time
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of 40 ms. Changes in lighting degraded the performance of the HWT and the

images contained a single leaf type only. Bossu et al. (2009) evaluated 33 different

wavelets against Gabor filtering as a benchmark and found that Daubechies 25

and discrete approximation Meyer wavelets provided better results than Gabor

filtering. However, each method required 2.78 s or more to run making it unviable

in a real-time spot spray system.

Golzarian & Frick (2011) used Principal Component Analysis (PCA) to differ-

entiate wheat from broome grass and wheat from rye grass with an accuracy

of 88% and 85% respectively. The PCA used eigenvalue decomposition and the

data was collected from samples grown in controlled conditions in a greenhouse,

taken with a high resolution camera (image size of 3648 × 2736 pixels). Ghazali

et al. (2008a) used high and low pass filters to obtain features and developed

a feature extraction and classification process called Continuity Measure (CM)

which produced a correct result of 98% in discriminating a broadleaf plant from

a grass plant in images containing either plant type, but not both.

McCarthy et al. (2012) achieved good results with occlusion tolerance for broadleaf

from grass using a line detection technique. A binarised segmentation technique

(G > R and G > B), followed by a line detection transform and a connected

components technique was used to isolate the individual components. McCarthy

et al. (2012) used size of component as the discriminator to identify sugarcane

with an 85% hit rate and 0.2% false trigger rate.

Local Binary Patterns (LBP) were evaluated by Ahmed et al. (2011) to classify

broadleaf and grass weeds with an accuracy of 98% when used with a Suppor vec-

tor Machine (SVM) classifier. The evaluation images contained either broadleaf

or grass plants, not both, as found in the real-world.

In summary, texture has provided encouraging results for the identification of

plant types (i.e. grass leaf and broadleaf) but the computation time for the

techniques in the reviewed literature has shown that excessive computation time
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is an impediment to most algorithms for use in a real-time spot spray system. The

reviewed literature has highlighted limitations in the texture evaluations where

the techniques were not evaluated on real-world multi-plant images.

2.5 Weed identification based on spectral

differences

Spectral properties (wavelengths) have been used for finding weeds in a fallow

situation since 1983 (Haggar et al. 1983). Wang et al. (2001) discriminated wheat

from weeds and background, with the most useful wavelengths being 496, 546,

614, 679 and 752 nm. The system performed well where there was a dense plant

canopy however performance deteriorated when the plant matter became sparse

(<0.02 plant pixels/cm2). Noble & Crowe (2001) evaluated wavelengths from

250 nm to 2500 nm for weed discrimination and found that 360, 420, 680 and

1930 nm enabled the best discrimination. Noble & Brown (2002) found that

illumination changes affects the consistency of the spectral wavelengths.

Borregaard et al. (2000) used two line imaging spectrometers to capture VIS and

NIR spectrum with individual identification rates of 70 to 80% on four species at

a specific growth stage of less than four-true-leaves. Significant limitations with

using spectral wavelengths for weed identification in real-world situations are that

the characteristics of the target plant can change, depending upon plant health,

weather damage, nutrient and water stress (Slaughter et al. 2008).

Okamoto et al. (2007) used hyperspectral images with Euclidean distance from

a validation template as a method of segmentation and achieved a classification

accuracy of sugar beet from five weed species of 75% to 80%. Zhang et al.

(2012) evaluated the robustness of hyperspectral plant identification in varying

seasonal conditions in real-world situations using a line-imaging spectrograph.

The wavelengths evaluated were between 400 and 795 nm and the images were
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obtained over three years with results of 85%, 90%, 92.7% respectively using a

global calibration. Modifying the classifier to calibrate each year individually

achieved an identification rate of 95.8% for the year under evaluation.

The reviewed hyperspectral identification systems required relatively slow ground-

speeds. Nieuwenhuizen et al. (2010) evaluated spectral properties to discriminate

sugar beet from self-sown potato, a speed limitation with the research was the

collection speed of 10 mm/s (0.0036 km/h). The system used by Zhang et al.

(2012) was operated at a groundspeed of 36 mm/s (i.e. 0.13 km/h). All the

literature reviewed, highlights groundspeed as a limitation for using hyperspec-

tral cameras in real-time spot spray systems but newer cameras are improving

acquisition times and this will change in the future.

Keranen et al. (2003) evaluated fluorescence as a discrimination technique and

reported an image collection time of over 3 s per image which is clearly not suitable

for on-the-go field use. Longchamps et al. (2009) found that implementation of a

fluorescence system in a real-world situation would have to overcome fluorescence

variation due to the growing conditions, plant growth stage as well as plant

damage (e.g. hail, pest and disease).

2.6 Weed identification based on spatial posi-

tioning

2.6.1 Known row position

The spatial position of the plant in relation to the planted crop row is a method

of using prior knowledge to improve classification. If the centre of the crop row

can be determined then the assumption that plants centred on the crop row are

crop, whereas plants not centred on the crop row are weed can be used and is
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discussed below. Weed identification incorporating spatial position can use any of

the techniques described in this chapter for segmentation and feature extraction;

the classification function then combines prior information about the position of

the crop rows with the extracted features.

Wu et al. (2011) used a pixel histogram method to find the centre of the rows

of wheat and then highlighted the area in the image from the centre of the crop

row out to the edge of the row (on the left and right), therefore plant material

not in the highlighted area were weeds. The pixel histogram method had an

average weed classification rate of 94% but was only applied to a dataset of

five images and the crop rows were unbroken i.e. there were no missing crop

plants. Bo et al. (2012) used colour segmentation and row location to identify

weeds between the row in outside illumination. The system had an average

computation time of 160 ms and in consistent illumination had a 97% weed hit

rate. However the accuracy fell to 89% in shadowed areas compared with 92% in

strong illumination. This variation in accuracy highlights the issues associated

with varying illumination.

Gee et al. (2006) used a double Hough transform to locate rows and region growing

segmentation to isolate crop from weed in the rows. Weed infestation rates were

then calculated however, occlusion caused the weed infestation rates to be under-

or over-estimated which effected overall accuracy. De-Rainville et al. (2014) found

the row of crop by applying the Hough transform on binarised images. The

boundaries were found and the plants that were found inside the boundary were

considered to be a mixture of weed and crop. Features were then extracted

and classified to determine weed from crop with accuracies of 90.8%. However,

the evaluation data was on small plants (two to four leaf stage) where there is

generally less occlusion.
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2.6.2 Other spatial techniques

Bossu et al. (2009) used the periodic planting pattern of the crop (both real

images of wheat and synthetic images) to identify crop and assumed random weed

position. The system is based on Gabor filtering and region-based segmentation

applied to a simulated scene.

Berge et al. (2012) developed a patch spraying system called ‘Weedcer’ which used

a calculated Relative Weed Coverage (RWC) to determine weed presence, where

the RWC was defined as the weed cover divided by the total plant cover. The

young weed leaves and cereal crop leaves were estimated from high resolution RGB

images. Weedcer underwent real-time trials with correct classification results of

91% in winter wheat but only travelled at 1.8 km/h with five frames per second

analysis. One interesting point was that a Xenon flash was used to overpower the

variable daylight lighting.

In summary, the use of prior knowledge based on the spatial position of the plants

has been shown to achieve good results and can be a technique that improves

classification robustness in real-world situations.

2.7 Three dimensional (3D) imagery

Three dimensional data can be used to provide additional perspectives of a scene

to enhance machine vision algorithm accuracies. Monochrome and colour images

provide 2D information and the third dimension is depth. Depth disparity maps1

can be acquired either directly from the acquired data or indirectly by inference

from 2D data. Table 2.1 itemises techniques used to obtain depth data found in

1Disparity map data is the difference in the position of the same point in left and right

stereo images. The disparity pixel value is inversely proportional to scene depth (OpenCV

Devzone 2013).
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the reviewed literature with common techniques being stereo-vision, time-of-flight

and structured lighting. ‘Active’ and ‘passive’ are two categories referring to the

lighting provided for the 3D techniques and Table 2.1 shows that structured light

and time-of-flight techniques use active sensing whereas stereo-vision is passive.

Each technique is considered further as follows.

Table 2.1: Classification of 3D image techniques (reproduced from Sansoni et al.

(2009)).

2.7.1 Passive sensing

Passive sensing determines 3D information using ambient illumination of a scene

and reflectance from the objects contained in the scene (Sansoni et al. 2009).
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2.7.1.1 stereo-vision

stereo-vision is a passive system where depth is found by obtaining positional

information from two known viewpoints (two separate images) of the same area.

Andersen et al. (2005) used a stereo-vision system with a correspondence tech-

nique2 called simulated annealing to determine geometric properties (height and

leaf area) of 10 wheat plants at the five to six leaf stage. Andersen et al. (2005)

were able to adequately find the geometric properties with a linear relationship

(p<0.001) related to measurements taken of the same ten wheat plants at the

five to six leaf stage by a flatbed scanner. However, only ten plants constitutes a

limited dataset.

Jin & Tang (2009) used 3D images from a passive stereo-vision system to deter-

mine the centre of young corn plants, as 2D images had limitations in particular

with overlapped plants (occlusions). The system had a computational time of

between 5 and 20 s and was affected by noise from external light. Jeon et al.

(2009) developed a technique for passive stereo-vision which improved segmenta-

tion under varying illumination; however reduced performance was still evident

with high dynamic ranges of illumination.

2.7.1.2 Depth from motion

‘Depth from motion’ obtains depth information from two consecutive images in

a video sequence. If the rate at which an object moves from one frame to the

next is known and image capture timing is known, depth can be calculated us-

ing correspondence matching as in stereo-vision systems. Sachez & Marchant

(2000) used depth from motion and zooming on the camera. Zooming created a

greater distance between the same object in both images without having to lower

the acquisition frequency (i.e. frame rate) but is not practical in an ‘on-the-go’

2Correspondence is the task of locating the same point in both images. Once this is known,

the depth can be found.
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system. Sachez & Marchant (2000) also developed algorithms to extract 3D in-

formation from a camera in motion to help with crop-from-weeds discrimination.

However, unstable features in the images, and low resolution of objects in the

image, created significant errors in correspondence matching.

2.7.2 Active sensing

Active sensing is where energy is projected onto the target area and the reflected

energy is measured to produce a disparity image. Table 2.1 shows nine active

sensing methods however, the research highlighted two: structured light and

time-of-flight.

2.7.2.1 Structured light active sensing

Sansoni et al. (2009) state that depth can be derived from the shape of the light

pattern reflected off a surface. In a structured light sensing system, a projector

or laser, projects light (active illumination) onto the area of interest which is then

detected by an image sensor and related to the known illumination pattern. Depth

can be determined by interpreting the deformation of the expected pattern in the

reflected light, which makes correspondence matching easier than in a passive

system (Piron et al. 2008).

Piron et al. (2008) used an active stereo-vision system based on structured light

and discriminated weed within a crop of organic carrots, with an accuracy of up

to 83%, based on height. Piron et al. (2009) evaluated the benefits of including

multispectral data with the height data in the feature set, however only a small

improvement of 2% in weed discrimination was found.
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2.7.2.2 Time-of-flight sensing

Time-of-flight sensing measures the time taken for a light pulse to travel to the

target and back. With an accurate measurement of the time taken, the distance

can be calculated. Nakarmia & Tang (2012) used a time-of-flight camera to

determine the plant spacing of the crop. To determine the plant spacing, the

time-of-flight camera was mounted below the height of the crop in between the

crop rows viewing the crop horizontally (i.e. parallel to the ground), as opposed

to the standard top viewing configuration of sensors for spot spraying (i.e. above

the crop looking down). Nakarmia & Tang (2012) found that the system was

not susceptible to colour variations in the crop which was an advantage over

2D identification approaches. The devised system experienced errors when there

were multiple plants in the same position, e.g. doubles and triples3.

Dorrington (2014) stated that current commercial time-of-flight cameras perform

poorly in areas where dust is present which may make operation in real-world

conditions difficult.

2.7.3 Application of 3D data to segmentation

Paproki et al. (2011) successfully used 3D segmentation in a high throughput

plant data acquisition system for plant phenomics research in a laboratory un-

der controlled conditions. The platform combined data from high resolution

stereo-vision sensors, multispectral images, infrared images and LIDAR sensors

to reproduce a 3D surface mesh overlaid with spectral data with a 9.7% error.

However, thirty-two images of the same object on a rotating table were required

to perform the analysis and therefore is not readily applicable to real-time spot

spraying.

3 A double or triple is where two or three seeds are dispensed simultaneously by the seeder,

instead of just one seed.
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Seatovic et al. (2008) identified broad-leaved dock (Rumex obtusifolius) using 3D

images to extract the area of interest and then applied 2D image analysis to

the area of interest. A limitation was that the extraction process was up to 10

times too slow for real-time spot spraying. Seatovic et al. (2008) found that the

3D approach improved segmentation performance in areas where 2D approaches

failed, such as low contrast images, green-on-green images and noisy images.

Wallenberg et al. (2011) used a fusion of colour and depth information from a

Kinect R© camera system4 under controlled conditions to segment individual leaves

on a plant using the ‘superparamagnetic’ clustering algorithm outlined by Blatt

et al. (1996). The results showed that a better segmentation result was achieved

with the fusion of depth and colour than was achieved by either one individually.

Chene et al. (2012) used the depth and colour images from a Kinect R© camera

to achieve entire plant phenotyping. The phenotyping was accomplished in a

controlled indoor environment with plants that had good height separation, which

is not the typical situation in real-world conditions. Figures 2.4 and 2.5 show

individual leaves at differing heights being individually segmented even though

some leaves are occluded in the colour image. This indicates that the addition of

3D data to 2D data can aid in occlusion tolerance.

4The Kinect R© camera system comprises an RGB camera and structured light depth camera

operating simultaneously, used for gesture recognition for the Microsoft X-Box360 R© and sold

individually for robotics.
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Figure 2.4: (A) Colour image top view of the plant; (B) Depth image of (A) with

different heights rendered in different colours, reproduced from Chene et al.

(2012).

Figure 2.5: (A) Top view of identified leaves with the number of leaves used to

identify individual leaf height positions; (B) Side view showing the height

position difference between leaves, reproduced from Chene et al. (2012).

2.8 Conclusion – Development of specific research

objectives

The foregoing literature review has demonstrated that there are a large num-

ber of machine vision techniques which have the capacity to discriminate weed
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from crop, but there are multiple limitations. Shape and spectral features are

not robust features for classification due to variations in leaf shape from disease,

pest and weather damage and changes in growth stage and growing conditions.

Texture features, particularly statistical and transform based are commonly used

analysis methods for post processed plant identification but are not adequately

effective in real-world environment situations in a real-time application. 3D data

provided good results for improving occlusion tolerance, however the algorithms

were not real-time applicable. 3D data acquisition by stereo-vision cameras

proved computationally intensive but structured light cameras were shown to

fit real-time applications.

The sources of error that most commonly occur are occlusion and varying il-

lumination (Slaughter et al. 2008, Ji et al. 2009) and successful approaches to

overcome these are as follows.

1. Occlusion

The difficulty in identifying occlusions in 2D imagery is reduced by the

addition of 3D image data and the latter has produced promising results

Chene et al. (2012). The use of both 2D (colour) and depth images indicated

better results than either on their own.

2. Varying illumination

A number of segmentation techniques have been designed specifically to

address the variability of outdoor daytime illumination. However, these

segmentation techniques have added complexity and computational time,

are not always consistent and have not been demonstrated in a practical

implementation in the field. The addition of a light-restricting cover over

the camera’s field of view, plus a known constant light source, is a successful

technique to overcome errors introduced by varying illumination. An addi-

tional benefit of a light-restricting cover is the reduction of ambient light

that could affect structured light 3D cameras (e.g. the Kinect R© camera).
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Other significant practical constraints are as follows:

3. Processing time to achieve weed discrimination, overcome occlusions and

illumination errors exceeds the time available in a real-time application

when operating at commercial groundspeeds.

4. Techniques reported in the literature usually had a narrow operational win-

dow (growth stage), which are expected to be impractical for farmers due

to varying climatic conditions as well as competing workloads on the farm.

5. The majority of the research was carried out on still photos and not verified

for video imagery. Video imagery is required for practical use in real-time.

Therefore the specific objectives of the research reported in this thesis are:

1. To develop an algorithm/s that incorporates 2D (colour) and depth data

from video streams to achieve weed discrimination from crop in a real-time,

real-world environment at commercially realistic groundspeeds.

2. To demonstrate that the addition of depth data to a suitable image analysis

technique can achieve weed discrimination from crop in a commercially

acceptable operational window, i.e. at a range of crop growth stages in a

real-time, real-world environment.

3. To evaluate the performance of the developed technique under a range of

real-world environment conditions; in particular with respect to 3D space

versus 2D or depth on their own.

4. To demonstrate that the system is adaptable to a range of crops under

practical commercial conditions.



Chapter 3

Field data acquisition

3.1 Introduction

The literature review (Chapter 2) highlighted that the primary sources of error

to address in real-world machine vision systems were occlusion and illumination.

Accordingly, the data acquisition system for achieving real-time, real-world spot

spraying in crops was required to:

• obtain real-time colour and depth data;

• provide consistent illumination; and

• operate at groundspeeds up to 8 km/h in the target crops, namely sugarcane

and pyrethrum.

This chapter describes the data acquisition system, data collection plan and agro-

nomic factors associated with the data. It is beyond the scope of this thesis to

develop daylight compensation measures for the image sensor. However, the liter-

ature review found that an effective method for illumination control is to provide a

light-restricting cover and add a constant light source for consistent illumination.
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3.2 Data acquisition apparatus

3.2.1 Equipment common to sugarcane and pyrethrum

data acquisition systems

Two data acquisition systems were built and deployed into the field for collection

of groundspeed, depth and colour data. One system was for pyrethrum crops

and the second system was for sugarcane crops. Both data acquisition systems

comprised a Kinect R© camera system (Microsoft, Redmond Washington USA); a

FITPC2 R© (Compulab, Israel) with a 1.6 GHz dual core processor and 70 gigabyte

solid state drive; and 4 × 2200 lumen ‘cool white’ LED lights for the pyrethrum

unit and 8 × 2200 lumen ‘cool white’ LED lights for the sugarcane unit. The

lights were powered directly from a 12 volt DC, 70 A hour, deep-cycle battery

and the FITPC R© was powered from the same battery as the lights, via an SCA

600 Watt 12DC-240VAC inverter.

The Kinect R© camera system has a 43◦ vertical by 57◦ horizontal field of view with

the colour images being 640 × 480 pixels in size and eight data bits per pixel per

channel, from a CMOS image sensor. The depth camera portion of the Kinect R©

camera system is a proprietary product of Prime Sense Ltd1 of Israel and has

an 11 bit data pixel with 680 × 480 pixels per image. The Kinect R© camera was

operated with a fixed white balance and fixed exposure time to ensure consistency

of illumination and colour rendition over the collected video footage.

During data collection, the colour image was stored in an uncompressed AVI file,

while the depth data was stored in a binary file, and the groundspeed was stored

in a text file on the FITPC2 R©. The data collection on the FITPC2 R© was achieved

by developing a software program using OpenCV (OpenCV Devzone 2013) and

Open Kinect (OpenKinect 2013) interface programming libraries to record the

images and groundspeed.

1Prime Sense is a subsidiary of Apple corporation, USA.
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3.2.2 Addressing illumination factors

The data acquisition systems were operated either at night, or under a light-

restricting cover for daytime use. The light-restricting cover was made from

opaque, black canvas, enclosing the viewing area of the camera system so that no

direct sunlight could contact the viewing area. The LED lights emitted negligible

NIR light (which could have affected the NIR structured lighting system of the

depth sensor on the Kinect R©).

The brightness of the LED light allowed the exposure time on the Kinect R© camera

system to be set short to minimise blurring while traveling over the crop. The

light intensity at ground level was different for the two data acquisition systems,

due to the different mounting heights of the lights and Kinect R© camera system,

creating differing maximum groundspeeds. Figures 3.2 and 3.9 show the different

mounting positions of the camera and lights on each of the data acquisition

systems.

Exposure time was determined by trial and error, finding a shutter width integra-

tion time register setting of 10 for the pyrethrum system and 50 for the sugarcane

system, no unit type supplied. The maximum groundspeed achievable before blur

is noticeable in the image at the shutter width settings above, was 10 km/h for

the pyrethrum data acquisition system and 5 km/h for the sugarcane data acqui-

sition system. The white balance of the camera was fixed at the values the camera

automatically calculated at bootup. Fixing the white balance was important but

not the fixed value itself as the white balance could be easily compensated by

multiplying a fixed constant value with the red and blue channels.
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3.2.3 Groundspeed measurement

The sugarcane data acquisition system prototype used groundspeed from a GPS

system. The groundspeed was extracted from the NMEA2 string output from

the GPS. The GPS reciever was a Leica (Leica Geosystems AG, Switzerland)

SmartAg with velocity accuracy of 0.03 m/s RMS.

The groundspeed of the pyrethrum data acquisition system was measured auto-

matically by a magnetic wheel pickup sensor with four magnets (Figure 3.1) on

the data collection unit. The groundspeed is calculated by the magnetic wheel

pickup sensor creating a pulse each time a magnet passes the magnetic wheel

pickup sensor when the wheel is rotating; the frequency of the pulses provides

the wheel’s rotating velocity, in rpm, and groundspeed is calculated by multi-

plying rotating velocity and wheel circumference together. The accuracy of the

magnetic wheel system was evaluated against the GPS system used for sugarcane.

The result was that the magnetic wheel pickup varied ± 0.1 m/s from the GPS.

Figure 3.1: The magnetic wheel speed sensor is shown with the sensor and the

magnets mounted on the wheel. Each time the magnet passes the sensor, a pulse

is created.

2The National Marine Electronics Association communication standard for communi-

cation with satellite systems (GPS and Glonass). The data is output in ASCII text

(http://www.nmea.org/ for more information).

h
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3.3 Sugarcane data acquisition system

The data acquisition system outlined in Section 3.2 was retrofitted to an existing

test platform, developed in an NCEA project for the sugarcane industry, that

could be towed by a tractor and is shown in Figure 3.2. To be able to use fixed

settings for white balance and exposure, the system was operated at night under

8 × 2200 lumen ‘cool white’ LED lights, as there was no light-restricting cover

fitted to block out the direct sunlight. The sensor (Kinect R© camera system) was

mounted 1.5 m above the ground to accommodate sugarcane heights up to 1.3 m,

and the recorded frame rate was 12 fps at a groundspeed between 2.5 km/h and

5 km/h.

Figure 3.2: Sugarcane data acquisition prototype system.
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3.4 Sugarcane data collection

Data was collected from Bundaberg Sugar’s farm ‘Fairymead’ at Bundaberg (lat-

itude -24.791176, longitude 152.356203), Queensland, at night between 6:30 pm

and 10:00 pm, between June and December 2012. The data was collected at three

growth stages between re-emergence and 1.3 m in height (short 0.1 m - 0.49 m,

medium 0.5 m - 1 m and high 1.01 m - 1.3 m). The data was collected from com-

mercial crop varieties grown on ‘Fairymead’ farm with different ratoons (regrowth

crops) and trash conditions. The dominant weeds present in all data collected

were guinea grass (Megathyrsus maximus var maximus Figure 3.3), nut grass

(Cyperus rotundus L Figure 3.4) and couch grass (Cynodon dactylon Figure 3.5).

Figure 3.3: Typical image of guinea grass (Megathyrsus maximus var maximus)

cropped from acquired data, hence only low resolution (640×480 pixel images).

Figure 3.4: Typical image of nut grass (Cyperus rotundus L) cropped from

acquired data, hence only low resolution (640×480 pixel images).
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Figure 3.5: Typical image of couch grass (Cynodon dactylon) cropped from

acquired data, hence only low resolution (640×480 pixel images).

3.4.1 Sugarcane height

Figures 3.6, 3.7 and 3.8are representative of the sugarcane crop at the high,

medium and short growth stages respectively. The leaf size can vary significantly

between the growth stages and even within a specific growth stage. In approx-

imate terms, the small sugarcane plant category can be up to 0.25 m in height

and 0.04 m in width; medium sugarcane plants can be up to 0.8 m high and 0.6 m

wide; large sugarcane plants are up to 1.3 m high and 0.1 m wide. Sugarcane can

grow significantly higher than 1.3 m in height but for the purposes of traversing

a spot spray system over the crop, 1.3 m was the maximum.
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Figure 3.6: Sugarcane at a small growth stage (0.25 m).

Figure 3.7: Sugarcane at a medium growth stage (0.8 m).
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Figure 3.8: Sugarcane at a high growth stage (1.3 m).

3.4.2 Agronomic factors for sugarcane data

3.4.2.1 The effect of ratoon and trash blanket on results

Sugarcane is a perennial crop and the crop is damaged each year by the effects

of weeds, moisture-stress and harvesting machinery. The damage causes the next

ratoon of sugarcane to have fewer sugarcane stools per metre. This indicates that

the higher the ratoon number, the lower the stool count would be generally, but

damage can be variable across the field.

In this research, plant population was estimated for the fields used so that ac-

curate false trigger rates could be determined. Two sugarcane stools per metre

(Dart 2013) has been estimated for the sugarcane data from ‘Fairymead’ farm.

This was verified by observation of field conditions during data collection.

The trash blanket in sugarcane is the leftover trash after harvest that is spread
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evenly over the ground to provide weed growth suppression. The effects of the

trash blanket on the machine vision system is negligible, as the trash does not

present itself as standing stubble, there is little difference between trash blanket

and non-trash blanket for the machine vision system. In contrast, standing stub-

ble can interfere with the machine vision image capture accuracy by masking the

plants from the camera.

3.4.2.2 Optimum sugarcane height for spraying

Data was collected during growth stages of crop that allowed penetration of her-

bicide to the weeds, i.e. from emergence up to 1.3 m high. Sugarcane can be

damaged by the tractor passing over the crop when taller than 1.3 m in height.

Professor Bernard Shroeder (Shroeder 2014) asserted that the best spot spray re-

sults would be achieved when the sugarcane and guinea grass was at the growth

stage between 0.4 m and 0.8 m in height for three reasons:

• Guinea grass can grow from the previous year’s root. This provides the

regrowth with a significant root system when the plant is small (i.e less

than 0.4 m). Therefore, there needs to be sufficient leaf area on which to

apply the herbicide such that the plant will uptake a lethal dose of herbicide,

sufficient to kill a young guinea grass plant with a large root system.

• The canopy of the sugarcane crop closes over the rows and makes it difficult

to deposit the herbicide onto the target weeds outside above the stated

growth range.

• A higher groundspeed can be maintained in the stated growth range without

damaging the crop.
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3.4.3 Sugarcane site criteria

Site selection for data collection was governed by the weed spectrum, soil con-

ditions and trash blanket conditions that was representative of the sugarcane

industry in north Queensland.

Site selection

The ideal collection sites were those that covered the main soil types (i.e. black,

brown, red and sandy), with each soil type having areas of trash blanket and

non-trash blanket.

Collection timing

As stated, data collection was required at three differing growth stages (short,

medium and high). The purpose of collecting data from the sites at differing

growth stages is to allow effective algorithm development across the growth stages.

Sugarcane crops are harvested at staggered times (dependent upon maturity and

also harvester availability) from August to December each year. Therefore, it was

possible to collect data of varying stages in various fields at the same time.

Data collection speed

Herbicide spray application occurs at groundspeeds from 1 km/h up to 8 km/h

for sugarcane. Therefore the data collection system’s groundspeed was in this

range to provide representative real-world evaluation.

3.4.4 Sugarcane field data

Table 3.1 shows the data data collected from ‘Fairymead’ farm, Bundaberg, used

for development and testing. The collected data comprises data in the identified

growth ranges from different fields.
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Table 3.1: Sugarcane data collection at ‘Fairymead’, Bundaberg.

Date Location Run

length

(m)

Crop

height

(m)

Variety Growth

stage

Ratoon Trash

blanket

Speed

(km/h)

19/6/2012 27-A 70 0.5-0.8 Q208 medium 3 yes 2.5

5/9/2012 13-B 100 0.1 Q151 short 2 no 2.5

10/10/2012 28-B 991 0.25 Q151 short 2 yes 2.5

10/10/2012 13-A 1,747 0.8-1.0 Q232 medium 3 no 3.5

6/11/2012 2-A 2,260 1.3 Q151 high 3 no 5

6/11/2012 4-B 2,643 0.25-0.5 Q208 short/

medium

4 yes 5

4/12/2012 27-A 12,213 1.0-1.3 Q208 medium/

high

3 yes 5

3.5 Pyrethrum data acquisition system

A single crop-row data acquisition system (1 m wide × 1.6 m long × 1 m high)

shown in Figure 3.9 was built and instrumented with cameras, lights and com-

puter equipment set out in Section 3.2 and shown in Figure 3.10. For data

collection in pyrethrum, the data acquisition system included a light-restricting

cover to allow the data acquisition system to operate during the day. The camera

and lights were mounted at a height of 1 m above the ground which provided a

Region Of Interest (ROI) on the ground of 1 m wide and 0.6 m long. A field data

collection program incorporating pyrethrum’s growth cycle, weed infestation and

different growing conditions was developed (Section 3.5.1) and the single crop-row

data acquisition system was deployed to Botanical Resources Australia3 (BRA)

who facilitated the data collection program.

3http://www.botanicalra.com.au/
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Figure 3.9: Pyrethrum data acquisition system (1 m wide × 1.6 m long × 1 m

high) in a crop of pyrethrum March 2012. Author (1.86 m tall) to indicate scale.

Figure 3.10: Kinect R© camera (centre) and lights (four off) for mounting on the

pyrethrum data acquisition system. View from below.
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3.5.1 Pyrethrum site criteria and field data collection

Site selection

The ideal selection of sites are those that cover the dominant soil types in the

pyrethrum industry of northern Tasmania (i.e. black, brown and sandy). Each

soil type should contain an area of differing stubble cover (i.e. trash and no trash)

and the typical weed spectrum. Pyrethrum is the target plant for identification

but inclusion of the full weed spectrum in the data set is expected to increase

robustness of pyrethrum and non-pyrethrum classification.

Collection timing

The ideal interval between data acquisition events would capture the pyrethrum

and weed data at all differing growth stages during the typical weed control

period. In consultation with the BRA research and development group, the data

acquisition interval was determined to be seven days. If a data acquisition event

was missed, because of rain or other weather events, then the earliest time the

operator could access the field sites after the weather event would suffice.

Data collection groundspeed

Herbicide spray application occurs at groundspeeds from 3 km/h up to 8 km/h

for pyrethrum. Therefore the data acquisition system groundspeed should be

comparable to provide real-world evaluation.

