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Abstract 

The objective of the study was to investigate the influence of high power ultrasound on a laboratory-scale 

fluidized bed shelled corn dryer. The drying time, moisture content variation, specific energy consumption and 

quality parameters including ultimate compressive strength, toughness, shrinkage and color of corn kernels were 

investigated. Furthermore, Artificial Neural Network (ANN) simulation models were developed for predicting the 

drying variables. Machine vision techniques were used to determine color and shrinkage as qualitative indices. 

Results showed that the lower frequencies had better penetrations at lower temperatures and cause a significant 

reduction in drying time. In addition, the ultrasound application led to reduction of ultimate compressive strength and 

toughness of the dried samples although ultrasound has non-thermal character as the subsidiary factor, it plays an 

important role in shrinkage and color specification. Based on error analysis results, the prediction capability of ANN 

model is found to be reasonable for the developed models. Application of ultrasound significantly decreased the 

specific energy consumption (SEC) of drying process at the optimal drying condition. 

Keywords: Quality attributes, Drying kinetics, Ultrasound-assisted fluidized bed dryer, Machine vision, Artificial 

neural network 
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1. Introduction 

Corn (Zea mays L) is one of the most important cereal sources in the world, providing a source of high quality 

proteins for both feed and food applications [1]. Freshly harvested corn contains high level of moisture (32-43 %d.b, 

equivalent to24-30 %w.b) at which storability is impossible. Therefore moisture content should be reduced to the level of 

16-17 %d.b (equivalent to13.8-14.5 %w.b) after harvest[2]. Fluidized bed drying is the most commonly used drying 

method to preserve foods and agricultural products[3,4,5]and among several methods for drying of moist granular 

materials, fluidized bed drying has been one of the most successful techniques and widely used during postharvest 

processing of agricultural grain. In this drying method, solid moist particles are suspended in a hot air stream and a high 

rate of heat and mass transfer take place between the grain and gas. These types of dryers consume a considerable 

amount of energy and suffer from long drying time and such methods may produce structural changes in the products 

[6,7,8]. Researchers are looking for new technologies of grain processing which introduce new secure drying methods for 

better quality of grains for local and export markets. Among new technologies beginning to develop and becoming 

famous, ultrasonic dehydration is very desirable because the effects of ultrasound are more significant at low temperature 

which consequently decreases the contingency of food degradation. Moreover, ultrasound is an appropriate for treatment 

of heat sensitive products without any inner-heat increase, therefore food quality can be preserved [9,10,11,12,13]. 

Compared with other drying techniques in fluidized bed drying, the entire bed is dried homogenously. However air-born 

ultrasound assisted fluidized bed drying is new technique of drying in which food stuffs is suspended in the air stream 

while ultrasound energy being introduced to the bed via an appropriate ultrasound transducer. The new proposed drying 

method of moist granular materials can help use the advantages of both drying methods [1314].Several investigators have 

been involved in development of an ultrasonic dehydration method and improving drying process based on indirect 

contact with the food products such as potato [10], paddy [13], vegetables [15], persimmon [16], button mushrooms, 

Brussels sprouts and cauliflower [17], banana [18], melon [19], sapota [20], soy [21], carrot and lemon peel [22], 

pineapple [23], strawberries [24], apple [25],  red bell pepper [26], green pepper [27] and carrot [28].The results of some 

of the mentioned cases showed that ultrasound treatment reduced drying time significantly [29,30,31]. 

When the ultrasonic wave is applied to the material which to be dried, it passes through the solid medium creating 

rapid series of alternative compressions and expansions in a similar way to a sponge when it is squeezed and released 

repeatedly (sponge effect). In this mechanical mechanism, the involved forces can exceed surface tension force which 

keeps the moisture within the capillaries of the material, creating micro-channels which may make the moisture 

elimination easier. These micro-channels were first submitted in micrographs by Fernandes et al. [19]in melon tissue 

after using ultrasound. Furthermore, for removal of much moisture ultrasound produces cavitation this may help the 

phenomenon. Other efficacies caused by ultrasound to be considered are surface tension, the variation of viscosity, the 

deformation of the porous solid material [10,32,33] and another effect is responsible for the development of microscopic 

channels, diminishing the diffusion of boundary layer and augmenting the convective mass transfer in food material [10].  

One of the methods for monitoring the product quality during drying procedure is image processing [34]. A rather 

new and precise method to determine physical characteristics of agricultural products is also application of machine 

vision. It can efficiently be used for determination of qualitative characteristics of the product where there is a strong 

correlation between those characteristics and visual features. Therefore, in such cases machine vision can be used in a 

dryer for real time monitoring of physical quality of the product. It may use an algorithm to determine surface area of 

some axisymmetric agricultural products including eggs, lemons, limes and peaches [35] and study the effect of drying 
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process on shrinkage, color and some other visual features of the product being dried [36].In case of food industry some 

properties such as shape (shrinkage) and color are to be determinant for quality of the dried product.  

Artificial Neural Network (ANN) is a computational approach recently used in simulation and prediction of some 

parameters in drying processes. ANNs overcome the restrictions of conventional computing approaches by extracting the 

required information from the input data. They do not need specific equations. However, they need to be feed by 

adequate amount of input and output data [37]. According to the literature, there is no published information on shelled 

corn drying in an ultrasound-assisted fluidized bed dryer. Therefore the major objectives of the present study are: 

(1) Evaluation of drying kinetics of corn in an ultrasound-assisted fluidized bed dryer  

(2) Quality assessment of dried corns in terms of ultimate compressive strength, toughness of grain kernels and  

employing image processing for analyzing shrinkage and color  

(3) To develop and evaluate ANN models to predict the shelled corn drying characteristics and quality 

(4) Verifying the optimum energy consumption of the dryer by considering product quality in order to contribute 

to further energy saving and preserving the quality during drying 

2. Material and Methods 

2.1. Preparation of samples 

Fresh corn was prepared from a local farm near Shiraz, a south-western city of Iran. Shelled corn was cleaned to 

remove all foreign, broken and disinfected materials for preventing mold development. The grains were carefully 

selected so that the most uniform shaped ones were gathered. In order to avoid moisture loss, the samples were kept in 

separate polythene bags and stored in a refrigerator at 4±0.5oC.  

2.2. Ultrasound treatment 

In this study an experimental ultrasound-assisted fluidized bed dryer developed by Jafari and Zare(2016) [13] were 

modified and employed for drying process of corn [14] (Fig. 1).  

