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ABSTRACT

We present the discovery of the Kepler-19 planetary system, which we first identified from a 9.3 day periodic
transit signal in the Kepler photometry. From high-resolution spectroscopy of the star, we find a stellar effective
temperature Teff = 5541 ± 60 K, a metallicity [Fe/H] = −0.13 ± 0.06, and a surface gravity log(g) = 4.59 ± 0.10.
We combine the estimate of Teff and [Fe/H] with an estimate of the stellar density derived from the photometric
light curve to deduce a stellar mass of M� = 0.936 ± 0.040 M� and a stellar radius of R� = 0.850 ± 0.018 R�
(these errors do not include uncertainties in the stellar models). We rule out the possibility that the transits result
from an astrophysical false positive by first identifying the subset of stellar blends that reproduce the precise
shape of the light curve. Using the additional constraints from the measured color of the system, the absence of
a secondary source in the high-resolution spectrum, and the absence of a secondary source in the adaptive optics
imaging, we conclude that the planetary scenario is more than three orders of magnitude more likely than a blend.
The blend scenario is independently disfavored by the achromaticity of the transit: we measure a transit depth
with Spitzer at 4.5 μm of 547+113

−110 ppm, consistent with the depth measured in the Kepler optical bandpass of
567 ± 6 ppm (corrected for stellar limb darkening). We determine a physical radius of the planet Kepler-19b of
Rp = 2.209 ± 0.048 R⊕; the uncertainty is dominated by uncertainty in the stellar parameters. From radial velocity
observations of the star, we find an upper limit on the planet mass of 20.3 M⊕, corresponding to a maximum density
of 10.4 g cm−3. We report a significant sinusoidal deviation of the transit times from a predicted linear ephemeris,
which we conclude is due to an additional perturbing body in the system. We cannot uniquely determine the orbital
parameters of the perturber, as various dynamical mechanisms match the amplitude, period, and shape of the transit
timing signal and satisfy the host star’s radial velocity limits. However, the perturber in these mechanisms has a
period �160 days and mass �6 MJup, confirming its planetary nature as Kepler-19c. We place limits on the presence
of transits of Kepler-19c in the available Kepler data.

Key words: eclipses – planetary systems – stars: individual (Kepler-19, KOI-84, KIC 2571238)

Online-only material: color figures

1. INTRODUCTION

With the recent discoveries of the first transiting exoplanets
intermediate in size between Earth and Neptune, namely,
CoRoT-7b (Léger et al. 2009), GJ 1214b (Charbonneau et al.
2009), Kepler-9d (Torres et al. 2011), Kepler-10bc (Batalha et al.
2011; Fressin et al. 2011), Kepler-11bcdf (Lissauer et al. 2011),
and 55 Cancri b (Winn et al. 2011), astronomers have begun
in earnest to probe this radius regime of exoplanets, for which
no solar system analog exists. Borucki et al. (2011) present a
catalog of 1235 transiting planetary candidates, of which nearly
300 have a radius estimate in the range 1.25 R⊕ < Rp < 2.0 R⊕.

While most of these candidates have not yet been confirmed
as authentic planets, Morton & Johnson (2011) have shown
that the rate of false positives is expected to be low for the
Kepler-identified sample. The composition of such planets may
be widely variable, as exemplified by the case of GJ 1214b
(Charbonneau et al. 2009), for which the measured radius and
mass were consistent with both a hydrogen envelope or a pure
CO2 or H2O atmosphere (Miller-Ricci & Fortney 2010). It was
only with follow-up studies of the atmosphere in transmission
that it became possible to distinguish among the various possi-
bilities for the composition of GJ 1214b (Bean et al. 2010; Croll
et al. 2011; Désert et al. 2011).
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The limiting precision of the current state-of-the-art radial
velocity observations (m s−1) presents a challenge for the dy-
namical confirmation of these small planets. In the case of the
1.42 R⊕ transiting planet Kepler-10b, Batalha et al. (2011) gath-
ered 40 high-resolution spectra at the Keck telescope (Vogt et al.
1994) to determine a mass of 4.56+1.17

−1.29 M⊕. In the absence of
radial velocity confirmation, however, it is still possible to make
a statistical argument for the planetary nature of the candidate, if
the combined likelihood of all false-positive scenarios (namely,
blends of stars containing an eclipsing member) is sufficiently
smaller than the planet scenario. This process of “validation” for
Kepler-identified planetary candidates has already been applied
to three planets in the 1.5–3 R⊕ radius range: Kepler-9d (Torres
et al. 2011), Kepler-11f (Lissauer et al. 2011), and Kepler-10c
(Fressin et al. 2011).

Transiting planets are also of interest as they present an
opportunity to identify yet more planets in the system by the
method of transit timing variations (TTVs). Since this method
was proposed (Holman & Murray 2005; Agol et al. 2005),
the search for planets by TTVs has been a major activity in
exoplanet research. Steffen & Agol (2005) applied a lack of
significant TTV variations in the TrES-1 system to deduce
constraints on the existence of additional, non-transiting planets.
Subsequent works, such as Miller-Ricci et al. (2008) for HD
189733, using observations gathered with the Microvariability
and Oscillations of Stars (MOST), Bean (2009) for CoRoT-1,
using the CoRoT satellite, Gibson et al. (2009) for TrES-3,
using observations gathered at the Liverpool Telescope, and
Ballard et al. (2010b) for GJ 436, using EPOXI observations,
have also used transit times to rule out companions, specifically
companions in resonances, for which the TTV method is
particularly sensitive to low-mass planets. The Kepler team
has presented two cases of TTVs in exoplanetary systems:
Kepler-9 (Holman et al. 2010) and Kepler-11 (Lissauer et al.
2011). In both of these cases, the additional planet (or planets)
responsible for the transit timing signal also transit, which
enabled mutual constraints on the masses of the planets as
predicted by Holman & Murray (2005). Over the past year, the
Kepler team has also presented instances of single-transiting
candidate systems showing TTVs, but has not confirmed the
planetary nature of the candidates or perturbers (Ford et al.
2011). Meanwhile, using ground-based observations, several
groups have described their transit times as being inconsistent
with a linear ephemeris, though two such claims have been
revisited by groups who could not confirm the result. In the
case of HAT-P-13, while Pál et al. (2011) and Nascimbeni
et al. (2011) found evidence for a companion from the transit
times of HAT-P-13b, Fulton et al. (2011) demonstrated that
the times were consistent with a linear ephemeris (with the
exception of a single transit). In the case of OGLE-111b, Dı́az
et al. (2008) claimed that the transit times were inconsistent
with a linear ephemeris, but an analysis by Adams et al.
(2010) with additional transit observations found no evidence
for TTVs or duration variations and pointed to systematic errors
in previous photometry. Maciejewski et al. (2010) and Fukui
et al. (2011) presented evidence for TTVs in the WASP-3 and
WASP-5 systems, respectively, but cautioned that additional
transits are necessary to confirm or refute the signal (Fukui
et al. 2011 expressed caution about unknown systematic effects).
Maciejewski et al. (2011) presented evidence for TTVs of
WASP-10b, and they reported a two-planet orbital solution that
fit the TTVs and radial velocities better than alternative orbital
models they found, which was not achieved in prior work.

In this paper, we present the discovery of two planets orbiting
Kepler-19. The star, which has right ascension and declination
19h21m40.99s and +37d51m06.5s, Kepler magnitude Kp =
11.90, and Kepler Input Catalog number 2571238, was identified
to host a planetary candidate in the catalog of 1235 Kepler-
identified candidates published by Borucki et al. (2011). In that
work, the star was identified by the Kepler Object of Interest
(KOI) designation KOI-84. The first planet, identified by its
transits, has a period of 9.3 days and a radius of 2.2 R⊕, as we
discuss below. We validate the planetary nature of the transit
signal by a blend analysis. The second planet, Kepler-19c,
was identified by TTVs. We see no evidence for transits of
Kepler-19c in the available Kepler data. This detection differs
from the ones using ground-based data, summarized in the
previous paragraph, in several ways. In the case of Kepler-19,
the transiting object has a radius of only 2.2 R⊕, whereas other
claims are for perturbations to the transit times of hot Jupiters.
Additionally, as we show below, we have well sampled the TTV
signal, since we have measured the transit times of Kepler-19b
at a cadence 30 times shorter than the TTV period. Finally,
the TTV signal reported here is a much higher signal-to-noise
detection. In Section 2, we present the Kepler time series from
which we detected the system. In Section 3, we present our
characterization of the Kepler-19 system from the photometry.
And in Section 4, we summarize our follow-up observations of
the star. In Section 5, we present the validation of Kepler-19b as
a planet. In Section 6, we discuss our constraints on the nature
of the perturbing planet Kepler-19c from TTVs, as well as our
inferred constraints on the composition of the transiting planet
Kepler-19b.

2. KEPLER OBSERVATIONS

The Kepler spacecraft, launched on 2009 March 7, will pho-
tometrically monitor 170,000 stars for 3.5 years for evidence of
transiting planets. Van Cleve & Caldwell (2009) and Argabright
et al. (2008) give an overview of the Kepler instrument, and
Caldwell et al. (2010) and Jenkins et al. (2010b) provide a
summary of its performance since launch. The Kepler observa-
tions of Kepler-19 that we present in this work were gathered
from 2009 May 5 to 2011 March 5. This range spans Kepler
“Quarters” 0–8; Kepler operations are divided into four quarters
each year. At the end of each quarter, Kepler rotates the space-
craft by 90◦ to maintain illumination of the solar panels (though
the Quarter 0 pre-science commissioning data were gathered
in the same configuration as Quarter 1). For Quarters 3–8, the
observations of Kepler-19 were gathered continuously with an
exposure time of 58.8 s, corresponding to the “short-cadence”
mode of the instrument, described by Jenkins et al. (2010b) and
Gilliland et al. (2010), while data from Quarters 0, 1, and 2
were gathered in the long-cadence mode (characterized by an
exposure time of 29.5 minutes). The data contain gaps of approx-
imately three days between quarters for scheduled downlinks.
We used the raw light curves generated by the Kepler aperture
photometry (PA) pipeline, described in Twicken et al. (2010), to
which we add two additional steps. First, we remove the effects
of baseline drift by individually normalizing each transit. We fit
a line with time to the flux immediately before and after transit
(specifically, from 9 hr to 20 minutes before first contact, equal to
2.5 transit durations, and an equivalent time after fourth con-
tact). We divide this line from the observations spanning five
transit durations and centered on the predicted transit time. For
the observations gathered outside of transit, we apply a median
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Figure 1. Kepler-19 relative photometry from Quarters 0–8, as a function of barycentric Julian Day. Data from Quarters 0, 1, and 2 were gathered in the long-cadence
observing mode, while data from Quarters 3–8 were gathered in the short-cadence mode. Top panel: the raw flux depicted in red (with a bin size of one/three days).
We have multiplied the short-cadence observations by a factor of 30 to account for the exposure time ratio between modes, so that all observations appear on the same
scale. The gaps between quarters are depicted by dashed lines. To remove the flux offsets between quarterly rolls, we compare the mean brightness during the first
two hours of each quarter to the mean of the final two hours of the previous quarter, and divide this ratio value from the flux over the entire quarter. This corrected
flux is shown in black. Bottom panel: the detrended Kepler light curve, after applying a median filter with width equal to one day and normalizing individual transits
as described above. This light curve is depicted with a bin size of 1 hr, so that individual transit events are apparent. Gaps of longer than 1 hr in the observations are
associated with instances of correlated noise in the corrected light curve.

filter, with width equal to one day, in order to remove baseline
drift over timescales of days. We observed slight flux offsets be-
tween observations that occurred after gaps of larger than 1 hr
(either for data download, quarterly rolls, or safe modes). The
Kepler time series of Kepler-19 are shown in Figure 1.