3.5.2 Agronomic factors affecting pyrethrum data

3.5.2.1 Die-back

Data collected in 2012 highlighted the presence of a disease that caused a ‘die-

back’ in the plant, where parts of the plant die. The disease was an industry-wide

problem and is found to be prevalent in wetter years. Figure 3.11 presents an

image of a healthy pyrethrum plant compared to a diseased pyrethrum plant,
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Figure 3.12. BRA began researching the agronomic implications and control of

the die-back, as the die-back created problems in both the agronomic system

(e.g. poor growth vigor) and the machine vision systems algorithm development

(e.g a single plant component was split into several smaller components). In

consultation with BRA, it was decided that the weed control strategies should

be restricted to a time frame between April and early June (the post harvest

vegetative growth period), as this is when the die-back was least noticeable.

Figure 3.11: Healthy pyrethrum plant at the post-harvest semi-dormant growth

stage.
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Figure 3.12: Unhealthy pyrethrum plant exhibiting ‘die-back’ at the post-harvest

dormant growth stage.

3.5.2.2 Row spacing effect on plant size

Commercial spot spray herbicide applicators (solenoid nozzles) are incapable of

spraying weeds without causing overspray onto the crop at low crop row spacings

(rows planted less than 0.25 m apart). Therefore BRA planted trial plots of

pyrethrum at a range of row spacings from 0.4 m to 0.7 m. The data acquisition

system was used to obtain data from each of the row widths. Cole’s, Dick’s and

BRA Jamison’s sites were planted with a row spacing of 0.2 m and Gibson’s

site was planted on 0.2 m, 0.3 m and 0.4 m rows for yield trials. All collected

data was used for observations of visual attributes of weeds to aid in algorithm

development, but was not applicable for testing of algorithms based on the relative

spatial positioning of the crop and weeds in wider row spacing.

The DRF speedlings site was planted with 0.65 m row spacing and used for testing

and trialling of the weed detection algorithms. Pyrethrum plants were observed
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to grow larger (width and height) and have more variable plant-to-plant size, in

the wider row spacing than the narrow row spacing, which was confirmed by BRA

agronomic research staff. Data collected using sensor (Kinect R© camera system)

heights of 0.85 m and 1 m revealed that the lower collection height of 0.85 m

did not capture the full width of the larger pyrethrum plants for the wider row

spacing, hence one metre was the most suitable sensor height

3.6 Pyrethrum data collection

The data was collected from April 2012 to August 2012 and April and May in

2013 with each set of contiguous frames being termed a ‘run’. The data was

collected from five sites identified as: BRA Jamison’s, DRF Speedlings4, Cole’s,

Dick’s and Gibson’s. The first four sites were located within a forty kilometre

radius of Ulverstone, and Gibson’s was in the Launceston region, all were in

Tasmania’s north, which is where the majority of the Australian pyrethrum is

grown. Table 3.2 shows the latitude and longitude co-ordinates of the sites. The

first four sites were in what BRA considered a higher rainfall area (relative to

the annual rainfall in northern Tasmania) with a range of conditions such as

soil colour, stubble cover, and slope of the land. Gibson’s site was in a lower

rainfall area on a newly planted field with no stubble. Groundspeeds for the data

acquisition systems of between 1 km/h and 8 km/h were used. Weeds found

across all sites were flat weed, groundsel, thistle, sow thistle, dandelion, white

clover, wireweed and red clover. The data collected from each site is displayed in

Tables 3.3 to 3.6 with the key for the tables in Table 3.7. Supporting information

on the weeds present at each site is set out in Table 3.8.

4Speedlings are pyrethrum plants that were grown as seedlings and then planted into the

field as opposed to seed being directly planted into the field.
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Table 3.2: Latitude and longitude position of pyrethrum data collection sites.

Site Latitude Longitude

DRF Speedlings -41.190812 146.287121

Cole’s -41.160795 145.995027

Dick’s -41.173437 146.306808

BRA Jamieson’s -41.122677 146.085330

Gibson’s -41.537748 146.900092

Table 3.3: Pyrethrum data collected at the DRF speedling site.

Table 3.4: Pyrethrum data collected at the Cole’s site.



3.6 Pyrethrum data collection 67

Table 3.5: Pyrethrum data collected at the Dick’s site.

Table 3.6: Pyrethrum data collected at the Gibson’s and BRA Jamison’s site.

Table 3.7: Key to accompany Tables 3.3 to 3.6.
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Table 3.8: Weeds present at pyrethrum data collection sites.

Species identification of individual weeds in collected video was not performed

as the image analysis was only required to discriminate two categories being

pyrethrum and not-pyrethrum.



Chapter 4

Machine vision methodology,

image acquisition and

pre-processing

4.1 Machine vision fundamentals

Machine vision can be described as ‘the analysis of images to extract data for

controlling a process or activity’ (Relf 2004) and can be used to automate tasks

typically performed by human visual inspection. Machine vision has potential to

determine crop from weed in real-time as it allows the analysis of a plant’s visual

features. This analysis may include a combination of spatial, spectral, shape

and texture features, with a large knowledge base existing for machine vision

techniques, as shown in the literature review in Chapter 2.

Recently, machine vision techniques have included 3D data to enhance the accu-

racy and consistency of the result (Section 2.7). Modern machine vision systems

may incorporate data for analysis from sources such as visible colour images, near

infra red (NIR) images, depth images, multi-spectral images and ultra-violet im-

ages.
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There are typically five steps in a real-time machine vision system for spot spray-

ing (Figure 4.1) which include three image analysis steps. The five real-time

machine vision steps are summarised below and explained in more detail in the

remainder of this chapter:

1. Image acquisition. The computer acquires the image/s in digital format

(i.e. pixel data). Some pre-processing may be required to acquire an image

in digital format (e.g. analogue to digital conversion of video signal).

2. Segmentation. The analytical process of separating the image into regions

that are either ‘plant’ or ‘non-plant’. Ideally, if there is more than one plant

in the image, the process will separate each plant for individual analysis.

3. Feature extraction. Features are extracted from the plant regions in the

image that can be used to distinguish plant species.

4. Classification. Classifying the extracted features from the plant regions

of the image into unique plant classes (e.g. species or leaf type).

5. Action and administration. Action is the control of a physical spot

sprayer (spray nozzles). Administration is monitoring and error checking

the spot sprayer and physical components of the real-time machine vision

system.

Steps 1 and 5 are functions required for a real-time system implementation. Steps

2 to 4 are image analysis steps for plant identification in a real-time machine vision

system.
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Figure 4.1: Block diagram of the spot spraying system based on real-time

machine vision. The plant identification process comprises the inner group.

4.1.1 Machine vision identification architecture

To identify a plant in this thesis, the real-time machine vision system follows the

machine vision vegetation identification flow chart shown in Figure 4.2. The flow

chart provides the logical flow of decision making, based on image attributes,

obtained by the most appropriate machine vision algorithms for segmentation,

feature extraction and classification set out in Chapters 5 and 6.

4.1.1.1 Machine vision vegetation identification flow chart

Before following the machine vision identification flow chart decision points, a

profile of each targeted species is determined and stored. Each species profile

contains image attributes (i.e. features) which relate to characteristics exhibited

by that particular species. The attributes are unique to the particular species and

can be used to distinguish the species from other plants. The image attributes

may be height, colour, shape, texture and size. The species profile provides the

criteria to be met at each decision point in the flow chart.

In operation, the real-time machine vision spot spray system sequentially acquires

an image and progresses through the processes and decision points set out in the
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Figure 4.2: Machine vision vegetation identification flow chart setting out the

logical flow of processes and decision points based on image attributes. The five

numbered points refer to an example of the identification flow of guinea grass

from sugarcane.

flow chart of Figure 4.2. As well as processes and decision points in the flow chart,

there are output nodes (SPRAY/MAP terminators) in the flow chart where an

action can occur and the analysis stops for the current image and waits for the

next image. The action can be to spray the weed with herbicide and/or map the

plant’s position with GPS coordinates for later evaluation as spatial data in an

integrated weed management monitoring process.

The flow of analysis through Figure 4.2 to identify a guinea grass plant (as shown

in Figure 3.3) is the following. Firstly a colour, size, shape and height attribute

profile is created and stored for a target species (e.g. guinea grass) based on

a variety of machine vision datasets containing guinea grass as reported in Ta-

ble 3.1. Guinea grass appears in a clump (non-grass-like) when at small and
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medium growth stages. Next, the identification process flows through the stages

of segmentation, feature extraction and classification, and more specifically, the

list items below which are explained in more detail in Chapters 5 and 6. The

number of the action in the following list corresponds to the numbered flowchart

items in Figure 4.2:

1. acquire image;

2. determine areas of interest;

3. determine plant category (i.e grass-like1 or non-grass-like);

4. identify species; and

5. spray or map.

Each of the process points is a part of the machine vision real-time block diagram

(Figure 4.1) and highlighted in Figure 4.2. The flow is directed through the non-

grass-like decision point because guinea grass initially grows in a clump, and does

not exhibit grass-like, leaf-shape attributes in the combined depth and colour

features, as does sugarcane. Therefore the identification of guinea grass can be

obtained from the non-grass-like features.

Each of the process points are a part of the machine vision real-time block diagram

(Figure 4.1). For this example list item 1. is the image acquisition and pre-

processing, item 2. is segmentation, item 3. and 4. are feature extraction and

classification and item 5. is an action.

4.2 Image acquisition

Video cameras can be operated either in free running (continuously taking and

sending images) or one shot/external trigger mode (image is taken and sent when

1Grasses have narrow leaves relative to leaf height growing from the base of the plant.
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a trigger signal is received). The settings for the mode are typically provided

in the camera’s operation manual. In the case of consumer products (e.g. a

webcam), the camera commonly operates in free running mode and the data sent

to the computer is handled by the computer’s hardware controllers (e.g. the USB

controller), controlled by the camera drivers installed with the operating system.

4.2.1 Image acquisition interface

The image acquisition interface drivers used in this research are OpenCV2 and

openKinect3. OpenCV is a well known machine vision library and was frequently

used in the research literature reviewed in Chapter 2. At the time of undertaking

this research, OpenKinect was the only set of drivers that allowed the programmer

to customise the driver to access the register settings in the Kinect R© camera

system which control white balance and shutter speed.

OpenCV is a library of real-time computer vision programming functions de-

veloped by Intel R©. It is freely distributed, supports C/C++, Java and Python

interfaces and runs on the operating systems of Mac, Windows, Android and

Linux (OpenCV Devzone 2013).

OpenKinect is a free open source library for interfacing the Windows, Linux and

Mac operating systems with the Kinect R© camera system (OpenKinect 2013). The

Kinect R© camera system incorporates a sensor system developed by Prime Sense

Ltd.

2OpenCV http://opencv.org/
3openKinect http://openkinect.org/wiki/Main_Page

http://opencv.org/
http://openkinect.org/wiki/Main_Page
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4.3 Image pre-processing

Pre-processing, in this research, is concerned with correcting the obtained colour

and depth image’s geometric co-ordinates, so that analysis techniques that com-

bine the colour and depth data (i.e. the Depth Colour Segmentation Algorithm

Section 5.3) have reduced errors arising from the physical camera mounting and

timing differences between the cameras. Pre-processing of the depth image, for 3D

segmentation, requires the co-ordinate system of the depth image to be remapped

to that of the colour image, so that object co-ordinates in the colour image are the

same co-ordinates in the depth image. The remapping is performed by following

the four steps shown below in Table 4.1. Steps 1 to 3 are outlined in stereo-vision

calibration (Bradski & Kaehler 2008) and Step 4 is detailed in Section 4.3.1.

Table 4.1: Steps involved for pre-processing in this thesis.

Step Operation

1 Distortion correction. The images are corrected for distortions

from the lens.

2 Image rectification. Transforms the two images onto a common

image plane (The co-ordinate plane in which the image is also

reproduced.)

3 Translation. The two images are aligned so that the co-ordinates

of each image coincide, perpendicular to the direction of travel.

This is necessary because of the horizontal mounting distance

difference between the cameras displayed in Figure 4.3.

4 Alignment for groundspeed variation. The two images are aligned

so that the co-ordinates of each image coincide, in the direction of

travel which is necessary if the two images are captured at

different instances in time as the camera is moving.
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Figure 4.3: Simultaneous image depicting the same object in the colour and

depth image co-ordinate systems. The offset in the object X-position between

colour and depth images (20 pixel columns in this example) is due to the

mounting distance between the colour and depth camera (Figure 4.4).

The depth image represents depth as pixel intensity with pixel intensity decreas-

ing with distance. Once the images (Figure 4.3) are correctly mapped to each

other, the depth image intensities are rescaled so that the full scale of depth

for the particular mounting height is between 0 and 254 in pixel intensity (zero

being the ground surface). Pixels with intensities outside the full scale of depth

are referred to as noise and set to 255 in intensity. The images are then made

available for segmentation analysis which is the next step in the image analysis

process (Figure 4.1).

4.3.1 Steps 1, 2 and 3 – Distortion correction, image rec-

tification and translation

The need to undertake the corrections (items 1 to 3 in Table 4.1) is highlighted

in Figure 4.3. Figure 4.3 depicts an object in both the colour and depth image.

The object is offset in the object X-position between colour and depth images
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(20 pixels) due to the mounting distance between the colour and depth camera.

The mounting difference can be seen in Figure 4.4

Figure 4.4: Kinect camera identifying the positions of the depth projector, depth

camera and colour camera.

4.3.2 Step 4 – Groundspeed alignment

Step 4 (groundspeed alignment) in Table 4.1 corrects the misalignment between

the images in the direction of travel. The groundspeed misalignment is due to the

time difference between the acquisition of the colour image and the depth image

and the distance that an object has moved in co-ordinate location in each image

due to the groundspeed of the system. The time difference between the colour

and depth image acquisition varies between frames as no two cameras in free-

running mode operate at the exact same time intervals due to electronic design

and manufacturing differences (e.g. electronic component tolerances).

A visual representation of the misalignment is displayed in Figure 4.5. The object

in the colour image starts at row 80 and the same object in the depth image starts

at row 100 when traveling at 3 km/h; and row 120 when traveling at 5 km/h.
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The object starts in the same column (300) for both the colour and the depth im-

ages. The following section outlines the re-alignment function (sometimes called

remapping).

Figure 4.5: Correspond colour and depth images depicting the same object in the

colour and depth image co-ordinate systems. The offset in the objects Y-position

between colour and depth images (20 pixel rows at 3 km/h and 40 pixel rows at 5

km/h) is due to the time difference between the colour and depth camera image

acquisition and groundspeed.

4.3.2.1 Groundspeed re-alignment requirements

Misalignment between the color and depth images due to the groundspeed can

be corrected with a re-alignment function. The function achieves re-alignment

of the two images by remapping the pixel positions in the depth image so they

correspond to the pixels in the colour image. Groundspeed in mm/ms and ac-

quisition time difference in milliseconds between the depth and colour image, is

required to accurately re-align the depth image.
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4.3.2.2 Groundspeed re-alignment function

To enable real-time operation, a simple alignment algorithm was implemented to

realign the depth pixels with respect to the colour pixels based on the following

assumptions:

• the motion of the plant itself between the depth and colour image acquisi-

tions is negligible as the time difference is less than 30 ms;

• the difference in plant position in the depth and colour image acquisitions

can be corrected by re-aligning the rows of depth image pixels solely in the

direction of travel.

Therefore, the columns of pixels in the depth image are remapped to the cor-

responding co-ordinate positions in the colour image by adding or subtracting

an offset based on the distance between the physical mounting of the cameras,

and the rows of pixels in the depth image are remapped to the corresponding

co-ordinate positions in the colour image by adding or subtracting an offset to

the row number (position) in the depth image. The offsets are determined by

Formula 4.1 where X is fixed and Y is dynamic.

depthImageoffset(X, Y ) =

X = k

Yoffset = (tdifference × s) ÷ d
n

(4.1)

where:

k = A fixed offset correcting for mounting differences.

tdifference = The time difference between the images in ms.

s = The groundspeed in mm per ms.

d = The distance (in the direction of travel) of the image ROI in metres.

n = The number of rows in the image.
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4.3.2.3 Factors affecting groundspeed re-alignment accuracy

Leaves that are closer to the Kinect R© camera system appear larger than the same

size leaf at ground level and can change perspective between the depth and colour

images as shown in Figure 4.6. Figure 4.6 shows a high-leaf plant and a low-leaf

plant to scale, with a camera at time t1 and t2 as the camera moves over the plant.

The perspective of the plants to the camera can be measured by the angles α and

β, the wider the angle, the greater the change in perspective. The image shows

that α > β highlighting that the perspective on the higher leaf plant has changed

more than the low-leaf plant.
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Figure 4.6: Image showing a camera at time t1 and �t2. The change in the

perspective can be measured by comparing the angles α and β. As shown, α > β

highlighting a greater change in perspective on the high-leaf plant.

The real-world effect of linear perspective when operating in crops with high

leaves (e.g. sugarcane) is that the high leaves in the depth and colour images
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don’t always precisely overlay each other even after groundspeed re-alignment.

An example of the misalignment is shown in Figure 4.7. In Figure 4.7 the high

leaves from the depth image are overlayed onto the blue channel of the colour

image (the position of the high leaves in the depth image show in the colour

image as blue). The superimposed red ellipse labeled 1 shows correctly positioned

(overlaid) depth and colour leaves and the superimposed red ellipse labeled 2

highlights incorrectly positioned (overlaid) leaves.

Figure 4.7: Depth image superimposed onto the blue channel in the colour image

of sugarcane. The superimposed red circle labeled 1 shows correctly positioned

(overlaid) leaves in the depth and colour image. The superimposed red ellipse

labeled 2 highlights incorrectly positioned (overlaid) leaves in the images.

A feature of the depth image that helps in minimising the misalignment of high

leaves is that objects appear larger in the depth image than in the colour image.

The differences between the images is highlighted in colour image Figure 4.8(a)

and the greyscale depth image Figure 4.8(b) showing the same leaves in a su-

perimposed red circle. The leaf component highlighted by the superimposed red

circle in the images is larger in the depth image, also noise (white pixels) can

be seen at the edges of the object in the depth image. Misalignment errors not

corrected in this stage are addressed in the segmentation algorithm (Section 5.3).
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4.3.2.4 Groundspeed re-alignment options for further assessment

A possible hardware solution available for groundspeed misalignment can be using

cameras with a trigger pulse to acquire the image (not free-running). A synchro-

nised acquisition pulse could then be applied to the cameras so that each camera

acquires the image at exactly the same time. This method is used in some 3D

stereo cameras (e.g. EagleZ R© and Bumblebee R©). However, this is not the case

in consumer depth and colour systems such as the Kinect R© camera system.

4.3.2.5 Image pre-processing example

An example of the pre-processing algorithm follows to demonstrate how the al-

gorithm analyses a real-world image. The demonstration compares the sorghum

leave’s position, relative to a fixed red line in the images. The fixed red line is at

the same row number for each image.

1. Figure 4.8(a) is the original colour image with two sorghum leaves ringed

in red;

2. Figure 4.8(b) is the original depth image with the same two leaves ringed

in red, highlighting a misalignment in the positioning of the sorghum leaves

with respect to the red line compared with Figure 4.8(a);

3. Figure 4.9(a) is the re-aligned depth image showing the sorghum leaves at

a similar position to Figure 4.8(a) ; and

4. Figure 4.9(b) is the re-aligned depth image superimposed on the red channel

of the colour image highlighting the correctly aligned leaves in both images.
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(a) Colour image of a sorghum plant in a pyrethrum crop with a red circle

highlighting leaves to be compared with the following images.

(b) Greyscale depth image of the plant in the colour image above with a red

ringed highlighting the same leaves in(a) displaying the misalignment in the

Y axis between the two images by comparing the leaf positions to the red

line.

Figure 4.8: Images of unaligned colour and depth data.
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(a) Greyscale depth image of the plant in the colour image with the depth

image remapped and the red ellipse highlighting leaves of interest are similarly

positioned with respect to the red line.

(b) Color image in Figure 4.8(a) with the remapped depth image superim-

posed in the red channel.

Figure 4.9: Images showing the results of the remapping function. Highlighting

the leaves in the colour image are totally covered by the leaves plus noise of the

depth image (superimposed on the red channel).
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4.4 Summary of Chapter 4

In this Chapter:

1. The machine vision methodology section (Section 4.1) has defined:

• the machine vision methodology used in this thesis, outlining the five

steps of image acquisition (including pre-processing), segmentation,

feature extraction, classification and actioning the result, in Figure 4.1;

and

• the weed identification process has been identified and set out in the

flow chart Figure 4.2 to provide a decision flow for the machine vision

method;

2. The image acquisition section (Section 4.2) has described how the images

have been acquired by the use of freeware software tools (openCV and

OpenKinect).

3. The pre-processing section (Section 4.3) detailed the added complexity for

a machine vision system when two sets of image data from two different

cameras are used. This section has demonstrated the effects of added com-

plexities due to mounting distance between the cameras, timing differences

between the acquired images and the relationship with groundspeed. Meth-

ods have then been described which overcome the added complexities by

using openKinect functions for mounting distance between the cameras, and

a custom-designed re-alignment function for the timing differences between

the acquired images relative to groundspeed.

The corrected images are passed onto the segmentation process (Chapter 5) to

separate pixels of value, for feature extraction and classification, from pixels of

no value.
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Chapter 5

Segmentation and the DCSA

5.1 Introduction

Image segmentation is the separation of pixels in an image into segments or

groups of pixels that are similar for the purpose of reducing the complexity of

the image data for further analysis. In the case of weed identification, the groups

of pixels are generally green (plant) pixels and background pixels. Typical uses

of image segmentation are to locate objects in an image. For example if the

requirement is to follow a red ball across a video sequence, the segmentation aim

would be to separate all the red pixels from non red pixels so the red pixels can

be further analysed. Segmentation can be simple (e.g. thresholding pixel colour

levels against a known value, as would be useful in locating the red ball) or

complex (using texture descriptors to locate homogeneous regions in an image).

This chapter sets out the process of evaluation of common segmentation methods

for use in weed spot spraying and the factors affecting the performance of each. An

original segmentation technique called the Depth Colour Segmentation Algorithm

(DCSA), combining colour and depth data, has been developed in this research

which improves upon the results of the common segmentation methods. The
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operation of the DCSA segmentation technique is detailed and evaluated for

application to pyrethrum and sugarcane crops.

5.2 Evaluation of common segmentation tech-

niques

The literature review (Chapter 2) included segmentation techniques and high-

lighted the factors affecting the performance of segmentation algorithms. In

particular, significant negative factors are introduced by real-world conditions.

Real-world conditions provide a myriad of variations in stubble cover, plants at

differing growth stages, and different levels of plant health. The literature review

concluded that occlusion and illumination are significant obstacles encountered

in the real-world environment and are difficult to contend with.

5.2.1 Occlusion and illumination effects on segmentation

Slaughter et al. (2008) stated that occlusion is the most significant factor to

overcome for a real-time, real-world weed identification system. The literature

review, surveyed techniques to separate occluding leaves by segmentation and

feature extraction/classification. Using feature extraction and classification to

overcome occlusion can involve an extra step in the image analysis process as fur-

ther feature extraction and classification may be required after segmentation for

plant identification. The extra feature extraction and classification step can add

computational time and make real-time analysis difficult. Therefore, occlusion is

preferably addressed as part of the segmentation analysis, if possible.

Segmentation techniques reviewed in the literature (and evaluated below, Sec-

tion 5.2.3) were not satisfactorily able to segment plants with occlusions. The in-

troduction of depth data, with colour, improves segmentation of occluded leaves
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as shown by Seatovic et al. (2008), Wallenberg et al. (2011) and Chene et al.

(2012). However, the algorithms did not have real-time capabilities and the

results were not developed for real-world conditions. Real-time capable depth

segmentation techniques, evaluated below (Section 5.2.4), gave unsatisfactory re-

sults.

The literature review showed that illumination variation introduced a significant

amount of error into segmentation. One means of overcoming the variation in

illumination was the use of a light restricting cover over the viewing area. There-

fore, research in this thesis used a light restricting cover over the viewing area to

overcome the daylight illumination (Section 3.2).

5.2.2 Evaluation methodology

Zhang et al. (2008) state that evaluation of image segmentation techniques can

be achieved by the following methods:

1. Subjectively. Subjective evaluation is where a person visually compares

the segmented images to non-segmented originals and determines a segmen-

tation quality.

2. Supervised objective evaluation. Supervised objective evaluation is

tied to specific applications and is where the segmented image is compared

to a manually ground-truthed reference image. This technique can be au-

tomated.

3. Unsupervised objective evaluation. Unsupervised objective evaluation

is where the quality of segmentation is determined from the segmented

image only, i.e. there is no ground-truthed reference image.

Subjective analysis is most commonly used with supervised objective evaluation

also being common but unsupervised objective evaluation rarely used (Zhang
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et al. 2008). This present research uses subjective and supervised objective eval-

uation methods to evaluate different segmentation algorithms.

5.2.3 Evaluation of common colour segmentation tech-

niques on real-world sample images

The initial step in the development of a weed detection algorithm in this research

was to determine if common segmentation techniques performed satisfactorily

enough to be used as a foundation for development of the image analysis system.

To this end, a sample of images was collected which contained pyrethrum and

grass-like plants. The sample images were then analysed by common segmenta-

tion techniques. The evaluation of the common segmentation techniques has been

split into two groups based upon the computational complexity of the algorithm.

These are ‘computationally expensive’ (requiring significant CPU resources); and

‘computationally inexpensive’ (requiring few CPU resources).

5.2.3.1 Computationally expensive colour-based segmentation tech-

niques

A freeware segmentation tool called BVwin, distributed by Trolltech AS Norway1,

was used to undertake the evaluation of common segmentation techniques. BVwin

provided a visual output and could segment in the RGB, HSV and greyscale colour

spaces whilst processing the images with the segmentation techniques of region

growing (Fan et al. 2001) (Figure 5.1(b)), colour structure code (Hartmann 1987)

(Figure 5.2(a)) and split and merge (Haralick & Shapiro 1985) (Figure 5.2(b)).

The visual result comprised identifying pixels of the same component with the

same colour in the resultant image. The execution time for each segmentation

technique was estimated at 1 s, 1.5 s, and 3 s respectively. Timing was taken with

1http://www.codeforge.com/read/242483/license.txt__html

http://www.codeforge.com/read/242483/license.txt__html
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a stopwatch whilst running the application on a dual core, 2.7 GHz computer,

averaged over 10 executions of each technique.

The assessment of the segmentation techniques evaluated three different regions

within the image that contained different plant features for segmentation as set

out in column 1, Table 5.1. Columns 2 to 5 detail the segmentation technique

and segmentation performance relative to the regions in column 1.

The results in Table 5.1 highlight the errors introduced to common segmentation

techniques from illumination and occlusion, with none of the assessed algorithms

performing well in all three labeled regions. Region growing performed the worst

not segmenting any of the three Regions Of Interest (ROI) correctly. Split and

merge performed the best with one correctly segmented ROI and one partially

segmented ROI. All three techniques failed to segment the occluded plants (La-

bel 1 in Figure 5.1).

Table 5.1: Results of common segmentation technique applied to three labeled

regions of Figure 5.1(a).

Plant

description

Region in

Fig-

ure 5.1(a)

Region

growing

Colour

structure

code

Split and

merge

sorghum

occluding

pyrethrum

1 occluded merged with

ground

mis-labelled

isolated

pyrethrum

2 merged with

ground

correctly

segmented

correctly

segmented

partial

pyrethrum

plant

3 merged with

ground

merged with

ground

partially

segmented
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(a) Original colour image of plants. Table 5.1 outline the red ellipses.

(b) Region growing segmentation technique applied to a colour image 5.1(a).

Figure 5.1: Image sequence showing the original image and results of BVWin

segmentation implementations.
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(a) Colour structure code segmentation technique applied to a colour image

5.1(a).

(b) Split and merge segmentation technique applied to a colour image 5.1(a).

Figure 5.2: Image sequence showing the results of BVWin segmentation

implementations.
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5.2.3.2 Computationally inexpensive colour-based segmentation tech-

niques

Computationally inexpensive segmentation algorithms are simple in operation,

and beneficial in a real-time systems but can perform poorly in segmenting oc-

cluded leaves. Binarisation is an example of a computationally inexpensive seg-

mentation technique. Figure 5.3 is a Binarised Segmentation Technique (BST)

(G > R and G > B) applied to Figure 5.1(a) used by Sabeenian & Palanisamy

(2009) and McCarthy et al. (2012). The pixels inside the yellow circle in Fig-

ure 5.3 show that 2D colour based segmentation techniques are impacted greatly

by occlusion as the white pixels of the two different plants appear connected.

In order to address the occlusion of the plants in the yellow circle the BST tech-

nique was modified so that a multiplier was applied to the red and blue channels

to reduce sensitivity to green by 10%. The results, Figure 5.4 show the occlusion

was reduced by decreasing sensitivity to green, but green plant material was also

lost in the process. Features present in Figures 5.3 and 5.4 are metamerism2 and

noise which can both create false positives in the segmented images, specifically

in the darker edges of the lit area and this can be a significant source of error for

a colour only system.

Figure 5.4 displays sensitivity to illumination and occlusion which was also found

in the computationally expensive segmentation techniques. Sensitivity to illumi-

nation is displayed by the pattern of false triggers in the BST images (Figures 5.3

and 5.4). Figure 5.1(a) is the colour image associated with the BST images and

the centre of the images as well lit. Small false triggers appear in the BST im-

ages where the brightness of the light is reduced in the colour image and soil is

mistaken as green.

2Metamerism is the incorrect representation of colour by a set of RGB pixels of an object

which has different spectral power distributions (Fairchild et al. 2014).
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Figure 5.3: Binarised image of Figure 5.1(a) using a BST. Green leaves and dark

areas of image are segmented as vegetation.

Figure 5.4: Binarised image of Figure 5.1(a) using a BST where R and B are

reduced by 10% to lessen the false positives in the image.
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5.2.4 Evaluation of depth segmentation techniques on real-

world sample images

Section 5.2.1 stated that the depth segmentation techniques and depth/colour

segmentation techniques in the literature review (Chapter 2) were not effective

in real-time systems due to the computation time required and adaptability to

real-world situations. Two depth segmentation techniques have been identified

as viable for real-time operation, namely connected components3 functions and

thresholding.

5.2.4.1 Thresholding

Thresholding separates the pixels of an image into groups of pixels that are above

the threshold depth value and those pixel values below the threshold depth value.