The airflow unit of the drying apparatus included a variable speed centrifugal fan controlled by an inverter (N50-

007SF, Korea) and to obtain the desire inlet temperature, an electric heating unit containing 1kW as well as two 0.5 kW 

electric heater elements was supplied. The bed thickness was about 4cm and the minimum speed of airflow required for 

fluidization entering the bed was kept constant at 0.79±0.21 m/s during all the tests. Air speed was measured with 

Testo435-2 (Germany, ±0.03m/s) and the temperature and relative humidity of the drying air were measured using a 

Testo625(Germany, ±0.5oC, ±2.5%RH).A temperature controller (SU-105IP, Samwon Engineering, Korea) was used to 

control the inlet temperature of the system at a fixed pre-defined value and it was equipped with a K-type thermocouple 

with an accuracy of ±1oC.In order to create high intensity ultrasonic field inside the fluidized bed drying chamber and to 

avoid sound transmission loss, dryer chambers were made of the same material piezoelectric transducers, an aluminum 

cylinder (with internal diameter of 130 mm, height of 250mm and thickness of 10 mm) was prepared. Aluminum 

cylinder was milled at one side of peripheral surface so that the piezoelectric transducers could be placed and bolted 

tightly. Different piezoelectric transducers (PZT-8 20kHz100W, PZT-4 25kHz100W, PZT-4 28kHz100W, PZT-8 

30kHz100W, China) were selected and an appropriate high power ultrasound generator (UCE Ultrasonic PCB, max 

power 300W, 230V, China) was employed to activate the transducers [13-14] (Fig. 2). 

2.3. Drying procedure 

For each experiment 326±10g of shelled corn with average initial moisture content of 31.5±0.5(kg/kg, %d.b) 

determined according to the standard oven drying method (i.e., heating at 103oC for 72h) was filled into the drying bed. 

Page 3 of 45

URL: http:/mc.manuscriptcentral.com/ldrt  Email: mpeasm@nus.edu.sg

Drying Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

·4· 

The drying operation continued until the final moisture content of 16±0.5( kg/kg, %d.b)as the target value for all drying 

experiments was reached. Experiments were carried out with ultrasound application and without ultrasound (as control 

treatment) in three replications. Each experiment was conducted in combination of three ultrasound power density levels 

(11.1, 14.6 and 18.7 kW/m3), four frequency levels (20, 25, 28 and 30 kHz) and three temperature levels (40, 50 and 

60oC). During the drying experiment, the sample moisture content was calculated through weighting it periodically with a 

digital balance (±0.01g, Max 2000g; EK-2000, AND, Japan). Dimensionless moisture ratio (MR) formula used for 

obtaining corn drying kinetics as follows [2-38]: 

eMiM

eMtM
MR

−

−
=                                                                                                                                                                   (1) 

Where Mt is moisture content at time t (decimal dry basis), Miis the initial moisture content (decimal dry basis) and 

Me is the equilibrium moisture content (decimal dry basis) obtained from Chung-Pfost equation: 

ln[ ( )ln( )]eM E F T C RH= − − +
                                                                                                                                      (2) 

Where T is the temperature (°C); C, E and F are 30.20, 0.34 and 0.06for shelled corn, respectively and RH is the relative 

humidity (decimal). 

2.4. Statistical analysis 

A factorial experiment was conducted in a completely randomized design (CRD) with three replications. Analysis of 

variance was performed using SAS software, version 9.0. The Duncan’s multiple range test with a significance level of 5 

% was applied to determine significant differences between the treatments.  

2.5. Quality evaluation 

2.5.1. Mechanical properties 

After each drying experiment, the qualitative characteristics including ultimate compressive strength and toughness of 

dried corn was determined for 20 kernels using an Instron Universal Testing apparatus or Texture Analyser 

machine(STM-20, SANTAM, Iran; Figs. 3a and 3c) equipped with a load-cell (DBBP-50, Taiwan; Figs. 3a and 3d) 

having a rated capacity of 50kgf,the compression force being applied at a rated output of 0.51 mm/min and a probe with 

for the spherical indenter used consisted of a steel ball, with a diameter of ≊ 1.7 mm used for corn (Figs. 3a and 3b)[2-

39].The changes in displacement versus force caused by penetration of the probe into the corn sample were plotted on a 

computer. The probe penetration continued until the force reached to the maximum value and sample started to rupture 

and the curve dropped and eventually the experiment was ended. This maximum force was the ultimate compressive 

strength. When the test was finished the area under the curve (just before sample rupture) was calculated using MATLAB 

2013a software. Toughness was obtained from the area divided by the sample volume. 20 subsamples of corn kernels 

were taken randomly and length (L), width (W) and thickness (T) of seeds were measured using a digital caliper with an 

accuracy of 0.01 mm. Equivalent diameter (de) and volume (Ve) of corn kernels were found by analogy with a sphere of 

the same geometric mean diameter, using the following equations [40-41]: 

3/1
)(LWT

e
d =  ( 3) 

dee
V 6

6

1
Π=                                                                                                                                                             (4) 
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2.5.2. Image segmentation and Feature extraction 

To determine the quality of shelled corns before and after each test, some photos were taken from samples which 

were later used for processing and analysis. To do this before and after each run three 36-corn sets were randomly chosen 

from drying chamber and then arranged in a specific chamber with indirect lighting called ‘‘cloudy sky’’ for 

photographing [12,42] (Fig. 4). To avoid variations in the quality of pictures for image processing the light was shined 

steadily and indirectly. The chamber was protected from outdoor light and illuminated using four halogen lamps with a 

continuous DC electric power supply. Three photos were taken from each 36-corn sample using a digital CCD camera 

(Canon IXUS 960IS, 12.1 megapixel camera with 3.7x optical zoom lens; Canon Inc, Tokyo, Japan) which was mounted 

vertically at the distance of 30 cm over the samples [12-42].The images having highest quality and resolution were 

selected for analysis. They were then transferred to a PC for further processing using MATLAB R2013a software. 

Certain MATLAB commands were employed to extract shape features. A computer algorithm which determines length, 

width and projected area of a grain kernel, can provide a basic analytical tool for quantifying shape. An algorithm was 

developed to determine the major and minor diameters (length and width) of corn. The original approach was to position 

kernels so that the major diameter was always parallel or perpendicular to the horizontal rows of pixels from the camera. 

A subsequent algorithm was developed that measured major diameter independent of kernel orientation. This algorithm 

used a threshold to distinguish an object from the background, producing a binary image. Next, an algorithm commonly 

referred to as the principal component was used to find the orientation of two vectors, which passed through the centroid 

of the object. The covariance matrix of the two-dimensional image vector was calculated. The eigenvectors of the 

covariance matrix pointed in orthogonal directions of maximum variance, passing through the centroid of the image. One 

of these vectors defined the line representing the length of the object, while the second defined the perpendicular distance 

passing through the centroid of the object. For corn kernels the length was measured longitudinally along the kernel tip 

cap to the crown and was defined as the major axis. The “width” determined by the orientation algorithm was not a true 

width; but was defined as a lone perpendicular to the major axis which also passed through the centroid of the object. 

