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Abstract We present the results of our recent study on the interactions between a giant
planet and a self-gravitating gas disk. We investigate how the disk’s self-gravity affects
the gap formation process and the migration of the giant planet. Two series of 1-D and 2-
D hydrodynamic simulations are performed. We select several surface densities and focus
on the gravitationally stable region. To obtain more reliable gravity torques exerted on
the planet, a refined treatment of disk’s gravity is adopted in the vicinity of the planet.
Our results indicate that the net effect of the disk’s self-gravity on the gap formation
process depends on the surface density of the disk. We noticethat there are two critical
values,ΣI andΣII . When the surface density of the disk is lower than the first one,
Σ0 < ΣI , the effect of self-gravity suppresses the formation of a gap. WhenΣ0 > ΣI ,
the self-gravity of the gas tends to benefit the gap formationprocess and enlarge the
width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first
critical surface densityΣI ≈ 0.8MMSN . This effect increases until the surface density
reaches the second critical valueΣII . WhenΣ0 > ΣII , the gravitational turbulence in
the disk becomes dominant and the gap formation process is suppressed again. Our 2-D
simulations show that this critical surface density is around 3.5MMSN . We also study
the associated orbital evolution of a giant planet. Under the effect of the disk’s self-gravity,
the migration rate of the giant planet increases when the disk is dominated by gravitational
turbulence. We show that the migration timescale associates with the effective viscosity
and can be up to104yr.

Key words: Planets and satellites: formation — planetary systems: formation — plane-
tary systems: protoplanetary disks

1 INTRODUCTION

To date, more than 900 exoplanets have been confirmed. The great diversity in the orbital characteristics
of exoplanets reveals complicated physical and dynamical processes in the formation and evolution of
exoplanets. One of the most important dynamical processes is the interaction between exoplanets and
the protostellar disk in which they are embedded. The physical properties of the protostellar disk usually
dominate the initial conditions of the subsequent orbital evolution of the exoplanet system. Thanks to
the improvement of direct imaging methods, a number of protostellar or debris disks interacting with ex-
oplanets have been resolved, e.g. Fomalhaut(Kalaset al. 2008) and HR 8799(Maroiset al. 2008). Their
detailed structures, such as the gaps created by the embedded planets, may be revealed in the near future.
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According to the general theory of disk-planet interaction, a planet embedded in a protostellar disk
will generate density waves in the disk. For a planet of a few Earth masses (M⊕), the response of the disk
is linear and the structure of the disk is almost unchanged(Goldreich & Tremaine 1979, Ward 1997).
On the other hand, for a planet with mass comparable to that ofJupiter, the response of the disk be-
comes nonlinear and it usually results in a density gap at theposition of the planet’s orbit. In this
regime, the planet is locked and moves as a part of the disk, which is called the type II migration
(Lin & Papaloizou 1986).

The gap formation process is a key issue to understand the type II migration. In an inviscid disk,
the gravitational tidal force exerted on the gas by a giant planet tends to split the disk, while the local
fluid pressure resists the creation of any low density region. So, the criterion for gap formation is that
the planet’s Roche radius exceeds the pressure scale heightof the disk. In the case of a viscous disk,
the dissipation driven by the viscosity of the gas also tendsto replenish the gap. As a result, the gap
formation condition usually depends on the planet-star mass ratioMp/M∗, the semi-major axis of the
planet’s orbitap , the scale height of the diskH and the viscosity of the gasα(Lin & Papaloizou 1993):

Mp

M∗

≡ 40α(
H

ap
) (1)

However, to determine the width of a gap is not straightforward. Basically, the width of a gap is de-
termined by the wave propagation length scale, and should bea decreasing function of the effective
viscosity of the gas (Lin & Papaloizou 1993;Takeuchiet al. 1996). One may be rigorously define the
positions of gap boundaries as the places where the tidal torque of the planet balances the torque raised
by the viscous stress, given that all the other effects have already achieved equilibrium, e.g. the gravity
of the central star, the thermal pressure and the centrifugal force of the gas. While most of these factors
turn out to be strongly coupled with the surface density profile. If the perturbing planet is small, the
response of the disk is linearly analysable. However, a Jupiter size planet as we consider here cannot be
treated as a small perturbation. The density waves it excites are shocks and the associated gap formation
process is a highly nonlinear process. Thus, numerical simulation is still the most powerful tool to study
this process.

Many simulations have been performed to investigate the gapformation process in laminar viscous
disks(Takeuchiet al. 1996;Kley 1999;Lubowet al. 1999; D’Angeloet al. 2003) and in MHD turbulent
disks(Winterset al. 2003;Papaloizouet al. 2004). There is an important issue that has been investigated
poorly so far, which is the self-gravitating effect of the gas (disk). In a non-ionized disk, gravitational
turbulence is the most important source of the effective viscosity. In a high density self-gravitating disk,
the gravitational turbulence can be very strong and even a Jupiter size planet may not be able to open
a gap(Baruteauet al. 2011). Conversely, in a low density disk, the self-gravitating effect is usually ne-
glected or just treated as an effective viscosity(Gammie 2001). So, it seems that as the surface density
of the disk increases, the self-gravitating effect will only result in higher effective viscosity and mono-
tonically reduce the gap size. When the density is high enough, even a giant planet could not open a
gap.

However, the self-gravity potential is in fact coupled withthe equilibrium angular velocity of the
gas. As the self-gravity potential varies with the surface density profile, the angular velocity required
by the equilibrium varies as well. Thus, the gas needs to drift inward or outward to achieve a new
equilibrium, especially at the boundaries of the gap where the self-gravity potential changes the most.
As a result, the self-gravity of the gas changes the size of the gap and its net effect on the gap formation
process may not be straightforward, and systematic numerical experiments are needed. In this paper,
we focus on the gravitationally stable region of the disk’s surface density and investigate how the self-
gravitating effect really affects the gap formation process, as well as the subsequent migration of the
embedded giant planet.

We perform both 1-D and 2-D simulations to investigate the disk-planet interactions with the disk’s
self-gravity effect included. Our results show that the self-gravity does not suppress the gap formation
process monotonically. Instead, there are two critical surface densitiesΣI andΣII . WhenΣ0 < ΣI ,



Gap formation in a self-gravitating protoplanetary disc 3

whereΣ0 is the initial surface density of disk, the gap formation process is suppressed when the self-
gravitating effect is included. WhenΣ0 > ΣI , the self-gravitating effect benefits the gap formation
process and results in a wider gap. This enlargement enhances until the second critical surface density
ΣII is reached. WhenΣ0 > ΣII , the gravitational turbulence viscosity becomes dominantin the disk
and the gap formation process is suppressed again. The exactvalue of this two critical densities may
depend on the many physical settings. In our simulations, weuseMMSN (the surface density in the
minimum mass Solar nebula modelHayashi 1981) as a unit of disk surface density. Then, the first critical
density is around0.8 and the second one is around3.5. The associated migration of the giant planet is
also studied and we find that the self-gravity of gas accelerates the type II migration whenΣ0 > ΣII .
We confirmed that the migration time scale associates with the effective viscosity in the disk, and can
be as short as∼ 104yr in a very dense diskΣ0 ≥ 7MMSN .

