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ABSTRACT

Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data
can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems
have not been observed. Here we present four sets of light curves from the Kepler spacecraft, each which of shows
multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates
that the planets are perturbing each other: the observed timing variations match the forcing frequency of the other
planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime
by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit
times, yielding possible values for the planets’ masses and eccentricities. As the timespan of timing data increases,
dynamical fits may allow detailed constraints on the systems’ architectures, even in cases for which high-precision
Doppler follow-up is impractical.

Key words: methods: statistical – planetary systems – planets and satellites: detection – planets and
satellites: dynamical evolution and stability – stars: individual (KID 10358759/KOI-738/Kepler-29, KID
3832474/KOI-806/Kepler-30, KID 9347899/KOI-935/Kepler-31, KID 9787239/KOI-952/Kepler-32)

Online-only material: color figures, machine-readable table

1. INTRODUCTION

So far, 170 systems with more than one transiting planet
candidate have been discovered by Kepler (Borucki et al. 2011),
enabling simple dynamical models for an astounding variety
of planetary systems (Lissauer et al. 2011b). In particular, two
very important dynamical quantities, the planetary period and
phase, are measured to high precision by Kepler. If we further
assume, as is true for the solar system, that the planets orbit in the
same direction, in nearly the same plane, and on nearly circular
orbits, then we have a fiducial model that specifies the positions
of the planets as a function of time. However, planets do not
follow independent Keplerian orbits; instead planets interact

21 Hubble Fellow.

with each other gravitationally. These small perturbations to
the orbits affect the transit times, which can be calculated via
numerical simulations. If the calculated transit timing variations
match essential aspects of the observed data, then we obtain
independent confirmation that two objects are orbiting the same
star.

In this paper, we develop simple physical models and compare
them to Kepler data to confirm four planetary systems, Kepler-
29–32. Instead of exhaustively modeling the systems, as has
been our practice up until now (Holman et al. 2010; Lissauer
et al. 2011a; Cochran et al. 2011), we content ourselves with
providing upper limits to the planetary masses, based on the
principle that the system is extremely unlikely to be dynamically
unstable on timescales much less than the age of the star.
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Table 1
Properties of Target Stars

KOI KIC-ID Kp C0a C1a C2a C3a CDPPb R.A. Decl.
(ppm) hr (J2000) deg (J2000)

Kepler-29 738 10358759 15.282 0.108 0.054 0.091 0.092 176 19 53 23.60 +47 29 28.4
Kepler-30 806 3832474 15.403 0.094 0.099 0.116 0.056 652 19 01 08.07 +38 56 50.2
Kepler-31 935 9347899 15.237 0.053 0.045 0.119 0.063 186 19 36 05.52 +45 51 11.1
Kepler-32 952 9787239 15.913 0.096 0.117 0.193 0.119 288 19 51 22.18 +46 34 27.4

Notes. Information mostly from the Kepler Input Catalog.
a Contamination for each season 0–3 (season = (quarter+2) mod 4): the fractional amount of light leaking in to the target’s aperture from other
stars, known from the Kepler Input Catalog.
b Combined differential photometric precision on 6 hr timescales.

Table 2
Stellar Properties of Hosts

Teff log g v sin i [Fe/H] M� R�

(K) (cgs) (km s−1) (M�) (R�)

Kepler-29 5750 ± 250 (L) 5.00 ± 0.25 (L) 4 ± 2 (L) 0.0 ± 0.3 (N) 1.00 ± 0.12 0.96 ± 0.14
Kepler-30 5498 ± 54 (K) 4.77 ± 0.23 (K) 1.94 ± 0.22 (K) 0.18 ± 0.27 (K) 0.99 ± 0.08 0.95 ± 0.12
Kepler-31 6340 ± 200 4.696 ± 0.300 −0.076 ± 0.400 1.21 ± 0.17 1.22 ± 0.24
Kepler-32 3900 ± 200 (K,M) 4.64 ± 0.30 0 ± 0.4 0.58 ± 0.05 0.53 ± 0.04

Notes. Sources for stellar properties. Spectroscopic parameter with uncertainties indicated in parentheses are from: K=Keck Observatory,
L=Lick Observatory, M=McDonald Observatory, N=NOAO. Quoted uncertainties do not include systematic uncertainties due to stellar
models.

Thus, we infer planetary masses for nine objects in these four
systems, and deem them planets on this basis. This paper
is being published contemporaneously with two companion
papers, which explore anticorrelated transit timing variations
for the confirmation of pairs of planets, by Ford et al. (2012,
hereafter Paper II) and Steffen et al. (2012, hereafter Paper III),
which together with this paper form a catalog of 10 confirmed
systems of multiple-transiting planets.

The organization of this paper is as follows. Section 2
introduces the target stars, describes the transit timing data, and
discusses how we assess whether the transit timing signal varies
on the theoretically expected timescale. Section 3.1 applies that
methodology to confirm four planetary systems, and Section 3.2
discusses the identification of their host stars. Section 4 is
devoted to constraining the masses of the planets, primarily
by dynamical stability, but also via modeling the transit timing
signal itself. Section 5 closes with a discussion of these results
and a perspective about the future of transit-timing confirmation
of multiply transiting systems with Kepler.

2. METHODS

2.1. Determination of Stellar Parameters

Identifying properties of the host stars studied here are in
Table 1, e.g., their names in various catalogs.

For stars Kepler-29, Kepler-30, and Kepler-32, we obtained
spectra from several different telescopes as part of the Kepler
team’s regular ground-based follow-up program. Two inde-
pendent analyses were performed, a standard analysis using
“Spectroscopy Made Easy” (Valenti & Piskunov 1996; Valenti
& Fischer 2005), as well as a newly formulated analysis called
SPC (L. A. Buchhave et al., in preparation), to obtain the pa-
rameters Teff , log g, [Fe/H], and when possible v sin i. For
Kepler-31 we did not obtain a spectrum, but instead adopted
these values from the Kepler input catalog (KIC; Brown et al.
2011)—i.e., based on color photometry—with generous error

bars. From these values we performed a Bayesian analysis us-
ing Yonsei–Yale stellar isochrones (Yi et al. 2001) to extract
best fit and 68% confidence regions on M� and R� (e.g., Pont &
Eyer 2004; Takeda et al. 2007). All these values are reported in
Table 2.

2.2. Measurement of Transit Times and Parameters

The data we use for this study are long-cadence light curves
from Quarters 1 through 6 (and additionally for Kepler-31 only,
Quarters 7 and 8), available at the Multimission Archive at
STScI (MAST22).

For most of the sample, we used timing results from the
general-purpose routines of J. Rowe, previously described in
Ford et al. (2011, hereafter Paper I). For Kepler-30b, extremely
large variation in the transit times caused the general-purpose
algorithm to fail (a linear model for the times of transit
incorrectly predicts some observed times by over half a day;
see Section 3.1.2). Thus, around each transit of this planet, we
fit model transit curves (Mandel & Agol 2002) and minimized
the sum-of-squared residuals, the standard χ2 function. We
sampled χ2 over a grid of timing offsets, and fit a parabola to the
region within Δχ2 � 7 of the minimum value. That parabola
thus has a width which is more stable to noise properties than
the local curvature is, and we adopt its minimum as the transit
time and its width (where Δχ2 = 1) as the error bar.

The transit times for all the planets analyzed herein are given
in Table 3.

We also fit transit curves for all our candidates to determine
best fit parameters and errors. The first step was to detrend the
light curve; we masked out each transit and fit a polynomial
over timescales of 1000 minutes and divided the whole light
curve by it, to obtain a detrended, normalized light curve f.
Second, we defined a contamination-corrected light curve via
fcorr = (f − c)/(1 − c), where c is the fractional amount of

22 http://archive.stsci.edu/kepler/
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Table 3
Transit Times for Kepler Transiting Planet Candidates

KOI n tn TTVn σn

BJD-2454900 (days) (days)

738.01 82.749505 + n × 10.337583
738.01 0 82.7642 0.0147 0.0081
738.01 1 93.1033 0.0162 0.0074

(This table is available in its entirety in a machine-readable form in the online
journal. A portion is shown here for guidance regarding its form and content.)

light leaking into the aperture from known nearby stars, the
“contamination” reported on MAST for each target for each
quarter. Third, we assembled a phased light curve by subtracting
the previously measured transit time from each transit.23 We
used only non-overlapping transits, for which another planet’s
transit center was not within 5 hr.24 To construct a flux value of
the long cadence (29.4 min), we took 20 samples evenly spaced
over that time span (using occultsmall; Mandel & Agol 2002)
and averaged them. Finally, we fit the following four parameters:
radius ratio Rp/R�, duration Tdur, scaled impact parameter b, and
linear limb-darkening coefficient u. The duration is defined as
the time between mid-ingress and mid-egress, when the center
of the planet passes over the limb of the star. We report these
parameters in Table 4.