Projected area was determined by counting the number of pixels contained in the binary image of the kernel. After 

calibration, the lens aperture, focus, and distance to the viewed object were maintained constant. The kernels were 

viewed under the camera, and pixels were counted along the length of the kernel[43].Surface area, perimeter, maximum 

diameter, minimum diameter and equivalent diameter were directly determined from each image and if the shrinkage in 

volume equals to the volume of water lost by evaporation during all the stages of the drying, the change of the surface 

area of corn with shrinkage is indicated in the following equation (Eq.7)[43]. Since the surface area is proportional to 

two-thirds power of the volume, the surface area as a proportion of the initial surface area has to be expressed in equation 

(Eq. 7) [40-44]. The initial surface area (Ao) and initial volume (Vo) of corn kernels were found by the equation Eq. 5 and 

6 respectively [45,46,47,48,49]. Subsequently, shrinkage was calculated and evaluated using Eq. 8.  

2
e

d
o

A π= (5) 

deo
V 6

6

1
Π= (6) 

3

2











=

o
V

V

o
A

A
(7) 
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Shrinkage % =
o

o

V

VV −
× 100 (8) 

The data obtained from MATLAB were in pixels which then were converted into millimeters. The data were directly 

imported from MATLAB to Excel software (2010). Statistical analysis was carried out by SAS 9.0 software as the 

second step. In order to evaluate color changes the images were analyzed in the RGB (i.e. Red, Green and Blue) and L
*
 

a
*
b

*
space by means of MATLAB software [12-50].L

*
is the luminance or lightness component, which ranges from 0 to 

100 (L
*
= 0 yields black and L

*
= 100 indicates diffuse white) and parameters a

*
(from green to red) and b

*
(from blue to 

yellow) are the two chromatic components, which range from -120 to 120 [51, 52, 53, 54, 55]. Usually, 

the color of foods has been measured in L
*
a

*
b

*
and the most often used color model is the RGB model in which each 

sensor captures the intensity of the light in the red (R), green (G) or blue (B) spectrum, respectively [56]. 

2.6. Neural Networks 

Drying time and moisture content variation in the ultrasound-assisted fluidized bed dryer and quality factors of the 

product (ultimate compressive strength and toughness) were modeled using ANNs. In Artificial Neural Networks (ANN) 

research, most efforts have centered on the development of new learning rules, the exploration of new neural network 

architectures and the expansion of new fields of application. Not much attention has been dedicated to the development 

of procedures that would permit the understanding of the nature of the internal representations generated by the network 

to respond to a given problem. Instead, ANN have been presented to the user as a kind of ‘black box’ whose extremely 

complex work transforms inputs into predetermined outputs [57].ANN, a computational approach inspired by biological 

neural networks of human is an appropriate tool to estimate functions where the complex relations between large number 

of input and output data are being modeled [58]. In the first step of ANN modeling the collected data are divided into 

three sets. The first set is used for training the network, the second for validating the model and the third one for testing 

the model. Each network contains three main layers including input, output and hidden layers. Through processing nodes 

information is transferred between the layers. When developing the network data are received, saved and manipulated in 

each node of a given layer and then passed to the nodes in the next layer [59]. It is not possible to find out immediately 

how the weights of the network or the activation values of the hidden neurons are related to the set of data being handled. 

Thus, unlike classic statistical models, in a network it does not appear to be easy to find out the effect that each 

explicative variable has on the dependent variable. The different methods have been proposed for interpreting what has 

been learned by a feed forward neural network composed of input neurons, hidden neurons, and output neurons. As 

shown in Fig. 5, these interpretative methods can be divided in two types of methodologies: analysis based on the 

magnitude of weights and sensitivity analysis. Analysis based on the magnitude of weights groups together those 

procedures that are based exclusively on the values stored in the static matrix of weights to determine the relative 

influence of each input variable on each one of the network outputs [57].In the beginning of training phase node weights 

are initialized with random values. Using either steepest-gradient descent principle or generalized delta rule the weights 

are frequently modified or updated. Once a termination criterion is satisfied the training process converges. It may also 

happen provided that there is not any significant change in the values corresponding to the connection links. In this study 

70% of the data were randomly selected to train the ANN model, 15% to validate and the remaining 15% to test the 

network performance. To avoid over-training, the training process stopped by set training parameters and validation 

check as soon as the error of test data was about to rise similar to the previous work [12]. In order to check how good the 

developed model was mean square error (MSE) and coefficient of determination (R2) were calculated. The model with 
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the lowest MSE and the highest R2 was introduced as a well-designed model [60].The methodology used for the 

assessment of network performance involves obtaining the minimum statistical measures of error between experimental 

and predicted transient time predicted by the model. In this study, statistical parameters namely, mean absolute error 

(MAE), mean square error (MSE), Mean relative error (MRE) and correlation coefficient (R2) represented by Eqs. (9)– 

(12) were computed to check the performance of the developed model [60-61]. 

MAE= 
�
� ∑ 
T�
�,� − T���,�
����                                                                                                                   (9) 

MSE= 
�
� ∑ �T�
�,� − T���,������ 2                                                                                                           (10) 

MRE =�1N ∑ �Texp,i− TANN,i�Ni=1 Texp,i �                                                                                                                       (11) 

R
2= 1 − ∑ �Texp,i −TANN,i��Texp,i −TANN,i�Ni=1

∑ �TANN,i��TANN,i�Ni=1
!                                                                                                         (12) 

In these equations, Texp,iand TANN,i  are the average experimental and calculated parameters for the ith observation, 

respectively and N is the number of observations. A well trained ANN model should produce small MAE, MSE and 

MRE with large R2 values [11, 12, 60, 61]. 