This paper is arranged as follows: We introduce the models ofthe 1-D and 2-D simulations in
Section 2. The results are described in section 3. In section4 we summarize our conclusions and discus-
sions. The details of refined treatment of the gravity torques and the calculation of the disk’s self-gravity
are described in Appendix A.3 and B.

2 NUMERICAL MODEL

2.1 Computational Units

To normalize our calculations, we set the mass of the centralstar to be the mass unitM∗ = 1 and the
gravitational constantG = 1. The length unit is set to be the initial orbital radius of theplaneta0 = 1.
Thus the orbit frequency of the planet is unity and its initial orbital period isP0 = 2π. According
to this configuration, our scale is in fact arbitrary. To connect with the real physical dimensions, we
further set the central star to be one Solar massM∗ = M⊙ and the initial orbital radius of the planet is
a0 = 5.2AU . Thus the time unit becomes11.2yr/2π. According to the minimum-mass Solar nebular
model(MMSN,Hayashi 1981),

Σ = Σ0(
a

1AU
)−3/2, (2)

whereΣ0 = 1700gcm−2. According to our length unit, wherea0 = 5.2AU , the density constant in our
model isΣ0 ≈ 140gcm−2. To be convenient, we setMMSN = 140gcm−2 as a surface density unit in
this paper. Therefore,2MMSN equals toΣ0 ≈ 280gcm−2 ata0 = 5.2AU .

2.2 1-D model

In the first series of simulations, we solve the viscous evolution of a 1-D self-gravitating disk which
is perturbed by a Jupiter mass planet. AssumingΣ is the surface density of the disk,Ω andvr is the
angular and radial velocity of gas, the 1-D continuity equation is

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0, (3)

and the equation of angular momentum reads:

r
∂(Σr2Ω)

∂t
+

∂

∂r
(rΣvr · r

2Ω) =
1

2π

∂G̃

∂r
, (4)

whereG̃ is the transportation rate of angular momentum. By eliminating vr, we obtain the governing
equation:

∂Σ

∂t
= −

1

r

∂

∂r
[(

1

2π

∂G̃

∂r
− r2Σ

∂vθ
∂t

)/(
∂rvθ
∂r

)] (5)

wherevθ = rΩ.
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The transportation rate of angular momentumG̃ is mainly determined by two factors: the effective
viscosity of the gasG̃ν and the torques exerted by the planetG̃p. For the first factor,

G̃ν = 2πr · νΣr
dΩ

dr
· r, (6)

whereν = νart + νsg = (αart + αsg)(H/r)2sΩ. H/r is the scale height ratio of the disk. To identify
the contribution from the disk’s self-gravity, the total viscosity is divide into two parts:αsg, the effective
viscosity caused by the self-gravitating effects andαart, an artificial viscosity denoting viscosity comes
from all other effects, e.g. the MRI. The typical value ofαart ranges from10−3 to 10−2. We are con-
sidering a self-gravitating disk, most of viscosity is assumed to be caused by the self-gravitating effect,
so we adopt a low artificial viscosity:αart = 10−3.

When a planet is embedded in the disk, its tidal torques causes additional angular momentum
transportation(Lin & Papaloizou 1979a). The total transportation rate of angular momentum becomes:

G̃ = 2πr · νΣr
dΩ

dr
+ G̃p, (7)

whereG̃p is the torque exerted on the gas by the embedded planet, whichcontains both the linear
Lindblad and corotation torques for isothermal gas(Paardekooperet al. 2010). Following the Eq(14)
and Eq(15) of Ward 1997, we can obtain the smoothed lindblad torque density. In corotational region,
the linear corotational torque density is represented in Eq(16) of Paardekooperet al. 2010. Hence, we
can finally obtain the torquesΓr as well as the torque density∂Γr

∂r on the gas at radiusr duo to the planet.
The self-gravitating effects are simulated by two terms: the self-gravitating viscosityαsg and the

self-gravity potential on the diskΦsg. Since the 1-D model could not simulate the gravitational turbu-
lence well, we adopt an analytic description ofαsg. We will discuss it in detail in Section 3.2.1. Besides
the effective viscosity, the self-gravity of the diskΦsg may also change the meridional velocity fieldvθ
on the disk. Considering this as a quasi-static process, we have:

v2θ
r

=
GM∗

r2
+

1

Σ

dP

dr
+

dΦsg

dr
. (8)

In this 1-D model,Φsg is calculated by integrating the radial component of the gravity of all the grids
on the disk. To avoid singularity, a softening lengthǫ = 0.1H is adopted. We emphasize that the self-
gravity potentialΦsg is not constant, instead, it changes every time step as the surface density changes.
So as the equilibrium angular velocity. This effect may imply a size change of the gap.

The governing equation is diagonalized to a tridiagonal matrice. Methods to solve this kind of
linear algebraic equations can be found inWilliamet al. 1992. The initial surface densityΣ0 equals to
a series of values: from0.7MMSN to 2.8MMSN . The boundary condition is set to be solid where
Σbound = Σ0.

2.3 2-D model

In the second series of simulations, we solve the vertical integrated continuity and momentum equations
in a 2-D cylindrical coordinates by our ANTARES code. The details and convergence tests of our code
can be found in Zhanget al. (2008) and Zhang & Zhou (2010a), respectively.

2.3.1 Numerical Method

We assume the disk is thin and cold, whereH/r = 0.02. The vertically averaged equations are solved
in a 2-D cylindrical coordinates(r, θ), whose origin is located at the central star. To make sure each
cell is almost square, we adopt a logarithmic grid along the radial direction with a constant ratioβ =
∆r/(r∆θ) ≈ 0.8.

The major difficulty of numerical experiments on the self-gravity effect is poor computational ef-
ficiency. It is too time-consuming to solve the Poisson equation of the gravity potential on a highly
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perturbed disk, where the density varies quickly with both time and position. Thanks to the applica-
tion of the Fast Fourier Transform method, we could greatly reduce the complexity of this problem
from N2 to N lnN , whereN is the total number of the grids used to resolve the disk. Despite this
improvement, it is still too “expensive” to perform high resolution 2-D or 3-D simulations, when the
totalN = Nr ×Nθ > 106. On the other hand, low resolution simulations usually introduce un-physical
effects and the results are thus less reliable.