As a check on these stellar and planetary parameters, and as a
first indication that all the planet candidates in each system are

23 For the very small candidates KOI-935.04 and KOI-952.05, individual
transit times were not reliably measured (hence they are not included in
Table 3), so we used a linear ephemeris for fitting their transit parameters, and
held their impact parameters b fixed at 0 and their limb-darkening coefficients
u fixed at 0.5.
24 We also discarded Kepler-31c’s transits near t − 245000 = 16.8 and 400.5,
as these had corrupted data, apparently due to detrending problems near gaps.

Figure 1. Computed and measured durations of the planet candidates in our
sample. The line shows 1:1. The data come close to it, providing a useful check
on our interpretation of planetary systems orbiting the targets stars. That the
data fall slightly below the line could mean either the stellar parameters or the
assumed edge-on and circular orbits are not perfectly correct.

transiting the target stars, we computed for each planet candidate
the transit duration that would be obtained by an orbit that is
edge-on (b = 0) and circular (e = 0). These values are plotted
against the measured values in Figure 1. We see only a little
evidence that these computed values are slightly larger than the
measured ones, an indication that either (1) the computed stellar
radii are too large or stellar masses are too small, (2) the planets’
orbits are systematically seen near pericenter of moderately
eccentric orbits, or—most probably—(3) the planets’ orbits are
not quite edge-on (b �= 0).

Table 4
Key Properties of Planets and Planet Candidates

T0
a Pb TDur

c bd ud Depth Rp/R∗e Rp
f a Mp,max

g

(days) (days) (days) (ppm) (R⊕) (AU) (MJup)

29b 82.750 ± 0.009 10.3376 ± 0.0002 0.117 ± 0.003 0.0–0.85 0.0–0.5 1204 0.0343 ± 0.0008 3.6 ± 0.5 0.09 0.4
29c 78.471 ± 0.016 13.2907 ± 0.0004 0.127 ± 0.006 . . . . . . 871 0.0280 ± 0.0012 2.9 ± 0.4 0.11 0.3

30b 83.04 ± 0.41 29.329 ± 0.022 0.200 ± 0.004 . . . . . . 1540 0.0351 ± 0.0005 3.6 ± 0.5 0.18 0.2
30c 176.904 ± 0.005 60.3251 ± 0.0008 0.2392 ± 0.0011 0.44 ± 0.04 0.584 ± 0.023 20578 0.1375 ± 0.0011 14.3 ± 1.8 0.30 9.1
30d 87.220 ± 0.038 143.213 ± 0.013 0.322 ± 0.003 0.52 ± 0.04 0.56 ± 0.05 11014 0.1020 ± 0.0014 10.6 ± 1.4 0.5 17

935.04 85.10 ± 0.04 9.6172 ± 0.0005 0.176 ± 0.014 . . . 0–0.6 161 0.0136 ± 0.0006 1.8 ± 0.4 0.09 . . .

31b 92.141 ± 0.006 20.8613 ± 0.0002 0.208 ± 0.002 0–0.75 0.38–0.70 1895 0.0411 ± 0.0006 5.5 ± 1.1 0.16 . . .

31c 74.191 ± 0.007 42.6318 ± 0.0005 0.251 ± 0.004 0–0.8 0.18–0.67 1729 0.0400 ± 0.0007 5.3 ± 1.1 0.26 4.7
935.03 67.942 ± 0.009 87.6451 ± 0.0014 0.344 ± 0.010 0–0.9 0.1–1.0 959 0.0291 ± 0.0011 3.9 ± 0.8 0.4 6.8

952.05 65.54 ± 0.04 0.74296 ± 0.00007 0.039 ± 0.004 . . . . . . 224 0.0142 ± 0.0007 0.82 ± 0.07 0.013 . . .

952.04 66.61 ± 0.03 2.8960 ± 0.0003 0.053 ± 0.004 . . . . . . 671 0.0259 ± 0.0013 1.5 ± 0.1 0.033 . . .

32b 74.902 ± 0.008 5.90124 ± 0.00010 0.088 ± 0.005 . . . . . . 1650 0.0389 ± 0.0019 2.2 ± 0.2 0.05 4.1
32c 77.378 ± 0.013 8.7522 ± 0.0003 0.097 ± 0.010 . . . . . . 1453 0.0352 ± 0.0033 2.0 ± 0.2 0.09 0.5
952.03 88.211 ± 0.011 22.7802 ± 0.0005 0.124 ± 0.003 . . . 0.0–0.75 2181 0.0467 ± 0.0011 2.7 ± 0.2 0.13 . . .

Notes.
a BJD-2454900. Rather than statistical error bars, we report the rms of the measured transit timing deviations.
b Derived from the measured transit times. Error bar is the rms of the measured transit timing deviations, divided by the number of transits that the data span.
c Duration of time that the center of the planet overlies the stellar disk.
d Values with ± error bars are from formal fits. However, often we found b and u to be quite poorly constrained and/or degenerate, so we computed grids in b,
u ∈ [0, 1], and give either a 2σ (Δχ2 = 4) range, or if this range covers the whole grid, no value at all.
e Takes into account contamination values from Table 1.
f Using stellar radii from Table 2.
g Based on assumption of dynamical stability and stellar mass from Table 2.
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Table 5
Statistics for Pairs of Planets Candidates

KOIin Frequencyin FAPin KOIout Frequencyout FAPout

Kepler-29b 0.00026034 0.00018 Kepler-29c 0.00026086 0.01513

Kepler-30b 0.00098529 <10−5 Kepler-30c 0.00099742 0.00016
Kepler-30b 0.00698174 0.70891 Kepler-30d 0.00076809 0.29269
Kepler-30c 0.00259824 0.00855 Kepler-30d 0.00262702 <10−5

Kepler-31b 0.00100550 <10−5 Kepler-31c 0.00100732 0.03360
Kepler-31b 0.01140540 0.53060 935.03 0.00229586 0.96650
Kepler-31c 0.00064850 0.02580 935.03 0.00064007 0.13400

952.04 0.00642701 0.11427 Kepler-32b 0.00642994 0.27161
952.04 0.11678254 0.09436 Kepler-32c 0.00252686 0.16165
952.04 0.04389705 0.51453 952.03 0.00587133 0.61985
Kepler-32b 0.00390700 0.00001 Kepler-32c 0.00391415 0.05363
Kepler-32b 0.04389928 0.84870 952.03 0.00613203 0.49878
Kepler-32c 0.02646319 0.87862 952.03 0.01743588 0.65570

Kepler-9b 0.00066337 0.00002 Kepler-9c 0.00066211 0.00170

Kepler-18c 0.00373946 <10−5 Kepler-18d 0.00381809 <10−5

168.02 0.02919133 0.80572 Kepler-23b 0.02919325 0.80219
168.02 0.01021819 0.37630 Kepler-23c 0.01022921 0.65446
Kepler-23b 0.00215313 0.00084 Kepler-23c 0.00214191 <10−5

1102.04 0.00994495 0.22250 1102.02 0.00994282 0.35748
1102.04 0.07345063 0.75543 1102.01 0.00762697 0.91916
1102.04 0.05264294 0.25841 1102.03 0.02506453 0.56294
Kepler-24b 0.00237619 <10−5 Kepler-24c 0.00237709 <10−5

Kepler-24b 0.01749593 0.85933 1102.03 0.01752736 0.14017
Kepler-24c 0.00424632 0.63164 1102.03 0.00424409 0.57523

Kepler-25b 0.00305506 <10−5 Kepler-25c 0.00306491 0.02136

250.03 0.11935114 0.02223 Kepler-26b 0.03794286 0.84931
250.03 0.05797149 0.06283 Kepler-26c 0.00765104 0.10796
Kepler-26b 0.01119109 0.05656 Kepler-26c 0.01118508 0.28181

Kepler-27b 0.00137000 0.00061 Kepler-27c 0.00137385 0.00083

Kepler-28b 0.00426232 <10−5 Kepler-28c 0.00429017 0.00239

Notes. Theoretically predicted O-C frequencies are in cycles per day. False
Alarm Probabilities (FAP) are bold, if the detection is considered significant
(FAP < 10−3). Systems above the line are presented as planetary system
discoveries in this paper. Systems below the double horizontal line are presented
as planetary system discoveries in Holman et al. (2010), in Cochran et al. (2011),
and in the companion papers, Papers II and III.