3. ANALYSIS

3.1. Derivation of Planetary Parameters from the
Kepler Light Curve

The traditional procedure for fitting the phased transit light
curve relies on the assumption of a linear ephemeris. In this
case, that assumption does not hold: the transit times deviate
from a linear ephemeris in a nearly sinusoidal manner, with a
period of about 316 days and an amplitude of about 5 minutes
(as compared to a transit duration of 3.5 hr). We incorporated
the transit timing deviations into the light curve parameter fit in
an iterative sense, similar to the procedure described by Lissauer
et al. (2011) for the transit times of the Kepler-11 planets: we
first estimate the light curve parameters with an assumption of
a linear ephemeris. We then fit for the epoch of each individual
transit using these parameters in a manner that we describe
below (with the exception of the epoch, which we allow to
float for each transit). Finally, we shift the transits by their
measured timing deviation, refold the light curve, and repeat the
fit for the parameters. We repeat this process until all parameters
converged, and found that it converged after only two iterations.
We note that we employed only the subset of short-cadence

observations for fitting the light curve parameters themselves.
The addition of the long-cadence observations from Quarters
0–2 to the analysis would have contributed only a very modest
improvement to our knowledge of the parameters.

We estimated the uncertainty in the parameters using the
Markov chain Monte Carlo (MCMC) method as follows, using
a Metropolis–Hastings algorithm with Gibbs sampling Tegmark
et al. (2004). We employ model light curves generated with the
routines in Mandel & Agol (2002), which depend upon the
period P, the epoch Tc, the planet-to-star radius ratio Rp/R�,
the ratio of the semi-major axis to the stellar radius a/R�,
the inclination of the orbit i, and two quadratic limb-darkening
coefficients (LDCs) u1 and u2. We assume an eccentricity of zero
for the orbit, which we discuss in further detail in Section 3.2.
We choose randomly one parameter, perturb it, and evaluate
the χ2 of the solution. If the χ2 is lower, we accept the new
parameter value. If the χ2 is higher, we evaluate the probability
of accepting the jump as p = e−Δχ2/2. We adjust the width of
the distribution from which we randomly draw the jump sizes
in each parameter until 20%–25% of the jumps are executed
in each of the parameters. We created five chains, each of
length 106 points, where each of the chains is begun from a
different set of starting parameters (each parameter is assigned
a starting position that is +3σ or −3σ from the best-fit values).
We discard the first 20% of the jumps from each chain to remove
the transient dependence of the chain on the starting parameters.

After the first iteration of the MCMC procedure, we locate
the best solution in the χ2 sense, and use these parameters to fit
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the individual times of transit for observations gathered in both
short- and long-cadence observing modes. We fix all parameters
with the exception of the center of transit time, which we allow
to vary over a range of 30 minutes for each transit, centered on
the predicted transit time from a linear ephemeris, in intervals
of 6 s. In this case, we account for the finite integration time by
taking a numerical average of an oversampled model (evaluated
at 6 s intervals) over a period corresponding to the exposure time
(58.8 s for short-cadence observations, and 29.5 minutes for
long-cadence observations). We determine the center of transit
time from the epoch associated with the minimum χ2 value, and
the error from the range over which Δχ2 < 1 when compared
to the minimum value. In practice, this results in asymmetric
error bars for many of the individual transits. We also conduct
an analysis to determine the contribution of quarter-by-quarter
correlated noise to the transit time measurements, whereby we
inject transits with the same light curve parameters as we derive
for Kepler-19b into the Kepler light curve, and then fit for the
transit times in an identical fashion to the authentic transits.
Based upon a typical deviation of these times from the injected
time (as compared to their error bars), we inflate the error bars
for the short-cadence observations by factors of 1.32, 1.15, 1.45,
1.40, 1.18, and 1.20 for Quarters 3–8, respectively. These values
are consistent with the larger scatter of the transit times in the
latter quarters, as discussed in further detail in Section 6.1. The
transits gathered in long cadence from Quarters 0–2 show errors
that are consistent with Gaussian noise, and so we do not apply
a scaling factor to these error bars. After two iterations of the
steps described above, we found that the measured individuals
transit times varied by less than 10 s between the two iterations.
We fixed the average period to the one determined by the final
fit to the transit times for the final MCMC analysis.

In Figure 2, we show the MCMC correlations between all
free parameters in the model fit, as well as the histograms
corresponding to each parameter. In Figure 3, we show the
Kepler transit light curve for Kepler-19b (which is phased to the
best period after shifting the transit times by the values given
in Table 2), with the best-fit transit light curve overplotted.
We report the best-fit parameters and uncertainties in Table 1.
The range of acceptable solutions for each of the light curve
parameters (Rp/R�, a/R�, and i) is determined as follows.
We report the “best” solution from the set of parameters that
minimize the χ2. The error bars are then given by the highest
and lowest values that are within the 68% of points closest in χ2

to the best value. We additionally calculate the transit duration,
impact parameter, and ingress duration, using the formulae given
in Seager & Mallén-Ornelas (2003) and Winn (2010) to create
the distribution in those quantities from the parameters in the
MCMC chains. In some cases, the error bar is asymmetric (for
a/R� and i, which we expect from their asymmetrical MCMC
distributions). We report the transit times, deviation from a linear
ephemeris, and errors in Table 2. Figure 4 shows the individual
timing deviations from the best linear ephemeris. In Figure 5, we
show a binned subset of “late” and “early” transits, comprised of
five transits each (corresponding to numbers 26–30 and numbers
39–43 listed in Table 2), over which we plot a model generated
with a linear ephemeris. The deviation of the transit times from
the predicted Tc of five minutes, which is equal to approximately
one ingress time, is apparent.

We also performed the MCMC analysis with the two
quadratic LDCs, u1 and u2, fixed to theoretical values. We
used the values for the effective stellar temperature Teff , metal-
licity [Fe/H], and surface gravity log(g) derived from our

Table 1
Star and Planet Parameters for Kepler-19

Parameter Value

Kepler-19 (star)

Right ascension 19h21m40.s99
Declination +37d51m06.s5
[Fe/H] −0.13 ± 0.06
log(g) (cgs) 4.59 ± 0.10
Teff (K) 5541 ± 60
v sin i (km s−1) <2
M� (M�) 0.936 ± 0.040
R� (R�) 0.850 ± 0.018
Age (Gyr) 1.9 ± 1.7

Kepler-19b

Period (days) 9.2869944 ± 0.0000088a

Tc (BJD−2450000) 4959.70597 ± 0.00036
Rp/R� 0.02379 ± 0.00012
a/R� 21.59+0.15

−0.37
i (deg) 89.94+0.06

−0.44
u1 0.466 ± 0.061
u2 0.155 ± 0.097
Impact parameter, b 0.02+0.16

−0.02
Transit duration, τ (minutes) 201.91 ± 0.47
Ingress duration, τing (minutes) 4.70+0.18

−0.57
Rp (R⊕) 2.209 ± 0.048
Mp (M⊕) <20.3b

Kepler-19c

Period (days) <160c

Mp (MJupiter) <6.0c

Notes.
a The period and Tc values for Kepler-19b are determined from a linear fit to
the transit times.
b The upper limit on the mass of Kepler-19b is determined from the radial
velocity analysis in Section 4.2.
c The upper limit on the mass and period of Kepler-19c is described in the text
of Section 6.1.2.

Spectroscopy Made Easy (SME) analysis of the Keck High
Resolution Echelle Spectrometer (HIRES) spectra (see
Section 4.2): Teff = 5541 ± 60 K, [Fe/H] = −0.13 ± 0.06 dex,
and log(g) of 4.59 ± 0.1 dex. In this case, the closest stellar
model from the tables of theoretical LDCs generated for the
Kepler bandpass by Prsa (2010) corresponded to a model with
Teff = 5500 K, log(g) = 4.5, and [Fe/H] = 0.0: these coefficients
are u1 = 0.5 and u2 = 0.18. Our results for the planetary parame-
ters were consistent with the values we obtained while allowing
the LDCs to float, but the error bars were slightly smaller with
fixed LDCs. In particular, the LDC derived from the light curve
lie within 1σ of the theoretical values for u1 and u2, and the
largest deviation in the derived parameters is 1.4σ for Rp/R�.
The difference between the best χ2 values (between fixing the
LDCs or allowing them to float) is approximately equal to five,
which is roughly consistent with the addition of two degrees of
freedom.

3.2. Physical Parameters

We based our procedure for constraining the mass, radius,
and age of the host star on the method described by Torres et al.
(2008). Using the metallicity determined from SME (described
in Section 4.2), we created a set of stellar evolution models
from the Yonsei–Yale (Y2) isochrone series by Yi et al. (2001),
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Figure 2. MCMC probability distributions for light curve parameters of Kepler-19b. The dark gray area encloses 68% of the values in the chain, while the light gray
area encloses 95% of the values. We assign the range of values corresponding to 1σ confidence from the area enclosing 68% of the values nearest to the parameters
associated with the minimum χ2 (as described in the text).

with corrections from Demarque et al. (2004). We employed
the interpolation software that accompanied that work, which
accepts as inputs the age of the star, the iron abundance, and
the abundance of α-elements relative to solar (for which we
assume the solar value), and outputs a grid of stellar isochrones
corresponding to a range of masses. We evaluated a set of
isochrones over an age range of 0.1–14 Gyr (at intervals of
0.1 Gyr) and in [Fe/H] in 60 equally spaced increments from
−3σ to +3σ above and below the best-fit value of [Fe/H] =
−0.13 ± 0.06. We then performed a spline interpolation of
each output table at a resolution of 0.005 M� in effective
temperature Teff , the log of the surface gravity log(g), and
the stellar luminosity L�. We evaluate the physical radius
corresponding to each stellar model via log(g) and the mass of
the star (g = GM�/R

2
� ), though it is also possible to convert to

physical radius using the model stellar luminosity and effective
temperature (assuming L� = 4πR�σT 4); in practice these
conversions give identical results.

Rearranging Kepler’s version of Newton’s third law in the
manner employed by Seager & Mallén-Ornelas (2003), Sozzetti
et al. (2007), and Torres et al. (2008), we convert the period
(derived from photometry), and the radius and mass of the host
star (from isochrones) to a ratio of the semi-major axis to the

Figure 3. Kepler transit light curve for the short-cadence observations of Kepler-
19, centered on time of transit, with transit timing variations removed, and binned
by a factor of 40 (bin size of 4 minutes). Overplotted in red is the best transit
model light curve, with parameters given in Table 1. The bottom panel shows
the residuals of the light curve, after the model is subtracted.

