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Abstract We present the results of our recent study on the interastietween a giant
planet and a self-gravitating gas disk. We investigate Hoevdisk’s self-gravity affects
the gap formation process and the migration of the giantgtlanvo series of 1-D and 2-
D hydrodynamic simulations are performed. We select sésartace densities and focus
on the gravitationally stable region. To obtain more rdéadpravity torques exerted on
the planet, a refined treatment of disk’s gravity is adoptethe vicinity of the planet.
Our results indicate that the net effect of the disk’'s se#fvity on the gap formation
process depends on the surface density of the disk. We rtbate¢here are two critical
values,>; and X;;. When the surface density of the disk is lower than the firg, on
Yo < ¥y, the effect of self-gravity suppresses the formation of p. §thenX>y > X,
the self-gravity of the gas tends to benefit the gap formapimtess and enlarge the
width/depth of the gap. According to our 1-D and 2-D simula§, we estimate the first
critical surface densityy; ~ 0.8M M SN. This effect increases until the surface density
reaches the second critical valtle;. WhenY, > X7, the gravitational turbulence in
the disk becomes dominant and the gap formation procespmessed again. Our 2-D
simulations show that this critical surface density is a8.51/ M SN. We also study
the associated orbital evolution of a giant planet. Undekeffect of the disk’s self-gravity,
the migration rate of the giant planetincreases when theasldominated by gravitational
turbulence. We show that the migration timescale assaciatid the effective viscosity
and can be up to0%yr.

Key words: Planets and satellites: formation — planetary systemsétion — plane-
tary systems: protoplanetary disks

1 INTRODUCTION

To date, more than 900 exoplanets have been confirmed. Taediversity in the orbital characteristics
of exoplanets reveals complicated physical and dynamicalgsses in the formation and evolution of
exoplanets. One of the most important dynamical processiiinteraction between exoplanets and
the protostellar disk in which they are embedded. The phaypioperties of the protostellar disk usually
dominate the initial conditions of the subsequent orbitaltion of the exoplanet system. Thanks to
the improvement of direct imaging methods, a number of @tettar or debris disks interacting with ex-
oplanets have been resolved, e.g. Fomalhaut(Kakls 2008) and HR 8798(Marogt al. 2008). Their
detailed structures, such as the gaps created by the enthelddets, may be revealed in the near future.
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According to the general theory of disk-planet interactmplanet embedded in a protostellar disk
will generate density waves in the disk. For a planet of a fewttEmasses\{s;), the response of the disk
is linear and the structure of the disk is almost unchamngeldi@ich & Tremaine 1979, Ward 1997).
On the other hand, for a planet with mass comparable to thatter, the response of the disk be-
comes nonlinear and it usually results in a density gap ajptsition of the planet’s orbit. In this
regime, the planet is locked and moves as a part of the disichwik called the type Il migration
(Lin & Papaloizou 1986).

The gap formation process is a key issue to understand tleelitypigration. In an inviscid disk,
the gravitational tidal force exerted on the gas by a giaat@l tends to split the disk, while the local
fluid pressure resists the creation of any low density regsm the criterion for gap formation is that
the planet’s Roche radius exceeds the pressure scale logitiie disk. In the case of a viscous disk,
the dissipation driven by the viscosity of the gas also tendeplenish the gap. As a result, the gap
formation condition usually depends on the planet-starsmaiso A/, /M., the semi-major axis of the
planet’s orbita,, , the scale height of the disif and the viscosity of the gagLin & Papaloizou 1993):

M, H
= 4004(@) 1)

However, to determine the width of a gap is not straightfodv8asically, the width of a gap is de-
termined by the wave propagation length scale, and shoull decreasing function of the effective
viscosity of the gas (Lin & Papaloizou 1993;Takeuehal. 1996). One may be rigorously define the
positions of gap boundaries as the places where the tidpi¢asf the planet balances the torque raised
by the viscous stress, given that all the other effects hlweady achieved equilibrium, e.g. the gravity
of the central star, the thermal pressure and the centtifagze of the gas. While most of these factors
turn out to be strongly coupled with the surface density f@off the perturbing planet is small, the
response of the disk is linearly analysable. However, adusgize planet as we consider here cannot be
treated as a small perturbation. The density waves it exaite shocks and the associated gap formation
process is a highly nonlinear process. Thus, numericallation is still the most powerful tool to study
this process.

