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Abstract 

In this study, the production, composition and characteristics of dissolved organic matter (DOM) in an 

anoxic-aerobic submerged membrane bioreactor (MBR) were investigated. The average 

concentrations of proteins and carbohydrates in the MBR aerobic stage were 3.96±0.28 and 8.36±0.89 

mg/L, respectively. After membrane filtration, the values decreased to 2.9±0.2 and 2.8±0.2 mg/L, 

respectively. High performance size exclusion chromatograph (HP-SEC) analysis indicated a bimodal 

molecular weight (MW) distribution of DOMs and that the intensities of all peaks were reduced in the 

MBR effluent compared to the raw influent. Three-dimensional fluorescence excitation emission 

matrix (FEEM) indicated that fulvic and humic acid-like substances were predominant DOMs in 

biological treatment processes. Precise identification and characterization of low-MW DOMs were 

carried out using employed by gas chromatography- mass spectrometry (GC-MS). The GC-MS 

analysis indicated that the highest peak numbers (170) were found in the anoxic stage, and 54 (32%) 

compounds were identified with a similarity greater than 80%. Alkanes (28), esters (11) and aromatics 

(7) were the main dominant compounds detected. DOMs exhibited both biodegradable and 

recalcitrant characteristics. There were noticeable differences in the low-MW DOMs present down the 

treatment process train in terms of numbers, concentrations, molecular weight, biodegradability and 

recalcitrance.   

 

Keywords: Dissolved organic matter (DOM); anoxic-aerobic MBR; fluorescence excitation emission 

matrix (EEM); gas chromatography - mass spectrometry (GC-MS) 
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1. Introduction 

 

With continuing depletion of fresh water resources, the focus of many researchers has shifted 

more towards resource recovery than treatment. Enhanced wastewater reclamation is gaining 

considerable attention due to the fast-growing demand for water reuse, and more stringent compliance 

regulations for wastewater discharge. Membrane bioreactor (MBR) technology, which combines 

biological treatment and membrane separation, is an increasingly attractive option for the treatment 

and reuse of industrial and municipal wastewater. Compared to the conventional activated sludge 

(CAS) process, MBRs have various distinct advantages such as lower sludge production, prolonged 

biomass retention, smaller footprint and better effluent quality (Meng et al., 2009a, Stuckey, 2012).  

Dissolved organic matter (DOM) is a heterogeneous mixture of aromatic and aliphatic organic 

compounds, which contains humic substances, hydrophilic acids, proteinss, lipids, carbohydrates, 

carboxylic acids, amino acids, and hydrocarbons (Wang et al., 2009). It is ubiquitous in surface water 

and sewage, and has been a major concern in water and wastewater treatment processes for a long 

time (Tang et al., 2010). DOM not only plays a critical role in affecting microbial activity, pollutant 

degradation, and transport of metals, but also can potentially be converted to toxic by-products during 

treatment (Imai et al., 2003). In the biological wastewater treatment processes, it has been reported to 

affect both the kinetic activity and flocculating properties of activated sludge, and can react with 

disinfectants resulting in the formation of various disinfection by-products (DBPs) (Kunacheva and 

Stuckey, 2014). Since DOMs usually exhibit colloidal properties, e.g., a large surface area, mobility 

and an electronic double layer (Seo et al., 2007), they encompass a broad MW distribution, from 

smaller than 1 kDa to over 100 kDa (Liang et al., 2007). On the one hand, DOM is composed of 

various types of non-biodegradable organic compounds, and these recalcitrant compounds may be 

retained in the system and discharged in the effluent (Trzcinski et al., 2016); on the other hand, while 

with cell lysis some DOMs may be biodegraded into small molecules (Aquino and Stuckey, 2004, 
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Meng et al., 2009b). Therefore, the great structural complexity and chemical stability of DOM in 

wastewater biological treatment processes impose challenges on MBR operation and performance.  

During the biological treatment, a part of the bound extracellular polymeric substances (EPS) can 

be hydrolysed or excreted to produce DOMs (Jarusutthirak and Amy, 2006, Liang et al., 2007). 