(A color version of this figure is available in the online journal.)
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Figure 4. Kepler transit times for Kepler-19b from Quarters 0–8, as compared
to the best linear ephemeris model. The linear ephemeris we use to generate
these O − C values is given in Table 1, and the individual transit times are
given in Table 2. The demarcation between long-cadence and short-cadence
observations is shown with a dotted line.

radius of the host star, a/R�:

a

R�

=
(

G

4π2

)1/3
P 2/3

R�

(M� + Mp)1/3, (1)

where we assume that Mp is negligible when compared to the
mass of the host star, and that the orbit is circular. Using the
MCMC sequence of a/R� and generating a series of Gaussian
random realizations of [Fe/H] and Teff using the values and error
bars derived from spectroscopy, we locate the best isochrone fit
at each realization using the χ2 goodness of fit,

χ2 =
(

Δa/R�

σa/R�

)2

+

(
ΔTeff

σTeff

)2

+

(
Δ[Fe/H]

σ[Fe/H]

)2

. (2)

Using the output of the MCMC chain of a/R� ensures that
correlations between parameters, which are preserved in the
chain, are properly incorporated into our estimate of the stellar
parameters.

We then assign a weight to the likelihood of each stellar
model in the chain by applying a prior for the initial mass
function (IMF) that assumes a Salpeter index (Salpeter 1955).
The number of stars of each mass and age, per 1000 stars, is
generated by the interpolation software provided by Yi et al.
(2001) for several IMF assumptions, including the Salpeter
IMF. We designate the weight assigned to each stellar model
in the chain by normalizing to the highest IMF value within
the sample: in practice, the weights vary from 0.2 to 1 (from
the least to most likely). We then incorporate this likelihood
by discarding members of the chain according to their weight,
where the weight is equal to the likelihood of remaining in the
chain. About 50% of the original chain remains intact after this
stage. The value for each stellar parameter is then assigned from
the median of this weighted distribution, with the formal error
bars assigned from the nearest 68% of values above and below
the median. We find M� = 0.936 ± 0.040 M�, R� = 0.850 ±
0.018 R�, and an age = 1.9 ± 1.7 Gyr. These uncertainties
exclude possible systematic uncertainties in the stellar models.
Using the modified MCMC chain in both stellar radius and
Rp/R� to determine the physical radius of the planet, we find
Rp = 2.209 ± 0.048 R⊕. The IMF prior changes the final answer
by less than 1σ for all physical parameters, and by 0.1σ in the
case of the planetary radius.

We note that we also recorded the log(g) of the best stellar
model for each realization of Teff , [Fe/H], and a/R�, as

described above. From this analysis, we find a log(g) of
4.54 ± 0.02, which is consistent with the value inferred from
spectroscopy of 4.59 ± 0.10. We conclude that the assumption
of zero orbital eccentricity for the transiting planet is consistent
with the value of log(g) measured spectroscopically. However,
using the analytic formulae presented in Carter et al. (2008), the
derived log(g) would vary by only 0.04 dex if the eccentricity
were as high as 0.15 (which Moorhead et al. 2011 found was
typical for the sample of Kepler Objects of Interest), which is
well below our measured uncertainty on log(g).

4. FOLLOW-UP OBSERVATIONS

4.1. Reconnaissance Spectroscopy

We gathered reconnaissance spectra of Kepler-19 on UT
2009 August 5 (orbital phase 0.596), 2009 August 29 (phase
0.161), and 2010 October 1 (phase 0.017) with the Tull coude
spectrograph of the McDonald Observatory 2.7 m telescope.
We used these high-resolution (R = 60,000) spectra to verify
the Kepler Input Catalog stellar classification and to search for
evidence of any secondary stellar spectrum or binary orbital
motion. We cross-correlated the spectra against a library of
synthetic stellar spectra as described by Batalha et al. (2011).
The spectra did not show any evidence of a secondary spectrum,
and the absolute radial velocities, which cover both orbital
quadratures, agree at the 0.75 km s−1 level. These spectra gave
the best match to the synthetic templates with Teff = 5750 K,
log(g) = 4.5, and v sin i = 2 km s−1, for an assumed solar
metallicity. The height of the cross-correlation peaks was 0.98
for all of the spectra, indicating an excellent fit to the stellar
template spectra.

4.2. High-resolution Spectroscopy

Between 2009 October 29 and 2011 June 10 we gathered eight
high-resolution spectra of Kepler-19 with the Keck HIRES spec-
trometer (Vogt et al. 1994). With these spectra, we conducted
an analysis to determine the stellar parameters. We compared a
high-resolution template spectrum to stellar models, generated
with the spectral synthesis package SME (Valenti & Piskunov
1996; Valenti & Fischer 2005). We determine the effective tem-
perature Teff of the host star of 5541 ± 60 K, a metallicity
[Fe/H] of −0.13 ± 0.06 dex, a log(g) of 4.59 ± 0.1 dex, and
a v sin i < 2 km s−1. We comment briefly here on the stellar
activity. We find a value of the ratio of emission from the Ca ii
H and K lines to the total bolometric emission of log(RHK) =
−4.95 ± 0.05. The RHK value is derived from a Mt. Wilson
style S-value of 0.174 ± 0.007 (Isaacson & Fischer 2010). The
log(RHK) value is low for main-sequence stars of this temper-
ature and is consistent with the slow stellar rotation we infer
from the measured v sin i of <2 km s−1. If we assume rigid
body rotation of the star and a stellar spin axis aligned with the
orbital spin axis of the planet, we find a lower limit on the stellar
rotation period of 22 days. The rotation period derived from the
RHK value is 32 days (Noyes et al. 1984) which, along with the
lack of emission in the core of the Ca ii H and K lines, leads us
to conclude that the star is relatively inactive.

We further used the spectra to derive estimates of the
stellar radial velocity. The spectra were gathered with the same
configuration of HIRES, described in Marcy et al. (2008), which
was demonstrated to yield typical precisions of 1.0–1.5 m s−1

on nearby F, G, and K stars. This method relies on the use of
an iodine cell placed in front of the beam, which superimposes
the iodine spectrum on the stellar spectrum with an identical
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Table 2
Transit Times for Kepler-19b From Q0–Q8

Transit Number Transit Time Predicted Time O−C −1σ +1σ

(BJD−2450000) (from linear ephemeris) (minutes) (minutes) (minutes)

1 4959.70744 4959.70605 2.0 2.6 2.7
2 4968.98895 4968.99305 −5.9 3.4 5.6
3 4978.27949 4978.28004 −0.8 3.6 3.2
4 4987.56280 4987.56704 −6.1 3.3 3.2
5 4996.85396 4996.85403 −0.10 3.8 3.5
6 5006.13936 5006.14102 −2.4 3.4 4.2
8 5024.71126 5024.71501 −5.4 3.2 3.3
9 5033.99971 5034.00201 −3.3 4.0 3.9

10 5043.28879 5043.28900 −0.30 3.2 3.5
11 5052.57509 5052.57599 −1.3 3.9 4.0
12 5061.85993 5061.86299 −4.4 3.2 3.3
13 5071.14832 5071.14998 −2.4 3.5 3.4
14 5080.43524 5080.43698 −2.5 3.3 4.5
15 5089.72744 5089.72397 5.0 3.2 2.9
16 5099.00860 5099.01096 −3.4 2.2 1.7
17 5108.29463 5108.29796 −4.8 1.7 1.5
18 5117.58342 5117.58495 −2.2 2.0 1.7
19 5126.87077 5126.87195 −1.7 2.8 2.0
20 5136.15957 5136.15894 0.9 4.1 1.5
21 5145.44635 5145.44593 0.6 1.8 2.0
23 5164.02277 5164.01992 4.1 2.0 0.9
24 5173.30976 5173.30692 4.1 1.5 1.3
26 5201.17269 5201.16790 6.9 1.5 1.3
27 5210.45913 5210.45489 6.1 3.9 3.1
28 5219.74591 5219.74189 5.8 1.4 1.4
29 5229.03319 5229.02888 6.2 1.6 2.3
30 5238.31921 5238.31587 4.8 1.3 1.3
31 5247.60551 5247.60287 3.8 1.4 1.4
32 5256.89243 5256.88986 3.7 1.5 1.8
33 5266.18033 5266.17686 5.0 1.5 2.0
34 5284.75126 5284.75084 0.6 2.6 1.6
36 5294.03582 5294.03784 −2.9 1.0 1.9
37 5303.32205 5303.32483 −4.0 1.7 2.2
38 5312.61016 5312.61183 −2.4 1.6 1.7
39 5321.89569 5321.89882 −4.5 2.0 1.3
40 5331.18179 5331.18581 −5.8 1.5 1.3
41 5340.46857 5340.47281 −6.1 2.6 1.7
42 5349.75577 5349.75980 −5.8 8.7 1.6
43 5359.04291 5359.04680 −5.6 1.6 1.7
44 5368.33171 5368.33379 −3.0 1.5 2.3
45 5377.61939 5377.62078 −2.0 1.8 1.5
46 5386.90368 5386.90778 −5.9 2.0 1.8
47 5396.19179 5396.19477 −4.3 2.4 1.7
48 5405.47968 5405.48177 −3.0 2.4 1.5
49 5414.76688 5414.76876 −2.7 2.2 1.5
50 5424.05381 5424.05575 −2.8 3.2 2.4
51 5433.34275 5433.34275 0.0 1.8 2.1
52 5442.62821 5442.62974 −2.2 3.2 3.2
53 5451.91715 5451.91674 0.6 2.0 1.4
54 5461.20241 5461.20373 −1.9 1.7 3.8
55 5470.49253 5470.49072 2.6 1.8 1.9
56 5479.77723 5479.77772 −0.7 1.3 1.4
57 5489.06589 5489.06471 1.7 2.4 3.1
58 5498.35615 5498.35171 6.4 1.8 2.1
59 5507.64127 5507.63870 3.7 1.3 1.2
60 5516.92944 5516.92569 5.4 1.5 1.8
61 5526.21866 5526.21269 8.6 2.1 1.8
62 5535.49975 5535.49968 0.1 1.4 1.7
63 5544.78855 5544.78668 2.7 1.3 1.2
64 5572.64863 5572.64766 1.4 1.7 1.3
67 5581.93437 5581.93465 −0.4 1.4 1.8
68 5591.22095 5591.22165 −1.0 1.2 1.2
69 5600.50788 5600.50864 −1.1 1.3 1.4
70 5609.79355 5609.79563 −3.0 1.3 1.6
71 5619.07832 5619.08263 −6.2 1.4 1.7
72 5628.36705 5628.36962 −3.7 1.2 1.2

Notes. Transits with numbers < 16 were gathered at long cadence (with an exposure time of 29.5 minutes), while transits with
numbers �16 were gathered at short cadence (with an exposure time of 58.8 s).
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Figure 5. Binned subset of five “late” transits of Kepler-19b (in red, comprised of individual transit numbers 26–30 listed in Table 2) and five “early” transits (in blue,
comprised of transit numbers 39–43), with the best linear transit model overplotted. On the left, we show the binned transits centered on the time of ingress, and on
the right, centered on the time of egress.