One of the most significant numerical effects on an Eulerian grid is that, since the mass is placed at
the center of each cell instead of smoothly spreading over it, the net gravity force exerted on the planet
is usually dominated by the mass within only the single cell whose center is immediately adjacent to the
planet. As the planet travels through a series of cells, the net torque exerted on it experiences un-physical
large variations. When the resolution of the grid is high enough, this effect could be partly reduced by
a well-chosen softening length. However, choosing the value of the softening length is difficult. On one
hand, it should be small. It is usually smaller than the scaleheight of the disk or the Hill radius of
the planet. On the other hand, it needs to be large enough thatthe softening region can be resolved by
the grid size. It usually requires large number of grids to resolve the immediate vicinity of the planet,
e.g. the corotation zone of the planet(Masset & Ogilvie 2004). This necessitates high grid resolution as
well. To balance the computational efficiency and accuracy,we adopt a relatively low mesh resolution
Nr×Nθ = 256×512and a refined treatment of the gravity torque in the vicinity of planet(see Appendix
A.3).

The velocity is denoted byv = (vr , vθ), wherevr is the radial velocity andvθ is the velocity in the
azimuthal direction. The vertically averaged continuity equation is given by

∂σ

∂t
+

1

r

∂(rσvr)

∂r
+

1

r

∂(σvθ)

∂θ
= 0 (9)

The momentum equations in the radial and azimuthal directions are

∂(σvr)

∂t
+

1

r

∂(rσv2r )

∂r
+

1

r

∂(σvrvθ)

∂θ
= σ

v2θ
r

− σ
∂Φ

∂r
−

∂P

∂r
(10)

∂(σvθ)

∂t
+

1

r

∂(rσvrvθ)

∂r
+

1

r

∂(σv2θ)

∂θ
= −σ

vrvθ
r

− σ
∂Φ

∂θ
−

1

r

∂P

∂θ
(11)

The external potentialΦ is:
Φ = ΦS +Φp +ΦD +ΦN,p +ΦN,D (12)

whereΦS = −GM⊙/|r| is the potential of the central star,Φp = −GMp/(|r−rp|+ε) is the potential
of the planet,ΦD is the self-gravity potential of the gaseous disk, which is determined by the Poisson
equation:

∇2ΦD = 4πGΣ, (13)

In our simulation, we calculate the self-gravity forceFsg directly by the FFT method (see Appendix B).
ΦN,p is the indirect potential caused by the Jupiter-mass planet:

ΦN,p =
Mp

M⊙ +Mp
Ωp

2
r · rp ≈

GMp

rp3
r · rp, (14)

ΦN,D is the indirect potential due to the gravity of the gas disk:

ΦN,D = G

∫

D

r · r′

|r′|3
dm(r′). (15)

Since we have assumed the disk is very cold and we focus on the gravitational stable region, we do not
adopt the energy equation in the 2-D model. Instead, we adopta locally isothermal equation of state:

p = Σc2s (16)
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wherecs is the sound speed which is only the function ofr: cs = (H/r)vkep andvkep =
√

GM∗/r is
the local Keplerian velocity. We do not employ any artificialviscosity, however the numerical viscosity
due to the coarse grid isνnum ∼ 10−5.

To estimate the numerical viscosity we have performed several short-time simulations to test the
diffusion time of a density ring in the disk under different resolutions:256× 512, 512× 1024, 1024×
2048,1600 × 3200 and2048 × 4096. The planet and disk’s self-gravity are not included. We found
that the diffusion time doesn’t change anymore when we change the resolution from1600 × 3200 to
2048× 4096. We believe that the grid effect is neglectable when the resolution achieves2048× 4096.
Then we add an artificial viscosity in the2048 × 4096 case. When this artificial viscosity increases to
10−5, we found the diffusion time is comparable to the value of the256 × 512 case. So, we conclude
the viscosity comes from the coarse grid is about10−5 in a resolution of256× 512.”

2.3.2 Initial and Boundary Conditions

We fix the star at the origin of the frame and let gas and the planet travel around it. The initial orbit of the
planet is circular and its semi-major axis is set to be unity,a0 = 1. To ensure the gas disk starts with an
equilibrium state, the initial azimuthal velocity field is set to bev(r)θ0 = (1/r+ rFsg(r)− cs(r)

2)1/2,
whereFsg(r) is the self-gravity of the gaseous disk andcs(r) is the local sound speed. The initial radial
velocity of gasvr0 is set to be0.

To reduce the initial impact on the disk, we hold the planet ina circular orbit for50 orbits and
increase its mass from0.01 to 1 Jupiter mass gradually. Since the initial planet mass is very small and
the initial velocity of gas has taken the gravity forces and the pressure into account, the disk achieves a
steady state well before the planet emerges. Two strong spiral arms emerges after about30 orbits. When
we release the planet, a clear gap is already formed. At the initial state, ToomreQ is greater than1 over
the disk(fig. 1).

The calculations are actually performed in a wide annulus, with the inner boundary located atRin =
0.4a0 = 2.08AU and the outer one located atRout = 2.5a0 = 13AU . We adopt outgoing boundary
conditions at both the inner and outer boundaries. It is a wave absorbing boundary condition that the
waves are only allowed to propagate out of the computationaldomain, while the inward traveling waves
are set to be zero. There are two ghost rings outside the boundaries, whose density and velocity field
stay at the initial state. In the self-gravitating model, weinclude the gravity potential of these two ghost
rings to avoid the un-physical cutting-off of the self-gravity potential at the edges of the disk.

2.3.3 Measurement of the gap width

The gap width is a key quantity in this work, however the exactpositions of gap boundaries are hard to
be determined analytically. Fortunately, we are focusing on the relative changes of gap width in a disk
with or without self-gravitating effects. So, we could define the gap width by the disk’s surface density
profiles. To ensure the comparability, we set the surface density at the initial position of the planet as the
reference density. Then, the measurement of the gap width in1-D simulation is quite simple. At each side
of the planet’s orbit, we can find a position where the surfacedensity is equal to the reference density.
If we got more than one positions, the nearest one (to the planet) is chosen. Then we get two positions
on both sides of the planet. We define this two radii as the inner and outer boundary of the gap and the
gap width is the difference of their radial positions. The measurement in 2-D simulation is similar. The
only difference is that we use an azimuthal averaged densityprofile in the 2-D simulations(panel (b) in
fig. 2).

3 RESULTS

Our numerical simulations consist of two steps. First, we adopt a 1-D model that describes the radial
viscous evolution of a self-gravitating disk. The self-gravitating effect of the gas is added in both as an
additional radial force field and an effective viscosity. Since the 1-D model is not suited to simulate the
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Fig. 1 Q profile on the disk. Panel (a): The initialQ profiles. Panel (b): The finalQ profiles
(b) on the disk with different surface density

2-D gravitational turbulence and the behavior of a gravitationally unstable disk, we concentrate on a
low surface density range to study the gap variation in a gravitationally stable disk. Second, to reveal the
gap variation within the transition stage (from gravitationally stable to unstable), we further perform a
series of fully self-consistent 2-D simulations with the self-gravity of gas included. We then investigate
the orbital evolution of the embedded planet associated with the gap formation process.

