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Abstract Intuitionistic fuzzy set is capable of handling
uncertainty with counterpart falsities which exist in nature.
Proximity measure is a convenient way to demonstrate
impractical significance of values of memberships in the
intuitionistic fuzzy set. However, the related works of
Pappis (Fuzzy Sets Syst 39(1):111–115, 1991), Hong and
Hwang (Fuzzy Sets Syst 66(3):383–386, 1994), Virant
(2000) and Cai (IEEE Trans Fuzzy Syst 9(5):738–750,
2001) did not model the measure in the context of the intu-
itionistic fuzzy set but in the Zadeh’s fuzzy set instead.
In this paper, we examine this problem and propose new
notions of δ-equalities for the intuitionistic fuzzy set and δ-
equalities for intuitionistic fuzzy relations. Two fuzzy sets
are said to be δ-equal if they are equal to an extent of
δ. The applications of δ-equalities are important to fuzzy
statistics and fuzzy reasoning. Several characteristics of δ-
equalities that were not discussed in the previous works
are also investigated. We apply the δ-equalities to the
application of medical diagnosis to investigate a patient’s
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diseases from symptoms. The idea is using δ-equalities for
intuitionistic fuzzy relations to find groups of intuitionis-
tic fuzzified set with certain equality or similar degrees
then combining them. Numerical examples are given to
illustrate validity of the proposed algorithm. Further, we
conduct experiments on real medical datasets to check the
efficiency and applicability on real-world problems. The
results obtained are also better in comparison with 10
existing diagnosis methods namely De et al. (Fuzzy Sets
Syst 117:209–213, 2001), Samuel and Balamurugan (Appl
Math Sci 6(35):1741–1746, 2012), Szmidt and Kacprzyk
(2004), Zhang et al. (Procedia Eng 29:4336–4342, 2012),
Hung and Yang (Pattern Recogn Lett 25:1603–1611, 2004),
Wang and Xin (Pattern Recogn Lett 26:2063–2069, 2005),
Vlachos and Sergiadis (Pattern Recogn Lett 28(2):197–
206, 2007), Zhang and Jiang (Inf Sci 178(6):4184–4191,
2008), Maheshwari and Srivastava (J Appl Anal Comput
6(3):772–789, 2016) and Support Vector Machine (SVM).

Keywords δ-equalities · Algebraic operations ·
Intuitionistic fuzzy set · Intuitionistic fuzzy relations ·
Medical diagnosis

1 Introduction

Fuzzy set was proposed by Zadeh in 1965 to handle uncer-
tainty and ambiguity [67, 68]. A fuzzy set is defined by a
membership degree function with range in the unit interval
[0,1]. It defines a multilevel extension to the classical set
such that a proposition can get any value in the unit inter-
val instead of ‘True’ or ‘False’. Based on the fuzzy set,
several additional and hybrid concepts such as theinterval-
valued fuzzy set [69], the type-2 fuzzy set [69], the intu-
itionistic fuzzy set [2] were developed. Fuzzy sets play a

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-0986-0&domain=pdf
mailto:sonlh@vnu.edu.vn
mailto:rtngan@hunre.edu.vn
mailto:Mumtaz.Ali@usq.edu.au


R.T. Ngan et al.

tremendous role in signal processing [25], control theory
[14], reasoning [7], decision making [23], medical diagnosis
[31], geo-demographic analysis [33, 37, 41, 42, 65], dental
segmentation [47, 48, 59], compression [43], recommender
systems [34, 36, 38] and other fields [8, 10, 35, 39, 40, 46,
49, 50, 56–58].

In Zadeh’s fuzzy set, the degree of membership is a sin-
gle value between 0 and 1. Nonetheless, this may not always
be valid in real-life applications due to the existence of
hesitation margin or degree. To deal with this issue, the
intuitionistic fuzzy set (IFS) [2] extended the fuzzy set by
incorporating the degree of non-membership. In the other
words, IFS is branded and characterized by the degrees of
membership and non-membership with the condition that
their sum does not exceed 1. It has been observed that
IFS can better designate fuzziness. In the practical point of
view, IFS gained much attention from the research com-
munity which have been successfully tested in the fields
of modeling imprecision [12], decision making [5], pattern
recognition [62], computational intelligence [6] and medi-
cal diagnosis [27, 44, 45, 51, 52, 54, 55]. The strength of
these approaches evolves from those cases where conflict-
ing information concerning membership taints the ability to
determine the actual fuzzy membership of objects.

Proximity measure was firstly discussed by Pappis [26]
to demonstrate the impractical significance of values of
membership. Let A and B be two fuzzy sets on a universe
U , and μA (x) and μB (x) representing their membership
functions, respectively. A and B are said to be approxi-
mately equal if supx |μA (x) − μB (x)| ≤ ε, where ε is a
small nonnegative number and called the proximity mea-
sure. Pappis believed that the max-min compositional rule
of inference is preserved with approximately equal fuzzy
sets. Another approach considered by Hong and Hwang
[17], as a generalization of the work of Pappis [26], was
mainly based on the same philosophy of the max-min com-
positional rule of inference that is preserved with respect
to approximately equal fuzzy sets and approximately equal
fuzzy relation respectively. Cai [4] argued that both the Pap-
pis et al. approaches were limited to a fixed value of ε,
i.e. they assumed that ε is constant and disregarded what
“small nonnegative number” means. However in reality, dif-
ferent values of ε may make different senses and the role
of context is indeed important. We also note that the notion
ε-equality was introduced by Dubois and Prade [15]. Two
fuzzy sets A and B are said to be ε-equality if S (A, B) ≥
ε, where S (A, B) is a similarity measure between A and
B. Evidently, there is an inherent relationship between
proximity measure and ε-equality, i.e. S (A, B) can be inter-
preted in terms of supx |μA (x) − μB (x)|. Cai introduced
δ-equalities of fuzzy set to overcome this problem in which
two fuzzy sets are said to be δ-equal if they equal to a degree
of δ. In the other words, two fuzzy sets A and B are said

to be δ-equality if supx |μA (x) − μB (x)| ≤ 1 − δ. As Cai
explained in his paper, the advantage of using 1 − δ rather
than ε is that interpretation of δ can comply with common
sense. That is, the greater the value of δ is, the ‘more equal’
the two fuzzy sets are; and they become ‘strictly equal’
when δ = 1. The applications of δ-equalities have impor-
tant roles to fuzzy statistics and fuzzy reasoning. Virant
[61] tested δ-equalities of fuzzy sets in synthesis of real-
time fuzzy systems while Cai [4] used them for validating
the robustness of fuzzy reasoning accompanied with several
reliability examples through δ-equalities. Nonetheless, there
is no such notion in the context of the IFS set.

In this paper, we propose a new notion of δ-equalities for
the universe of IFS set. The notions of δ-equalities for intu-
itionistic fuzzy relations and intuitionistic fuzzy norms are
also proposed herein. The aim of those proposals in com-
parison with the work of Cai [4] is to extend the existing
definitions in a new context of IFS which was shown to bet-
ter model real-life applications than the fuzzy set [2] and to
examine several characteristics and theorems of δ-equalities
that were not (or partly) discussed in the previous works.
The mentioned proposals are significant to understand the
behavior of δ-equalities in IFS which is helpful to select
appropriate setting for applications.

The significance and practical implication of the pro-
posed approach is not limited to the theoretical aspects
but also the establishment in practice. In this regards, we
apply the δ-equalities to the application of medical diag-
nosis, which is always one of the leading research interest
areas, to investigate a patient’s diseases from his symptoms.
The Sanchez’s approach [32] using the theory of fuzzy sets
was long recognized as the traditional method. De et al.
[9] extended the Sanchez’s method with the theory of intu-
itionistic fuzzy sets (IFSs). Samuel and Balamurugan [31],
Szmidt and Kacprzyk [53], Zhang et al. [71], Hung and
Yang [19], Wang and Xin [63], Vlachos and Sergiadis [62],
Zhang and Jiang [70], Wei and Ye [64] and Hung [18], Jun-
jun et al. [20], Maheshwari and Srivastava [24] continued to
work on the IFS theory to improve the method of De et al.
[9], i.e., by using new score functions, new distance func-
tions, or new measures instead of the score function in the
method of De et al. [9]. In this paper, the proposed algo-
rithm combines the δ-equalities with the extended Sanchez’s
approach for intuitionistic fuzzy sets. The idea is using δ-
equalities for intuitionistic fuzzy relations to find groups
of intuitionistic fuzzified set with certain equality or simi-
lar degrees then combining them. Numerical examples and
experimental validation on real-world datasets are given to
illustrate the activities of the proposed algorithm.

The rest of the paper is organized as follows. Section 2
provides some fundamental concepts of the IFS set.
Section 3 proposes the δ-equalities for IFS accompanied
with theoretical investigation with set theoretic operations
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of IFS such as the union, intersection, complement, prod-
uct, addition and some other operations. Section 4 extends
the δ-equalities to intuitionistic fuzzy relations and intu-
itionistic fuzzy norms. Section 5 presents an application of
δ-equalities to the medical diagnosis problem including a
new algorithm and numerical examples. Section 6 shows
the experimental results on real-world datasets. Finally, con-
clusions and further studies of this research are given in
Section 7.

2 Preliminary

Definition 1 [67] Fuzzy Set

Let U be a space of points and let u ∈ U . A fuzzy set S

in U is characterized by a membership function μS with a
range in [0,1]. A fuzzy set can be represented as

S = {(u, μS(u)) : u ∈ U}.

Definition 2 [2] Intuitionistic Fuzzy Set

LetU be a space of points and let u ∈ U . An intuitionistic
fuzzy set S in U is characterized by a membership function
μS and a non-membership function νS with a range in [0,1]
such that 0 ≤ μS + νS ≤ 1. Intuitionistic fuzzy set can be
represented as a triplet in the following way

S = {〈u, μS(u), νS(u)〉 : u ∈ U} .

We now give some set theoretic operations of intuitionis-
tic sets.

Definition 3 [2] Inclusion relation between two intuitionis-
tic fuzzy sets

Let A and B be two intuitionistic fuzzy sets in a universe
of discourse U . Then the inclusion relation ⊆ between A
and B is defined by

A ⊆ B ⇔ μA (x) ≤ μB (x) , νA (x) ≥ νB (x) , ∀x ∈ U.

Especially,

A = B ⇔ μA (x) = μB (x) , νA (x) = νB (x) , ∀x ∈ U.

Definition 4 [2] Complement of Intuitionistic Set

The complement of an intuitionistic fuzzy set S is
denoted by Sc and is given as

μSc(u) = νS(u), νSc (u) = μS(u), ∀u ∈ U.

Definition 5 [2] Union of intuitionistic fuzzy sets

Let A and B be two intuitionistic fuzzy sets in a universe
of discourse U. Then the union of A and B is denoted by
A ∪ B, which is defined by

A ∪ B = {〈u, μA(u) ∨ μB(u), νA(u) ∧ νB(u)〉 : u ∈ U},
where ∨ denote the max-operator, and ∧ denote the min-
operator.

Definition 6 [2] Intersection of intuitionistic fuzzy sets

Let A and B be two intuitionistic fuzzy sets in a universe
of discourse U. Then the intersection of A and B is denoted
as A ∩ B, which is defined by

A ∩ B = {〈u, μA(u) ∧ μB(u), νA(u) ∨ νB(u)〉 : u ∈ U},
where ∨ denote the max-operator, and ∧ denote the min-
operator.

Definition 7 [2] Addition of two intuitionistic fuzzy sets

Let A and B be two intuitionistic fuzzy sets in a universe
of discourse U. Then the addition of A and B is denoted as
A + B, which is defined by

A + B = {〈x, μA (x) + μB (x) − μA (x) .μB (x) ,

νA (x) .νB (x)〉 : x ∈ U} .

Definition 8 Difference of two intuitionistic fuzzy sets

Let A and B be two intuitionistic fuzzy sets in a universe
of discourse U . Then the difference of A and B is denoted
as A − B, which is defined by

A − B = A + Bc.

Definition 9 [2] Product of two intuitionistic fuzzy sets

Let A and B be two intuitionistic fuzzy sets in a universe
of discourse U . Then the product of A and B is denoted as
A · B(or AB), which is defined by

A · B = {〈x, μA (x) .μB (x) , νA (x)

+νB (x) − νA (x) .νB (x)〉 : x ∈ U} .

Definition 10 [13] The set L∗ defined by

L∗ = {x = (x1, x2) |x1, x2 ∈ [0, 1], x1 + x2 ≤ 1 },
0L∗ = (0, 1), 1L∗ = (1, 0),

and the order relation ≤L∗ on L∗ defined by

x =(x1, x2), y =(y1, y2)∈L∗, x ≤L∗ y ⇔x1≤y1, x2 ≥ y2,

The first and second projection mappings pr1 and pr2 on
L∗ are defined as

pr1(x) = x1, pr1(x) = x2, ∀x ∈ L∗.
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Definition 11 [13] An intuitionistic fuzzy triangular norm
T is a function T : L∗2 → L∗ defined by

T (x, y) = (pr1T (x, y)), pr2T (x, y)), ∀x, y ∈ L∗,

and T has to satisfy the following conditions:

1. T (1L∗ , x) = x,∀x ∈ L∗;
2. T (x, y) ≤L∗ T (w, z), whenever x ≤L∗ w and y ≤L∗ z,

∀x, y, w, z ∈ L∗;
3. T (x, y) = T (y, x), ∀x, y ∈ L∗;
4. T (T (x, y), z) = T (x, T (y, z)), ∀x, y, w, z ∈ L∗.

Example 1 Some intuitionistic fuzzy triangular norms are
given below.

• T1 (x, y) = (x1 ∧ y1, x2 ∨ y2) , ∀x, y ∈ L∗.
• T2 (x, y) = (x1y1, x2 + y2 − x2y2) , ∀x, y ∈ L∗.
• T3 (x, y) = (max (0, x1 + y1 − 1) ,min (1, x2 + y2)),

∀x, y ∈ L∗.
• T4 (x, y) = (max (0, λ (x1 + y1) − λ + (1 − λ) x1y1) ,

min (1, x2 + y2)) , ∀x, y ∈ L∗, 0 < λ < 1.
• T5 (x, y) = (max (0, x1 + y1 − 1) , x2 + y2 − x2y2),

∀x, y ∈ L∗.
• T6 (x, y) = (max (0, λ (x1 + y1) − λ + (1 − λ) x1y1) ,

x2 + y2 − x2y2) , ∀x, y ∈ L∗, 0 < λ < 1.