Table 3
Relative Radial Velocities for Kepler-19

HJD−2450000 RV Uncertainty
(m s−1) (m s−1)

5134.805 0.9 2.1
5320.113 0.4 1.7
5402.956 5.9 1.5
5407.827 −6.5 1.4
5412.981 −0.2 1.6
5435.879 5.5 1.3
5723.074 2.0 1.5
5723.950 4.0 1.5

Notes. Uncertainties do not include stellar jitter, which
is likely to be near 4 m s−1.

instrumental profile. For each 100 pixel section of the spectrum,
the iodine and stellar spectral lines are fit simultaneously. For the
set of these observations, this treatment yields a typical internal
error estimate on individual radial velocities of 1.5 m s−1. We
note also the use of the “C2 decker” entrance aperture for all of
these observations; this technique is described in greater detail in
Batalha et al. (2011), and enables sky subtraction (as compared
to the “B5 decker,” for which sky subtraction is not possible).
We list the measured radial velocities, with associated error bars
(excluding stellar jitter), in Table 3. We gathered 12 additional
observations prior to the ones listed in Table 3 but these were
observed with the B5 configuration, and had a much higher
scatter (15 m s−1 as opposed to 4 m s−1). For this reason, we
excluded them from the analysis.

We determine the upper mass limit on Kepler-19b from the
radial velocities as follows. We employ the Bayesian MCMC
technique described in Gregory (2007) to fit a radial velocity
model to the observations. The free parameters in the model
are the semi-amplitude velocity K of the star, the zero-point
velocity γ , the eccentricity e of the planetary orbit, the argument
of perihelion ω, and a stellar jitter term. The orbital period and
transit epoch are also free parameters, however the precision
of the Gaussian priors we place on them from the light curve
analysis (see Table 1) effectively fixes their values. Additionally,

Figure 6. Measured radial velocities of Kepler-19, as a function of phase
(assuming the orbital period and epoch of Kepler-19b, as stated in Table 1).
We have depicted two radial velocity (RV) models with zero eccentricity, the
first (dashed) corresponding to a planetary mass at the 3σ upper limit of 15.2 M⊕,
and the second (solid) corresponding to the most likely amplitude of 0.5 m s−1

(or 1.6 M⊕). The error bar depicted includes the effects of stellar jitter, which
we conclude are near 4 m s−1.

(A color version of this figure is available in the online journal.)

we fix the inclination of the orbit to the value measured from
the light curve of 89.◦94. We first fit a model, assuming a
circular orbit. In this case, we infer a stellar jitter contribution
of 4.1 ± 1.7 m s−1, and 1, 2 and 3σ upper limits on the semi-
amplitude of 1.4, 3.3, and 4.9 m s−1, respectively (these values
are derived from integrating over the posterior distribution of
semi-amplitude until 68%, 95%, and 99.73% of the area is
enclosed). Applying the semi-amplitude toward a mass upper
limit, we determine a 3σ upper limit on the mass of <15.2
M⊕, if the orbit is circular (these upper limits are 4.3 and 10.2
M⊕ at 1 and 2σ confidence). The most likely fit (depicted
as the solid line in Figure 6) has an amplitude of 0.5 m s−1

(corresponding to a mass of 1.6 M⊕), but this value is well
below our detectability threshold. For comparison, we also show
a representative circular orbit at the 3σ upper limit for semi-
amplitude (dashed line in Figure 6).

We also address the possibility of a non-zero eccentricity. If
the orbit were significantly eccentric, then the transit duration
of Kepler-19b would deviate from the predicted duration for
the edge-on circular orbit scenario, unless the argument of
perihelion conspired to mimic the circular transit duration. As
eccentricity increases, there is an increasingly narrow range of
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Figure 7. J-band adaptive optics image of the neighborhood of Kepler-19, within 10 arcsec (left) and 1 arcsec (right).

(A color version of this figure is available in the online journal.)

ω that matches the transit duration of a circular orbit. As we
demonstrate in Section 3, the assumption of a circular orbit is
consistent with the well-constrained low impact parameter (high
inclination) measured from the Kepler light curve, as illustrated
by the short ingress and egress times. In addition the log(g)
inferred from the light curve analysis assuming zero eccentricity
agrees with the independent spectroscopically determined value.
We note that the planet is too small to constrain the eccentricity
from secondary eclipse observations; we discuss this possibility
further in Section 6.3. Therefore, we elected to impose a prior on
e and ω from our knowledge of the transit duration, as follows.
The ratio τ of the transit duration for an eccentric orbit to the
transit duration for a circular orbit can be approximated by
the following expression of the eccentricity and argument of
perihelion (Burke 2008):

τ = (1 − e2)1/2/(1 + e cos(ω − π/2)). (3)

For each element of the MCMC chain, for which we now vary
e and ω, we evaluate the transit duration ratio τ . We then assign
a flat prior on τ , which is equal to one for 0.7 < τ < 1.3
(that is, the transit duration is within 30% of circular) and
zero otherwise. Applying this transit duration prior during the
radial velocity parameter estimates, we find a negligibly smaller
estimate for the stellar jitter than the circular orbit case and semi-
amplitude upper limits (again, with 1, 2, and 3σ confidence,
respectively) of 2.0, 9.2, and 23.5 m s−1. These semi-amplitudes
are associated with mass upper limits of 5.5, 20.3, and 50.3 M⊕,
with the same stated confidences. Given the radius value for the
planet determined from the Kepler photometry and the 2σ upper
mass limit of 20.3 M⊕, we find an upper limit on the density
of Kepler-19b of 10.4 g cm−3. We comment further on the
possible composition of the planet, given these upper limits, in
Section 6.4.

4.3. Adaptive Optics Imaging

We gathered adaptive optics images in J band of Kepler-19 on
UT 2009 September 24, using the PHARO near-infrared camera
(Hayward et al. 2001) on the Hale 200 inch telescope on Mt.
Palomar, CA. Troy et al. (2000) give a complete description
of the Palomar adaptive optics system. We employed a dither
pattern for these observations similar to the technique described

Figure 8. Sensitivity limits to additional point sources in the neighborhood
of Kepler-19b as a function of radial distance from the primary target. The
filled circles represent the J-band limits and each point represents a step in
FWHM away from the primary target centroid peak. The dashed line underneath
represents the J-band limits converted to Kepler magnitude limits if a star were
to have a nominal Kp–J color, as described in the text.

in Batalha et al. (2011), although we used an exposure time of
4.25 s. In Figure 7, we show the local neighborhood of Kepler-19
within 10 arcsec.

We assess our sensitivity to additional sources using a similar
procedure to that described by Batalha et al. (2011). We inject
fake sources near the target star at random position angles,
using steps in magnitude of 0.5 mag and varying the distance
from the target star in increments of 1.0 FWHM of the point-
spread function (PSF). We then attempt to identify the injected
sources with the DAOPhot routine (Stetson 1987) and also by
eye, and set our sensitivity limit, as a function of distance,
at the magnitude where we are able to recover the injected
sources. The limit in Δm as a function of distance from the target
star is shown in Figure 8. We then convert the Δm sensitivity
limit in J band to a limit in Kepler magnitudes, by assuming
a nominal Kepler magnitude–J color (using the value derived
from a magnitude-limited sample of Kp–J = 1.28 ± 0.52 mag).
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Figure 9. Top panel: R band speckle sensitivity curve of Kepler-19. The magnitude difference between the target star and local extrema in the background are denoted
by squares (local maxima) and points (local minima). The solid line denotes a flux that is 5σ brighter than the mean background brightness (where σ is the standard
deviation of the extrema in the background), where we could confidently detect an additional source. No companions are detected within 1.8 arcsec of the target star to
a depth of 4 mag. Bottom panel: the V-band speckle sensitivity curve of Kepler-19. No companions are detected within 1.8 arcsec of the target star to a depth of 2 mag.

We do not detect any additional sources within our sensitivity
limits in the neighborhood of Kepler-19.

4.4. Speckle Imaging

We gathered speckle images of Kepler-19 using filters in
both R and V band on UT 2010 June 18, using the Differential
Speckle Survey Instrument located at the Wisconsin Indiana
Yale NOAO (WIYN) telescope (DSSI; Horch et al. 2009). A
detailed discussion of the recent upgrades to DSSI is presented
in Horch et al. (2010), and a summary of the speckle imaging
survey of Kepler candidates, and those reduction procedures,
is given by Howell et al. (2011). We assess our sensitivity to
the presence of additional stars near the Kepler target star as
a function of angular distance. For concentric rings of varying
radius, centered on the target star, we determine the magnitude
difference between the target star itself and the local extrema of
the sky background. Figure 9 shows the results of this procedure
in both R and V band. We find that we would have detected a
companion at a distance of 0.′′2 with a difference in magnitude
smaller than Δm = 3.48 in R band, and a companion at a distance
of 0.′′25 with Δm <1.65 in V band. Here again, as in the adaptive
optics images, we detect no additional sources near to the Kepler
target star.

5. PLANETARY VALIDATION OF KEPLER-19b

5.1. Photocenter Tests

We use two methods to search for false positives due
to background eclipsing binaries, based on examination of
the pixels in the aperture of Kepler-19: direct measurement
of the source location via difference images, and inference
of the source location from photocenter motion associated with
the transits. We employ two methods because of their different
vulnerabilities to systematic bias; when the methods agree, we
have increased confidence in their result.

Difference image analysis (Torres et al. 2011) takes the
difference between average in-transit pixel images and average
out-of-transit images. A fit of the Kepler pixel response function
(PRF; Bryson et al. 2010) to both the difference and out-of-
transit images directly provides the location of the transit signal
relative to the host star. We measure difference images separately
in each quarter, and estimate the transit source location as the
robust uncertainty-weighted average of the quarterly results.

We measure photocenter motion by computing the flux-
weighted centroid of the pixels in the optimal aperture, plus
a one-pixel halo in every cadence, generating a centroid time
series for row and column. We fit the modeled transit to the
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Figure 10. Quarterly and average reconstructed transit source locations relative to Kepler-19. Left: the green crosses (small) show the individual quarter measurements
using the difference image technique, and the magenta cross (large) shows the uncertainty-weighted robust average of the quarterly results. Right: the magenta cross
shows the transit source location reconstructed from the multi-quarter fit of the transit signal to the centroid motion. The length of the crosses show the 1σ uncertainty
of each measurement in R.A. and decl. The circles show the 3σ circle around the average source location. The location of Kepler-19 is shown by the red asterisk along
with its Kepler ID and Kepler magnitude.

(A color version of this figure is available in the online journal.)

whitened centroid time series transformed into sky coordinates.
We perform a single fit for all quarters, and then infer the source
location by scaling the difference of these two centroids by the
inverse of the flux as described in Jenkins et al. (2010a).

The source as determined by the difference image method
is offset from the nominal location of Kepler-19, as given in
the Kepler Input Catalog, by 0.09 ± 0.11 arcsec = 0.80σ . The
source as determined by the flux-weighted centroid method is
offset from Kepler-19 by 0.10 ± 0.11 arcsec = 0.88σ . The
location of the offsets is shown for both methods in Figure 10.
Both methods show that the observed centroid location is
consistent with the transit occurring at the location of Kepler-19.

5.2. Spitzer Observations

Warm Spitzer observations in the near-infrared can also
prove useful toward validating Kepler candidates, as shown for
Kepler-10c (Fressin et al. 2011). Unless a putative blend
scenario is comprised of stars of nearly identical color, the transit
depth in a blend scenario will depend upon the wavelength
at which it is observed (Tingley et al. 2004). Conversely, an
authentic transiting planet will produce an achromatic transit
depth.

