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Observations of the D/H ratio in Methane in the atmosphere of
Saturn’s moon, Titan - where did the Saturnian system form?
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Summary: The details of the Solar system’s formation are still heavily debated. Questions
remain about the formation locations of the giant planets, and the degree to which volatile
material was mixed throughout the proto-planetary system.One diagnostic which offers great
promise in helping to unravel the history of planet formation is the study of the level of
deuteration in various Solar system bodies. For example, the D/H ratio of methane in the
atmosphere of Titan can be used as a diagnostic of the initialconditions of the solar nebula
within the region of giant planet formation, and can help us to determine where Titan (and, by
extension, the Saturnian system) accreted its volatile material. The level of Titanian deuteration
also has implications for both the sources and long term evolution of Titan’s atmospheric
composition. We present the results of observations taken in the 1.58µm window using the
NIFS spectrometer on the Gemini telescope, and model our data using the VSTAR line–by–
line transfer model, which yields a D/H ratio for Titan’s atmosphere of (143 ± 16) × 10−6

[1]. We are currently in the process of modeling the Gemini high resolution GNIRS spectra
using new sets of line parameters derived for methane in the region between 1.2-1.7µm [2].
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Introduction

Over the years, our understanding of the formation of our Solar system has evolved
dramatically. For a long time, it was believed that our planetary system was formed by a
chance encounter between the Sun and another star, which passed sufficiently close to the
Sun to draw a lengthy tongue of material from it which then coalesced to form the planets
(e.g. [3, 4]). In recent decades, it has become widely accepted that our planetary system
instead formed from a dynamically cold disk1 of dust and gas around the proto-Sun. By the
early 1990s, it was thought that the process of planetary formation was essentially a leisurely,
gentle process that occurred at a fixed location within the proto-planetary disk (e.g. [5]).

It was soon realised that the planet formation process must be somewhat more compli-
cated, involving proto-planets and planets migrating overmany astronomical units from their
formation location to their current locations. This sea-change in our understanding of planet

1Objects moving on dynamically cold orbits have very low orbital eccentricity and inclination. Therefore a dynamicallycold
disk is rather flattened and consists of the protoplanetary material in orbits of very low eccentricity. Objects in dynamically
cold orbits typically only experience collisions at very low relative velocities. Such collisions tend to be constructive rather
than destructive.
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formation came about, in part, as a result of the discovery ofthe first planets found around
Sun-like stars (e.g. [6]), which were found moving on totally unexpected orbits (Jupiter-size
planets orbiting far closer to their host stars than Mercuryto our Sun). Within our own Solar
system, planet formation models featuring migration were found to be necessary in order to
explain various aspects of the distribution of small bodiesin the outer Solar system including
the orbits of Pluto and the Plutinos (e.g. [7, 8]), the proposed Late Heavy Bombardment of
the inner Solar system (e.g. [9]) and the populations of Jovian and Neptunian Trojans (e.g.
[10, 11]).

Although it is now widely accepted that the giant planets migrated significant distances
before reaching their current locations, the nature, range, and pace of that migration are still
heavily debated. Some models suggest a relatively sedate migration for the giant planets (e.g.
[12]), whilst others suggest highly chaotic migration featuring significant mutual scattering
between the giant planets (e.g. [13]). Whilst it is likely that dynamical studies of the small
body populations in the outer Solar system may help to resolve the unanswered question
of the nature of planetary migration (e.g. [14, 15]), the observation of isotopic abundances
in the ices and atmospheres of objects in the outer Solar system will provide an important
independent test of their formation locations (e.g. [16, 17]). In particular, the study of the
deuterium-to-hydrogen (D/H) ratio in the icy and gaseous material in the outer Solar system
may well provide a signpost to the formation location of the bodies in question.