2.3. Dynamical Expectations and their
Observational Confirmation

We begin N-body integrations near the center of the data set
(t [BJD] = 2455220), using coplanar, circular orbits that match
the observed periods and transit epochs, and using nominal
masses Mp = M⊕(Rp/R⊕)2.06. This set of physical models
was introduced by Lissauer et al. (2011b), and it helps us
diagnose the most prominent physical interactions. For systems
of more than two planets, we break the problem into planet
pairs, in an effort to probe the individual interactions. First,
we calculate transit times as described by Fabrycky (2010)
from the beginning of the data set until 10 years later. Next,
the deviations of those simulated transit times from a linear
ephemeris calculated on those times (i.e., the Simulated minus
Calculated diagram, S − C) is Fourier analyzed to find the
dominant frequency (Scargle 1982; Zechmeister & Kürster
2009), which are given in Table 5.

We test for variations at this frequency in the observed
timing (i.e., the Observed minus Calculated diagram, O − C).
The frequency is already determined theoretically (above), but

we allow amplitude and phase of the sinusoid and a constant
offset to vary freely to fit the data. This approach contrasts
to a periodogram search, which tests many frequencies. By
fixing this important parameter rather than scanning over it,
our method is more sensitive than a periodogram search at
finding variations at the predicted frequency. The reason we
treat the phase as a free parameter is that it is expected to have a
complex dependence on the eccentricities of both the perturbing
planet and the perturbed planet. That is, we cannot rely on the
values from a model which assumes circular orbits. The same is
true for amplitude, which further depends on the masses of the
planets, which are not known at this initial stage of modeling. In
contrast, the dominant frequency from those models should be
present in the data, although perhaps no longer dominant, even
if both planets are eccentric or of a mass different than assumed.
This test for a transit timing variation (TTV) periodicity at the
predicted frequency may not yield a significant detection if (1)
eccentricity significantly changes the character of the variations,
or (2) the transit variations are dominated by a non-transiting
planet. In these cases, large variations may be present, but have
little power at the predicted frequency, so more data-driven
methods (Papers II and III) are more useful. However, we note
that for the systems presented in those papers, the dominant
timescale of variation has a simple physical interpretation and
is captured by the nominal models described in this paper.

The amplitude of the best-fitting sinusoid at the theorized
frequency is recorded, and it is compared to the same calculation
for 105 realizations of the observational O − C data with
scrambled entries. These scrambled data sets should not contain
the signal, but they will contain the same distribution of noise
(which is possibly non-Gaussian, with outliers). Our criterion
for confirmation is that fewer than 100 of these realizations
yield larger amplitudes than the real data, i.e., a False Alarm
Probability (FAP) of <10−3. Note that our method does not
require that both planets show a TTV signal with such a low FAP.
Even if the transits of one planet are at the limit of detectability,
as long as we can establish its orbital period and phase, we
have what we need to estimate its dynamical effect on the other
planet, whose TTVs must behave as expected. The FAP statistics
are reported in Table 5 for the systems confirmed principally
via this method (i.e., those of Tables 1, 2, and 4). Moreover,
we present small FAPs reconfirming Kepler-9bc (Holman et al.
2010), Kepler-18cd (Cochran et al. 2011), and nearly all of the
systems presented in Papers II and III, as these systems show
anticorrelated TTVs at the timescale predicted by the nominal
models.

3. RESULTS

3.1. Confirmation of Kepler Planets

Here we describe the four planetary systems confirmed
principally by this method. Where interesting comparisons can
be made to other methods (Papers II and III), we do so. Table 1
gives the catalog properties and Table 2 gives the physical
properties of the host stars detailed in this paper.

3.1.1. KOI-738 = Kepler-29

The light curve of Kepler-29 is plotted in Figure 2, and
the phase curves of the two Neptune-size planets is plotted in
Figure 3. Their periods of 10.3376(2) days and 13.2907(4) days
form a ratio 1.28566 ± 0.00005, which lies right at a 9:7
(=1.28571) orbital resonance. Being fractionally closer than 8×
10−5 of a second-order resonance in this region would happen
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Figure 2. Kepler-29 light curves. Upper panel: the quarter-normalized, calibrated Kepler photometry (PA); lower panel: the detrended, normalized flux. The transit
times of each planet are indicated by dots at the bottom of each panel.

(A color version of this figure is available in the online journal.)

Figure 3. Kepler-29 phase curves based on detrended, normalized flux. Each
transit is shifted to its measured midtime, and transits with midtimes within 5 hr
of a different planet’s midtime are excluded from both this plot and from the
model fits. Overplotted are transit models, box-car smoothed to the 29.4 minute
cadence. The colors correspond to the dots of Figure 2.

(A color version of this figure is available in the online journal.)

only 0.5% of the time by chance, and similar for other resonant
orders. Being so close to a low-order resonance—consistent with
dynamical libration—suggests dynamical interaction helped to
establish their orbital architecture. Thus, from the period ratio
alone, we have an indication that these objects are in the same
system.

Furthermore, since the ratio is not significantly offset from the
resonance, the nominal integrations result in an extremely long-
timescale variation in O − C (Figure 4), even slightly longer than
the sample 10 year integration used to find it. Therefore, on the
timescale of our data, the predicted sinusoid would look only like
a quadratic in O − C, as is observed (Figure 4, left-hand side).
The data for the shorter-period planet (Kepler-29b) indicate
this quite robustly (FAP � 0.02%) and hint at oppositely
directed curvature for the longer-period planet (Kepler-29c has
FAP � 1.5%). On the basis of the former we confirm the system
really is composed of two planets.

However, a parabolic signature is not specific enough to
uniquely specify the other planet as the perturber, so we carried
the investigation one more step. The nominal prediction for year-
timescale O − C (Figure 4, right-hand side) is not dominated by
a parabola, but is instead a “chopping” signal on the frequency
at which the planets come back to the same configuration,

PTTV = 9 × 10.3376d = 7 × 13.2907d = 93d. (1)

Thus, we search for that timescale. After subtracting the cur-
vature models shown in Figure 4 (left-hand side), we com-
puted the amplitude of the best-fitting sinusoid at the period of
Equation (1). For Kepler-29b and Kepler-29c, the amplitude was
5 and 12 minutes, respectively, quite similar to that predicted
by Figure 4. Then we scrambled the data to find an FAP: it was
0.6% and 1.1% for the two planets, respectively. To emphasize
this point, we plot in Figure 5 the cross-correlation statistic de-
fined in Paper III: a spike is seen at ∼90 days, at positive values
of Ξ (i.e., anticorrelation at the predicted timescale). Therefore,
the signal at the expected chopping timescale is a third, albeit
modestly significant, indication that these two objects are really
planets in the same system.

3.1.2. KOI-806 = Kepler-30

Kepler-30 is a remarkable system of three planets, all with
extremely significant TTVs. Its light curve is shown in Figure 6
and each planet’s phase curve is shown in Figure 7. A Neptune-
size inner planet (Pb = 29.2 days) lies just interior to a 2:1
resonance with a Jupiter-size planet (Pc = 60.3 days). Their
mutual perturbation causes a TTV with a frequency equal to the
difference of the orbital frequencies from the resonance:

PTTV = 1/|2/60.3d − 1/29.2d| = 900d. (2)

Since one of the participating planets has deep transits and thus
is presumably massive, the signal is expected to be large. The
theory predicts a sinusoid with a period a bit longer than the
data. Indeed, the data show an enormous signal consistent with
these expectations (Figure 8). Thus, we confirm Kepler-30b and
Kepler-30c as objects orbiting the same star.

Since their orbits are spaced a bit wider than the other planets
confirmed in this paper, dynamical stability is not as strong
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Figure 4. Timing diagrams of Kepler-29. In the left-hand panels, the data are plotted. In red is the best-fitting sinusoid of the theoretically determined dominant
perturbation frequency. From the amplitude of this sinusoid we determine the significance of the TTV detection. In the middle panels a nominal model, in which the
planets are presumed to start out on circular, coplanar orbits, shown for the decade-span on which we determine the dominant perturbation frequency. Although this
is a poor fit to the data, it illustrates that a very long-timescale and large-amplitude variation is expected due to the planets’ orbits being right on top of a resonance
with each other. Also, a very much smaller variation with a 93 day period is expected. In the right-hand panels, we have zoomed in on the first part of that signal; these
variations are marginally detected in the data.