We gathered observations using the Infrared Array Camera
(IRAC; Fazio et al. 2004) on Warm Spitzer at 4.5 μm of two
consecutive transits of Kepler-19: one on UT 2010 June 29,
and one on UT 2010 July 9. Both observations span 8 hr,
centered on the 3.5 hr long transit. We gathered the observations
using the full-array mode of IRAC, with an integration time of
26.8 s/image. We employed the techniques described in Agol
et al. (2010) for the treatment of the images before photometry.
We first converted the Basic Calibrated Data products from
the Spitzer IRAC pipeline (which applies corrections for dark
current, flat-field variations, and detector non-linearity) from
mega-Janskys per steradian to data number per second, using
0.1469 MJy sr−1 per DN s−1, and then to electrons per second,
using the gain of 3.71 e DN−1. We identified cosmic rays by
performing a pixel-by-pixel median filter, using a window of
10 frames. We replace pixels that are >4σ outliers within this
window with the running median value. We also corrected for
a striping artifact in some of the Warm Spitzer images, which
occurred consistently in the same set of columns, by taking the

median of the pixel values in the affected columns (using only
rows without an overlying star) and normalizing this value to
the median value of neighboring columns.

We estimate the position of the star on the array using two
techniques. First, we employed a flux-weighted sum of the
position within a circular aperture of 3 pixels (we tested whether
the size of this aperture made a difference by increasing the size
to 4 pixels and repeating the analysis: we found that the position
estimates were nearly identical). Additionally, we fit a Gaussian
to the core of the PSF using the IDL routine GCNTRD (again using
apertures of 3 and 4 pixels, and finding no significant difference
between them). We then performed aperture photometry on
the images, using both estimates for the position and variable
aperture sizes between 2.1 and 4.0 pixels, in increments of
0.1 pixels up to 2.7 pixels, and then at 3.0 and 4.0 pixels.
We decided to use the position estimates using a flux-weighted
sum at an aperture of 2.6 pixels, which minimized the out-
of-transit rms. Alternatively, using the positions derived with
GCNTRD, using a slightly smaller aperture, or using a slightly
larger aperture, changed the rms by only a few percent at the
most.

We remove the effect of the IRAC intrapixel sensitivity
variations, or the “pixel–phase” effect (see e.g., Charbonneau
et al. 2005; Knutson et al. 2008) using two techniques. With the
first technique, we assume a polynomial functional form for the
intrapixel sensitivity (which depends upon the x and y positions
of the star on the array). We denote the transit light curve f (which
depends upon time), and we hold all parameters constant except
for the transit depth. We use the light curve software of Mandel
& Agol (2002) to generate the transit models. The model for the
measured brightness f ′(x, y) is given by

f ′ = f (t, Rp/R�) · (b1 + b2(x − x̄) + b3(x − x̄)2

+ b4(y − ȳ) + b5(y − ȳ)2), (4)

where we include all of the observations (both in- and out-of-
transit) to fit the polynomial coefficients and the transit depth
simultaneously.

We included cross-terms in x and y, as well as higher-order
terms, but found that did not substantially decrease the rms
error of the out-of-transit residuals after the sensitivity function
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is divided from the flux. We fit for the polynomial coefficients
b1 through b5 using a Levenberg–Marquardt χ2 minimization.
We also performed an MCMC analysis to fit the polynomial
coefficients to determine whether fitting for the transit depth
was degenerate with any other free parameters, and determined
that about 20% of the error in the best-fit transit depth is due
to a degeneracy with the strongest polynomial dependence of
the intrapixel sensitivity, which is the linear coefficient in y.
However, the Spitzer light curve contains significant correlated
noise even after the best intrapixel sensitivity model is removed.
We incorporate the effect of remaining correlated noise with
a residual permutation analysis of the errors as described by
Winn et al. (2008), wherein we find the best-fit model f ′ to
the light curve as given by Equation (4), subtract this model
from the light curve, shift the residuals by one step in time, add
the same model back to the residuals, and refit the depth and
pixel sensitivity coefficients. We wrap residuals from the end
of the light curve to the beginning, and in this way we cycle
through every residual permutation of the data. We determine
the best value from the median of this distribution, and estimate
the error from the closest 68% of values to the median. We
gathered 4.5 hr of observations outside transit, which is sufficient
to sample the systematics on the same timescale as the 3.5 hr
transit. Using the residual permutation method on the light curve
treated with a polynomial, we find a best-fit transit Rp/R� to be
0.0226 ± 0.0039 for the visit on June 29, which is consistent
with the best solution using MCMC, although the error bars are
inflated by 40% when compared to the MCMC error bars. For the
visit on July 9, we find 0.0280±0.0027 with the rosary-beading
analysis; these error bars are 20% larger than the corresponding
MCMC error bars. The larger error on the transit depth measured
on the first visit is attributable to the larger area on the pixel over
which the star wanders during the observations: the smaller this
area, the better we are able to fit the polynomial sensitivity
model. While the extent of the pointing oscillations in the x-
direction are comparable between the two visits (0.1 pixels),
they differ substantially in the y-direction. The star wanders
0.15 pixels in y on the June 29 visit and 0.08 pixels in y on the
July 9 visit.

We also treated the light curve with the weighted sensitivity
function used in Ballard et al. (2010b), which proved in that
work to produce a time series with lower rms residuals. For this
procedure, we do not assume any a priori functional form for
the intrapixel sensitivity; rather, we perform a weighted sum
over neighboring points for each flux measurement, and use this
sum to correct each flux measurement individually. In this way,
we build up a map of the intrapixel sensitivity point by point.
We use the same widths, σx = 0.017 pixels and σy = 0.0043,
for the weighting function (which is a Gaussian in x and y) as
we used in Ballard et al. (2010a). We therefore have only one
free parameter in this case, which is Rp/R�. We correct each
observation using all other flux measurements, but we did not
bin the data, as was done in Ballard et al. (2010a). With this
treatment, we also use the residual permutation method to fit
the transit depth at each residual permutation. We find Rp/R� =
0.0242 ± 0.0032 for the June 29 visit and Rp/R� = 0.0233 ±
0.0033 for the July 9 visit. These errors are larger by 20% and
30%, respectively, as compared to the MCMC-derived errors.
The out-of-transit rms of the light curve is slightly lower in
both cases using the weighted sensitivity function treatment, so
in this case we defer to the weighting-function-derived values
for Rp/R�. Combining the two measurements, we find a radius
ratio Rp/R� at 4.5 μm of 0.0238 ± 0.0023, which translated

to a transit depth of 547+113
−110 ppm. This value is in excellent

agreement with the depth in the Kepler bandpass of 567 ± 6
ppm (corrected for limb darkening). In Figure 11, we show the
combined and binned Spitzer light curve, with the best-fit transit
model derived from the Spitzer observations and the best-fit
Kepler transit model (corrected for limb darkening) overplotted.
We comment further on the types of blends we rule out with
Spitzer (and their complementarity with blends ruled out by
BLENDER) in the following section.

5.3. BLENDER Analysis

In the absence of a radial velocity confirmation and mass
measurement of the planet Kepler-19b, we instead investigate
the likelihood that the transit signal is a false positive. Possible
false-positive scenarios involve another eclipsing system lying
within the same photometric aperture as the Kepler target star.
This binary system could comprise two stars, or a star and a gas
giant planet, and could be physically associated or unassociated
with the host star (in the foreground or background). In a false-
positive scenario, the presence of the Kepler target star dilutes
the depth of the transit to appear planetary (or attributable to
a smaller planet, if the binary system comprises a star and a
Jupiter-size planet). We employ the BLENDER software package
(Torres et al. 2004, 2011), which produces synthetic light curves
corresponding to eclipsing binary blend scenarios and attempts
to replicate the detailed shape of the Kepler transit light curve.
The BLENDER technique has been applied previously toward
validating three Kepler planets: Kepler-9d (Torres et al. 2011),
Kepler-11f (Lissauer et al. 2011), and Kepler-10c (Fressin
et al. 2011). Model blend light curves are compared with
the Kepler photometry in a χ2 sense, with models considered
poor fits accordingly deemed unlikely to explain the transit.
By exploring the parameter space of mass, impact parameter,
orbital eccentricity, and distance from the host star, BLENDER
amasses knowledge of the range of possible blends that are
consistent with the shape of the transit, and the range of blends
that are inconsistent. The BLENDER nomenclature defines the
objects within the binary to be the “secondary” and “tertiary,”
while the Kepler target star is defined to be the “primary.” In
the case of hierarchical triples, BLENDER uses the best isochrone
parameters for the Kepler target star (derived from SME) as
input constraints to the secondary and tertiary stars: these stars
are assumed to have formed concurrently and are therefore
assumed to be the same age. When the secondary and tertiary
are physically unassociated with the Kepler target star, BLENDER
assumes an age of 3 Gyr (a representative age for the field, per
Torres et al. 2011) and a solar metallicity to model the putative
binary system.

In order to validate Kepler-19b as a planet, we evaluate the
probability of false-positive scenarios allowable by BLENDER
and compare these probabilities to that of the authentic 2.2 R⊕
planet hypothesis. First, we address the probability of a physi-
cally unassociated binary in the foreground or background of the
target star. In the case of Kepler-19b, all false-positive scenar-
ios consisting of a background or foreground eclipsing binary
(comprising two stars) are ruled out at the 10σ level from the
shape of the transit alone. That is, the best planet model fur-
nishes a solution that is a 10σ improvement over the best blend
model in this case. This result is attributable to the sharp ingress
and egress of the transit light curve, which is not well repro-
duced by blend models involving a binary system consisting of
two stars. We therefore confidently conclude that this scenario
cannot replicate the Kepler transit signal.
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Figure 11. Both transits of KOI-084 gathered with Warm Spitzer at 4.5 μm. The top panels show the raw flux, binned by a factor of four, with the intrapixel sensitivity
variation (obtained with the weighted sensitivity function, as described in the text) overplotted in red. The middle panels show the individual transits with this intrapixel
sensitivity removed, binned by a factor of 16, with the best models overplotted. The bottom panel shows the combined transit light curves gathered with Spitzer. The
best-fit transit model with depth derived from the Spitzer observations is shown in red, while the Kepler transit model (corrected for limb darkening) is shown in green.
The Spitzer and Kepler transit depths are in excellent agreement.

For scenarios consisting of a foreground/background star
orbited by a larger (Jupiter-size) planet, there exists a region
of parameter space in which an eclipsing binary model provides
a comparably good fit, as compared to the single star and planet
model. The BLENDER constraints are represented by contours of
equal goodness of fit in Figure 12. The 3σ contour is shown
with a heavy white line, and blend scenarios under this curve
are considered viable. In additional to the goodness of fit of
the blend models to the Kepler light curve, there are regions
of parameter space that are disallowed by the color of the star
(as measured by Two Micron All Sky Survey (2MASS) and in
Sloan r band), as well as the spectrum (in which a secondary
star within a certain magnitude range would be apparent). These
constraints are depicted in Figure 12 as blue cross-hatching
(within which region blends are disallowed) and a solid green
line (below which an additional star would have appeared in the
spectrum). We comment briefly on this spectroscopy constraint,
which we measured by injecting additional stellar spectra (in
this case, solar-type) into the spectrum of Kepler-19 at varying
brightnesses and relative velocities, and then determining the
limits on detectability via a cross-correlation of the spectrum
with a template. We determine that any star within 10% the
flux of Kepler-19 would be detectable in the cross-correlation

function down to relative velocities of 5 km s−1, which translates
conservatively to a Δm < 2 constraint. A velocity variation
of <5 km s−1 would be unlikely for a random unassociated
background star, and we comment on the hierarchical triple
case further below. Furthermore, the angular separation of this
star and planet system must also be sufficiently small as to
be undetectable by adaptive optics imaging for which limits
are given in Section 4.3. While an unassociated binary might
be resolvable by adaptive optics, for a hierarchical triple the
possibility of an unresolved companion remains.