Definition 12 [13]
An intuitionistic fuzzy triangular co-norm S is a function

S : L∗2 → L∗ defined by

S(x, y) = (pr1S(x, y), pr2S(x, y)), ∀x, y ∈ L∗,

where S has to satisfy the following conditions:

1. S(0L∗ , x) = x,∀x ∈ L∗;
2. S(x, y) ≤L∗ ,S(w, z) whenever x ≤L∗ w and y ≤L∗ z,

∀x, y, w, z ∈ L∗;
3. S(x, y) = S(y, x), ∀x, y ∈ L∗;
4. S(S(x, y), z) = S(x,S(y, z)), ∀x, y, z ∈ L∗.

Example 2 Some intuitionistic fuzzy triangular co-norms
are presented below.

• S1 (x, y) = (x1 ∨ y1, x2 ∧ y2) , ∀x, y ∈ L∗.
• S2 (x, y) = (x1 + y1 − x1y1, x2y2) , ∀x, y ∈ L∗.
• S3 (x, y) = (min (1, x1 + y1) ,max (0, x2 + y2 − 1)),

∀x, y ∈ L∗.
• S4 (x, y) = (min (1, x1 + y1) ,

max (0, λ (x2 + y2) − λ + (1 − λ) x2y2))),
∀x, y ∈ L∗, 0 < λ < 1.

• S5 (x, y) = (x1 + y1 − x1y1,max (0, x2 + y2 − 1)),
∀x, y ∈ L∗.

• S6 (x, y) = (x1 + y1 − x1y1 ,
max (0, λ (x2 + y2) − λ + (1 − λ) x2y2)), ∀x, y ∈ L∗,
0 < λ < 1.

Definition 13 General extension intersection of two intu-
itionistic fuzzy sets

Let A and B be intuitionistic fuzzy sets define on U and
T be an intuitionistic fuzzy triangular norm, then the general
extension intersection of A and B is denoted as A ∩T B,
which is defined by

A ∩T B = {〈x, pr1T (μA (x) , μB (x)) ,

pr2T (νA (x) , νB (x))〉 : x ∈ U} .

For example: A ∩T1 B = A ∩ B and A ∩T2 B = AB.

Definition 14 General extension union of two intuitionistic
fuzzy sets

Let A and B be intuitionistic fuzzy sets define on U and
S be an intuitionistic fuzzy triangular co-norm, then the gen-
eral extension union ofA andB is denoted asA∪SB, which
is defined by

A ∪S B = {〈x, pr1S (μA (x) , μB (x)) ,

pr2S (νA (x) , νB (x))〉 : x ∈ U} .

For example: A ∪S1 B = A ∪ B and A ∪S2 B = A + B.

Definition 15 [4] Let U be a universe of discourse. Let A

and B be two fuzzy sets on U , and μA(x) and μB(x) their
membership functions, respectively. Then A and B are said
to be δ-equal denoted by A = (δ)B, if

sup
x∈U

|μA(x) − μB(x)| ≤ 1 − δ, 0 ≤ δ ≤ 1.

In this way, we say A and B construct δ-equality.

Lemma 1 [4] Let

δ1 ∗ δ2 = max(0, δ1 + δ2 − 1), 0 ≤ δ1, δ2 ≤ 1, (1)

Then

1. 0 ∗ δ1 = 0; for all δ1 ∈ [0, 1],
2. 1 ∗ δ1 = δ1; for all δ1 ∈ [0, 1],
3. 0 ≤ δ1 ∗ δ2 ≤ 1; for all δ1, δ2 ∈ [0, 1],
4. δ1 ≤ δ′

1 ⇒ δ1 ∗ δ2 ≤ δ′
1 ∗ δ2; for all δ1, δ′

1, δ2 ∈ [0, 1],
5. δ1 ∗ δ2 = δ2 ∗ δ1; for all δ1, δ2 ∈ [0, 1]
6. (δ1 ∗ δ2) ∗ δ3 = δ1 ∗ (δ2 ∗ δ3); for all δ1, δ2, δ3 ∈ [0, 1].

Lemma 2 Let f, g be bounded, real valued function on a
set U . Then

sup
U

(f + g) ≤ sup
U

f + sup
U

g,

inf
U

(f + g) ≥ inf
U

f + inf
U

g.
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Proof Since f (u) ≤ sup
U

f and g (u) ≤ sup
U

g for every u ∈
U , we have

f (u) + g (u) ≤ sup
U

f + sup
U

g.

Thus,

sup
U

(f + g) ≤ sup
U

f + sup
U

g.

Now, since f (u) ≥ inf
U

f and g (u) ≥ inf
U

g for every u ∈ U ,

we have

f (u) + g (u) ≥ inf
U

f + inf
U

g.

Thus,

inf
U

(f + g) ≥ inf
U

f + inf
U

g.

Lemma 3 Let f, g be bounded, real valued function on a
set U . Then

∣
∣
∣
∣
sup
U

f − sup
U

g

∣
∣
∣
∣
≤ sup

U

|f − g| ,
∣
∣
∣
∣
inf
U

f − inf
U

g

∣
∣
∣
∣
≤ sup

U

|f − g| .

Proof Since f = f − g + g, f − g ≤ |f − g| and from
Lemma 2, we have

sup
U

f ≤ sup
U

(f − g) + sup
U

g ≤ sup
U

|f − g| + sup
U

g,

Then

sup
U

f − sup
U

g ≤ sup
U

|f − g| .

Exchanging f and g in this inequality, we have

sup
U

g − sup
U

f ≤ sup
U

|f − g| .

Therefore, we obtain
∣
∣
∣
∣
sup
U

f − sup
U

g

∣
∣
∣
∣
≤ sup

U

|f − g| .

Replacing f by−f and g by−g in this inequality and using
the inequality sup (−f ) = − inf f , we obtain
∣
∣
∣
∣
inf
U

f − inf
U

g

∣
∣
∣
∣
≤ sup

U

|f − g| .

Definition 16 [3] An intuitionistic fuzzy relation (IFR) R

between X and Y (R ∈ IFR(X × Y )) is defined as an
intuitionistic fuzzy set on X × Y , that is, R is given by

R = {〈(x, y), μR(x, y), νR(x, y)〉 : (x, y) ∈ X × Y } ,

where μR, νR : X × Y → [0, 1] satisfy the condition
μR(x, y) + νR(x, y) ≤ 1 for every (x, y) ∈ X × Y .
For each (x, y) ∈ X × Y , μR(x, y) and νR(x, y) express
the degree of membership of (x, y) to relation R and
the degree of non-membership of (x, y) to relation R,
respectively.

3 δ-equalities of intuitionistic fuzzy sets

In what follows, we define the new concept of δ-equalities
for the intuitionistic fuzzy set.

Definition 17 Let U be a universe of discourse. Let A and
B be two intuitionistic fuzzy sets on U , and μA(u), νA(u)

and μB(u), νB(u) be their membership functions and non-
membership functions respectively. Then A and B are said
to be δ-equal if and only if

sup
u∈U

|μA(u) − μB(u)| ≤ 1 − δ, (2)

sup
u∈U

|νA(u) − νB(u)| ≤ 1 − δ, (3)

for all u ∈ U and 0 ≤ δ ≤ 1. This can be denote it as
A = (δ)B.

From Definition 17, it is clear that (1 − δ) is the max-
imum difference or proximity measure between A and B,
and δ is the degree of equality between them. It is customary
to be noted that δ-equality of intuitionistic fuzzy sets con-
struct the class of intuitionistic fuzzy relations. Considering
the set (IFSs) of all intuitionistic fuzzy sets on U , based on
this δ-equality, we can know the sets belong to IFSs which
are most similar. This recognition is very important for the
classification of information.

Remark 1 Some remarks for δ-equalities of intuitionistic
fuzzy sets are below.

1. Because the new concept δ-equalities states about the
equal degree of intuitionistic fuzzy sets, and the left side
of (2) and (3) describes about the different level of two
intuitionistic fuzzy sets. Then, the right side of (2) and
(3) is defined by 1 − δ.

2. The two conditions (2) and (3) occur simultaneously.
The natures of the two concepts δ-equalities of intu-
itionistic fuzzy sets and the order relation on L∗ are
different.

3. In the fact, the standard value of δ is depending on
the each material model. Usually, the selected standard
value of δ equal to the maximum value of δ in the
material model.
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4. An illustration is given as follows. Let U = {x, y, z},
A, B ∈ IFS(U) and

A = {〈x, 0.25, 0.4〉, 〈y, 0.3, 0.41〉, 〈z, 0.18, 0.5〉},
B = {〈x, 0.29, 0.32〉, 〈y, 0.33, 0.38〉, 〈z, 0.2, 0.54〉}.
Thus, sup

u∈U

|μA(u)−μB(u)| =sup
u∈U

vz{0.04, 0.03, 0.02}
x = 0.04 = 1 − 0.96,

sup
u∈U

|νA(u) − νB(u)| = sup
u∈U

{0.08, 0.03, 0.04}
= 0.08 = 1 − 0.92

Therefore sup
u∈U

|μA(u) − μB(u)| ≤ 1 − 0.92

sup
u∈U

|νA(u) − νB(u)| ≤ 1 − 0.92

We choose δ = 0.92 and say that A and B have the
same δ-equality (0.92).

5. Intuitionistic fuzzy set as generalized fuzzy set is quite
interesting and useful in many application areas [16],
such as in the fields of decision making [5], and medi-
cal diagnosis [52]. The new concept δ-equalities of
intuitionistic fuzzy sets is a direct extension of the
old concept δ-equalities of fuzzy sets [4]. We propose
this extension to study more deeply about intuitionis-
tic fuzzy theory in practical applications as the medical
diagnostic problem.

We consider Example 3 to see more clearly the meaning
of the concept δ-equalities of intuitionistic fuzzy sets.

Example 3 Assume that there are 3 medical experts A, B

and C who diagnose for 3 patients x, y and z about s symp-
toms contracted. A, B and C are also denoted for the diag-
nostic results of 3 experts which, respectively, are expressed
as form of the intuitionistic fuzzy sets as following

A = {〈x, 0.25, 0.4〉, 〈y, 0.3, 0.41〉, 〈z, 0.18, 0.5〉},
B = {〈x, 0.29, 0.32〉, 〈y, 0.33, 0.38〉, 〈z, 0.2, 0.54〉},
C = {〈x, 0.2, 0.1〉, 〈y, 0.32, 0.36〉, 〈z, 0.17, 0.14〉}.

In order to assess the equal level between the results, we
can use δ-equalities measure and we obtain A = (0.92)B,
A = (0.7)C and B = (0.6)C. Then, we say that between 3
diagnostic results, A and B have the largest equal level. In
other words, A and B are closest together.

Moreover, the proposed notions overcome the limitation
in the work of Pappis [26] in which the max-min compo-
sitional rule of inference is preserved with approximately
equal fuzzy sets as well as the approach considered by Hong
and Hwang [17] which was mainly based on the same phi-
losophy of the max-min compositional rule of inference that
is preserved with respect to approximately equal fuzzy sets
and approximately equal fuzzy relation respectively. It also
generalizes the work of Cai [4] regarding the δ-equalities

for fuzzy sets. The applications of δ-equalities have impor-
tant roles to fuzzy statistics and fuzzy reasoning. The aim
of those proposals in comparison with the work of Cai [4]
is to extend the existing definitions in a new context of IFS
which has been shown to be better at modeling real-life
applications than the fuzzy set [2] and to examine sev-
eral characteristics and theorems of δ-equalities that were
not (or partly) discussed in the previous works. The men-
tioned proposals are significant to understand the behavior
of δ-equalities in IFS which is helpful to select appropriate
setting for applications.

Now, we examine some characteristics of the δ-equalities
for intuitionistic fuzzy sets in Definition 17.

Proposition 1 For two intuitionistic fuzzy sets A and B,
defined on U . The following assertions hold.

1. A = (0)B,
2. A = (1)B if and only if A = B,
3. A = (δ)B if and only if B = (δ)A,
4. A = (δ1)B and if δ1 ≥ δ2, then A = (δ2)B,
5. If A = (δα)B for all α ∈ J , where J is an index set,

then A =
(

sup
α∈J

δα

)

B,

6. For all A, B, there exist a unique δ such that A = (δ)B

and if A = (δ′)B, then δ′ ≤ δ.

Proof Properties 1–4 can be proved easily. We only prove 5
and 6.

(5). Suppose that A = (δα)B, we have

sup
u∈U

|μA(u) − μB(u)| ≤ 1 − δα, or δα ≤ 1

−sup
u∈U

|μA(u) − μB(u)| for all α ∈ J.

Thus, sup δα ≤ 1 − sup
u∈U

|μA(u) − μB(u)|.
Similarly,

sup
u∈U

|νA(u) − νB(u)| ≤ 1 − δα, or δα ≤ 1

−sup
u∈U

|νA(u) − νB(u)| for all α ∈ J.

Therefore, sup δα ≤ 1− sup
u∈U

|νA(u) − νB(u)|. Thus A =
(

sup
α∈J

δα

)

B.

(6). Let δ=min

(

1 − sup
u∈U

|μA(u) − μB(u)| , 1 − sup
u∈U

|νA

(u) − νB(u)|
)

then sup
u∈U

|μA(u) − μB(u)| ≤ 1 − δ and

sup
u∈U

|νA(u) − μB(u)| ≤ δ.

This implies A = (δ)B and if A = (δ′)B, then δ′ ≤
δ. Now suppose that there exist δ1 and δ2 such that they
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simultaneously satisfy the required properties, then δ1 ≤ δ2
and δ2 ≤ δ1 which implies δ1 = δ2. Hence δ is unique.

Proposition 2 Let A, B and C be intuitionistic fuzzy sets
define on U . If A = (δ1)B and B = (δ2)C, then A = (δ)C

where

δ = δ1 ∗ δ2. (4)

Proof Since A = (δ1)B, we have

sup
u∈U

|μA(u) − μB(u)| ≤ 1 − δ1,

sup
u∈U

|νA(u) − νB(u)| ≤ 1 − δ1.

Also B = (δ2)C, we have

sup
u∈U

|μB(u) − μC(u)| ≤ 1 − δ2,

sup
u∈U

|νB(u) − νC(u)| ≤ 1 − δ2.