(A color version of this figure is available in the online journal.)

a constraint on their masses. We find a mass upper limit (see
Section 4.1) of about 17 MJup. However, eccentricity can also
account for the large transit timing signals, so neither planet
is necessarily nearly this massive (in particular, the small-
radius Kepler-30b should not be multiple Jupiter masses). The
deviations from a constant ephemeris for planet b are roughly
parabolic and span ±10 hr, nearly a day, by far the largest timing
variations for a multiple-planet system yet detected (but not
quite rivaling the circumbinary planet Kepler-16(AB)b; Doyle
et al. 2011). However, there is more signal in this TTV curve
than just the large parabolic trend. The rising branch of both
the observed signal and the theoretical signal show a short-
timescale “chopping” effect for Kepler-30b, where the even and
odd transits times show structure, due to the 2:1 resonance. A
similar effect was seen previously in Kepler-9b (Holman et al.
2010). A mass limit that takes into account the observed transit
times will be discussed in Section 4.2. It results in a much
tighter constraint, but it is less robust because it is not based on
an exhaustive exploration of parameter space.

We can also confirm Kepler-30d is likely a planet in the
same system, as TTVs with a ∼2 hr timescale are seen in it
(Figure 9). However, the interpretation is slightly less clear, as
only four transits of Kepler-30d (P = 143.2128 days) have
been recorded so far, so the shape of the variation is poorly
determined. This perturbation is anticorrelated with the swing
seen in its neighbor (Kepler-30c), but that swing might be
predominantly due to Kepler-30c’s near-resonant interaction
with Kepler-30b. According to the nominal integration, the
timescale for the interaction between planets d and c should
be ∼400 days (Figure 9 and Table 5), similar to the span of the
data set. When the data set is doubled, this might be discerned
from the longer timescale (Equation (2)) interaction between
the inner two planets. Even without a detailed analysis, we
determine from transit timing that Kepler-30d is an object in the
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Figure 5. Cross-correlation statistic (Paper III) as a function of TTV period for
Kepler-29 b/c. The dominant variation is of long period (as in Figure 4), and a
secondary and only marginally significant peak occurs at ∼90 days.

same system. We carry out preliminary transit-timing modeling
of the three planets in Section 4.2.

Due to the large timing variations and deep transits found in
this system, we find it instructive to show individual transits to
make several other points. In Figure 10 we plot the transits of
Kepler-30b. Each portion of the light curve is centered where
the transit would be if it followed the best fit linear ephemeris.
Instead, we see that the timing of the planet varies by of
order a day. The standard Kepler pipeline (Jenkins et al. 2010)
assumes near-periodic transits, but the transits are deep enough
for detection despite its strong acceleration. If the transits were
considerably shallower, it may not have yielded a significant
signal before the phase changed by more than a transit duration
(Garcı́a-Melendo & López-Morales 2011). To address this, the
transit-timing subteam of Kepler is currently developing search
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Figure 6. Kepler-30/KOI-806 light curves. Upper panel: quarter-normalized calibrated light curves; the stellar rotation period of 15.25 ± 0.25 days is manifested as
out-of-transit variations caused by spots. Bottom panel: detrended, normalized flux. The transit times of each planet are indicated by dots at the bottom of each panel.

(A color version of this figure is available in the online journal.)

Figure 7. Kepler-30 / KOI-806 phase curves, in the style of Figure 3.

(A color version of this figure is available in the online journal.)

algorithms that assume either a quadratic, a sinusoidal, or a
non-specified quasi-periodic ephemeris.

Finally, consider Figure 11, the individual transits of Kepler-
30c. The residuals (with a 3× zoom) are shown beneath each
transit. The average transit light curve does not capture some
of the variations from transit-to-transit, at the level of ∼10% of
the planet’s depth. We suggest this is due to the planet transiting
over starspots, which are clearly visible in the out-of-transit
curve at the level of a few percent (Figure 6). To extract the
spot period from the light curve, we used a slightly modified
version of the Discrete Correlation Function of Edelson &
Krolik (1988) (see also White & Peterson 1994), as was

recently applied to the CoRoT-7 data (Queloz et al. 2009),
and obtained Prot = 15.25 ± 0.25 days. Modeling the spot-
crossing signal during transits may allow the measurement of
the spin orientation of the host star relative to the planets’ orbits
in this particularly valuable multiple-planet system (Sanchis-
Ojeda et al. 2011; Nutzman et al. 2011; Désert et al. 2011).
Kepler-30c (also known as KOI-806.02) was recently detected
in transit from the ground, by Tingley et al. (2011), who made
the point that it will serve as an interesting system to continue
following even after Kepler finishes its mission.

3.1.3. KOI-935 = Kepler-31

Kepler-31 is a system of four planet candidates spaced just
wide of a 1:2:4:8 resonant configuration. Its light curve is shown
in Figure 12 and its phase curves in Figure 13. From the nominal
models, only the middle two (Kepler-31b and Kepler-31c) are
expected to show a >1 min variation, big enough to be detected
in Kepler data. The timescale due to this near-resonance is
predicted as

PTTV = 1/|2/42.6330d − 1/20.8609d| = 980d. (3)

Thus, we have the now-familiar situation that a long-timescale
variation is predicted due to the interaction. In this case we sup-
plemented the data set with Quarters 7 and 8 as well, which
were able to capture more of this long-timescale variation. The
data for Kepler-31b indeed clearly show a variation matching
the prediction (Figure 14, top panels), with a low false alarm
probability. We are seeing its orbital period increase due to the
torque exerted by a 2:1 mean-motion resonance. The magnitude
of this torque depends on both the planets’ masses and eccen-
tricities, so it is not surprising the theory underpredicted the
amplitude by a factor of ∼3. Thus we confirm that these two
objects are interacting, which combined with the mass limits set
in Section 4.1 confirms them as planets.

The hint (FAP = 3.4%) of TTVs of Kepler-31c due to Kepler-
31b does not itself satisfy our statistical criterion. Nevertheless,
the clear detection of TTVs in Kepler-31b consistent with the
timescale predicted due to Kepler-31c provides evidence that
they are in the same physical system.
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Figure 8. Kepler-30. Transit timing diagram with theoretical model compared, for the interaction between Kepler-30b and Kepler-30c. Panels are the same as in
Figure 4.

(A color version of this figure is available in the online journal.)

Figure 9. Kepler-30. Transit timing diagram with theoretical model compared, for the interaction between Kepler-30c (top) and Kepler-30d (bottom). Panels are the
same as in Figure 4.

(A color version of this figure is available in the online journal.)

The system also has a long-period candidate KOI 935.03
and an inner candidate KOI 935.04, but these are not visibly
interacting.

3.1.4. KOI-952 = Kepler-32

Kepler-32 boasts five planet candidates, one of the richest
systems among the Kepler discoveries (Lissauer et al. 2011b).
Its light curve and phase curves are plotted in Figures 15 and 16,
respectively. The light curve has variations suggesting a starspot
signal, in which case we determine Prot = 37.8±1.2 days using
an autocorrelation technique as above.

Candidates .01 and .02 have short orbital periods and lie close
to a 3:2 mean-motion resonance: P.02/P.01 = 1.483. Therefore,
we expect a short TTV timescale:

PTTV = 1/|3/8.7522d − 2/5.9012d| = 260d. (4)

The observed timescale of TTVs is consistent with this expec-
tation from the nominal N-body integrations (Figure 17). The
amplitude is somewhat larger than predicted by the nominal
model (∼2.6 and 3.3×). This is not unexpected as even modest
eccentricities can significantly increase the amplitude and com-
pletely change the phase of the predicted TTVs. The amplitudes
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Figure 10. Individual transits of Kepler-30b. Each portion of the light curve is
shown with its transit shifted to the best linear-ephemeris value, and the model
is shown with the best fit transit time taken into account. This is the biggest
transit timing variation yet reported in multiple-planet systems.