3.1 1-D Simulation

Panel (a) of fig. 3 shows the variation of the gap width versus evolution time in the self-gravitating and
non-self-gravitating models. Our 1-D simulations show that, in a disk without the self-gravity effect, the
gap width is almost unchanged when the surface density (or disk mass) increases. This is consistent with
the former analysis that when the self-gravity is absent thegap width is determined by the dissipation of
the gas and the tidal force of the planet Goldreich & Tremaine1980, Lin & Papaloizou 1986. When the
self-gravity is included, we find the gap width increases as the surface density increases. When the gap
width becomes stable, we measure the width difference between the two gaps in different models for a
series of surface densities (panel (b) of fig. 3). It clearly shows that there exists a critical surface density
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Fig. 2 Surface density cross sections of the disks with different surface densities. The surface
density is averaged over the azimuthal direction. These figures show the gap structures when
the disk’s self-gravity is included or excluded. When the disk’s self-gravity is included, the
gap is slightly deeper and wider. Panel (b) shows how we measure the gap width. Panel (d):
disk’s structure becomes very turbulent in a dense self-gravitating disk. There is no clear gap
in that case.

aroundΣI ≃ 0.85MMSN . The self-gravity suppresses the gap formation process whenΣ0 < ΣI and
enlarges the gap whenΣ0 > ΣI .

During the gap formation process, the self-gravity effect plays two opposing roles. On one hand, it
drives an effective viscosity Gammie 2001 which tends to make the disk more dissipative. Therefore,
the gap is more difficult to be cleared and the gap formation process is suppressed. On the other hand,
the equilibrium at the position of the gap boundaries changes as the local self-gravitational potential
varies with the surface density there. When the density slope becomes sharp at the gap boundaries, the
local self-gravity potential may change direction and tends to contract the disk. This effect may leads to
enlargement of the gap. The behavior of the gap width under this two effects is described below.

When the disk surface density is low, the dynamics of the gas are mostly determined by the central
gravity GM∗/r

2. Although the global self-gravity potential of the disk is weak, the gas exchanges
angular momentum more effectively with immediate neighbors by the local mutual gravity. This can
be expressed as an effective viscosity which suppresses thegap formation process. As the disk density
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Fig. 3 Gap widths in 1-D simulations. Panel (a): Width of gap versusevolution time. From
top to bottom the surface density of disk decreases from7MMSN to 0.7MMSN . The
dashed lines denote the non-self-gravitating cases. Sincethe gap size almost doesn’t change
with disk’s density in the non-self-gravitating cases, thedashed lines denote1.4MMSN
and 2.8MMSN are overlapped. Panel (b): The differences of gap width between the
self-gravitating disk and the non-self-gravitating disk.The surface density increases from
0.7MMSN to 2.8MMSN , the critical surface density is aroundΣI ≈ 0.85MMSN .

increases, the global self-gravitational potential begins to make measurable influences to the central
gravity. We could just look at the outer boundary of the gap, wherer = rob. When the gap is stable,
there is an equilibrium:

v2θ
rob

=
GM∗

r2ob
+

1

Σ

dP

dr
|ob, (17)

given that the tidal force of the planet is balanced by the viscosity dissipation. When the self-gravity
Φsg(r, t)|ob is included, the equilibrium becomes:

v2θ
rob

=
GM∗

r2ob
+

1

Σ

dP

dr
|ob +

dΦsg

dr
|ob. (18)

As the gas is being cleared in the gap, the gradient of self-gravitational potential becomes very sharp
at the boundaries. Thus,Fsg(rob, t) = −dΦsg/dr|ob increases from negative (directs inward) to positive
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(directs outward). By assuming the tidal force of the planetand the viscous dissipation remain balanced,
we may find that whenFsg(rob, t) increases, the angular velocity required by the equilibrium decreases.
During this transition stage, the angular velocity of the gas atrob is greater than that required by the
equilibrium. So the gas tends to drift outward. At the meanwhile, the pressure gradient and viscous
dissipation try to push the gas back. However, the disk has not been dominated by the gravitational
turbulence yet—the effective viscosity is still too low:αsg ∼ 10−3. The viscous timescale is as long
as106yr and is much longer than the variation time scale ofFsg(rob, t) which is only dozens of orbits
for a Jupiter mass planet. To retain the equilibrium, the surface density profile needs to become sharper
to generate a stronger pressure gradient,(1/Σ)dP/dr|ob, at the gap boundaries. However, the sharper
gradient of the surface density also enhances the gradiant of the self-gravity potential at the boundaries.
Finally, the outer boundary moves outward until the angularvelocity of the gas matches the required
value and a new equilibrium is achieved. A similar process occurs at the inner boundary of the gap but
results in an inward drift of the gas. This combined effect behaves like a ’self-gravitational contraction’
of the two parts of the disk and makes the gap become wider and deeper. Furthermore, since the pressure
effect decreases asΣ increases, this effect is more pronounced as the disk becomes denser (Fig.3).

3.2 2-D Simulation

Our 1-D simulations suggest that when the surface density exceedsΣI , the width of the gap increases
monotonically (forΣ up to2.8MMSN ). To ensure this trend in a fully described self-gravitating disk,
a series of 2-D hydrodynamic simulations are performed. Theorbital evolution of the giant planet em-
bedded in a self-gravitating disk is also studied. Since the2-D simulation is very time consuming when
the disk self-gravity is included, we chose only 4 typical surface densities:0.7MMSN , 1.4MMSN ,
2.8MMSN and7MMSN .

3.2.1 Gap formation

Panel (a) and (b) of fig. 4 shows the evolution of gap width versus time in the self-gravitating and non-
self-gravitating disks. Different surface densities are denoted by corresponding marks. Note that the
decrease of the gap width after about200P0 is due to the decrease of the Hill radii when the planet is
migrating inward(ap decreases). It is clear that the surface density does not change the gap width when
the self-gravity is excluded, while the gap width in a self-gravitating disk strongly depends on the surface
density (see panel (c) of Fig. 4). Panel (a) of fig. 5 shows the evolution of the normalized gap differences:
(gapsg − gapnom)/gapnom. All the gap widths have been normalized by the corresponding semi-major
axis of the planet to eliminate the migration effect. In a self-gravitating disk, the gap width increases as
the disk’s surface density increases. However, it is not a linear relation. Furthermore, the 2-D simulations
show that, the enlargement of the gap decreases when the surface density exceeds∼ 2MMSN and
becomes negative whenΣ0 > 3.5MMSN (panel (b) of fig. 5). The gap width is recorded every10
orbits, when the simulation is finished, we sum all the widthstogether and find the averaged value. Note
that gap widths of the first100 orbits are dropped, since the gap is not well formed before that. fig. 2
shows the gap structures under different situations and howwe measure the gap width. The gap size
is almost identical when the surface density is low. When thedisk becomes denser, the gap is slightly
deeper and wider in the self-gravitating disks. We measure the differences of the averaged gap width
between the self-gravitating and non-self-gravitating models and interpolate these data (panel (b) of fig.
5). The results suggest that there is another critical surface density which is aroundΣII ≃ 3.5MMSN .
WhenΣ0 ≥ ΣII , the self-gravity suppresses the gap formation again. Notice that, for a very dense disk
Σ0 ≥ 7MMSN , the gap is not cleared. So it is significantly smaller than others(Panel (d) of fig. 2 and
fig. 6). The widths showed in fig. 4 are azimuthal averaged value.