Accurate thresholding of plant material from the ground would be difficult to

achieve in a real-world setting at commercial groundspeeds as the threshold value

would have to accommodate the continual deviation in height of the camera. The

spray boom section holding the camera will deviate in height (hence so will the

camera) caused by the roughness of the ground, groundspeed, tyre pressures and

ground undulation. Therefore grasses that run along the ground and plants that

are prone to the ground would be intermittently grouped with those pixels below

the threshold value and disregarded. Alternatively ground and stubble would be

intermittently grouped with those pixels above the threshold and kept for analysis

when they should not be.

3A connected components analysis (also known as floodfill or seedfill ) is used to group pixels

of similar intensities or within a set variation of intensities, into a contiguous shape (component)

that all have the same unique label (Bradski & Kaehler 2008).
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5.2.4.2 Connected component functions

Performing a connected components function on the depth image groups those

pixels with values similar (or within an allowable deviation) to their neighbouring

pixels. The connected componenst result is shown in Figure 5.6 with each compo-

nent having a unique colour label. Figure 5.5 is the colour image associated with

the resultant connected components depth image. Comparing Figures 5.5 and 5.6

highlights the difficulty the connected component segmentation technique had in

segmenting the plant from ground. The segmentation error is seen in Figure 5.6

with the pyrethrum plant (red ellipse labeled ‘1’), merging with the ground (red

ellipse labeled ‘2’) where the stubble and plant are combined.

Figure 5.5: Colour image of a pyrethrum plant and a sorghum plant.
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Figure 5.6: A connected components applied to the depth image associated with

Figure 5.5 where each component is assigned a unique colour. Errors are

apparent in red ellipse one where ground and plant merge and in red ellipse two

where stubble and plant merge.

5.2.5 Summary of common segmentation techniques

Visual inspection of the results in Figure 5.2 to Figure 5.6 reveal that existing

segmentation techniques do not robustly segment different plants in real-world

settings due to occlusion, illumination and low lying plant positions. These results

are supported by the literature review. Existing segmentation techniques group

occluding plant material together in the one object which creates errors in feature

extraction and classification. Therefore there is a need for new segmentation

techniques to be developed that can operate in a real-world environment and in

real-time.
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5.3 Development of the Depth and Colour Seg-

mentation Algorithm (DCSA)

The aim of the Depth and Colour Segmentation Algorithm (DCSA) is to be a

real-time segmentation function that can segment individual plant components

(in fallow or crop) from other plants and foreign objects (e.g. stubble and rocks)

with a high level of accuracy when occluded in minimum and no-till situations.

In the following sections, the DCSA is shown to be successful segmenting weeds

in fallow situations and in crops that have differing growth stages and therefore

varying leaf shape, height and colour.

5.3.1 The DCSA as a modified connected component al-

gorithm

The DCSA segments an image into separate components (leaves) within the im-

age, based on their colour and depth connectedness. The DCSA achieves seg-

mentation using a modified connected components analysis. The operation of a

standard connected component algorithm is as follows.

Connected component algorithms start by locating a ‘seed’ position (starting

point) in the image and then evaluating the pixels around it. The pixels around

the seed pixel that are within given tolerances of similarity are labeled the same

as the seed pixel. The analysis then moves its seed position onto one of the newly

labeled pixels and repeats this process; the repeating continues until there are no

new pixels that are within given tolerances remaining in the image. The group

of labeled pixels is now a completed individual object or ‘component’.

The connectedness of the pixels in a connected components analysis can be either

four way connectivity or eight way connectivity (Bradski & Kaehler 2008) as set

out in Figure 5.7. In the four way connectivity method, the connected components
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analysis evaluates the pixels numbered 1 to 4 individually against the seed pixel’s

value. In the eight way connectivity method, the connected components analysis

evaluates the pixels numbered 1 to 8 individually against the seed pixel’s value.

Figure 5.7: Four and eight way connectivity diagrams indicating the directions

from the seed pixel that are evaluated.

5.3.2 Colour and depth connectivity with flag-driven con-

figurability

The DCSA modifies a standard connected components algorithm to incorpo-

rate two data streams, being colour and depth. The software implementation

of the modified connected component is ‘flag-driven’ to allow for flexibility and

selectability. Flag-driven means that the DCSA will apply certain additional seg-

mentation analysis to the image dependent upon the analysis capability being

enabled or disabled by a flag. A flag is either set (i.e. 1 or TRUE) or cleared

(i.e. 0 or FALSE). The DCSA configuration flags can be an argument parsed to

the DCSA function when called in the program or a shared variable between the

DCSA function and the overall image analysis process. The configurability of

the DCSA provides flexibility to the user as the flags can be modified either at

the start of the overall real-time spot spray operation (i.e. in a new paddock) or
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‘on-the-go’ (between frames).

The DCSA’s operation is outlined below in Section 5.3.3 by means of an example.

The concept requires depth and image data (RGB, greyscale or spectral-other

than RGB) as inputs and the resultant segmented components are saved for

further analysis.

5.3.3 An example of DCSA operation

5.3.3.1 DCSA scan

The images used in the DCSA example are from a Kinect R© camera system de-

scribed below with the co-ordinate system defined in Figure 5.8:

• A greyscale image (eight data bits per pixel) representing depth by the pixel

intensity. The higher the intensity of the pixel the closer the object in the

image is to the camera.

• A colour image (three channels (R,G,B) each channel with eight data bits

per pixel) of the same scene as the greyscale image with the pixels of the

colour and greyscale images mapped, i.e the pixels representing the scene

on one image directly relate to the pixel positions of the same scene on the

other image.
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Figure 5.8: Co-ordinate system for the DCSA, with image size 640 × 480 pixels.

The DCSA initiates by scanning the depth image to locate a seed pixel (i.e.

somewhere to start the component). The seed pixel scan starts at column c1,

row r1 and increments across the columns of r1, from c1 to c640. The row

then advances to r2 and the scan from c1 to c640 repeats (Figure 5.8). This

continues until r480 is reached. The seed pixel scan direction can be reversed,

i.e. incrementing the rows and advance along the columns without affecting the

operation of the process.

5.3.3.2 DCSA connectivity analysis

The seed pixel scan is searching for a pixel that has a value (height) above a user

set value (height H2 in Figure 5.9). When a pixel above H2 is found, the pixel
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is labeled with a unique identifier and follows 4 way connectivity to find pixels

of similar value or within a range of values and label them with the same identi-

fier. As outlined in Section 5.3.1, the labeled pixels are then used as seed pixels

to look for neighbouring pixels that have an value within a threshold amount,

connectedthresh, of the value of the seed pixel.

Figure 5.9: Plant height definition for the DCSA classification criteria relative to

a sugarcane plant. H1 and H2 are user-chosen threshold points for determining

low, medium and high areas of a plant.

For example, if connectedthresh is set to 3, then a neighbouring pixel with an value

within ± 3 would be accepted as connected to the seed pixel and relabeled to the

unique identifier of the seed pixel. The connected pixel is subsequently used as a

seed pixel in the continuing connectedness search. If the value of the neighbouring

pixel is greater than ± 3 from the seed pixel, the neighbouring pixel is considered

to be an edge and not part of the same component.
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5.3.3.3 DCSA continuing process

The connectedness process is continued until no new pixels are found to add to

the component. Once the component is complete (i.e. no new connected pixels

have been found), the seed pixel scan of the image continues searching for a pixel

with intensity greater than H2 and not already labeled. This process continues

until there are no pixels left unlabeled greater than H2 in the depth image. The

seed pixel scan position then resets to r1, c1 and a second scan is initiated.

The second seed pixel scan searches for a pixel that has not previously been

labeled, or that is not attributed to noise (indicated by a pixel value of 255, de-

termined in the pre-processing Section 4.3). When a pixel is found, all connected

pixels are identified and the image seed pixel scan continues and repeats the pro-

cess of forming new components for each unallocated seed pixel. At the end of

this process all plant pixels are labeled.

5.3.3.4 DCSA additional analyses

As previously noted, a novel additional capability of the DCSA is having con-

nectivity in a component based on connectivity in the depth image and in the

colour image. Depth and colour connectivity require the connected component

algorithm to search the same pixel position in the colour image as well as search-

ing the depth image pixel position (enabled by setting the flag GREENCHECK).

A pixel is only added to the component in the depth image if the corresponding

pixel in the colour image is green (i.e G > R and G > B), otherwise the pixel is

left unlabeled as a non-plant pixel.

Additional flags in the DCSA provide the following analysis capabilities:
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1. Tolerance of image alignment errors in pre-processing (Section

4.3.2.3).

Tolerance of image alignment is achieved by allowing the high portions of

the leaf/component in the image to be connected in the depth image only

and partially connected in the colour image. To enable tolerance in the

DCSA, the flag ALIGNMENT ERROR must be set and the green pixels

in the component above H1 are counted (to determine total green pixels

in the component) but the pixel’s connectedness in the component above

H1 is only determined by the depth pixel’s connectedness. Below H1 op-

erates as per GREENCHECK flag description previously described in this

section. When the component is complete and being sorted into the re-

tained or deleted images (Section 5.3.3.5 below), the percentage green of a

component above H1 determined by total green pixels divided total compo-

nent size in pixels, is thresholded with percentage greenthresh. The value of

percentage greenthresh provides the tolerance in the alignment of the depth

and colour images, i.e if percentage greenthresh is set to 90% then the com-

ponent has little tolerance to misalignment and if set to 50% a significant

amount of misalignment tolerance is allowed.

2. The flexibility to limit the total variation of intensities in the

component.

A small limit of intensity variation in the component (e.g. 1-5 in pixel value)

creates segmented components of depth slices where the same tall leaf is

separated into multiple neighbouring components with graduating heights.

Whereas a large limit of intensity variation in the component (e.g. 50 in

pixel value) provides a segmentation where the component has potential

to start at a large height (e.g. the top leaves of a sugarcane plant) and

generate a single component that traverses a tall leaf down to a low height

or even the ground level. Limiting the variation in intensity is achieved by

setting a flag MAXLENGTH and then a value variationmax imposes a limit

on the absolute variation between a neighbouring pixel’s intensity and the
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first (original) seed pixel value of ± variationmax.

3. Statistics can be determined and recorded for each component.

The colour statistics maximum hue, minimum hue, average hue and hue

variance in the component are recorded when the COLOURSTATS flag is

set. Maximum height, minimum height, average height and height variance

statistics are recorded when the DEPTHSTATS flag is set. Bounding box

position and total size (in pixels) of the component are always recorded.

These statistics can be used as features in the feature extraction process.

5.3.3.5 DCSA component sorting

The extracted components are sorted into scratch images (temporary images

created for internal analysis) defined as ‘retained image’, ‘deleted image’ or ‘debug

image’ as follows.

• The retained image contains segmented components used further in the

analysis process.

• The deleted image contains segmented components that are not required

for further analysis.

• The debug image is a visual representation of all components for debug

purposes during algorithm development.

The sorting of the components into the retained and deleted images is determined

by flag settings in the DCSA.

Table 5.2 contains pseudo code to sort the DCSA components into retained and

deleted images.
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Table 5.2: Pseudo code to sort components as retained or deleted.

Step Operation

1 if the component size (in total pixels) is less than a threshold size

(total sizethresh), delete the component. else continue

2 if the REDUCE LINES flag is set (TRUE) then run the reduce

lines function on the component. Reduce lines divides the

bounding box width by height. if the result is > RLMinthresh and

< RLMaxthresh (0.5 and 2 respectively) the component is deleted,

otherwise the total component size is divided by the bounding box

area and if the result is < RLSizethresh (0.3) the component is

deleted.

3 if the average depth of the component is less than or equal to H1

and the KEEP LOW flag is set (TRUE), retain the component.

4 else if the average depth is greater than H1 and less than H2 and

the KEEP MEDIUM flag is set (TRUE), retain the component.

5 else if the average depth is greater than H2 and the KEEP HIGH

flag is set (TRUE) and ALIGNMENT ERROR flag is set (false)

then retain the component.

6 else if the average depth is greater than H2 and the KEEP HIGH

flag is set (TRUE) and if the percentage of green pixels in the

component is greater than a percentage (percentage greenthresh)

and the ALIGNMENT ERROR flag is set (TRUE) then retain

the component. The value of percentage greenthresh provides

leniency for pre-processing alignment errors in Section 4.3.2.3.

7 else delete the component.
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5.4 DCSA features and limitations

5.4.1 DCSA features

5.4.1.1 Segmentation accuracy

If depth data alone is considered when identifying components, a component

that is connected to the ground (e.g. grass leaves, plant stems and clovers) can

be labeled with the ground as a contiguous object (e.g. Figure 5.6). Addition

of a criterion that requires a pixel to be green for that pixel to be added to the

component prevents the ground from being grouped with a leaf and will correctly

segment the component. Likewise depth data alone may also erroneously segment

stubble and foreign objects with plant pixels. Again the addition of the criterion

for a pixel to be green avoids this error.

Typical colour-only segmentation techniques (e.g. ‘excess green’), have limited

capacity to segment occluded plants and leaves. The addition of a depth criterion,

that requires the component to be contiguous in the depth image as well as the

colour image, allows individual plants to be segmented as long as the edge of the

component can be found in either the colour or depth data.

5.4.1.2 Sorting capability

The sorting capability of the DCSA is able to reduce the data requiring further

analysis in the feature extraction and classification area. The DCSA achieves

this by collecting information about the component as it is being formed and this

information is then used to sort components into components requiring feature

extraction and classification and components of no further interest.
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5.4.2 Known DCSA limitations

5.4.2.1 Component merging

As previously mentioned the DCSA can find the edge of a component when

there is an edge in either the depth or the colour image. Accordingly if there

are no edges between the components in the depth and colour image, the two

components will be merged as one. Figure 5.10 shows a sugarcane plant where

two leaves of sugarcane exhibit the same colour and cross each other at the same

height, therefore merging into one component.

Figure 5.10: Image showing the depth image, segmented image and colour image

associated with each other. The white ellipse highlights two separate leaf

components that overlapped in colour and height and therefore are the one

component.

5.4.2.2 Component splitting

The DCSA segments the images into individual leaves. Plants that grow in

patches with indistinct height attributes (e.g. couch grass and vines) can be

segmented into a number of components instead of a single component as shown

in Figure 5.11.
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Figure 5.11: (Left to right) depth image, DCSA segmented image and original

colour image associated with each other for couch grass and single sugarcane leaf.

As shown (centre) numerous components represent the couch grass.

5.5 Field trials for DCSA evaluation

5.5.1 Comparison of results for occlusion

An objective of this research is to show that combining colour and depth provides

a more robust result than either depth or colour on their own (Section 1.3). Eval-

uation of common colour segmentation techniques (Section 5.2.3) highlighted that

complex segmentation techniques of region growing, colour code, and split and

merge could segment plants in a small degree, but were not real-time operable.

Simple segmentation techniques of excess green and binarisation were real-time

ready. Evaluation of depth segmentation techniques (Section 5.2.4) drew atten-

tion to the inability of complex depth image segmentation techniques to operate

in real-time and the real-world inadequacy of two techniques (thresholding and

connected components) that were real-time operable.

Therefore, in the following field evaluations the DCSA was compared to a Bina-

rised Segmentation Technique (BST) for colour image segmentation and no depth

segmentation technique has been compared.
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5.5.2 Collection of evaluation data

Additions were made to the DCSA analysis software to provide data collection

and other analysis for DCSA evaluation. The modifications were:

1. to apply a BST to the colour image separately from the DCSA;

2. to record the number of segmented components and the number of pixels

in the components for the DCSA and BST before sorting the components

into the deleted and retained images;

3. to record the number of segmented components and the number of pixels in

the components for the DCSA and BST after sorting the components into

the deleted and retained images; and

4. to manually assess and record the status of occlusion in the colour image

and status of occlusion before and after the segmentation techniques were

applied.

Field trials were then conducted in sugarcane and pyrethrum as set out below.

5.6 DCSA evaluation in sugarcane

5.6.1 Sugarcane and guinea grass growth attributes

Sugarcane is a perennial crop which can have up to 5 ratoons (seasons of re-

growth) in the Australian sugarcane cropping areas and often has a ground cover

of the previous season’s harvest residue (trash) which is referred to as a trash blan-

ket (Appendix C.1). Guinea grass was the target weed for discrimination from

sugarcane identified by the Sugar Research Development Corporation (SRDC).
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Guinea grass was observed to grow in clumps compared to sugarcane which has

alternate leaves around a main stem. The leaves of the guinea grass were a differ-

ent size and shorter than the sugarcane leaves. The collected field data showed

that at differing times the guinea grass exhibited a yellow emphasis of the green

portion of the spectrum (e.g. centred on typically 580 nm) where the sugarcane

was more centred in the green spectrum (e.g. typically 540 nm). It is recognised

that the variation in colour would be inconsistent depended upon variety, growth

stage, nutrient deficiencies and moisture excess or deficiency (Shroeder 2014).

5.6.2 DCSA setup and operation in sugarcane

5.6.2.1 DCSA setup parameters for sugarcane operation

The components for the retained image after application of the DCSA are those

components:

• whose maximum height fall below H2;

• are green;

• are above a threshold size; and

• are not long and thin.

The parameters required to achieve the retained image results are set out in

Table 5.3.
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Table 5.3: DCSA setting identified in Section 5.3.3 for sugarcane. X signifies

‘don’t care’.

Setting / flag Value

DEPTHSTATS true

COLOURSTATS false

total sizethresh 300

GREENCHECK true

ALIGNMENT ERROR X

percentage greenthresh X

REDUCE LINES true

RLMinthresh 0.4

RLMaxthresh 1.6

RLSizethresh 0.3

KEEP LOW true

KEEP MEDIUM false

KEEP HIGH false

H1 40

H2 60

MAXLENGTH true

variationmax 100

connectedthresh 3
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5.6.2.2 DCSA operation in sugarcane

The DCSA sorted the higher leaves (associated with sugarcane) into the deleted

image as defined in Section 5.3.3.5 (KEEP LOW flag set to true). The remain-

ing components that are not green (GREENCHECK flag set to true), or below

the threshold size (total sizethresh set to 300), or that are long and thin (RE-

DUCE LINES flag set to true), are also sorted to the deleted image. All other

components are sorted into the retained image. The retained image was then

overlaid with the RGB image data for the identical pixel locations and used for

feature extraction and classification, which may be more computationally inten-

sive, but is on a smaller data set.

Figures 5.12 and 5.13 are a visual representation of the segmentation process for

a typical sugarcane/guinea grass occlusion. Figure 5.12(b) shows the BST which

highlights the issue of undetected occlusion in the resultant image Figure 5.12(c).

In contrast Figure 5.13 shows the DCSA output which demonstrates the occlusion

tolerance capability of the DCSA.
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(a) Original colour image of sugarcane and guinea grass.

(b) BST of image (a).

(c) Connected components applied to the binarised segmentation technique of image

(b) with incorrect segmentation of sugarcane and guinea grass.

Figure 5.12: Image sequence showing original colour, binarised and traditional

connected components of binarised image. Red ellipse highlights sugarcane plant

and guinea grass. (Analysis continues in Figure 5.13 following).
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(a) The DCSA technique applied to Figure 5.12(a) showing segmentation of sugarcane

and guinea grass.

(b) Retained components in block colour and deleted components represented by white

lines.

(c) Original image (Figure 5.12(a)) overlaid with retained components.

Figure 5.13: Image sequence showing results for the DCSA function applied to

the original image of Figure5.12(a). Red ellipse highlights a sugarcane plant and

an occluded guinea grass plant.
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5.6.3 Results and discussion for the DCSA used in sugar-

cane

5.6.3.1 Evaluation data and terminology

Results for the evaluation of the DCSA in sugarcane have been obtained from

856 pairs of frames (colour and depth) from sequential video data collected on

10/10/2012, field 13-A (Table 3.1). This data was considered typical, containing

guinea grass and sugarcane within the optimum range of growth stage for spraying

(Section 3.4.2.2). The soil was black to grey with no significant trash. The

data contained 22 guinea grass plants; and approximately 40% of the frames

also contained nut grass ranging from sparse (i.e. less than 10% of ground area

in image) to complete coverage of the ground area in the image. The size of

the weeds in the data used in Table 5.4 is defined as follows and illustrated in

Figure 5.14:

• Small - A guinea grass plant fitting in a circle of between 0.1 to 0.2 m

diameter and occupying at least 30% of the circle, by pixel area.

• Medium- A guinea grass plant fitting in a circle of between 0.2 to 0.4 m

(inclusive) diameter and occupying at least 40% of the circle, by pixel area.

• Large - A guinea grass plant fitting in a circle of between 0.4 to 0.8 m

diameter and occupying at least 40% of the circle, by pixel area.



118 Segmentation and the DCSA

Figure 5.14: Image of medium weed inside a 0.3 m circle approximately 40% filled.

5.6.3.2 Results for occlusion in sugarcane

The DCSA analysis function was applied to the 856 frames of test data and

the resultant retained image and evaluation data (Section 5.5.2) for the retained

image after classification were recorded. In addition to the manual assessment

for occlusion, each frame was manually assessed for the size of the guinea grass

being occluded. Table 5.4 displays the results of this analysis.

Table 5.4: Occlusion tolerance of the DCSA in sugarcane.

Guinea

grass

growth

stage

Number

of plants

in video

data*

Number of

plants

isolated* in

the video data

Number of

plants

occluded*

in video

data

Number of

occluded

plants after

BST (%)

Number of

occluded

plants after

DCSA (%)

Small 10 3 7 7 (100%) 0 (0%)

Medium 11 4 7 7 (100%) 0 (0%)

Large 1 1 - 0 (0%) 0 (0%)

Total 22 8 14 14 (100%) 0 (0%)

* obtained by visual inspection
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Table 5.4 shows that 14 of the 22 guinea grass plants were occluded in the dataset.

The DSCA successfully segmented all of the occluded guinea grass plants in small

and medium growth stage categories. The BST results for images with occlusion

were poor as the technique could not segment any occluded guinea grass plants.

There were 320 frames containing guinea grass and only 1 frame where the DCSA

failed to segment the guinea grass from the sugar cane. Hence the failure to

segment rate for guinea grass is 0.31% or an accuracy when occluded of greater

than 99%.

5.6.3.3 Results for sorting in sugarcane

Reduction in the data requiring feature extraction and analysis can be determined

in two ways, namely component reduction and total pixel number reduction.

Table 5.5 shows that the reduction in components falls from an average of 28

components per frame down to 12 components per frame, i.e. a 58% reduction

per frame. The standard deviation highlights a variation between frames for

compoents and pixels which would occur depending upon the number of plant

pixels in the image.

Table 5.5: Reduction of components of the DCSA in sugarcane; statistics of

experimental results.

Statistic Average std de-

viation

Number of depth components per image 28 13

Number of depth components after segmentation 12 6

Percentage reduction in the number of depth components 58 -

Computation time of DCSA in ms 20.1 0.8

Table 5.6 highlights the reduction in pixels of 84% per frame after DCSA seg-

mentation.
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Table 5.6: Reduction of pixels from the DCSA in sugarcane.

Statistic Average std de-

viation

Depth component pixels per frame before segmentation 27096 12006

Depth component pixels per frame after segmentation 4297 3269

Percentage reduction in depth component pixels 84% -

Table 5.7 shows a reduction of 76% in the number of pixels for the DCSA after

sorting compared to the number of pixels in a BST. Again, the standard deviation

highlights a variation between frames for components and pixels which would

occur depending upon the number of plant pixels in the image. The difference in

the number of total pixels between the BST (17774) and DCSA (27096) before

sorting is due to the effect of depth components appearing larger than the colour

components (Section 4.3.2.3).

Table 5.7: Reduction of pixels from the binarised segmentation technique in

sugarcane.

Statistic Average std de-

viation

Number of pixels per frame after BST segmentation 17774 9396

Reduction retained depth pixels compared BST pixels 76% -

Computation time of BST in ms 0.74 0.18

5.6.3.4 Real-time application in sugarcane

The average execution time of the DCSA for the 856 image pairs was 20 ms with

a standard deviation of 0.8 ms (Table 5.5). The execution time required for weed

spot spraying at commercial groundspeeds is discussed in Chapter 7 and is 23 ms

(average time plus 3 standard deviations, i.e. 99% of data and would exclude

outliers). The DCSA execution time for the segmentation technique satisfies

this requirement. Additionally, the ability of the DCSA to sort components
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reducing the amount of data requiring further analysis shortens processing time

further in the image analysis process. The reduction in processing time is due to

the reduction in pixel data requiring further analysis in feature extraction and

classification (Chapter 6).

5.6.3.5 Summary of results for the DCSA application in sugarcane

The results for the evaluation of the DCSA in sugarcane shows that for the test

dataset:

1. the DCSA sorting can reduce the pixels requiring feature extraction and

classification by up to 84% (76% compared to BST) and components by up

to 54%;

2. the DCSA is robust with a high accuracy when occluded (> 99%); and

3. the DCSA can operate in real-time at less than 23 ms per frame.

5.7 DCSA evaluation in pyrethrum

5.7.1 Pyrethrum growth attributes

In the DCSA’s application to pyrethrum, the requirement was to identify the

pyrethrum crop and to spray all plant material not pyrethrum. Weed control for

pyrethrum is undertaken from harvest in January through to May. Pyrethrum

grows to a height of approximately 0.3 m and a minimum diameter of approx-

imately 0.2 m by the end of summer, and then lays dormant over winter. In

general the plant density is adequate to create a continuous row of pyrethrum,

with the occasional small break in the row caused by harvest damage.
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5.7.2 DCSA setup and operation in pyrethrum

5.7.2.1 DCSA setup parameters for pyrethrum operation

The parameters for sorting component of the DCSA was set to retain those com-

ponents which:

• have a maximum height between H1 and H2;

• are green; and

• are above a threshold size.

The parameters required to achieve the retained image results are set out in

Table 5.8.

5.7.2.2 DCSA operation in pyrethrum

The DCSA operated on pyrethrum images by deleting all components whose

average depth was less than H1 and greater than H2. The DCSA deleted all

components that were below the size of minimum pyrethrum (total sizethresh).

Therefore if a plant had a height between H1 and H2 and was larger than what

was considered the minimum size for pyrethrum at that particular growth stage,

it was retained.
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Table 5.8: DCSA setting identified in Section 5.3.3 for pyrethrum. X signifies

‘don’t care’.

Setting / flag Value

DEPTHSTATS true

COLOURSTATS false

total sizethresh 1000

GREENCHECK true

ALIGNMENT ERROR X

percentage greenthresh X

REDUCE LINES false

RLMinthresh X

RLMaxthresh X

RLSizethresh X

KEEP LOW false

KEEP MEDIUM true

KEEP HIGH false

H1 20

H2 40

MAXLENGTH true

variationmax 20

connectedthresh 3

5.7.3 Results and discussion for the DCSA technique used

in pyrethrum

5.7.3.1 Evaluation data and setup

To evaluate the segmentation techniques, 500 sequential frames of real-world data

taken from the DRF-Speedlings site on the 11-04-13 (Table 3.3) were analysed.

This dataset was considered typical of pyrethrum crop conditions and contained
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examples of weeds found only at the DRF-Speedlings site and also weeds that

were common to all fields (Table 3.8). The growth stage at April was in the weed

control timing range (January to May). From visual inspection, the pyrethrum

varied in height between 0.25 m and 0.35 m therefore H1 was set to 0.2 m, H2

was set to 0.45 m and the minimum size threshold for component size was set to

0.15 m. All settings and flags are shown in Table 5.8.

5.7.3.2 Results for occlusion in pyrethrum

There were 25 occluded pyrethrum plants in Table 5.9 and 53 non-occluded

pyrethrum plants. Table 5.9 highlights the DCSA segmented 100% of the oc-

cluded pyretrhum plants from weeds whereas the BST was not able to segment

any of the occluded pyrethrum plants from the weeds.

Table 5.9: Statistics for the occlusion tolerance of the DCSA compared to a 2D

(colour) binarised segmentation technique in pyrethrum.

Total number of weeds 78

Number of weeds occluded in video data 25

Number and percentage of weeds occluded after BST 25 (100%)

Number and percentage of weeds occluded after DCSA 0 (0%)

5.7.3.3 Results for sorting in pyrethrum

The result for the sorting capability of the DCSA is set out in Tables 5.10 and

5.11, which show that the DCSA reduced the number of components for feature

extraction and classification by 49% and the pixels by 55%. The standard devia-

tion of the components and pixels in Tables 5.10 and 5.11 indicate a high amount

of variation from frame to frame which can be attributed to the changing amount

of plant material between the frames.
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Table 5.10: Reduction of components in the DCSA in pyrethrum; statistics of

experimental results.

Statistic Average std de-

viation

Number of depth components per image 85 37

Number of depth components after segmentation 44 25

Percentage reduction in the number of depth components 49% -

Computation time of DCSA in ms 6.6 1

Table 5.11: Reduction of pixels in the DCSA in pyrethrum.

Statistic Average std de-

viation

Depth component pixels per frame before segmentation 65191 16266

Depth component pixels per frame after segmentation 29575 16746

Percentage reduction in depth component pixels 55% -

Table 5.12 displays a reduction in pixels after DCSA sorting compared to the

BST of 13%.

Table 5.12: Reduction of pixels from the binarised segmentation technique in

pyrethrum.

Statistic Average std de-

viation

Number of pixels per frame after BST segmentation 33875 13578

Reduction retained depth pixels compared BST pixels 13% -

Computation time of BST in ms 1.2 0.35

5.7.3.4 Real-time application to pyrethrum

Table 5.9 show that the DCSA execution time was less than 10 ms (average time

plus 3 standard deviations, i.e. 99% of data and would exclude outliers) which is
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well within the realms of real-time system requirements. The BST took less than

2.5 ms which is also well within the realms of real-time system requirements.

5.7.3.5 Summary of results for the DCSA application in pyrethrum

The results for the evaluation of the DCSA in sugarcane shows that for the test

dataset :

1. the DCSA can reduce the pixels requiring feature extraction and classifica-

tion by up to 55% (compared to 13% for BST) and components by up to

49%;

2. the DCSA is robust with a high accuracy when occluded (100% observed);

and

3. the DCSA can operate in real-time at less than 10 ms ( average 6.6 ms) per

frame.

5.8 Summary of Chapter 5 and results

This Chapter has:

• discussed the problems of occlusion and illumination for segmentation;

• evaluated common colour segmentation techniques as a means of segmenting

plants—with unsatisfactory results;

• evaluated depth segmentation techniques—also with unsatisfactory results;

• highlighted the need for a new segmentation technique;

• described the development and operation of a novel, new segmentation tech-

nique (DCSA) which combines colour and depth in real-time. Components
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formed by the DCSA have a connectedness defined by the degree of simi-

larity of pixel colour and depth; and

• evaluated the DCSA for use in sugarcane and pyrethrum.

