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Abstract 

A new hybrid binomial Langevin–MMC (Multiple Mapping 

Conditioning) modelling approach is proposed. The mixture 

fraction derived from the binomial Langevin model is used to 

specify the reference variable for MMC. The modified Curl’s 

model is used to close the stochastic MMC mixing term. The 

new model is applied to a jet burner with a vitiated co-flow (the 

“Cabra burner”) with methane as the fuel. The first- and second-

order statistics show good agreement with experimental data. 

1  Introduction 

With the pressure to reduce emissions becoming a key factor in 

the design of modern combustion systems, engineers are moving 

closer to the combustion limits. This results in finite-rate 

chemistry effects (e.g. extinction and reignition) becoming 

important and such phenomena are increasingly examined 

through computational methods [1,2]. Because simple models 

generally cannot completely describe these effects, transport 

probability density function (PDF) models are often required [3]. 

Extinction and reignition processes amplify the sensitivity of the 

results to different closure elements, including molecular mixing 

[4], so developments continue to be made in this area. A hybrid 

model [5,6] was recently proposed that used the Multiple 

Mapping Conditioning (MMC) [7] and binomial Langevin (BL) 

[8] models as its basis. The proposal was to use the binomial 

Langevin model to solve joint velocity-scalar statistics with one 

scalar (a mixture fraction), while the MMC model was used to 

solve for all scalars (including the mixture fraction). The goal 

was to overcome the implementation difficulties inherent in 

solving bounded scalars in the BL model, while simultaneously 

overcoming difficulties with specifying certain coefficients in 

the MMC model. This was achieved by forcing the mixture 

fraction in the MMC component of the model to approach the 

BL value, while using the dominant velocity component from 

the BL solution as a basis for the MMC reference variable. The 

current approach is consistent with this methodology. However, 

it is simplified with the mixture fraction derived from the BL 

solution used directly to define the reference quantity rather than 

via an explicit transport equation [9].   

2  Theory  

The hybrid binomial Langevin–MMC model is described below. 

First the BL model is outlined, then the MMC model, both of 

which are common to previous work [5,6]. Finally, the new link 

between the BL and MMC models is described. 

2.1  Binomial Langevin Model 

A generalised form of the binomial Langevin model for the joint-

PDF (Probability Density Function) of velocity and multiple 

scalars was developed by Hůlek and Lindstedt [10]. The 

stochastic differential equation for velocity component ui is: 
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where p denotes the pth particle, u = kis the turbulent 

timescale, k the turbulent kinetic energy,  the turbulent 

dissipation rate, its average, dwi a Wiener process, and ij the 

Reynolds stress anisotropy tensor: 
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The remaining coefficients are 1 = -(½ + ¾C0) – 2(ll)2, 

2 = 3.7 and C0 = 2.1. The corresponding stochastic differential 

equation for any scalar  is: 
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The mean scalar dissipation rate is  = ’2 , the scalar 

timescale was modelled as u/C (C = 2.3 was chosen [3]) 

and dwbin is a binomial Wiener process [7]. The drift coefficient 

G is 
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while the diffusion coefficient B is 
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where, with K0 = 2.1 and CK = 0.76. The other quantities are: 
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where c is a basis scalar; usually the mixture fraction or a 

reaction progress variable. 

The above approach reproduces many physical processes well 

[10]. However, a practical difficulty arises with the definition of 

the max and min values used to define 𝜂∗
′  and p for reactive 

scalars. The total mass fraction is unity and compositions are 

further constrained by the mass of each element (e.g. C, O and 

H). Accordingly, the permissible range for a particular scalar 

depends on the values of all other scalars. By contrast, for the 

hybrid model [5,6], only the mixture fraction is required and the 

problem is avoided. 

2.2 MMC model 

The MMC concept is that all scalars ZI can be transported in a 

mathematical space (i.e. the reference space) thereby making the 

transport simpler because the reference space can be defined to 

take any properties. The simplest reference space  is one-

dimensional and is conventionally related to the mixture fraction. 

For this one-dimensional reference space, the deterministic form 

of the conditional MMC transport equation is [7]: 
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where ZI represents each scalar I, 
II ZZ 

  is the 

conditional average of ZI given the value of the reference 

variable , A and B are the drift and diffusion coefficients 

respectively and WI is the chemical source term for species I and 

is a function of all scalars.  Because  and the velocity U are 

both taken to have Gaussian distributions, they are modelled to 

be linearly related to each other (Z0 is the mixture fraction): 

  0 0Z Z     U u u   (7) 

In the current implementation, the scalars are transported 

stochastically: 

  p
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where S represents the mixing process, for which the Modified 

Curl’s model [11, 12] was used. To enforce locality in the mixing 

process, particle pairs p and q were chosen so that the following 

was satisfied: 

  
1 2p q B t      (9) 

This process mimics the diffusive term of a stochastic 

differential equation (SDE). Note that (9) is not a minimisation: 

the specification is that particles p and q are close, not the closest 

possible pairing. In practice, the inequality may be violated by 

outliers, but this does not pose any numerical difficulty. 