However, despite the fact that low-MW DOMs are dominant in secondary effluents, very little 

information is available about the precise composition of DOMs produced in biological processes 

(Barker and Stuckey, 1999). Furthermore, although several major components of DOMs such as 

proteins, carbohydrates, lipids, nucleic acids and humic acids have been frequently identified, little is 

known about the precise composition of DOMs in biological processes (Liang et al., 2007). There 

have been several analytical methods developed to distinguish the characteristics of DOM in 

wastewater, however, few researchers have analysed their composition using sophisticated 

instruments such as gas chromatography- mass spectrometry (GC-MS) to determine the molecular 

weight (MW), structures, biodegradability and recalcitrance of specific compounds quantitatively and 

qualitatively (Kunacheva and Stuckey, 2014, Zhang et al., 2016). Zhang et al. (2016) investigated the 

behaviour and characteristics of DOMs in an aerobic-anoxic submerged MBR using synthetic 

wastewater and GC-MS results revealed that aromatics, long-chain alkanes and esters were the 

predominant DOMs.  Kunacheva et al. (2017) investigated the DOMs produced at different hydraulic 

retention times at both steady state and under transient load conditions in a submerged anaerobic 

MBR using synthetic wastewater, and reported that 120 compounds were identified in the effluent at 

steady state, and the predominant DOMs were alkanes (39), esters (11), phenols (11), nitrogenous 

compounds (11), alcohols (7), and others. Trzcinski et al. (2016) compared the performance of the A-

stage and B-stage sludge in terms of anaerobic biodegradability and the low-MW compounds present 

in the supernatant using GC-MS, and revealed that the main DOMs in A-stage and B-stage included 

aromatics (27.9% and 21%), alcohols (25.6% and 15%, and acids (30.2% and 15%). To better 

understand where these compounds originated from and why they are generated, it is important to 

evaluate the production and composition of DOMs in biological treatment processes, so that we can 
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find an appropriate solution for attenuating the levels of these compounds in wastewater treatment 

effluent.  

The main objective of this study was to investigate the fate and behaviour of DOMs in a 

submerged anoxic-aerobic MBR during their degradation and transformation. More specifically, the 

objectives of this study were to i) investigate the MW distribution of DOMs; ii) explore the main 

chemical composition of the DOMs; and iii) identify low-MW (< 580 Da) DOMs produced in the 

biological treatment processes. 

 

2. Materials and methodologies 

 

2.1. Bench-scale MBR  

 

A bench-scale MBR system consisting of an anoxic compartment (2 L) and an aeration 

compartment (5 L) was operated in series at room temperature (24-25°C) (Figure S1). A hollow fibre 

ultrafiltration (UF) membrane (ZeeWeed 500, GE Singapore), made of polyvinylidene fluoride, was 

submerged inside the aerobic compartment, and its effective membrane surface area was 565 cm2 with 

a nominal pore size of 0.04 μm. To control the MBR process, 3 min of filtration was followed by 1 

min of relaxation was achieved using fully automated SCADA software (IFIX).  

The MBRs were inoculated with biomass obtained from Ulu Pandan Wastewater Reclamation 

Plant (WRP), Singapore. Synthetic wastewater was used in this study to simulate domestic sewage 

(~640 mg COD/L), and its chemical composition is given in Table S1. This procedure allows us to 

understand which molecules are produced by bacteria and end up as dissolved organics under 

controlled conditions. The influent was prepared in a 70-L glass tank. The concentration of mixed 

liquor suspended solid (MLSS) in the aeration tank was maintained at around 3-6 g/L with an average 

sludge retention time (SRT) of 25 d. The hydraulic retention time (HRT) was approximately 10 h, and 

a permeate flux of 13 - 15 L/m2 h (LMH) was maintained. Level sensors were installed in the MBR to 

control the feeding of influents and production of membrane permeates. The MBR was fitted with a 
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gas diffuser located on the bottom of the aeration tank to maintain the dissolved oxygen (DO) 

concentration in the sludge at about 3-4 mg/L for biological oxidation and to achieve membrane 

scouring. The transmembrane pressure (TMP) was monitored automatically using a digital pressure 

gauge (Ashcroft). General parameters, such as membrane flux, pH, DO, and temperature were 

automatically recorded using a data logger. The MBR was operated continuously for a period of 6 

months after 60 days of acclimatisation. 

 

2.2. Analytical methods  

 

2.2.1 Detection of water quality parameters  

 

Influents, anoxic mixed liquors, aerobic mixed liquors, and membrane effluents were collected 

twice a week from the MBR for measurement of conventional parameters. The measurement of mixed 

liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), chemical oxygen 

demand (COD), ammonium (NH4
+-N) and phosphate (PO4

3-) was in accordance with Standard 

Methods (APHA, 2012). 