(A color version of this figure is available in the online journal.)

also scale with the planet masses, which could be larger than
those adopted in our nominal model. The ratio of TTV ampli-
tudes for Kepler-32b and Kepler-32c agrees with the predictions
of the nominal model to ∼20%. Despite these uncertainties, the
requirement of dynamical stability provides firm upper limits
on the planet masses. Thus, we confirm this pair of planets and
rename them as Kepler-32b and Kepler-32c.

Based on the nominal N-body integrations of the five planets,
we expect shorter timescales and smaller amplitudes for transit
variations of KOI-952.03, .04, and .05. Indeed, no significant
transit time variations were seen in them, nor do they induce
detectable variation in Kepler-32b or Kepler-32c, so we cannot
confirm them via TTVs at this time.

3.2. Identification of the Host Star

In this section we discuss the probability that the planets
are actually hosted by a star other than the target. The area on

Figure 11. Individual transits of Kepler-30c (KOI-806.02, the planet observed
by Tingley et al. 2011), in the style of Figure 10. Below each transit are shown
the residuals from the model, scaled up by a factor of three to better show the
deviations. The largest variations appear in eclipse and are correlated point-to-
point. Large starspots are visible in the light curve; we hypothesize that this
excess variability comes from the planet transiting over them.

(A color version of this figure is available in the online journal.)

the sky in which that other star is allowed is limited via lack of
movement of the centroid during transits (Torres et al. 2011; S. T.
Bryson et al., in preparation). Because of the low space density
of transiting planetary systems, it is generally rather unlikely
(quantified for each candidate below) that it is hosted by an
unrelated background or foreground star, which is a minority
contribution to the light of the target. In comparison, because
most stars are components of binaries, it is not inconceivable that
our targets are physically bound binary stars where the second
component is not detected, and the fainter component hosts the
interacting planets (probability quantified below). To pursue
these calculations, we assume a maximum planetary radius
consisting of the upper envelope of the mass-radius relation of
known exoplanets. If the radii implied by a blend scenario are
either above that limit or imply masses too large for dynamical
stability given the configuration of planets, then we reject that
blend scenario. Now we discuss details of each system.

3.2.1. Kepler-29

Kepler-29 has low contamination from surrounding stars. The
nearest stars to Kepler-29, listed in the Kepler Input Catalog
(KIC), are KID 10358756, a Kp = 17.5 mag star located
6.5 arcsec to the south, and KID 10358742 located 9 arcsec
away. We examined the UKIRT J-band image and obtained a
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(a)

(b)

Figure 12. Kepler-31 light curves, in the style of Figure 2.

(A color version of this figure is available in the online journal.)

Figure 13. Kepler-31 phase curves, in the style of Figure 3. For the small inner
candidate KOI-935.04, the phase is with respect to a linear ephemeris, the data
in that panel are binned together in phase. The vertical scale of that panel is
20% of the other panels.

(A color version of this figure is available in the online journal.)

new image from Faulkes Telescope North in the Sloan-r band
(Figure 18); neither showed evidence of additional companions
to a magnitude difference of ∼5 in to ∼1 arcsec. We therefore
adopt the aperture contamination calculated using stars in the
KIC alone.

The planets pass the centroid test: the photocenter out-of-
transit and during transit are consistent to within (2σ , 1σ ) for
planets (b, c) respectively. This rules out background stars as the

planet host if they are farther than Rc = (0.7, 0.8) arcsec from
the target, where Rc is the 3σ radius of confusion. Thus none
of the background stars in the image can be the host. Next we
computed the space density of background stars, to determine
the chance that the planetary system is actually around a star
other than the target. That is, we assume that the TTV signature
robustly indicates that this system is planetary, but we wish to
see the probability that it is around a star other than the one we
have characterized.

Stability limits (Section 4.1) require that the planets cannot
be too massive relative to their host, otherwise they would be
unstable. In this case, the mass ratio of both planets to their host
must be �2 × 10−4. With such low masses, we consider 1 RJup
to be a robust upper limit for the radii of the planets. This sets
the constraint on the maximum magnitude difference that the
blending star can have. Any star fainter than this limit would not
contribute enough to the combined flux to generate an eclipse
as deep as observed (1204 ppm). Based on the U-shaped light
curve, we assumed that grazing transits were excluded, such
that (Rp/R�)2 is a good approximation of the (undiluted) depth.
We used Yonsei–Yale isochrones (3 Gyr, solar metallicity) to
relate the maximum allowed magnitude difference (Δ Kp) to the
spectral type and mass of the blending object.

The background host hypothesis splits into two distinct
cases: the planets are larger and (1) orbit a physically unas-
sociated star, or (2) orbit an unseen binary companion of the
target.

For the former, we used the Besancon model of the galaxy
(Robin et al. 2003) to estimate the number of background stars
within the region allowed by the centroid shift result and the
region in the allowed magnitude difference (or stellar mass). The
probability of having a background star in this region is 0.6%.
If we assume (conservatively) that the more massive planets on
the background star are as likely, a priori, as less massive planets
on the target star, then the odds ratio that the target star hosts
the planets rather than a background star is ∼170:1.

Next we calculate the probability of the latter case, that the
planetary system is orbiting an unseen stellar companion to
the target star. The blends involving stars less massive than a
0.6 M� star would need large planets, which in the range of
known exoplanets would be too massive to be stable. In the
range 0.6–0.8 M�, we can use the (Sloan) r − (2MASS) K

10



The Astrophysical Journal, 750:114 (17pp), 2012 May 10 Fabrycky et al.

Figure 14. Kepler-31. Transit timing diagram with theoretical model compared. The data for planets b and c show curvature on a long timescale, as predicted by a
theoretical model in which they torque each other due to the close 2:1 resonance.

(A color version of this figure is available in the online journal.)

Figure 15. Kepler-32 light curve. Upper panel: quarter-normalized calibrated light curves; the stellar rotation period of 37.8 ± 1.2 days is evident in quarters 5 and 6.
Bottom panel: the bottom, middle, and top rows of dots (blue, green, teal) are for Kepler-32b, Kepler-32c and KOI-952.03. (The short-period candidates KOI-952.04
and KOI-952.05 are not detected in individual transits, so no pointers are given for them.)

(A color version of this figure is available in the online journal.)

color of the target to rule out such blends, as they would not
correspond to the observed color. A blended star more massive
than 0.8 M� is allowed, and we call this scenario a “twin star”
blend. It is possible to put limits on such blends because we do
not see two stars in the images, nor do we see two sets of lines
in the spectrum. The only remaining case is that the two twins
have a large separation along the line of sight (a small velocity
difference) but not in the plane of the sky. If there were such
a case, it would correspond to twice the light, so the undiluted
depth of transits would be twice as large, so the planets would
be ∼√

2 larger.
Even without employing that constraint, we use Raghavan

et al. (2010) and Duquennoy & Mayor (1991) to determine
the distribution (frequency/mass ratio) of binaries and find the
probability of having an unseen companion star in the allowed
mass range (0.8–1.0 M�) is 7%.

For this target, which has a clean centroid and closely packed
planets that would go unstable if they were gas-giant masses, we
find that background hosts are much less likely than the target
star being the host.

3.2.2. Kepler-30

We obtained an I-band image of Kepler-30 from Lick 1-m
telescope, and found no stars besides those in the KIC, the
closest of which is Kp = 19.8 mag KIC 3832477, 7.6 arcsec
to the east–northeast. A star ∼3 arcsec to the east is marginally
detected in J band with UKIRT, suggesting it is �5 mag fainter
than the target in Kp. It cannot host the 2% deep transit of Kepler-
32c, and we neglect its additional contribution to the dilution.
Furthermore, since planets c and d produce deep transits, their
centroid information is particularly valuable. Their transits have
a consistent centroid with the target to ∼1σ in either case, and
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Figure 16. Kepler-31 phase curves, in the style of Figure 3. For the small inner
candidate KOI-952.05, the phase is with respect to a linear ephemeris, the data
in that panel are binned together in phase. The vertical scale of that panel is
20% of the other panels.

(A color version of this figure is available in the online journal.)

they limit the distance of a putative blend hosting the system to
be within Rc = 0.2 arcsec of the target.

As a routine part of vetting planet candidates, the depth for
odd-numbered transits was compared to the depth for even-
numbered transits. For the other candidates reported in this
paper, there is agreement to ∼3σ ; however in this system,
they disagree by 16σ for c and 4σ for d. In some cases, that
would point to a near-twin blended eclipsing binary causing
the events. In this case, we have already identified via Figure 11
that transiting over starspots is the probable cause of these depth
variations.