When the surface density exceeds2.8MMSN , the gravitational turbulence becomes significant.
fig. 6 show the density contours of the disk under different surface densities. The three figures in the
left column are the normal disks. Their disk structure do notchange much when their surface density
increases from0.7MMSN to 7MMSN . The three figures in the right column are the self-gravitating
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Fig. 4 The evolution of gap width in 2-D simulations. Panel (a): gapwidth versus evolution
time in non-self-gravitating disks. The gap is cleared around100 orbits and reaches the max-
imum value. Then, the gap width decreases as the planet migrates inward. All the widths are
azimuthal averaged. Panel (b): gap width versus evolution time in self-gravitating disks. Panel
(c): differences of gap width in self-gravitating and non-self-gravitating cases. The gap width
does not change with the surface density of the non-self-gravitating disks.

disks. When the surface density increases to2.8MMSN , the turbulence emerges at the outer part of
the disk, where the ToomreQ is relatively low. As the surface density increases more, the gravitational
turbulence becomes stronger. When the disk’s surface density exceedsΣII , the disk becomes gravita-
tional unstable(the last figure in the left column). At such high surface density, the effective viscosity
caused by the self-gravitational turbulence will overcomethe ’self-gravitational contraction’ effect and
dominate the gap formation process.

Comparing with our 1-D simulations, there are two major differences. One is that our 2-D sim-
ulations indicate a smaller value of the first critical surface densityΣI ∼ 0.8. This suggests that the
’self-gravitational contraction’ is stronger in a 2-D disk. It is probably because in the 1-D simulations,
we adopt an artificial viscosityνart, which turns out to be slightly larger than the numerical viscos-
ity νnum in our 2-D simulations. This makes the total effective viscosity in the 1-D simulation slightly
larger than the one in the 2-D simulation. However, the difference is quite small (our 1-D results indicate
ΣI ∼ 0.85) and doesn’t change our main results.
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Fig. 5 The relative differences of gap width in 2-D simulations. Panel (a): The relative width
differences between self-gravitating and non-self-gravitating disk. Gap width has been nor-
malized by the corresponding semi-major axis of the planet first to eliminate the migration
effect. Panel (b): The time averaged relative differences versus surface density of disk. The
dashed lines show the cubic spline interpolations and we found the second critical surface
densityΣII ≈ 3.5MMSN . The first oneΣI ≈ 0.8MMSN is coherent with our 1-D re-
sults. WhenΣII > Σ0 > ΣI the “self-gravitating contraction” dominates the gap formation
process. WhenΣ0 > ΣII , the gravitational turbulence viscosity becomes dominant. In a
self-gravitating disk, gap width reaches maximum whenΣ0 ≈ 2MMSN . All the widths we
adopt are the azimuthal averaged value. Notice that, for a very dense diskΣ0 ≥ 7MMSN ,
the gap is not cleared. So it is significantly small.

The other difference is that our 1-D results suggest that thegap size increases monotonically as
the surface density increases from0.7MMSN to 2.8MMSN . However our 2-D results show that
the increasing trend bends down around2MMSN . For the 1-D simulations, the angular momentum
exchange caused by the self-gravity effect was only described by an effective viscosityνsg. In this
description,νsg = αsgc

2
s/Ω(Gammie 2001), where

αsg =
4

9γ(γ − 1)tcoolΩ
. (19)
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Fig. 6 The surface density evolution. The left panels show the non-self-gravitating disk
and the right panels show the self-gravitating disk. The surface density of disk isΣ0 =
1.4MMSN, 2.8MMSN, 7MMSN from top to the bottom, respectively. The gravitational
turbulence emerges clearly whenΣ0 > 2.8MMSN .

The cooling time scale is determined by the internal energy per unit areaU and the cooling functionΛ,

tcool =
U

Λ
=

c2sΣ

γ(γ − 1)Λ
, (20)

and(Hubney 1990)

Λ =
16σ

3
(T 4

c − T 4
o )

τ

1 + τ2
. (21)

Tc = 280K(a/1AU)−1/2 is the mid-plane temperature of the disk andTo = 10K is a minimum
temperature of background sources(Stamatelloset al. 2007). Using the analytic approximation of the
Rosseland mean opacity for molecules (Bell & Lin 1994),

κ = κ0(
Σ

2H
)2/3T 3

c , (22)
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we can get the optical depthτ (Riceet al. 2010),

τ ≈ Hκ(
Σ

2H
,T )

Σ

2H
= H(

Σ

2H
)5/3T 3

c . (23)

Then we get

Λ =
16σ

3
(T 4

c − T 4
o )

H( Σ
2H )5/3T 3

c

1 + (H( Σ
2H )5/3T 3

c )
2
. (24)

At the location of the giant planet, wherea = 5.2AU , H/r = 0.02 andΣ = 1MMSN , we found that

(H(
Σ

2H
)5/3T 3

c )
2 ≈ 103 ≫ 1. (25)

Thus, we haveΛ ∝ Σ−5/3. This gives ustcool ∝ Σ8/3 andνsg ∝ Σ−8/3. So, as the surface density
Σ increases, the dissipation in the disk becomes weaker and the gap forms more effectively. This result
could be valid whenQ is much larger than unity (Riceet al. 2010 estimated thatQ ≥ 2). In some high-
density simulations, however,Q is close to unity after several hundred orbits (fig. 1). So we believe that
the real self-gravitating effect of a dense disk should be calculated by the realtime density distribution
consistently and the 2-D simulations should be more self-consistent.