In this work, we present the first results of an observationalprogram targeted at determining
the D/H ratio within methane in the atmosphere of Saturn’s largest satellite, Titan. In the next
section, we describe in more detail the current state of playin our understanding of the
way in which the D/H ratio varied through the proto-planetary disk, before briefly discussing
the origin of methane in Titan’s atmosphere in the followingsection. Next we detail our
observations of Titan and describe our modelling of the Titanian spectrum. Finally, we present
our conclusions and discuss future work.

Deuterium and the formation of the Solar system

Protium (1H) and deuterium (2H or D) are the only two stable isotopes of hydrogen.
The largest mass difference between two isotopes of any element leads to rather distinct
properties of hydrogen isotopologues (for example HDO and H2O). Differences in boiling
point, vapour pressure and reactivity of compounds with different isotopes will result in their
having unique natural abundances. Once formed, a process ofisotopic fractionation (resulting
from the different physical properties of the two isotopes)can lead to the physical separation
of isotopologues through evaporation, condensation, melting or diffusion. The D/H ratio has
therefore long been considered to be a useful diagnostic of the geological history of rock
formations, bodies of fluid and organic materials.

Deuterium formed during the Big Bang is subsequently destroyed in stars, and therefore its
abundance in the interstellar medium decreases with time. Currently, the D/H ratio in the local
interstellar medium is of the order of15×10−6 [18], while the initial value, immediately after
the big bang, may well have been as high as30×10−6 [19]. The D/H ratio in the protostellar
solar nebula has been estimated using measurements of D/H inthe atmospheres of Jupiter
and Saturn, because HD does not fractionate during the transition from the molecular to
metallic form. Observations from the Galileo probe mass spectrometer provide a D/H value



of 26× 10−6 [20].

Elsewhere in the Solar system, however, the situation is farfrom this clear cut. The D/H
values measured for a variety of Solar system objects vary significantly. The D/H of Vienna
Standard Mean Ocean Water (V-SMOW) is156×10−6, whilst comets 1P/Halley [21], C/1996
B2 Hyakutake [22], C/1995 O1 Hale-Bopp [23] and 8P/Tuttle [24] are enriched in deuterium
by a factor of between 1.5 and three times that value.

The enrichment of deuterium in water over that observed in H2 is a direct result of
equilibrium chemistry in the outer regions of the proto-planetary disk. In that disk, the isotopic
fractionation of deuterium in water and deuterated hydrogen was governed by the reversible
reaction shown in the following equation [16]:

H2O +HD ⇐⇒ HDO +H2 (1)

At low temperatures, the sequestration of deuterium in water is favoured over its emplacement
in deuterated hydrogen, and so there is a gradual enrichmentof deuterium in water as
a function of time. At greater heliocentric distances, it has been shown that the relative
enrichment of deuterium in water is significantly greater than at small heliocentric distances,
resulting in the model distribution of the variation in the deuteration of water compared to
that in deuterated hydrogen shown in Figure 1.

Fig. 1: The variation in the ratio of the deuteration in waterto that in deuterated hydrogen,
as a function of heliocentric distance, in the proto-planetary disk, taken from [16]. This

illustrates how the deuteration of the volatiles incorporated into objects that formed beyond
the ice-line will have been a strong function of their formation location.

By contrast, the deuteration levels measured in meteoritesare far closer to that measured
in the Earth’s oceans (see e.g. Fig. 1 of [25]). That similarity has been used to suggest that



the bulk of the Earth’s water was delivered by asteroidal, rather than cometary bodies2 - with
[26] suggesting that, if the carbonaceous chondrites were the main source of oceanic water,
another suggested source (the comets) could have contributed only a small fraction (less than
10%). Following this logic, it has often been assumed that the initial volatile budget of all the
terrestrial planets would have been identical to that of theEarth, although [27] showed that
the terrestrial planets would have experienced significantly different contributions of volatiles
from cometary and asteroidal bodies.