Many simulations have been performed to mvestrgate thd@apation process in laminar viscous

); D’Kngeloet al. 2003) and in MHD turbulent

poorly so far, whrch is the self-gravitating effect of thesddisk). In a non-ionized disk, gravitational
turbulence is the most important source of the effectiveosgy. In a high density self-gravitating disk,
the gravitational turbulence can be very strong and everpieiisize planet may not be able to open
a gap(Baruteadt al. 2011). Conversely, in a low density disk, the self-graiigeffect is usually ne-
glected or just treated as an effective viscokity(Gamm@IP0So, it seems that as the surface density
of the disk increases, the self-gravitating effect willyrésult in higher effective viscosity and mono-
tonically reduce the gap size. When the density is high ehpexgen a giant planet could not open a
gap.

However, the self-gravity potential is in fact coupled wilte equilibrium angular velocity of the
gas. As the self-gravity potential varies with the surfaeesity profile, the angular velocity required
by the equilibrium varies as well. Thus, the gas needs td bnwfard or outward to achieve a new
equilibrium, especially at the boundaries of the gap whieeeself-gravity potential changes the most.
As aresult, the self-gravity of the gas changes the sizeeo§étp and its net effect on the gap formation
process may not be straightforward, and systematic nualeiperiments are needed. In this paper,
we focus on the gravitationally stable region of the diskiface density and investigate how the self-
gravitating effect really affects the gap formation pragess well as the subsequent migration of the
embedded giant planet.

We perform both 1-D and 2-D simulations to investigate tisigilanet interactions with the disk’s
self-gravity effect included. Our results show that thd-geavity does not suppress the gap formation
process monotonically. Instead, there are two criticaflaser densitiex; and>;;. WhenXy < 3,
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wherey, is the initial surface density of disk, the gap formationgass is suppressed when the self-
gravitating effect is included. When, > >, the self-gravitating effect benefits the gap formation
process and results in a wider gap. This enlargement enbantiéthe second critical surface density
Y1 is reached. Whek, > X7, the gravitational turbulence viscosity becomes domiirattie disk
and the gap formation process is suppressed again. Theataetof this two critical densities may
depend on the many physical settings. In our simulationsysed\/ M SN (the surface density in the
minimum mass Solar nebula mddelHayashi 1981) as a unitksdisace density. Then, the first critical
density is aroun®.8 and the second one is aroudid. The associated migration of the giant planet is
also studied and we find that the self-gravity of gas accesrthe type Il migration wheRy > ;.

We confirmed that the migration time scale associates weéteffective viscosity in the disk, and can
be as short as 10*yr in a very dense diskq > 7TMMSN.

This paper is arranged as follows: We introduce the modekh®fl-D and 2-D simulations in
Section 2. The results are described in section 3. In se4tiea summarize our conclusions and discus-
sions. The details of refined treatment of the gravity toscared the calculation of the disk’s self-gravity
are described in AppendixA.3 ahd B.

2 NUMERICAL MODEL
2.1 Computational Units

To normalize our calculations, we set the mass of the cesiiaalto be the mass unit,. = 1 and the
gravitational constard@@ = 1. The length unit is set to be the initial orbital radius of fHaneta, = 1.
Thus the orbit frequency of the planet is unity and its itiGebital period isPy = 2m. According
to this configuration, our scale is in fact arbitrary. To cecinwith the real physical dimensions, we
further set the central star to be one Solar mess= M, and the initial orbital radius of the planet is
ap = 5.2AU. Thus the time unit becomdd .2yr/27. According to the minimum-mass Solar nebular

model(MMSN,Hayashi 1981),

_ a (32
whereXy = 1700gem 2. According to our length unit, wherg, = 5.2 AU, the density constant in our
model is¥y ~ 140gcm 2. To be convenient, we sét' M/ SN = 140gem ™2 as a surface density unit in
this paper. Therefor@ M M SN equals ta2 ~ 280gcm 2 atag = 5.2AU.