 The Neural Network Toolbox of MATLAB software was used for ANN modeling. The classical back propagation 

algorithm was used to train the network. For the hidden layers to reach the optimum number of neurons different number 

of neurons together with two randomly selected transfer functions (Tansig: Hyperbolic tangent sigmoid and Logsig: Log 

sigmoid) and two algorithms (Trainscg: Scaled conjugate gradient, and Trainlm: Levenberg–Marquardt) were used to 

train the developed ANN model. One of the most difficult tasks in ANN model development is finding the optimal 

network architecture. This network architecture can be selected out of several network configurations containing the 

combination of various model parameters namely, the number of neurons in the hidden layers, different transfer functions 

and the training algorithms. A list of different transfer functions and training algorithms investigated during training 

network is summarized in Table 1. In order to obtain the optimum number of neurons in the hidden layer for each of 

sample geometry, the ANN model was trained with varying numbers of neurons and randomly chosen. The number of 

selected neurons has great effect on the model prediction performance [11].For the four networks with output predictions 

of drying time, moisture content, toughness and ultimate compressive strength the inputs were chosen as drying air 

temperature, frequency and ultrasound power density whereas for the network which predicted output, two input hidden 

layers were added. Fig. 6 depicts the schematic structure of the applied neural network with its three inputs; two hidden 

layers, and single output layer. Initially, the performance of ANN model was assessed with a given number of neurons 

with a randomly chosen transfer function and the training algorithms. In order to study the effect of different parameters 

on network performance, the model was run by changing an important involving parameter and keeping the others 

parameters constant. The iteration process of performance assessment was continued until the most appropriate model for 

simulating the experimental values with highest correlation coefficient of determination and least values in errors was 

obtained [11].  

2.7. Specific Energy Consumption (SEC) 

The other purpose of the present study was to select the best treatment to have optimum drying process considering 

specific energy consumption. The amount of energy needed to remove one kilogram of water from the product is called 

SEC and can be calculated according to the following Eq.(13). It depends on the design of the dryer, initial temperature 

and moisture content of kernel, the bed thickness, the amount of moisture removed, weather conditions during drying, the 
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drying air temperature and mass flow rate. Since reducing drying cost involves minimizing specific energy consumption, 

the specific energy consumption was discussed as optimization criterion. Generally, three types of energy were consumed 

in the drying process. First the energy required to drive the fan for introducing air flow into the dryer bed, second the 

energy needed for heating up the inlet air and finally the energy required for ultrasound generator. 

evm

tE
SEC =                                                                                                                                                                     (13) 

Where Et is the total energy consumption (J) and mev is the total amount of water evaporated from corn over the 

drying process (kg).The centrifugal fan power needed to blow the air per unit area of the bed can be calculated as follows: 

f

ap
FP

η

ν∆
=                                                                                                                                                                   (14) 

Where FP is the centrifugal fan power (W), ∆p is the total pressure drop (Pa), va is the inlet air velocity (m/s), fη is 

the centrifugal fan efficiency which depends on the fan type and the wide-open volume percentage and considered to be 

0.5 according to corresponding curves [2].Three parameters could affect the total pressure drop and fan power (∆p), 

including static pressure owing to seeds resistance (∆pg), the pressure drop induced by pipes and ducts conveying air (∆pd) 

and the perforated seed-bed resistance which was neglected because the perforated area was more than 10% of the whole 

surface area [2-62]. Therefore total pressure drop defined as fallow: 

dpgpp ∆+∆=∆                      (15) 

This pressure drop resulted from clean seeds with the thickness of L (m) was calculated as fallows[2]: 

)aVLn(

aVL.

g∆p
791

24
10385

+

×××
= (16) 

The pressure drop due to direction change (Fig. 7) was determined by Eq. (17) [2-63]:  

2
2( )

1.29
a

d

V
p c∆ =

                                (17) 

And c2was considered to be 0.19. 

The electric thermal power required for heating up the drying air was calculated by the heat balance equation as follows: 

( )a a p d aHP V C T Tρ= −
(18) 

Where aρ  is air density (kg/m3), Cp is air specific heat capacity (J/kg.K), Td and Ta are the inlet drying air and the ambient 

air temperatures (K), respectively. The ultrasound power (UP) can be calculated as follows: 

Φ= cosUIUP            (19) 

Where U (V) and I (A) are the voltage and electric current, respectively consumed by the ultrasound generator and cosФ 

is the power factor considered to be 0.8. Total energy consumption was obtained from the following equation: 

tUPAHPFPtE ∆++= ])[(
             (20) 
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Where A is cross sectional area of drying bed (m2) and ∆t is final drying time (s). 

3. Results and Discussion 

3. 1. Drying kinetics 

3.1.1. Drying time 

A range of frequencies were applied in different power densities, in other to study the effect of high power ultrasound on 

drying time. For each treatment, the final drying time were calculated and are shown in Table 2 and Table 3 summarizes 

the variance analysis for the effect of different drying factors i.e., drying air temperature (T), frequency (F), ultrasound 

power density (P) on drying time at 1% probability level. As can clearly be seen, drying duration was influenced by inlet 

air temperature, frequencies and power densities. All interactions were also significant which means the effects of 

different factors on drying time were different.  Figs. 8 and 9 illustrate the effects of inlet air temperature, frequency and 

power density on final drying time. The Duncan test at 5% of probability was applied to determine significant differences 

between treatments. As can be observed in Fig. 8, by increasing temperature in fluidized bed modes the drying time 

decreased significantly that the same behaviors were observed and reported by Özahi and Demir [64, 65, 66]. The least 

drying time was observed at drying air temperature of 40°C, frequency of 25 kHz and ultrasonic power density of 14.6 

kW/m3and drying time was reduced up to 43% compared to that of the control (without ultrasound). Also it can be 

observed that frequency of 25kHz in comparison with other frequencies had the most significant influence on reduction 

of final drying time. It is clear from Fig.8 that by increasing drying air temperature for all treatments including fluidized 

bed only (control treatments) and ultrasound-assisted fluidized bed drying, drying time reduced. One important issue 

need to be considered is that the effect of each frequency at each temperature level should be compared with its control 

values (no ultrasound).  

At drying air temperatures of 50oC and 60oCthere was no significant difference among different frequency levels and 

somehow the final drying time increased when frequency increases. This is due to the fact that increasing drying air 

temperature in drying process causes greater cell damages, especially when samples were subjected to ultrasound 

treatment. Moreover, ultrasound is a mechanical wave which can penetrate in denser air (lower temperature) and 

subsequently into the grain (air-borne ultrasound drying).The lower frequencies have better penetrations at lower 

temperatures. Therefore increasing the inlet drying air temperature diminished the effect of ultrasound on dehydration 

process. Finally, as presented in Fig. 9, drying rate was increased at power density (14.6kW/m3) and the drying time was 

shortened at the power density compared to the control group. It might be due to the fact that the greater part of the 

ultrasonic waves was damped at lower power densities. Furthermore, no significant difference was observed among 

drying time for different power densities at drying temperature of 50oC and 60oC as by increasing temperature the effect 

of ultrasound on drying time reduces. This is due to the fact at higher temperature levels ultrasound had a negative effect 

on moisture removal as a result of distortion of particular parenchyma cells and consequently caused a higher drying time. 