We proceed to evaluate the frequency of the remaining
allowable blends as follows: we estimate a priori the frequency
of stars in the background or foreground of the target star. We
evaluate a theoretical number density of neighboring stars, per
square degree, using Galactic structure models given by Robin
et al. (2003). We record this number density in half-magnitude
bins (shown in Table 4), and show both the number density
of stars and their allowed mass values in Columns 3 and 4,
based on the constraints imposed by the BLENDER contours,
additional color constraints, and brightness constraints. For the
magnitude bins in which no blend furnishes a solution within 3σ
of the planetary model, we have left these columns blank. The
maximum angular separation at which these stars might have
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Table 4
Blend Frequency Estimate for KOI-084.01

Blends Involving Planetary Tertiaries

Kp Range ΔKp Stellar Stellar Density ρmax Stars Transiting Planets
(mag) (mag) Mass Range (deg−2) (′′) (×10−6) 0.36–2.00 RJup, fplanet = 0.20%

(M�) (×10−6)
(1) (2) (3) (4) (5) (6) (7)

11.9–12.4 0.5 . . . . . . . . . . . . . . .

12.4–12.9 1.0 . . . . . . . . . . . . . . .

12.9–13.4 1.5 . . . . . . . . . . . . . . .

13.4–13.9 2.0 . . . . . . . . . . . . . . .

13.9–14.4 2.5 0.88–1.40 444 0.22 5.21 0.011
14.4–14.9 3.0 0.91–1.40 505 0.29 10.3 0.021
14.9–15.4 3.5 0.95–1.40 436 0.38 15.3 0.031
15.4–15.9 4.0 1.00–1.30 327 0.53 22.3 0.045
15.9–16.4 4.5 . . . . . . . . . . . . . . .

16.4–16.9 5.0 . . . . . . . . . . . . . . .

16.9–17.4 5.5 . . . . . . . . . . . . . . .

17.4–17.9 6.0 . . . . . . . . . . . . . . .

17.9–18.4 6.5 . . . . . . . . . . . . . . .

18.4–18.9 7.0 . . . . . . . . . . . . . . .

18.9–19.4 7.5 . . . . . . . . . . . . . . .

19.4–19.9 8.0 . . . . . . . . . . . . . . .

19.9–20.4 8.5 . . . . . . . . . . . . . . .

Totals 1712 53.11 0.108

Total frequency (BF) = (0.108) × 10−6 = 1.08 × 10−7

Notes. Magnitude bins with no entries correspond to brightness ranges in which BLENDER excludes all blends.

Allowed  Region

Figure 12. BLENDERχ2 goodness-of-fit contours corresponding to blend models
with background/foreground (physically unassociated) secondary star and
planetary tertiary, as a function of distance modulus and mass of the secondary.
Viable blend scenarios lie below the 3σ contour, depicted with a heavy white
line. The blue cross-hatching shows the region of parameter space for which
the blend model is the wrong color to be consistent with the measured 2MASS
and Sloan r colors of the star, while models that lie below the solid green line
have a small enough magnitude difference that the secondary would have been
detected in the spectrum of the star (Δm < 2.0). The dashed green line shows
the location of the Δm contrast limit corresponding to the faintest allowable
blend. The remaining allowed parameter space is denoted “Allowed Region.”

remained undetected in adaptive optics imaging (the limits are
provided in Section 4.3) is listed in Column 5. The number of
stars in each magnitude bin is then listed in Column 6. In order
to evaluate the transiting planet prior, we rely on the reported
Kepler planet candidate sample to date, presented in Borucki
et al. (2011). While the majority of these candidates have not yet

Figure 13. BLENDER χ2 goodness-of-fit contours corresponding to hierarchical
triple blend models (with physically associated secondary star and planetary
tertiary). As in Figure 12, viable blend scenarios lie within the 3σ contour,
depicted with a heavy white line. The color-coding is similar to the previous
figure, with blends of the wrong color depicted in blue cross-hatching, and
blends that are ruled out spectroscopically depicted in green cross-hatching.

been confirmed to be planets, the false-positive rate is expected
to be quite small (as reported by Morton & Johnson 2011) and
so will not substantially change our results. We also assume that
the sample presented in the Borucki et al. (2011) candidate list
is complete.

The second feasible blend scenario is an additional star and
transiting Jupiter-size planet, which are physically associated
with the Kepler target star. We present the results of BLENDER
for this case in Figure 13. While there exists a range of
hierarchical triples whose light curve shape is consistent with
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the Kepler transit (depicted by the χ2 contours), these are all
ruled out by either the color constraint on blends (shown in
blue cross-hatching) or the brightness constraint on blends from
the spectrum (shown in green cross-hatching). There exists the
remaining possibility of a true twin to the target star: a star that
has an identical color, and whose position is either at a distance
>20 AU (at which position the predicted radial velocity is equal
to 5 km s−1) or whose tangential velocity is <5 km s−1 relative
to the target star during the time of our observations. Even if
this scenario were to be true, the planet’s inferred radius would
only be greater by a factor of

√
2. Therefore, we conclude that

the only possible blends belong to the unassociated planet and
star scenario.

Combining the probabilities associated with all background
or foreground star and planet pairs, we find a total blend
frequency of 1.08 × 10−7. This frequency corresponds to the
likelihood of a blend that is capable of producing a transit light
curve that is no worse (<3σ ) than the best model corresponding
to a transiting planet around a single star within the aperture.

Next, we estimate the a priori frequency of a true planet with
the characteristics implied by the Kepler transit light curve.
Using the planetary radius range of 2.209 ± 0.048 R⊕, we
identify 119 planet candidates from the Borucki et al. (2011)
catalog with sizes that are within 3σ of this measured value.
The planet prior is equal to 7.6 × 10−4 (119 divided by the
total number of Kepler targets, 156,453), which is more than
three orders of magnitudes larger than the blend frequency.
We therefore find that the planetary scenario corresponding to a
2.2 R⊕ planet is 7000 times as likely as the blend scenario, and
conclude with very high confidence that the transit signal is due
to a planet, Kepler-19b.

For comparison, the constraint from Spitzer in this case
provides an independent means of ruling out a subset of blends
which are also ruled out by BLENDER. If we impose the constraint
that a putative additional star may not produce a transit depth at
4.5 μm which is 3σ deeper than measured, such a star cannot be
less massive than 0.7 M� (otherwise, the additional star would
be so red as to produce a significantly deeper transit depth in
the near-infrared). As shown in Figures 12 and 13, BLENDER
independently rules out blends consisting of a star in this mass
range from the shape of the transit light curve.

6. DISCUSSION AND CONCLUSIONS

6.1. Interpretation of Transit Timing Variations

Our analysis of the TTV of Kepler-19b comprises two
sections. In Section 6.1.1, we argue that there must exist a second
planet in the Kepler-19 system, since the TTVs cannot originate
from astrophysical effects or a stellar mass perturber. Then, in
Section 6.1.2, we describe the dynamical properties of planetary
perturbers that could account for the observed TTV pattern of
planet b.

6.1.1. Demonstration of Planethood of Perturber

In Figure 4 we presented a strongly detected and nearly
sinusoidal variation (period Pttv = 316 days and amplitude
Attv = 5 minutes) in the times of transits of planet b. Here
we discuss four potential interpretations of the signal which do
not invoke a perturbing planet, and demonstrate that the signal
cannot originate from these scenarios. The first two scenarios
consider a system of only the star and the transiting planet, while
the latter two allow for the presence of a third, non-planetary,

body. Because these scenarios are disallowed, the only viable
alternative is that the signal is a dynamical variation caused
by a second planet (planet c), which we discuss in the next
subsection.

First, we consider the possibility that the signal is due to stellar
activity. The most plausible candidate for dynamical interaction
with the star causing the TTV signal is the Applegate (1992)
effect from the eclipsing binary literature, which Watson &
Marsh (2010) recently applied to exoplanets. In this mechanism,
the star undergoes a magnetic cycle, which varies the rotational
bulge’s gravitational pull on the planet, slightly varying its
orbital period. For this effect to produce the observed TTV
signal, the magnetic cycle would need to have an exceptionally
short period of 316 days. This is problematic because the stellar
activity in the spectra is low, as we describe in Section 4.2,
suggesting a magnetically inactive star with a long spin period.
For magnetic dynamos typical of solar-type stars like Kepler-19,
Watson & Marsh (2010) calculate TTV variations of less
than 1 s over timescales of several years, much too small
to explain our data. Apart from this dynamical interaction,
activity could cause apparent TTV via the planet transiting over
starspots (Silva-Valio 2008; Alonso et al. 2008). For instance,
Knutson et al. (2011) recently found transit timing deviations
for GJ 436b that are greater in optical photometry, where spots
are pronounced, than in near-infrared photometry, where spots
are relatively muted. However, in our case, even with excellent
Kepler photometry, no spots are detected, either in out-of-transit
stellar modulation or in excess residuals during transit due to
spot crossings.

Second, the signal could be due to rotation of the planetary
orbit’s apsidal line about the star (Heyl & Gladman 2007). The
eccentricity need not be large (eb � 2πAttv/Pb = 0.0023),
but the apse must be precessing very quickly to be consistent
with the TTV period (Pttv = 316 days). Using expressions for
realistic apsidal motion rates (Fabrycky 2010; Section 3.1.1), we
demonstrate that the periods associated with possible precession
mechanisms are too long by several orders of magnitude,
as follows. General relativistic precession has a period of
7.9×104 yr. A star made oblate by rotation, alternatively, would
cause precession with a period of 7 × 106 yr ×(Prot/10 days)2,
if the star has an apsidal motion constant of kL/2 = 0.02 (Claret
& Gimenez 1992). Finally, tidal distortion of the planet would
cause precession with a period of ∼108 yr, if the planet has a
Love number of kL = 0.3 (Mardling & Lin 2004). We conclude
that general relativity dominates the putative precession rate,
but it is inconsistent by orders of magnitude with Pttv and is
probably undetectable (Ragozzine & Wolf 2009).

Third, the signal could originate from light time delay, ow-
ing to reflex motion of the system as it is orbited by a third
body with an orbital period of P2 = Pttv � 316 days. It is
conceivable that this putative body moves the barycenter of the
Kepler-19/Kepler-19 b system by ±5 light minutes, causing a
time-variable light-time delay (e.g., Irwin 1952; Sybilski et al.
2010). In creating such a large displacement in the radial direc-
tion, a radial velocity signal—its derivative—would also be cre-
ated. The semi-amplitude would be 2π (0.6 AU)/(316 days) �
17 km s−1, ruled out by orders of magnitude given our radial
velocity measurements. Moreover, to induce this motion, the
additional body must have a mass of at least 1.0 M�, and would
likely impart a second set of lines on the spectra, which are not
detected.