 

2.2.2 Determination of proteins and carbohydrates concentrations 

 

The extraction of DOMs and bound EPS from the mixed liquor in the MBR anoxic and aerobic 

stage followed the method described by Zhang et al. (2017). Briefly, the mixed liquor of activated 

sludge was centrifuged at 12,000 g for 15 min; the resulting supernatant represented the DOMs. Next, 

the dewatered sludge pellet was washed with saline water (0.9% NaCl solution) twice prior to 

extraction. The mixed liquor was then subjected to sonication at 20 kHz for 2 min, and centrifuged at 

12,000 g for 15 min. The phenol-sulfuric acid and Lowry methods were used for the determination of 

proteins and carbohydrates concentrations, respectively. 
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2.2.3 The bioelimination rate (BER) and membrane rejection rate (MRR) 

 

The net bioelimination can be used to characterize the degradation of DOM during the biological 

processes, which was obtained by comparing DOM in the influent and sludge supernatant (Meng et al., 

2009b). The bioelimination rate (BER) and membrane rejection rate (MRR) of DOMs were calculated 

by using the following equations: 

BER (%) = 
DOMinfuent – DOMsludge 

DOMinfuent
 × 100%                                                                                     (1) 

MRR (%) = 
DOMsludge – DOMpermeate 

DOMpermeate
 × 100%                                                                                 (2) 

Where, DOMinfluent is the DOM concentration in the influent (mg/L); DOMsludge is the DOM 

concentration in the aerobic supernatant (mg/L); and DOMpermeate is the DOM concentration in 

membrane permeate (mg/L).  

 

2.2.4 Molecular weight  (MW) distribution of DOMs 

 

A high performance size exclusion chromatograph (HP-SEC) (Agilent Technologies, 1260 LC 

system) equipped with the PL Aquagel-OH 8 lm MIXED-M column was used for the analysis of MW 

distribution of DOMs. A 10 mL sample was first centrifuged at 10,000 rpm for 10 min and then 

filtered with a 0.22 mm PTFE syringe filter (SLFG013NK, Millipore, Millex-FG). Milli-Q water was 

used as the mobile phase at a flow rate of 1 mL min-1. Polyethylene glycols (PEGs) and polyethylene 

oxide standards with molecular weights of 500 kDa, 70 kDa, 4 kDa, 600 Da and 106 Da were used for 

the calibration. MW of DOMs was calculated according to the calibration curve and a linear 

relationship was derived between the log of MW (Da) and retention time (Rt: min) as shown in Eq. 

(3). 

Log (MW) = 9.8823-0.6748 (Rt)                                                                                                    (3) 

 

2.2.5 Main components of DOMs  
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Three-dimensional EEM fluorescence spectra were measured using a luminescence spectrometry 

(Perkin Elmer LS55 Fluorescence Spectrometer). The spectrometer slits were set at 10 nm for both 

excitation and emission and excitation wavelengths were increased from 220 nm to 600 nm in 10 nm 

steps; for each excitation wavelength the emission was detected from 300 nm to 550 nm in 10 nm 

steps. The X-axis represents the emission spectra while the Y-axis represents the excitation 

wavelength, and the contour line is used to express the fluorescence intensity. The software FL 

Winlab Version 4.00.03 (Perkin Elmer) was employed for handling the EEM data, which were plotted 

as elliptically shaped contours.  

 

2.2.6 Identification of low-MW DOMs (< 580 Da) 

 

In the present study, identification of low-MW DOMs (< 580 Da) was carried out using Gas 

chromatography - mass spectrometry (GC-MS), which allows for the detection of non-polar, volatile 

and thermo-stable compounds. Prior to the GC-MS analysis, liquid-liquid extraction was performed 

on a 100 mL filtered supernatant (< 0.45 μm) using 70 mL dichloromethane (GC-MS grade, Merck) 

(Wu and Zhou, 2010), this solvent was selected because it had been used by previous researchers for 

SMP analysis using GC-MS (Wu and Zhou, 2010). All glassware was washed with acetone prior to 

the procedure. Mixing was for 3 minutes by manually inverting the extraction funnel and separation 

of the 2 phases occurred over 5 minutes. Traces of water were removed by mixing the solvent phase 

with 2 spoons (5 mL) of Na2SO4. The solvent was evaporated at 50°C under vacuum until 1 mL of 

solvent remained. 

The eluted samples were then analysed using a gas chromatograph (5890 Series) equipped with a 

QP2010Ultra Mass Spectrometry Detector (GCMS-QP2010ULTRA, Shimadzu, Japan). The analytes 

were separated using an Rtx-5MS column (30 m x 0.25 mm with a film thickness of 0.25 µm). The 

GC-MS oven temperature program was: 50 °C, hold 7 min, rate 7 ºC min-1 and then thereafter 

increased to 325°C and hold 14 min. Helium was the carrier gas at a flowrate of 1 mL/min. The 
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injector temperature was set at 270°C, and the MS was operated in the electron impact ionisation 

mode (70 eV). The total runtime per sample was 60 min, and the GC-MS oven temperature program 

was: 50 °C, hold 7 min, rate 7 ºC min-1 and then thereafter increased to 325°C and hold 14 min. The 

temperature program was modified based on the alkane standards (C10-C40, 50 mg/L, Sigma-Aldrich). 