Using the same procedure as for Kepler-29, we find the
probability that an unassociated background star hosts the
planets is ∼2 × 10−4. In this case, a physical binary companion
cannot host the planets, as then their depths would be large
despite dilution, and their inferred radii would be larger than
any planetary radii thus far measured.

3.2.3. Kepler-31

Kepler-31 has low contamination from surrounding stars; no
stars are seen within 8 arcsec in a UKIRT J-band image, and the
closest comparably bright star is KIC 9347893, 9.4 arcsec to the
west. Moreover, the centroid information has all transits coinci-
dent within 1σ of the target. The transits cannot be hosted by a

background star farther than Rc = (0.3, 0.5, 0.8) arcsec in the
case of Kepler-31b, Kepler-31c, and KOI-935.03, respectively.
For KOI-935.04, the transits are too shallow for a constraining
centroid analysis.

Again pursuing probability calculations as above, the chance
of a star unassociated with the target being the actual host is only
∼3 × 10−4. The probability of a physical companion hosting
the planets is ∼0.04.

3.2.4. Kepler-32

A J-band image from UKIRT shows the nearest star to
be KID 9787232, ∼6.′′6 to the west, resulting in rather low
contamination.

The centroids during transit for Kepler-32b and Kepler-32c
differ from those out-of-transit by only ∼2σ , roughly consistent
with measurement uncertainties. The ∼3σ radii of confusion Rc
are 0.′′5 for Kepler-32b and 0.′′8 for Kepler-32c. For KOI-952.03,
.04, and .05, the transits are too shallow for a constraining
centroid analysis.

The host star is an M-dwarf and therefore of special interest.
The Kepler Follow-up Program has obtained two spectra of
Kepler-32: one spectrum from McDonald Observatory and
one from Keck Observatory. Both spectra are weak due to
the faintness of the star (Kp = 15.8). The cross-correlation
function between the observed spectra and available models
is maximized for temperatures of ∼3900 K and ∼3600 K,
respectively. However, the atmospheric parameters are not well
determined, as the star is cooler than the library of atmosphere
models available. Both spectra are consistent with the KIC
classification as a cool dwarf (Teff = 3911 K, log g = 4.64,
[M/H] = 0.172). We conservatively adopt these values of Teff
and log g with uncertainties of 200K and 0.3 dex and a [M/H] of
0 ± 0.4 based on the KIC (Brown et al. 2011). By comparing to
the Yonsei–Yale isochrones, we derive values for the stellar mass
(0.58 ± 0.05 M�) and radius (0.53 ± 0.04 R�) that are slightly
larger than those from the KIC. We estimate a luminosity of
0.06 ± 0.02 L� and an age of �9 Gyr.

Muirhead et al. (2011) have also obtained high-resolution
IR spectrum of Kepler-32=KOI-952, finding a stellar Teff =
3726+73

−67, [Fe/H] = 0.04+0.08
−0.10. Interpreting their data via Padova

models (Girardi et al. 2002), they inferred a considerably
less massive and smaller star. We encourage further detailed
analyses of the host star properties, as these have considerable
uncertainties that directly affect the sizes and masses for the
planets.

The probability of a star unassociated with the target being
the actual host is only ∼3 × 10−3. The probability of a physical
companion hosting the planets is ∼0.34. This latter number
is relatively large in this case because all the transit depths
are small, so they could in principle be much larger planets
hosted by a star which is dramatically diluted. This opens up
the possibilities for a very large range of companions (down to
masses as low as ∼0.1 M�) that could host one or more of these
objects, as long as transits near apocenter are invoked to match
the durations (Figure 1).

4. PLANETARY MASS LIMITS

4.1. Dynamical Stability Analysis

Many of the systems in this paper and its companions
(Papers II and III) are not completely solvable with present data;
e.g., the gravitational interactions of the component planets do
not yield unique solutions for their masses. Rather, degeneracy
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Figure 17. Comparison of measured transit times (left) and transit times predicted by the nominal model (right) for a system containing only Kepler-32b (top) and
Kepler-32c (bottom). Details are described in the caption to Figure 4.

(A color version of this figure is available in the online journal.)

Figure 18. Faulkes Telescope North optical (Sloan r) image of Kepler-29. The
scale is 1 arcmin on each side, and north is up.

exists between the masses and eccentricities, as was the case
for Kepler-9 before radial velocity constraints were applied
(Holman et al. 2010). However, we constrain them to be in
the planetary regime because the pairs of planets all have small
period ratios. In two-planet systems, a sharp boundary exists
between provably stable orbits (Marchal & Bozis 1982) and
orbits that are allowed to cross, according to energy and angular
momentum conservation. This boundary is when the separation
of the planetary semimajor axes, aout − ain, exceeds a certain
number (2

√
3 ≈ 3.46, for coplanar, circular orbits) of mutual

Hill spheres,

rH = ain + aout

2

(
Min + Mout

3M�

)1/3

. (5)

Figure 19. Time until instability, as a function of planetary mass. This figure
shows that for these objects to be stable, they must have masses traditionally
associated with the planetary domain.

When the separation is only slightly closer than this, numerical
integrations generally show the planets chaotically interact and
have close encounters after only several million orbits, an
astrophysically short amount of time (Gladman 1993; Barnes &
Greenberg 2006). An exception is that planets locked in mean
motion resonances may avoid each other due to the correlated
phases of their orbits; Neptune and Pluto are a familiar example
(Cohen & Hubbard 1965).

We ran a suite of numerical integrations for each planetary
pair with a significant TTV interaction to determine when the
masses would be too large to yield a long-term stable system.
We used the HYBRID integrator within the Mercury package
(Chambers 1999). Since we stopped after close encounters,
the mixed-variable symplectic algorithm was exclusively used
(Wisdom & Holman 1991), with a timestep 1/20th of the inner
planet’s orbital period. An implementation of general relativistic
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precession was included (Nobili & Roxburgh 1986; Lissauer
et al. 2011b). We picked the planets’ ratio of masses from their
ratio of radii according to the relation Min/Mout = (Rin/Rout)2.06

(Lissauer et al. 2011b). We performed six integrations with
differing total mass, starting at the theoretical stability boundary
and becoming more massive by logarithmic steps of 0.25 dex.
The orbits were taken as initially circular and coplanar, with
phases determined from the Kepler data.

We stopped the integration when planets came within 3 rH
of each other, calling this time the instability timescale. We
ran only one integration at each mass, so we recognize that
this investigation only identifies the order of magnitude of
that timescale—however, consistent with previous investigators
(Chambers et al. 1996; Duncan & Lissauer 1997) we find that a
factor-of-two change in mass causes many orders of magnitude
of difference in instability time. Figure 19 gives the instability
timescales as a function of planetary mass. We determine the
mass upper limits based on the minimum mass for which the
integrations start going unstable on �10 Myr timescales; for
this purpose, we do not need to run the integrations for the
likely lifetimes of these systems. These limits are given in
Table 4. These are quite conservative upper limits, and the
true masses could all be quite smaller. Full modeling of the
systems, including eccentricities, is required for a true mass
measurement via TTVs (e.g., Kepler-11 by Lissauer et al.
2011a). Nevertheless, this exercise shows that all of the systems
we are presenting should be considered “planetary” systems,
rather than stellar systems.

In this investigation, we have simulated only pairs of planets
and neglected additional planets, either other transiting candi-
dates or completely unknown planets. When third planets are
added, stability constraints have been found by numerical inte-
grations to become even more stringent (Chambers et al. 1996;
Chatterjee et al. 2008; Fabrycky & Murray-Clay 2010). An inter-
esting exception was discussed by Raymond & Barnes (2005),
but the third planet in that case quenched secular eccentricity
cycles, which is not the chaotic mechanism for instability we
have investigated above. Therefore the future confirmation or
discovery of such planets will not compromise the conclusions
here.

Similarly, we neglected possible eccentricity in the planets.
For non-resonant cases, non-zero eccentricities would only serve
to bring the planets closer together at conjunctions, making
them more unstable (Duncan et al. 1989; Zhou et al. 2007).
However, eccentricities can actually increase the stability of
resonant pairs. This effect could prolong the lifetime of Kepler-
29, such that its true upper-limit masses are underestimated by
at least a factor of several. Since these orbits are closely packed
however, resonances besides the 9:7 can overlap with it, leading
to chaotic instabilities. Using the Δa/a > 1.3μ2/7 criterion for
stability (Wisdom 1980), the maximum planet-to-star mass ratio
is μ = 0.02. If that mass is shared among the planets, then they
both fall in the planetary regime (�10 MJup).