Finally, the signal could be dynamical, owing to perturbations
from another body in the system such as a second star or a
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brown dwarf. The orbital period of such a body cannot be too
long; otherwise, the gravitational potential it induces on planet
b would result in a period longer than the observed Pttv. In fact,
the longest period the body could have is 2 Pttv (Borkovits et al.
2003), as the dominant part of the perturbation of a distant body
is its “tidal” term, which has a frequency of twice the body’s
orbital frequency.13 The lack of large radial velocity variation
means that additional bodies must have masses in the planetary
regime (a case handled in the next subsection) on nearly any orbit
with P2 � 2 Pttv. An exception is for nearly face-on orbits with
a small component of radial motion. To our knowledge, there is
only one such configuration that could explain the timing data, as
follows. A circular orbit of period 2 Pttv, mutually perpendicular
to the orbit of planet b, causes a timing signature (Borkovits et al.
2003; Equation (46)),

O − Cb ≈ 3

8π

M2

M� + Mb + M2

P 2
b

P2
sin 2f2, (5)

where M2 is the perturber’s mass and f2 is its true anomaly
measured with respect to the plane of planet b’s orbit. The
perturbing orbit must be nearly circular in the case of Kepler-19,
as we have measured two full O−C cycles and found them to
be nearly identical, rather than different either in amplitude or
phase as would result from an eccentric perturber (e.g., run
A13 of Figure 2 in Borkovits et al. 2003). To fit Attv, we have
M2 ≈ 0.25 M�. The radial velocity limit (at 99.73% confidence)
on circular orbits at P2 = 2 Pttv is K < 22 m s−1, so the orbit
would need to be inclined by i2 < 0.◦2 to the plane of the sky.
Given an isotropic prior, this configuration has a probability of
1−cos i2 = 6.0×10−6, i.e., it is too finely tuned toward face-on
to be plausible.

Having thus demonstrated that the TTV signal cannot be
created by any known mechanism other than a second planet,
we interpret the transit timing effect of planet b to be due to a
second planet in the system, which we call Kepler-19c.

6.1.2. Possible Orbits of Planet c

In this subsection we discuss the possible orbits of planet
c, consistent with the TTV data for planet b. We take as
constraints a sinusoidal transit timing signal as well as radial
velocity upper limit of Mc < 0.44 MJup × (Pc/Pb)1/3 (99.73%
confidence limit on a second orbit of arbitrary eccentricity).
This assumes sin ic > 0.5, as we consider a mutual inclination
im > 60◦ to be physically implausible.14 These planetary
scenarios fall broadly into five categories: orbits with the period
of the TTV signal, resonant perturbers, orbits near first-order
mean-motion resonances, orbits near higher-order resonances
(in which category we assign an upper limit on the mass of the
perturber), and satellite scenarios. The latter three are favored,
under circumstances that we elucidate below.

Our first consideration is the possibility that planet c could
have a period Pc = Pttv = 316 days and a large eccentricity, such
that it produces a time-variable tidal force on the Kepler-19/
Kepler-19 b pair, accounting for the TTVs (Borkovits et al. 2003,
2011; Agol et al. 2005). However, radial velocity constraints
require its mass is Mc � 1.4 MJupiter, so to generate a TTV signal
with amplitude Attv = 5 minutes, its eccentricity would need

13 Planet b would also speed up and down twice per orbit due to a static tidal
term, but this is not observable, as transits occur only once per orbit.
14 A large mutual inclination would likely drive large-amplitude eccentricity
cycles (Kozai 1962) in the innermost planet, which would in turn trigger rapid
tidal orbital decay (Fabrycky & Tremaine 2007; Mardling 2010).

to be > 0.99 (Agol et al. 2005). This would be unstable with
respect to planet b because the orbits would cross. Moreover, a
smaller amplitude could be generated at 0.5 < ec < 0.9, but the
signal would have a saw-toothed shape, which is inconsistent
with the measured transit times. Therefore, any putative planet
with a period of 316 days that is large enough to create the TTV
signal would be inconsistent with the observed radial velocities.

Another possibility is that the TTV curve of b is driven by a
resonant perturber. In this case, the amplitude can be substantial,
even for a low-mass perturber (Agol et al. 2005),

δt ≈ Pb

p

Mc

Mb + Mc

, (6)

where p refers to the period ratio of the transiting planet to
the perturbing planet p/q, μ ≡ max(Mb,Mc)/M�, and δt is
the amplitude of the TTV signal. The libration (and TTV)
period is of order Plib � e−1/2μ−1/2P/p (Agol et al. 2005).
This consideration determines whether such a resonance is
a possible site for planet c, as the mass of c must be large
enough so that this libration period equals the rather short TTV
period. For low eccentricities (eb, ec � 0.1), the mass of the
perturbing planet must be ∼1 Jupiter mass, which is ruled out
by the radial velocities. For high eccentricities, lower masses
are allowed, but then the region of stability becomes more
constrained, such that the proposed system would need to be
finely tuned. Orbits near the Lagrange points of b (the 1:1
resonance; Ford & Holman 2007) fail for the same reason:
Plib � Pb

√
27/4 × M�/(Mb + Mc) (Ford & Holman 2007),

which means Mc � 3 MJup, in violation of the radial velocity
constraint. For these reasons, we do not favor resonant orbits for
planet c.

Next, we consider perturbers near period commensurabilities.
If two planets are near to, but offset from, a period commensu-
rability, they can generate a large TTV signal (Agol et al. 2005;
Holman & Murray 2005), as in the interaction between planets
Kepler-11 b and c (Lissauer et al. 2011). In this scenario, the
orbital frequency ratio of the known planet to the perturbing
planet, Pb/Pc, is slightly offset from a ratio of integers, p/q.
Then, as long as the planets’ eccentricities are moderate, the
transit timing signature will have a dominant frequency equal to

1/Pttv = |p/Pb − q/Pc|. (7)

The absolute value sign above means we can postulate a
perturber on one side or the other of each resonance, that is
responsible for the TTV signal. The strength of the resonance
must be finely tuned, so that a 5 minute amplitude signal is
possible, yet the radial velocity amplitude also lies within the
observed upper limit. If the resonance is spaced too closely to
the transiting planet, the planets will generate timing variations
on the conjunction timescale (Nesvorný & Morbidelli 2008;
Holman et al. 2010) which are not observed, or else the two
planets will not be stable with respect to one another (Wisdom
1980).

For first-order resonances in which q = p ± 1, Agol
et al. (2005) developed an order of magnitude estimate for
TTV signals which depends on the fractional offset from the
resonance ε ≡ |1 − qPb/(pPc)| and the mass ratio μ ≡
max(Mb,Mc)/M�:

δtb =
{

(Mc/M�)ε−1Pb, ε � μ1/2

min(Mc/Mb, 1)μ2ε−3Pb, ε � μ1/2

}
. (8)
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In the current case, presuming planetary masses of �10M⊕,
the upper expression of Equation (8) holds for p � 5. In
particular, for exterior first-order resonances q:p = (2:1, 3:2,
4:3), to produce Attv = 5 minutes we have Mc ∼ (4, 2, 1)M⊕.
Of course, these values are only good to an order of magnitude,
but they demonstrate that a reasonable planetary mass just offset
from first-order resonances can indeed cause the observed TTV
signal.

A planet near a second-order (e.g., 3:1, 5:3) or higher-
order (e.g., 4:1, 5:1) resonance can also be responsible for
the TTV signal. However, in these cases the strengths of the
resonances are smaller, and they depend on a higher power of the
eccentricities. Therefore, planetary-mass perturbers that satisfy
the radial velocity constraints might need to have substantial
eccentricities to match Attv. For n:1 resonances of exterior
perturbers with n � 1, ec must be large, and the timing signal
would be a series of constant-period segments with kicks at
the outer body’s periastron passage. The scaling relation of
the radial velocity limit quoted above breaks down at high
eccentricity, as periastron passages can appear as spikes which
fall in data gaps, but we still wish to limit Mc. We therefore
set 99.73% confidence limits on Mc sin ic by (1) introducing a
4.8 M⊕, circular and edge-on planet b, and (2) sampling the
orbit of planet c on a grid with Pc drawn from Equation (7) for
all n:1 resonances with n = 3–16 (28 cases); ec drawn from
0.1, 0.2, . . . until the orbit crossed with planet b’s; ω drawn
from 0◦, 45◦, . . . 315◦; T0,c drawn from 10 values uniformly
spaced between BJD 2455200 and 2455200+Pc; and Mc spaced
logarithmically by 0.25 dex from 0.32 MJup to 18 MJup. The total
grid sampled 150120 trials, and not one of the cases at or above
5.6 MJup fit the radial velocities (allowing for a constant offset).
Apparently, although a high-mass perturber can be fine-tuned to
not induce large radial velocity at the times of the data, its mass
is limited even at arbitrary eccentricity. For concreteness, let us
describe the end-member of this set of n : 1 resonances. It has
Pc = 153.2 days ≈ Pttv/2, and the O−C signal would be a zig-
zag, only marginally consistent with the apparently sinusoidal
shape. At each periastron passage of planet c, Pb would need
to change by 0.6 minutes to match Attv. A consistent set of
parameters according to Holman & Murray (2005, Equation (2))
is 1 MJupiter and ec � 0.8. The periastron of planet c would
thus be at �1.3ab, only marginally stable with respect to the
inner planet. This scenario is also barely allowable according
to the radial velocities. Therefore, we set an upper limit of
Pc � 160 days. Again, this corresponds to Mc � 6 MJupiter,
according to our grid search.

The final possibility that we consider is a satellite orbit, which
could also cause TTVs (e.g., Kipping 2009). The amplitude of
5 minutes translates to a displacement along the orbit of 2.1Rp.
A prograde orbit for such a satellite would lie between Rp and
∼7Rp (0.4 of the Hill sphere, if Mb � 5 MEarth) to be stable
(Domingos et al. 2006; Nesvorný et al. 2003). Since the putative
satellite lies so close to the planet in this case, its mass would
have to be �0.6Mb cause the TTVs observed for the transiting
planet. Therefore, it would probably be big enough to be seen in
transit. We examined each transit by eye, to see if any deviated
significantly from the single-planet model, as mutual events of
the co-orbiting planets would cause shallower transits (Szabó
et al. 2006; Simon et al. 2007; Ragozzine & Holman 2010), but
we found no features of interest. Furthermore, in this scenario,
the b–c mutual orbital period would need to be near-resonant
with the pair’s orbital period around the star, so that the TTV

Figure 14. Possible orbits for Kepler-19c. Orbits near first-order mean-motion
resonances (Equation (7)) may fit the TTV signal and radial velocity constraints
even on circular orbits; shown are Pc = 6.129 days (bright green) and
6.256 days (blue), flanking the interior 2:3 resonance, and Pc = 18.033 days
(olive green), next to the exterior 2:1 resonance. Orbits near higher-order
resonances likely need eccentricity to produce the TTV signal with masses
low enough to satisfy the radial velocities; shown are Pc = 3.065 days (pink)
near the interior 1:3 resonance, Pc = 15.326 days (purple) near the exterior
5:3 resonance, Pc = 27.036 days (aqua blue) near the exterior 3:1 resonance,
and Pc = 38.310 days (brown) near the exterior 4:1 resonance. Finally, a
co-orbital planet (or distant retrograde satellite) is shown at Pc = 9.287 days
(red)—in such an orbit very small masses are possible, so the dot representing the
planet is drawn small. Other possible orbits are within mean-motion resonances
(including the 1:1 at Lagrange points), or a prograde satellite, but these are
disfavored (see the text).

signal aliases to the long Pttv = 316 day signal. We find this
scenario unlikely.