Other researchers reported that the influence of ultrasound on drying rate is more obvious at lower temperature. The 

higher efficiency of the ultrasound-assisted air drying at lower temperatures is caused by the additional energy provided 

by ultrasound during drying [67].Also the effect of ultrasound power on drying rate decreases with the reduction of 

samples’ moisture content during drying process [68]. 

3.1.2. Moisture ratio 

The moisture ratio values are plotted in Figs.10 and11at different frequency and power density levels respectively for 

the most effective drying air temperature of 40oC. Fig. 10 shows that different frequencies had different effect on drying 

curves in the most effective combination of temperature (40oC) and power density(14.6 kW/m3) on final drying time. The 
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drying curve for the frequency of 20kHz approached to the control treatment. In other word this frequency had no effect on 

drying rate. As can be observed from drying curves, the frequency of 25 kHz is the most effective frequency on drying rate. 

At this frequency the slope of the graph is greater than the others, which indicates moisture loss was greater than others and 

as a result the final drying time was shorter compare to the other frequencies. Also in Fig.11 all of power densities were 

evaluated in the most effective temperature (40oC) and frequency (25 kHz) on final drying time. Drying rate declined at 

lowest power density of 11.1kW/m3as represented in Fig.11. Whereas drying curves for power densities of 14.6 kW/m3 and 

18.7 kW/m3 were close to each other and there was a gap between these two curves and the rest. The effect of HPU 

disappeared at the lowest ultrasonic power level. The results of the experiment were similar to those reported by other 

researchers[31,69, 70, 71]. 

3.2. Quality aspects 

3.2.1. Ultimate compressive strength and toughness 

The ANOVA result for the ultimate compressive strength of corn kernels is presented in Table 4 for all the drying 

variables (T, F, and P). It was observed that drying air temperature and frequency had significant effect on compressive 

strength of corn kernels whereas ultrasound power density had no significant effect on compressive strength. Fig. 12 

shows the mean differences of compressive strength for the interaction of frequency and drying air temperature (Duncan 

test, at 5% probability). It is clear from Fig. 12that higher temperature caused a significant decrease in compressive 

strength of kernels as the higher the drying temperature produce more damage to the tissue cells of corn structure and 

result in more frangible corn kernels in fluidized bed mode (control treatments). Other researchers by aid of computer 

simulations of drying kernels showed that removal of water from the region adjacent to the surface caused a tensional 

stress in that region, and a compression stress in the center of the kernels [72] and the tensile strength or maximum 

stresses are greater than the compressive ones, thus fracturing or brittle damage occurs near the boundary of dried 

materials [73]. At drying air temperature of 40oC and frequency of 28 and 30kHz,the compressive strength of corn 

kernels decreased by almost28.36% and 29.62% compared to the corresponding values of the control sample because 

samples were subjected to more time of ultrasound and a longer ultrasound treatment time resulted in greater destruction 

of structure of dried corn, moreover application of ultrasound at higher frequencies cause vigorously cell damage. 

However, at drying air temperature of 50 and 60oC there was no significant difference observed in compressive strength 

of corn kernels among HPU groups when compared with its control value. The same behavior was observed by Nowacka 

et al.[25] during rehydration of apple by ultrasound pretreatment. The result of ANOVA for the toughness of corn kernels 

is presented in Table 5. It is shown that all the drying variables had significant effects on toughness of kernels except the 

ultrasound power density. As it is shown in Fig.13,increasingdrying air temperature caused a significant decrease in 

toughness of kernels in the fluidized bed mode (control treatments). This is due to the fact the higher temperature causes 

higher moisture and temperature gradient in the corn kernels and subsequently the fissure appears in the kernels. The 

least toughness belonged to drying air temperature of 40oC and frequencies of 28 and 30 kHz which showed a reduction 

of 79.66 and 79.23% respectively in toughness value when compared with its control value. As a result increasing 

temperature during drying has severe effect on corn structure and cause cell damage of corn kernels especially when 

samples were exposed to more time of ultrasound treatment having higher frequencies. This demonstrates a close relation 

between the required mechanical strength of corn kernel and its exposure duration to the thermal and ultrasonic 

treatments. These results agreed with those attained by other investigators [19,74,25].Based on the results of ultimate 

compressive strength and toughness of corn kernels, it can be said that application of ultrasound caused breaking down of 

cells and disruption of contiguous cells which produced large cell interspaces and subsequently reduced required force 
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and energy needed to rupture the samples. Even though the samples were selected carefully in size and shape, during 

compressing test for some kernels the bio-yield point and the rupture points coincided so that they could not be 

distinguished clearly. Most food and biological materials exhibit non-linear behavior at larger (e.g., 5% strain or greater) 

deformations and have viscoelastic behavior [39]. In addition some changes may occur in the properties of dried material 

after ultrasound treatment. Therefore the toughness modulus which is the area under the stress-strain curve up to the 

rupture point gave better results than ultimate compressive strength in the experiments and it was more appropriate index 

representing the grain hardness and quality. 

3.2.2. Shrinkage 

Table 6 presents the analysis of variance at the probability level of5%, for the effect of different drying variables on 

shrinkage of dried samples. The effect of drying air temperature (T), frequency (F) and ultrasound power density (P) on 

shrinkage was not significant. However, only the interaction of inlet air temperature and frequency on shrinkage was 

significant (p<0.5). Fig.14 illustrate the effects of inlet air temperature and frequency on shrinkage. The highest 

shrinkage value was observed at drying air temperature of 40oC and frequencies of 28 and 30kHz which led to a 

reduction of 12.73% and 13.13% respectively in volume of corn kernels whereas there was no significant difference 

between the effect of drying air temperatures of 50 and 60oC in comparison with its control values. 

The density and shrinkage of maize dried in a fluidized bed dryer will depend particularly on the moisture content of 

the final product[75]. Depending on drying method and parameters such as temperature and air flow, both the amount of 

shrinkage and the degree of damage to interior structure of product cells are liable to change[76].According to Fig.14, at 

drying air temperature of 40oC and frequencies of 28 and 30kHz, shrinkage was significantly different from other 

treatments due to the longer duration of the drying in these treatments. Although ultrasound has non-thermal character as 

the subsidiary factor, it plays an important role in duration of final drying time. 

