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Background 

In Queensland the Survey and Mapping Infrastructure Act 2003 gives the Chief Executive of the   
Department of Natural Resources and Mines and Energy the power to makes standards and guidelines 
in relation to the performance of cadastral surveys. Two of the standards (3.14.3 and 3.28.1 in the 
Cadastral Survey Requirements) rely on the concepts of survey uncertainty (SU), positional 
uncertainty (PU) and relative uncertainty (RU). SU represents the uncertainty in control mark 
co-ordinates at the 95% confidence level free from the influence of any imprecision or inaccuracy 
in the underlying datum realisation. PU is the SU with the addition of the uncertainty in the 
datum realisation and RU is the uncertainty of the join between two control marks (for more 
detailed definitions see p5 of the ICSM’s Special Publication 1 (SP1) 
https://www.icsm.gov.au/publications/standard-australian-survey-control-network-v21). The 
Cadastral Survey Requirements gives clear guidelines as to the calculation and validation of these 
values when using RTK GNSS observations (see s8.4). The purpose of this paper is to give some 
background and guidance for calculating uncertainty for terrestrial methods.  

Error Propagation 

The law of propagation of errors is concerned with the behaviour of random errors propagating 
through a measurement system. 

Linear Problems 

When the final value is created by the linear addition of independent measurements the error 
associated with it takes on the simplest form; 

1
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1

( )
n

X i
i

         (1) 

      

where σx is the standard deviation of the result and σi are the standard deviations of the n independent 
measurements.   To be less mathematical the σx is obtained by taking the square root of the sum of the 
variances of the individual measurements (for a measurement the standard deviation is the square root 
of the variance). 

 

Example 1 

The total distance A−D and its standard deviation is required. The line was measured in three 
independent sections as follows: 

AB 51.00 m ± 0.05 m 
BC 36.50 m ± 0.04 m 
CD 26.75 m ± 0.03 m 

 

The total distance of AD = AB + BC + CD 
 = 51.00 + 36.50 + 26.75 = 114.25 
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From the law of propagation of errors 
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Uncorrelated Non-Linear Problems 

More often than not in surveying individual measurements need to be combined to get the desired 
parameter. A common example is calculating a horizontal distance from a slope distance and vertical 
circle reading.  

    sinh s        (2) 

where h is the horizontal distance, s measured slope distance and  is the measured zenith distance (if 
using the vertical angle then the trig function changes to cos). Rather than the simple addition from 
Example 1 the measurements are being combine non-linearly.     

In general terms, if y represents a quantity computed from several measurements (random variables) 
represented by x1, x2, ..., xn in a non-linear function y = f (x1, x2, ..., xn) and if σ1, σ2, ..., σn represent 
the standard deviations of the measurements x1, x2, ..., xn which are assumed to be independent. 

Then, σy is computed by 
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Example 2 

A horizontal distance needs to be calculated from a slope distance is s = 100.00 m with σs = 0.05 m 
and β = 85°00' with σβ = 00°30'. Compute h and σh. (Assume s and β to be uncorrelated.) 

     
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In this example, note that σβ was converted to radians (1 radian = 206265″) to balance the units in the 

relationship. 
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General Non-Linear Problems 

In the previous section we assumed that the measurements were independent. It is clear that when two 
different parameters are calculated with the same raw measurements then the results, and the error 
estimates will have some relationship to each other. For our purposes the obvious case is the 
calculation of co-ordinates from a radiation. It is clear that the Easting and Northing co-ordinates are 
calculated from the same distance and bearing observations so that errors in each of those 
observations will ‘show up’ in both co-ordinates but in a different way. Because they are connected in 
this way the two co-ordinates of a pair co-vary and so do the errors. So rather than talking about the 
variance we have to expand it to a 2 x 2 matrix called the variance co-variance matrix (VCV).    
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 

        (4) 

      

where the variances of the co-ordinate values are as before σEN = σNE is the covariance,  is a matrix 

of variances and J is the Jacobian matrix of the partial derivatives. 

In the case of the two dimensional co-ordinate pair the change in the co-ordinate values from a 
radiation are given as  

 sin
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
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 

          (5) 

where h is the horizontal distance and θ is the bearing. In this case the measurement of distance and 
bearing are independent so the variance matrix is only diagonal.   
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Combining Eqns (4) - (6)  
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   (7) 

While the variances and covariances are useful measures of the precision of the co-ordinates it can be 
proved that the errors are more correctly represented by an ellipse which is based on the geometry of 
the survey observation rather than the co-ordinate system.  

The maximum standard deviation will be the semi-major axis (a) of the ellipse and the minimum 
standard deviation the semi-minor axis (b). The orientation of the semi-major axis is given by the 
bearing Φ. 
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Figure 1 The error ellipse parameters 

This is of far more use to surveyors so the next step is to determine the size of the semi-major and 
semi-minor axes, and the orientation of the ellipse from the VCV for the co-ordinate pair. 

Without proof, the size of the major and minor axes are calculated from eigenvalues of the square 
matrix.  1 221 and where and are the eigenvalues.ba      (The eigenvalues are those 

numbers that need to be subtracted from the variances so that the determinant of the VCV equals zero)  

For the 2 x 2 matrix eigenvalues are given by the following formula, where λ1 is the maximum value 

which will give the semi-major axis of the ellipse. 