Mass spectra were acquired from m/z 30 to 580 after a 10 min solvent cut time. The chromatograms 

were analysed using the NIST11 library (National Institute of Standards and Technology, 

Gaithersburg, MD, USA, http://www.nist.gov/srd/mslist.htm), and the compound was considered 

identified if the match percentage was higher than 80%. Compounds that had a match percentage 

below 80% were mentioned as unknown peaks. Similarity index, mass spectrum and retention index 

were all used as selection criteria for compound identification of the NIST library list of suggested 

compounds. Method blanks (deionised water) were run through the same pre-treatment and analysis, 

while feed samples were also run to identify compounds in the feed. 

Alkanes were selected for the approximate quantification of SMPs, since alkanes have widely 

variant chain lengths 9C10-C40), and hence are able to cover most of the volatility range of the 

RTX®-5MS column. The calibration curve for each compound was plotted with concentration points 

0.1, 0.25, 0.5 and 1 mg/L. Quantification was done separately for each unknown compound using the 

alkane with the closest retention time. A set of standards was run in and between every batch of 

analyses to minimise instrumental error. The instrumental identification limit (IDL) of alkane 

standards was evaluated for each compound based on maximum blank concentration, and the signal-

to-noise ratio of 3. Although there may be a considerable degree of uncertainty surrounding the 

concentration of identified compounds beside alkanes, it is a useful tool to gain understanding what 

which compounds were produced as SMPs and their approximate concentrations.  

 

3. Results and discussion 

 

3.1. Process performance 

 

http://www.nist.gov/srd/mslist.htm
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The general performance of the MBR in terms of MLVSS, MLSS, COD, NH4
+-N, and PO4

3- are 

summarized in Table 1. Throughout the experiment, the average concentrations of MLSS and MLVSS 

were 4.7 g/L and 4.1 g/L, respectively. As expected, almost complete degradation of organic 

substrates and nitrification were seen during the experimental period. The average COD concentration 

in the effluent was 15.4±2.2 mg/L, resulting in high removals of 97.6%, which shows the substantial 

potential of the MBR in wastewater treatment. With respect to NH4
+-N, an average removal efficiency 

of 94.8% was observed in the MBR.  

 

3.2. Variations of pProteins and carbohydrates concentrations in the MBR process 

 

The variations in proteins and carbohydrates concentrations in the MBR treatment processes are 

shown in Figure 1a. The average concentration was 4±0.3 mg/L for proteins and 8.4±0.9 mg/L for 

carbohydrates in the aerobic stage, respectively. After membrane filtration, the values decreased to 

2.9±0.2 mg/L and 2.8±0.2 mg/L, respectively. Our finding is consistent with Liang et al. (2007) who 

reported a proteins concentration of 7.2 mg/L in the sludge supernatant and 3.64 mg/L in the MBR 

effluent, respectively, while the values for carbohydrates were 10.14 mg/L and 4.93 mg/L, 

respectively. In addition, in the present study, the levels of proteinaceous EPS were 41.8±3.7 mg/g 

VSS and 38.2±4.7 mg/g VSS in the MBR anoxic and aerobic stage, while the values for 

carbohydrates were 18.7±3.9 mg/g VSS and 17.1±2.7 mg/g VSS, respectively (Figure 1b).  

The origin of DOMs in biological wastewater treatment is very complex, while the majority of the 

DOMs in the feed are biodegradable over time in both aerobic and anaerobic processes (Barker and 

Stuckey, 1999). In the present study, 82 % of proteins and 42% of carbohydrates in the influent could 

be removed through bioelimination. Moreover, the rejection rate of DOMs by the membrane was 30% 

for proteins and 73% for carbohydrates, on average. This was attributed to the smaller size of proteins 

compared to carbohydrates, resulting in their permeation into the MBR effluent more easily. This 

finding is consistent with Drews et al. (2007) who reported that the rejection rate of DOM by a PAN 

membrane ranged from 20% to 70% for proteins, and from 75% to 100% for carbohydrates. 
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3.3. Molecular weight (MW) distribution of DOMs 

 

The HP-SEC chromatograms representing different treatment stages are shown in Figure 2. Five 

representative peaks in the chromatograms were identified. Peak 1 and Peak 2 demonstrate high-MW 

SMPs (313.4 kDa and 196.6 kDa, respectively), while Peak 3 (14.1 kDa) and Peak 4 (10.3 kDa) 

showed the presence of an intermediate-MW fraction. Peak 5 (3.8 Da) indicating low-MW 

compounds (< 1 kDa) were also detected.  