2.3 Mixture-fraction–based hybrid model 

All the details up to this point are identical to the previous, 

velocity-based hybrid model [5,6]. The key difference with the 

current approach is that the reference variable  is defined to be 

the BL mixture fraction . Following the approach of Wandel 

[13], mixing proceeds via the Modified Curl’s model with the 

exchange between selected paired particles specified as 50% of 

full mixing. The fraction of particles to be mixed is treated as a 

parameter that can be specified independently. Work is underway 

to determine a relationship between the fraction of particles to 

be mixed and scalar statistics to enable a priori determination.  

3  Results  

The Cabra burner in Fig. 1 and with methane as the primary 

fuel [14] was used as the test case with base conditions specified. 

A parabolic code [3] was used for a single realisation with 1865 

streamwise locations and 80 cross-stream cells (the width of the 

domain expanded with the entrainment width); and 400 

particles/cell. The fraction of particles mixed each time step was 

6%; this is at least 10 times as many particles as Modified Curl’s 

model would mix for the same mixing parameters. 

The mean mixture fraction is presented is quantitatively similar 

to results [15] using the same code but with the Modified Curl’s 

mixing model. The similarity is essentially due to the fluid 

mechanics of the solver. The mixture fraction rms (Fig. 2) has its 

peak in the correct location, but tends to be significantly under-

predicted for most of the domain. 

The mean temperature results (Fig. 3) are arguably excellent and 

again similar to previous results [15]. The temperature rms 

results (Fig. 4) appear outstanding. The authors could not find 

any other RANS-based approach that correctly predicts the 

locations of both the rise at z/d = 40 and the decrease at z/d = 60. 

Of those LES simulations which report the temperature rms, 

some cannot simultaneously predict both these locations [16,17]; 

the remainder do not predict a local maxima in the radial profile 

of mean temperature at z/d = 40 [18,19]. The current results 

appear unique. 

 

Figure 1: Centreline mean mixture fraction profile. MMC, line; 

experiment, symbol [14]. 

 

Figure 2: Centreline mixture fraction rms profile. As per Fig. 1. 



  

 

Figure 3: Centreline mean temperature profile. Symbols as per 

Fig. 1. 

 

Figure 4: Centreline temperature rms profile. Symbols as per 

Fig. 1. 

 

Figure 5: Centreline O2 mean mass fraction profile. Symbols as 

per Fig. 1. 

 

Figure 6: Centreline OH mean mass fraction profile. Symbols as 

per Fig. 1. 

The prediction of the O2 profile (Fig. 5) is very satisfactory and 

quantiatively similar to previous results [15]. The OH profile 

(Fig. 6) shows accurate predictions of the trend, but with a clear 

over-prediction for z/d > 60. 

The radial profiles of mixture fraction (Fig. 7) show good 

agreement with experimental data with the trends matches the 

centreline results in Figs. 1 and 2. Similarly, the radial profiles 

of temperature (Fig. 8) show good agreement with experimental 

data. The results are essentially similar to the Modified Curl’s 

results [15]. However, the rms temperature profile at z/d = 70 is 

substantially over-predicted by the Modified Curl’s model for 

r/d < 3, while the current results are substantially improved. 

 

Figure 7: Radial mixture fraction profiles. Mean: MMC, line; 

expt, circles [14]. rms: MMC, dashed line; expt, squares [14]. 

The procedure to determine the liftoff height follows the 

methodology of [14]: it is the average of the axial locations 

where C2H4 is 100 ppm and C2H2 is 2 ppm. For the current 

simulation, this was found to be 42 diameters, as opposed to the 

experimental value of 35 [14]. Other measurements of this 

configuration [20] indicate that the value could be closer to 50. 

Because this variable is highly sensitive to the boundary 

conditions of velocity and temperature, a parametric study will 

be performed in the future. 

4  Conclusions 

A new hybrid binomial Langevin–MMC model is proposed. The 

linkage between the models is by virtue of the BL mixture 

fraction being used as the MMC reference variable. The model 

is closed by using the Modified Curl’s model with the amount of 

mixing half the original Curl’s model [13]. To close the model, 

the fraction of particles mixed each time step is an input 

parameter; ongoing efforts are investigating a relationship which 

can be used to govern this value. 

A jet burner with vitiated co-flow [14] was simulated to test the 

model. The first-order statistics of mixture fraction, temperature 

and species mass fraction were matched very well, which is 

fundamentally due to the fluid mechanics, since similar results 

were obtained using the Modified Curl’s model [15]. The 

location of the peak in centreline mixture fraction rms was 

predicted well, but the value far downstream was severely under-

predicted. However, the centreline temperature rms was 



  

predicted extraordinarily well, which is largely due to the 

performance of the mixing model, since the directly comparable 

Modified Curl’s model did not predict the location of the 

significant decrease at z/d = 60. The authors have not found 

another RANS simulation which is able to predict the shape of 

this quantity. Some LES models are also incapable of predicting 

this shape [16,17]; those which are able to predict the shape of 

this quantity fail to predict the radial profiles correctly by not 

producing the local maxima in mean temperature at z/d = 40 

[18,19]. The liftoff height was predicted within accepted 

uncertainties associated with the burner exit boundary conditions. 

The behaviour of the flame is known to be highly sensitive to the 

inflow conditions; future work will assess the model for this 

parametric study. 

 

 

Figure 8: Radial temperature profiles. Symbols as per Fig. 7. 
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