Now

sup
u∈U

|μA(u) − μC(u)| ≤ sup
u∈U

|μA(u) − μB(u)|
+sup

u∈U

|μB(u) − μC(u)|
≤ 1 − δ1 + 1 − δ2 ≤ 1 − (δ1 + δ2 − 1).

Further, sup
u∈U

|μA(u) − μC(u)| ≤ 1; so sup
u∈U

|μA(u) − μC

(u)| ≤ 1 − max(0, δ1 + δ2 − 1) = 1 − δ1 ∗ δ2.
Finally,

sup
u∈U

|νA(u) − νC(u)| ≤ sup
u∈U

|νA(u) − νB(u)|
+sup

u∈U

|νB(u) − νC(u)|
≤ 1 − δ1 + 1 − δ2 ≤ 1 − (δ1 + δ2 − 1).

We note that sup
u∈U

|νA(u) − νC(u)| ≤ 1, therefore,

sup
u∈U

|νA(u) − νC(u)| ≤ 1−max(0, δ1+δ2−1) = 1−δ1∗δ2.

Thus, A = (δ)C where δ = δ1 ∗ δ2.

Now, the δ-equalities are applied to set theoretic opera-
tions of intuitionistic fuzzy set such as union, intersection,
complement as following.

Proposition 3 Let A and B be intuitionistic fuzzy sets
define on U . Let Ac be the complement of A and Bc be the
complement of B. Further let A = (δ)B. Then

Ac = (δ)Bc. (5)

Proof This is because

sup
u∈U

|μAc(u) − μBc(u)| = sup
u∈U

|νA(u) − νB(u)| ≤ 1 − δ,

And next

sup
u∈U

|νAc(u) − νBc(u)| = sup
u∈U

|μA(u) − μB(u)| ≤ 1 − δ.

This shows that Ac = (δ)Bc.

Proposition 4 Let A1, A2, B1 and B2 be intuitionistic fuzzy
sets define on U . Let A1 = (δ1)B1, A2 = (δ2)B2. Then

A1 ∩ A2 = (min(δ1, δ2))B1 ∩ B2. (6)

Proof From Lemma 3, we have

sup
u∈U

∣
∣μA1∩A2(u) − μB1∩B2(u)

∣
∣

= sup
u∈U

∣
∣min(μA1(u), μA2(u)) − min(μB1(u), μB2(u))

∣
∣

≤ sup
u∈U

max

(

sup
u∈U

∣
∣μA1(u), μB1(u)

∣
∣, sup

u∈U

∣
∣μA2(u),μB2(u)

∣
∣

)

≤ sup
u∈U

max(1 − δ1, 1 − δ2) ≤ 1 − min(δ1, δ2).

Thus

sup
u∈U

∣
∣μA1∩A2(u) − μB1∩B2(u)

∣
∣ ≤ 1 − min(δ1, δ2).

Next,

sup
u∈U

∣
∣νA1∩A2(u) − νB1∩B2(u)

∣
∣

= ∣
∣max(νA1(u), νA2(u)) − max(νB1(u), νB2(u))

∣
∣

≤ sup
u∈U

max

(

sup
u∈U

∣
∣νA1(u), νB1(u)

∣
∣ ,

∣
∣νA2(u) − νB2(u)

∣
∣

)

≤ sup
u∈U

max(1 − δ1, 1 − δ2) ≤ 1 − min(δ1, δ2).

Therefore,

sup
u∈U

∣
∣νA1∩A2(u) − νB1∩B2(u)

∣
∣ ≤ 1 − min(δ1, δ2).

This implies that A1 ∩ A2 = (min(δ1, δ2))B1 ∩ B2.

Remark 2 Proposition 4 has the important meaning in sup-
porting aggregate information. We can consider Example 4
as follows.

Example 4 A patient p was diagnosed with liver disease
by two hospitals h1 and h2 through 3 indexes x1, x2, x3.
Let two sets A1 and A2 which are proposed by h1 and h2,
respectively, be standard levels of indexes x1, x2, x3. Let
two sets B1 and B2 be test results of patient p by h1 and h2,
respectively through 3 indexes x1, x2, x3 and B1 = (δ1)A1,
B2 = (δ2)A2. Then, A1 ∩ A2 is aggregated standard level
of indexes x1, x2, x3 and B1 ∩ B2 is the aggregated test
result of patient p. From Proposition 4, we have B1 ∩ B2 =
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(min(δ1, δ2))A1∩A2, thus δ = min(δ1, δ2) is the final diag-
nosis which describes the severity of the disease of patient
p.

Proposition 5 Let Aα , Bα be intuitionistic fuzzy sets define
on U , for all α ∈ J , where J is an index set. Let Aα =
(δα)Bα , for all α ∈ J . Let

⋂

α∈J

Aα represents the intersection

of {Aα : α ∈ J } and
⋂

α∈J

Bα represents the intersec-

tion of {Bα : α ∈ J }, and μ ⋂

α∈J

Aα
(u) = inf

α∈J
μAα (u),

ν ⋂

α∈J

Aα
(u) = sup

α∈J

νAα (u) and μ ⋂

α∈J

Bα
(u) = inf

α∈J
μBα (u),

ν ⋂

α∈J

Bα
(u) = sup

α∈J

νBα (u) their membership functions and

non-membership functions respectively. Then
⋂

α∈J

Aα =
(

inf
α∈J

δα

)
⋂

α∈J

Bα. (7)

Proof This is because

sup
u∈U

∣
∣
∣
∣
μ ⋂

α∈J

Aα
(u)−μ ⋂

α∈J

Bα
(u)

∣
∣
∣
∣
= sup

u∈U

∣
∣
∣
∣
inf
α∈J

μAα (u)−inf
α∈J

μBα (u)

∣
∣
∣
∣

≤ sup
u∈U

sup
α∈J

∣
∣μAα (u) − μBα (u)

∣
∣

≤ sup
u∈U

sup
α∈J

(1 − δα) = 1 − inf
α∈J

δα.

This implies

sup
u∈U

∣
∣
∣
∣
μ ⋂

α∈J

Aα
(u) − μ ⋂

α∈J

Bα
(u)

∣
∣
∣
∣
≤ 1 − inf

α∈J
δα.

Finally, we have

sup
u∈U

∣
∣
∣
∣
ν ⋂

α∈J

Aα
(u)−ν ⋂

α∈J

Bα
(u)

∣
∣
∣
∣
= sup

u∈U

∣
∣
∣
∣
sup
α∈J

νAα (u)−sup
α∈J

νBα (u)

∣
∣
∣
∣

≤ sup
u∈U

sup
α∈J

∣
∣νAα (u) − νBα (u)

∣
∣

≤ sup
u∈U

sup
α∈J

(1 − δα) = 1 − inf
α∈J

δα.

Therefore,

sup
u∈U

∣
∣
∣
∣
ν ⋂

α∈J

Aα
(u) − ν ⋂

α∈J

Bα
(u)

∣
∣
∣
∣
≤ 1 − inf

α∈J
δα.

Thus
⋂

α∈J

Aα =
(

inf
α∈J

δα

)
⋂

α∈J

Bα .

Proposition 6 Let Aα , Bα be intuitionistic fuzzy sets define
on U for all α ∈ J , where J is an index set. Let Aα =
(δα)Bα , for all α ∈ J . Let

⋃

α∈J

Aα represents the union of

{Aα : α ∈ J } and ⋃

α∈J

Bα represents the union of {Bα : α ∈
J }, and μ ⋃

α∈J

Aα
(u) = sup

α∈J

μAα (u), ν ⋃

α∈J

Aα
(u) = inf

α∈J
νAα (u)

and μ ⋃

α∈J

Bα
(u) = sup

α∈J

μBα (u), ν ⋃

α∈J

Bα
(u) = inf

α∈J
νBα (u)

their membership functions, and non-membership functions,
respectively. Then

⋃

α∈J

Aα =
(

inf
α∈J

δα

)
⋃

α∈J

Bα. (8)

Proof From Propositions 4 and 5, we have Ac
α = (δα)Bc

α

and
⋂

α∈J

Ac
α =

(

inf
α∈J

δα

)
⋂

α∈J

Bc
α . Thus

(
⋂

α∈J

Ac
α

)c

=
(

inf
α∈J

δα

)(
⋂

α∈J

Bc
α

)c

or
⋃

α∈J

Aα=
(

inf
α∈J

δα

)
⋃

α∈J

Bα.

Remark 3 Proposition 6 is an extension from Proposition
4 by considering α initial intuitionistic fuzzy sets instead
of considering two initial intuitionistic fuzzy sets as in
Proposition 4.

Corollary 1 Let Aαβ , Bαβ be intuitionistic fuzzy sets define
on U , for all α ∈ J1 and β ∈ J2 where J1 and J2 are index
sets. Let Aαβ = (δαβ)Bαβ ; α ∈ J1 and β ∈ J2. Then

⋃

α∈J1

⋂

β∈J2

Aαβ =
(

inf
α∈J1

inf
β∈J2

δα

)
⋃

α∈J1

⋂

β∈J2

Bαβ, (9)

⋂

α∈J1

⋃

β∈J2

Aαβ =
(

inf
α∈J1

inf
β∈J2

δα

)
⋂

α∈J1

⋃

β∈J2

Bαβ. (10)

Proof This follows from Propositions 4 and 6.

Corollary 2 Let Ak , Bk be intuitionistic fuzzy sets define on
U , for all k = 1, 2, 3 . . .. Let Ak = (δk)Bk , k = 1, 2, 3, · · ·
and let

lim
n→∞ supAn =

∞
⋂

n=1

∞
⋃

k=n

Ak, lim
n→∞ infAn =

∞
⋃

n=1

∞
⋂

k=n

Ak,

(11)

lim
n→∞ supBn =

∞
⋂

n=1

∞
⋃

k=n

Bk, lim
n→∞ infBn =

∞
⋃

n=1

∞
⋂

k=n

Bk. (12)

Then

lim
n→∞ supAn =

(

inf
n≥1

δn

)

lim
n→∞ supBn, (13)

lim
n→∞ infAn =

(

inf
n≥1

δn

)

lim
n→∞ infBn. (14)
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Proof From Corollary 1, we have

∞
⋂

n=1

∞
⋃

k=n

Ak =
(

inf
n≥1

inf
k≥n

δα

) ∞
⋂

n=1

∞
⋃

k=n

Bk,

∞
⋃

n=1

∞
⋂

k=n

Ak =
(

inf
n≥1

inf
k≥n

δα

) ∞
⋃

n=1

∞
⋂

k=n

Bk,

which implies that

lim
n→∞ supAn =

(

inf
n≥1

δn

)

lim
n→∞ supBn,

lim
n→∞ infAn =

(

inf
n≥1

δn

)

lim
n→∞ infBn.

Proposition 7 Let A1, A2, B1 and B2 be intuitionistic fuzzy
sets define on U . Let A1 = (δ1)B1 and A2 = (δ2)B2. Then

A1A2 = (δ1 ∗ δ2) B1B2. (15)

Proof Since, we have

sup
u∈U

∣
∣μA1A2 (u)−μB1B2 (u)

∣
∣= sup

u∈U

∣
∣μA1 (u)μA2 (u) − μB1 (u)μB2 (u)

∣
∣

= sup
u∈U

∣
∣μA1 (u)μA2 (u) − μA2 (u)μB1 (u) + μA2 (u)μB1 (u)

−μB1 (u)μB2 (u)
∣
∣

≤ sup
u∈U

[

μA2 (u)
∣
∣μA1 (u) − μB1 (u)

∣
∣ + μB1 (u)

∣
∣μA2 (u) − μB2 (u)

∣
∣
]

≤ sup
u∈U

(1 − δ1 + 1 − δ2) = 1 − (δ1 + δ2 − 1).

Further, we have sup
u∈U

∣
∣μA1A2(u) − μB1B2(u)

∣
∣ ≤ 1; so

sup
u∈U

∣
∣μA1A2(u) − μB1B2(u)

∣
∣ ≤ 1 − δ1 ∗ δ2.

Finally, we show that

sup
u∈U

∣
∣νA1A2(u) − νB1B2(u)

∣
∣ = sup

u∈U

∣
∣(νA1(u) + νA2(u)

−νA1(u)νA2(u)) − (νB1(u) + νB2(u) − νB1(u)νB2(u))
∣
∣

= sup
u∈U

∣
∣(1 − νB2(u))(νA1(u) − νB1(u))

+(1 − νA1(u))(νA2(u) − νB2(u))
∣
∣

≤ 1 − δ1 + 1 − δ2 = 1 − (δ1 + δ2 − 1).

Since sup
u∈U

∣
∣νA1A2(u) − νB1B2(u)

∣
∣ ≤ 1; so

sup
u∈U

∣
∣νA1A2(u) − νB1B2(u)

∣
∣ ≤ 1 − δ1 ∗ δ2.

Thus A1A2 = (δ1 ∗ δ2)B1B2.

Corollary 3 Let Aj and Bj be intuitionistic fuzzy sets
define on U , for all j = 1, 2, 3, · · · , n. Let Aj = (δj )Bj ,

where j = 1, 2, 3, · · · , n. Then

A1 · · · An = (δ1 ∗ · · · ∗ δn)B1 · · · Bn. (16)

Proof The proof is followed from Proposition 7.

Proposition 8 Let A1, A2, B1 and B2 be intuitionistic fuzzy
sets define on U . Let A1 = (δ1)B1 and A2 = (δ2)B2. Then

A1 + A2 = (δ1 ∗ δ2) B1 + B2. (17)

Proof Since, we have

sup
u∈U

∣
∣μA1+A2 (u) − μB1+B2 (u)

∣
∣ = sup

u∈U

∣
∣
(

μA1 (u)+ μA2 (u)

−μA1(u) μA2(u)
)−(

μB1(u)+μB2 (u)−μB1(u) μB2(u)
)∣
∣

= sup
u∈U

∣
∣
(

1 − μB2 (u)
) (

μA1 (u) − μB1 (u)
)

+ (

1 − μA1 (u)
) (

μA2 (u) − μB2 (u)
)∣
∣

≤ 1 − δ1 + 1 − δ2 = 1 − (δ1 + δ2 − 1) .