4.2. Preliminary Dynamical Fits to the Transits Times

We have used the method first developed for the Kepler-9 and
Kepler-11 discovery papers (Holman et al. 2010; Lissauer et al.
2011a) to fit preliminary dynamical models to all the planetary
pairs of this paper and the two companion papers.

We used the Levenberg–Marquardt algorithm to drive three-
body numerical integrations, minimizing the χ2 of the residuals
of the data minus the model. The free parameters are the mass
Mp of each planet and the Jacobian coordinates at dynamical

epoch BJD 2455220.0 of each planet: orbital period P, epoch of
mid-transit T0, and the in-sky-plane and perpendicular-to-sky-
plane components of the eccentricity vector, e cos ω and e sin ω,
respectively. We ignore the dynamical effect of any planets that
remain candidates in this work, just focusing on the interaction
between the planets that show significant TTVs.

The resulting fit parameters may be found in Table 6. In many
cases, the eccentricities and masses are very highly correlated,
resulting in poor errors on each quantity. However, we report
many more decimal places beyond what seems significant, as to
make these fits reproducible by others. We note the contribution
to χ2 for each planet and the number of degrees of freedom (dof)
for that planet, meaning its number of data points minus the five
free parameters used to model it. (In two-planet fits, there were
10 free parameters total.) In fits that are statistically acceptable,
χ2 should equal dof to within a few times

√
dof. Of the systems

confirmed in this paper, one of the poorer fits was for Kepler-
30/KOI-806, which might be attributable to starspots’ effect on
estimates of transit times.

We found that Kepler-29, the system at the 9:7 resonance,
needed special treatment. Allowed to fit freely, the eccentricities
solved for large values, causing the planets to cross. Because
of phase protection by the resonance, this was allowed by the
data, but after a secular timescale the planets began chaotic
scattering. Therefore in the fit reported in Table 6, we restricted
the absolute value of each eccentricity components to be less
than 0.05. The result was integrated using the Bulirsch–Stoer
algorithm in Mercury (Chambers 1999) for 30 Myr, during
which it showed stable and regular orbital oscillations. In other
systems the eccentricities are quite moderate compared with the
separation in semimajor axis, and we have not verified stability
for these. In future detailed fits to the data, stability could be
used as a principle guiding the results.

In only a few cases are the masses meaningfully measured,
according to the formal error bars (e.g., �3σ ). These error
bars sample only the local minimum of the fit. We recognize
that drawing meaning from the local curvature about the
entire probability surface is hazardous. However, we hope this
preliminary work on transit fits will inspire other investigators
to exhaustively explore orbital configurations that fit the data. In
the meantime, we tried to set 3σ upper limits on the masses of
the planets via the method developed in Holman et al. (2010):
we moved the mass of one of the planets away from the best fit,
incrementing by ∼50%, and solving for the other parameters
each time. When χ2 had grown to 9 greater than the χ2 of the
best fit, we used the mass of the planet in that fit to define the 3σ
upper limit. These limits are reported in Table 6. In comparison
to the stability study, these TTV limits on mass are much tighter.
However, this method is rather delicate, in that we have not fully
explored the global parameter space for a possibly more massive
planet. The stability study provides more robust upper limits on
the masses of these planets.

5. DISCUSSION

Taking stock of the results, we have

1. developed a new approach to confirming planets by testing
whether the transit timing signal is consistent with that
produced by a known perturber, a second transiting planet,

2. applied this approach to Kepler transit timing data, and
confirmed 9 planets in 4 planetary systems (and reconfirmed
16 planets in 8 additional systems), and
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Table 6
Example TTV Solution for Planets Candidates

System Planet P T0 e cos ω e sin ω Mp Mp (3σ upper- χ2/dof
M� (M�) (days) BJD-2454900 (formal, M⊕) limit, M⊕)

Kepler-23 b 7.107977 320.024941 0.030090 −0.061653 4.8 80 112.1/60
1.21 ±0.000934 ±0.007984 ±0.454676 ±0.357376 ±15.6

c 10.741598 324.116640 0.034012 −0.056846 15.0 700 38.2/39
±0.001250 ±0.002704 ±0.386216 ±0.294888 ±49.8

Kepler-24 b 8.163886 326.108132 −0.336422 0.238848 56.1 130 86.3/65
1.10 ±0.004031 ±0.005328 ±0.090501 ±0.117101 ±15.8

c 12.315302 329.547776 −0.267037 0.202843 102.8 350 131.7/40
±0.003671 ±0.006364 ±0.082641 ±0.099609 ±21.4

Kepler-25 b 6.238383 323.057366 −0.011764 −0.007540 8.1 310 83.4/69
1.10 ±0.000100 ±0.000547 ±0.002010 ±0.003149 ±3.1

c 12.720640 327.772432 −0.029885 −0.020024 13.3 30 43.9/31
±0.000179 ±0.000337 ±0.006415 ±0.003600 ±3.9

Kepler-26 b 12.281204 324.486687 −0.009929 −0.360464 2.0 4.6 65.1/30
0.55 ±0.000580 ±0.000982 ±0.018073 ±0.366736 ±1.0

c 17.253059 324.406889 −0.017962 −0.317353 3.9 20 25.4/19
±0.001135 ±0.001088 ±0.015168 ±0.316959 ±1.4

Kepler-27 b 15.337102 321.703954 0.015924 0.000148 28.5 800 34.3/25
0.94 ±0.002742 ±0.001715 ±0.010802 ±0.001418 ±12.6

c 31.330788 337.066843 0.032298 0.003735 51.4 260 20.2/10
±0.000717 ±0.001887 ±0.026605 ±0.009598 ±43.7

Kepler-28 b 5.911764 323.929704 −0.050253 −0.075099 3.8 320 54.4/70
0.89 ±0.000426 ±0.002061 ±0.175120 ±0.469131 ±6.9

c 8.986416 324.352707 −0.020126 −0.078354 4.9 50 93.3/45
±0.000612 ±0.002432 ±0.139930 ±0.376697 ±9.3

Kepler-29 b 10.335908 320.506863 −0.049991 −0.039249 2.8 8.2 42.5/41
1.05 ±0.001440 ±0.002675 ±0.035113 ±0.033556 ±2.4

c 13.293451 331.005742 −0.008036 −0.050000 2.3 5.4 54.4/29
±0.001333 ±0.003308 ±0.014426 ±0.000000 ±2.0

Kepler-30 b 29.221117 346.362257 0.112642 0.058682 3.3 7.3 19.5/10
0.99 ±0.009642 ±0.012845 ±0.025241 ±0.031588 ±1.7

c 60.326939 357.882515 0.036164 −0.008941 240 870 10.5/2
±0.001034 ±0.000966 ±0.019612 ±0.003552 ±90

d 143.337469 373.644127 −0.018594 −0.000196 22 160 0.033/0
±0.040298 ±0.013796 ±0.019412 ±0.010622 ±14

Kepler-31 b 20.856113 321.610535 0.007721 −0.000270 18.4 140 27.8/25
1.09 ±0.002883 ±0.002182 ±0.003806 ±0.005266 35.5

c 42.637618 329.984885 −0.001835 0.031462 34.9 120 13.9/8
±0.009447 ±0.002964 ±0.015429 ±0.034318 21.2

Kepler-32 b 5.900841 322.747894 −0.003717 −0.000888 7.2 24 97.7/71
0.49 ±0.000188 ±0.001616 ±0.008006 ±0.001491 ±4.1

c 8.752819 322.449605 0.001713 0.001658 5.2 18 70.8/47
±0.000545 ±0.002362 ±0.002330 ±0.001150 ±3.5

Note. A sample of TTV-fit results for each system presented here.

3. showed that their masses must be in the planetary regime
via stability arguments, and provided dynamical fits to the
data.

The systems discussed herein have remarkable properties.
Kepler-29 is clearly engaged in a second-order resonance,

which has only been observed for the 3:1 resonance previously
(HD 60532; Desort et al. 2008; Laskar & Correia 2009). In such
cases, adiabatic capture from low-eccentricity is possible, but at
a finite speed of migration, the capture probability is enhanced if
planets migrated toward each other on eccentric orbits (Rein &
Papaloizou 2010; Mustill & Wyatt 2011). Previously for systems
of super-Earths, theorists (Terquem & Papaloizou 2007; McNeil
& Nelson 2010; Ida & Lin 2010; Liu et al. 2011; Pierens et al.