The results for the DCSA technique show that the addition of colour and the

depth data aids significantly in identifying occlusion for segmentation of plants

by being able to locate edges in either the depth or colour image. The DCSA

can segment plant from stubble and, potentially, other foreign objects even when

they are a similar height to the plant material. The evaluations in sugarcane

and pyrethrum showed that the DCSA has a greater than 99% accuracy when

occluded in the test data which satisfies the occlusion tolerance goal for the thesis.

The BST was shown to have no occlusion tolerance capability.

The DCSA technique reduced the amount of data requiring further processing,

compared to the BST, by 76% in sugarcane and 13% in pyrethrum. The variation

in the results for this sorting capability between pyrethrum and sugarcane indi-

cates that the DCSA technique offers greater benefits in crops were the crop is

higher than the weed (or weed is higher than crop) and has different physical traits

to the weed e.g. grass, broadleaf, clumping and leaf size. This was highlighted

by an 84% reduction in pixels requiring feature extraction and classification in

sugarcane and 55% in pyrethrum.

The execution time for the DCSA analysis of the pyrethrum was 10 ms, and

23 ms in the the sugarcane, which falls within the real-time requirements of this

research. Therefore the DCSA:

• meets the aims of the thesis exhibiting a high accuracy when occluded;

• can segment individual leaves;

• improves execution time for feature extraction and classification by sorting

the components; and

• fulfills real-time requirements.
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Chapter 6

Feature extraction and

classification

6.1 Introduction

Feature extraction is the third step in the real-time machine vision spot spray

system (Figure 4.1) and is applied to the segmented plant regions (components)

in an image. Features chosen for extraction in this thesis were those that pro-

duced greatest separable results for the categories of crop and non-crop. The

more separable the extracted features are, the simpler and more robust the clas-

sification of the segmented plant regions into the different plant categories can

be. Feature extraction methods can be a considerable computational load on the

CPU depending on the mathematical complexity of the feature. Therefore, the

computational requirement of the feature extraction method must be evaluated

in real-time implementations.

The fourth step in the real-time machine vision spot spray system after features

are extracted is to classify components into different plant categories based on

the extracted features. This chapter evaluates machine learning techniques that
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have provided satisfactory results (as reviewed in Chapter 2). These are Support

Vector Machine (SVM) (Ahmed et al. 2011), neural networks (ANN) (Jeon et al.

2011), k-Nearest Neighbour (k-NN) (Astrand & Baerveldt 2002) and Naive Bayes

(Zhang 2004).

Machine learning techniques can be supervised and unsupervised. An unsuper-

vised technique is where the data is grouped into similar data groups but the

data groups are not related to any particular plant category (e.g. region growing

segmentation). A supervised technique is where a training set of data representa-

tive of the categories for classification is used to train the classifier and then test

data sets are used with the classifier to label the data into the trained categories

(Bradski & Kaehler 2008).

This chapter documents the development process and evaluation of feature ex-

traction and classification techniques for sugarcane and pyrethrum. Common

techniques are implemented and evaluated, with resultant low accuracy, there-

fore new techniques are developed, implemented and evaluated.

6.2 Overview of existing feature extraction and

classification techniques

Visual inspection of images from sugarcane and pyrethrum crops indicated a tex-

tural difference between weeds and crop. To determine if texture would be a

satisfactory means of discrimination between weeds and crop, an evaluation pro-

cess was carried out on texture analysis methods that gave satisfactory results

according to the literature review (Chapter 2). The evaluated methods were Grey

Level Co-occurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM)

and Local Binary Patterns (LBP). A brief outline of the different texture extrac-

tion techniques follow in Sections 6.2.1 to 6.2.3; Section 6.2.4 sets out a method

for evaluating the separability of the texture features and Section 6.2.5 to 6.2.8
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presents classifier techniques.

To be effective in a real-world situation, feature extraction is required to be both

rotationally invariant and illumination invariant, because the presentation and

orientation of the plant to the camera varies from frame to frame as the camera

moves over the plant. Illumination variance in this thesis is minimised either by

enclosing the region of interest in a light-restricting cover (hood) with a known

constant light source, or by operating the system at night with a known light

source. Rotational invariance is provided via the software implementation, and

is described further within each technique below in Sections 6.2.1 to 6.2.3.

6.2.1 Grey Level Co-occurrence Matrix (GLCM)

The GLCM technique outlined in Haralick (1979) is a statistical texture feature

extraction technique. Hall-Beyer (2013) defines the GLCM as “a tabulation of

how often different combinations of pixel brightness values (grey levels) occur in

an image”. The GLCM addresses rotational variance by assessing and averaging

the combinations of pixel brightness in four different directions (0◦, 45◦, 90◦ and

135◦). The OpenCV implementation of the GLCM was evaluated and provided

the following features: contrast, homogeneity, entropy, energy, correlation, cluster

tendency, cluster shade and maximum probability.

6.2.2 Grey Level Run Length Matrix (GLRLM)

The GLRLM technique, also outlined in Haralick (1979), determines a texture’s

statistical feature based upon the number of contiguous pixels with similar or the

same grey levels in a particular direction. A coarse texture would have a large

number of contiguous similar grey levels and a fine texture would have only a few

(Haralick 1979). A C/C++ implementation was adapted from Matlab R© (Math-

Works Inc, Ismaning Germany) which provided the features described in Tang
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(1998). The features were: short run emphasis, long run emphasis, run length

non-uniformity, run percentage, grey level non-uniformity, low grey-level run em-

phasis and high grey-level run emphasis. Rotational invariance was obtained by

calculating and averaging statistics in the principal axes (0◦ and 90◦).

6.2.3 Local Binary Pattern (LBP)

Ojala et al. (2002) stated that LBPs are found in greyscale images and represent

the spatial structure of local areas in an image. The pixel patterns fall into

two categories, ‘uniform’ and ‘non-uniform’. Uniform pixels are defined as pixels

that contain useful information for describing a texture (e.g. edges), and non-

uniform, supplying no useful information (Ojala et al. 2002). LBP uniform and

non-uniform pixel description and implementation of rotational invariance can

be found in Ojala et al. (2002). The notation for the LBP used in this thesis is

LBP riu2
8,1 which indicates rotationally invariant, less than two transitions, eight

neighbours, with a radius of 1.

The LBP was chosen as the functionality was able to be efficiently implemented

in a real-time system. The real-time implementation of the LBP in this thesis is

shown in Appendix F. In contrast to the implementation of the LBP outlined in

Ojala et al. (2002), the real-time implementation used in this thesis is novel in its

approach of comparing and counting pixels, and pixel transitions as opposed to

computationally time consuming multiplications. It is evaluated in this chapter.

6.2.4 Receiver Operating Characteristic (ROC) Curves

ROC curves are a feature selection tool to aid in identifying the features that

will be most successful in a classifier. ROC curves are a description of diagnostic

accuracy achieved by generating a plot of the false-positive rate versus the true-

positive rate while an input variable is altered (Metz 2006). The result of each
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feature is given as a value from 0 to 0.5 with the feature closest to 0.5 providing the

greatest separability of data and hence the greatest opportunity for classification.

Other tools are available (e.g. a Student ’T’ test) however, the output of the T

test is either acceptable or unacceptable with respect to a specific null hypothesis

but doesn’t provide the ’degree’ of how good a feature is. The ROC curve is

a tool that does provide the degree of suitability of a feature with a working

implementation in Matlab.

6.2.5 Support Vector Machine (SVM)

A SVM is a supervised machine learning classifier, defining any two points in a

higher dimensional space to make them more likely to be linearly separable. In

the learning phase, the algorithm learns the boundaries of the data categories

in higher dimensions that create the maximum category separation (Bradski &

Kaehler 2008).

6.2.6 Multi Layer Perceptron (MLP)

The MLP is a neural network discriminative algorithm that typically has hid-

den units between input and output nodes to better represent the input signal

(Bradski & Kaehler 2008). The hidden units are a network of non-linear elements

with input to the non-linear elements being a weighted sum of outputs of previous

elements, and are typically thresholded (Nilsson 1998). Neural networks can be

slow to train but are computationally fast to execute (LeCun et al. 1998).

6.2.7 K-Nearest Neighbor (k-NN)

The k-NN is one of the simplest discriminative classifiers. Training data is stored

with labels. Thereafter, a test data point is classified according to the ‘majority
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vote’ of its K (distance) nearest other data points (in the Euclidean sense of

nearness). The k-NN is often effective but is computationally slow in execution

and can require a considerable amount of memory (Grossberg 1987).

6.2.8 Naive Bayes

The Naive Bayes classifier is a probabilistic graphical model (Zhang 2004) and is

the application of Bayes theorem with naive assumptions. The naive descriptor

refers to the input assumption that all features are independent. Bayes theorem

details the probability of an event, from data that may be related to the event.

6.3 Evaluation of existing feature extraction and

classification techniques

Images were manually segmented into smaller sub-images of weed and crop for

preliminary testing of the feature extraction algorithms outlined above. The sub-

images were sampled by means of a sliding window1 outlined in Section 6.3.1. The

training and test set both consisted of sub-images of weed and crop in proportions

set out in Table 6.1. For sugarcane, the crop images were sugarcane and the weed

images were guinea grass. In pyrethrum, the crop images were pyrethrum and

the weed images were various species common to all collection sites (Table 3.8).

The outputs of the feature extraction algorithms were stored in a Comma Sep-

arated Values (CSV) file, and further evaluated to identify the most effective

features for discrimination. A ROC curve was used to identify the most effective

features. The features identified by the ROC curves were stored and applied to

classifiers for identification. The evaluated classifiers were the SVM, MLP, k-NN

1A sliding window sub-samples the data into small regions for evaluation of that region with

the window moving across and down the image.
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and Naive Bayes.

6.3.1 Software development for evaluation of existing tech-

niques

The evaluation software for the existing feature extraction and classification tech-

niques was written in C/C++ using the OpenCV library (Section 4.2.1). The

same library that was used in the real-time implementation of the techniques.

Therefore, the outcomes of the evaluations would be more likely to be replicated,

in the real-time implementation, as differences caused by alternative implemen-

tations of the feature extraction and classifier techniques using various other lan-

guages, development environments, compilers and or libraries would not occur.

Matlab R© was used for identifying the feature with the highest separability, be-

cause there was a Matlab R© implementation of ROC curves available, whereas

OpenCV did not provide such an implementation available. A block diagram of

the three software applications written for the evaluation of existing techniques

is shown in Figure 6.1.

Figure 6.1: Block diagram of software written to evaluate the existing feature

extraction and classification techniques.

The first block applied the texture analysis methods to a test image and stored

the results in a CSV file. The texture analysis process was iteratively applied to

the image by means of a sliding window, with the size ranging between 3 and 29,
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incrementing by two at each iteration. This block was written using C/C++ and

OpenCV.
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The results of the texture analysis techniques were loaded into a second block,

written in Matlab R©, which applied the ROC test to the texture analysis results.

The three most effective features from each feature extraction technique, their

respective ROC value, and the window size, were then stored in a CSV file.

The results from the Matlab R© block were then read into the classification block

which applied the three most effective features from each feature extraction tech-

nique separately to each of the classification techniques and stored the results in

a CSV file. This block was written using C/C++ and OpenCV.

6.3.2 Results of existing classification techniques on sug-

arcane

The classification results, collected as outlined above in Section 6.3.1, are set

out in Table 6.1, and show poor accuracy (< 66%) for all feature extraction and

classification techniques used for discrimination of sugarcane and guinea grass.

The most effective result was the LBP feature extraction technique with the SVM

classifier at 65% and the worst results were from a GLCM feature extraction

technique and MLP classifier at 49%. These results were not unexpected as the

target plants were both grass-like. The results demonstrated that traditional

textural feature extraction and classification techniques were not effective for

discriminating between guinea grass and sugarcane.

Table 6.1: Classification results of existing techniques for guinea grass.

Feature

extrac-

tion

technique

SVM

accuracy

MLP

accuracy

k-NN

accuracy

Naive

Bayes

accuracy

Training

set size*

Test set

size*

Best

window

size

LBP 65.4% 50% 60.8% 57.8% 310 332 17

GLCM 57.7% 49.5% 52.6% 51.5% 198 194 27

GLRLM 62.8% 54.1% 63.3% 51.4% 218 218 27

* size is given as the number of frames
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6.3.3 Results of existing classification techniques

on pyrethrum

Evaluation for the identification of pyrethrum from all other plants was initiated

by using the same textural feature extraction and classification techniques used

for the sugarcane initial evaluation and outlined above in Section 6.3.2. The

results for the LBP, GLCM and GLRLM are shown in Table 6.2. The highest

positive identification rate for LBP, GLCM and GLRLM was 63% and the low-

est positive identification rate was 47%. The LBP, GLCM and GLRLM results

were not satisfactory and new techniques need to be developed to allow better

classification.

Table 6.2: Classification results of existing techniques for pyrethrum.

Feature

extraction

technique

SVM

accuracy

MLP

accuracy

k-NN

accuracy

Naive

Bayes

accuracy

Training

set size*

Test set

size*

LBP 55.3% 50% 52.6% 52.6% 202 202

GLCM 55.3% 57.9% 47.1% 50% 202 202

GLRLM 57.9% 50% 63.2% 57.9% 202 202

* size is given in number of frames

6.4 Evaluation methodology for real-world spot

spray performance

6.4.1 Evaluation method

As reviewed in Chapter 2, the standard criterion used in the literature for the

effectiveness of an algorithm in plant identification is the correct identification

rate. However, for a real-world weed spot spray algorithm, additional criteria are

required to provide an evaluation that can address the algorithm’s economical
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viability as well as correct identification rate. Therefore, in this research, the

evaluation is assessed using three accuracy rates:

• correct target identification rate (hit rate);

• incorrect target identification rate (miss rate); and

• false positive rate (false triggers).

Hit rate is the percentage of the targeted weed sprayed with herbicide; the miss

rate is the percentage of targeted weed not sprayed with herbicide; and the false

trigger rate is the percentage of crop that has been misclassified as weed and

sprayed with herbicide.

6.4.1.1 Acceptable accuracy rates

Ideal rates for weed identification are 100% hit rate, 0% miss rate and 0% false

trigger rate. The spot spray algorithms can be adjusted (tuned) to achieve a result

as close as possible to the ideal rates. In practice, the adjustment is targeted for

a particular spray application (e.g. increasing hit rate at the expense of more

false triggers) and will vary depending on field conditions, weed infestation, crop

density and tolerance for crop losses. These variations in hit, miss and false

trigger rates make it difficult to identify specific targets for the rates. Therefore,

test results are compared to the ideal values of hit, miss and false trigger rates to

determine the most effective algorithm and growth stage of operation.
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6.5 Custom classification technique for guinea

grass in sugarcane

6.5.1 Object Tracking Classification (OTC) technique for

sugarcane

Tracking component position from frame to frame was identified as a poten-

tial method to enhance classification accuracy and a technique labelled Object

Tracking Classification (OTC) was developed. From visual observation, it was

determined that the tracking of the retained, segmented components of the image

in sequential video frames was different for the shorter, denser clumped grasses

(guinea grass, couch grass and nut grass) than for sugarcane.

The sugarcane components were sorted into the deleted image during segmen-

tation by the DCSA. However, intermittently, sugarcane leaf components were

retained, due to known limitations in the DCSA (Section 1.9.1) at multiple leaf

points of intersection (height and colour). The shorter, denser clumps of guinea

grass tended to have components in each sequential video frame that could be

tracked from the top of the ROI to the bottom of the ROI over consecutive video

frames as the camera moved over the plant. The OTC required that:

• a component must appear in a consecutive number of frames, greater than

CFthresh. Therefore the parameter CFthresh acts as a filter size, filtering

out the intermittent sugarcane leaf components in the retained components

image.;

• the component appears in the same columns (X axis) of the image between

frames; and

• the component appears in increasing row numbers (Y axis) of the image

between frames.
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6.5.2 Objectives of OTC field trials

The results for the hit, miss and false trigger rates are given below in Section

6.5.4. The literature review identified that occlusion was a primary cause for

error in targeted weed identification and the development of the algorithms in

this research has been aimed at this problem. Therefore, occlusion has been

evaluated in the results in Section 6.5.5.

6.5.3 Guinea grass size definition and OTC experimental

setup

The results provided for guinea grass identification in sugarcane uses the sizes

of weeds (small, medium and large) as previously defined in Section 5.6.3. For

convenience the size definitions are repeated here, and in Figure 6.2:

• Small - A guinea grass plant fitting in a circle of between 0.1 to 0.2 m

diameter and occupying at least 30% of the circle, by pixel area.

• Medium- A guinea grass plant fitting in a circle of between 0.2 to 0.4 m

(inclusive) diameter and occupying at least 40% of the circle, by pixel area.

• Large - A guinea grass plant fitting in a circle of between 0.4 to 0.8 m

diameter and occupying at least 40% of the circle, by pixel area.
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Figure 6.2: Image of medium weed inside a 0.3 m circle approximately 40% filled

(as Figure 5.14).

A subset of the data collected from the different growth stages was used for eval-

uation of the developed algorithm. The subsets of data were from four replicate

runs collected on 10/10/12, field 28-B (short sugarcane); 10/10/2012, field 13-A

(medium sugarcane) and 6/11/12, field 2-A (high sugarcane). This data was typ-

ical of the crop and weeds encountered on ‘Fairymead’ farm. The size definition

of the sugarcane is; short 0.1 m - 0.49 m; medium 0.5 m - 1 m; and high 1.01 m

- 1.3 m, as outlined in Section 5.3.3.

During development, it was observed that the false positive rate was affected by

the threshold CFthresh set for the number of successive frames the clump was

identified in when tracked. The results in Tables ?? and 6.3 were obtained with

a threshold CFthresh setting of four determined by trial and error as optimal. If

CFthresh was set lower (e.g. two or three), the false trigger rate increased. If

CFthresh was set higher (e.g. five or six), the false positive rate decreased, but so

did the correctly identified rate as outlined above (Section 6.4.1).
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6.5.4 OTC field trials – results and discussion

Table 6.3 shows the hit miss and false trigger rates as well as the standard de-

viation of the data in the four runs for each sugarcane height. The accuracy

results for the different sugarcane growth sizes in Table 6.3 show that over the

eight runs for medium and high sugarcane, the average hit rate was 90% and

83% respectively leaving an average miss rate of 10% and 17% respectively. A

standard deviation of ± 4% and ± 5% respectively for both hit and miss rate

highlight the consistency of the algorithm performance.

Table 6.3: Hit, miss and false trigger rate results of object tracking classification

in sugarcane.

Sugarcane

size

Individual

run hit

rate

Individual

run miss

rate

Individual

run false

trigger

rate

Total hit

rate

Total miss

rate

Total false

trigger

rate

High

89% 11% 4% 83% 17% 5%

85% 15% 4%

81% 19% 5% ±5% ±5% ±1%

76% 24% 6%

Medium

95% 5% 1% 90% 10% 3%

84% 16% 1%

91% 9% 5% ±4% ±4% ±2%

89% 11% 4%

Short

100% 0% 45% 85% 15% 32%

55% 45% 16%

100% 0% 36% ±19% ±19% ±11%

86% 14% 33%

False triggers waste herbicide in spot spraying weeds in a fallow situation. A high

false trigger rate is a larger problem when spot spraying weeds in a growing crop,

as the false triggers kill the crop. Table 6.3 shows that the medium growth stage

had a false trigger rate of 3% and high growth stage had a false trigger rate of 5%

and a standard deviation in the datasets analysis of ± 2% and ± 1% respectively,

highlighting consistency in the algorithm performance.
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Short sugarcane had a hit rate of 85% and a miss rate of 15% which is between

the results for medium and high sugarcane, but the standard deviation for the hit

and miss rates in the datasets was 19% which displays inconsistent performance.

The false trigger rate for short sugarcane was 32% with a standard deviation of

± 11% which indicates less consistent operation of the algorithm at this growth

stage. A 32% false trigger rate in the small sugarcane would kill one third of the

crop.

A reason for the difference in the accuracy rates between the short sugarcane and

the medium and high sugarcane is that the discrimination capability included in

the DCSA did not function as effectively on the small sugarcane. The DCSA

performance was lower on the short sugarcane as there was no difference between

the sugarcane and guinea grass in height, leaf size and shape. When sugarcane

is in the medium to high growth stages the leaves are long and thin (e.g 0.8 m

long and 0.06 m wide) and are deleted in the segmentation but when the growth

stage is short, the leaves are short and thick (e.g. 0.1 m long and 0.04 m wide)

and retained.

6.5.5 OTC field trials with respect to occlusion

6.5.5.1 Test setup and real-time frame rate with respect to occlusion

Results for OTC with respect to occlusion were obtained from 856 frames used

in the segmentation results Section 5.6.3 recorded on the 10/10/2012, 13-A (Ta-

ble 3.1), ‘Fairymead’ farm, Bundaberg; and a further 1140 consecutive video

frames from the same recording, totalling 1,996 frames over a physical distance

of 140 m. The video sequence of 1,996 contained 47 guinea grass weeds and ap-

proximately 40% of the frames contain nut grass ranging from sparse (<10 %

ground covered) to complete coverage. This subset of data was chosen as it was

within the optimum growth parameters for spot spraying (Section 3.4.2.2).
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The video frame recording rate was 12 fps and the camera traveled 0.07 m

(groundspeed) between consecutive video frames. A distance of 0.07 m between

frames is a groundspeed of 8 km/h (the maximum commercial groundspeed) when

run at 30 fps. A frame rate of 30 fps is achievable with the novel synchronised

pipeline processing technique (Section 7.5) developed as part of this research.

Table 6.4 presents the results for guinea grass identification, which used the same

settings as used in segmentation for sugarcane (Section 5.6.2.1), and the param-

eter CFthresh set at four frames, as determined above in Section 6.5.4.

6.5.5.2 OTC with respect to occlusion – results and discussion

Table 6.4 shows there was a total of 47 guinea grass plants in the data with

41 being correctly identified as guinea grass. There were six small guinea grass

plants missed and by visual inspection of the images, the components segmented

by the DCSA were smaller than the small definition above in Section 6.5.5.1. Of

the six missed small guinea grass plants, four were occluded but were potentially

larger than the small guinea grass size when the area under the occlusion is taken

into account. Therefore, although the DCSA can segment the plants from each

other, occlusion can still cause errors by reducing the apparent size of the plant

(Figure 5.13). From the data provided in Table 6.4 the following was determined:

• A total (occluded and non-occluded) guinea grass ‘hit’ rate of 87%.

• A total (occluded and non-occluded) ‘miss’ rate of guinea grass of 13%.

• A ‘miss’ rate of guinea grass due to occlusion of 8%.

• A ‘hit’ rate of occluded guinea grass plants of 86%.
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Table 6.4: Results for guinea grass identification with respect to occlusion.

Plant size Correctly

identified

occluded

guinea grass

Correctly

identified

non-occluded

guinea grass

Number of

guinea grass

missed

Total

Small 12 9 6 27

Medium 11 5 0 16

Large 3 1 0 4

Total 26 15 6 47

Table 6.5 shows there was a total of 24 non-guinea grass weeds identified as

guinea grass and that two of these were broadleaf. By inspecting the images,

the nut grass and other grass that triggered a hit was in dense (>70% ground

covered) low patches that had the same depth and colour criteria as the small and

medium guinea grass. The known DCSA limitation of component splitting (Sec-

tion 5.4.2.2) created components that, intermittently, are in contiguous frames

and would be tracked by the classification algorithm, causing false triggers. The

intermittent false triggers on other weeds is not a significant issue as the destruc-

tion of all weeds is advantageous to the sugarcane crop.

Table 6.5: False trigger results in guinea grass identification from sugarcane.

Nut grass Broadleaf Other grass Total other

weeds

Sugarcane

18 2 4 24 11

There were also 11 instances of sugarcane plants being incorrectly identified as

guinea grass. A false trigger rate on sugarcane of 3.9% was determined by dividing

the incorrect identification of sugarcane (11) by the total numer of sugarcane

plants. The total numer of sugarcane plants was found by multiplying the plant

linear density (two per metre, from Section 3.4.2.1) by the length of run (140 m).

As mentioned in Section 6.5.5.1, the false trigger rate can be adjusted by changing
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the threshold CFthresh and this will also effect the guinea grass hit rate.

6.5.6 Identification of guinea grass in sugarcane – sum-

mary and conclusions

6.5.6.1 Existing texture feature extraction techniques

From the results in Table 6.1, the accuracy of the existing techniques in discrim-

inating guinea grass from sugarcane in the image was unsatisfactory. When the

feature extraction techniques shown in Table 6.1 were evaluated by the research

cited in the literature review, they were implemented on images where the total

image was grass or broadleaf but not both. In application of image analysis in

multi-plant images (i.e. sugarcane and weed) the Depth Colour Segmentation Al-

gorithm (DCSA) separated the image into smaller components which were made

up of only one plant. However, smaller segmented components may not provide

enough repetition in texture for texture feature extraction techniques to provide

consistent results. The repetition in texture is provided when carried out on large

components and/or whole images as seen in the literature review.

The accuracy results show that discrimination of plants of similar species (i.e.

grass from grass type and broad leaf from broadleaf type) with texture operators

is difficult. This is because the texture of these plants varies greatly within their

species, unlike the Brodaz test sets (Brodatz 1966), which are commonly used to

test texture extraction techniques.

6.5.6.2 OTC technique

The OTC technique results show that the overall combination of the DCSA and

sequential tracking of the components through consecutive video frames is an

effective means of identifying guinea grass. This technique has an effective guinea
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grass identification rate of 87%, being able to identify 86% of occluded guinea

grass.

The OTC technique was able to identify all guinea grass that was large or medium,

and the small sized guinea grass that was above 40% of the area filled (Figure 6.2).

Therefore, the effective minimum size of guinea grass targeted by the technique,

given for the calibration settings used is a guinea grass plant fitting in a circle

of between 0.1 m to 0.2 m diameter and filling the circle by 30% of its area or

approximately 0.05 m2.

The false trigger rate was 3.9%, with the threshold CFthresh = 4. However this

should be looked at with respect to the classification settings in the DCSA as well

as CFthresh. By changing the classification settings in the DCSA, and the value

of CFthresh, smaller or larger guinea grass plants can be targeted as discussed in

Section 6.5.5.1. However, changing the settings will also affect the false trigger

rate on sugarcane. The false trigger rate on non-sugarcane plants is not consid-

ered a problem, as spraying and killing non-sugarcane plants will enhance the

sugarcane crop. Ultimately, settings for the DCSA and CFthresh are a commercial

decision to be made by the farmer when setting up the spot spray system in the

field (Section 6.4).

The processing time required for OTC of guinea grass is addressed by the novel

synchronised pipeline processing technique developed in this thesis for real-time

spot spraying (Chapter 7).

6.6 Custom classification algorithms for weeds

in pyrethrum

6.6.1 Development of pyrethrum classification algorithms

Visual inspection of the pyrethrum data identified that height and spatial posi-

tion may improve the outcome of the classification result. Height was a reliable
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discriminatory attribute because the pyrethrum grew to a height of 0.2 to 0.3 m

in autumn (the primary weed control period) and then stayed at that height until

spring. Spatially, the pyrethrum plants were grown in rows and the centre of the

pyrethrum plant was centred on the centre of the row. Therefore, plants that

were not centred on the row could be identified reliably as weed. To evaluate the

usefulness of height and spatial position as a feature for pyrethrum identification,

four algorithms were developed and are outlined below:

• Spatial Position (SP). The centre point of each pyrethrum plant should

be the centre of the row so the spatial position of the plant component

relative to the centre of the row of pyrethrum is used to aid pyrethrum

identification.

• Depth, Colour and Size (DCS). This algorithm compares the depth,

colour and size attributes of a plant component against a template.

• Depth, Colour, Size and Spatial position (DCSS). The DCS algo-

rithm operation is aided by the SP concept of centralisation of the plant

component over the row.

• LBP and Depth (LBPD). The LBPD adds a depth component to the

window of LBP data and compares to a template.

6.6.1.1 Spatial position (SP) algorithm

The spatial position algorithm used the segmented binarised RGB image based on

a Binarised Segmentation Technique (BST) (G > R and G > B) and determined

the presence of weed by the position of the segmented component in the image,

relative to the centre of the image. It was assumed that the pyrethrum row would

be centred in the image by a side-shift three-point linkage hitch (documented in

Appendix G) guided by a vision guidance system which maintains the implement

position centred over the row of plants.
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The image was divided into five regions on the horizontal axis as shown in Fig-

ure 6.3 with region 3 being the central region. Five regions (odd number) were

selected so that when a plant component was identified the plant component

could be quickly identified as being ‘centred’ or ‘not centred’ depending upon the

regions the Plant Component’s Bounding Box (PCBB) is contained in. If the

PCBB appeared in more than the centre region and the total number of regions

the PCBB was contained in was even, the PCBB was a weed, if odd the PCBB

was pyrethrum. The centre region (3) was adjusted to the same width as the typ-

ical pyrethrum plant in the field so that if a pyrethrum plant was evaluated that

was wider than the centre region, the PCBB would appear in the regions either

side of the centre (odd number), centred on region three. Figure 6.3 displays the

thirteen positions the weed PCBB may appear.
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Figure 6.3: Bounding box positions used in spatial analysis that determine if a

component is weed.

6.6.1.1.1 Evaluation of the SP algorithm

Evaluation of the spatial position algorithm was performed subjectively by colour-

ing the image pixels to indicate where the system recognised a component as a

weed, then comparing this to the same image ‘untouched’ i.e. initial colour im-

age. The colours associated with the pixel components can be seen in Figures 6.4

and 6.5.
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Figure 6.4: Results of the spatial segmentation method on small weeds

highlighting misses from poor binarisation in the red ellipses. RGB image of

pyrethrum and weeds on the left hand side. The images on the right hand side

shows the weeds identified by shading the pixels were yellow, green, red, and blue

depending on component size and position.

Figure 6.5: Results of the spatial segmentation method on large weeds

highlighting misses from occlusion in the red ellipses. RGB image of pyrethrum

and weeds on the left hand side. The images on the right hand side shows the

weeds identified by shading the pixels yellow, red, blue and green depending on

the weed’s size and position. The red ellipses highlight areas where the weeds

were not identified in Figure 6.3.
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The colours were yellow, green, red, and blue depending on component size and

position. Yellow was all weeds in regions one and five as well as the smallest weeds

in regions two, three and four. Weeds coloured green, red and blue represented

weeds from small to large respectively in regions 2, 3 and 4.