Further, we note that sup
u∈U

∣
∣μA1+A2 (u) − μB1+B2 (u)

∣
∣ ≤

1, so

sup
u∈U

∣
∣μA1+A2 (u) − μB1+B2 (u)

∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Next,

sup
u∈U

∣
∣νA1+A2 (u) − νB1+B2 (u)

∣
∣ = sup

u∈U

∣
∣νA1 (u) νA2 (u)

−νB1 (u) νB2 (u)
∣
∣

= sup
u∈U

∣
∣νA1 (u) νA2 (u) − νA2 (u) νB1 (u) + νA2 (u) νB1 (u)

−νB1 (u) νB2 (u)
∣
∣

≤ sup
u∈U

[

νA2 (u)
∣
∣νA1 (u) − νB1 (u)

∣
∣ + νB1 (u)

∣
∣νA2 (u) − νB2 (u)

∣
∣
]

≤ sup
u∈U

(1 − δ1 + 1 − δ2) = 1 − (δ1 + δ2 − 1) .

Further, we have, sup
u∈U

∣
∣νA1+A2 (u) − νB1+B2 (u)

∣
∣ ≤ 1, it

follows that

sup
u∈U

∣
∣νA1+A2 (u) − νB1+B2 (u)

∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Thus A1 + A2 = (δ1 ∗ δ2) B1 + B2.

Corollary 4 Let Aj and Bj be intuitionistic fuzzy sets
define on U , for all j = 1, 2, 3, · · · , n. Suppose Aj =
(δj )Bj , where j = 1, 2, 3, · · · , n. Then

A1 + · · · + An = (δ1 ∗ · · · ∗ δn) B1 + · · · + Bn. (18)

Proof This is followed from Proposition 8.
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Proposition 9 Let A1, A2, B1 and B2 be intuitionistic fuzzy
sets define on U . Suppose A1 = (δ1)B1, A2 = (δ2)B2, and

T3 (x, y)=(max (0, x1+ y1 − 1) ,min (1, x2 + y2)) , ∀x, y ∈ L∗.

Then

A1 ∩T3 A2 = (δ1 ∗ δ2) B1 ∩T3 B2. (19)

Proof Since

sup
u∈U

∣
∣
∣μA1∩T3A2 (u) − μB1∩T3B2 (u)

∣
∣
∣

= sup
u∈U

∣
∣max

(

0, μA1 (u) + μA2 (u) − 1
)

−max
(

0, μB1 (u) + μB2 (u) − 1
)∣
∣

≤ sup
u∈U

∣
∣μA1 (u) + μA2 (u) − μB1 (u) − μB2 (u)

∣
∣

≤ sup
u∈U

(∣
∣μA1 (u) − μB1 (u)

∣
∣ + ∣

∣μA2 (u) − μB2 (u)
∣
∣
)

≤ 1 − δ1 + 1 − δ2 = 1 − (δ1 + δ2 − 1) ,

Since we have sup
u∈U

∣
∣
∣μA1∩T3A2 (u) − μB1∩T3B2 (u)

∣
∣
∣ ≤ 1.

Therefore

sup
u∈U

∣
∣
∣μA1∩T3A2 (u) − μB1∩T3B2 (u)

∣
∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Further,

sup
u∈U

∣
∣
∣νA1∩T3A2 (u) − νB1∩T3B2 (u)

∣
∣
∣ = sup

u∈U

∣
∣min

(

1, νA1 (u)

+νA2 (u)
) − min

(

1, νB1 (u) + νB2 (u)
)∣
∣

≤ sup
u∈U

∣
∣νA1(u) + νA2(u) − νB1(u) − νB2(u)

∣
∣

≤ sup
u∈U

(∣
∣νA1(u) + νB1(u)

∣
∣ + ∣

∣νA2(u) − νB2(u)
∣
∣
)

≤ 1 − δ1 + 1 − δ2 = 1 − (δ1 + δ2 − 1),

and we have sup
u∈U

∣
∣
∣νA1∩T3A2 (u) − νB1∩T3B2 (u)

∣
∣
∣ ≤ 1, so

sup
u∈U

∣
∣
∣νA1∩T3A2 (u) − νB1∩T3B2 (u)

∣
∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Thus A1 ∩T3 A2 = (δ1 ∗ δ2) B1 ∩T3 B2.

Proposition 10 Let A1, A2, B1 and B2 be intuitionistic
fuzzy sets define on U . Suppose A1 = (δ1)B1, A2 = (δ2)B2

and

S3 (x, y)= (min (1, x1 + y1) ,max (0, x2 + y2− 1)) , ∀x, y ∈ L∗.

Then

A1 ∪S3 A2 = (δ1 ∗ δ2) B1 ∪S3 B2. (20)

Proof Since

sup
u∈U

∣
∣
∣μA1∪S3A2 (u) − μB1∪S3B2 (u)

∣
∣
∣

= sup
u∈U

∣
∣min

(

1, μA1 (u)+μA2 (u)
)−min

(

1, μB1 (u)+μB2 (u)
)∣
∣

≤ sup
u∈U

∣
∣μA1(u) + μA2(u) − μB1(u) − μB2(u)

∣
∣

≤ sup
u∈U

(∣
∣μA1(u) − μB1(u)

∣
∣ + ∣

∣μA2(u) − μB2(u)
∣
∣
)

≤ 1 − δ1 + 1 − δ2 = 1 − (δ1 + δ2 − 1),

Since we have sup
u∈U

∣
∣
∣μA1∪S3A2 (u) − μB1∪S3B2 (u)

∣
∣
∣ ≤ 1.

Therefore

sup
u∈U

∣
∣
∣μA1∪S3A2 (u) − μB1∪S3B2 (u)

∣
∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Next,

sup
u∈U

∣
∣
∣νA1∪S3A2 (u) − νB1∪S3B2 (u)

∣
∣
∣

= sup
u∈U

∣
∣max

(

0, νA1 (u) + νA2 (u) − 1
)

−max
(

0, νB1 (u) + νB2 (u) − 1
)∣
∣

≤ sup
u∈U

∣
∣νA1(u) + νA2(u) − νB1(u) − νB2(u)

∣
∣

≤ sup
u∈U

(∣
∣νA1(u) + νB1(u)

∣
∣ + ∣

∣νA2(u) − νB2(u)
∣
∣
)

≤ 1 − δ1 + 1 − δ2 = 1 − (δ1 + δ2 − 1),

We also have sup
u∈U

∣
∣
∣νA1∪S3A2 (u) − νB1∪S3B2 (u)

∣
∣
∣ ≤ 1, so

sup
u∈U

∣
∣
∣νA1∪S3A2 (u) − νB1∪S3B2 (u)

∣
∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Hence, A1 ∪S3 A2 = (δ1 ∗ δ2) B1 ∪S3 B2.

Proposition 11 Let A1, A2, B1 and B2 be intuitionistic
fuzzy sets define on U . Suppose A1 = (δ1)B1 and A2 =
(δ2)B2. Let

T4 (x, y) = (max (0, x1 + y1 − 1) , x2 + y2 − x2y2) , ∀x, y ∈ L∗.

Then

A1 ∩T4 A2 = (δ1 ∗ δ2) B1 ∩T B2. (21)

Proof This is followed from Propositions 7 and 9.

Proposition 12 Let A1, A2, B1 and B2 be intuitionistic
fuzzy sets define on U . Suppose A1 = (δ1)B1, A2 = (δ2)B2

and

S4 (x, y) = (x1 + y1 − x1y1,max (0, x2 + y2 − 1)) , ∀x, y ∈ L∗.
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Then

A1 ∪S4 A2 = (δ1 ∗ δ2) B1 ∪S4 B2. (22)

Proof This is followed from Propositions 8 and 10.

Proposition 13 Let A1, A2, B1 and B2 be intuitionistic
fuzzy sets define on U . Suppose A1 = (δ1)B1 and A2 =
(δ2)B2. Let

T5 (x, y) = (max (0, λ (x1 + y1) − λ + (1 − λ) x1y1) ,

min (1, x2 + y2)) , ∀x, y ∈ L∗, 0 < λ < 1.

Then

A1 ∩T5 A2 = (δ1 ∗ δ2) B1 ∩T5 B2. (23)

Proof Since for all 0 < λ < 1, we have

sup
u∈U

∣
∣
∣μA1∩T5A2 (u) − μB1∩T5B2 (u)

∣
∣
∣

= sup
u∈U

∣
∣
∣
∣

max
(

0, λ
(

μA1 (u) + μA2 (u)
) − λ + (1 − λ)μA1 (u) μA2 (u)

)

−max
(

0, λ
(

μB1 (u) + μB2 (u)
) − λ + (1 − λ) μB1 (u) μB2 (u)

)

∣
∣
∣
∣

≤ sup
u∈U

∣
∣
∣
∣

λ(μA1(u) + μA2(u)) − λ + (1 − λ)μA1(u)μA2(u)

−λ(μB1(u) + μB2(u)) + λ − (1 − λ)μB1(u)μB2(u)

∣
∣
∣
∣

≤ sup
u∈U

∣
∣λ(μA1(u) − μB1(u)) + λ(μA2(u) − μB2(u)) + (1 − λ)(μA1(u)μA2(u) − μB1(u)μB2(u))

∣
∣

≤ sup
u∈U

∣
∣
∣
∣

λ(μA1(u) − μB1(u)) + λ(μA2(u) − μB2(u))+
(1 − λ)(μA1(u)μA2(u) − μA2(u)μB1(u) + μA2(u)μB1(u) − μB1(u)μB2(u)

∣
∣
∣
∣

≤ sup
u∈U

[

λ
∣
∣μA1(u) − μB1(u)

∣
∣ + λ

∣
∣μA2(u) − μB2(u)

∣
∣

+(1 − λ)
∣
∣μA1(u) − μB1(u)

∣
∣ + (1 − λ)

∣
∣μA2(u) − μB2(u)

∣
∣

]

≤ sup
u∈U

(1 − δ1 + 1 − δ2) = 1 − (δ1 + δ2 − 1),

Since we have sup
u∈U

∣
∣
∣μA1∩T5A2 (u) − μB1∩T5B2 (u)

∣
∣
∣ ≤ 1.

Therefore

sup
u∈U

∣
∣
∣μA1∩T5A2 (u) − μB1∩T5B2 (u)

∣
∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Further,

sup
u∈U

∣
∣
∣νA1∩T5A2 (u) − νB1∩T5B2 (u)

∣
∣
∣

= sup
u∈U

∣
∣min

(

1, νA1(u)+νA2(u)
)−min

(

1, νB1(u)+νB2(u)
)∣
∣

≤ sup
u∈U

∣
∣νA1(u) + νA2(u) − νB1(u) − νB2(u)

∣
∣

≤ sup
u∈U

(
∣
∣νA1(u) − νB1(u)

∣
∣ + ∣

∣νA2(u) − νB2(u)
∣
∣)

≤ (1 − δ1 + 1 − δ2) = 1 − (δ1 + δ2 − 1),

and we have sup
u∈U

∣
∣
∣νA1∩T5A2 (u) − νB1∩T5B2 (u)

∣
∣
∣ ≤ 1, so

sup
u∈U

∣
∣
∣νA1∩T5A2 (u) − νB1∩T5B2 (u)

∣
∣
∣ ≤ 1 − (δ1 ∗ δ2) .

Thus A1 ∩T5 A2 = (δ1 ∗ δ2) B1 ∩T5 B2.

Proposition 14 LetA1,A2,B1 andB2 be intuitionistic fuzzy
sets define on U . Suppose A1 = (δ1)B1 and A2 = (δ2)B2.

Let

T6 (x, y) = (max (0, λ (x1 + y1) − λ + (1 − λ) x1y1) ,

x2 + y2 − x2y2) , ∀x, y ∈ L∗, 0 < λ < 1.

Then

A1 ∩T6 A2 = (δ1 ∗ δ2) B1 ∩T6 B2. (24)

Proof This is followed from above propositions.

Proposition 15 Let A1, A2, B1 and B2 be intuitionistic
fuzzy sets define on U . Suppose A1 = (δ1)B1 and A2 =
(δ2)B2. Let

S5 (x, y) = (min (1, x1 + y1) ,max (0, λ (x2 + y2) − λ

+ (1 − λ) x2y2)) , ∀x, y ∈ L∗, 0 < λ < 1.

Then

A1 ∪S5 A2 = (δ1 ∗ δ2) B1 ∪S5 B2. (25)

Proof This is followed from above propositions.



R.T. Ngan et al.

Proposition 16 Let A1, A2, B1 and B2 be intuitionistic
fuzzy sets define on U . Suppose A1 = (δ1)B1 and A2 =
(δ2)B2. Let

S6 (x, y) = (x1 + y1 − x1y1,max (0, λ (x2 + y2)

−λ + (1 − λ) x2y2)) , ∀x, y ∈ L∗, 0 < λ < 1.

Then

A1 ∪S6 A2 = (δ1 ∗ δ2) B1 ∪S6 B2. (26)

Proof This is followed from above propositions.

Remark 4 From the hypothetical part of Proposition 4, we
replace the operation ∩ by ·, ∩T3 , ∩T4 , ∩T5 , ∩T6 , +, ∪S3,

∪S4 , ∪S5 and ∪S6 as in the hypothetical part of Proposi-
tion 7 and from Propositions 8 to 16, then we obtain δ =
δ1 ∗ δ2 instead of δ = min(δ1, δ2) as in conclusion part of
Proposition 4.

Definition 18 Let B ∈ IFS(U) and Bδ = {A ∈ IFS(U)|
A = (δ)B} then Bδ is called δ-equal ball of the set B

Proposition 17 Let B ∈ IFS(U) and Ai, Aj ∈ Bδ, i �= j .
Then

Ai = (δ ∗ δ)Aj . (27)

Proof This is followed from Proposition 2.

Remark 5 Proposition 17 shows that two any sets are in δ-
equal ball of the set B, i.e., they have the same δ-equality
degree with the set B, then they have the max δ-equal degree
equal to δ ∗ δ.