The peak intensity of HP-SEC chromatograms can be used to express relative concentration of 

DOMs (Wang et al., 2009). Although the chromatograms indicated similar retention times for the 

collected samples, their peaks and locations along with the treatment process were different. During 

the operation of the MBR, the high-MW (313.4 and 196.6 kDa) fractions, which are mainly derived 

from the decay of bacterial cells during the endogenous stage (Aquino et al., 2006, Shin and Kang, 

2003), did not exhibit remarkable changes in the MBR aerobic stage compared to the influent. High-

MW compounds usually exhibited refractory characteristics and remained in the system until 

discharged (Jarusutthirak and Amy, 2006, Namour and Müller, 1998). Due to membrane rejection, 

DOMs with high-MW are usually accumulated and retained in the bioreactor, which can consequently 

result in severe membrane fouling (Rosenberger and Kraume, 2002, Shin and Kang, 2003). Moreover, 

dynamic transformation of DOMs could be observed from Peak 3 and Peak 4 presenting intermediate-

MW (14.1and 10.3kDa) fractions, in which their intensities reduced in the anoxic stage, but increased 

in the MBR aerobic stage, implying these compounds had been firstly biodegraded into smaller 

fractions and then transformed into larger fragments. In addition, the intensities of all peaks were 

reduced in the effluent, compared to the aerobic stage, suggesting an efficient removal of DOMs by 

membrane filtration. 

 

3.4. Fluorescence Excitation Emission Matrix (FEEM) contours   
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The composition of DOMs was monitored by three-dimensional EEM spectroscopy, and 

representative fluorescence spectra are shown in Figure 3. Five fluorescence peaks could be identified 

from the FEEM fluorescence spectra. Peak A was detected at the excitation/emission wavelengths 

(Ex/Em) of 265-275/300-315 nm, while Peak B was located at the Ex/Em of 290-305/345-360 nm. 

These two peaks have been ascribed to SMP-like substances  in which the fluorescence was 

associated with the tyrosine (Peak A) and tryptophan (Peak B) proteins, respectively (Chen et al., 

2003, Wang et al., 2009). Tyrosine and tryptophan substances are labile organics, which are 

associated with microbial activity and predominant in wastewater (Ishii and Boyer, 2012). Two strong 

peaks at the Ex/Em of 265-275/445-455 nm (Peak C) and 300-350/410-425 (Peak D) were detected, 

which have been reported to be related to polyaromatic- and polycarboxylate- type humic acids, 

respectively (Chen et al., 2014, Chen et al., 2003, Wang et al., 2009, Wang and Zhang, 2010). A 

minor peak (Peak E) at the Ex/Em of 220-230/390-420 nm associated with fulvic acid-like substances 

(Chen et al., 2003, Wang et al., 2009) was also observed in MBR effluent. 

Fluorescence parameters, including peak locations and peak intensity, can be used to analyse 

DOM characteristics. In general, an intensity reduction of the fluorescence peak between raw water 

and the sludge supernatant is an indication of degradation of the fluorescing material. Among all the 

samples tested, the intensities of Peak C, Peak D and Peak E were higher than those of other peaks, 

implying that humic acids and fulvic acid-like substances were dominant in the samples. Fulvic and 

humic acids are hydrophobic fractions of DOMs, which are metabolized by natural or biological 

degradation, and their structures are known to be rich in aromatic carbon and carboxyl groups (Ma et 

al., 2001). Moreover, compared with the EEM spectra in the influent, the location of Peak D in the 

MBR effluent was blue-shifted by 20 nm along the excitation axis, and by 10 nm along the emission 

axis, and the location of Peak E was blue-shifted by 30 nm along the emission axis, indicating that the 

structure and component of fulvic and humic acid-like substances in the MBR effluent were different 

from those in the influent. A blue shift is associated with the decomposition of condensed aromatic 

moieties and the break-up of large molecules into smaller fragments, such as a decrease in the number 

of aromatic rings, a reduction of conjugated bonds in a chain structure, a conversion of a linear ring 
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system to a non-linear system, or the elimination of particular functional groups including carbonyl, 

hydroxyl and amine (Wang et al., 2009). 

In order to better understand the similarities and differences between the samples collected from 

different treatment units, the fluorescence regional integrating (FRI) method was also used to analyse 

the excitation-emission regions, as described by previous researchers (Chen et al., 2003, Wang et al., 

2009) (Figure 4). Regions I, II, III and IV represent tyrosine-like proteins, tryptophan-like proteins 

and soluble microbial by-product-like substances, respectively. Regions IV, V and VI represent fulvic 

acid-like, polyaromatic humic acid-like and polycarboxylate humic acid-like substances, respectively. 

Compared to other treatment units, a noticeable increase in the fraction of compounds in Regions I 

and II, which were associated with tyrosine-like proteins and tryptophan-like proteins, was observed 

in the MBR effluent. In contrast, Regions V and VI, representing polyaromatic- and polycarboxylate- 

type humic acids, showed a decrease in the MBR effluent. DOM contains large quantities of aromatic 

structures and unsaturated fatty chains with various types of functional groups (Sheng et al., 2010). 