A number of studies (e.g. [25, 28, 16]) have suggested that the D/H ratio within ices
accreted in the outer Solar system should vary significantlyas a function of heliocentric
distance within the Solar nebula. The lowest D/H ratios would be found in objects which
accreted near the ice-line, the innermost location where water could condense as a solid, and
the largest D/H ratios would be found in volatiles that condensed beyond the current orbit of
Neptune. Figure 1 shows the predicted enrichment in D/H for water over that in deuterated
hydrogen as a function of heliocentric distance in the outerSolar system. It is clear that objects
that formed at different heliocentric distances would haveincorporated volatiles containing
vastly different amounts of deuterium. The less stirred thedisk, the more pronounced the
variation in D/H as a function of heliocentric distance would be between one body and the next
(since increased stirring would doubtless bring icy bodieswith high deuteration to the inner
reaches of the nebula). It is highly likely that the bulk of volatile material accreted by a given
object would be sourced from its immediate surroundings, however, and so measurements of
the deuteration of objects in the outer Solar system give us atool by which their formation
location can be constrained.

Origin of CH4 in the atmosphere of Titan

In 1981, Prinn and Fegley [30] assumed that, in the primordial solar nebula, carbon
and nitrogen were entirely sequestered in CO and N2. During the early stages of Saturn’s
formation, a dense and warm sub-nebula developed, which enabled the conversion of CO to
CH4 and N2 into NH3. This methane and ammonia was accreted to form icy planetisimals,
the building blocks of Titan. By contrast, Mousis et al. [31]argued that such conversion of
CO and N2 into methane and ammonia is unlikely to occur in conditions that would have
been prevalent in the Saturn sub-nebula, and that thereforeCH4 would have to be present in
the primary solar nebula in order to explains its accretion onto Titan.

According to the first model, methane becomes enriched in deuterium gradually when
CH3D in vapour phase exchanges deuterium with hydrogen. After the temperature drops below
200K, this process stops, but isotopic fractionation can continue through solar photolysis and
outgassing processes.

The model put forward by Mousis et al. instead assumed that vaporisation of CH4 hap-
pened during the infall of icy planetisimals onto the protoplanetary disk, which allowed the
exchange of deuterium with hydrogen from the solar nebula. Methane was later released
from the subsurface layers to the atmosphere of Titan. The D/H ratio predicted from this
model is in good agreement with measurements without requiring additional fractionation

2The origin of the Earth’s water has long been debated, with most modern theories favouring an exogeneous source of
our planet’s oceans. We direct the interested reader to section 4, ”Planetary Features” of [29], and references therein, for a
detailed discussion of the origin of Earth’s water.



to have occurred. Since methane undergoes solar photolysisby breaking into hydrocarbons,
cryovolcanism was proposed as its replenishment mechanism.

More recently Atreya et al. [32] have suggested that so-called “serpentinization” reactions
(i.e. hydrothermal reactions between silicates and water)in the interior of Titan could generate
CH4. However, Mousis et al. [33] point out that this is unlikely because it would imply a
relatively low value for the D/H of the water involved (similar to the V-SMOW value). They
argue that water ice delivered to Titan should have a higher D/H, similar to that measured in
comets, and in the Enceladus plume [34] and that a primordialorigin for Titan’s methane is
more likely.

D/H ratio measurements in Titan’s atmosphere

Two methods were used to determine the D/H ratio in Titan’s atmosphere. In-situ measure-
ments were taken by the Cassini-Huygens probe [35], and usedthe abundance of molecular
and deuterated hydrogen measured by the gas chromatograph mass spectrometer carried on-
board, yielding a D/H ratio of (135± 30)× 10−6 for the satellite’s atmosphere.