4 δ-equalities for intuitionistic fuzzy relations

Proposition 18 Let X, Y and Z be initial universes, and
� be the collection of all intuitionistic fuzzy sets defined
on X × Y and 	 denote the collection of all intu-
itionistic fuzzy sets defined on Y × Z respectively. Let
R,R′ ∈ � and S, S′ ∈ 	, i.e., and S′ are intuition-
istic fuzzy relations on X × Y and Y × Z respectively.
Further, let R ◦ S and R′ ◦ S′ be their composition,
μR◦S(x, y), νR◦S(x, y), and μR′◦S′(x, y), νR′◦S′(x, y) be
their membership and non-membership functions respec-
tively, where μR◦S(x, z) = sup

y∈Y

min(μR(x, y), μS(y, z)),

νR◦S(x, z) = inf
y∈Y

max(νR(x, y), νS(y, z)), and μR′◦S′(x, z)

= sup
y∈Y

min(νR′(x, y), μS′(y, z)), νR′◦S′(x, z) = inf
y∈Y

max

(νR′(x, y), νS′(y, z)), ∀x ∈ X, z ∈ Z. Suppose R = (δ1)R
′

and S = (δ2)S
′. Then

R ◦ S = (min(δ1, δ2))R
′ ◦ S′. (28)

Proof Since we have

|μR◦S(x, z) − μR′◦S′ (x, z)|
=

∣
∣
∣
∣
∣
sup
y∈Y

min(μR(x, y), μS(y, z))− sup
y∈Y

min(μR′ (x, y), μS′ (y, z))

∣
∣
∣
∣
∣
,

≤ sup
y∈Y

|min(μR(x, y), μS(y, z)) − min(μR′ (x, y), μS′ (y, z))| ,
≤ sup

y∈Y

|max(μR(x, y) − μR′ (x, y)), (μS(y, z) − μS′ (y, z))| ,
≤ sup

y∈Y

|max(1 − δ1, 1 − δ2) = 1 − min(δ1, δ2).

This implies that |μR◦S(x, z) − μR′◦S′(x, z)| ≤ 1 −
min(δ1, δ2).

Now, we have

|νR◦S(x, z) − νR′◦S′ (x, z)| =
∣
∣
∣
∣
inf
y∈Y

max(νR(x, y), νS(y, z))

− inf
y∈Y

max(νR′(x, y), νS′ (y, z))

∣
∣
∣
∣
,

≤ sup
y∈Y

|max(νR(x, y), νS(y, z)) − max(νR′ (x, y), νS′ (y, z))| ,
≤ sup

y∈Y

|max(νR(x, y) − νR′ (x, y)), (νS(y, z) − νS′(y, z))| ,
≤ sup

y∈Y

max(1 − δ1, 1 − δ2) = 1 − min(δ1, δ2).

Therefore |νR◦S(x, z) − νR′◦S′(x, z)| ≤ 1 − min(δ1, δ2).
Hence R ◦ S = (min(δ1, δ2))R′ ◦ S′.

Remark 6 Proposition 18 demonstrates that we can deter-
mine the δ-equality degree of the compositions of relations
if we know δ-equality degrees between those relations. In
some applications like medical diagnosis, the compositions
of intuitionistic fuzzy relations are very important. Let Qi

be a intuitionistic fuzzy relation between the set of patients
P and the set of symptoms S, and Ri be a intuitionistic
fuzzy relation between the set of symptoms S and the set of
diagnoses D, then Ri ◦ Qi be a intuitionistic fuzzy relation
between the set of patients P and the set of diagnoses D.
In the case when there are many medical experts making a
diagnosis, we can obtain many corresponding sets Qi and
Ri which are different. From Proposition 18, if we know
δ-equality degrees between Qi and Qj , Ri and Rj , then
δ-equality degree between Ri ◦ Qi and Rj ◦ Qj is deter-
mined. Thus, we can compute the δ-equality degree of final
diagnosis.

Proposition 19 Let U1, U2, · · · Un be universes and Aj , Bj

be intuitionistic sets defined on Uj , j = 1, 2, · · · , n.
Let Aj = (δj )Bj , where j = 1, 2, · · · , n. Let
A = A1 × A2 × · · · × An and B = B1 × B2 ×
· · ·×Bn and μA(μ1, μ2, · · · , μn), νA(u1, u2, · · · , un) and
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μB(u1, u2, · · · , un), νB(u1, u2, · · · , un) be their member-
ship and non-membership functions respectively, where

μA(u1, u2, · · · , un) = min(μA1(u1), μA2(u2), · · · , μAn(un)),

νA(u1, u2, · · · , un) = max(νA1(u1), νA2(u2), · · · , νAn(un)),

and

μB(u1, u2, · · · , un) = min(μB1(u1), μB2(u2), · · · , μBn(un)),

νB(u1, u2, · · · , un) = max(νB1(u), νB2(u), · · · , νBn(u)).

Then

A =
(

inf
1≤j≤n

δj

)

B. (29)

Proof This is because

sup
uj ∈Uj

|μA(u1, u2, · · · , un) − μB(u1, u2, · · · , un)|

= sup
uj ∈Uj

∣
∣min(μA1(u1), μA2(u2), · · · , μAn(un))

−min(μB1(u1), μB2(u2), · · · , μBn(un))
∣
∣

≤ sup
uj ∈Uj

sup
1≤j≤n

∣
∣μAj

(uj ) − μBj
(uj )

∣
∣ ,

≤ sup
uj ∈Uj

sup
1≤j≤n

(1 − δj ) = 1 − inf
1≤j≤n

δj .

Now,

sup
uj ∈Uj

|νA(u1, u2, · · · , un) − νB(u1, u2, · · · , un)|

= sup
uj ∈Uj

∣
∣max(νA1(u1), νA2(u2), · · · , νAn(un))

−max(νB1(u1), νB2(u2), · · · , νBn(un))
∣
∣

≤ sup
uj ∈Uj

sup
1≤j≤n

∣
∣νAj

(uj ) − νBj
(uj )

∣
∣ ,

≤ sup
uj ∈Uj

sup
1≤j≤n

(1 − δj ) = 1 − inf
1≤j≤n

δj .

Thus A =
(

inf
1≤j≤n

δj

)

B.

Remark 7 Proposition 19 is the result from the combination of
δ-equalities of intuitionistic fuzzy sets and Cartesian product.

5 An application of δ-equalities for medical
diagnosis

This section presents an application of δ-equalities for
medical diagnosis. Medicine is always one of the areas
which leads research interests. Medical diagnosis is the
process of investigation of diseases from a patient’s symp-
toms [32]. Medical data are often uncertain, ambiguous and
difficult to retrieve. A categorized relationship between a
symptom and a disease is usually depended on uncertain
information which affects the decision making process. The
medical diagnosis has successful practical applications in

several areas such as telemedicine, space medicine and res-
cue services. Thus, medical diagnosis has got full attention
from both the computer science and computer applicable
mathematics research societies. The traditional approach
for medical diagnosis is using fuzzy relation to represent
the relationships between patients-symptoms, symptoms-
diseases and patients-diseases [32]. De et al. [9] extended
the Sanchez’s method with the theory of intuitionistic fuzzy
sets. The extended Sanchez’s approaches for type-2 fuzzy
sets, neutrosophic sets and other ones were introduced in
[1, 21, 29, 66]. The methods listed above have significant
differences in the domain of problems and used datasets.

In medical diagnosis, normal level reference value ranges
for attributes are given by different experts or different refer-
enced ranges provided by a specific laboratory, for instance,
heretofore, normal level reference value range for Alanine
Aminotransferase (ALT) index is less than 40 International
Unit/ Lit (IU/L) (female: 6-34 IU/L, male: 8-40 IU/L). Lee
et al. [22], based on their experiments on population, sug-
gested new normal values of ALT such as 30 IU/L for males
and 19 IU/L for females. The normalAlbumin/Globulin
(A/G) ratio is pointed out in [0.8, 2.0] [28], but it was shown
in [1.2, 1.5] according by another reference [30]. There-
fore, if we use the traditional medical diagnosis method of
Sanchez [32] and De et al. [9] with multiple medical ref-
erences then the initial crisp symptoms of patients such as
ALT, A/G, etc. will give several different (intuitionistic)
fuzzy sets, which result in the problem of choosing inappro-
priate (intuitionistic) fuzzified results to use in the next step.
As such, our idea is to use the concept of δ-equalities to find
groups of (intuitionistic) fuzzified set with certain equality
or similar degrees then combining them. This is exactly the
meaning of δ-equalities which are given in this paper. The
new method involves mainly the basic steps:

1. Determining the relation between patients and symptoms.
2. Formulating the relation between symptoms and diagnoses.
3. Determining diagnoses for all patients on the basis of

composition of relations.

Let us draw those steps in details. Suppose P, S,D are
the set of patients, the set of symptoms, and the set of
diagnoses, respectively. Let 
Q = {Q1, Q2, ...,Qn} ⊂
IFR (P × S).

Step 1: Calculating δij is maximum delta-equalities
degree of Qi, Qj :

Qi = (

δij

)

Qj,
(

i, j = 1, n, i �= j
)

.

δij = min

(

1− sup
(p,s)∈P×S

∣
∣μQi

(p, s)−μQj
(p, s)

∣
∣,

1 − sup
(p,s)∈P×S

∣
∣νQi

(p, s) − νQi
(p, s)

∣
∣

)

,
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Step 2: Finding δ = max{δij : i, j = 1, n}. Suppose exist
k pairs (Qit , Qjt ) ⊂ 
Q, t = 1, k satisfy δit jjt =
δ, then unionizing the set Qit and Qjt . Let Q∗

t be
defined by Q∗

t = Qit ∪S Qjt , with

S ∈ {∪; +;S3;S4;S5;S6} .

Then Q∗
t ∈ IFR(P × S), t = 1, k.

Let 
Q ∩ Q∗δ
t = {Qi ∈ 
Q|Qi = (δ)Q∗

t }.
Then, calculating Qt̂ = ⋃


Q∩Q∗δ
t

Qi

μQt̂
(u) = max


Q∩Q∗δ
t

μQi
(u); νQt̂

(u) = min

Q∩Q∗δ

t

νQi
(u).

Then Qt̂ ∈ IFR(P × S), t = 1, k..
Step 3: We define “intuitionistic medical knowledge” as

a intuitionistic fuzzy relation R between the set
of symptoms S and the set of diagnoses D which
reveals the degree of positive association and
negative association between symptoms and the
diagnosis. Then R ∈ IFR(S × D), clearly, the
composition R ◦ Qt̂ of R and Qt̂ describes the
state of patients in terms of the diagnosis.

Step 4: The composed relation R ◦ Qt̂ between P and D
is identified as following

μR◦Qt̂
(p, d)=sup

s∈S

min(μQt̂
(p, s), μR(s, d))

μR◦Qt̂
(p, d)= inf

s∈S
max(νQt̂

(p, s), νR(s,d)),∀p∈P, d ∈ D.

Then, the correspondence between patient p and
diagnosis d is expressed as a couple containing
μR◦Qt̂

(p, d), νR◦Qt̂
(p, d).

Step 5: For each p, d ∈ P ×D, we calculate SR◦Qt̂
(p, d)

as below:

SR◦Qt̂
(p, d) = μR◦Qt̂

(p, d)−νR◦Qt̂
(p, d)πR◦Qt̂

(p, d),

where πR◦Qt̂
(p, d) = 1 − [μR◦Qt̂

(p, d) +
νR◦Qt̂

(p, d)].
It is easily seen that if μR◦Qt̂

(p, d) +
νR◦Qt̂

(p, d) = 1, then SR◦Qt̂
(p, d) =

μR◦Qt̂
(p, d).

Step 6: If SR◦Qt̂
(p, d) = max

t=1,2,...k
SR◦Qt̂

(p, d) ≥ y∗

where y∗ is a trained value from a fact data
set about disease d, then patient p is said to be
suffered from illness d.

Fig. 1 The proposed model for
medical diagnosis Crisp 

input
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Calculate 
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3

Calculate 
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4
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output
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The proposed model is illustrated in Fig. 1. Now, we
define the following options:

• In Step 2, Q∗
t can be defined by Q∗

t = Qit ∩T Qjt , with

T ∈ {∩; ·; T3; T4; T5; T6} .

• In Step 3, calculating Qt̂ = ⋂

Q̂∩Q∗δ
t

Qi

μQt̂
(u) = min

Q̂∩Q∗δ
t

μQi
(u), νQt̂

(u) = max
Q̂∩Q∗δ

t

νQi
(u).

• In Step 6, if SR◦Qt̂
(p, d) = min

t=1,2,...k
SR◦Qt̂

(p, d) then

the patient p is said to be suffered from illness d.

Now, we present two numerical examples based on
the proposed algorithm to illustrate the application of δ-
equalities to medical diagnosis.

Example 5 Consider the dataset adapted from [31].

• X contains four patients (x1 = Ram, x2 = Mari, x3 =
Sugu, x4 = Somu;).

• Y is the set of five symptoms:

(y1 = T emperature, y2 = Headache,

y3=Stomach pain, y4=Cough,y5=Chest pain;)
• Z includes five diseases:

(z1 = V iral Fever, z2 = Malaria, z3 = Malaria,

z4 = Stomach, z5 = Heart.)

Case 1 We illustrate results of the Sanchez’s approach [32]
for medical diagnosis. There is one initial intuitionistic
fuzzy data set P which describes the relations from patients
to symptoms.

The intuitionistic fuzzy relations (IFRs) from the patients
to the symptoms as well as the symptoms to the diseases
are given in Tables 1 and 2, respectively. The IFR from
the patients to the diseases determined by the fuzzy max-
min composition is drawn as in Table 3, in which the first
values in each pair are larger than 0.5 implying the possi-
ble diseases. In here, note that we take νP = 1 − μP and
νR = 1−μR , so that νR◦P = 1−μR◦P . Thus SR◦P = μR◦P .

Case 2 Now, we illustrate the proposed method. There are
three initial intuitionistic fuzzy data sets P1, P2, P3, which
describe the relationsfrom patients to symptoms (Tables 4,
5 and 6).

• At the step 1, we need to calculate δP1P2 , δP1P3, δP2P3 :

δP1P2 = 0.94, δP1P3 = 0.7, δP2P3 = 0.7

• At the step 2, we see that δP1P2 =
max{δP1P2 , δP1P3 , δP2P3}, then combine P1 and P2

(Table 7).
• At the step 3, we use the set R in the case 1 again.

• At the step 4, we calculate R ◦P ∗ similar with calculat-
ing R ◦ P in the case 1 (Table 8).

• At the step 5, we calculate SR◦P ∗ as in Table 9.
• At the step 6, in Table 9, values are larger than 0.5

implying the possible diseases. It is recognized that the
results in Table 9 are identical to those in Table 3.

Example 6 Let consider four patients p1, p2, p3 and
p4. Their symptoms are temperature, headache, stomach
pain, cough, and chest pain. Then, the set of patients is
P = {p1, p2, p3, p4} and the set of symptoms is S =
{temperature, headache, stomachpain, cough, and chest

pain}. The intuitionistic fuzzy relations Q1, Q2, Q3 ∈
IFR(P ×S) are evaluated by three decision makers groups
and are given as in Tables 10, 11 and 12, respectively.
The data of Q1 is real data, and the data of Q2, Q2 are
hypothetical.