This finding indicated that significant changes in the functional groups, the conjugated bonds in a 

chain structure, and condensed aromatic moieties of the aromatic amino acids and tryptophan proteins 

might have occurred after MBR biological treatment.  

 

3.5. Characterization of low-MW DOMs using GC-MS 

 

3.6.1 DOMs in the raw influent 

 

In the present study, GC-MS was employed to precisely identify and characterize low-MW DOM 

fractions in biological treatment processes. As seen in Figure S2, GC-MS chromatograms revealed 

that the raw influent had the largest number of spectra registering high organic component loading 

with greater response abundance, while the effluent of the MBR had smaller number of spectra with 

much less response abundance. There had was an obvious decrease in the response abundance 

between raw influent and MBR effluent with the removal of DOMs. The identification of DOM 
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fractions in the raw influent are shown in Table S2. The total peaks detected were 184, but only 52 

(29%) compounds were identified with a similarity greater than 80% (Figure 5a). Among the 

compounds identified, alkanes accounted for 37% of the total DOM, followed by alcohols (19%), 

aromatics (19%) and esters (19%), respectively (Figure 6a).  

 

3.6.2 DOMs in the MBR anoxic stage 

 

In the MBR anoxic stage, the total peaks detected were 170 and 54 (32%) compounds were 

identified with a similarity greater than 80% (Figure 5b). Among the compounds identified, alkanes 

accounted for 52% of the total DOMs, followed by esters (20%) and aromatics (13%) (Figure 6b). 

This finding is consistent with Wu and Zhou (2010) who investigated DOMs in anaerobic wastewater 

treatment using GC-MS, and reported that the predominant DOMs were long-chain alkanes (21%), 

esters (18%), acids (17%) and aromatic compounds (12%).  

Nearly half of the compounds detected in the MBR anoxic stage, such as alkanes (e.g., 1-

Heptadecene, Nonadecane, and Heneicosane, etc.), esters (e,g., 3,7-Dimethyl-6-nonen-1-ol acetate, 

Pentafluoropropionic acid, octadecyl ester, and 9-Octadecenoic acid (Z)-, methyl ester, etc.), alcohols 

(e.g., Ethanol, 1-(2-butoxyethoxy)-, n-Heptadecanol-1, and Phytol, etc.), and aromatics (e.g., 10-

Cyclohexylnonadecane, etc.), were not the same as in the influent (Tables 2 and 3), implying that 

these compounds might belong to DOMs generated in the biological treatment processes, and were 

most probably the results of a direct transformation of the original substrate (Barker and Stuckey, 

1999). In general, SMPs typically accumulate during the start-up stage in biological wastewater 

treatment, and are partially degraded rapidly in the initial hours, and serve as substrate for a 

generation of new biomass (Huang et al., 2000, Shin and Kang, 2003). In contrast, some compounds 

identified in the influent, such as alcohols (e.g., Behenic alcohol, and n-Tetracosanol-1, etc.), esters 

(e.g., Hexacosyl heptafluorobutyrate, and Methyl stearate, etc.,), and aromatics (e.g., 1,3-

Benzenedicarboxylic acid, bis(2-ethylhexyl) ester, etc.) disappeared in the MBR anoxic stage. This 
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finding indicated that slowly biodegradable matter and inert matter in the feed could result in 

generation and accumulation of DOM in the subsequent biological processes. 

 

3.6.3 DOMs in the aerobic stage of the MBR  

 

Compared to the total number of DOMs generated in the MBR anoxic stage (170), only 96 

compounds were detected in the aerobic stage (Figure 5c). 33 compounds (34%) were identified with 

a match percentage greater than 80%. Alkanes still accounted for the largest percentage of DOM 

(43%), followed by alcohols (18%), aromatics (12%) and esters (12%) (Figure 6c). In comparison, 

Zhang et al. (2016) investigated the behaviour and characteristics of SMP in an anoxic-aerobic MBR 

for treating municipal wastewater containing pharmaceutical compounds, and found that the dominant 

compounds identified were alkanes (51%), aromatics (20%) and esters (17%) in the aerobic stage. In 

particular, these long-chain alkanes and esters are frequently reported in biological treatment effluent 

and are known to be the main components of low-MW SMPs in aerobic reactors (Janga et al., 2007, 

Liang et al., 2007).  Alkanes can be produced by bacterial metabolism and bacteria appear to be able 

to degrade alkanes under both aerobic and anaerobic conditions (Rojo, 2009). 

Both biodegradable and refractory DOMs may be released into the biological treatment systems. 