 2 2 2 2 2 2
1

1
( ) 4

2 E N E N ENa                  (8) 

 2 2 2 2 2 2
2

1
( ) 4

2 E N E N ENb                  (9) 

 

The orientation of the major axis is given by the bearing Φ, which can be determined using the 
formulae: 

2 2

2
tan 2 EN

N E


 

 
         (10) 

The correct value of 2Φ is selected such that sin 2Φ has the same sign as σEN and cos 2Φ has the same 

sign as 
2 2( )N E  . 

 

Example 3 

Compute the error ellipse for a single radiation. The horizontal distance is h = 200.0 with σh = 0.004 
m and the bearing θ is 15°00' with σθ =3″  
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Converting Error Ellipses to SU 

ICSM’s Special Publication 1 (SP1) provides a method to convert an error ellipse to a circular 
confidence region. The SU can be calculated from the standard (1 sigma) error ellipse using; 

2 3

  *  1.960798  0.004071  0.114276   0.37165 ][
b b b

SU a
a a a

   
   
  

     
  

  (11) 

where a and b are the semi-major and semi-mior axes as before.   

 

Example 4 

Using the result of Example 3 calculate the SU for that point.  

0.004

0.0029

0.725

a

b

b

a




   
 

  

2 3 0.004 *  1.960798  0.004071 0.725 0.114276  0.725  0.37165 0.725 ]

0.0086

[SU       

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The Effect of Bearing on the Error Ellipse 

The previous calculations are clear cumbersome to perform for every line of the traverse. However if 
we examine the effect of the radiation bearing on the variances and SU we can take advantage of 
symmetry. The Table below shows the result of the previous calculations if we hold all measurements 
constant but just vary the bearing of the radiation.  

Table 1 Table showing the variation in the error ellipse with the change in radiation bearing 

Bearing (°) σE σN a b  (°) 
0 0.0029 0.0040 0.004 0.0029 0 

10 0.0029 0.0040 0.004 0.0029 10 

20 0.0031 0.0039 0.004 0.0029 20 

30 0.0032 0.0038 0.004 0.0029 30 

40 0.0034 0.0036 0.004 0.0029 40 

50 0.0036 0.0034 0.004 0.0029 50 

60 0.0038 0.0032 0.004 0.0029 60 

70 0.0039 0.0031 0.004 0.0029 70 

80 0.0040 0.0029 0.004 0.0029 80 

90 0.0040 0.0029 0.004 0.0029 90 

    

The table shows that for a single radiation the standard deviations on the co-ordinates vary with the 
radiation bearing but the ellipse maintains the same shape and merely rotates. This is a useful result as 
only the semi-major and semi-minor axes are used to calculate SU and they are invariant with the 
bearing.  

Simplified SU Calculation  

Figure 2 shows the relationship between the bearing and distance uncertainties and the resultant error 
ellipse.   

A simplified calculation for SU for a single radiation is to calculate the axes using;  

 
 
 

  max , tan

  min , tan

h

h

a h

b h





 

 




        (12)  

and then substitute the results into Eqn. (11).  
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Figure 2 Figure showing the relationship between the error ellipse axes and radiation observations. 

 

Example 5 

Compute the error SU for a single radiation using the simplified method. The horizontal distance is h 
= 200.0 with σh = 0.004 m and the bearing θ is 15°00' with σθ =3″  

2 3

0.004

tan 200.tan(3") 0.0029

 = 0.725

 0.004 *  1.960798  0.004071 0.725 0.114276  0.725  0.37165 0.725 ]

0.0086

[

h

h

a

b

SU








 

 
 
 

      


 

Calculating PU for an Open Traverse  

SP1 states a preference for calculating PU and SU as the result a rigorous least squares adjustment and 
there exist established approaches to adjust a closed traverse that are outside the scope of this paper.  
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For an open traverse however each leg of the traverse can be dealt with as if it is independent so the 
propagation of the error is as simple as Eqn. (1).  

 

Example 6 

Starting from PM123456 with a PU of 0.011 you traverse to a new point B via two traverse legs. PM-
A θ is 65°00' h = 92.5 m, A-B θ is 142°00' h =60.35 m with σh = 0.003 m + 2ppm and with standard 
deviation of a single pointing σp 5″. The centring accuracy is σc = 0.002 m Compute PU of B. 
(Reading two faces) 

The bearing is the difference between two pointings of the total station so it is necessary to calculate 
the standard deviation of the bearing using Eqn. (1). The standard deviation of a mean measurement is  

x

s
s

n
  where s is the standard deviation of the sample and  n is the number of observations that are 

being meaned. In our case the n = 2 as two faces are being read and we use the instrument stated 
standard deviation for a single pointing.   

2 2 22
5

2

p p p

p
n



  
 


      

Next calculate the SU for each leg.  

Bearing (°) Distance σh h tan σθ SU 

65 92.5 0.0032 0.0022 0.0068 

142 60.35 0.0031 0.0015 0.0063 

 

 

2 2 2 2 2

1

2 2 2 2

2

0.011 0.0068 0.0063 2 0.002

0.0147

n

B i PM PM A A B c
i

PU PU SU SU  


    

   





 

You will note that we have assumed that forced centring is being used so there are only two centring 
variances and the initial backsight is far enough away that its centring error does not contribute to the 
bearing uncertainty. If forced centring was not being used then there would have been four centring 
errors.  
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