Poor algorithm performance was visually noticeable on images where there was

occlusion, highlighted in the red ellipses in Figure 6.5. A further problem was

misses of weeds that where determined to be errors in the BST of the colour image

and are highlighted in the red ellipses in Figures 6.4 and 6.5. Modifying the BST

created false triggers due to metamerism and poor image quality associated with

cheaper consumer CMOS image sensors (Section 5.2.3).

6.6.1.2 Depth, Colour and Size (DCS) algorithm

For implementation of the depth, colour and size algorithm, H1 (Figure 5.9) in

the DCSA segmentation technique was set to approximately the mid-point of the

height of the pyrethrum (approximately 0.15 m) and H2 was set 0.2 m higher than

the pyrethrum (approximately 0.5 m). The components in the colour and depth

image with heights below H1 and above H2 were separated into the deleted image

while the components from heights between H1 and H2 were put in the retained

image. A BST was applied to the deleted image and if any of the component total

pixel size was above a user defined threshold minWeedthresh, the component was

deemed a weed. Plants smaller that small pyrethrum but between H1 and H2 are

deleted in the DCSA.

6.6.1.3 Depth, Colour, Size and Spatial position (DCSS) algorithm

The depth, colour, size and spatial algorithm built up on the implementation of

Section 6.6.1.2, and added spatial positioning of the components in the retained

image. A component identified as pyrethrum by the DCS process in the retained
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image is then positionally compared to the centre of the image (a similar analysis

as SP) and if the component was not positioned centrally it was deemed a weed.

6.6.1.4 LBP and Depth (LBPD)

The LBP had the best overall performance of methods in terms of accuracy and

processing speed. The LBP had the second highest accuracy (55% compared

to GLRLM at 63% Table 6.1) yet only required one pass over the image for

rotational invariance compared to two passes for the GLRLM (0◦ and 90◦). The

C code implementation of the real-time rotationally invariant LBP algorithm

developed in this thesis is given in Appendix F. The output of the LBP (or GLCM

or GLRLM), on its own, was not satisfactory in terms of plant identification

accuracy, and in order to enhance the LBP’s effectiveness, average height and

variance of the heights associated with the area of the image within the sliding

window were added to the extracted LBP features. Average height and variance

were chosen as the combination of these two features highlighted the height and

evenness in height of pyrethrum plants. The features were then assessed by ROC

curves to determine which were the most effective.

The three most effective features (depth variance, edge and flat) were applied

to the classification techniques used in Section 6.3 and compared to the same

training and data set of images as the initial evaluation of texture features. The

results shown in Table 6.6 show the LBPD had a positive identification rate of

90% opposed to the original LBP at 55% (Table 6.2), highlighting the benefits of

combining colour and depth data.

Table 6.6: LBPD classification results on pyrethrum.

Feature

extraction

technique

SVM

accuracy

MLP

accuracy

k-NN

accuracy

Naive

Bayes

accuracy

Training

set size

Test set

size

LBPD 89.6% 90.1% 85.6% 90.1% 202 202
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6.6.1.5 Effect of LBPD window size on images from real-world situa-

tions

A factor that arose while attempting to replicate the results of Table 6.6 on other

pyrethrum images was the size of the window being classified. The window size

was important as the images were multi-plant images and the DCSA segmented

the occluding plant. However, some of the segmented components were too small

to supply a consistently repeatable classification. This was similar to the findings

in the sugarcane application of the system (Section 6.5.5.2).

In order for the texture operator to supply a consistent repeatable result it needed

a minimum size sliding window, and from trial and error, a sliding window size of

32 × 32 pixels was identified. To determine the minimum window size, window

sizes of 128 × 128, 64 × 64, 32 × 32, 16 × 16 and 8 × 8 were applied to sample

images. Sliding window sizes were not identified as an area of concern in the

literature review (Chapter 2) as the majority of research was conducted on still

images (high resolution) and images with only one plant type in them making up

the entire image window.

6.6.2 Evaluation of the developed techniques for feature

extraction and classification in pyrethrum

The evaluation of the techniques developed for pyrethrum has been undertaken

in two ways. Firstly to evaluate the hit rate, miss rate and false triggers on

a pixel-by-pixel basis. Secondly, to evaluate the hit rate, miss rate and false

triggers in relation to real-world identification of the total pyrethrum plant, and

the possible damage to the pyrethrum by ‘overspray’2. A false trigger typically

involves a complete non-target plant being misclassified as a target plant; whereas

2Overspray is where the pyrethrum is misclassified at the start of the plant, and end of the

plant, and therefore would be sprayed with herbicide causing damage to the pyrethrum.
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overspray describes parts of a correctly classified plant containing a misclassified

portion or portions.

Evaluations on a pixel-by-pixel basis supply results that define the identification

accuracy of the algorithm as a proportion of the total of all pyrethrum plant

pixels evaluated. Therefore a hit rate result of 95% means that 95% of the overall

pixels of the pyrethrum plant evaluated were identified, not that 95% of individual

pyrethrum plants were identified. The results from the pixel-by-pixel evaluation

were used to rank the algorithms for use in the second evaluation process. The

second process evaluated the hit rate of individual pyrethrum plants and what

proportion of the plant was misclassified, causing overspray.

6.6.2.1 Results for pixel-by-pixel analysis

To undertake the pixel-by-pixel analysis an Automated Evaluation Application

(AEA) was developed to automate the evaluation of the DCS, DCSS and LBPD

techniques. The AEA compared a technique’s classification results on an image

(pixel-by-pixel) against a ‘ground-truthed’ image to validate accuracies, recording

the results.

6.6.2.1.1 Real-time implementation effect on accuracy rates

Commercial spot spray herbicide delivery technology cannot spray weeds on the

left or the right of the pyrethrum plant (with reference to the direction of travel of

the spot spray system) without spraying the pyrethrum plant due to the minimum

spray pattern width of the recommended spray nozzles. The commercial spray

technology does have finer resolution in the direction of travel as this is controlled

by the on/off electronic signals. Therefore, in order to enhance computation

speed, the algorithms do not complete the classification of the pixels in the row

(perpendicular to the direction of travel) once the row has been determined to

contain pyrethrum, and this means the hit rate and miss rates do not always add

up to 100%.



6.6 Custom classification algorithms for weeds in pyrethrum 157

6.6.2.1.2 Ground-truthing

The images were ground-truthed by developing a second application. The second

application required the operator to circle the weeds in the image with a mouse.

On a separate colour image (initially blank), the co-ordinate positions inside the

circled areas were filled automatically with the value 255 in the blue channel,

to create a mask. Figure 6.6 shows the colour image with the white boundaries

drawn around the weeds by a mouse and the subsequent mask of blue areas in

the image.

Figure 6.6: Images showing the ground truthing mask for the evaluation software.

The image on the left shows the weeds circled by a mouse in white. The image on

the right is the mask with the circled areas of the first image highlighted in blue.

6.6.2.1.3 Automated Evaluation Application (AEA) operation

The AEA initiated by accessing the video streams of the depth, colour and mask

images, synchronising them so that each frame coincided to the same space on

the ground. The AEA performed the analysis of the technique under scrutiny on

the depth and colour images frame by frame. Wherever the technique identified

a pyrethrum pixel, the AEA checked the mask image and if the same area in the

mask was blue, then it was a misclassification. Likewise, everywhere the technique

identified a weed pixel, the mask image was checked, and a blue pixel in the mask
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signified a correct identification. Results were collected from a sequence of video

footage of 500 frames with the results from the classified pixels attributed to the

following categories:

• Pyrethrum pixels. Plant pixels that were classified as pyrethrum in both

the depth and colour test images and the ground-truthed image.

• Missed pyrethrum pixels. Plant pixels in the depth and colour test images

classified as weed and appearing in the ground-truthed image as not weed

(i.e. pyrethrum).

• False positives. Plant pixels in the depth and colour test images that were

classified as pyrethrum but appearing in the ground-truthed image as weed.

• Weed pixels. Plant pixels in the depth and colour test images identified as

weed and appearing in the ground-truthed image as weed.

6.6.2.1.4 Weed growth effects on results

The results have been segregated into two categories based on the weed growth

range. The two ranges are: complete weed coverage (out-of-control weeds Fig-

ure 6.7) and intermittent coverage (in-control weeds Figure 6.8). When the weeds

are out-of-control, they cover the ground around the pyrethrum completely mak-

ing it difficult to visually determine where the pyrethrum is, or is not. A threshold

on the percentage coverage of the ROI by plant material was used to identify the

out-of-control condition in an image. Trial and error determined the threshold

level at 90%. Therefore, out-of-control weeds are where plant material covers

90% and above of the ROI and in-control weeds are where there was less than

90% of the ROI covered by plant material.
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Figure 6.7: Image showing out-of-control weeds in pyrethrum.

Figure 6.8: Image showing in-control weeds in pyrethrum.



160 Feature extraction and classification

6.6.2.1.5 Analysis of results for out-of-control weeds

Tables 6.7 and 6.8 contain the pyrethrum hit rate, pyrethrum miss rate and the

false trigger rate in percentages relative to the total amount of pyrethrum pixels

in the test images.

Table 6.7: Pixel identification classification results with respect to the total

number of pyrethrum pixels for out-of-control weeds.

Out-of-control weeds

Feature

extraction

method

Miss rate False trigger

rate

Hit rate

DCS 0% 8% 47%

DCSS 2% 8% 84%

LBPD 0% 9% 52%

Table 6.8: Pixel identification classification results with respect to the total

number of pyrethrum pixels for in-control weeds.

In-control weeds

Feature

extraction

method

Miss rate False trigger

rate

Hit rate

DCS 1% 3% 93%

DCSS 1% 1% 98%

LBPD 1% 2% 92%

From the results in Table 6.7, the response of the algorithms in areas where the

weeds were out-of control was significantly worse than where the weeds were in-

control (Table 6.8). Table 6.7 for out-of-control weed shows the range of correctly

identified pyrethrum pixels was between 47% and 82% and the incorrectly iden-

tified weed pixels was between 8% and 9%. The aim of the spot sprayer in the

field is to spray the weeds when they are in the in-control growth stage, and not

the out-of-control stage, as it is too difficult to spray the weed without getting
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overspray on the crop. The results for the out-of-control area of the field show

that the identification algorithms do not function satisfactorily in this field condi-

tion. Therefore, the following results analysis are determined from the in-control

results.

6.6.2.1.6 Analysis of results for in-control weeds

Table 6.8 shows that the DCSS algorithm has the highest correct hit rate at 98%

and the lowest miss rate at 1%. The LBPD algorithm appears to have the lowest

performance of the three developed algorithms with a hit rate of 92% and a miss

rate of 2%. The DCS algorithm performs slightly better than the LBPD with a

93% hit rate and a 3% miss rate. The DCSS and LBPD algorithms were advanced

for further investigation in the second evaluation process. The DCS algorithm

was a sub component in the DCSS algorithm.

6.6.2.2 Real-world pyrethrum identification results

The analysis methods have been developed on the hypothesis that “if the

pyrethrum pixels are identified, the remaining pixels are weed pixels”.

As introduced in Section 6.6.2 above, the second evaluation on the two algorithms

determined the hit rate, miss rate and false trigger rate with respect to pyrethrum.

Additionally, this second evaluation determined the pyrethrum plant’s exposure

to overspray from the spot spray process.

6.6.2.2.1 Real-world accuracy rate

The 510 frames of data from the in-control weed data set were visually inspected

with the results shown in Table 6.9. Table 6.9 shows there were 78 pyrethrum

plants of which 77 were correctly identified (98.7% hit rate and a 1.3% miss rate)

in both algorithms and no misclassified weeds (0% false trigger rate). Visual

inspection found that the missed pyrethrum plant had a low height component

that did not meet the height criteria in either the DCSS or the LBPD algorithms.
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Table 6.9: Pyrethrum accuracy.

Feature

extraction

Number of

pyrethrum

plants

Number of

identified

pyrethrum

plants

Number of

misclassified

pyrethrum

plants

Number of

misclassified

weeds

DCSS 78 77 1 0

LBPD 78 77 1 0

6.6.2.2.2 Real-world overspray results

The number of plants in Table 6.10 with theoretical overspray was 10 (12.8% of

data) for both algorithms. The amount of overspray was manually determined

by comparing the amount of the individual pyrethrum plant with incorrect pixel

classification to the overall size of that individual pyrethrum plant. Overspray

occurred at the start (lead-in) or end (lead-out) of a plant and visual inspection

of the plants in question showed that lead-in and lead-outs of the plants had low

height. Therefore, the height criteria for pyrethrum were not met in the DCSS and

LBPD and this was the cause of the misclassification. Table 6.10 shows average

overspray in the DCSS and LBPD were similar at 9.5% and 10% respectively for

the 10 plants but the variation in the range of the overspray was different with

the DCSS being 6% and the LBPD being 11%. The average overspray relative to

the whole dataset is 1.22% (9.5% × 12.8%) for the DCSS technique and 1.28%

(10% × 12.8%) for the LBPD.

Table 6.10: Pyrethrum overspray evaluation.

Feature

extraction

Number of

plants with

overspray

Percentage

overspray

maximum

Percentage

overspray

minimum

Percentage

overspray

average

DCSS 10 12% 6% 9.5%

LBPD 10 16% 5% 10%
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6.6.3 Weed discrimination in pyrethrum – discussion and

conclusions

6.6.3.1 Benefit of depth and colour data

The DCSA segmentation technique was able to adequately separate the occlud-

ing plants into individual components and the classification of these components

then became a task for the feature extraction and classification techniques. At

the outset, depth appeared to be a promising unique feature for pyrethrum iden-

tification, based on visual inspection of the data, and this was supported by the

results of the LBPD in Table 6.6. Table 6.6 included depth as a feature, com-

pared to the results of the original LBP in Table 6.2. These results (90% and

55% respectively), demonstrate an improvement of 35% was as a result of adding

depth data to the algorithm.

6.6.3.2 Overspray error caused by sliding window

A source of error was at the lead-in, and lead-out, of the pyrethrum plant. The

error was found at the changeover point, where the image transitions from ground

to pyrethrum or pyrethrum to ground. At these transition points, the depth of

the pyrethrum was varying from low to high, or high to low. The DCSS was able

to detect this transition at the pixel row but the LBPD could not. The LBPD

failed due to the sliding window analysis. The size of the sliding window fixed

the resolution of position as the plant/weed transition would occur somewhere

within the window. The lower resolution of positional accuracy produced the

lower detection rate of the LBPD at 93%, compared to the DCSS of 98%, and in

the range of overspray of the LBPD at 11%, compared to 6% for the DCSS.
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6.6.3.3 Sliding window size

The sliding window required a minimum window size of 32 × 32 pixels, filled

with pyrethrum for the window to be consistently identified by texture (LBP).

Figure 6.9 shows a 32 × 32 pixel window bordered by white pixels inside a red

ellipse. The window bordered by white is also a part of a pyrethrum plant that

has a size of four, 32 × 32 pixel windows. Figure 6.10 shows a large pyrethrum

plant with a size of 34, 32 × 32 pixel windows.

Figure 6.9: Image with four LBPD sliding windows of identification (highlighted

green squares on the pyrethrum plant in the red ellipse). The green block

bordered by white inside the red ellipse demonstrates the the size of a 32 × 32

pixel window.
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Figure 6.10: Image with 34 LBPD sliding windows of identification (highlighted

green squares on the pyrethrum plant in the red ellipse).

6.6.3.4 Best overall performance

The highest performing algorithm was the DCSS algorithm in terms of correctly

identified pixels (98%) and of overspray which is displayed in Table 6.9. These

combined analysis results show that for the evaluated pyrethrum3 the perfor-

mance was low on the out-of-control weed area, although this was less than 1%

of the total field area. However, on the in-control weed growth areas, which was

greater than 99% of the field area, the results showed a false positive rate of 1 in

78 plants (1.3%) and overspray of 1.2% of the total pyrethrum plant area. There-

fore, the DCSS algorithm was determined to be successful at detecting weeds in

pyrethrum on speedlings, grown in 0.65 m rows, at a growth stage of between

0.20 m and 0.45 m in height, and a minimum diameter of 0.15 m.

3Grown as ‘speedlings’ (planted seedlings) on the DRFSpeedlings site, which was the trial

and test field provided by Botanical Resources Australia.
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6.7 Summary of feature extraction and classifi-

cation research

Chapter 6 has:

1. Evaluated existing texture extraction techniques (GLCM, GLRLM and

LBP) with respect to sugarcane and pyrethrum.

2. Evaluated existing classification methods (MLP, SVM, k-NN and Naive

Bayes) with respect to sugarcane and pyrethrum.

3. Developed custom feature extraction and classification techniques for com-

mercial cropping field trials for sugarcane and pyrethrum.

4. Evaluated custom feature extraction and classification techniques for com-

mercial cropping field trials for sugarcane and pyrethrum.

The evaluations found that:

1. Variation in plants was highlighted as a problem as no two plants were

the same due to: the way the plants present themselves to the camera

and damage due to die-back or potentially pest damage, weather damage,

growth stage, nutrient and moisture availability.

2. The evaluation of the existing texture techniques and classifiers (Section 6.3)

showed they could discriminate guinea grass and pyrethrum at between 49%

and 65% accuracy. However, this was not adequate for real-time, real-world

spot spraying and custom techniques were developed to improve upon the

accuaracy rates.

3. An evaluation method (Section 6.4.1) was determined based on the standard

criteria used in the literature review (Chapter 2), which was the hit and

miss rate. This was augmented with the false trigger rate, because when
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spot spraying weeds in an in-crop situation, a false trigger equals a dead

crop plant. The ideal rates were identified as 100% hit rate, 0% miss rate

and 0% false trigger rate.

4. The techniques developed in this research were shown to be successful for

real-time, real-world plant identification (the in-depth real-time use of the

algorithms is discussed further in Chapter 7). The developed algorithms

can be adjusted to vary their hit rate and false trigger rates. In practice,

the adjustment is targeted for a particular spray application (e.g. increasing

hit rate at the expense of additional false triggers) and will vary depending

on field conditions, weed infestation and tolerance for crop losses. The OTC

had a guinea grass hit rate of 87% and a false trigger rate of 3.9%. Four

techniques (Spatial, DCS, DCSS and LBPD) were developed for pyrethrum.

DCSS was the highest performing algorithm with an identification rate on

pyrethrum of 98% with an overspray of 1.2%.

5. The minimum component size required for identification was found to be

a source of error in both the sugarcane algorithm and the pyrethrum algo-

rithms.
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Chapter 7

Real-time processing

Automated weed spot spraying requires the spot application of chemical to a

weed whilst traveling at speeds up to 10 km/h in the row crop, horticulture, and

sugarcane industries in Australia, and up to 20 km/h in the Australian broadacre

industry. To achieve ‘on-the-go’ capability an automated weed spot sprayer needs

to operate in real-time.

7.1 Chapter outline

This chapter contains six sections which provide information on real-time com-

puting and its implementation into an ‘on-the-go’ automated spot sprayer.

• Section 7.2 provides a general overview of what a real-time system is in

relation to computing systems.

• Time constraints/limitations are a significant factor in a real-time system,

and Section 7.3 details these limitations and the interaction between frame

rate, groundspeed, and analysis time. This section addresses the require-

ments in a real-time automated spot spraying system, and the consequences
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if real-time functionality is not adequate, such that weeds will be missed by

the sprayer.

• Real-time systems can be implemented in CPU-based computers and hard-

ware systems such as Programmable Logic Devices (PLD). Section 7.3.3

discusses the implementation onto a PLD.

• CPU based implementations are set out in Section 7.4 along with their pro-

gramming techniques. This section discusses implementations onto CPUs

operating with traditional single-core techniques and also parallel process-

ing on multicore CPUs. It outlines the history of both sequential and asyn-

chronous operating techniques and shows that the asynchronous parallel

programming techniques cannot always guarantee real-time deadlines, also

why ‘just adding more cores’ does not provide a linear speed increase.

• The aim of the research undertaken was to develop a real-time automated

spot spray system and Section 7.5 provides a detailed description of a pro-

cessing technique developed in this research that can achieve this aim.

• Section 7.6 compares the timing results of the technique developed in this

research to traditional single-core, and parallel processing techniques, show-

ing that the new technique can undertake significantly more computation.

• Finally a discussion of the significance of the new technique to the auto-

mated spot spray industry is outlined in Section 7.7.

7.2 Real-time systems overview

7.2.1 Real-time systems definition

The concept of real-time computer systems is not new. Lin & Burke (1992) stated

that a “real-time computer must produce a correct result within a specified time”.
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Stankovic (1992) reported that “Real-time systems are defined as those systems

in which the correctness of the system depends not only on the logical result of

computation but also on the time at which the results are produced”. West (2001)

defined a real-time system as a system where the “the results will be provided

when they are needed”. In this thesis, real-time is 33 ms per frame for 15 km/h

groundspeeds (Section 7.3.2).

7.2.2 Real-time computation requirements

Halbwachs (1993) states the principal attributes of a real-time system, in terms

of process implementation, must have the following features:

• Concurrency. There must concurrency between the system and the oper-

ational environment. The image analysis within an automated spot spray

system for weeds must maintain a computational output that is synchro-

nised with the groundspeed of the system.

• Strict time requirements. There must be strict time requirements for

the system output response relative to the system input. The image analysis

must be performed, a result determined, and the spray nozzle activated to

apply the herbicide to the weed, while the system is positioned over the

weed. If the analysis overruns the strict time requirement the spot spray

system will have traveled over the weed before a result is determined, and

the weed will be missed.

• Deterministic. The output is determined by input data and input time/s.

The maximum analysis run time must be known and operate within the

input frame rate of the system.

• Reliability. The software system implementation must be robust. Soft-

ware crashes are not acceptable.
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• Part software and part hardware. Real-time systems can be imple-

mented in hardware (e.g. Field Programmable Gate Arrays (FPGAs) and

Digital Signal Processors (DSP)) for reasons of cost and performance, usu-

ally combined with microprocessors for control and communication.

Real-time machine vision weed identification systems reviewed in Chapter 2 (e.g.

Wang et al. (2007), Berge et al. (2012) and Gerhards & Chrisensen (2003)), used

microprocessor based hardware for analysis and real-time sequential computing

methods. This was expected, due to the complexity of the algorithms being

coded and the relative difficulty of programming an FPGA compared with a

microprocessor. Multi-core processor integration in consumer electronics is a

recent development which has been available since 2005 (Intel 2012).

7.2.3 Real-time systems operation

Berry (1989) defined computing system operation in three ways, using a level of

interaction of the system with the environment as a basis:

1. Transformational systems are systems where the inputs to the system

are supplied at the start of the process and a result is received at completion

from the system, i.e. interaction with the system is at the start and end

only.

2. Interactive systems are continually interacting with the environment

around them. However, this interaction is at the system’s pace, independent

of changes in the environment.

3. Reactive systems are systems that are continually interacting with the

environment around them at the environment’s pace.
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7.2.4 Real-time computational deadline terminology

Terminology for deadlines in a real-time system are listed below, provided by

Bernat et al. (2001):

• Hard. A hard deadline is where a deadline cannot be missed because the

consequences are great.

• Firm. A firm deadline is one where a task can miss a deadline but the result

is useless.

• Soft. A soft deadline is where the the system can tolerate some deadlines

missed and the result is still useful.

The component tasks for a real-time spot spray system defined in Section 4.1 and

reproduced in Figure 7.1 are image acquisition, segmentation, feature extraction,

classification and decision/action. Real-time sequential computing describes com-

putational tasks being processed one after the other.

Figure 7.1: Reprint of block diagram of the spot spraying system based on

real-time machine vision.
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7.2.5 Real-time computation definition with respect to

weed spot spraying

The term real-time refers to the application of computing system definitions. In

most cases, real-time systems fall into the reactive computing definition cate-

gory (Halbwachs 1993) outlined in Section 7.2.3 above. Definition 1 (Figure 7.2)

combines the definitions of real-time and reactive computing to define weed spot

spraying as a real-time reactive system.

Figure 7.2: Definition 1 Real-time reactive machine vision weed spot spray

system.

A real-time machine vision weed spot spray system must perform its actions

whilst passing over crop rows and weeds (i.e. interacting with the environment)

at the groundspeed being traveled by the agricultural vehicle on which the system

is mounted (i.e. the environment’s pace).

7.3 Real-time computing considerations for spot

spraying

7.3.1 Object Identification Redundancy (OIR) between

frames

Object Identification Redundancy (OIR) between frames refers to the minimum

number of times the same position on the ground will have image analysis applied.

OIR is required in no-till situations where the stubble may be concealing weeds

from the image sensor or where larger plants are masking smaller plants.

Applying image analysis to the same position on the ground taken from different

angles as the system moves over the ground improves the system’s ability to

view the weed satisfactorily from the occluding stubble. Figures 7.3(a) to 7.3(c)

demonstrate occluding stubble in wheat stubble which is a principal broadacre

crop in Australia.
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(a) Camera positioned right of weeds, occluded by wheat stubble.

(b) Camera positioned above weeds and not occluded by wheat stubble.

(c) Camera positioned left of weeds, not occluded by wheat stubble.

Figure 7.3: Sequence of images showing occlusion of weeds in wheat stubble and

illustrating the need for OIR. The sequence starts with the camera positioned

before the weeds and ends after the weeds. Occlusion is found in Figure 7.3(a)

but the analysis would still identify the weeds in the following images. (original

photograph by Northern Graingrowers).
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In Figure 7.3(a), the camera is behind the weed position and the weed is masked

by the stubble. In Figures 7.3(b) and 7.3(c), the camera is directly above and

in front of the weed such that the view of the weed is not occluded in these

images. For a fixed camera height, the number of frames for OIR is dependent

upon stubble height and density in fallow situations and crop height and density

for in crop situations.

7.3.2 Availability of computation time

The maximum groundspeed of the machine vision weed spot spray system is

determined by the OIR of frames and the frame rate; and frame rate is determined

by the computation time available. The following formula 7.1, relates minimum

frame rate to groundspeed. The Formula 7.1 determines the interval between

frames tmax therefore the frame rate FRmin is 1/tmax.

FRmin =
1

tmax

=
n× s

d
(7.1)

where:

tmax = interval between frames.

s = groundspeed in m/s.

n = minimum number of OIR frames.

d = length of the analysed ROI on the ground in metres.

For example, in pyrethrum, typical values of n = 3, d = 0.4 and s = 4.2 m/s were

used for analysis at groundspeeds of 15 km/h to illustrate the computational time

availability. From formula 7.1, tmax = 0.032 s and FRmin = 31 fps.

The maximum time available for processing in a sequential computing system

(systems used in the literature review Chapter 2) is the time between frames,

tmax = 0.032s.
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7.3.2.1 Consequences of computational overrun

The consequences of computational overrun are missing incoming frames, reduced

reliability of OIR (as an individual frame that is missed may be the only frame

which a weed is satisfactorily viewed) and poor synchronisation of the spray

nozzle, i.e. spray pattern misses detected weed. The frequency of missed frames

will be determined by the length of computational overrun.

Computational overrun is demonstrated in a timing diagram displayed in Fig-

ure 7.4. The top trace of the timing diagram in Figure 7.4 shows image frames

acquired sequentially and identified by a separate frame number (based on an

equipment frame rate of 30 fps which equates to a time interval of 33 ms be-

tween frames) and the acquisition time highlighted by the black, dotted line.

The bottom trace displays the number of the frame as the frame is loaded into

the analysis system, based on 45 ms processing time with the analysis acquisition

time highlighted by the red line. The analysis of 45 ms is not adequate to keep

up with the image acquisition of 33 ms and therefore, the system is forced to skip

every fourth image.

Skipped frame

Frame number 1 2 3 4 5

New image availability
based on 30 fps

Frame number 1 2 3 5
loaded

Image loading function
for a 45 ms  image
analysis function

33 45 66 90 99 132 135 155
Time base in ms

Figure 7.4: Timing digram showing an image analysis system missing an input

frame of data due to the image analysis overrunning the image capture interval.



178 Real-time processing

7.3.2.2 Computation time limitations

Processing tasks that are acted upon by outside stimulus (e.g. communication

with the external spray system) may operate on CPU ‘interrupts’. Interrupts

cause the CPU to postpone the current task and undertake what is required by

the interrupt, before returning to the postponed task. This approach may cause

the interrupted task to push out completion time causing computational overrun.

Possible interrupts need to be taken into account in the analysis time to meet

‘hard’ or ‘firm’ deadlines. Therefore, in the 15 km/h example (Section 7.3.2),

there is a computation time of only 32 ms available to complete all tasks including

interrupts.

7.3.3 Pipeline-based real-time systems

Hardware-based systems, sometimes referred to as embedded systems, typically

use a logic device such as an FPGA for image analysis and may include an ad-

ditional microprocessor for the supervisory tasks. A machine vision spot spray

system was developed and commercialised by Rees Equipment Pty Ltd (Kinmont

et al. 1999) (reproduced in Appendix E) using a logic device and microproces-

sor incorporating traditional logic pipelining (Figure 7.5) of the image analysis

functions.

In a typical logic pipeline (Figure 7.5), data enters at logic process 1 and at each

clock pulse the processed data is moved through to the next logic process, until

the last logic process where the processed data becomes the output of the logic

array. New data is input to process 1 of the logic array at every clock pulse but

there is a delay associated with each logic process before the final result of the

data is output at process N. The logic array could have any number of processes

and the data would be delayed for more clock pulses but each clock cycle would

return a result. The only stipulation is that each process should have an execution
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time of less than the clock pulse period.

Figure 7.5: Block logic array illustrating data flow through an N-process

hardware logic pipeline controlled by synchronous clocking.

A benefit of the logic pipeline in the spot spray system of Kinmont et al. (1999)

was that additional processing could be accommodated, but with a consequent

lengthening of the delay between the image input at process 1 and output at the

final process. The delay between input and output can be accounted for when

implementing nozzle synchronisation.

7.3.4 Nozzle synchronisation

A correlation between the weed on the ground and the same weed’s position

in the image must be made to accurately spray herbicide onto the weed. The

correlation can be made by synchronisation the time delay between when the

image was acquired and when the weed should appear below the nozzle. The

time delay is a function of the weed’s position in the image, the groundspeed

of the system and the distance between the centre of the image and the nozzle.

The time delay is affected when the time that the image analysis acts upon the
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image (red line of the bottom trace in Figure 7.4), varies with respect to the

actual image acquisition time (black dotted lines of the top trace Figure 7.4),

creating a variable time delay in activating the nozzle. Therefore the time from

image acquisition (relates to the physical position on the ground) to the action

of turning on the spray nozzle at the end of the analysis process is varying.

The variation in the time delay means that herbicide may be delivered before or

after the weed and precise timing of herbicide application onto weeds cannot be

guaranteed.