Measurements of the D/H ratio can also be obtained using remote sensing observations
of the spectrum of Titan from the Cassini spacecraft and ground-based telescopes. These
observations are analysed using radiative transfer models, such as the VSTAR model described
in [36]. Along with molecular nitrogen, which is the most abundant gas in Titans atmosphere,
methane is a major component, comprising a few percent of theatmosphere, as measured
by mole fraction. The spectrum of methane has four vibrational modes forming overlapping
absorption bands in the infrared region, which become increasingly complex towards higher
energies. Measurements of Titan’s D/H ratio from observations in the thermal infrared with
the Cassini CIRS instrument give a value of (159± 33)× 10−6 [37]

New, improved laboratory measurements of methane lines in the near infrared at temper-
atures relevant to cold regions of the Solar system are now becoming available for use in
radiative transfer models [2]. These line lists can be used to model spectra of Titan observed
with near infrared spectrometers on ground-based telescopes. The model shown in Figure 2
yields a D/H ratio of (143 ± 16) × 10−6 [1] for the atmosphere of Titan. De Bergh et al.
[38] used a different set of data from KPNO/FTS with the improved list of methane lines
from [39], and obtained a rather different result (113± 25)× 10−6. It is becoming clear that
a number of different datasets have to be analysed and modelled to resolve the differences
between estimates obtained from different methods.

Modelling of the 1.58 µm window of Titan’s atmosphere

We obtained spectra of Titan in the J, H and K bands (1.1 to 2.4µm) with the Near-Infrared
Integral Field Spectrometer (NIFS) on the Gemini North 8m telescope. The NIFS spectrum in
the 1.53 to 1.59µm region and its VSTAR model are reproduced from [1] in Figure2, where
data and model are shown in the top panel. In the second panel from the top, the residuals
are plotted between the data and the model, which includes only CH4 features. In the panel
below, the absorption from the CH3D are added, while in the bottom panel the addition of
CO 3-0 lines based on a mixing ratio of 50 ppmv completes the removal of unaccounted



residuals from this CO band. The details of the modelling techniques are described in [40]
and the parameters of the final model are presented in Table 2 of [1].

Fig. 2: NIFS spectrum in H-band region of the CH3D absorptions compared with the
VSTAR model (top panel). The residuals in panels below are described in more detail in the

text and in [1].

As discussed in the previous section, the accuracy of the D/Hmeasurements obtained
from the near IR ground-based observations with NIFS is significantly higher than that of
the in-situ Huygens probe measurements, or of the Cassini spacecraft results. An important
advantage of ground-based observing is the ability to obtain spectra at higher resolution than
that of space instruments. We are therefore pursuing a program of observation of Titan and
the methane-rich giant planets in the Solar system with evenhigher resolution than the R∼
5000 of the NIFS observations. The aim is to use the high-resolution spectra in conjunction
with the latest methane spectral line data to measure D/H forall these objects as accurately
as is possible.

In June 2011 we observed Titan with the Gemini Near Infra-RedSpectrometer (GNIRS)
on the Gemini North 8m telescope, which allowed spectroscopy with the increased resolving



power of R∼18000. The data were reduced by using the Gemini IRAF GNIRS package. We
removed the solar and telluric features resulting form the Earth’s atmosphere by dividing
the extracted Titan spectra by the spectrum of a G-type standard star, which was observed
immediately after or before the target object. We used the same model of Titan’s atmosphere
adopted for the low resolution NIFS spectrum, with adjustments in albedo and atmospheric
opacity parameters, which are subject to seasonal changes.The D/H ratio was fixed at the
level derived in [1]. The observed GNIRS spectrum is shown inFigures 3 and 4 in black with
the VSTAR model overplotted in red. The region corresponding to that shown in Figure 2,
which contains the absorption due to the 3ν2 band of CH3D, is visible in Figure 4. Although
there is a close agreement between our data and model, the match of the features present in
both spectra can be improved, as suggested by new modelling of this region undertaken by
Campargue et al. [2]. We are currently exploring the sensitivity of this result to refinements in
additional parameters, such as changes in methane mixing ratio in Titan’s lower atmosphere.