2011) have suggested planets could be about this close to one
another and trapped in resonances, but they have always focused
on first-order resonances. Within the context of those formation
models, the relative proportion of higher-order resonances is
now a pertinent question.

Kepler-30 is perhaps the most dramatic system described
here, having properties similar to multiple-planet systems long-
known from Doppler surveys. The inner planet b has a ∼1 day
swing in its transit times, perturbed by its nearly 2:1 outer
companion, c. This situation is very similar to that predicted
by Agol et al. (2005) for the 2:1 resonant pair GJ 876 b/c,
as the outer two planets clearly have gas-giant size. Continued
monitoring of the transits may be able to give unique parameters
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for this system, and future information about duration variations
or lack thereof may allow a measurement of their mutual orbital
inclination. Planet c has a clear spot-crossing signal; its depth
varies as a function of the spot phase of its host star. With
careful spot modeling, this may allow the interpretation of the
orientation of the host star’s spin relative to the planets’ orbits.
Moreover, its transits are rather deep, from which we infer a large
radius (Table 4: 1.27 ± 0.16 RJup). This is larger than expected
for a planet receiving so little irradiation: the theoretical models
by Fortney et al. (2007) are no bigger than ∼1.2 RJup, and
Demory & Seager (2011) confirmed that observationally using
Kepler giant-planet candidates. We entertained the notion that
this increased depth might be due to rings (Schlichting & Chang
2011), but unfortunately the characteristic “shoulders” were not
seen in the transit light curve.

Kepler-31 has a 20.9 day planet and a 42.6 day planet now
confirmed. Two other candidates, at 9 and 88 days, are present
yet remain unconfirmed. If they can be confirmed at a later date,
this system will be in an extraordinary near-1:2:4:8 resonant
chain. Evidence for that sort of architecture has been building on
several different fronts: radial velocity detections (HD 40307:
Mayor et al. 2009; GJ 876: Rivera et al. 2010; HD 20794:
Pepe et al. 2011), and a dramatic four-planet system discovered
by direct imaging (HR 8799: Fabrycky & Murray-Clay 2010;
Marois et al. 2010). It has even been suggested that the solar
system giant planets began in a multi-resonant configuration
(Morbidelli et al. 2007; Thommes et al. 2008), albeit with links
more compact than 2:1 resonances (Masset & Snellgrove 2001;
Pierens & Nelson 2008).

Kepler-32 is a particularly clean case of anticorrelated transit
times that also have a timescale matching baseline expectations.
It is particularly interesting to confirm these planets, because
their host star is an M-dwarf, around which small planets appear
to be particularly abundant (Howard et al. 2011). The light
curve boasts three additional candidate planets as well, making
a particularly rich system.

We can attribute most of these signals to a slight displacement
of the planets’ mean motions from a strict commensurability:
they are involved in a “great inequality,” the orbital element
oscillations of Jupiter and Saturn due to their displacement from
the 5:2 resonance. The same sort of perturbations are detected
in the system of planets orbiting PSR1257+12 (Rasio et al.
1992; Malhotra et al. 1992; Peale 1993; Wolszczan 1994). The
planets torque each other’s orbits, resulting in a period increase
or decrease, depending on where the location of conjunctions is
relative to their periapses and to the line-of-sight. The departure
from commensurability causes this location to move, generating
a predictable fluctuation in their orbital periods. The timescale
for this fluctuation is easily calculated from their orbital periods:
Equations (1)–(4). A general feature is that large-amplitude
timing signals take many orbits to manifest themselves. If the
Kepler mission is extended to eight years, this method would
reach its full potential for planetary pairs with longer “great
inequality” or libration timescales (e.g., Kepler-29, Figure 4). As
the Kepler mission seeks to confirm longer-period candidates,
in particular candidates in the habitable zone, we will be
attempting transit timing analyses based on fewer transits.
Dynamical theory may be required to condition our expectations
about transit timing variations. This paper is a stepping stone to
that type of analysis.

Along with Papers II and III, we have confirmed 21 planets
in 10 systems. The transit timing method has very little bias
with respect to the magnitude of the stellar host, as planetary

Figure 20. Histogram of stellar magnitudes in the Kepler band (Kp). The TTV
catalog of planets confirmed by their interaction with each other (the 10 planetary
systems from Paper II, Paper III, and this paper) is not dependent on follow-up
with other telescopes, so it more uniformly samples the intrinsic magnitude
distribution of Kepler stars. The previously confirmed planets, by the Kepler
team (Kepler-4-Kepler-22) and also by Santerne et al. (2011b), Santerne et al.
(2011a), Bouchy et al. (2012), Bonomo et al. (2011), and Johnson et al. (2012),
do depend on other telescopes, and thus tend toward brighter targets.

(A color version of this figure is available in the online journal.)

systems with large, detectable perturbations are hosted by
stars throughout the sample. This contrasts with other Kepler
confirmations so far, which have mostly relied on ground-
based (and Spitzer Space Telescope) follow-up to confirm the
planetary nature of the transiting objects. In particular, we show
in Figure 20 that the current TTV confirmations are drawn from
a very much fainter population than the previous confirmations.

In two of these systems, as well as systems in Papers II
and III, additional candidate planets have been found, but not
confirmed via TTV or other methods. A priori, it has been argued
that planet candidates in multiple-planet systems have a higher
fidelity than planet candidates that are by themselves, even
before performing follow-up observations or analysis (Lissauer
et al. 2011b; Latham et al. 2011; Lissauer et al. 2012). Previously
our team has pursued further analysis to validate additional small
planets in TTV-active planetary systems: Kepler-9d (Torres
et al. 2011), Kepler-10c (Fressin et al. 2011), and Kepler-18b
(Cochran et al. 2011). For the candidates listed here, many have
good limits on Rc, the distance to which an unseen blend is
a possible source of these transits. Their phased light curves
are easily fit by planetary light curves (“U” shaped) rather than
preferring blended binary light curves (which are usually “V”
shaped). Finally, the additional candidates have durations that
can be explained by orbiting the same stars as the confirmed
planets (Figure 1). Despite the fainter target stars which makes
formal validation difficult, we expect that most if not all of these
candidates are indeed planets.

Funding for this mission is provided by NASA’s Science Mis-
sion Directorate. We thank the entire Kepler team for the many
years of work that is proving so successful. We thank E. Agol
for comments and G. Sokol for assistance analyzing starspot
variations. D.C.F. and J.A.C. acknowledge support for this work
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Bonomo, A. S., Hébrard, G., Santerne, A., et al. 2012, A&A, 538, A96
Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 736, 19
Bouchy, F., Bonomo, A. S., Santerne, A., et al. 2011, A&A, 533, A83
Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ, 142,

112
Chambers, J. E. 1999, MNRAS, 304, 793
Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996, Icarus, 119, 261
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, ApJ, 686, 580
Cochran, W. D., Fabrycky, D. C., Torres, G., et al. 2011, ApJS, 197, 7
Cohen, C. J., & Hubbard, E. C. 1965, AJ, 70, 10
Demory, B.-O., & Seager, S. 2011, ApJS, 197, 12
Désert, J.-M., Charbonneau, D., Demory, B.-O., et al. 2011, ApJS, 197, 14
Desort, M., Lagrange, A.-M., Galland, F., et al. 2008, A&A, 491, 883
Doyle, L. R., Carter, J. A., Fabrycky, D. C., et al. 2011, Science, 333, 1602
Duncan, M., Quinn, T., & Tremaine, S. 1989, Icarus, 82, 402
Duncan, M. J., & Lissauer, J. J. 1997, Icarus, 125, 1
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Edelson, R. A., & Krolik, J. H. 1988, ApJ, 333, 646
Fabrycky, D. C. 2010, in Non-Keplerian Dynamics of Exoplanets, ed. S. Seager

(Tucson, AZ: Univ. Arizona Press), 217
Fabrycky, D. C., & Murray-Clay, R. A. 2010, ApJ, 710, 1408
Ford, E. B., Fabrycky, D. C., Steffen, J. H., et al. 2012, ApJ, 750, 113 (Paper II)
Ford, E. B., Rowe, J. F., Fabrycky, D. C., et al. 2011, ApJS, 197, 2
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661
Fressin, F., Torres, G., Désert, J.-M., et al. 2011, ApJS, 197, 5
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