7.3.5 Conclusion

There is a need for superior real-time computing approaches. Hence, a custom

approach has been developed as set out in Section 7.5.1 below based on multi-core

and parallel processing techniques. These latter techniques are first reviewed in

Section 7.4 following.

7.4 Review of single and multi-core processing

Consumer electronics have undergone significant advancements in the last sev-

eral years with the development of cheap multi-core processors. Multiple CPU

computers have been available prior to the introduction of consumer multi-core

processors (e.g the Burroughs D825 modular data processing system (Anderson

et al. 1962)) but were not utilised by the mainstream, as the computers were ex-

pensive and the implementation of tasks was complex, requiring developers with

specific skills (Campbell & Miller 2010). However, along with consumer multi-

core processor advancement, new development tools implementing parallel pro-

cessing techniques have been provided by companies (e.g Intel R© and Microsoft R©)

which have made programming for parallel processors available to the mainstream

software developer.
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Development tools can have variations in terminology. For example, Intel R© uses

‘parallel building blocks’ to describe parallel functions and Microsoft R© use ‘par-

allel patterns’. For consistency, this thesis uses Microsoft R© terminology.

7.4.1 Typical single core programming methods

7.4.1.1 Sequential processing and concurrency

Typical single core processing methods are ‘sequential’ and ‘concurrent’. ‘Se-

quential’ processing was the first reported processing technique used in 1945 by

John von Neumann, and refers to a process being executed and the system wait-

ing until the process is finished before moving on to the next process (Akhter

& Roberts 2006). ‘Concurrency’ allows more than one process to operate at the

same time and is obtained through multi-tasking and multi-threading capabili-

ties which were developed in the 1960s to make use of the computing system’s

resources in the most efficient manner (Akhter & Roberts 2006). Concurrency

overcomes the limitation of sequential functions and makes use of the time lost

waiting for user input. However, execution times cannot be guaranteed because

the operating system does not know when an interuption may occur (e.g when a

callback1 might be triggered).

7.4.1.2 Multi-tasking and multi-threading

Multi-tasking is achieved by the operating system allowing each process (task) to

execute in small time slices and changing from one process to the next based on

a priority schedule administered by the operating system (Intel 2003). This gives

1A callback is a function (or pointer to a function) that is passed as an argument to another

function, which is expected to execute the argument at a time when triggered. The execution

can be immediate as in sequential systems or any time later as determined by the operating

system in concurrent systems (Laksberg 2012).
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the illusion of running more than one process concurrently. A further evolution

was added with multi-threading which allows the processes to split into smaller

functions called threads which can then be scheduled to operate in a similar way

to multi-tasking; or can be left dormant and only called on when some other

action has occurred (Intel 2003).

As an example, if a camera is sending data to the computer via USB, the USB

driver will trigger a callback when the computer has received the frame of data.

The operating system must then fit the workload from the callback into the

scheduling program to act on the data.

7.4.1.3 Consequences of single core programming methods for spot

spraying

Concurrent operation is a primary method employed in commercial operating

systems and is seamlessly integrated into the development tools such as the

Microsoft R© Visual Studio suite of products. This approach gives control of the

concurrent process scheduling to the operating system. The drawback of con-

current processes in a real-time system such as weed spot spraying, where the

time constraints are hard, is that execution times cannot be guaranteed. This

uncertainty can add to the processing time and cause the overall processing time

to exceed the allowable time for the computation of a result.

7.4.2 Parallel processing

In parallel processing complete tasks, individual functions or low level instructions

are allocated by the operating system and typically executed asynchronously on

individual processor cores or divided amongst multiple cores to execute at the

same time. The principal benefit of parallel processing is the speed up in execution

time by spreading the processing load amongst multiple cores (Campbell & Miller
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2010). Akhter & Roberts (2006) state that although the overview of parallel

processing may sound similar to concurrency, the terms are not interchangeable.

When a number of threads or tasks are running in parallel, they are all running

simultaneously on different hardware processors. When a number of threads or

tasks are running concurrently they are all running on the one hardware processor

with their own allocated time slice. Akhter & Roberts (2006) state ‘In order

to have parallelism, you must have concurrency exploiting multiple hardware

resources’.

The current philosophy for programming parallel processes is similar to the con-

current operation, previously outlined in Section 7.4.1, and the drawback is the

same, which is that the system cannot guarantee execution times. This may not

be a problem if the overall speed increase in the system is so great, from the use

of the multi-cores that even in the worst case, the processing time is still within

the required time frame. However, the speed increase is not linearly related to

the number of cores used, and is the focus of Amdahl’s Law, outlined in the next

section.

7.4.2.1 Amdahl’s Law

Amhahl’s Law determines the relative speed improvement to a software program

by parallelising its operation (Amdahl 1967). Not all portions of a software

program are able to be parallelised (i.e. must be left as sequential) and the

possible speed improvement of a program’s operation using parallel processing is

limited by this sequential portion. Amdahl’s Law calculates the possible speed-up

in processing as:

speedimprovement(f, n) =
1

(1 − f) f
n

(7.2)

where:

n = the number of processor cores.

f = the amount of the program that can be parallelised.
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Figure 7.6 is a graph of Amdahl’s Law from Equation 7.2 with f = 75% (typical

value from computing texts further discussed in Section 7.6.1.2) and n varying

from 0 to 20. Figure 7.6 shows the speed-up from four cores is approximately 2.25

times, nine cores is a speed-up of three times and 20 cores is a speed-up of 3.5

times emphasising a non linear speed improvement. The non-linear improvement

provides diminishing returns for speed increase by the addition of extra processing

cores.

Figure 7.6: Graphical representation of the relative execution speed improvement

determined by Amdahl’s law with 25% sequential processing over 20 cores.

7.4.2.2 ‘Parallel’ patterns in the Microsoft R© development platform

Campbell & Miller (2010) outlines the Microsoft R© development platform parallel

patterns implementations as:

1. Parallel loops. A calculation is performed on the contents of a data group
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with no dependencies2 from the preceding or following item of data.

2. Parallel tasks. The operating system runs tasks as separable asynchronous

tasks.

3. Parallel aggregation. Parallel aggregation provides similar outputs to par-

allel loops and is used when there are dependencies.

4. Futures. The outputs of some operations are used as inputs into other

operations and the order in which the operations are constrained. The

operations may or may not be able to run in parallel depending on the data

dependency.

5. Dynamic task parallelism. Tasks are dynamically added as the computation

proceeds such as in database sorting.

6. Pipelines. A pipeline is where the output of one task (stage) is fed in as

the input of another task.

The six patterns above are used in asynchronous parallel processing implementa-

tions where the operating system allocates the functions.

7.5 Novel Synchronised Pipeline Processing (SPP)

technique

The novel Synchronised Pipeline Processing (SPP) technique developed in this re-

search incorporates traditional parallel computing patterns and hardware pipelin-

ing of the image analysis algorithms to extend the processing time available with

a linear improvement. The speed-up supplied by the synchronous pipelining

2A dependency refers to the relationship between software functions. Function (A) is de-

pendent on function (B) if function (A) requires input data from the output of function (B).
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method is a speed-up in the input frame rate, not an overall speed-up in execu-

tion time of the software functions. This combination has not (to the author’s

knowledge) been published, and an opinion on patentability (reproduced in Ap-

pendix D) suggests that the developed technique has not been used in the context

of real-time image processing.

7.5.1 Modified pipeline used in the SPP

The principal pattern that the SPP technique modifies is the pipeline. Typical

asynchronous pipeline operations and the improved synchronous pipeline opera-

tion with SPP are discussed in the following subsections.

7.5.1.1 Asynchronous pipeline operation

Figure 7.7 illustrates an asynchronous parallel process pipeline function. The

pipeline process flow is similar to hardware flow (Figure 7.5) but the system is

asynchronous. The memory buffers at the end of each stage in Figure 7.7 need

to be large enough to hold multiple frame’s worth of data, as each stage does not

pass on the results synchronously. A stage may have to wait for the results from

the previous stage; or if a stage is slow it must store data from the previous stage.

At some point the output of the system may need to slow down to accommodate

the slowest function or else data will be lost. If the pipeline is running multiple

frames the tasks will be reallocated for each frame. This system cannot guarantee

execution time which is not satisfactory in a real-time system.
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Figure 7.7: Asynchronous parallel pipeline process applied to image analysis

(adapted from (Campbell & Miller 2010)).

7.5.1.2 SPP concept and application to spot spraying

The SPP can guarantee execution time and overcomes the non-linear improve-

ment associated with typical asynchronous parallel patterns. The SPP achieves

this by allocating fixed tasks to the individual cores which operate continuously

in an endless loop until the spot spray application is complete (e.g. end of the

agricultural field). The fixed tasks are synchronised to each other by the incom-

ing image frame from the camera or a timer synchronised to the incoming image

frame.

Figure 7.8 demonstrates the SPP technique as applied to the real-time processing

requirements of spot spraying. All of the analysis functions associated with each

stage of the processing are allocated to an individual core and synchronised by

the input frame number N. Cores P0 and P5 are operated asynchronously as they

use the asynchronous functions of the operating system (image acquisition and

computer inputs and outputs). Cores P0 and P5 operate with a synchronous

hardware timer so that they cannot overrun the allocated time frame and skip
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frames. Cores P2, P3 and P4 operate sequentially and are synchronised by the

input image. In cores P2, P3 and P4 executions are timed so that in a worst case

they still will not overrun the allocated time frame determined by the frame rate.

In this example (Figure 7.8), cores P2 and P3 are operating in parallel with the

feature extraction function split between the two cores. Alternatively it could be

two different feature extraction functions.

Figure 7.8 is one example of the implementation, however the technique can be

applied to multicore CPUs and multicore GPUs with many more or fewer cores.

The allocation of the analysis process to the cores is based on the dependencies

of the analysis processes.
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Figure 7.8: Flow diagram of the Synchronised Pipeline Processing (SPP)

technique, indicating the principal processing tasks in its application to spot

spraying.
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7.5.1.3 Timing diagram for SPP operation

Figure 7.9 is a timing diagram of the SPP technique with consecutive input frame

numbers set forth horizontally across the diagram. The processing stages of the

pipeline are set forth vertically downward beside the diagram and the designator

P corresponds to the core allocation in Figure 7.8. It can be seen that there is

a delay from when input frame number 1 enters the pipeline at P1 and when

the output for frame number 1 is actioned in the last processing stage of the

pipeline at P5. It can also be seen that no frames are lost, and that there are now

five input frames worth of acquisition and processing time available. Additional

processing time can be obtained by using a processor with a higher core count in

the same way.

Input frame number (N) 1 2 3 4 5 6 7 8 9 10

Image acquisition of 
input frame 

P0

Input frame number (N) X 1 2 3 4 5 6 7 8 9

Depth segmentation based 
on input frame number (N)

P1

Input frame number (N) X X 1 2 3 4 5 6 7 8

Feature extraction based 
on input frame number (N)
P2 and P3 in parallel

Input frame number (N) X X X 1 2 3 4 5 6 7

Classification based on
input frame number (N)

P4

Input frame number (N) X X X X 1 2 3 4 5 6

Action based on 
input frame number (N)

P5

Figure 7.9: Timing diagram of the novel SPP technique corresponding to

Figure 7.8. X denotes an unknown state of the system.
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The system has the following flow through the stages relative to the time period:

• P0- The images are acquired (frame number N=1) and pre-processing is

performed with the images being made available to stage 2 at the end of

the time period.

• P1- The pre-processed images of frame number N=1 are taken by the depth

analysis system in P1 of the pipeline, analysed and the result made ready

for P2 and P3. P0 is repeated with frame number N=2.

• P2 and P3- The result from P1 analysis on frame number N=1 is processed

in P2 and P3 which include two feature extraction algorithms running in

parallel on different cores with results made available for P4. Extra feature

extraction algorithms could be run at this stage if implemented on a pro-

cessor with a higher core count. P0 is repeated with frame number N=3

and P1 is repeated with frame number N=2.

• P4- The results of P3 analysis on frame number N=1 are classified and the

result passed to administration. P0 is repeated with frame number N=4,

P1 is repeated with frame number N=3 and P2 and P3 are repeated with

frame number N=2.

• P5- Output for frame number N=1 is actioned and P0 is repeated with

frame number N=5, P1 is repeated with frame number N=4, P2 and P3

are repeated with frame number N=3 and P4 is repeated with frame number

N=2.

The above sequence repeats continuously until the overall process is ended.

7.5.1.3.1 Summary of SPP operation

The similarity of the SPP to the flow of a hardware logic device (Figure 7.5) is

demonstrated by the flow of results from processing stage to processing stage,
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clocked by either a hardware timer, set to be synchronised with the input im-

ages frame rate, or the new input image itself. The processing in stage P1 is

part sequential and part asynchronous with the overall possible processing time

including the asynchronous function being less than the input image frame rate

period. The processing within stages P2 to P4 are 100% sequential and execu-

tion time is fixed. Administration and action functions P5 are asynchronous.

The functions executing within administration do have their scheduling manip-

ulated programatically to influence the operating system’s timing allocations by

changing the thread priority settings (Windows SetThreadPriority function set to

THREAD PRIORITY TIME CRITICAL (MSDN 2015)), placing more emphasis

on real-time tasks.

7.6 Evaluation of alternative processing config-

urations

This section evaluates the processing times for:

• sequential single core processing;

• asynchronous parallel processing as used by Microsoft R©; and

• the novel SPP technique.

The frame rate available from each image analysis application in sugarcane and

pyrethrum is determined because frame rate is a principal factor in determining

groundspeed (set out in Equation 7.1).
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7.6.1 Evaluation method

The method used to compare the processing techniques is to determine the exe-

cution times for each Image Analysis Task (IAT) in a sequential single CPU core

and apply the times to asynchronous parallel processing techniques and the the

SPP.

7.6.1.1 Execution timing data collection

A possible source of execution timing error is the operating system interrupting

the IAT to address other functions of the computer or callbacks. The operating

system interruptions can distort the execution timing results and one method

of addressing the operating system interruptions is to collect execution timing

results from numerous frames and determine an average (Persa et al. 2000). The

total time taken for the weed spot spray function on a single CPU is the addition

of the IAT times of all the modules in milliseconds.

7.6.1.2 Asynchronous parallel processing timing setup

The speed increase factor for Microsoft R© asynchronous parallel processing was

calculated to be 2.25 using Amdahl’s Law of parallelisation with 75% parallelised

(Figure 7.6) based on a quad core CPU operating at 2.8GHz.

The portion of code that can be parallelised is difficult to estimate as each loop

within a function needs to be evaluated. The amount of parallelisable code in

each of the software functions developed for spot spraying in this research would

be expected to vary due to the dependency of data within the function. For

example a function for binarising and filtering an image has few dependencies

in the data and could be estimated at approximately 90%, whereas the DCSA is

heavility dependant upon previous data and could be estimated at approximately

10% paralellisable.
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To fully determine the portion of parallelisable code in the sugarcane and pyrethrum

algorithms, would require a complete re-write of all software functions to imple-

ment the parallel patterns. Therefore, for the purpose of evaluation a conservative

value of 75% paralellisable code was choosen for all functions combined. The to-

tal asynchronous parallel processing execution time was determined by dividing

the single CPU time by 2.25.

7.6.1.3 SPP timing setup

The distribution of the analysis modules to individual cores similar to the allo-

cation shown in Figure 7.8 was required to determine the SPP execution time.

The largest core operation time will be the fastest execution time usable for the

SPP method to ensure that all processes, in all cores, can be carried out. Depen-

dencies of the modules are taken into account when the modules are allocated to

individual cores.

7.6.1.4 Computer setup

The computer used was a 2.8 GHz, Intel R© I7 2640M with 8GB RAM. The setup

of the computer when collecting the execution timing results was:

• no other programs were open;

• all external communications were disabled.

• the thread running the program had a priority setting of ‘high priority’ (the

highest setting possible);

• the program was set to core 2; and

• the execution timing of the analysis modules is determined by the ‘Windows’

function QueryPerformanceCounter(), which returns the current value of

the high-resolution performance counter in 100 ns increments.
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7.6.1.5 Frames per second calculation

The frames per second results were determined by using the total execution times

for single core and asynchronous parallel processing methods and the fastest time

for the SPP method in milliseconds and dividing one second by this value.

7.6.2 Results and discussion – sugarcane

The execution timing data for sugarcane was acquired from 1,996 consecutive

frames of the video data set from 10/10/2012, field 13-A (Table 3.1) which was

used for the feature extraction and classification results of Section 6.5.5. There

are seven analysis modules in the weed spot spray function for sugarcane and

these are listed in Table 7.1. Table 7.2 displays the module times taken for the

sequential processing of each analysis module. Table 7.3 shows the allocation of

modules to processing cores.

Table 7.1: Analysis modules for sugarcane.

Analysis Module Process number

Image acquisition 1

Segment and filter colour image 2

Pre-process depth image 3

DCSA 4

Delete all leaves above h2 5

Combine the retained image and colour image 6

Classify weed by tracking algorithm 7

Table 7.2: Execution times of analysis modules for sugarcane.

Timing

statistic

Analysis module

1 2 3 4 5 6 7

execution

time (ms)

4 6.71 8.73 24.49 1.28 6.58 10.61
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Table 7.3: Allocation of the analysis modules to the individual cores for

sugarcane SPP analysis.

Processing core Core 1 Core 2 Core 3 Core 4

Analysis module (1) half half (5)

allocation (2) of (4) of (4) (6)

(3) (7)

Running time per core

per frame (ms)

19.44 12.24 12.24 18.84

The functionality of the DCSA is in two halves, i.e. half the analysis is done in core

2 and at the next frame the partial result from core 2 is completed in core 3 before

being passed onto core 4 at the following input frame. Figure 7.10 highlights the

improvement in frame rate of the parallel methods over sequential.The overall

execution time and implied maximum frame rate for each method with fps shown

in Figure 7.10 was as follows:

• The single CPU was 62.40 ms (corresponding to 16 fps).

• The asynchronous parallel processing execution time was 28 ms (36 fps).

• The SPP execution time was 19.44 ms (51 fps).
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Figure 7.10: Overall improvement in frame rate of processing techniques for

sugarcane.

By comparing the execution times for each processing technique and the frame

rate results of Figure 7.10, the SPP requires 31% of the processing time of se-

quential processing, which is a speed-up in frame rate of 3.2 times. The same

analysis for asynchronous parallel processing shows 44% of the processing time

compared to a sequential processing method (a speed-up of 2.25 times).

7.6.3 Results and discussion – pyrethrum

The execution timing data for pyrethrum was acquired from 500 sequential frames

of data taken from the DRF-Speedlings site on the 11-04-13 (Table 3.3).

The weed spot spray software function for pyrethrum has 10 analysis modules,

listed in Table 7.4. As with the timing data for sugarcane, Table 7.4 displays the

analysis modules and Table 7.5 displays the module execution times taken for the
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sequential processing of each analysis module. Table 7.6 displays the allocation

of the analysis modules to the individual cores (with dependencies taken into

account). Figure 7.11 displays the frame rates of the processing methods.

Table 7.4: Analysis modules for pyrethrum.

Analysis Module Process

number

Image acquisition 1

Depth calibration 2

DCSA 3

Copy images 4

Spatial segment 5

Binarised image segmentation 6

Hull guidance 7

LBP classification 8

Depth classification 9

Combined depth and spatial classification 10

Table 7.5: Execution times of analysis modules.

Timing

statistic

Analysis module

1 2 3 4 5 6 7 8 9 10

execution

time (ms)

14.79 1.15 21.95 0.68 38.65 11.49 2.04 3.07 1.06 1.99
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Table 7.6: Timing of the individual cores when the analysis modules have been

distributed. Times are in milliseconds.

Processing core Core 1 Core 2 Core 3 Core 4

Analysis module (1) (3) half (5) half (5)

allocation (2) (4) (7) (9)

(6) (8) (10)

Running time per core

per frame (ms)

27.43 22.63 24.44 22.38

Figure 7.11: Overall improvement in fps of compared techniques for pyrethrum.

Table 7.6 shows analysis modules one, two and six are allocated to core one;

modules three and four are allocated to core two; the functionality of module five

in two halves, i.e. half the analysis is done in core three and at the next input

frame the partial result from core three is completed in core four. From Table 7.6,

the largest time in the core operation is 27.43 ms in core one. Hence core one will

determine the fastest analysis time usable for the SPP method in pyrethrum.
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The overall execution time and implied maximum frame rate (fps) for each

method shown in Figure7.11 was as follows:

• Single CPU is 90.76 ms (corresponding to 11 fps).

• The asynchronous parallel processing was 40.3 ms (25 fps).

• The SPP was 27.43 ms (36 fps).

From the execution times and the frames per second of each method listed above,

the SPP is 29% of the processing time compared to sequential processing, which

is a speed-up in frame rate of 3.35 times. The asynchronous parallel processing

execution time provided 44% of the processing time compared to a sequential

processing method ( speedup of 2.25 times).

7.7 Discussion and significance of synchronous

pipelining to spot spraying

7.7.1 Groundspeed improvement

A primary factor in a real-time, real-world spot spray system is the input frame

rate as it dictates the groundspeed of the spot sprayer as discussed in Section 7.3.2.

The ‘speed-up’ of the input frame rate supplied by the synchronous parallel

pipelining method compared to sequential processing and asynchronous paral-

lel processing is summarised in Table 7.7. Although the overall processing times

of sugarcane (62.4 ms) and pyrethrum (90.79 ms) varied by 45%, the SPP had a

similar improvement over sequential and asynchronous parallel processing. The

similar improvement is because the operation of the techniques did not change

between crops and therefore the speedups remained relative.
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Table 7.7: Summary of the ‘speed-up’ of input frame rate created by the SPP

method compared to sequential processing and asynchronous parallel processing.

‘Speed-up’ Sugarcane Pyrethrum

over sequential processing 3.21 3.35

over parallel asynchronous processing 1.41 1.49

The benefits of increased processing capacity of the SPP for spot spraying can

be used a number of ways:

1. increase in groundspeed of the spot spray system; or if not required then

2. increase in sensor data and complexity of algorithms to identify weeds and

crop on-the-go and apply herbicide to the targeted plant; or if not required

then

3. increase in robustness of result by operating secondary identification algo-

rithms to check original algorithm’s result; and/or

4. use a cheaper computer with lower specifications to achieve the practical

maximum groundspeed.

To highlight the advantage in groundspeed of the SPP in the field for sugarcane

and pyrethrum:

• the data from the sugarcane timing example (Section 7.6.2) can be used.

Maximum groundspeeds for the different processing techniques can be de-

termined by using the frame rate in Figure 7.10 and a practical value of 10

for CFthresh (Section 6.5.1). Therefore, sequential processing would have a

maximum groundspeed of 5.7 km/h, asynchronous parallel processing tech-

niques would have a maximum groundspeed of 13 km/h and the novel SPP

technique would have a maximum groundspeed of 18.5 km/h. Practical,
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commercial speeds in sugarcane are less than 8 km/h so the extra process-

ing capacity could be used as outlined in items 1 to 4 above.

• the pyrethrum frame rates with an OIR of 3 and d = 0.4 (Section 7.3.2)

sequential processing would have a maximum groundspeed of 5.25 km/h,

asynchronous parallel processing techniques would have a maximum ground-

speed of 12 km/h and the novel SPP technique would have a maximum

groundspeed of 17.2 km/h. As with sugarcane practical, commercial speeds

in pyrethrum are less than 8 km/h so the extra processing capacity could

be used as outlined in items 1 to 4 above.

7.7.2 Nozzle offset for commercial weed spot spraying

The computational time taken (total pipeline analysis time) between the input

of the frame and the output of a result (77.76 ms in the sugarcane example

Section 7.6.2 and 109 ms in the pyrethrum example Section 7.6.3) at the end

of the pipeline in the SPP can be compensated for by positioning the spray

nozzle a distance behind the camera that allows for the total pipeline analysis

time and maximum groundspeed. The distance required to move the nozzles can

be determined by multiplying the maximum groundspeed in m/s by the total

processing and solenoid activation time in seconds. Therefore for a maximum

groundspeed of 8 km/h (2.2 m/s) and solenoid activation time of 0.010 s (10 ms),

the mounting distance offset for in sugarcane will be 2.2 X (0.077+0.010) = 0.19m

(190 mm) and pyrethrum will be 2.2 X (0.109+0.010) = 0.26 m (260 mm).

7.7.3 Further improvements

The improvement in frame rate (or the capacity for additional analysis) will be

greater with a higher core count CPU compared to sequential or asynchronous

parallel processing. This is because the sequential processing portion of the soft-
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ware will stay the same; the improvement in asynchronous processing will not be

linear (Amdahl’s Law) and will taper off; but the increase in improvement for the

synchronous pipeline method will continue until core allocation of the analysis

modules cannot be further achieved due to the dependency of modules or sub

modules. The speed-up for the sequential pipeline will then follow Amdahl’s Law

as further improvements will be made by ‘spreading the load’ allocated to each

core over more cores as in the asynchronous methods.

7.7.4 Conclusion

It has been demonstrated that the SPP can provide an advancement in the

amount of processing available to identify the weeds from the crop in two dif-

ferent farming industries in Australia. In the sugar and pyrethrum industries

where the groundspeed would not exceed 8 km/h, the SPP will provide the ca-

pacity to undertake additional feature extraction and classification analysis such

as applying additional texture and shape extraction techniques. The additional

analysis can be used to identify additional weeds and expand the system’s capa-

bilities of identification, or to improve the accuracy of the classification with more

complex analysis operating in real-time. In industries that have a high ground-

speed requirement, such as the broadacre industry in Australia which operate at

up to 20 km/h, the SPP will allow analysis to distinguish crop from weeds at

higher groundspeeds than have been available to date.
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Chapter 8

Portability of the Depth Colour

Segmentation Algorithm (DCSA)

8.1 Introduction

This chapter reports a preliminary evaluation of the portability of the Depth

Colour Segmentation Algorithm (DCSA) to crops other than sugarcane and

pyrethrum and also the operation of the DCSA within the Synchronised Parallel

Pipeline (SPP). The crops used for the evaluation of portability were sorghum and

mung beans, chosen because they are common crops in the north eastern farm-

ing areas of Australia and are commonly grown in minimum and no-till farming.

Sorghum and mung beans also represent grass-like crop (sorghum) and broadleaf

type crop (mung beans) which are the principal crop categories in the broadacre

and row crop farming sectors in Australia.

Feature extraction and classification is not evaluated in this chapter as the present

research has not set out to develop a generic technique that is portable to other

crops. However, in principle at least, the DCSA should be generic and there-

fore portable to other crops. The same analysis method for the DCSA’s level of
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occlusion tolerance and data reduction that was used in Chapter 5 for segmen-

tation, is used in this chapter to compare the DCSA’s operation in sorghum and

mung beans with sugarcane and pyrethrum respectively. The evaluation method

is detailed below in Sections 8.3.1 and 8.4.1.

8.2 Data collection

Data was collected on the Darling Downs in Queensland using the pyrethrum

single crop-row data gathering device outlined in Section 3.5. The single crop-

row data gathering device had a groundspeed of 3 km/h but fluctuated ±1 km/h

depending upon the field conditions, i.e the rougher the ground, the slower the

groundspeed.

The mung bean data was collected from ‘Wolonga’ (latitude -27.594775 , longitude

151.296262) on the 31st of January 2014 at 1:30 pm and consisted of 150 frames

of colour and depth video. The sorghum data was collected from ‘Kurralinden’

(latitude -27.594318, longitude 151.291176 ) on the 13th of November 2013 at

4 pm, and consisted of 150 frames of colour and depth video.

8.3 Application of the DCSA to sorghum

8.3.1 Weeds from sorghum

The crop of sorghum was required to be discriminated from weeds. Sorghum is

a grain crop which grows during the summer months in north eastern Australia.

Sorghum is commonly planted in 1 m rows by a precision planter, but is sometimes

grown on narrower rows planted by broadacre air seeders set up for planting wheat

(which is a common crop in broadacre farming in Australia). Sorghum can grow
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up to 1.5 m high depending upon the variety and growing conditions. From visual

inspection of colour and depth data from the data collection device, the weeds

were observed not to be grass-like and the majority of the weeds were lower in

height than sorghum. Sorghum grows with grass-like leaves from a main stem

(Figure 8.1.

Figure 8.1: Sorghum planted on 1 m row spacing at the 50 cm growth stage.

Taken at ‘Kurralinden’ on the 13th of November 2013.

An objective of this research is to show that combining colour and depth provides

a more robust result than either depth or colour on their own (Section 1.3).

Therefore, modifications were made to the DCSA analysis software described in

Section 5.5.2, namely:

• binarised segmentation technique (BST) was applied to the colour image;

• recording both retained and deleted components; and

• manual assessment of occlusion in the image before and after segmentation.
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The recorded information allowed the DCSA to be compared to the BST image.

A depth-only segmentation technique was not evaluated for the same reason as

set out in Section 5.2.4, namely the problems associated with the depth-only

connected component technique incorporating the ground in the components.

For the evaluation, the components in the ‘retained image’ after application of

the DCSA are those components:

• whose average height was above height1 (H1=45);

• are green; and

• are above a threshold size of 100 pixels.

The analysis was undertaken by applying the DCSA and binarised segmentation

technique (G > R and G > B) to a video stream of sorghum and weeds with the

sorghum at a growth stage of 50 cm. In the image series Figures 8.2 to 8.5, the

following image analysis steps are presented:

• A colour image of sorghum (Figure 8.2).

• A BST image of Figure 8.2 (Figure 8.3).

• Components determined by DCSA applied to Figure 8.2 (Figure 8.4).

• The original image (Figure 8.2) with components retained by the DCSA

highlighted and overlaid in yellow (Figure 8.5).

This sequence of images pictorially shows the DCSA process for sorghum and its

sorting capability.
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Figure 8.2: Colour image of sorghum plant with weeds.

Figure 8.3: BST segmented image of Figure 8.2.
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Figure 8.4: All components identified in the DCSA (in false colour) of the colour

image of sorghum, Figure 8.2.

Figure 8.5: Colour image of sorghum plant and weeds overlaid with the retained

components highlighted yellow.
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8.3.2 Results for the DCSA used in sorghum

Table 8.1 displays the results for occlusion tolerance for the DCSA and the bina-

rised segmentation technique application to sorghum and weeds. Table 8.1 shows

there were 37 weeds in the 150 consecutive frames of video of which 23 weeds

were occluded by sorghum. The binarised segmentation technique was not able

to isolate any of the occluded weeds, with 100% of occluded weeds being grouped

with sorghum components. However, the DCSA grouped 0% of occluded weeds

with sorghum.

