
1 INTRODUCTION 
 
A wide range of monographs [1-5] is focused on the 
problems of stability of thin plates with holes and 
cracks. It is noted that the compressive stresses can 
occur not only when the plates are compressed, 
which is obvious, but near the boundary of the holes 
and under tension. At a certain value of the tensile 
external forces, these stresses can cause a local loss 
of stability of plates, which significantly affects their 
bearing capacity. The loss of the plane shape of the 
deformation of plates with different types of cuts 
under uniaxial tension was investigated in [2-3]. 
 
It is known that compressive stresses are also ob-
served in plates with inclusions. The simplest exam-
ple is the problem of the possible loss of stability of 
a flat form of equilibrium under uniaxial tension by 
stresses of a plate with a circular inclusion made of 
another material. 
 
In the work the problem is studied of the local buck-
ling caused by uniaxial stretching of the infinite 
plate with a circular inclusion from the different ma-
terial under uniaxial tension. The influence of the ra-
tio of the elastic properties of the inclusion and plate 
on the value of the critical load and the form of the 
loss of stability is analyzed. 

2 PROBLEM STATEMENT 
 
Suppose that: 

1 1,E   – are Young’s modulus and Poi-
son’s ratio of the plate, and 

2 2,E   – parameters of 

the inclusion. R - radius of the inclusion, and x, y 
Cartesian coordinates. The plate is presented in 
Fig.1. 
  

 
 

Figure 1. Plate with a Circular Inclusion Under Tensile Stress. 

 

 
The stresses act along the y axis. It is known [4] that 
in the case of elliptical inclusion, the inclusion’s 
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stress field is homogeneous ( 0xy  ) and symmetric 
with respect to the extension axis. Let us denote the 
stress field inside the inclusion as σxx =kxσ  and σyy 
=kyσ, where kx and ky are the coefficients which were  
defined in [2]: 
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In polar coordinates, the dimensionless stresses in 
the plate are given by formulas: 
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and for the inclusion: 
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It follows from the formulas (2,3) that in general the 

stresses σyy/σ are positive. The zones of negative 

stresses can appear in limited cases: for a “rigid” in-

clusion or its absence. Negative stresses do not exist 

when the inclusion and plate are of the same materi-

al. 
The stresses σxx/σ can also be negative (Fig. 2). 

For a more rigid inclusion (Fig.3), decrement of the 
square of the area of negative stresses occurs with an 
increment of its elastic properties. The absolute val-
ue of the negative stresses is also reduced. 

 
 

 
 
Figure 2. Stress distribution for the material of inclusion is 10 
times softer than the material of the plate. (Maple results)  
σxx

max
/σ=0.42,  σxx

min
/σ=-0.75 

 
 

 

 
 
Figure 3. Stress distribution for the material of inclusion is 10 
times more rigid than the material of the plate. (Maple results) 
σxx

max
/σ=0.42,  σxx

min
/σ=-0.24 

 
 
In the case when the inclusion is softer than the 

plate, the region of negative stress appears again and 
the local loss of stability may appear. Where the in-
clusion is more rigid than the plate, the region of 
negative stresses is displaced by 90 degrees com-
pared to the soften insent. 

The analytical calculations agree well with the re-
sults of the problem is solved with the use of the fi-
nite element method in the ANSYS 13.1 (Figure 4-
5). 

 
 

 
 
Figure 4. Stress distribution σxx/σ for the material of inclusion 
is 10 times softer than the material of the plate. (ANSYS re-
sults.) 

 



 
 
Figure 5. Stress distribution σxx/σ for the material of inclusion 
is 10 times more rigid than the material of the plate. (ANSYS 
results.) 

3 NUMERICAL SOLUTION 
 
The first critical load that causes the loss of stability 
can be evaluated with the use of the energy method 
customized by Timoshenko and Ritz [6,7].  
Let us present the deflection functions in series, 
where representations for deflection of the plate w1 
and the inclusion w2, take the following forms [8]:   
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These expressions satisfy the boundary condition of 
the symmetry of deformations, and the deflection 
decrement at infinity. 
The continuity of the deflection function at the 
boundaries gives the following conditions for a rig-
idly fixed inclusion: 
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With the use of these two relations (6) we can ex-
press the two first members of the second series 
B(1,0), B(2,2) through the others members. 
The full energy of the system is a sum the energy of 
the plate and the energy of the inclusion. The same 
applies to the work of the median plane, so the total 
energy is represented as: 
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The second integrals (9-11) for U1, W1 and U2, W2 
show different limits by {ρ1,ρ2}: from 1 to infinity in 
the case of the plate, and from 0 to 1 for the inclu-
sion (where 1 corresponds to the dimensionless radi-
us, ρ=R/r=1). 
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Substituting the following relations (8-11) into 
the formula (7) we obtain the full functional of the 
potential energy as a combination of these series of 
displacements. 

According to the principle of possible displace-
ments, the minimum potential energy can be found 
from the equality of partial derivatives of the incre-
ment of the potential energy from the generalized 
coordinates. 

Collecting the coefficients A(k,2l-2), B(k,2l-2) from 
the partial derivatives of U and W into the corre-
sponding matrixes, we come to the classical eigen-
value problem: 

0U W                                 (12) 

The first critical load p*, that caused the buckling 
of the plate is equal to the minimum positive eigen-
value λ  that can be found from the system (12). 

4 THE RESULTS OF CALCULATIONS 

The forms of stability loss are constructed and the 
corresponding critical loads are determined. A good 
agreement is achieved of the first critical loads ob-
tained by the finite element method ANSYS 13 and 
the results of the analytical approach.  

 
Calculations show that the loss of stability of a plate 
with a circular rigidly fixed inclusion happens at 
lower loads when the modulus of elasticity of the in-
clusion is either much smaller than the plate (i.e. the 
inclusion is very "soft") or, conversely, much larger 
(i.e., inclusion very "tough").  



Figures 6 and 7 show the forms of loss of stability of 
a plate with an inclusion stretched along the Y-axis. 

 
 

 
 
Figure 6. the inclusion is 10 times softer than the plate. 

 
 

In Fig. 6 the inclusion is 10 times softer than the 
plate (E2/E1=1/10). When the inclusion becomes 
"softer" (the Young's modulus of the inclusion 
E2→0), the λ is closer to the minimum eigenvalue 
corresponding to the problem of the loss of stability 
of a plate with an aperture.  

 
 

 
 
Figure 7. The inclusion is 10 times stiffer than the plate. 

 
 

In Fig. 7, the inclusion is 10 times stiffer than the 
plate. In this case, the regions of the compressive 
stress zone are located along x axis. 
Figure 8 shows the dependence of the critical load 
on the ratio between the modulus of the inclusion 
and plate (σ0 is the critical load corresponding to the 
plate with a hole of radius R). Even the smaller 
stresses can cause the loss of stability for the more 
rigid inclusion (the right part of the graph in Figure 
8). It should be noted that for the more rigid inclu-
sion, we need more series members for the conver-
gence of the solution. We can see that in the vicinity 
of the point E2/E1=1, significant stresses are needed 
to cause loss of stability. When modulus of elasticity 
of the inclusion and plate are equal to one another, 
(ie, a homogeneous isotropic plate), there is no loss 
of stability. 
 

 

 
 
Figure 8. Dependence of the critical load on the ratio of the in-
clusion module to the plate module.  
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