2.2 1-D model

In the first series of simulations, we solve the viscous dumuof a 1-D self-gravitating disk which
is perturbed by a Jupiter mass planet. Assuniihig the surface density of the disk, andwv,. is the
angular and radial velocity of gas, the 1-D continuity egprais

ox. 0
" 5F + E(TZ’UT) =0, 3

and the equation of angular momentum reads:

o(Xr?Q) 9 sy 1 OG
TT—FE(TZ'UTT Q)—%E, (4)

where@ is the transportation rate of angular momentum. By eliniimgt,., we obtain the governing
equation:

oY 19 109G ,_ 0vg. , 0rvg

E__rar[(%r or - ot )/ or ) ©)

wherevy = (.
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The transportation rate of angular momentGiis mainly determined by two factors: the effective
viscosity of the gags, and the torques exerted by the platgt For the first factor,

G, =2nr- I/ZT@ - (6)
dr

wherev = vt + vsg = (qart + asg) (H/7)2Q. H/r is the scale height ratio of the disk. To identify
the contribution from the disk’s self-gravity, the totasuosity is divide into two partsi,,, the effective
viscosity caused by the self-gravitating effects ang,, an artificial viscosity denoting viscosity comes
from all other effects, e.g. the MRI. The typical value®y,; ranges fromi0~3 to 10~2. We are con-
sidering a self-gravitating disk, most of viscosity is asgdl to be caused by the self-gravitating effect,
so we adopt a low artificial viscosityt,,.; = 1073,

When a planet is embedded in the disk, its tidal torques saadditional angular momentum
transportation(Lin & Papaloizou 1979a). The total trantg®n rate of angular momentum becomes:

G =2nr- uEr(fl—Q + ép, (7
T

whereép is the torque exerted on the gas by the embedded planet, wbitains both the linear
Lindblad and corotation torques for isothermal jas(Pderadigeret al. 2010). Following the Eq(14)
and Eq(15) of Ward 1997, we can obtain the smoothed lindlnleglie density. In corotational region,
the linear corotational torque density is represented ifL&qof/Paardekoopet al. 2010. Hence, we
can finally obtain the torquds as well as the torque densi%—r on the gas at radiusduo to the planet.

The self-gravitating effects are simulated by two terms: $blf-gravitating viscosityr,, and the
self-gravity potential on the disk,,. Since the 1-D model could not simulate the gravitationgduel
lence well, we adopt an analytic descriptioroqf,. We will discuss it in detail in Section 3.2.1. Besides
the effective viscosity, the self-gravity of the didk, may also change the meridional velocity field
on the disk. Considering this as a quasi-static process awe: h

vi GM, 1dP dd,,
ro 72 +Edr dr ~ ®)
In this 1-D model @, is calculated by integrating the radial component of thevityraf all the grids
on the disk. To avoid singularity, a softening lengtk- 0.1 H is adopted. We emphasize that the self-
gravity potentiakb,, is not constant, instead, it changes every time step as tfecewensity changes.
So as the equilibrium angular velocity. This effect may iynplsize change of the gap.
The governing equation is diagonalized to a tridiagonalrivet Methods to solve this kind of
linear algebraic equations can be fourld inWilliahal. 1992. The initial surface density, equals to
a series of values: fro.7M M SN to 2.8 M M SN. The boundary condition is set to be solid where
2bound - 2O-

2.3 2-D model

In the second series of simulations, we solve the vertitagimted continuity and momentum equations
in a 2-D cylindrical coordinates by our ANTARES code. Theailstand convergence tests of our code
can be found in Zhangt al. (2008) and Zhang & Zhou (2010a), respectively.

2.3.1 Numerical Method

We assume the disk is thin and cold, whéfér = 0.02. The vertically averaged equations are solved
in a 2-D cylindrical coordinate&r, §), whose origin is located at the central star. To make surk eac
cell is almost square, we adopt a logarithmic grid along #wal direction with a constant ratj® =
Ar/(rAf) = 0.8.

The major difficulty of numerical experiments on the selégty effect is poor computational ef-
ficiency. It is too time-consuming to solve the Poisson eiguadf the gravity potential on a highly
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perturbed disk, where the density varies quickly with batetand position. Thanks to the applica-
tion of the Fast Fourier Transform method, we could greatjuce the complexity of this problem
from N2 to N1n N, whereN is the total number of the grids used to resolve the disk. Bespis
improvement, it is still too “expensive” to perform high odstion 2-D or 3-D simulations, when the
total N = N,. x Ny > 10°. On the other hand, low resolution simulations usuallyddtrce un-physical
effects and the results are thus less reliable.