3.2.2 Migration of the giant planet

Besides the gap formation, the orbital migration of the planet is another important outcome of the disk-
planet interactions. The upper panel of fig. 7 shows the migration of the planet embedded in a series
of disks. The dashed lines are the results with the self-gravity of the gas included, while the solid lines
are those results without the self-gravity of gas. From top to the bottom, the surface density of the
disk increases from0.7MMSN to 7MMSN . One may find that all the migrations experience two
stages. At the first stage, the giant planet is still surrounded by the gas and undergoes the type I (or
type-I-like) migration whose time scale should be inversely proportional to the disk’s surface density
(Tanakaet al. 2002),

τ = (2.7 + 1.1γ)−1M∗

Mp

M∗

Σ0a2p
(

cs
apΩp

)2Ω−1
p ∝ Σ−1

p (26)

Our results show that at this stage, the migration rates of the planet is greater as the disk becomes
denser(slope of the migration curve in the upper panel of fig.7 and panel (a) in fig. 8). It is qualitatively
agree with the analytic predictions we mentioned above and this could be a proof of the consistency of
our simulations. The lower panel of fig.7 shows the relative differences of migration (semi-major axis
vs. time) between the self-gravitating cases and the normal(non-self-gravitating) cases. The differences
are normalized by the values from the corresponding normal cases.

As the gas located in the gap region is cleared, the migrationof the giant planet steps into the
second stage when the migration rate of the planet is significantly reduced. This is usually called type II
migration. According to linear analysis, the time scale of type II migration is supposed to be inversely
proportional to the effective viscosity on the disk. From fig. 7 we can find that the type II migrations
in different surface density have almost the same slope whenthe self-gravity of disk is exclude. This
is reasonable since the effective viscosity should not depend on the surface density. However, we find
that the migration rate in the denser disk is indeed larger than the rate in the thinner disk(also in panel
(b) of fig.8). The reason is that there is an inner boundary in our disk model. When the planet is getting
close to the inner boundary, most of the inner disk has flow outside our inner boundary. As a result,
the torque from the inner disk(positive torque) is weaken and the net negative torque is greater. That
means the planet will drop to the central star faster when it gets closer to the inner boundary in our
simulations. At the meanwhile, a planet migrates faster in adenser disk than in a thinner disk before
the gap is cleared. So, when the migration steps into the type-II regime, a planet embedded in a denser
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the self-gravitating cases and non-self-gravitating cases(normal cases). The value has been
normalized by the value from corresponding normal cases. The difference on the migration is
significant only when the disk is very dense.

disk will be closer to the inner boundary of the disk and will has larger inward migration rate. While
in the self-gravitating disk, the type II migration rate changes versus the disk’s surface density, because
the effective viscosity is related to the disk’s surface density now. When the surface density is low, the
difference of the semi-major evolution is very small:< 2% (lower panel of fig.7). When the surface
density is higher(Σ0 ≥ 7.0MMSN ), the difference becomes very significant.

In this paper, we concentrate on the variations of the migration rate under the effect of disk’s self-
gravity which is the source of the turbulent viscosity. Panel (a) of fig. 8 shows the evolution of the
migration rate (̇ap) with the self-gravitating effect included. After about300 orbits, the migration rate
reaches different stable values according to the surface density of the disk. We measure this stable mi-
gration rate in each run and the results are shown in panel (b)of fig. 8. The red circles are the results
with self-gravity of gas included and the blue squares are the results without the self-gravity. The migra-
tion rate weakly increases with the surface density in a non-self-gravitating disk. This indicates that the
effective viscosity barely changes with the surface density when the self-gravitating effect is excluded.
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after the gap is cleared (t = 200 orbits). Panel (b): The migration rate versus surface density
of disk. In the self-gravitating disk,̇a is proportional toΣ0 (red circles). While in the non-
self-gravitating disk, this relation is very weak (blue rectangles).

However, in a self-gravitating disk, the migration rate increases quickly as the surface density increases.
Our results suggest that, in a self-gravitating disk, the migration of a giant planet is slightly slowed
(almost identical with the non-self-gravitating case) when the surface density is moderate. However, the
migration of the giant planet becomes faster than that in thenon-self-gravitating disk when the surface
density exceeds2.8MMSN . In a very dense diskΣ0 = 7MMSN , the migration of the giant planet
could be very fast and the time scale could be as short as∼ 104yr (fig. 8).

The quick increase of the migration rate indicates that the effective viscosity is mostly determined
by the gravitational turbulent viscosity and increases with the surface density of a self-gravitating disk.
We sum all the angular momentum of the whole disk and measure its variation rate. Since the size of
the disk does not change with time, its angular momentum variation is only determined by the radial
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mass flow and angular velocity variation, which are both the results of the viscous dissipation when
the gap is stable. Therefore, this angular momentum variation rate will roughly indicate the effective
viscosity νeff on the disk. The associated results are shown in fig. 9. Panel (a) shows the angular
momentum variations versus time in a disk whereΣ0 = 2.8MMSN . The result with the disk’s self-
gravity included is denoted by the red dashed line, and the one with self-gravity excluded is denoted by
the blue solid line. The large variation rate beforet = 300P0 is the result of the gap formation process,
where gas is driven away by the tidal torque of the planet and results in a sharp decrease in the total
mass of the disk. When the planet migrates significantly (t > 500P0), the gap moves close to the inner
boundary of the disk. The total angular momentum of the disk increases as the gap moves out of the
disk’s inner boundary (total mass increases). We estimate the averaged dissipation rate only at the steady
state of each run (300P0 < t < 500P0) and the results are shown in panel (b) of fig. 9. Since we do
not adopt any artificial viscosity, for a non-self-gravitating diskνeff = νnum, and for a self-gravitating
disk νeff = νnum + νsg. Our results show that the effective viscosityνeff increases withΣ0 in the
self-gravitating disk. For the non-self-gravitating disk, theνeff only slightly increases withΣ0. Then
we find thatνsg is roughly proportional toΣ0 (green stars in panel (b) of fig. 9).

These results are in very good quantitative agreement with the migration rates we obtained above,
except for the very high surface densityΣ0 = 7MMSN , where the migration time scale (∼ 1.2 ×
104yr) is much shorter than the viscous time scale (∼ 2.1 × 104yr). In fact, in such a dense disk, the
planet cannot clear a gap before it reaches the inner boundary (fig. 6). As the ToomreQ decreases along
the disk radius, the gravitational turbulence becomes stronger as the radius increases. This generates a
vortensity gradient across the corotation region of the giant planet and exerts a large negative corotation
torque on the planet Masset & Papaloizou 2003. We further calculate the torques exerted on the planet.
Figure 10 shows the azimuthal averaged torque as a function of the distance to planet. It clearly shows
that, in a non-self-gravitating disk, the torque density isalmost symmetric with the position of planet.
There is a great negative torque within the corotation region of the planet, which drags the planet inward
even faster. This result is in good agreement with that obtained by Baruteauet al. (2011).