Fig. 3: GNIRS spectrum of Titan reflectance (I/F) plotted in black with the VSTAR model
overlaid in red.

Discussion and conclusions

In this work, we detail the progress of our investigations into the D/H ratio contained within
objects in the outer regions of the Solar system. Here, we have concentrated on the deuteration



of methane in the atmosphere of Saturn’s largest satellite,Titan. Two different models exist
that attempt to explain the origin of methane in the primordial Titan. Both models feature the
progressive enrichment of deuterium in methane in the Solarnebula - and therefore predict
that the level of deuteration in Titan’s atmosphere will depend on the heliocentric distance at
which the planetesimals incorporated into Titan formed, along with any subsequent processing
that they experienced in the circum-Saturnian disk and further processing over the course of
Titan’s life.

Both models for the origin of Titan’s methane argue that the ongoing enrichment of
deuterium in methane would be far slower once the local temperature fell below 200K,
suggesting that the bulk of processing experienced by the methane likely happened in the
proto-planetary disk, prior to Titan’s formation. As such,the Titanian D/H ratio is almost
certainly strongly diagnostic of its true formation location, and therefore a strong indication
of the formation location of Saturn itself. That, in turn, will provide an important datum for
studies that are attempting to dynamically reconstruct themigration of the giant planets by
considering their influence on the various small body reservoirs observed in the outer Solar
system (e.g. [11, 15]). If Saturn formed at its current location of 9.5 AU from the Sun, and
Titan accreted out of the icy planetesimals around this area, the expected deuterium enrichment

Fig. 4: GNIRS spectrum of Titan (black) coinciding with the region of lower resolution
NIFS spectrum from Figure 2. VSTAR model is overlaid in red.



factor in Titanf would be of the order of 5 times the initial proto-solar value(see figure 1).
If the value of26 × 10−6 obtained for Jupiter [20] is representative of the protosolar value
we predict∼ 130× 10−6 for an object formed at this location. The value (143± 16)× 10−6

obtained from the NIFS data [1] is consistent with this scenario. However, more accurate
measurements would help to further constrain the formationlocation and mechanism.

We are currently in the process of analysing data obtained using higher resolution GNIRS
for the four giant planets (Jupiter, Saturn, Uranus and Neptune) in the H and K bands. We
intend to apply a similar modelling technique as presented in this work to derive accurate
D/H values for each of those planets in turn. We will also use our GNIRS observations for the
K-band 2µm regions to measure the D/H ratio from the CH3D absorption due to theν5+3ν6
and2ν3 + 2ν6 bands, which were detected in Titan’s NIFS spectrum (as presented in [40]).
However the detailed modelling of this region is dependent on availability of intensities in
these bands, which still await laboratory measurement.

It seems likely that the D/H ratio in the atmospheres of Jupiter and Saturn will be strongly
influenced by their accretion of hydrogen and deuterated hydrogen directly from the proto-
planetary nebula, and therefore they might be expected to display values similar to the Solar
value (since only a small fraction of their hydrogen will have been accreted in the form
of solid volatile material such as water and methane). By contrast, the hydrogen/deuterium
budget of Uranus and Neptune was most likely primarily accreted in the form of solids - such
as water, methane and ammonia. The deuteration of these planets, then, will likely strongly
reflect the accretion location of their volatile budgets - and therefore, the location at which
those planets accreted the bulk of their mass. The situationis perhaps even more clear cut for
the regular satellites of the giant planets (such as Titan),whose volatile budget will have been
accreted entirely in the form of solid planetesimals. However, it is possible that the volatiles
accreted to these bodies underwent further processing in circum-planetary disks around their
host planet prior to accreting to form the satellites we observe today.

Our future studies of deuteration in the outer Solar system will help to answer a variety
of outstanding questions on the formation and evolution of our Solar system, and, taken in
concert with independent dynamical tests of planetary migration, should allow us to finally
determine the true architecture of our Solar systemprior to the migration of its giant planets.
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