Table 8.1: Sorghum occlusion results from 150 frames.

Total number of weeds 37

Number of weeds occluded in video data 23

Number and percentage of weeds occluded after BST 23 (100%)

Number and percentage of weeds occluded after DCSA 0 (0%)

The sorting capability results are set out in Tables 8.2 and 8.3. From Table 8.2,

there were 36 components in each frame on average and the sorting function in

the DCSA removed 30 components, leaving 6 components which is a reduction

in components requiring further analysis of 85%. There was a reduction in pixels

requiring further analysis (Table 8.3) of 65%. The computational time of the

analysis was 24 ms, which is similar to sugarcane at 22 ms. The standard devi-

ation of the components and pixels in indicate a high amount of variation from

frame to frame which can be attributed to the changing amount of plant material

between the frames.
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Table 8.2: Sorghum segmentation results for components and timing.

Statistic Average std de-

viation

Number of depth components per image 39 9

Number of depth components after segmentation 6 3

Reduction in the number of depth components 85% -

Computation time of DCSA in ms 24 4

Table 8.3: Sorghum segmentation results for pixels.

Statistic Average std de-

viation

Depth component pixels per frame before segmentation 33584 7

Depth component pixels per frame after segmentation 11900 5278

Percentage reduction in depth component pixels 65% -

8.4 Application of the DCSA to mung bean

8.4.1 Discrimination of weed from mung bean

The crop of mung bean was required to be discriminated from all weeds. As with

sorghum, mung bean is a grain crop which grows in summer in Australia. Mung

beans are grown in north eastern Australia and are commonly grown in 1 m rows

planted by a precision planter however, as with sorghum it has also been grown

on narrower rows planted by broadacre air seeders. Mung beans can grow up to

0.5 m high depending upon the variety and growing conditions and commonly

spill out between the row (Figure 8.6). From visual inspection of the colour and

depth data, it could be seen that the weeds were not grass-like and that the

majority of the weeds were lower in height and vine-like. Figure 8.6 shows the

crop of mung beans from which the data was collected.
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Figure 8.6: Colour image of mung beans planted on 1 m rows with weeds. Taken

at ‘Wolonga’ on the 31st of January 2014.

The evaluation software modified for sorghum evaluation was used in the mung

bean data evaluation. The settings used in the DCSA for mung beans were:

• whose average height was above height1 (H1=35);

• are green; and

• are above a threshold size of 100 pixels.

The analysis outlined previously for sorghum was applied to mung beans at 35 cm

growth stage. An example in images is as follows. The colour image is shown

in Figure 8.7. The colour image (Figure 8.7) is segmented by a BST and shown

in Figure 8.8. An image of the components found in the DCSA of Figure 8.7 is

shown in Figure 8.9. The retained components are superimposed as yellow on

the colour image Figure 8.10 to highlight the reduction in components achieved

by the sorting capabilities of the DCSA.
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Figure 8.7: Colour image of mung beans plant with weeds.

Figure 8.8: BST segmented image of beans plant with weeds Figure 8.7.
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Figure 8.9: All components identified in the DCSA (in false colour) of the colour

image of Figure 8.7.

Figure 8.10: Colour image of sorghum plant and weeds overlaid with the retained

components highlighted yellow.
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8.4.2 Results for the DCSA technique in mung beans

Table 8.4 are the results for occlusion tolerance for the DCSA and the binarised

segmentation technique when applied to mung bean and weeds. Table 8.4 shows

that from the 150 frames analysed there was 14 weeds in total with 6 of the weeds

being occluded. The BST was not able to isolate any of the occluded weeds and

the DCSA was able to segment all of the occluded weeds.

Table 8.4: Occlusion results of segmentation analysis in mung bean from 150

frames.

Total number of weeds 14

Number of weeds occluded in video data 6

Number and percentage of weeds occluded after BST 6 (100%)

Number and percentage of weeds occluded after DCSA 0 (0%)

Tables 8.5 and 8.6 display the sorting capability of the DCSA. Table 8.5 shows

the DCSA removed 33 components from a total of 38 components which is an

87% reduction in the number of components requiring further analysis. Table

8.6 shows a reduction in pixels from 34884 pixels to 14329 pixels (59%) requiring

further analysis. The standard deviation of the components and pixels in indicate

a high amount of variation from frame to frame which can be attributed to the

changing amount of plant material between the frames.

Table 8.5: Mung bean segmentation results regards components and timing.

Statistic Average std de-

viation

Average number of depth components per image 38 6

Number of depth components after segmentation 5 2

Percentage reduction in the number of depth components 87% -

Computation time of DCSA in ms 25 4
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Table 8.6: Mung beans segmentation results regards pixels.

Statistic Average std de-

viation

Depth component pixels per frame before segmentation 34884 5809

Depth component pixels per frame after segmentation 14329 2661

Percentage reduction in depth component pixels 59% -

8.5 Discussion of results

The evaluation on sorghum and mung bean crops was preliminary and based on

a small data set of 150 frames for each crop. However, the results from both

sorghum and mung beans show a high level of occlusion tolerance for the DCSA

with 100% tolerance for both data sets. The sorting capability of the DCSA

was high with results for reducing pixels for further analysis of 85% for sorghum

and 87% for mung beans. From visual inspection of the depth and colour data

it was anticipated that the sorting results would be significant because there

was a height difference between the majority of the weeds and the crop. This

supports the results of Section 5.8 which shows that the sorting capability of

the DCSA is higher when there is a height difference between crop and weed.

The execution times would operate with the SPP at 24 ms (sorghum) and 25 ms

(mung beans) which are similar to sugarcane at 22 ms. These results are judged

to be promising and suggest that both the Depth Colour Segmentation Algorithm

(DCSA) and the Synchronised Parallel Processing (SPP) technique are portable

and may be directly applicable in other crops in the Australian broadacre and

row crop industries.
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Chapter 9

Conclusion and further research

9.1 Conclusion

This thesis has detailed the development and evaluation of a real-time, real-

world machine vision system for automatic weed spot spraying and mapping.

The developed system can discriminate crop from weed to allow the application

of herbicide to the weed only.

The objectives of this thesis are addressed in Sections 9.1.1 to 9.1.4 below.

9.1.1 Objective 1: Develop algorithms incorporating 2D

and 3D data

To develop an algorithm/s that incorporates 2D (colour) and depth data from

video streams to achieve weed discrimination from crop in a ‘real-time’, ‘real-

world’ environment at commercially realistic groundspeeds.
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9.1.1.1 Develop 3D algorithms for real-world conditions

A unique segmentation algorithm called the Depth Colour Segmentation Algo-

rithm (DCSA) was developed in Section 5.3 which incorporates 2D colour and

depth data to segment occluding leaves in a real-time, real-world situation. A

further feature developed into the DCSA was sorting of components to reduce

the amount of data requiring feature extraction and classification. The sorting

was based on colour and depth statistics of the component.

Unique feature extraction and classification techniques were also developed. An

object tracking classification technique (Section 6.5.1) was developed and evalu-

ated to identify guinea grass from sugarcane. Techniques developed for pyrethrum

used depth, colour, size, spatial and textural features (Section 6.6) to identify

pyrethrum from weeds

9.1.1.2 Real-time development

Real-time capability was obtained through the development of a new process-

ing technique called Synchronised Parallel Processing (SPP) which combines the

benefits of hardware processing on logic devices and consumer multi-core CPUs.

The SPP technique is unique and maintains a high frame rate (which dictates

the maximum groundspeed) whilst expanding the processing time by allocating

the workload in a permanently allocated pipeline synchronised by the incoming

video image.

9.1.1.3 Real-world data

The data in this research was collected at commercial operating groundspeeds for

sugarcane and pyrethrum from data acquisition units in typical field conditions

outlined in Chapter 3. The sugarcane data ranged from 0.25 m to 1.3 m in height

and the pyrethrum ranged from 0.1 m to 0.5 m in width and height up to 0.35 m.
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9.1.2 Objective 2: Demonstrate 3D techniques in real-

time, real-world conditions

To demonstrate that the addition of depth data to a suitable image analysis tech-

nique can achieve weed discrimination from crop in a commercially acceptable

operational window, i.e. at a range of crop growth stages in addition to a ‘real-

time’, ‘real-world environment.

9.1.2.1 3D technique performance

The DCSA was shown to segment plant from stubble and potentially other foreign

objects even when they are a similar height to the plant material, with an accuracy

when occluded of greater than 99%. Additionally the DCSA sorting produced an

84% reduction in pixels requiring feature extraction and classification in sugarcane

and 55% in pyrethrum. The DCSA worked best in sugarcane at the medium

(0.5 m) to high (1.3 m) growth stages and pyrethrum was best when the diameter

of the plant was greater that 0.15 m.

The object tracking classification technique (Section 6.5.1) could discriminate

guinea grass from sugarcane with a guinea grass identification rate of 87% (where

86% of the guinea grass was occluded) with a minimum weed size of 0.05 m2 and

a false trigger rate of 3.5%. Techniques for pyrethrum (Section 6.6) could identify

pyrethrum from weeds with a pyrethrum identification rate of up to 98% and a

false positive rate of 1.2% of pyrethrum plants of 0.15 m diameter and larger.

9.1.2.2 Real-time performance

The SPP was able to achieve frame rates for sugarcane and pyrethrum of 51

fps and 36 fps respectively or a top groundspeed of 18.5 km/h and 17.2 km/h

respectively.
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9.1.3 Objective 3: 3D versus 2D

To evaluate the performance of the developed technique under a range of real-

world environment conditions; in particular with respect to 3D space versus 2D

or depth on their own.

The DCSA was able to segment occluded leaves with 99% accuracy where the

BST was not able to segment occlusions at all. Section 6.2 evaluated the use

of typical 2D texture feature extraction techniques of Grey Level Co-occurrence

Matrix (GLCM), Grey Level Run Length Matrix (GLRLM) and Local Binary

Patterns (LBP) in sugarcane (accuracies between 49% and 66%) and pyrethrum

(accuracies between 47% and 63%). Section 6.6 incorporated depth data with

LBP data for pyrethrum identification to improve the classification taking the

accuracy form 63% to 90% which is an improvement of 37%.

9.1.4 Objective 4: Portability of algorithms with respect

to other crops

To demonstrate that the algorithms are adaptable to a range of crops under prac-

tical commercial conditions.

The DCSA was developed as a generic technique, was portable (Chapter 8) and

was applied to four crops: sugarcane, pyrethrum, sorghum and mung beans in

this thesis.

Portability of the DCSA was addressed in Chapter 8 by applying the DCSA to

sorghum and mung bean crops with positive preliminary results. The DCSA was

able to segment all occluding leaves and the sorting capability associated with

the DCSA reduced the data requiring further analysis by 85% for sorghum and

87% for mung beans. The execution time of the DCSA was 24 ms for sorghum
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and 25 ms for mung beans which is real-time capable.

9.2 Potential further research

The scope of this thesis has covered the machine vision process associated with

machine vision spot spraying. The research in this thesis has identified five areas

for further research which are:

1. Comprehensive evaluation of DCSA. The portability of the DCSA under-

went preliminary evaluation on sorghum and mung beans as a part of this

thesis. However, a full evaluation on crops grown in the Australian no-till

and minimum-till cropping systems would provide increased confidence for

segmentation of plants with occluding leaves in a real-world environment

and encourage feature extraction and classification techniques to be widely

implemented. Clearly this will involve extensive routine trials

2. A robust daylight compensation technique to allow the sensor equipment

to operate on open boomsprays, i.e. not under light restricting covers. The

compensation technique will need to provide shadow removal algorithms as

well as white balance compensation. Daylight compensation is required for

machine vision spot spray systems to become more mainstream and have

greater operational diversity

3. A depth sensing device capable of direct sunlight operation at frame rates

that allow groundspeeds up to 20 km/h. Typical stereo-vision cameras

have difficulty in varying light conditions and require significant time (with

respect to a real-time system) for correspondence matching. Structured

light systems offer a cheap and effective method of depth sensing, however,

they are affected by dust, which is prevalent in agricultural circumstances.

A system needs to be developed that can be largely unaffected by dust,
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provide accurate depth information, at a economical cost and suit a real-

time situation.

4. More complex algorithms that can use the additional processing time to

identify a wider weed spectrum, or improved robustness of existing algo-

rithms. The SPP will enhance the machine vision systems to operate several

feature extraction algorithms or highly complex individual algorithms. It

is envisioned that additional features may enable more robust classification

of weeds across a wider weed/crop spectrum.

5. Develop precise herbicide application spray technology. Spraying weeds in

a crop situation requires the smallest possible herbicide footprint. Any

overspray of the weed can potentially cause death to a crop plants. Spot

spray delivery technology needs to be developed that provides an optimum

spray pattern for standing weeds, as well as prone weeds, with little to no

overspray at speeds up to 20 km/h. This project will require developing

a spray manifold with numerous spray solenoids and each nozzle applying

a small spray width on the ground (e.g. 5 cm, therefore requiring 20 per

meter). The solenoids will need to be highly efficient electrically, with fast

turn on/off times. The spray manifold will need to consider the effects of

continually changing fluid pressure in the manifold due to the activation of

many small solenoids.
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Appendix A

Glossary of terms

Term Definition

BST Binarised segmentation technique (G > R and G > B)

DATE FORMAT day/month/year

DCS Depth, colour and size (algorithm)

DCSA Depth colour segmentation (algorithm)

DCSS Depth, colour, size and spatial (algorithm)

Fallow Land that is left unseeded with crop and weed free dur-

ing a growing season .

GLCM Grey level co-occurrence matrix (texture features)

GLRLM Grey level run length matrix (texture features)

k-NN K nearest neighbour (classifier)

LBP Local binary pattern (texture features)

LBPD Local binary patter and depth (custom texture features)

Min-till Minimum tillage farming system

MLP Multi layer perceptron (neural network classifier)

NIR Near infra-red portion of the spectrum.

No-till No tilling farming system

Occlusion An occlusion is where parts of plants and/or stubble

overlap each other from the viewpoint of the camera.
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OIR Object identification redundancy

OTC Object tracking classification

Ratoon Crop regrowth season

Real-time A computation result must be correct and within a strict

deadline

Real-world Actual commercial field conditions

ROC Receiver operating characteristic curves (feature selec-

tion tool)

ROI Region within the image containing the area of interest

for machine vision.

SVM Support vector machine (classifier)

SP Spatial position (algorithm)

Spot spray The spot application of a herbicide to an individual or

small patch of weed or crop.

SPP Synchronised parallel processing technique

Trash blanket Sugarcane weed suppression practice

VIS Visible portion of the spectrum.

Weed mapping The recording of the weed and its latitude and longitude

so that it can be displayed on geographic information

software for evaluation.

Table A.1: Glossary of terms.



Appendix B

Commercial spot sprayers

Weed detection technologies commercially available at the time of writing are

only able to distinguish plant from background (i.e. soil and /or stubble). Com-

mercially available technologies are the WeedSeeker R© from Trimble corporation

and the WeedIT from GPS-Ag Pty Ltd. The Greenseeker R© is a similar technol-

ogy to the WeedSeeker R© by Trimble corporation that can be used to determine

an ‘index’ value of the plants beneath the sensor, for nutrient application.

B.1 WeedSeeker R© / Greenseeker R©

The WeedSeeker R© technology (Figure B.1) was released commercially in the

1980s. The WeedSeeker R© determines a vegetation index similar to NDVI by

measuring the red reflectance and NIR reflectance. These measurements achieve

discrimination between green plants and background (i.e. soil) because a green

plant has a much higher NIR reflectance than red reflectance, whereas background

soil has low reflectance in both NIR and red wavelengths. The WeedSeeker R© is an

active sensor system providing its own LED light source source to provide illumi-

nation for the reflectance reading as well as offsetting ambient light measurement
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levels to improve the robustness of the result. The Greenseeker R© is an adaptation

of the WeedSeeker R© technology which provides a varying vegetation index that

can be used in fertiliser application and/or log measurements to a map. Figure B.1

provides a description of the WeedSeeker R© operation and more information can

be accessed at https://www.trimble.com/Agriculture/WeedSeeker.aspx.

Figure B.1: Diagram of how a WeedSeeker Sensor operates reproduced from

https://www.trimble.com/Agriculture/WeedSeeker.aspx.

https://www.trimble.com/Agriculture/WeedSeeker.aspx
https://www.trimble.com/Agriculture/WeedSeeker.aspx
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B.2 WeedIT

WeedIT is a technology that was released in Australia in 2009 by GPS-Ag Pty Ltd

and measures NIR emission in response to applied red illumination (Figure 1.9).

According to the WeedIT information (http://www.weedit.com.au/products.

php), the chlorofil in green plants absorbs red light, converts it to NIR and emits

it. The WeedIT system has an active red light source and is constantly checking

for the emission of NIR above a threshold as those areas have plant material

whereas soil and stubble do not have this characteristic.

Figure B.2: Diagram of WeedIT sensor operation (reproduced from the WeedIT

website http://www.weedit.com.au.

http://www.weedit.com.au/products.php
http://www.weedit.com.au/products.php
http://www.weedit.com.au
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B.3 Discussion of commercial weed detection

technologies

Commercially-available technologies for weed detection are typically based on

point measurements of reflectance/emission of specific wavelengths and make use

of the unique properties of plants in the NIR region of the spectrum. Incor-

poration of a localised and focused artificial light source improves the detection

performance in day and night operation but anecdotal evidence from operators

(Cropoptics Australia 2012) indicates that the detection systems work most re-

liably at night in the absence of variable natural daylight. The technologies are

most suited to spraying in pre-emergent, inter-row or fallow situations as the

detection technique targets any vegetation on a soil or stubble background.



Appendix C

Introduction to sugarcane and

pyrethrum farming practices

C.1 Sugar cane farming practices

Sugarcane (Saccharum officinarum) in Australia is grown by planting parts of

the mature cane plant into rows between 1.4 m to 2 m wide. Sugarcane typically

has a growing cycle of three to four ‘ratoons’ (regrowth crops), growing to a

height of between two to four metres. Harvesting is done annually and comprises

cutting the cane of at ground level, and chopping it into small (approximately

0.3 m) lengths called billets. The billets are then deposited into haul-out bins to

start its journey to the mill where it is crushed (Reid 1990). In minimum and

no-till systems, the trash left over from the harvesting process is spread over the

ground creating a ‘trash blanket’ (Figure C.1) up to 0.4 m thick, depending on

the amount of vegetative growth in the crop at harvest time. The trash blanket

suppresses weed seed germination and is an effective strategy to aid weed control

for the industry (Callow et al. 2010).

Grasses like guinea grass and green panic can choke out the sugar cane crop and
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Figure C.1: Ratooning sugarcane with a trash blanket.

create non productive areas within the field. Competition between weed and crop

(Figure 1.11) can cause significant loss in yield and can shorten the cropping cycle

(number of ratoons), which adds to the growing costs, as all farming applications

involved in land preparation and planting are amortised over a shorter period, as

well as a typically lower yield associated with the first season’s harvest.

C.2 Pyrethrum farming practices

Pyrethrum (Saccharum officinarum) in Australia is grown from planted seed, as

opposed to seedlings and has a perennial crop cycle of up to four years depend-

ing on the growing conditions it experiences. The pyrethrum crop is planted

in 0.25 m to 0.4 m row spacing with a plant density that causes the row to

appear contiguous. Harvesting is achieved by windrowing the pyrethrum and

picking it up with modified combine harvesters. The output of the combine har-

vester contains a significant amount of residue, mixed with the seed, and all is

transported to the Botanical Resources Australia facility in Ulverstone, Tasma-
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nia, where the residue is removed, and used as a fuel source in the extraction

plant. The pyrethrum seeds, which are extremely small, are processed by a pro-

prietary processing plant to extract the pyrethrum oil. All other residues that

are extracted in the processing procedure are spread onto the fields as a ground

conditioning agent.

After the first year harvest (typically low yielding), farming practices follow a

no-till approach, due to the harvest residue left in the fields and the problems

associated with tilling the weeds in moist ground, during wet summer and autumn

seasons. No-till weed control becomes problematic because of a limited number

of herbicides available to control weeds without affecting the pyrethrum. The

herbicide limitation is causing weed species to become resistant due to overuse,

and some weeds species escape completely, as they are not susceptible to these

specific herbicides.

As in sugarcane cropping, the direct competition from weeds can cause reduced

yields, as the weeds can choke out the crop reducing the plant density for following

seasons. This causes earlier than expected replants, which reduces the amortisa-

tion time for the land preparation and planting activities, effectively increasing

costs. Precision spray technology would enable the industry to introduce different

herbicides into its weed control program, help break resistance, and eradicate the

escapes. Figure C.2 shows a tractor and prototype sprayer in first year growing

pyrethrum (i.e. not regrowth) and Figure C.3 shows pyrethrum post harvest.
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Figure C.2: Tractor and experimental NCEA prototype spot spray system in a

crop of first year growing pyrethrum April 2014.

Figure C.3: Data gathering prototype in a crop of post harvest pyrethrum, March

2012.
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University of Southern Queensland  16 April 2013 
 

Summary 
 

In summary, several prior art documents were provided relating to automatic spraying of 
weeds using image analysis, and further similar prior art documents were identified.  
The problem of automatic weed spraying thus appears to be a relatively well 
understood problem in the art. 

 
The use of colour to differentiate weeds and soil, and weeds and crops, appears to be well 
known in the art. Similarly, the use of depth information in classification of weeds and 
plant material appears to form part of the prior art base.  Thus, such features are not 
patentable per se. 

 
Additionally, the use of specific line detection algorithms on plant matter appears to be 
known in the art.  While it may be possible to remove one disclosure in this regard 
from the prior art base in certain jurisdictions, it does not appear that the USQ weed 
spray system requires use of this specific line detection algorithm. 

 
However the use of depth information together with colour analysis, and in particular the 
use of depth information together with colour and line based segmentation for the 
identification of weeds, appears to be novel and inventive in light of the prior art.  This 
appears to have several advantages over the prior art, including a single system that 
is able to distinguish low grass, sugarcane and foreign objects such as stubble. 

 
It appears that features of the USQ weed spraying system relating to real time 
processing would be particularly suited as dependent claims in a patent application. These 
features appear to function independently of the aboveidentified inventive features of the 
system, and thus do not appear appropriate to be included in broad aspects of the 
invention. 

 
Accordingly, if the above features are deemed to be of commercial value, we 
recommend seeking patent protection for your weed sprayer system, and in particular 
your system including combined depth and colour/line based segmentation. 

Please find enclosed  for your kind attention our tax invoice in this matter. Yours 

sincerely 
FISHER ADAMS KELLY 

 
CLINTON PRIDDLE                                 ERNEST GRAF 
Attorney                                                            Partner 
MSc                                                                            BS JD MIP 

 
Encl:     Tax Invoice 

Annexure A 

Figure D.1: Summary page of a letter from Fisher, Adams Kelley, patent

attorney. The letter reports that the developed segmentation technique and real

time process have been found to be inventive and patent protection should be

pursued.
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CONTROLLER FOR AGRICULTURAL 
SPRAYERS 

FIELD OF THE INVENTION 

THIS INVENTION relates to agricultural sprays used to 
spot spray Weeds and the like. In particular the invention 
relates to a controller by Which the spot sprays are selec 
tively activated on determination of the existence of a Weed. 

BACKGROUND ART 

AU-B-37775/89 (618377), the Australian national phase 
of PCT/AU-89/00267 (WO-89/12510), The Minister for 
Agricultural and Rural Affairs of the State of NeW South 
Wales, discloses a controller for agricultural sprayers Where 
sensors measure the irradiance and radiance (or irradiance 
and re?ectance) of a target area in tWo bands (eg. red and 
near infra-red) of the electromagnetic spectrum. The mea 
surements are used to control the spray. Control involves a 
determination of the relationship betWeen the ratios of the 
radiance (or re?ectance) to the irradiance in each band 
respectively. The major ?aW in this system is that it does not 
cope With changing light conditions or partly shaded areas in 
the vieWing area. Further it does not provide a siZe selection 
function. The plant or Weed siZe at Which the controller acts 
is not able to be adjusted. 

Colour analysis is the basis of a variety of discrimination 
systems operating in a range of circumstances. Examples are 
seen in US. Pat. No. 4,653,014 (Omron) and Us. Pat. No. 
4,797,738 (Tohken). These operate With video signals, oper 
ating on components therein to establish the existence of a 
target condition. In Omron there is seen a totally digital 
system Which uses the R/S, G/S, and B/S signals (Where 
S=R+G+B and R, G, and B are the red, green and blue 
components of the video signal). This system de?nes spe 
ci?c colour by analyZing its three signals With reference to 
upper and loWer limits. In Tohken the signals Y (luminance), 
R-Y and B-Y are compared each With tWo limit values and 
analysis determines speci?c colour. Neither of these systems 
enables use With sprays in the ?eld Where an area Which is 
predominantly green, a Weed or other target plant, is to be 
found in an area of another colour, usually colours such as 
broWn Which return a green component in a camera output. 

OBJECT OF THE INVENTION 

It is an object of the present invention to provide a 
controller for agricultural sprays, Which controller is able to 
function at normal operational speeds and under varying 
light conditions, to ef?ciently locate Weeds and other target 
plants in the ?eld. Other objects and advantages Will here 
inafter become apparent. 

BRIEF SUMMARY OF THE INVENTION 

In one aspect, the present invention resides in an agricul 
tural spray controller by Which detection of plants on a 
surface being treated is effected so as to enable the spot 
application thereto of a spray, said, spray controller com 
prising: 

a spray activation means Whereby to action a spray device 
to effect the spraying of a plant; 

a control means for delivering a signal to the spray 
activation means to effect spraying on detection of a 
plant; 

a detector generating a colour video signal provided in the 
control means for vieWing an area of the surface to be 
treated and generating an output representative of the 
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?eld of vieW; and control circuitry in the control means 
coupled to the output of the detector, said control 
circuitry analyZing the detector output and generating 
said control signal depending on the detection of a 
plant; 

the control circuitry determining the existence of a plant 
by examining the colour components of the video 
signal, noting pixels Which are predominantly green, 
and generating the control signal When the number of 
predominantly green pixels in an area of the ?eld of 
vieW indicates the existence of a green plant. 

Evaluation of various plants of interest and their typical 
backgrounds (soil, rock, stubble, etc) has shoWn that green 
foliage has a Green content higher than the Red and Blue 
content. The same also holds true for the so called colour 
difference signals, typically denoted as R-Y, B-Y, and G-Y, 
Where Y is luminance. There are some advantages to Work 
ing With the colour difference signals. The ?rst is that by 
using the difference signals the effects of ambient light levels 
can be largely ignored. A second advantage is that CCD 
cameras With colour difference outputs are more likely to be 
available. In the ensuing discussion Where the system is 
described Without speci?c reference to luminance either 
form of signal can be Worked With and the alternate form 
Will be readily implemented by the person skilled in the art, 
there being no special skill required to make the adaptation 
required to enable use of one rather than the other. 
The existence of the green colour of a target Weed in the 

output RGB colour signal of a camera might be determined 
by a number of processes. 

In one form of the invention the Green component of the 
RGB signal is compared separately to both of the Red and 
Blue components and if it exceeds both then an ‘its green’ 
decision can be made. In a preferred form of this type of 
controller a suitable selectable offset (setting the level by 
Which the level of green is to exceed the level of red and/or 
blue) can be introduced so as to alloW for different degrees 
of green of the Weeds being treated. To determine if any 
pixel is green or not green, a simple analog comparison can 
be made betWeen instantaneous R-Y and G-Y signals and 
also the instantaneous B-Y and G-Y signals. If in both cases 
the G-Y signal is greater, the pixel can be considered to be 
green. 

In a preferred form of the invention the green state of a 
pixel is determined by operation of an algorithm Wherein a 
pixel is deemed to be green When both of G>R and B<a set 
threshold for the blue component applies. This algorithm is 
preferable to the G>R and G>B algorithm above When the 
electronics to implement it is likely to be noisy and false 
green decisions are being returned. This is useful in loW light 
conditions When present commercially available CCD cam 
eras are in use. In this situation there is a component of noise 
present on the camera output signals. It has been found 
better to compare the B-Y signal to ?xed reference voltage 
slightly offset from the signal level for black. This yields 
much better noise immunity While still providing a valid 
implementation of the above algorithm, since for a ‘green’ 
pixel the R-Y and B-Y signals are generally beloW the black 
signal level. 
The detector can be any camera generating a colour 

output and typically it can be based on use of solid state 
devices such as charge coupled devices (CCD). The inten 
sity of light Which the device is to Work With can vary 
considerably in open conditions and performance is 
enhanced by use of a hood Whose function is to smooth out 
any marked light variation. 
The detector and control circuitry Which is used in the 

present invention is ideally able to locate Weeds against a 
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variety of backgrounds such as black basalt soils, red soils, 
bare ground, stubble covered ground, rough rocky ground, 
changing light conditions, etc. It is found that a solid state 
detector such as a CCD based detector is best operated 
slightly out of focus so as to avoid false triggers Which may 
otherWise arise When traversing ground having varying 
characteristics. 

The circuitry Which operates on the detector’s signal is 
preferably able to perform its analysis in a short time so as 
to better typical ef?cient travel times of an agricultural spray. 
This is more readily enabled at loWer costs by means of 
analogue circuits for processing the detector output. 

The detector of the invention is used to convert an image 
of an area Which is covered by the spray to a signal stream 
containing data Which is equivalent to a picture frame Which, 
When a solid state device is used typically comprises an 
array of pixels. The Red (R), Green (G) and Blue (B) 
components (RGB) of each of the pixels can be operated on 
to establish the green state of each pixel. Adecision to spray 
might be based on the green state of a set of particular 
adjoining pixels or alternately the total or summed green 
component of a set length of a number of successive scan 
lines can be determined as the basis of the decision. These 
operations can be performed using either of digital or 
analogue techniques, or a combination thereof. The ?nal 
green state Which is calculated, is to determine a result being 
either a spray on, or a spray off decision. 

The implementation of the above might be by Way of 
circuitry providing a largely hardWare approach to the 
problem of When to activate a spray or it might involve 
operations performed largely Within a processor Which is 
programmed to perform the desired functions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

To enable the invention to be more fully understood, 
various preferred embodiments of the invention Will noW be 
described With reference to the accompanying draWings, in 
Which: 

FIG. 1 is a schematic plan vieW of an agricultural sprayer 
?tted in accordance With the present invention; 

FIGS. 2A, 2B and 2C are diagrammatic vieWs of hoW the 
?eld of vieW of a sensor unit may be utilised to advantage 
in the invention; 

FIG. 3 is a side vieW shoWing a spray noZZle spraying a 
Weed detected by the sensor unit; 

FIG. 4 is the diagram of a circuit Which may be used in 
a controller in accordance With the present invention; and 

FIG. 5 is a circuit diagram shoWing another form for the 
circuitry for a controller in accordance With the invention; 

FIGS. 6 to 9 illustrate a decision making process as might 
be implemented to determine if a detector output contains a 
plant to be sprayed. 