A retrograde orbit for a satellite could be stable to much larger
distances, even beyond the Hill sphere (Jackson 1913; Shen &
Tremaine 2008). In fact, planet c could follow an independent
Keplerian orbit which resonates with planet b, keeping their
periods and orbital phases the same (Laughlin & Chambers
2002). The allowable Mc could be much lower in this case,
down to an order of 0.1 MEarth if the eccentricity is ec ∼ 0.1.
The TTV could be caused by either the resonant libration or by
the two orbits precessing together at a swift rate. If the latter, then
as in Section 6.1.1, eb would be ∼0.0023; unlike in that section,
an apsidal motion period of 316 days is plausible because of the
proximity of the perturber.

We compiled examples of our favored orbits for planet c
into Figure 14. Foremost are orbits nearby first-order mean-
motion resonances, which can fit the TTVs with masses which
comfortably obey the radial velocity constraints, and have
near-circular orbits. Second, we consider orbits nearby higher-
order resonances to be possible, particularly if eccentricities are
non-zero. Third, a retrograde satellite is a possibility, but we
recognize this option as an exotic one. There is clearly profound
degeneracy of interpretation. Such degeneracies are intrinsic to
the TTV method of planet discovery, in the case that the signal is
well characterized by a single sinusoid (Nesvorný & Morbidelli
2008) and the radial velocity data cannot pinpoint the perturber
(Meschiari & Laughlin 2010).

6.2. Constraints on Transits of Perturber

The Kepler team searches for transit signatures using the
Transiting Planet Search pipeline module (Jenkins et al. 2010b).
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This has already been applied to the Kepler-19 light curve, and
it identified transits of Kepler-19b. We analyzed the size of
the planet we could have detected in the Kepler photometry
by injecting signals at random phases and at varying planetary
radii and attempting to blindly recover them. While the mass
of Kepler-19c is highly uncertain, we can rule out the transits
of at least some putative perturbers, as we describe here. The
degeneracy of interpretation of the TTV signal means that we
cannot address an exhaustive list of potential planets, but we
comment here on the representative cases shown in Figure 14.
The perturbing planet Kepler-19c may also not transit, in which
case its orbit may be significantly misaligned from the transiting
planet. Because Kepler-19b resides in a near-equatorial orbit
(with i >88.62 with 3σ confidence), the orbit of Kepler-19c
may also be misaligned by at least 0.◦27, or 3.6σ in the exterior
2:1 resonance, for example, if it does not transit. In contrast, in
the interior 1:2 resonance at 4.57 days, the planet would have
to have i <85.7 to avoid transit. The planets would have to be
misaligned by nearly 3◦ in that case, if the orbits are circular.

First, we consider the orbits of 19c in second-order mean-
motion or higher-order resonances. The planets depicted in
Figure 14 range from 1.6 to 13.8 M⊕. We evaluate a minimum
physical radius for the 1.6 M⊕ planet, assuming maximum
collisional stripping of the planet during formation, from the
relationship derived by Marcus et al. (2010). At the maximum
possible iron fraction, a 1.6 M⊕ planet would have a radius
of 1 R⊕. At a period of 30 days (this range encloses mean-
motion resonances up to 3:1 with Kepler-19c) we achieve 95%
completeness at 1.0 R⊕. At 40 days, which includes the example
perturber in Figure 14 in the 4:1 mean-motion resonance, we
would still have detected a 1.0 R⊕ planet at 90% of phases.

If the planet Kepler-19c were instead co-orbital with 19b, or
if it resides in a satellite orbit, its mass could be much smaller,
as described in the previous section: this mass could be as small
as 0.1 M⊕ (equivalent to the mass of Mars) if its eccentricity
were equal to 0.1. The models of Seager et al. (2007) show that
a 0.1 M⊕ planet could be as small as 0.4 R⊕ if it comprised
70% iron and 30% silicate by mass (which is plausible, given
the maximum iron fractions determined by Marcus et al. 2010).
Its predicted transit depth would be 20 ppm, which might be
barely detectable when compared to the error bar on the transit
depth of Kepler-19b (with a necessarily similar orbital period)
of 6 ppm. However, even if such a planet transited, its detection
would be extremely challenging.

However, though the representative cases (with the exception
of the co-orbital scenario) depicted in Figure 14 would all have
been readily detectable, we note that the perturbing planet could
easily be smaller than 1 R⊕ in the mean-motion or higher-order
resonance cases, in which case it might have eluded detection
even in orbits with periods shorter than 30 days. However, we
note that we achieve 95% completeness for 0.7 R⊕-sized planets
up to 10 days, so such a world would have to be less massive
than 0.7 M⊕ for P < 10 days, referring again to the maximum
iron fraction models derived by Marcus et al. (2010).

6.3. Search for Secondary Eclipse of Kepler-19b

If we assume the planet reradiates isotropically the energy
it receives from its star, then the equilibrium temperature of
Kepler-19b is given by

Tp = (1 − AB)1/4T�

√
R�

2a
, (9)

Figure 15. Kepler-19 light curve at a phase of 0.5. The best eclipse light curve
is shown overplotted, but this solution is statistically indistinguishable from a
flat line. The expected depth for a planet with an albedo of 1 is shown by the
dashed line.

(A color version of this figure is available in the online journal.)

where T� is the temperature of the star, a/R� is the orbital radius
to stellar radius ratio, and AB is the albedo of the planet. If
we assume a Bond albedo AB of 0.3 and ignore atmospheric
effects in order to obtain a rough estimate for the equilibrium
temperature, we may employ the MCMC chain of a/R� (and
the corresponding values for Teff of the star identified from the
nearest stellar isochrone, per the analysis in Section 3.2) to find
the allowable range of planetary temperature. The range that
encompasses 68% of realizations of planetary temperature is
TP = 770 ± 10 K, rounded to the nearest 10 K.

There are two contributing sources to the occultation depth,
namely, the reflected starlight and the emitted light from the
planet itself. Both of these are dependent upon the unknown
albedo of the planet. Assuming again the Bond albedo of
0.3, the expected depth due to reflected light is given by
δref = AB(Rp/a)2; this value lies between 3 and 4 parts in
107. The expected occultation depth due to the emitted light of
the planet is given by δem = (Rp/R�)2 · Bλ(Tp)/Bλ(T�). Using
a wavelength of 700 nm (in the middle of the Kepler bandpass)
to estimate Bλ(T ), δem is of order 10−13 and so contributes
negligibly to the expected eclipse depth.

To assess our sensitivity to the secondary eclipse, we fit a
line to either side of each expected eclipse, and divided this
line from the data during eclipse (centered on a phase of 0.5
and spanning 2.5 eclipse durations on either side), in a manner
similar to the method we employed for data in transit. We then
evaluated a model with epoch and duration set by the transit
parameters given in Table 1, but with variable depth, from 0 to
20 ppm (considerably larger than the expected eclipse depth),
and compared to the phase-folded light curve. We neglect the
possibility that the transiting planet resides in an eccentric
orbit, and thus that the secondary eclipse may not occur at
a phase of 0.5. We find that our sensitivity is yet too low
to detect the secondary eclipse at any phase. Values as high
as 9 ppm are statistically indistinguishable from a depth of
zero (furnishing a χ2 difference less than 9). A planet with
a maximal Bond albedo of 1 would produce a decrement of
1.2 ppm, which is still considerably below detectability with
Kepler. Figure 15 shows the χ2 improvement associated with
adding an eclipse of variable depth at a phase of 0.5. The dotted
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line shows the expected depth for an extreme albedo of 1, which
is indistinguishable from a flat line.

6.4. Composition of Kepler-19b

While we cannot estimate the mean density of Kepler-19b
without a measurement of its mass, we can still draw meaningful
conclusions about its composition from the upper limit mass
value, as was done by Fressin et al. (2011) in the similar
case of Kepler-10c. We first address whether we can rule out
solid compositions at the highest density: a planet made of
pure iron at a radius of 2.2 R⊕ would have a mass of 100 M⊕
(Seager et al. 2007). However, such a high fraction of iron is
unphysical, even with maximal collisional stripping during the
planet’s formation; a 2.2 R⊕ planet with the largest possible
iron fraction would have a mass of 30 M⊕ (Marcus et al.
2010). This maximum density is ruled out with 95% confidence
by the mass upper limit from radial velocities of 20.3 M⊕.
A planet composed of pure silicate at the measured radius,
however, would have a mass of 15 M⊕ (Seager et al. 2007),
which lies within the allowable mass range for Kepler-19b. In
contrast, a 2.2 R⊕ planet with a homogeneous composition of
water ice would have a mass of 4.5 M⊕ (Seager et al. 2007):
mixtures of water ice and silicate in any fraction are therefore
consistent with the measured mass upper limit. We consider
also whether a substantial H/He envelope is possible for
Kepler-19b. This scenario brackets the lower range of possible
densities. Rogers et al. (2011) present theoretical models for
planets in the radius range of 2–6 R⊕ and the temperature
range 500–1000 K (in which sample Kepler-19b, with radius of
2.2 R⊕ and temperature near 700 K, is included), given different
formation histories. If Kepler-19b formed by a nucleated core-
accretion scenario beyond the snow line, a core of ice and rock
surrounded by an H/He envelope would not be tenable even at
the cooler equilibrium temperature of 500 K: such an envelope
would have been lost in a timescale of <1 Gyr. An outgassed
hydrogen envelope, by comparison, is a plausible scenario over
a timescale greater than 1 Gyr, although the mass fraction of
such an envelope would be less than 0.01 the mass of the planet
(Rogers et al. 2011).

6.5. Future Prospects

In light of the dynamical study of Section 6.1, which com-
bined transit time variations and radial velocities to characterize
a perturber in the Kepler-19 system, we may ask whether we can
expect to measure the precise orbital parameters of planet 19c.
The two main issues causing ambiguity among the perturber sce-
narios are: (1) the transit variations are consistent with a smooth
sinusoid down to the noise level, with no additional hints of the
perturber’s identity such as “chopping” (Holman et al. 2010)
on the conjunction timescale; (2) the radial velocities, while
essential to ruling out massive, non-planetary perturbers, sim-
ply do not have the precision sufficient to distinguish between
the various planetary scenarios. The former issue might be re-
solved with much more data. The Kepler collaboration intends
to keep Kepler-19 on its short-cadence mode (demonstrated here
to result in superior timing accuracy) for the remainder of the
mission. Furthermore, in numerical simulations, chopping sig-
nals can wax and wane over secular cycles, so a detection of
this effect is possible in future quarters. The latter issue requires
more radial velocity data to resolve, which could allow us to fur-
ther address the degeneracy of interpretation of the TTV signal,
or could point to even more planets that are not clearly detected
by TTVs.
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