Nearly half (16) of the compounds identified in the MBR anoxic stage, such as aromatics (e.g., Phenol, 

2,4-bis(1,1-dimethylethyl)- and 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester, etc.), 

alkanes (e.g., Heptadecane, 10-Methylnonadecane, and 1-Nonadecene, etc.), esters (e.g., Nonadecyl 

pentafluoropropionate), and alcohols (e.g., 1-Heneicosanol, etc.), were the same as in the MBR 

aerobic stage, implying the incomplete biodegradation across a range of biological catabolic pathways 

(Tables 3 and 4). In contrast, some compounds identified in the MBR anoxic stage, such as alkanes 

(e.g., 1-Tridecene, Octadecane), and esters (e.g., 3,7-Dimethyl-6-nonen-1-ol acetate, and 9-

Octadecenoic acid (Z)-, methyl ester), were not found in the MBR aerobic stage. This finding 

indicated that these simple compounds might have been completely biodegraded, especially in the 
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aerobic stage, where biodegradability is enhanced by increased bacterial activity, and the aerobic 

degradation of organics might be more complete.  

 

3.5.3 DOMs in MBR effluent 

 

By identifying the recalcitrant compounds in the treated effluent, operators could take an informed 

decision on the level and type of advanced post-treatment (chlorination, ozone, UV light or reverse 

osmosis) required to protect water sources. There has been an increase in the release of 

pharmaceuticals, drugs, personal care products, pesticides, emerging contaminants in raw sewage, and 

it is important to understand which molecules are likely to accumulate in the hydrosphere. Knowing 

which compounds escape the MBR under controlled conditions, and knowing their biodegradability 

can help to select appropriate tertiary treatment and fine-tune them. From a scientific point of view, it 

is important to understand which type of compounds constitute the final effluent of a MBR. 

 

Fewer compounds were detected in the MBR effluent (60) compared to the MBR aerobic stage (96), 

resulting in a DOM removal of 37.5% induced by membrane rejection. Only 22 (37%) compounds 

could be identified with a match percentage greater than 80% (Figure 6d). The main compounds 

detected were aromatics (32%) and alcohols (32%), followed by alkanes (23%) (Figure 6d).  

 

In the present study, DOMs exhibited both biodegradable and recalcitrant characteristics. Some 

compounds such as alkanes (e.g., Heptadecane, 10-Methylnonadecane, Eicosane, 5-Butyl-5-

ethylheptadecane, and 2-methyltetracosane), esters (e.g., Hexadecanoic acid, methyl ester, Nonadecyl 

pentafluoropropionate), and aromatics (e.g., Phthalic acid, di(6-methylhept-2-yl) ester), which were 

detected in both the MBR anoxic and aerobic stages, were not found in the MBR effluent. In contrast, 

recalcitrant compounds such as alkanes (1-Nonadecene, Tetracosane and 2-methyloctacosane), 

alcohols (1-Heneicosanol), acids (Octadecanoic acid), and aromatics (Phenol, 2,4-bis(1,1-

dimethylethyl)-, Octadecanoic acid, 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester, and 1,2-
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Benzenedicarboxylic acid, butyl 2-methylpropyl ester), which were detected in the influent, remained 

in the MBR effluent; these results indicates that these compounds were resistant to biodegradation in 

the MBR processes (Tables 3 and 4). Furthermore, the MW of the compounds detected in the MBR 

effluent ranged from 150-408 Da, while this value was 206-450 Da in the MBR aerobic stage, 

suggesting that high MW fractions could be efficiently retained by membrane filtration. In the present 

study, GC-MS was used for the identification of low-MW, volatile and thermos-stable DOMs (< 580 

Da) which limits the interpretation of results to a very narrow group of compounds. From Table 4, the 

total concentration of analytes amounts to only 107 µg COD/L (assuming a COD equivalence of 3.46 

g O2/g docosane), which contrast with the COD concentration of 15.4 mg/L (Table 1), clearly 

indicating that high MW compounds make up the bulk of permeate COD. These high MW 

compounds were also more likely to have caused fouling on the membrane as indicated by the TMP 

that gradually increased to 90 mbar over the period of the study (data not shown). 

 

Organic analytes in environmental samples are usually present in the milligram per liter (ppm) to 

the microgram per liter (ppb) level. Moreover, due to their different polarities and chemical properties, 

they cannot be analyzed accurately without sample pre-treatment, which is an essential part of 

chromatography, to both concentrate and also reduce the signal saturation of the chromatogram 

(Kunacheva et al., 2017b). Due to the wide range and complexities of molecules involved, there is no 

method capable of extracting all compounds from the water matrix and successfully analyzing them. 