DETAILED DESCRIPTION 

The agricultural sprayer 10 is typically comprised of an 
extended boom, or booms supporting a linear array, or arrays 
of spray heads therealong, Which boom, or booms, is or are 
trailed by, or mounted on a tractor 11 or other like type prime 
mover. Boom 12 can be ?tted With a plurality of spaced 
apart, individually operable, spray heads comprising spray 
noZZles 13, arrayed therealong and ideally at regularly 
spaced intervals. The spray noZZles 13 can be connected to 
one or more spray tanks such as spray tank 14 by suitable 
pipes, lines or conduits 15, either individually or off a 
manifold. The spray heads may be any of those knoWn in the 
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4 
art. A standard valve, as utilised in the agricultural spray 
?eld can provide the means Whereby a single spray head is 
able to be selectively operated. Valve 16 selectively alloWs 
the How of spray chemicals from piping 15 to the noZZles 13, 
each noZZle 13 being selectively operable by selective 
activation of its respective valve under control of a control 
ler connected thereto typically via a selectively operable 
activator. This is ideally achieved by electrical means With 
the controller sWitching sprays on via use of solenoids Which 
open selected valves in the supply line, or lines to activate 
their respective spray heads. All of these elements can be 
chosen from amongst a range of readily available, off the 
shelf lines Which Will be selected according to standard 
criteria knoWn to those in the art. 
A plurality of the detectors can be provided on the boom 

12 of FIG. 1. They can be arrayed therealong so as to cover 
the Width of ground spanned by the boom. The ?eld of vieW 
of a single one of the detectors may be such as to cover the 
ground beneath a number of adjacent sprays so that a 
detector is not required for each spray head. As seen in FIG. 
3 a detector, typically a CCD based type detector 17 can be 
mounted in a housing, enclosure or hood 18 Which is open 
at its bottom and Which is arranged to be passed over the 
surface 19, on Which there may be Weeds to be sprayed, as 
the tractor draWs the boom thereover. The surface being 
treated Will typically be a ?eld being prepared for a neW 
crop, the ?eld being either cleared of the last crop or having 
a stubble thereon. The housing 18 can be an opaque hood 
Which is ideally arranged so as to stop all direct light falling 
on the target area and that Way causing deep shadoWs 
therein. The hood 18 acts to diffuse light in the target area, 
the light being that Which passes under the hood, into the 
?eld of vieW of the detector 17. 
When a CCD type detector 17 passes over bare soil or 

stubble, the CCD therein converts the image beloW into an 
output comprising a string of pixels each characterised by 
respective RGB components. The controller can then deter 
mine the greenness of each pixel by manipulations of its 
components. The signal Which is output by the detector 17 
can be examined to determine if the Weed covers an area of 
greater than a preset siZe. If the green signal exceeds a preset 
threshold limit at Which the spray is to be activated, the valve 
16 can be activated to sWitch How to the appropriate spray 
noZZle 13 to spray the Weed 24 (see FIG. 3). The circuitry 
interconnecting the detector 17 and the noZZles 13 can 
incorporate a time delay so that the spray noZZle operates for 
a preset time so that all of a target Weed’s area is sprayed as 
the boom moves over it. 

One CCD detector can run a number of spray heads, 
depending on the Width of its vieWing area, and generally 
four is typical. The distance from the camera to the ground 
is the factor Which determines this. For example, if it is 
desired to use one camera to run six spray noZZles then the 
camera may be set higher to cover a greater area at the 
ground (see the comparison shoWn betWeen FIGS. 2A and 
2B). Alternatively it is possible to use a Wider angle lens 
(comparison shoWn betWeen FIGS. 2A and 2C). In reference 
to FIGS. 2A, 2B and 2C, 20 is the camera head, 21 is the 
vieWing angle. 

The selection of height of the camera and the lens 
characteristics Will ideally be decided depending on What in 
?eld conditions the machine incorporating the controller is 
Working With in Working With a Wheat stubble, an acute 
angle lens mounted higher Will alloW it to look more 
effectively doWn into the stubble Whereas in the normal bare 
falloW, a Wider angle lens could be used to look out further. 
The screening effect of stubble is enhanced as the vieWing 
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angle decreases and the vertical stalks more effectively hide 
a small or ?at Weed not raised to the same degree above 
ground level. 

The light diffusing hood’s dimensions are not at all 
critical. The dimensions Will be varied to alloW it to be ?tted 
to different booms. The hood is constructed and mounted to 
keep direct light from the vieWing area. 

If external lighting is to be used to alloW night time 
operation, an even White light mounted in the light diffusing 
hood could be used. 

Referring noW to FIG. 4, the output from the CCD 123 is 
fed through an RGB decoder 140 and respective Red, Green 
and Blue digitiZers 141—143 and then to a frame store 144. 
In the frame store the RGB components of the output of the 
CCD 123 can be stored in digital form. The information in 
the frame store 144 can be passed via RGB processor 145 to 
a Green discriminator 146 Which monitors the level of the 
Green component using an algorithm such as the one 
described beloW in greater detail requiring both of G>R and 
G>B to exist in a pixel before it is deemed to be green With 
some consideration of the number of green pixels in an area 
before the decision is made to call the area in the ?eld of 
vieW green and a Weed. Alternately the algorithm Which is 
operated can be G>R and B<a set value its described 
elseWhere herein. The discriminator 146 can operate a 
solenoid driver 147 Which is operably connected to a valve 
associated With spray noZZle to activate it and spray the 
detected Weed. 
A siZe selection section can be employed. This siZe 

selection section can be used to check the number of green 
pixels in an area of the target area and if their number is 
above a preset threshold, it can activate the solenoid to 
control the How of chemicals to the spray noZZle. The 
threshold could be made adjustable so that it can be varied 
to alloW an operator to select the siZe of the plant to be 
detected. 

The horiZontal ?eld of vieW of a detector can be divided 
into a number of smaller regions to alloW a single detector 
and processing section to control multiple valves and asso 
ciated sprays Which can be activated by solenoids under 
control of the controller. 

The digital circuit of FIG. 4 has tWo areas Which add 
considerably to the cost and complexity. The ?rst is that 
having the digitiZers at the output of the detector means that 
the amount of data to be stored in the frame store for a frame 
of video data is high (of the order of 1 Mbyte) . The second 
is that in order to have a reasonable range of colour levels 
to process, 6 or 8 bit digitiZers are required, Which for video 
applications are rare and expensive. 

In the embodiment of FIG. 5, the front end processing can 
be performed using analog componentry. In this case, only 
a 1 bit digitiZer is required since the result of the comparison 
is either “green” or “not green”. It should be noted that by 
using this analog implementation, the memory requirements 
in the frame store are eliminated and no expensive digitiZers 
are required. The digital processing requirements are sub 
stantially reduced and the Whole system speeded up. 
Where determining the number of adjacent pixels digi 

tally can be complex and expensive. A simpler and cheaper 
method to operate is one Which counts the total number of 
green pixels in the horiZontal lines instead of the number of 
adjacent green pixels and count adjacent vertical lines. FIG. 
5 is a schematic illustrating the components of a circuit 
Which can be used in the controller Wherein an “is it green” 
algorithm is implemented at the front end. The detector 25 
outputs its usual RGB components on respective lines 26, 27 
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6 
and 28 respectively, connected in pairs to comparators With 
pair 26 and 27 fed to comparator 29 and 27 and 28 fed to 
comparator 30 Which each produce a logic “1” (high) When 
the green component of the detector output is higher. The 
respective comparisons are examined by the AND circuit 31 
and if both the comparators are logic “1” (high) ie, G>R and 
G>B, then a green signal, logic “1” (high) is passed to the 
one digitiZer 32. The level of Green over Red and Blue can 
be made adjustable in the comparator circuits 29 and 30 by 
either enhancing the G signal or retarding the Red and Blue 
signals, so as to alloW adjustment to take account of Weeds 
With different green characteristics. If the comparator Which 
determines G>B is disconnected from the green component 
in the detector output and its comparison is With a set value 
then the circuit Will Work With the algorithm requiring both 
of G>R and B<the set value to apply. 

From the 1 bit digitiZer the circuit feeds counters Which 
may be ideally set up in a microprocessor under softWare 
control to implement the further processing of the detector 
output. The one bit digitiZer increments either counter 33 or 
34 depending on Which region is being analyZed, With a 
programmable threshold therein, and if the number of green 
pixels in the line of the region being looked at exceeds this 
threshold then that line is considered green by storing a logic 
“1” in memory. Once all the lines in the region are analyZed 
and results stored, then the number of green lines are 
counted and these also have to exceed a preset threshold 
(Number) if a spray signal is to be generated. By using this 
tWo count method the Width and height of a Weed is 
determined. This reduces the amount of memory required 
While still providing similar results, at faster speed and as 
before the threshold can still be varied to alloW selection of 
the plant siZe to be detected. For example, if the horiZontal 
?eld of vieW of the camera is divided into four regions, the 
counting of the “green” pixels can be performed before any 
data is placed into the memory resulting in only 4 bits of data 
for each horiZontal scan by the camera instead of perhaps 
640 bits of data (80 bytes). This represents a reduction in the 
amount of data to be processed of over 90%. 

The signal generated by the detector typically includes 
components for the three colours,’ RGB, With each compo 
nent characterised by both of hue and luminance. In the 
above set out front end algorithm, the RGB components can 
be the detector’s values minus a factor Which can be the 
luminance (Y) of the camera signal so as to Work With pure 
colour signals. Depending on Which camera is chosen, its 
output may be signals Which are the equivalent of colour 
minus intensity. In the Working With the signals R-Y, G-Y 
and B-Y, the controller is Working With the pure colour 
components. These signal levels are normalised so as to 
produce more signi?cant ratios at the comparators 29 and 
30. 

There are circumstances When the G>R together With 
G>B principle Will break doWn. 

Extreme intensity variations can adversely affect perfor 
mance by making a CCD device for example underexpose or 
saturate. HoWever, intensity variations can be smoothed out 
by use of the above described light diffusing hood. 

In another circumstance, a speci?c gold colour has green 
higher than red even though it is not greenish. This problem 
might be overcome by seeing hoW close to G and R signals 
are and hoW close the G and B is. This is because the gold 
colour has a close G and R and nearly no blue. 

In yet another circumstance, the CCD camera vieWs dead 
(golden coloured) grass and sees the dark area in betWeen 
the dead leaves With a green hue. This causes false triggers. 
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As the size of the dark areas are generally small, siZe 
adjustments could be used to cut them out. However, siZe 
adjustment Would limit the effectiveness of the siZe select 
ability by Which a minimum siZe of Weed to be treated is set. 
Also, the siZe of the dark area varies With changes in 
brightness during the day. One solution of this problem is to 
vary the focus of the camera slightly off normal. This smears 
out these particular dark areas to cut the number of false 
triggers and they can be all but eliminated. The affect of 
focus could be reproduced Within the electronics but as this 
increases complexity, it is best to Work Within the camera’s 
focus. Focus is an analogue solution to a problem Which 
might be Worked digitally but at added cost. 

In FIG. 5, the circuit can account for When a “green” plant 
is straddling the boundary betWeen tWo regions in the 
camera’s horiZontal ?eld of vieW. Since it is customary to set 
up the spraying equipment to have an overlap region 
betWeen adjacent spray noZZles, it is logical that an overlap 
region should also exist betWeen adjacent regions in the 
“green” detection system. This can be performed as seen in 
FIG. 5, by utilising tWo independent counters 33 and 34 to 
count the number of “green” pixels, and control When they 
start and stop so as to provide an overlap in the counting 
regions. This is seen in FIG. 5 Wherein separate green pixel 
counters 33 and 34 are sWitched by a counter controller 35 
and their total is compared With a threshold set by variable 
threshold 36. The counters are synchronised so that counter 
33 counts pixels in segment 1 (eg, pixels 0 to 140). Counter 
34 counts pixels in segment 2 (eg, pixels 120—240). This 
gives an overlap at pixels 120 to 140 When a Weed is 
straddling this area. Counter 33 then counts segment 3 Whilst 
counter 34 counts segment 4. This is repeated through the 
range of pixels returned by the camera. Control counter 35 
counts the range and resets the “green” counters 33 and 34. 
As stated above the examination of the detector output to 

determine the existence therein of a Weed can involve, use 
of a microprocessor Which performs the algorithm and 
establishes the green state of an area. FIGS. 6 to 9 shoW in 
How chart form the sequence of operations by Which a spray 
activation signal might be generated. This is illustrated With 
reference to the G>R and G>B version and area calculation 
based on a scan line approach. 

FIG. 6 shoWs the main process operating With four 
regions (associated each With one of four spray heads). On 
start up at 150 the scan line process 151 (described beloW in 
greater detail With reference to FIG. 7) is implemented. If the 
?rst region of a scan line is deemed to be green and the 
previous scan line Was green in this region, see 153, then 
counter is incremented at 154 otherWise it is cleared at 157 
and the second region is processed (158) in the same 
manner. If the scan line counter for region 1 is incremented 
at 154 then the count is compared at 155 With a threshold and 
if it exceeds it then a solenoid on ?ag is set at 156 otherWise 
processing passes to region tWo. The forgoing processing is 
pursued through the third (159) and fourth (160) regions till 
the full frame is determined to be completed at 161. At this 
point turn on and turn off times are set for solenoids Whose 
?ags are set and processing passes to the solenoid control 
process at 163 (described beloW in greater detail With 
reference to FIG. 9. 

The scan line process at 151 of FIG. 6 is seen in greater 
detail in FIG. 7. On starting the scan line process at 164 the 
region process (described beloW in greater detail With ref 
erence to FIG. 8) is implemented. If the last region on a scan 
line is determined to be processed at 166 then the scan line 
process exits to the is it green decision process at 152 of FIG. 
6 otherWise the scan line process loops. The region process 
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8 
at 165 is seen in FIG. 8 Wherein on its commencement at 168 
the detector output is examined pixel by pixel. On receipt of 
a pixel at 169 the algorithm G>R and G>B is implemented 
at 170. If both conditions apply then a green pixel counter 
is incremented at 171 otherWise and the end of region is 
tested at 172 With processing looped to continue if the end 
of region is not reached. When it is processes continues With 
the green pixel count compared to a threshold at 173. If the 
threshold is exceeded then a green region ?ag is set at 174 
and processing passes back to the scan line process. 

The solenoid control process is seen in greater detail in 
FIG. 9. When the turn on and turn off times have been set 
for solenoids Whose ?ags are set (see FIG. 6) the solenoid 
control process is run. If a solenoid on state is indicated at 
181 the solenoid is energised at 182 and so on through the 
set With this program exited at 183 and processing returning 
to the main process. At some cycle through the solenoid 
process a solenoid off state Will be reached to signal that it 
is time to de-energise for any solenoid Which is currently on. 
As hereinbefore described, the circuitry preferably incor 

porates a time delay so that the spray noZZle Will operate for 
a preset time after it activated. A timer circuit might be 
associated With the solenoid, holding it on for a preset time 
so that the activation signal need only be a sWitch on pulse. 
Alternately the activation signal might be held on for the 
requisite time. 

Various changes and modi?cations may be made to the 
embodiments described and illustrated Without departing 
from the invention as hereinafter set forth in the claims. 

Some of the features of the invention may be summarised 
as folloWs. 

The invention contemplates a ?rst system for determining 
Whether a pixel is to be deemed green, ie: 

to use the three R, G, B, signals from the camera (Which 
are three voltages, or, if the camera has a digital output, 
three digital signals) directly in the algorithm, Whereby 
the pixel is deemed “green” if, for the pixel: G>R and 
G >B 

In another algorithm, the pixel is deemed “green” if, for 
the pixel: G>R and B <a predetermined value. 
The invention also contemplates an alternative system for 

determining Whether a pixel is to be deemed green, ie: 
the R, G, B signals from the camera are not used directly 

in the algorithm, but rather the R, G, and B signals are 
aggregated to produce a value for the light intensity 
(luminance, Y) according to the conventional formula: 

Thus, in the alternative, the algorithm for determining 
Whether the pixel is or is not green is: the pixel is deemed 
“green” if, for the pixel: G—Y>R—Y and G—Y>B-Y. 
The invention also contemplates the inclusion of a means 

for alleviating the effects of overexposure and underexpo 
sure of the scanned area. 

When the areas of extreme light are infrequent, one 
solution is to activate the spray solenoids in these areas by 
default. The added security of ensuring that no “green” areas 
are missed is paid for With a slight increase in chemical 
usage. 

To be able to discern these extreme light levels a signal 
knoWn as “Luminance” is developed from the Red, Green 
and Blue signals from the camera. The signal in given as 

Luminance basically represents the image Without any 
colour information, ie: it is What is vieWed on a black and 
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White television or on a colour television if the colour 
control is turned to its minimum position. 

Once the luminance signal has been developed, the signal 
level can be monitored for the extremes of either underex 

posure (dark areas) or overexposure (saturated light areas). 
A: These conditions can then be used to either force the 

system to regard them as “Green” areas and hence use 
the same control mechanisms as are already present in 
the system, or 

B: Preferably, brought into separate counter system Which 
alloW independent control of these conditions. This 
added control alloWs the operator to decide Whether to 
conserve chemicals, or to ensure that no “green” areas 

are left unsprayed at the expense of slightly higher 
chemical usage. 

2. PHYSICAL MEANS 
Extremes of both underexposure (dark areas) and over 

exposure (saturated light areas) can be reduced to eliminate 
default spraying With a corresponding reduction in chemical 
usage to be ?xing a light diffusing hood above the target 
areas and keeps the target area/signal Within the dynamic 
range of the CCD. The reduced levels of ambient light have 
no adverse effect as the electronic exposure control com 
pensates to match the light. 

Patent publication DE-4,132,637 might be considered 
relevant to the invention, in that it shoWs a (non-agricultural) 
Weed spray controller, in Which Weeds are detected by means 
of a video signal. 
We claim: 
1. Method for the spot-application of a spray to green 

Weeds or other green plants in an agricultural ?eld, charac 
teriZed by the folloWing procedural steps: 

vieWing an area of ground With a colour sensing means, 
the colour sensing means being effective to scan the 
area in pixelated fashion and to issue three signals, in 
respect of each pixel in turn of the scanned area, the 
three signals being dependent, respectively, upon the 
amount of Red, Green and Blue light reaching the 
colour sensing means at that pixel; 

comparing the Green signal of a pixel With the Red signal 
and the Blue signal of the pixel, according to a prede 
termined algorithm relating the said three signals in 
respect of each pixel of the scanned area and deeming 
the pixel to have a “green” status or a “not green” status 
in accordance With the comparison; 

assimilating the statuses of the pixels in a patch of the 
pixels, the extent of the patch being de?ned in that the 
pixels making up the patch are linked to the other pixels 
in the patch in accordance With a predetermined degree 
of spacial and temporal proximity to each other Within 
the scanned area; 

comparing the aggregate of statuses of the pixels of the 
patch With a predetermined value, and of deeming the 
status of the patch to be “green” or “not green” in 
accordance With the comparison; and 

in respect of each of a plurality of spray heads operating 
a spray head to produce a pulse of spray over a patch 
in accordance With the patch having the status of 
“green”. 

2. Method of claim 1, Wherein: 
the method includes the step of computing the luminance 
Y of the pixel; and 

the Red, Green, and Blue signals as used in the algorithm 
are R-Y, G-Y, and B-Y. 

3. Method of claim 1, Wherein the algorithm is of the form 
in Which the status of the pixel is set to “green” if both (a) 
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the Green signal exceeds the Red signal, and (b) the Green 
signal exceeds the Blue signal. 

4. Method of claim 1, Wherein the algorithm is of the form 
in Which the status of the pixel is set to “green” if both (a) 
the Green signal exceeds the Red signal, and (b) the Blue 
signal is less than a predetermined value. 

5. An agricultural spray controller by Which to control 
agricultural spray apparatus, Which controller detects green 
plants on a surface being treated to enable the spot appli 
cation thereto of a spray, comprising: 

a surface vieWing means for generating a pixelated colour 
video output including red (R), green (G), and blue (B) 
(RGB) colour components representing its ?eld of 
vieW; a pixel receiving means for determining the red, 
green, and blue colour components of the pixels in the 
video output; 

a green-pixel-determining means for determining Whether 
each pixel is to be deemed green, depending on a 
relationship of the colour components of the pixel; 

a green-area-determining means for counting Whether the 
number of deemed-green pixels in the video output 
corresponding to an area of the ?eld of vieW exceeds a 
pre-determined number, the predetermined number is 
based on the number of deemed-green pixels deemed 
indicative of the presence of a green plant in the area; 

an output means for delivering a spray activation signal 
responsive to the green-area-determining means When 
the number of deemed-green pixels in the area exceeds 
the predetermined number; 

a ?rst comparator to determine if G is greater than R; 
a second comparator to determine if B is less than a set 

value; and 
a processor to produce an activation signal by Which to 

activate a spray head When G exceeds R and G exceeds 
B, When B is beloW the set value. 

6. An agricultural spray controller as claimed in claim 5 
Wherein the ?rst and second comparators output to a digi 
tiZer through an AND circuit, the digitiZer out-putting a 
green or not green state pixel by pixel to the processor. 

7. An agricultural spray controller by Which to control 
agricultural spray apparatus, Which controller detects green 
plants on a surface being treated to enable the spot appli 
cation thereto of a spray, comprising: 

a surface vieWing means for generating a pixelated colour 
video output including red (R), green (G), and blue (B) 
(RGB) colour components representing its ?eld of 
vieW; 

a pixel receiving means for determining the red, green, 
and blue colour components of the pixels in the video 
output; 

a green-pixel-determining means for determining Whether 
each pixel is to be deemed green, depending on a 
relationship of the colour components of the pixel; 

a green-area-determining means for counting Whether the 
number of deemed-green pixels in the video output 
corresponding to an area of the ?eld of vieW exceeds a 
pre-determined number, the predetermined number is 
based on the number of deemed-green pixels deemed 
indicative of the presence of a green plant in the area; 
and 

an output means for delivering a spray activation signal 
responsive to the green-area-determining means When 
the number of deemed-green pixels in the area exceeds 
the predetermined number, Wherein pixels are counted 
across a scan line, segment by segment over the area of 
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the ?eld of vieW and if the number of pixels deemed to 
be green in a line in a segment exceeds a threshold then 
the segment line is deemed green, the number of scan 
lines in a segment deemed green are counted and if the 
line count exceeds a threshold then a plant is deemed to 
exist in that segment of the ?eld of vieW. 

8. An agricultural spray controller by Which to control 
agricultural spray apparatus, Which controller detects green 
plants on a surface being treated to enable the spot appli 
cation thereto of a spray, comprising: 

a surface vieWing means for generating a pixelated colour 
video output including red (R), green and blue (B) 
(RGB) colour components representing its ?eld of 
vieW; 

a pixel receiving means for determining the red, green, 
and blue colour components of the pixels in the video 
output; 

a green-pixel-determining means for determining Whether 
each pixel is to be deemed green, depending on a 
relationship of the colour components of the pixel; 

a green-area-determining means for counting Whether the 
number of deemed-green pixels in the video output 
corresponding to an area of the ?eld of vieW exceeds a 
pre-determined number, the predetermined number is 
based on the number of deemed-green pixels deemed 
indicative of the presence of a green plant in the area; 
and 

an output means for delivering a spray activation signal 
responsive to the green-area-determining means When 
the number of deemed-green pixels in the area exceeds 
the predetermined number, Wherein the RGB colour 
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components of a pixel are examined and if G>R and 
G>B then the pixel is deemed to be green. 

9. An agricultural spray controller by Which to control 
agricultural spray apparatus, Which controller detects green 
plants on a surface being treated to enable the spot appli 
cation thereto of a spray, comprising: 

a surface vieWing means for generating a pixelated colour 
video output including red (R), green (G), and blue (B) 
(RGB) colour components representing its ?eld of 
view; 

a pixel receiving means for determining the red, green, 
and blue colour components of the pixels in the video 
output: 

a green-pixel-determining means for determining Whether 
each pixel is to be deemed green, depending on a 
relationship of the colour components of the pixel; 

a green-area-determining means for counting Whether the 
number of deemed-green pixels in the video output 
corresponding to an area of the ?eld of vieW exceeds a 
pre-determined number, the predetermined number is 
based on the number of deemed-green pixels deemed 
indicative of the presence of a green plant in the area; 
and 

an output means for delivering a spray activation signal 
responsive to the green-area-determining means When 
the number of deemed-green pixels in the area exceeds 
the predetermined number, Wherein the RGB colour 
components of a pixel are examined and if G>R and 
B<a set threshold for blue then the pixel is deemed to 
be green. 



Appendix F

Real-time LBP implementation



#define IMAGE_WIDTH 640 

#define IMAGE_HEIGHT 480 

#define GUIDANCE_STACKSIZE 307200 

#define COMPONENT_MAX_SIZE 100000 

uchar retainedImage[GUIDANCE_STACKSIZE]; 

int guidanceComponentStack[COMPONENT_MAX_SIZE]; 

int componentStackPtr=0; 

const int widthMinusOne=IMAGE_WIDTH-1 ; 

int CCPos=0; 

int guidanceStackPointer=0; 

int guidanceStack[GUIDANCE_STACKSIZE]; 

int guidanceHighSize=0; 

const int positionOne=-1*IMAGE_WIDTH; 

const int positionTwo=-1*(IMAGE_WIDTH-1); 

const int positionThree= 1; 

const int positionFour=IMAGE_WIDTH+1; 

const int positionFive=IMAGE_WIDTH; 

const int positionSix=IMAGE_WIDTH-1 ; 

const int positionSeven= -1; 

const int positionEight=-1*(IMAGE_WIDTH+1) ; 

 

void guidanceLBPFunction(int xstart,int xstop,int ystart,int ystop, IplImage* 
grayScaleSourceImage, IplImage*returnedImage) 

{ 

       //this is a 3x3  lbp 

       uchar* gray=(uchar*)grayScaleSourceImage->imageData;; 

       uchar* returnedImg=(uchar*)returnedImage->imageData; 

       uchar* currentPos; 

       int lbp_data[9]; 

       int loop=0; 

       int centre_val=0; 

       int pVal=0; 



       const int noiseOffset=2;// this value is subtracted from the current positions 

       //value so that there needs to be a reasonable change to find edge 

       int currentPositionOffset=0; 

       for(int x=0;x<IMAGE_WIDTH;x){ 

              for(int y=0;y<IMAGE_HEIGHT;y){ 

                     currentPositionOffset=y*IMAGE_WIDTH+x; 

                     if(x>=xstart&&x<xstop&&y>=ystart&&y<ystop){ 

                           currentPos=gray+currentPositionOffset; 

                           centre_val=*(currentPos)-noiseOffset; 

                           loop=0; 

                           pVal=0; 

                           if(centre_val>*(currentPos+positionOne))lbp_data[loop++]=0; 

                           else{lbp_data[loop++]=1;}// 1 

 

                           if(centre_val>*(currentPos+positionTwo))lbp_data[loop++]=0; 

                           else {lbp_data[loop++]=1;}//2 

 

                           if(centre_val>*(currentPos+positionThree))lbp_data[loop++]=0; 

                           else lbp_data[loop++]=1;//3 

 

                           if(centre_val>*(currentPos+positionFour))lbp_data[loop++]=0; 

                           else {lbp_data[loop++]=1;}//4 

 

                           if(centre_val>*(currentPos+positionFive))lbp_data[loop++]=0; 

                           else {lbp_data[loop++]=1;//5 

 

                           if(centre_val>*(currentPos+positionSix))lbp_data[loop++]=0; 

                           else {lbp_data[loop++]=1;}//6 

 

                           if(centre_val>*(currentPos+positionSeven))lbp_data[loop++]=0; 

                           else lbp_data[loop++]=1;//7 

 



                           if(centre_val>*(currentPos+positionEight))lbp_data[loop++]=0; 

                           else {lbp_data[loop++]=1;}//8 

 

                           //determin if uniform or non-uniform and what value if uniform 

                           int transitions_high=0; 

                           int num_high=0; 

                           int once_high=0; 

                           int loop_number=0; 

                           int contigousStart=0; 

                           for(int looping=0;looping<8;looping++){ 

                                  if(looping==0&&lbp_data[looping]==1)contigousStart=1; 

                                  if(lbp_data[looping]==1&&!once_high){ 

                                         transitions_high++; 

                                         num_high++; 

                                         once_high=1; 

                                  } 

                                  else if(lbp_data[looping]==1&&once_high){ 

                                         num_high++; 

                                  } 

                                  else once_high=0; 

                           } 

  //if 1 was high and 8 was high and only had one transition from low to high in the circle 

                           if(contigousStart==1&&once_high==1&&transitions_high==2) 

                                  pVal=num_high; 

                           else if(!transitions_high)pVal=0;//blank pixels- all 0 intensity 
values 

                           else if(transitions_high==1){//all other uniform results 

                                  pVal=num_high; 

                           } 

                           else pVal=9;// non-uniform 

                           *(returnedImg+currentPositionOffset)=pVal;//*20;// the *20 is so 
that the image is easier to view  by eye.- not needed for the processor 



                     } 

                     else *(returnedImg+currentPositionOffset)=0;// clear all values 
outside of ROI 

                     y++; 

              } 

              x++; 

       } 

} 



Appendix G

Side-shift hitch operation for row

guidance

A side shift hitch is a tool for implement guidance. The side shift hitch takes con-

trol signals from sensor systems (vision system in the pyrethrum application) and

corrects the implement position in the row, based upon the guidance algorithms

in the sensor system.

The side shift hitch is sandwiched between the tractor and the implement. The

hitch is in two sections. One section is mounted rigidly on the tractor and the

second section is mounted on the front of the implement. The second section

can slide left or right within the first section. The sliding is achieved by means

of a hydraulic ram triggered from a row detection system. In this case the row

detection system is a camera system (the same camera as the spot spray camera).

Figure G.1 is an image of a side shift hitch highlighted in a red ellipse, in position

between the tractor and the implement. Figure G.2 is a drawing representation

of how a side shift hitch operates.



278 Side-shift hitch operation for row guidance

Figure G.1: Image of side shift hitch (in the red ellipse) in position between the

tractor at the front and the implement at the rear.

Figure G.2: Drawing of a side shift hitch components reproduced from

http://www.sare.org.
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