4 CONCLUSIONS AND DISCUSSIONS

In this paper, we concentrate on the gap formation process under the effect of a disk’s self-gravity. We
first perform a series of 1-D simulations, where the disk’s self-gravity is modeled by a gravitational
effective viscosityνsg and a time dependent azimuthal-averaged self-gravity potential. We find that
when the surface density of the disk is low, the self-gravitypotential is too weak to affect the gap
formation process and the gravitational effective viscosity suppresses the growth of the gap. As we
increase the surface density of the disk, the self-gravitational potential becomes stronger. It leads to
a ’self-gravitational contraction’ effect at each boundary of the gap and tends to enlarge the gap size.
When the surface density exceeds a critical value,Σ0 > ΣI , the net self-gravitating effect begins to
benefit the gap formation process and the gap width increaseswith the surface density of the disk. We
estimate this critical surface density is aroundΣI ≈ 0.8MMSN (section 3.1). Since we recognize
that the gravitational turbulence viscosity could not be described consistently in a 1-D simulation, we
further perform a series of 2-D simulations where the disk’sself-gravity is fully calculated by the real-
time density distribution on the disk. We find that the width of the gap will not increases with the surface
density monotonically in a self-gravitating disk. The gravitational turbulence becomes stronger as the
disk’s surface density increases and the associated effective viscosity overwhelms the ’self-gravitational
contraction’ effect when the surface density of disk exceeds another critical valueΣII . We estimate
ΣII ≈ 3.5MMSN (section3.2.1). The value ofΣI andΣII depend on the disk settings. Here we
only gives the typical ones. Especially forΣII , to find its exact value more surface densities beyond
2.8MMSN are needed to be tested.

The associated migration rate of the giant planet is also studied in this paper. Our 2-D simulations
show that the migration rate of the giant planet is slightly reduced in a self-gravitating disk with moderate
surface density (Σ0 < 2MMSN , see fig.7). However, it increases with the surface density of the disk
where the gravitational turbulence becomes dominant. Whenthe planet is still able to open a clear
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Fig. 9 Panel (a): The absolute angular momentum variations versusevolution time. In a self-
gravitating disk, the angular momentum variation (red dashed line) is always larger than that
in a non-self-gravitating disk (blue solid line), whereΣ0 = 2.8MMSN . Panel (b): The
effective viscosity versus surface density of disk. In a non-self-gravitating disk, the effective
viscosity is mainly due to the numerical dissipationνeff = νnum (blue rectangles). While in
a self-gravitating disk, the gravitational turbulence is the main source of dissipationνeff =
νnum + νsg (red circles). The net gravitational viscosity effectνsg is then shown by green
stars, which is proportional toΣ0.

gap on the disk, its migration rate is just proportional to the effective viscosity due to the gravitational
turbulence. Furthermore, in a very dense diskΣ0 > 7MMSN , the strong effective viscosity prevents
the gap formation even for a Jupiter mass planet. The migration timescale then becomes much shorter
than the viscous timescale∼ 104yr. This is caused by a large negative corotation drag which is the
result of the vortensity gradient around the planet (section3.2.2).

According to our results we find that, (1) the self-gravitating effect may not be treated as simply an
effective viscosity, especially for a moderate surface density. Our simulations reveal that the self-gravity
plays two opposite roles in the gap formation process at the same time and the net effect depends on the
surface density of the disk. (2) The gravitational viscosity and the associated migration rate of the giant
planet increase with the surface density in a dense self-gravitating disk (Σ0 > 2.8MMSN ). For a very
dense diskΣ0 ≥ 7MMSN , where giant planets usually form, the the gravitational effective viscosity
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Fig. 10 Azimuthal averaged torque in the vicinity of the giant planet embedded in a very
dense disk. The surface density of disk is7MMSN . The torque is almost symmetric with
planet’s position in the non-self-gravitating disk(blue solid line). While in a self-gravitating
disk, the planet suffers a net negative corotation torque(red dashed line).

is too strong to allow a clear gap to form and the migration timescale of a giant planet could be much
shorter than the type II migration.

So, a giant planet is unlikely to stay at large separation from the central star if the disk is still
dense after the planet has formed. This is not a problem for the core accretion model. A planet core
usually needs106−7yr to reach10Me(Mizuno 1980), while the gas disk would been dispersed within
106yr (Wolk & Walter 1996). If the giant planet could successfullyform, its migration would be very
slow or even be stopped since the disk is already too thin to generate large gravitational viscosity and
could not deliver enough angular momentum effectively. Theproblem is, because of the long timescale
required by the core growth stage, a giant planet is unlikelyto form in a wide orbit by the core accretion
model(Dodson-Robinsonet at. 2009). For a multiple-planet system, if the outer planet is smaller than
the inner one, the two inward migrating planets may become trapped into mutual mean motion resonance
and migrate outward together(Zhang & Zhou 2010a;Zhang & Zhou 2010b). This could be an effective
way to form giant planets at large separation from their hoststar. For a single giant planet, however, it is
still a problem. Some work shows that the radiative effect may affect the direction of the migration and
could result in outward migration(Kalaset al. 2008;Bitsch & Kley 2010).

If the giant planet forms through the gravitational fragmentation of a very dense disk, it would
probably migrate inward quickly. However, we emphasize that we do not adopt any cooling process in
our 2-D simulations. This is because we do not want to introduce any poorly understood factors in our
simulations, which would add too many uncertainties to the results. In our 2-D simulations, we assume
a very cold disk withH/r fixed at 0.02 and adopt a locally isothermal equation of state, therefore
the cooling in our model is in fact perfect. Hence, the effective viscosity due to the self-gravitational
turbulence increases with the surface density of the disk and results in fast inward migration in a dense
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disk. If proper cooling process were included, the gravitational viscosity would become less effective,
slowing the migration rate of the giant planet. This should be fully considered in future work.

We also notice that the existence of the giant planet may trigger the onset of gravitational instability
in the disk. Strong spiral structures caused by the giant planet may generate a local minimum ofQ and
cause global instability when the averagedQ is still far above unity (fig.1 and fig.6). This effect depends
on the mass of the giant planet and the disk where it is embedded. The details are also the subject of
future work under preparation.

Acknowledgements This work is supported by National Natural Science Funds forYoung Scholar(No.
11003010), National Natural Science Foundations of China (Nos. 10833001,10925313 and 11078001),
the Research Fund for the Doctoral Program of Higher Education of China (Nos.20090091110002 and
20090091120025). We are grateful to the High Performance Computing Center (HPCC) of Nanjing
University for doing the numerical calculations in this paper on its IBM Blade cluster system. RW is
supported by an UNSW Vice-Chancellor’s Fellowship.