3.2.3. Color specification   

3.2.3.1.  RGB color measurement 

Fig. 15 illustrates the effects of inlet air temperature and frequency on RGB components of corn color. The effect of 

ultrasound power density on the RGB components was not significant. The Duncan test was performed to determine any 

significant differences between treatments. Color changes of samples in ultrasound-assisted fluidized bed drying 

treatments were higher compared to its control value (fresh corn). By increasing the temperature and frequency the 

quality of the color reduced as RGB components of corns increased in comparison with fresh corn (control),implying that 

the corn had become whiter and brighter. Color is an important quality sign resulting from the interplay of light the object 

and the observer. Similar studies investigated the effect of conventional drying method on the color of dehydrated 

products and reported that all morphological features decreased smoothly during drying[36,77,78]. Since, drying of 

cellular tissues generally produces physical (color, texture, shape, porosity and etc.) changes[79,80,81,82] and a long-

lasting hot air drying may result in a significant change in color alteration and destruction of natural dyes in product. The 

color of a natural pigment is unstable and sensitive to various factors such as light, temperature and etc. Thus, application 

of ultrasound affecting the duration of drying time led to a color change proportional to duration of drying time. Since 

heat is the most effective factor on changing color of the corn when the drying time decreased the values of RGB 

remained constant compared to those of the fresh corn. 

3.2.3.2. L
*
a

*
b

*
color measurement 

Page 11 of 45

URL: http:/mc.manuscriptcentral.com/ldrt  Email: mpeasm@nus.edu.sg

Drying Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

·12· 

According to Duncan’s multiple rang test, the effect of different drying air temperatures and frequencies on L
*
a

*
b

*
 

components was shown in Fig. 16. The effects of ultrasound power density on L
*
a

*
b

*
components of corn color was not 

significant. In the L
*
a

*
b

* 
color space, the two components of a

*
 and b

*
 underwent significant changes, but L

*
 which 

represents the luminance of images did not. As was mentioned previously, the illumination was kept constant in the sky 

chamber when photos were taken, so that the images were taken with a uniform light quality. By increasing the 

temperature and frequency a
*
 and b

*
 went to positive values. Color changes of samples dried in ultrasound-assisted 

fluidized bed drying treatment were higher compared to hot air (fluidized bed). Similar results was also found by aid of 

colorimeter and expressed in CIE L
*
a

*
b

*
color space (precision 0.01) of drying apples that showed color changes of 

samples dried in ultrasonically aided convective drying schedules (CV-US) were higher compared to convective (CV) 

ones [83]. However at the drying air temperature of 40oC, a
*
 and b

*
 values did not change significantly and colors 

changes from green to red (a
*
) and blue to yellow (b

*
) were very low and the negative values declined. Average colors 

changes at the drying air temperature of 40oC were less than those of 50 and 60oC, Therefore at the lower frequency and 

lower temperature the color component of shelled corn varied less and an acceptable quality level was preserved.  

3.3. Assessment of ANN prediction 

The results of ANN modeling for prediction of moisture content, drying time, toughness and ultimate compressive 

strength of shelled corn were strongly dependent on input parameters. Similar results were reported by Tripathy and 

Kumar [84]. Among tested ANN topologies, those with the lowest MSE and highest coefficient of determination were 

introduced as the best. However, ANN modeling for prediction of ultimate compressive strength was not compatible with 

all results (the highest MSE and lowest coefficient of determination) thus it could not be modeled. This may due to the 

fact that the bio-yield and the rupture points on the stress-strain curve coincided and thus they could not be distinguished 

clearly for the ultrasound-dried corn kernels. Performance of the network in prediction of moisture content, drying time 

and toughness was evaluated by plotting the predicted values against the experimental data. Typical plots comparing 

experimental and predicted values of drying time during training, validation and testing of the selected ANN model is 

presented in Fig. 17. From Fig.17 it is observed that the best model is the one with highest R2, in training, validation and 

testing as well as all data together. The best ANN topology for the drying time model was 3-14-15-1(number of neurons) 

with transfer function of tansig and lowest MSE of 9.14  which was obtained after 3 training cycles as is shown in Table 

7. Furthermore, the best ANN models for moisture content and toughness, were also obtained and presented in Table 7 

with related validation indices. The results of this study suggest that the ANN modeling technique could effectively be 

applied in prediction of the drying parameters similar to the results reported by Momenzadeh et al. [11],Khawas et al 

[85]Barzegar et al. [12]and Aghbashlo et al.[86]. 

3.4. Specific Energy Consumption (SEC) 

The maximum reduction of SEC respect to its control value belonged to the treatment with temperature of 40oC, 

frequency of 25 kHz and power density of 14.6 kW/m3(Table8).For this treatment the SEC reduced about 32% when 

compared with its control. However, the SEC increased at temperature of 50 and 60oC when ultrasound treatment was 

applied. This is due to the fact at higher temperature levels ultrasound had a negative effect on moisture removal as a 

result of distortion of particular parenchyma cells and consequently caused a higher drying time and energy consumption. 

3.5. Selection of the Drying Process 

The optimum drying condition was determined based on both specific energy consumption and quality of dried corns. 

The grain quality attributes depend on final product utilization for food or feed. If the grain is planned to be milled for 
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animal feeding, it is desirable to have lower toughness so that lower energy will be required for grinding. Based on 

toughness results presented in Fig.13, the sponge effect caused by ultrasound application led to reduction of toughness of 

corn kernels. To select the best treatment, a compromise should be made between final quality of the grain and the 

amount of energy consumed in drying process. Therefore, the treatment with temperature of 40oC, frequency of 25 kHz 

and power density of 14.6 kW/m3 was introduced as the best selection for ultrasound-assisted fluidized bed drying. 

4. Conclusions 

Based on the results, it can be concluded that drying time and specific energy consumption of corn drying decreased 

significantly when lower frequencies and lower drying temperatures (e.g. 40oC) is applied in process of HPU fluidized 

bed drying. The quality of the grain including compressive strength, toughness, color parameters and shrinkage is highly 

influenced by drying parameters. The treatment having the frequency of 25 kHz and power density 14.6 kW/m3wasthe 

most treatment on drying time and caused 43% reduction in drying duration in comparison with no ultrasound (control). 

Considering drying kinetics, quality and energy factors the optimum drying condition was selected to be the treatment 

having drying air temperature of 40oC, frequency of 25kHz and power density of 14.6 kW/m3. 

The most accurate predictions for drying time, toughness and moisture content were attained by the mentioned ANN 

models using Logsig and Tansig transfer function with trainscg and trainlm back propagation algorithm. 