Now, we illustrate the proposed method. First of all, we
calculate the maximum δ-equality degree of Q1 and Q2:

δ12 = min

(

1 − sup
(p,s)∈P×S

∣
∣μQ1(p, s) − μQ2(p, s)

∣
∣ ,

1− sup
(p,s)∈P×S

∣
∣νQ1(p, s)−νQ2(p, s)

∣
∣

)

= 0.95,

The maximum δ-equality degree of Q1 and Q3:

δ13 = min

(

1 − sup
(p,s)∈P×S

∣
∣μQ1(p, s) − μQ3(p, s)

∣
∣ ,

1− sup
(p,s)∈P×S

∣
∣νQ1(p, s)− νQ3(p, s)

∣
∣

)

= 0.2,

The maximum δ-equality degree of Q2 and Q3:

δ23 = min

(

1 − sup
(p,s)∈P×S

∣
∣μQ2(p, s) − μQ3(p, s)

∣
∣ ,

1− sup
(p,s)∈P×S

∣
∣νQ2(p, s) − νQ3(p, s)

∣
∣

)

=0.17,

Because δ12 ≥ δ13 ≥ δ23, consider the set

Q = Q1 ∪ Q2 = {〈

(p, s), μQ1(p, s) ∨ μQ2(p, s),

νQ1(p, s) ∧ μQ2(p, s)
〉 : (p, s) ∈ P × S

}

,

It turns out that Q = (0.95)Q1 (Table 13).
Let the set of diagnoses be D =

{viral f ever, malaria, typhoid, stomach problem}.
The intuitionistic fuzzy relation R ∈ IFR(S × D) is given
as in Table 14. The composed relation R ◦ Q is given as in
Table 15.

From Proposition 18, we have R◦Q = (0.95)R◦Q1. For
each p, d ∈ P ×D, we calculate SR◦Q(p, d) as in Table 16.
If SR◦Q(p, d) ≥ 0.5, then the patient p is said to be suffered
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Table 1 IFR from patients to
symptoms P y1 y2 y3 y4 y5

x1 (0.79,0.21) (0.57,0.43) (0.2,0.8) (0.57,0.43) (0,1)

x2 (0,1) (0.32,0.68) (0.57,0.43) (0,1) (0.02,0.98)

x3 (0.79,0.21) (0.79,0.21) (0,1) (0.13,0.87) (0,1)

x4 (0.57,0.43) (0.46,0.54) (0.18,0.82) (0.68,0.32) (0.18,0.82)

Table 2 IFR from symptoms
to diseases R z1 z2 z3 z4 z5

y1 (0.4,0.6) (0.7,0.3) (0.18,0.82) (0,1) (0.02,0.98)

y2 (0,1) (0,1) (0.13,0.87) (0.8,0.2) (0.2,0.8)

y3 (0.79,0.21) (0.79,0.21) (0,1) (0.13,0.87) (0,1)

y4 (0.31,0.69) (0.7,0.3) (0.08,0.92) (0.13,0.87) (0.2,0.8)

y5 (0,1) (0.02,0.98) (0.1,0.9) (0.13,0.87) (0.79,0.21)

Table 3 IFR from patients to
diseases R ◦ P z1 z2 z3 z4 z5

x1 (0.4,0.6) (0.7,0.3) (0.18,0.82) (0.57,0.43) (0.2,0.8)

x2 (0.57,0.43) (0.57,0.43) (0.13,0.87) (0.32,0.68) (0.2,0.8)

x3 (0.4,0.6) (0.7,0.3) (0.18,0.82) (0.79,0.21) (0.2,0.8)

x4 (0.4,0.6) (0.68,0.32) (0.18,0.82) (0.46,0.54) (0.2,0.8)

Table 4 IFR from patients to
symptoms – P1 P1 y1 y2 y3 y4 y5

x1 (0.79,0.21) (0.57,0.43) (0.2,0.8) (0.57,0.43) (0,1)

x2 (0,1) (0.32,0.68) (0.57,0.43) (0,1) (0.02,0.98)

x3 (0.79,0.21) (0.79,0.21) (0,1) (0.13,0.87) (0,1)

x4 (0.57,0.43) (0.46,0.54) (0.18,0.82) (0.68,0.32) (0.18,0.82)

Table 5 IFR from patients to
symptoms – P2 P2 y1 y2 y3 y4 y5

x1 (0.79,0.21) (0.58,0.4) (0.2,0.78) (0.57,0.42) (0,0.98)

x2 (0,0.97) (0.32,0.66) (0.57,0.43) (0,1) (0.05,0.93)

x3 (0.79,0.21) (0.79,0.2) (0,0.94) (0.13,0.87) (0,0.95)

x4 (0.57,0.42) (0.46,0.54) (0.18,0.8) (0.68,0.32) (0.18,0.82)

Table 6 IFR from patients to
symptoms – P3 P3 y1 y2 y3 y4 y5

x1 (0.66,0.25) (0.57,0.43) (0.23,0.7) (0.57,0.43) (0,0.7)

x2 (0,0.8) (0.32,0.68) (0.57,0.43) (0,0.75) (0.02,0.7)

x3 (0.79,0.21) (0.49,0.21) (0,0.8) (0.13,0.87) (0,0.9)

x4 (0.57,0.43) (0.5,0.32) (0.18,0.52) (0.68,0.32) (0.18,0.82)
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Table 7 IFR from patients to
symptoms – P ∗ = P1 ∪ P2 P ∗ = P1 ∪ P2 y1 y2 y3 y4 y5

x1 (0.79,0.21) (0.58,0.4) (0.2,0.78) (0.57,0.42) (0,0.98)

x2 (0,0.97) (0.32,0.66) (0.57,0.43) (0,1) (0.05,0.93)

x3 (0.79,0.21) (0.79,0.2) (0,0.94) (0.13,0.87) (0,0.95)

x4 (0.57,0.42) (0.46,0.54) (0.18,0.8) (0.68,0.32) (0.18,0.82)

Table 8 IFR from patients to
diseases – R ◦ P ∗ R ◦ P ∗ z1 z2 z3 z4 z5

x1 (0.4,0.6) (0.7,0.3) (0.18,0.82) (0.58,0.4) (0.2,0.8)

x2 (0.57,0.43) (0.57,0.43) (0.13,0.87) (0.32,0.66) (0.2,0.8)

x3 (0.4,0.6) (0.7,0.3) (0.18,0.82) (0.79,0.2) (0.2,0.8)

x4 (0.4,0.6) (0.68,0.32) (0.18,0.82) (0.46,0.54) (0.2,0.8)

Table 9 FR from patients to
diseases – SR◦P ∗ SR◦P ∗ z1 z2 z3 z4 z5

x1 0.4 0.7 0.18 0.572 0.2

x2 0.57 0.57 0.13 0.3068 0.2

x3 0.4 0.7 0.18 0.788 0.2

x4 0.4 0.68 0.18 0.46 0.2

Table 10 Q1 is intuitionistic
fuzzy relation between the set
of patients P and the set of
symptoms S with the data from
1st decision makers group

Q1 Temperature Headache Stomach pain Cough Chest pain

P1 (0.8, 0.1) (0.7,0 .2) (0.1, 0.6) (0.7, 0.1) (0.2, 0.5)

P2 (0.01, 0.7) (0.5, 0.3) (0.65, 0.1) (0.05, 0.7) (0.07, 0.6)

P3 (0.75, 0.05) (0.8, 0.08) (0.15, 0.5) (0.3, 0.6) (0.1, 0.5)

P4 (0.6, 0.1) (0.4, 0.4) (0.2, 0.3) (0.6, 0.15) (0.35, 0.2)

Table 11 Q2 is intuitionistic
fuzzy relation between the set
of patients P and the set of
symptoms S with the data from
2nd decision makers group

Q2 Temperature Headache Stomach pain Cough Chest pain

P1 (0.81, 0.1) (0.7, 0.22) (0.09, 0.6) (0.67, 0.1) (0.25, 0.5)

P2 (0.02, 0.7) (0.51, 0.28) (0.66, 0.13) (0.02, 0.7) (0.08, 0.55)

P3 (0.7, 0.05) (0.8, 0.08) (0.14, 0.5) (0.32, 0.61) (0.06, 0.5)

P4 (0.6, 0.14) (0.44, 0.4) (0.2, 0.3) (0.57, 0.14) (0.35, 0.22)

Table 12 Q3 is intuitionistic
fuzzy relation between the set
of patients P and the set of
symptoms S with the data from
3rd decision makers group

Q3 Temperature Headache Stomach pain Cough Chest pain

P1 (0.12, 0.8) (0.2, 0.5) (0.9, 0.05) (0.2, 0.6) (0.3, 0.6)

P2 (0.7, 0.24) (0.1, 0.25) (0.35, 0.4) (0.85, 0.01) (0.4, 0.4)

P3 (0.25, 0.15) (0.2, 0.3) (0.45, 0.4) (0.7, 0.15) (0.2, 0.4)

P4 (0.4, 0.5) (0.3, 0.6) (0.4, 0.1) (0.2, 0.5) (0.4, 0.5)
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Table 13
Q = Q1 ∪ Q2 ∈ IFR(P × S) Q Temperature Headache Stomach pain Cough Chest pain

P1 (0.81, 0.1) (0.7, 0.2) (0.1, 0.6) (0.7, 0.1) (0.25, 0.5)

P2 (0.02, 0.7) (0.51, 0.28) (0.66, 0.1) (0.05, 0.7) (0.08, 0.55)

P3 (0.75, 0.05) (0.8, 0.08) (0.15, 0.5) (0.32, 0.6) (0.1, 0.5)

P4 (0.6, 0.1) (0.44, 0.4) (0.2, 0.3) (0.6, 0.14) (0.35, 0.2)

Table 14 R is intuitionistic
fuzzy relation between the set
of symptoms S and the set of
diagnoses D

R Fever Malaria Typhoid Stomach Chest problem

Temperature (0.4, 0.05) (0.8, 0.1) (0.3, 0.3) (0.15, 0.6) (0.05, 0.7)

Headache (0.4, 0.3) (0.1, 0.6) (0.75, 0.03) (0.3, 0.05) (0.01, 0.8)

Stomach pain (0.1, 0.6) (0.01, 0.9) (0.1, 0.7) (0.8, 0.01) (0.1, 0.75)

Cough (0.45, 0.1) (0.65, 0.05) (0.2, 0.6) (0.25, 0.5) (0.15, 0.7)

Chest pain (0.05, 0.6) (0.03, 0.8) (0.01, 0.85) (0.1, 0.7) (0.9, 0.05)

Table 15 R ◦ Q is
intuitionistic fuzzy relation
between the set of symptoms P

and the set of diagnoses D

R ◦ Q Fever Malaria Typhoid Stomach Chest problem

p1 (0.45, 0.1) (0.8, 0.1) (0.7, 0.2) (0.3, 0.2) (0.25, 0.5)

p2 (0.4, 0.3) (0.1, 0.6) (0.51, 0.28) (0.66, 0.1) (0.1, 0.55)

p3 (0.4, 0.05) (0.75, 0.1) (0.75, 0.08) (0.3, 0.08) (0.15, 0.5)

p4 (0.45, 0.1) (0.6, 0.1) (0.44, 0.3) (0.3, 0.3) (0.35, 0.2)

Table 16 SR◦Q(p, d) where
red values show the most
suffered diseases of a patient

SR◦Q(p, d) Fever Malaria Typhoid Stomach Chest problem

p1 0.405 0.79 0.68 0.2 0.125

p2 0.31 −0.08 0.4428 0.636 −0.0925

p3 0.3725 0.735 0.7364 0.2504 −0.025

p4 0.405 0.57 0.362 0.18 0.26

Table 17 SR◦Q1 where red
values show the most suffered
diseases of a patient

SR◦Q(p, d) Fever Malaria Typhoid Stomach Chest problem

p1 0.405 0.79 0.68 0.2 0.05

p2 0.31 −0.08 0.44 0.625 −0.08

p3 0.3725 0.735 0.7364 0.2504 −0.025

p4 0.405 0.57 0.31 0.18 0.26

Table 18 The descriptions of
experimental datasets Dataset No. elements No. attributes No. classes

ILPD 583 8 2

LD 345 5 2

PIDD 768 5 2

Diabetes 389 4 2

Heart 270 4 2



δ-equality of intuitionistic fuzzy sets

Fig. 2 MAE of algorithms on ILPD

from illness d. It is obvious that if the doctor agrees, then
p1, p3 and p4 suffer from Malaria, p1 and p3 suffer from
Typhoid whereas p2 faces Stomach problem.

The results of the Sanchez’s approach [32] are expressed
in Table 17 where p1, p3 and p4 suffer fromMalaria, p1 and
p3 suffer from Typhoid whereas p2 faces Stomach problem.

6 Experiments on real-world datasets

6.1 Experimental environments

Fig. 3 MAE of algorithms on LD

Fig. 4 MAE of algorithms on PIDD

Experimental tools We compare the proposed method (N)
against the related diagnosis methods of De et al. [9] (D),
Samuel and Balamurugan [31] (SB), Szmidt and Kacprzyk
[53] (SK), Zhang et al. [71] (Z), Hung and Yang [19] (HY-
2 with the similarity measure), Wang and Xin [63] (WX),
Vlachos and Sergiadis [62] (VS-2 with the divergence mea-
sure), Zhang and Jiang [70] (ZJ), Maheshwari and Srivas-
tava [24] (SA) and Support Vector Machine (SVM) in the
combination of Matlab 2015a programming language and R
programming language. Among all, the SK has 2 versions:
SK-1 and SK-2 corresponding to the distance measures

Fig. 5 MAE of algorithms on Heart



R.T. Ngan et al.

Fig. 6 MAE of algorithms on
Diabetes

published in 2000 and 2004 respectively. Analogously, SA
has 2 versions namely SA-2 and SA-4 with two cases of
parameters: α = 0.1 and α = 0.3. Please refer to the equiv-
alent articles for their definitions and formulae in details.
The source codes and datasets of this section can be found
in the Appendix.

Experimental datasets The benchmark datasets Heart,
ILPD Indian Liver Patient Dataset, PIDD (Pima Indians

Diabetes Data Set), Liver-Disorders (LD) have been taken
from UCI Machine Learning Repository [60] while the
remaining benchmark dataset Diabetes has been taken from
[11]. Table 18 gives an overview of all those datasets.