Nonetheless, liquid/liquid extraction method using dichloromethane is considered suitable to extract a 

wide range of compounds from moderately polar to non-polar compounds such as aromatics. This 

method was shown to detect some aromatics, but maybe not all. On the other hand, aromatics may be 

harder to identify from known compounds in the library compared to aliphatic compounds. With this 

in mind, some authors have used a combination of solid and liquid phase extraction involving several 

solvents varying from polar to nonpolar (methanol, acetone, dichloromethane and n-hexane) to 

maximize the number of compounds peaks (Kunacheva et al., 2017b).  
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An increase in aromatic compounds was however seen in the MBR effluent (32%), compared to 

the anoxic (13%) and aerobic stage (12%). This finding is consistent with Liang et al. (2007) who 

found that the percentage of aromatic compounds in the total SMPs increased after passing through 

the membrane, and aromatic SMPs seemed much less prone to accumulate in the MBR. This increase 

in the percentage of aromatics in the MBR effluents from an anoxic-aerobic MBR fed on simple and 

biodegradable substrates was interesting; aromatic compounds are generally more recalcitrant, and 

may not be easily degradable during biological treatment, thereby causing the residual COD (Aquino 

and Stuckey, 2004). It was also observed that certain aromatic compounds with high concentrations, 

such as Phenol, 2,4-bis(1,1-dimethylethyl)- (17.32 µg/L), exhibited consistently recalcitrance along 

biological wastewater treatment process; while Phenol, 2,4-bis(1,1-dimethylethyl)- phthalic acid, 4,4-

dimethylpent-2-yl octyl ester (17.32 37.39 µg/L) was only present in the MBR effluent, implying that 

some compounds possibly transformed into more aromatic structures during biological treatment.  

Besides bioelimination, membrane filtration should also play a significant role in the fate of DOMs 

during an MBR process (Meng et al., 2009b). The reasonable DOM rejection by membrane filtration 

(37.5%) could be due to the cake gel layer by the physical deposition of large DOM aggregates, which 

were mainly composed of soluble and colloidal materials (e.g., proteinss, carbohydrates, and organic 

colloids), and may stick tightly to the membrane surface. In this study, the flux was maintained at 13-

15 LMH with 3 minutes filtration followed by 1 minute relaxation. The TMP gradually increased over 

time, but remained lower than 100 mbar throughout the study indicating the presence of a biofilm and 

gel layer on the membrane. During membrane filtration, the cake gel layer formed by DOMs and 

other organic substances (e.g., colloids and solutes) was found to be an effective secondary filtration 

layer for organic compounds (Horng et al., 2009, Ren et al., 2010). However, bioelimination and 

permeate discharge cannot thoroughly elucidate the fate of DOM in the MBR, since DOM production 

and accumulation (e.g., nonbiodegradable fractions in the influent, cell lysis and bound EPS release in 

the biological processes) and DOM elimination (e.g., biodegradation, adsorption, membrane filtration 

etc.) always occurs simultaneously.  
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4. Conclusions 

 

In this study, we investigated the formation, composition and characteristics of DOMs in an 

anoxic-aerobic submerged MBR system. Specific conclusions can be drawn as follows: 

1) HPLC-SEC analysis indicated a bimodal MW distribution of DOMs including the high-MW (313 

and 197 kDa) and low-MW (<1 kDa) fractions. The analysis revealed a dynamic transformation 

of DOMs in both MBR anoxic and aerobic stage and a reduction in the intensities of all peaks in 

the MBR effluent compared to the raw influent.  

2) Three-dimensional FEEM contours revealed that the MBR system could efficiently retain the 

predominant compositions of DOMs. i.e., fulvic and humic acid-like substances, and the changes 

in their location and peak intensities indicated the DOM property alteration.  

3) The GC-MS analysis indicated that the highest peak numbers (170) were found in the anoxic 

stage. Alkanes (52%), esters (20%) and aromatics (12%) were the dominant compounds detected. 

Besides bioelimination, membrane filtration also played a significant role in the fate of low MW 

DOMs during an MBR process, contributing to 37.5% of DOM removal. An increase in aromatic 

fractions was seen in the MBR effluent (32%), suggesting that aromatic DOMs were much less 

prone to accumulate in the MBR.  

4) DOMs exhibited both biodegradable and recalcitrant characteristics. Recalcitrant compounds such 

as alkanes (1-Nonadecene, Tetracosane and 2-methyloctacosane), alcohols (1-Heneicosanol), 

acids (Octadecanoic acid), and aromatics (Phenol, 2,4-bis(1,1-dimethylethyl)-, Octadecanoic acid, 

1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester, and 1,2-Benzenedicarboxylic acid, butyl 

2-methylpropyl ester), which were detected in the influent, remained in the MBR effluent. 
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