References

D’Angelo,G.,Kley,W.,& Henning,T.,2003,ApJ,586,540

Baruteau, C., Meru, F., Paardekooper, S.-J, 2011, MNRAS,416,1971

Bell K. R. & Lin D. N. C., 1994, ApJ, 427, 987

Bitsch, B. & Kley, W., 2010, å, 523,30
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Appendix A: REFINED TREATMENT OF GRAVITY IN THE VICINITY OF PLANET

When we calculate the torque exerted on the planet by a singlecell of gas, the mass of this cell is
usually treated as a mass point located at its center. When the planet travels very close to the center
of the cell, we get a gravitational singularity and the planet would suffer extremely large gravity force.
However, since the density is uniform within a cell, the net force exerted on the planet should vanish
because of the symmetry of the cell. A softening length is always needed to avoid the singularity,Φp =
−GMp/(|r − rp|+ ε).

The softening lengthε could only reduce the amplitude of the gravity impulses, however, it could
not result in the real gravity exerted on the planet. The choice of softening length is very tricky: a smallε
could not reduce the singularity effectively, while a largeone would eliminate too much physical effect.
It is usually set to be a large fraction (e.g.0.6− 0.8) of the scale height of the disk or the Hill radius of
the planet. However, in a low resolution grid, the Hill radius only covers a few cells. Many local physical
interactions between the planet and disk would be concealedif we choseε compared to the Hill radius.
To more reliably model the gravity felt by the planet, we treat a single cell as a uniform area and the
gravity exerted on planet is an integration over this area, e.g. the gravity force at theθ direction reads:

Fθ,i,j = GMpσ

∫ r
i+1

2

r
i− 1

2

∫ θ
j+1

2

θ
j− 1

2

r2 sin(θ − θp)

(r2p + r2 − 2rrp cos(θ − θp) + ε)3/2
drdθ. (A.1)

ε is now an integration softening parameter which is very small. In our simulations, we setε = 10−4 in
dimensionless units (the radius of the Roche lobe now is∼ 0.07 and grid size is∼ 0.01). This treatment
is performed in5×5 cells around the cell where the planet is located. The cells outside this5×5 region
are treated as point masses as usual.

A comparison of different treatments of gravity is performed. We set a region of5 × 5-grid whose
surface density is uniform andΣ0 = 1MMSN . Outside this region the surface density is set to be0
(fig. A.1). As the planet travels through this region, the gravity exerted on it should change smoothly
and symmetrically from the positive to the negative extrema, and vanishes at the center of this area. The
results are shown in fig. A.2. It is clear that the gravity is over-smoothed by the largeε ∼ 1gridsize
while the smaller oneε = 0.1 − 0.2RRoche introduces nonphysical gravity impulses (panel (b) of Fig.
A.2). Only the integration results with smallε ∼ 10−4∼−5 could void the nonphysical gravity impulses
(panel (a) of fig. A.2).

We also test the net torque of the whole disk under different treatments. The result is shown in fig.
A.3. When we treat a cell of the disk as a point mass, the mutualgravity between the planet and the cell
is very sensitive to the distance between them. When the planet travels through a high density cell and
is very close to the cell center, its net torque will be dominated by this single cell. As the planet keeps
passing by these point masses, the net torque exerted on it oscillates violently(the blue line in fig. A.3).
On contrast, when we treat a cell as a continuous uniform area, the net gravity from the cell vanishes
when the planet locates at the center. As a result, the net torque becomes more smooth and reliable(the
red line in fig. A.3).

This paper was prepared with the RAA LATEX macro v1.2.
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Fig. A.1 A 5 × 5-grid in the vicinity of the planet. When we calculate the torque exerted
on the planet by this area, each cell is treated as an uniform area instead of mass point. The
dotted line shows the track of the planet in the comparison tests.

Appendix B: SELF-GRAVITY FORCE OF THE DISK

The self-gravitating effect of gas is included in the evolution of the disk. As the density distribution is
changing with time, the gravity potential of the disk evolves and needs to be determined by solving the
Poisson equation at each time step:∇2ΦD = 4πGΣ. Integrating it over the disk in polar coordinates
we get:

ΦD(r, θ) = 2G

∫ ∫

Σ(r′, θ′)

(r2 + r′2 − 2rr′ cos(θ′ − θ))1/2
r′dr′dθ′, (B.1)

However, solving this equation directly is very “expensive” even in coarse resolution and the Fast Fourier
Transform (FFT) method is one of the best choices.

The self-gravity force exerting on each cell in the radial direction reads:

Sr(r, θ) = −2G

∫ ∫

Σ(r′, θ′)r′(r − r′ cos(θ′ − θ))

(r2 + r′2 − 2rr′ cos(θ′ − θ))3/2
dr′dθ′. (B.2)
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(a) (b)

Fig. A.2 A test of the gravity torques exerted on the planet under different treatments. The
planet travels in a circular orbit and the disk is divided in to 256x512 cells. The center of
test area—a5x5-grid(A.1)—locates atx = 110. The x-axis denotes the cell numbers(grid).
Panel (a): cells around the planet are treated as uniform areas. We perform integration over
each of these cells to find the torques they exerted on the planet. The smoothing length used
in the integration is shown in legend.smo = integ10−5 means the softening length used in
the integration is10−5 in our unit. Panel (b): cells are treated as point mass. We assume the
mass of a cell concentrates at its center. The gravity between the planet and a cell center is
calculated with a softening length to avoid singularity.smo = 0.1Roche means the softening
length is one tenth of the initial Roche radius of the planet which is∼ 0.069 in our units.
smo = 1gridsize means the softening length equals to the grid size. Treatingcells as point
masses usually results in large gravity impulses or over-smoothed gravity, while treating cells
as area gives more smooth results and avoids any un-physicaloscillations.

Note that the right hand of the above equation is the convolution ofΣ(r′) andK(r − r
′), where

K ≡ −2G
(r − r′ cos(θ′ − θ))

(r2 + r′2 − 2rr′ cos(θ′ − θ))3/2
. (B.3)

According to the ’convolution theorem’ we can getSr by two Fourier transforms(F ) and one reversed
Fourier transform(F−1)(William et al. 1992):

Sr = F−1(F (Σ)F (K)). (B.4)

The kernelK in fact does not change with time and only needs to be calculated once at the beginning of
the simulation. The self-gravity force in the azimuthal direction can be obtained similarly. The detailed
introduction of this method can be found in many computational method handbooks, e.g. “Numerical
recipes” (Williamet al. 1992).

To avoid the self-gravity potential being abruptly cut off at each boundary of the disk, we add two
buffer rings immediately outside the boundaries. The widthof each buffer ring is0.3 in our units and
their surface densities do not evolve with time. We integrate the radial gravities of these two buffer rings
and add them to the total gravity of the disk.
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Fig. A.3 Another test of the gravity torques exerted on the planet under different treatments.
We test the net torques exerted on the planet by the whole disk. Blue solid line shows the
torque when we treat the cells as point masses, while the red solid line shows the torque when
the cells around the planet are treated as uniform areas. Thelarge oscillations in the former
torque are the results when the planet travels through some dense cells (close to a large point
mass). It is clearly that the later treatment gives more reliable results.
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