6.2 Performance comparison

Table 19 presents the average MAE and computational time
(Sec.) of the proposed method with all above introduced

Table 19 Mean Absolute Error (MAE) and Computational time (Sec) (NaN means undetermined)

Dataset MAE

D Z SB SK HY-2 N- WX VS-2 ZJ SA SVM

SK-1 SK-2 proposed SA-2 SA-4 SA-4

method α = 0.1 α = 0.1 α = 0.3

ILPD 0.2924 0.2852 0.2873 0.2914 0.2874 0.285 0.2861 0.2852 0.2869 0.284 0.2872 0.2964 0.2876 0.3114

LD 0.4281 0.4388 0.4281 0.3452 0.58 0.4388 0.3838 0.407 0.5786 0.4275 NaN 0.4223 0.443 0.3258

PIDD 0.3491 0.2999 0.2977 0.3504 0.3488 0.347 0.2544 0.3497 0.3484 0.3487 0.3466 0.3516 0.3489 0.2482

Diabetes 0.128 0.159 0.1274 0.1628 0.1564 0.145 0.0748 0.1588 0.1352 0.1391 0.141 0.139 0.139 0.0868

Heart 0.3445 0.2836 0.3368 0.304 0.321 0.3313 0.3186 0.3258 0.3052 0.312 0.3136 0.3216 0.3459 0.3547

Sec

D Z SB SK HY-2 N- WX VS-2 ZJ SA SVM

SK-1 SK-2 proposed SA-2 SA-4 SA-4

method α = 0.1 α = 0.1 α = 0.3

ILPD 0.67 0.5426 0.6401 0.5976 0.7076 0.5551 0.669 0.7501 0.9401 0.6601 0.8401 1.0801 0.9476 0.11

LD 0.4098 0.3373 0.3848 0.4148 0.4048 0.4198 0.4216 0.4248 0.4498 0.5223 NaN 0.6348 0.6348 0.035

PIDD 0.8709 0.8909 0.7659 0.8034 0.8859 0.8359 0.8754 0.9209 1.1134 1.1584 0.9759 1.3834 1.2784 0.12

Diabetes 0.3924 0.4274 0.4074 0.4499 0.4049 0.4374 0.4846 0.4474 0.5149 0.4874 0.4324 0.6349 0.5724 0.0275

Heart 0.2883 0.3233 0.2683 0.2883 0.3233 0.3433 0.3779 0.3508 0.4008 0.4133 0.3383 0.4483 0.4008 0.0275
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Fig. 7 MAE values of D and N

methods which denoted by D, Z, SB, SK-1, SK-2, HY-
2, WX, VS-2, ZJ, SA-2, SA-4 and SVM on the medical
datasets of ILPD, LD, PIDD, Diabetes and Heart. It is
clearly seen that the MAE of the proposed method is better
than the rest of methods on the Diabetes dataset. Specifi-
cally in Table 19, the average MAE values of D, Z, SB, SK-
1, SK-2, HY-2, the proposed method N, WX, VS-2, ZJ, SA-

Fig. 8 MAE values of Z and N

Fig. 9 MAE values of SB and N

2, SA-4 (α = 0.1), SA-4 (α = 0.3) and SVM are 0.128,
0.159, 0.1274, 0.1628, 0.1564, 0.145, 0.0748, 0.1588,
0.1352, 0.1391, 0.141, 0.139, 0.139 and 0.0868 respectively.

The MAE of the proposed algorithm is clearly better than
SVM for the ILPD dataset. Their average values in Table 19
for the data set ILPD are 0.2924, 0.2852, 0.2873, 0.2914,
0.2874, 0.285, 0.2861, 0.2852, 0.2869, 0.284, 0.2872,

Fig. 10 MAE values of SK-2 and N
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Fig. 11 MAE values of HY-2 and N

0.2964, 0.2876 and 0.3114 respectively. Analogously, the
proposed method has better MAE value over D, Z, SB,
SK-1, SK-2, HY-2, WX, VS-2, ZJ, SA-4 (α = 0.1) and
SA-4 (α = 0.3) which are 0.3838, 0.4281, 0.4388, 0.4281,
0.3452, 0.58, 0.4388, 0.407, 0.5786, 0.4275, 0.4223, 0.443
respectively whereas the SVM has the MAE average value

Fig. 12 MAE values of WX and N

Fig. 13 MAE values of VS-2 and N

is 0.3258 and the SA-2 does not give out any value on the
LD dataset. Similarly, the proposed method is quite advanta-
geous on PIDD. These values in the Table 19 calculated for
PIDD dataset are 0.3491, 0.2999, 0.2977, 0.3504, 0.3488,
0.347, 0.2544, 0.3497, 0.3484, 0.3487, 0.3466, 0.3516,
0.3489 and 0.2482 respectively.

Fig. 14 MAE values of ZJ and N
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Fig. 15 MAE values of SA-4 (α = 0.3) and N

Consider the remaining Heart dataset, MAE of the pro-
posed algorithm is better than those of D, SB, SK-2, HY-2,
WX, SA-4 (α = 0.1), SA-4 (α = 0.3) and SVM but it
not good as that of Z method. It provides a good result
which is approximate to those of SK-1, VS-2, ZJ and
SA-2. The average MAE values computed on the Heart
dataset are 0.3445, 0.2836, 0.3368, 0.304, 0.321, 0.3313,

Fig. 16 MAE values of SVM and N

0.3186, 0.3258, 0.3052, 0.312, 0.3136, 0.3216, 0.3459 and
0.3547 respectively. Overall, the average MAE values of the
proposed algorithm are better than those of the other algo-
rithms. This fact can be observed in the Figs. 2, 3, 4, 5 and 6.
For example in Fig. 6, we can see that the point on the blue
graph of Diabetes has MAE value less than 0.08 and is lower
than other points on the graph correspond with other meth-
ods. In those figures, the best values of SK and SA namely
SK-2 and SA-4 (α = 0.3) are used to compared with those
of the other algorithms. Eventually, the MAE value of pro-
posed method is better than those of other methods on the
Diabetes.

There is no huge difference in the computational time
taken by the proposed method and other algorithms. From
Table 19, it is clear that the computational time of the algo-
rithms D, Z, SB, SK-1, SK-2, HY-2, Proposed method N,
WX, VS-2, ZJ, SA-2, SA-4 (α = 0.1), SA-4 (α = 0.3)
and SVM are 0.67, 0.5426, 0.6401, 0.5976, 0.7076, 0.5551,
0.669, 0.7501, 0.9401, 0.6601, 0.8401, 1.0801, 0.9476 and
0.11 seconds (sec) on the dataset of ILPD. This scenario can
also be seen on the datasets of PIDD, Diabetes and Heart
(Table 19). On LD, except for the method SA-2 which can-
not run, the remaining algorithms have computational time
that belong to the interval from 0.035 to 0.6348 sec, where
the computational time of the proposed method is 0.4216
sec.

In order to see more clearly about the MAE of 10 algo-
rithms, we draw Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and
17. The orange bars show the MAE of the proposed method
while the light green ones demonstrate the MAE of other
algorithms. In Fig. 7, we can see that the MSE values of
D and the proposed method on the datasets of ILPD, LD,
PIDD, Diabetes andHeart. We clearly see that the MAE of
the proposed method on each dataset is better (smaller) than
that of D.

We can see the same things in Figs. 9, 10, 11, 13, 15,
which imply the proposed method is better than SB, SK-2,
HY-2, VS-2 and SA-4 in accuracy.

In Fig. 8, MAE of the proposed method is better than that
of Z on the datasets of LD, PIDD and Diabetes. Although
this is not the same on the datasets of LIPD and Heart,
the difference between MAE values of the proposed method
and Z are less than or equal to 0.035.

Similarly, in Figs. 12, 14 16, MAE value of the proposed
method is better than those of the remaining methods on
most datasets.

In Fig. 17, we present the MAE values of all algorithms.
Once again, it is easy to see that the orange bars are smaller
(or better) than most of the rest of the algorithms for each
dataset.
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Fig. 17 MAE values of all
algorithms

7 Conclusions

This paper concentrated on developing the notions of δ-
equalities for the intuitionistic fuzzy set. Two fuzzy sets
are said to be δ-equal if they equal to a degree of δ. δ-
equalities have been used widely in fuzzy statistics and
fuzzy reasoning such as in the applications of real-time
fuzzy systems and the validation of robustness of fuzzy
reasoning. This research extended the work of Cai [4]
regarding the δ-equalities of fuzzy sets in a new context
of intuitionistic fuzzy sets, which were shown to be bet-
ter of modeling real-life applications than the fuzzy sets,
and examined several characteristics and theorems of δ-
equalities that were not (or partly) discussed in the previous
works. The notions of δ-equalities for intuitionistic fuzzy
relations and intuitionistic fuzzy norms were also proposed
herein. Theoretical investigation of δ-equalities for intu-
itionistic fuzzy sets with set theoretic operations, such as the
union, intersection, complement, product, probabilistic sum,
bold sum, bold intersection, bounded difference, symmetri-
cal difference, and convex linear sum of min and max, was
mentioned. They are significant to understand the behavior
of δ-equalities for intuitionistic fuzzy sets which is helpful
to select appropriate settings for applications.

The last part of this paper applied the δ-equalities to
the application of medical diagnosis, which investigates a
patient’s diseases from his symptoms. Medical data are
often uncertain, ambiguous and difficult to retrieve. A cat-
egorized relationship between a symptom and a disease is
usually dependant on uncertain information which affects
the decision making process. The traditional approach from
Sanchez [32] for medical diagnosis is using fuzzy relation
to represent the relationships between patients-symptoms,
symptoms-diseases and patients-diseases. However, as in
medical diagnosis, normal level reference value ranges for

attributes are given by different experts or different refer-
enced ranges provided by a specific laboratory. Therefore,
initial crisp symptoms of patients will give several differ-
ent (intuitionistic) fuzzy sets, which result in the problem
of choosing inappropriate (intuitionistic) fuzzified results to
use in the next step. As such, our idea is using the concept
of δ-equalities to find groups of (intuitionistic) fuzzified
set with certain equality or similar degrees then combining
them. Two numerical examples on a public dataset from the
paper of Samuel and Balamurugan [31] and a real dataset
were given to illustrate the application of δ-equalities to
medical diagnosis. We ran the proposed algorithm and oth-
ers on five real datasets to compare accuracy degree and
computational time of them. The computing process in the
algorithm is equipped with the propositions and theorems
that have been mentioned lately.

Further works of this research will investigate new
notions of sub δ-equalities such as the weighted δ-equalities.
Specifically, let A and B be two intuitionistic fuzzy sets on
a universe U . With δ-equalities, we have A = (δ)B. But
if U is accompanied with a corresponding set of weights
W = {w1, w2, ..., wn} then we need to define a new
notion called the weighted δ-equalities in order to adapt
with the weights. We also study enhanced methods using the
weighted δ-equalities for accelerating the diagnosis algo-
rithm in this paper both in accuracy and computational
complexity. Lastly, we may use δ-equalities in different
decision making applications that incorporate intuitionistic
fuzzy information in processing knowledge and information
regarding inputs and outputs.
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Appendix

Source code and datasets of this paper can be found at this
link: https://sourceforge.net/projects/ifs-delta-equalities-co
de1/.

References

1. Agarwal M, Hanmandlu M, Biswas KK (2011) Generalized intu-
itionistic fuzzy soft set and its application in practical medical
diagnosis problem. In: Proceeding of the 2011 IEEE international
conference on fuzzy systems (FUZZ 2011), pp 2972–2978

2. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst
20(1):87–96

3. Burillo P, Bustince H (1995) Intuitionistic fuzzy relations (Part I).
Mathware Soft Comput 2:25–38

4. Cai KY (2001) Robustness of fuzzy reasoning and δ -equalities of
fuzzy sets. IEEE Trans Fuzzy Syst 9(5):738–750

5. Chi P, Liu P (2014) An extended TOPSIS method for the multiple
attribute decision making problems based on interval neutrosophic
set. Neutrosophic Sets Syst 01:63–71

6. Cock MD, Cornelis C, Kerre EE (2005) Intuitionistic fuzzy rela-
tional images. Stud Comput Intell 2:129–145

7. Coupland S, John R (2008) New geometric inference techniques
for type-2 fuzzy sets. Int J Approx Reason 49(1):198–211

8. Cuong BC, Son LH, Chau HTM (2010) Some context fuzzy clus-
tering methods for classification problems. In: Proceedings of the
1st international symposium on information and communication
technology (Hanoi, Vietnam, August 27–28, 2010), SoICT ’10.
ACM Press, New York, pp 34–40

9. De SK, Biswas R, Roy AR (2001) An application of intuition-
istic fuzzy sets in medical diagnosis. Fuzzy Sets Syst 117:209–
213

10. De SP, Krishna RP (2004) A new approach to mining fuzzy
databases using nearest neighbor classification by exploiting
attribute hierarchies. Int J Intell Syst 19(12):1277–1290

11. Department of Biostatistics, Vanderbilt University, http://biostat.
mc.vanderbilt.edu/DataSets

12. Deschrijive G, Kerre EE (2007) On the position of intuition-
istic fuzzy set theory in the framework of theories modelling
imprecision. Inf Sci 177(8):1860–1866

13. Deschrijver G, Cornelis C, Kerre EE (2004) On the representation
of intuitionistic fuzzy t-norms and t-Conorms. IEEE Trans Fuzzy
Syst 12(1):45–61

14. Drianko D, Hellendorf H, Reinfrank M (1993) An introduction to
fuzzy control. Springer, Berlin

15. Dubois D, Prade H (1980) Fuzzy sets and systems: theory and
applications. Academic Press, New York

16. Ejegwa PA, Akubo AJ, Joshua OM (2014) Intuitionistic fuzzy
set and its application in career determination via normalized
Euclidean distance method. Eur Sci J 10(1):1857–7431

17. Hong DH, Hwang SY (1994) A note on the value similarity of
fuzzy systems variables. Fuzzy Sets Syst 66(3):383–386

18. Hung KC (2012) Medical pattern recognition: applying an
improved intuitionistic fuzzy cross-entropy approach. Adv Fuzzy
Syst 863549

19. Hung WF, Yang MS (2004) Similarity measures of intuitionis-
tic fuzzy sets based on Hausdorff distance. Pattern Recogn Lett
25:1603–1611