 

 

Nomenclature 

A  Drying bed surface area (m2) 

ANN  Artificial neural network 

pc
 

Specific heat capacity of air (J/kg.K) 

2c  
90-Degree round section pressure loss coefficient 

CFE ,,
 Corn-specific empirical constants 

tE
 

Energy consumption(J) 

FP  Power supplied to the fan per unit area of the bed (W) 

HP  Power consumption of air heaters per unit area of the bed (W) 

I  Electrical current (A) 

L  Corn bed thickness (m) 

evm
 

Evaporated water from grains (kg) 

MR  Moisture ratio (dimensionless) 

tM
 

Moisture content of corn at time t (decimal) 

iM
 

Initial moisture content (decimal) 

eM
 

Equilibrium moisture content (decimal) 
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MSE  Mean square error 

 

MAE  Mean absolute error 

MRE  Mean relative error 

P∆  Total pressure drop of drying air (Pa) 

dP∆
 

Pressure drop of air due to the duct system (Pa) 

gP∆
 

Pressure drop of air due to the perforated bed (Pa) 

2R  
Coefficient of determination 

RH  Relative humidity (decimal) 

HPU High power ultrasound 

RGB  Red, Green, Blue 

∗a  Rate of color change from green to red 

∗b  Rate of color change from blue to yellow 

∗L  Luminance of image 

ANN Artificial neural networks 

SEC  Specific energy consumption 

aT
 

Ambient temperature (K) 

dT
 

Inlet air temperature (K) 

U  

 

Voltage (V) 

av
 

Inlet air velocity (m/s) 

1V  
Initial volume of product (m3) 

2V  
Final volume of product  (m3) 

aρ  
Air density(kg/m3) 

φcos  Power factor (dimensionless) 

fη
 

Fan efficiency (dimensionless) 
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Fig captions 

Fig. 1. Scheme of the ultrasound-assisted fluidized bed dryer. (1. electromotor and fan, 2. air, 3. three electrical pre-heaters, 4. hot air 

heaters, 5. wind box, 6. k-type thermocouple, 7. piezoelectric transducers, 8. drying chamber, 9. Samples, 10. electrical control unit, 11. 

temperature controller, 12. inverter, 13. ultrasound generator, 14. digital balance (±0.01g, max 2000g)). 

Fig. 2. Ultrasound equipment arrangement. (A: drying chamber, B: distributor, C: ultrasound generator, D: ultrasound transducers, E: 

fastening belt and bolts). 

Fig. 3. Schematic diagram and photo of the instron and its equipment. (A: Schematic diagram of the instron: 1. spherical indenter with 

radius of curvature 0.838mm, 2. support, 3. corn kernel, 4. load cell, 5. applied force, B: probe, C: instron, D: load-cell). 

Fig. 4. Scheme and photo of the cloudy sky chamber. (Scheme of the cloudy sky chamber: 1. halogen lamp, 2. corn sample, 3. dc 

power switch, 4. range photograph, 5. camera, 6. dome chamber, 7. reflected light). 

Fig. 5. Scheme of the proposed interpretative methods 

Fig. 6. Selected neural network structure. 

Fig. 7. 90° round section. 

Fig. 8. The effect of temperature and frequency on final drying time (Duncan test, similar letter shows no significant difference at 5% 

of probability). The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total SEM). 

*Standard Error of the Mean 

Fig. 9. The effect of temperature and power density on final drying time (Duncan test, similar letter shows no significant difference at 

5% of probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total SEM). 

*Standard Error of the Mean 

Fig. 10. Effect of various frequencies on final drying time of corn at temperature of 40oC and power density of 14.6 kW/m3. 

Fig. 11. Effect of power density on final drying time of corn at temperature of 40oC and frequency of 25 kHz. 

Fig. 12. The effect of temperature and frequency on ultimate compressive strength (Duncan test, similar letter shows no significant 

difference at 5% of probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total 

SEM).*Standard Error of the Mean 

Fig. 13. The effect of temperature and frequency on toughness of corn kernels (Duncan test, similar letter shows no significant 

difference at 5% of probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total 

SEM).*Standard Error of the Mean 

Fig. 14. The effect of temperature and frequency on shrinkage (Duncan test, similar letter shows no significant difference at 5 % of 

probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total SEM).*Standard 

Error of the Mean 

Fig. 15. The effect of temperature and frequency on RGB color component (Duncan test, similar letter shows no significant difference 

at 5% of probability). 

Fig. 16. The effect of temperature and frequency on L*a*b* color component (Duncan test, similar letter shows no 

significant difference at 5% of probability) 

Fig. 17. Comparison between experimental and predicted values during training, validation and testing of ANN model: drying time, 

provided by MATLAB R2013a. 
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Fig. 1.Scheme of the ultrasound-assisted fluidized bed dryer. 
(1. electromotor and fan, 2. air, 3. three electrical pre-heaters, 4. hot air heaters, 5. wind box, 6. k-type thermocouple, 7. piezoelectric 
transducers, 8. drying chamber, 9. Samples, 10. electrical control unit, 11. temperature controller, 12. inverter, 13. ultrasound generator, 
14. digital balance (±0.01g, max 2000g)). 
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Fig. 2. Ultrasound equipment arrangement. 
(A: drying chamber, B: distributor, C: ultrasound generator, D: ultrasound transducers, E: fastening belt and bolts). 
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Fig. 3. Schematic diagram and photo of the instron and its equipment. 
(A: Schematic diagram of the instron: 1. spherical indenter with radius of curvature 0.838mm, 2. support, 3. corn kernel, 4. load cell, 5. 
applied force, B: probe, C: instron, D: load-cell). 
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Fig. 4. Scheme and photo of the cloudy sky chamber. 

(Scheme of the cloudy sky chamber: 1. halogen lamp, 2. corn sample, 3. dc power switch, 4. range photograph, 5. camera, 6. dome 
chamber, 7. reflected light). 
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Fig. 5. Scheme of the proposed interpretative methods. 
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Fig. 6. Selected neural network structure. 
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Fig. 7. 90° round section. 
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Fig. 8. The effect of temperature and frequency on final drying time (Duncan test, similar letter shows no significant difference at 5% 
of probability). The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total SEM). 

*Standard Error of the Mean 
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Fig. 9. The effect of temperature and power density on final drying time (Duncan test, similar letter shows no significant difference at 
5% of probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total SEM). 