20. Junjun M, Dengbao Y, Cuicui W (2013) A novel cross-entropy
and entropy measures of IFSs and their applications. Knowl-Based
Syst 48:37–45

21. Kumar K (2015) Type-2 fuzzy set theory in medical diagnosis.
Ann Pure Appl Math 9(1):35–44

22. Lee JK et al (2010) Estimation of the healthy upper limits for
serum alanine minotransferase in Asian populations with normal
liver histology. Hepatology 51(5):1577–1583

23. Lin L, Yuan XH, Xia ZQ (2007) Multicriteria fuzzy decision-
making methods based on intuitionistic fuzzy sets. J Comput Syst
Sci 73(1):84–88

24. Maheshwari S, Srivastava A (2016) Study on divergence measures
for intuitonistic fuzzy sets and its application in medical diagnosis.
J Appl Anal Comput 6(3):772–789

25. Mendel JM (2000) Uncertainty, fuzzy logic, and signal processing.
Signal Process 80:913–933

26. Pappis CP (1991) Value approximation of fuzzy systems variables.
Fuzzy Sets Syst 39(1):111–115

27. Phong PH, Son LH (2017) Linguistic vector similarity measures
and applications to linguistic information classification. Int J Intell
Syst 32(1):67–81

28. Quest Diagnostics (2016) A/G RATIO. http://www.questdiagnosti
cs.com/testcenter/BUOrderInfo.action?tc=3293A&labCode=QBA.
Accessed 10 June 2016

29. Raich VV, Tripathi RK, Bawa NPS, Dookhitram K, Dalai SK
(2011) Application of interval valued fuzzy matrices in medical
diagnosis via a new approach. In: Proceeding of the 2011 IEEE
international conference on multimedia technology (ICMT 2011),
pp 3440–3443

30. Reddy S (2016) What does SGPT 132, SGOT 71, A:G ratio 1.09
and IDH 236 indicate?. http://www.healthmagic.gq/stack/28953/
what-does-sgpt-132sgot-71ag-ratio-1-09-and-idh-236-indicate.html
Accessed 10 June 2016

31. Samuel AE, Balamurugan M (2012) Fuzzy max–min composition
technique in medical diagnosis. Appl Math Sci 6(35):1741–1746

32. Sanchez E. (1976) Resolution of composition fuzzy relation equa-
tions. Inform Control 30:38–48

33. Son LH (2014) Enhancing clustering quality of geo-demographic
analysis using context fuzzy clustering type-2 and particle swarm
optimization. Appl Soft Comput 22:566–584

34. Son LH (2014) HU-FCF: a hybrid user-based fuzzy collabora-
tive filtering method in recommender systems. Expert Syst Appl
41(1):6861–6870

35. Son LH (2015) DPFCM: a novel distributed picture fuzzy clustering
method on picture fuzzy sets. Expert Syst Appl 42(1):51–66

36. Son LH (2015) HU-FCF++: a novel hybrid method for the new
user cold-start problem in recommender systems. Eng Appl Artif
Intell 41:207–222

37. Son LH (2015) A novel kernel fuzzy clustering algorithm for geo-
demographic analysis. Inf Sci 317:202–223

38. Son LH (2016) Dealing with the new user cold-start problem in
recommender systems: a comparative review. Inf Syst 58:87–104

39. Son LH (2016) Generalized picture distance measure and appli-
cations to picture fuzzy clustering. Appl Soft Comput 46:284–295

40. Son LH (2017) Measuring analogousness in picture fuzzy sets:
from picture distance measures to picture association measures.
Fuzzy Optim Decis Making doi:10.1007/s10700-016-9249-5

41. Son LH, Cuong BC, Lanzi PL, Thong NT (2012) A novel intu-
itionistic fuzzy clustering method for geo-demographic analysis.
Expert Syst Appl 39(10):9848–9859

42. Son LH, Cuong BC, Long HV (2013) Spatial interaction – mod-
ification model and applications to geo-demographic analysis.
Knowl-Based Syst 49:152–170

43. Son LH, Linh ND, Long HV (2014) A lossless DEM compres-
sion for fast retrieval method using fuzzy clustering and MANFIS
neural network. Eng Appl Artif Intell 29:33–42

44. Son LH, Phong PH (2016) On the performance evaluation of intu-
itionistic vector similarity measures for medical diagnosis. J Intell
Fuzzy Syst 31:1597–1608

https://sourceforge.net/projects/ifs-delta-equalities-code1/
https://sourceforge.net/projects/ifs-delta-equalities-code1/
http://biostat.mc.vanderbilt.edu/DataSets
http://biostat.mc.vanderbilt.edu/DataSets
http://www.questdiagnostics.com/testcenter/BUOrderInfo.action?tc=3293A&labCode=QBA
http://www.questdiagnostics.com/testcenter/BUOrderInfo.action?tc=3293A&labCode=QBA
http://www.healthmagic.gq/stack/28953/what-does-sgpt-132sgot-71ag-ratio-1-09-and-idh-236-indicate.html
http://www.healthmagic.gq/stack/28953/what-does-sgpt-132sgot-71ag-ratio-1-09-and-idh-236-indicate.html
http://dx.doi.org/10.1007/s10700-016-9249-5


R.T. Ngan et al.

45. Son LH, Thong NT (2015) Intuitionistic fuzzy recommender sys-
tems: an effective tool for medical diagnosis. Knowl-Based Syst
74:133–150

46. Son LH, Thong PH (2017) Some novel hybrid forecast methods
based on picture fuzzy clustering for weather nowcasting from
satellite image sequences. Appl Intell 46(1):1–15

47. Son LH, Tuan TM (2016) A cooperative semi-supervised fuzzy
clustering framework for dental X-ray image segmentation. Expert
Syst Appl 46:380–393

48. Son LH, Tuan TM (2017) Dental segmentation from X-ray images
using semi-supervised fuzzy clustering with spatial constraints.
Eng Appl Artif Intell 59:186–195

49. Son LH, Viet PV, Hai PV (2017) Picture inference system: a
new fuzzy inference system on picture fuzzy set. Appl Intell
46(3):652–669

50. Son PV, Hai PV (2016) A novel multiple fuzzy clustering method
based on internal clustering validation measures with gradient
descent. Int J Fuzzy Syst 18(5):894–903

51. Szmidt E, Kacprzyk J (2001) Intuitionistic fuzzy sets in some
medical applications. In: Proceeding of computational intelli-
gence: theory and applications, pp 148–151

52. Szmidt E, Kacprzyk J (2003) An intuitionistic fuzzy set based
approach to intelligent data analysis: an application to medi-
cal diagnosis. In: Proceeding of recent advances in intelligent
paradigms and applications, pp 57–70

53. Szmidt E, Kacprzyk J (2004) A similarity measure for intu-
itionistic fuzzy sets and its application in supporting medical
diagnostic reasoning. In: Proceeding of artificial intelligence and
soft computing (ICAISC 2004), pp 388–393

54. Thanh ND, Ali M, Son LH (2017) A novel clustering algorithm in
a neutrosophic recommender system for medical diagnosis. Cogn
Comput, in press

55. Thong NT, Son LH (2015) HIFCF: an effective hybrid model
between picture fuzzy clustering and intuitionistic fuzzy rec-
ommender systems for medical diagnosis. Expert Syst Appl
42(7):3682–3701

56. Thong PH, Son LH (2016) Picture fuzzy clustering: a new
computational intelligence method. Soft Comput 20(9):3549–
3562

57. Thong PH, Son LH (2016) A novel automatic picture fuzzy clus-
tering method based on particle swarm optimization and picture
composite cardinality. Knowl-Based Syst 109:48–60

58. Thong PH, Son LH (2016) Picture fuzzy clustering for complex
data. Eng Appl Artif Intell 56:121–130

59. Tuan TM, Ngan TT, Son LH (2016) A novel semi-supervised
fuzzy clustering method based on interactive fuzzy satisficing for
dental X-ray image segmentation. Appl Intell 45(2):402–428

60. University of California, UCI Repository of Machine Learning
Databases (2007) http://archive.ics.ics.uci.edu/ml/

61. Virant J (2000) Design considerations of time in fuzzy systems.
Kluwer Academic Publishers, Netherlands

62. Vlachos LK, Sergiadis GD (2007) Intuitionistic fuzzy
information—applications to pattern recognition. Pattern Recogn
Lett 28(2):197–206

63. Wang W, Xin X (2005) Distance measure between intuitionistic
fuzzy sets. Pattern Recogn Lett 26:2063–2069

64. Wei P, Ye J (2010) Improved intuitionistic fuzzy cross-entropy and
its application to pattern recognition. In: International conference
on intelligent systems and knowledge engineering, pp 114–116

65. Wijayanto AW, Purwarianti A, Son LH (2016) Fuzzy geographi-
cally weighted clustering using artificial bee colony: an efficient
geo-demographic analysis algorithm and applications to the analysis
of crime behavior in population. Appl Intell 44(2):377–398

66. Ye J (2015) Improved cosine similarity measures of simpli-
fied neutrosophic sets for medical diagnoses. Artif Intell Med
63(3):171–179

67. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
68. Zadeh LA (1968) Fuzzy algorithms. Inf Control 12(2):94–102
69. Zadeh LA (1975) The concept of a linguistic variable and its

application to approximate reasoning- Part I. Inf Sci 7:199–
249

70. Zhang QS, Jiang SY (2008) A note on information entropy mea-
sures for vague sets and its applications. Inf Sci 178(6):4184–
4191

71. Zhang Z, Yang J, Ye Y, Hu Y, Zhang Q (2012) A type of score
function on intuitionistic fuzzy sets with double parameters and its
application to pattern recognition and medical diagnosis. Procedia
Eng 29:4336–4342

Roan Thi Ngan is a PhD
research scholar in VNU Uni-
versity of Science, Vietnam
National University, Hanoi,
Vietnam. She has completed
her master from Institute
of Mathematics, Vietnam
Academy of Science and
Technology, Vietnam. Ngan
has been a new researcher
in Fuzzy set and logic. She
published 3 research papers
in IEEE Computer Society
Publications and CPS. Cur-
rently, Ngan is pursuing her
doctoral studies in applica-

tions of Fuzzy set and logic to decision making and medical diagnosis
problems.

Mumtaz Ali is a PhD
research scholar in School
of Agricultural Computa-
tional and Environmental
Sciences, University of South-
ern Queensland, Australia.
He has completed his double
masters (MSc and MPhil in
Mathematics) from Quaid-i-
Azam University, Islamabad,
Pakistan. Mumtaz has been
an active researcher in Fuzzy
set and logic, Neutrosophic
Set and Logic and he is one
of the pioneers of the Neu-
trosophic Triplets. Mumtaz is

the author of three books on neutrosophic algebraic structures. He
published more than 30 research papers in prestigious journals. He
also published two chapters in the edited books. He is the associate
Editor-in-chief of Neutrosophic Sets and Systems. Currently, Mumtaz
Ali is pursuing his doctoral studies in drought characteristic and atmo-
spheric simulation models using artificial intelligence. He intends to
apply probabilistic (copula-based) and machine learning modelling;
fuzzy set and logic; neutrosophic set and logic; soft computing; rec-
ommender systems; data mining; clustering and medical diagnosis
problems.

http://archive.ics.ics.uci.edu/ml/


δ-equality of intuitionistic fuzzy sets

Dr. Le Hoang Son obtained
the PhD degree on Mathe-
matics – Informatics at VNU
University of Science, Viet-
nam National University
(VNU). He has been work-
ing as a researcher and now
Vice Director of the Center
for High Performance Com-
puting, VNU University of
Science, Vietnam National
University since 2007. His
major field includes Soft
Computing, Fuzzy Cluster-
ing, Recommender Systems,
Geographic Information Sys-

tems (GIS) and Particle Swarm Optimization. He is a member of
International Association of Computer Science and Information
Technology (IACSIT), a member of Center for Applied Research in
e-Health (eCARE), a member of Vietnam Society for Applications
of Mathematics (Vietsam), Editorial Board of Neutrosophic Sets and
Systems (NSS), Editorial Board of International Journal of Ambient
Computing and Intelligence (IJACI, SCOPUS) and associate editor
of the International Journal of Engineering and Technology (IJET).
Dr. Son served as a reviewer for various international journals and
conferences such as PACIS 2010, ICMET 2011, ICCTD 2011, KSE
2013, BAFI 2014, NICS 2014 & 2015, ACIIDS 2015 & 2016,
ICNSC15, GIS-2015, FAIR 2015, International Journal of Computer
and Electrical Engineering, Imaging Science Journal, International
Journal of Intelligent Systems Technologies and Applications, IEEE
Transactions on Fuzzy Systems, Expert Systems with Applications,
International Journal of Electrical Power and Energy Systems, Neural
Computing and Applications, International Journal of Fuzzy System
Applications, Intelligent Data Analysis, Computer Methods and Pro-
grams in Biomedicine, World Journal of Modeling and Simulation,
Knowledge-Based Systems, Engineering Applications of Artificial
Intelligence. He gave a number of invited talks at many conferences
such as 2015 National Fundamental and Applied IT Research (FAIR
15’), 2015 National conference of Vietnam Society for Applications
of Mathematics (VietSam15’), 2015 Conference on Developing
Applications in Virtual Reality, GIS and Mobile technologies, and
International Conference on Mathematical Education Vietnam 2015
(ICME Vietnam 2015), 2016 3rd National Foundation for Science and
Technology Development Conference on Information and Computer
Science (NICS 16’), and 2016 HUST Conference on Applied Mathe-
matics and Informatics (SAMI 16’). Dr. Son has got 84 publications in
prestigious journals and conferences including 38 SCI / SCIE papers
and undertaken more than 20 major joint international and national
research projects. He has published 2 books on mobile and GIS
applications. So far, he has awarded “2014 VNU Research Award for
Young Scientists”, “2015 VNU Annual Research Award” and “2015
Vietnamese Mathematical Award”.


	-equality of intuitionistic fuzzy sets
	Abstract
	Introduction
	Preliminary
	-equalities of intuitionistic fuzzy sets
	-equalities for intuitionistic fuzzy relations
	An application of -equalities for medical diagnosis
	Experiments on real-world datasets
	Experimental environments
	Experimental tools
	Experimental datasets


	Performance comparison

	Conclusions
	Compliance with Ethical Standards
	Disclosure of potential conflicts of interest
	Appendix 1 
	References