*Standard Error of the Mean 
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Fig. 10. Effect of various frequencies on final drying time of corn at temperature of 40oC and power density of 14.6 kW/m3. 
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Fig. 11. Effect of power density on final drying time of corn at temperature of 40oC and frequency of 25 kHz. 
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Fig. 12. The effect of temperature and frequency on ultimate compressive strength (Duncan test, similar letter shows no significant 
difference at 5% of probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total 
SEM). 
*Standard Error of the Mean 
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Fig. 13. The effect of temperature and frequency on toughness of corn kernels (Duncan test, similar letter shows no significant 
difference at 5% of probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total 
SEM). 
*Standard Error of the Mean 
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Fig. 14. The effect of temperature and frequency on shrinkage (Duncan test, similar letter shows no significant difference at 5 % of 
probability).The values of error bars correspond to a cumulated total standard error of the mean (error bar = ± total SEM). 
*Standard Error of the Mean 
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Fig.15. The effect of temperature and frequency on RGB color component (Duncan test, similar letter shows no significant difference 
at 5% of probability). 
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Fig.16. The effect of temperature and frequency on L*a*b* color component (Duncan test, similar letter shows no significant difference 
at 5% of probability). 
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Fig. 17. Comparison between experimental and predicted values during training, validation and testing of ANN model: drying time, 
provided by MATLAB R2013a. 
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Table 1. List of transfer functions and back propagation training algorithms used in ANN training 

Transfer function Training algorithms 

Logsig (Log sigmoid) scg (Scaled conjugate gradient back propagation) 

Tansig (Hyperbolic tangent sigmoid) cgp (polak-Ribiere conjugate gradient back propagation) 

Poslin (Positive linear) bfg (BFGS quasi-Newton back propagation) 

Satlin (Saturating linear) lm (Levenberg-Marquardt back propagation) 

 rp (Resilient back propagation, Rprop) 
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Table 2. Final drying time for different treatmentsof cornkernels 
  

Control 
  
30 

Frequency (kHz)  
28 

  
25 

  
20 

Power 
density  

)kW/m3
( 

  
Temperature 

(ºC) 

 115.33 f 105 h 120 e 135 c 11.1  

 113.33 f 106.67 hg 80 j 155 a* 14.6 40 

 113.33 f 108.33 g 84.33 i 127 d 18.7  

140 b - - - - -  

 75 k 70 l 75 k 65 m 11.1  

 75 k 75k 75 k 70l 14.6 50 

 70 l 70 l 85i
  70l 18.7  

70 l - - - - -  

 55 n  50 qp 54 on 43 s 11.1  

 55 n 51.67op 50.33 qp 48qr
  14.6 60 

 46 r 56.67 n  40t 50qp 18.7  

48.33 qr
  - - - - -  

* Similar letters indicate no significant difference in the table (Duncan test, at 5 % of probability) 
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Table 3. Results of the analysis of variance for final drying time of cornkernels 
F Mean 

square error 
Sum of 
squares 

Degree of 
freedom 

Variables 

16219.2** 37394.36 74788.72 2 Drying air 
temperature(T) 

255.26** 588.51 1765.52 3 Frequency(F) 

53.65** 123.69 247.39 2 Power density(P) 

58.23** 134.26 537.05 4 (T)×(P) 

603.67** 1391.79 8350.76 6 T)×(F)( 

119.86** 276.35 1658.09 6 )F)×(P(  

97.57** 224.95 2699.46 12 (T)×(F)×(P) 

 2.30 166 72 Error 

** Significant at 1% of probability 
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Table 4. Results of the analysis of variance for ultimate compressive strength of corn kernels 
F Mean 

square error 
Sum of 
squares 

Degree of 
freedom 

Variables 

17.32** 6020.45 12040.89 2 Drying air 
temperature(T) 

4.81** 1672.41 5017.23 3 Frequency(F) 

0.69ns 240.58 481.16 2 Power density(P) 

1.23ns 426.55 1706.24 4 (T)×(P) 

5.77** 2006.45 12038.70 6 T)×(F)( 

0.47ns 164.47 986.84 6 )F)×(P( 

0.41ns 142.20 1706.40 12 (T)×(F)×(P) 

 347.69 196446.70 565 Error 

** Significant at 1% of probability 
 ns Non-significant 
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Table 5. Results of the analysis of variance for toughness of cornkernels 
F Mean 

square error 
Sum of 
squares 

Degree of 
freedom 

Variables 

159.92** 0.49 0.98 2 Drying air 
temperature(T) 

60.67** 0.19 0.56 3 Frequency(F) 

0.29ns 0.00089 0.0018 2 Power density(P) 

1.83ns 0.0056 0.022 4 (T)×(P) 

94.77** 0.29 1.74 6 T)×(F)( 

1.35ns 0.0041 0.025 6 )F)×(P( 

1.51ns 0.0046 0.055 12 (T)×(F)×(P) 

 0.0031 1.22 399 Error 

** Significant at 1% of probability 
ns Non-significant 
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Table 6. Results of the analysis of variance for shrinkage of cornkernels 

F Mean 
square error 

Sum of 
squares 

Degree of 
freedom 

Variables 

0.10ns 0.0006 0.0013 2 Drying air 
temperature(T) 

0.10ns 0.0139 0.0416 3 Frequency(F) 

2.21ns 0.0006 0.0013 2 Power density(P) 

0.54ns 0.0034 0.0135 4 (T)×(P) 

0.04* 0.0146 0.0877 6 T)×(F)( 

0.95ns 0.0016 0.0099 6 )F)×(P( 

0.76ns 0.0043 0.0518 12 (T)×(F)×(P) 

 0.0062 0.9804 156 Error 

* Significant at 5% of probability 
nsNon-significant 
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Table 7. The best ANN models for prediction of three outputs 

 

Model  
output 

 

Topology 
(number of 
neurons in 
each layer) 

 

Transfer 
function 

 

Number of 
training 

cycle 

 

Coefficient of 
determination 

(R2) 

 

Mean 
square 
error 

(MSE) 

 
Mean 

absolute 
error 

(MAE) 
 

 

Mean 
relative  

error (MRE) 
 

Drying Time 3-14-15-1 tansig-logsig 3 0.97 9.14 5.29 
 

0.072 
 

Toughness 3-17-19-1 tansig-tansig 5 0.85 0.002 0.013 
 

0.109 
 

Moisture 
content 

3-10-11-1 tansig-tansig 8 0.80 5.13×10-6 0.007 
 

0.013 
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Table 8. SEC (MJ/kg) of drying process for different treatments of cornkernels 

  
Control 

  
30 

Frequency (kHz)  
28 

  
25 

  
20 

Power 
density  

)kW/m3
( 

  
Temperature 

(ºC) 

 39.36 38.37 39.35 45.78 11.1  

 35.77 38.03 28.70 56.15 14.6 40 

 42.27 40.98 30.35 49.06 18.7  

42.14 - - - - -  

 32.02 26.78 31.38 26.55 11.1  

 32.48 29.89 33.60 29.78 14.6 50 

 32.62 32.44 40.51 34.87 18.7  

26.21 - - - - -  

 27.43 24.88 26.90 21.10 11.1  

 28.95  26.61 27.25 25.73 14.6 60 

 25.77 30.68 22.19 29.42 18.7  

20.03 - - - - -  

 
 

 

 

Page 45 of 45

URL: http:/mc.manuscriptcentral.com/ldrt  Email: mpeasm@nus.edu.sg

Drying Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