One of the most significant numerical effects on an Eulerréhig that, since the mass is placed at
the center of each cell instead of smoothly spreading oytratnet gravity force exerted on the planet
is usually dominated by the mass within only the single célbge center is immediately adjacent to the
planet. As the planet travels through a series of cells, ghéonque exerted on it experiences un-physical
large variations. When the resolution of the grid is highwagty this effect could be partly reduced by
a well-chosen softening length. However, choosing theerafithe softening length is difficult. On one
hand, it should be small. It is usually smaller than the stalight of the disk or the Hill radius of
the planet. On the other hand, it needs to be large enougththabftening region can be resolved by
the grid size. It usually requires large number of grids &ohee the immediate vicinity of the planet,
e.g. the corotation zone of the planet(Masset & Ogilvie 2004is necessitates high grid resolution as
well. To balance the computational efficiency and accuraeyadopt a relatively low mesh resolution
N, x Ny = 256 x 512 and a refined treatment of the gravity torque in the vicinftglanet(see Appendix
A.3).

The velocity is denoted by = (v, vg), wherew, is the radial velocity andy is the velocity in the
azimuthal direction. The vertically averaged continuityation is given by

0o . 19(rovy)  10(owg)
ot r Or r 00
The momentum equations in the radial and azimuthal direstiwe

—-0 (9)

d(ovy) n 18(1"01}72,) n 19(ovyvg) v3 od OoP

at | or r a0’ "o or (10)
d(ovg)  10(rovvg)  10(ovi) B Vg o® 10P
o v o roae - v a0 100 (1)
The external potentiab is:
O=05+P,+Pp+ Py, +PN D (12)

where®s = —G Mg /|r| is the potential of the central staFr, = —GM,,/(|r —r,| +¢) is the potential
of the planet®, is the self-gravity potential of the gaseous disk, whichaégedmined by the Poisson
equation:

V20p = 47GY, (13)

In our simulation, we calculate the self-gravity fotEg, directly by the FFT method (see Appen(ix B).
@y , is the indirect potential caused by the Jupiter-mass planet

GM,
rp3

B M,
- Mg+ M,

SN p Qp2r Ty R Ty, (14)

¢ p is the indirect potential due to the gravity of the gas disk:
e
Dyp=G / L dm(r). (15)
p Il

Since we have assumed the disk is very cold and we focus ondkigagional stable region, we do not
adopt the energy equation in the 2-D model. Instead, we almgially isothermal equation of state:

p =5 (16)
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wherec;, is the sound speed which is only the functionot, = (H/r)vkep anduvge, = /GM, /1 is
the local Keplerian velocity. We do not employ any artificiegdcosity, however the numerical viscosity
due to the coarse grid i8,,,,, ~ 107°.

To estimate the numerical viscosity we have performed s¢whiort-time simulations to test the
diffusion time of a density ring in the disk under differeasolutions256 x 512, 512 x 1024, 1024 x
2048,1600 x 3200 and2048 x 4096. The planet and disk’s self-gravity are not included. Wenfbu
that the diffusion time doesn’t change anymore when we chding resolution fromi600 x 3200 to
2048 x 4096. We believe that the grid effect is neglectable when theluism achieve2048 x 4096.
Then we add an artificial viscosity in ti848 x 4096 case. When this artificial viscosity increases to
10~5, we found the diffusion time is comparable to the value ofibé x 512 case. So, we conclude
the viscosity comes from the coarse grid is abidut5 in a resolution o256 x 512.”

2.3.2 Initial and Boundary Conditions

We fix the star at the origin of the frame and let gas and thegpkaavel around it. The initial orbit of the
planet is circular and its semi-major axis is set to be unigys= 1. To ensure the gas disk starts with an
equilibrium state, the initial azimuthal velocity field istdo bev(r)gy = (1/r + 17 Fsy(r) — cs(r)?)"/2,
whereFy, (r) is the self-gravity of the gaseous disk andr) is the local sound speed. The initial radial
velocity of gasv,q is set to be).

To reduce the initial impact on the disk, we hold the plane& icircular orbit for50 orbits and
increase its mass fromo01 to 1 Jupiter mass gradually. Since the initial planet mass ig serall and
the initial velocity of gas has taken the gravity forces amelpressure into account, the disk achieves a
steady state well before the planet emerges. Two strongl spins emerges after abdgtorbits. When
we release the planet, a clear gap is already formed. At ttial istate, Toomre) is greater than over
the disk(fig[1).

The calculations are actually performed in a wide annulits, thre inner boundary located &%,, =
0.4a9 = 2.08 AU and the outer one located Bt,,, = 2.5a¢9 = 13AU. We adopt outgoing boundary
conditions at both the inner and outer boundaries. It is aevabsorbing boundary condition that the
waves are only allowed to propagate out of the computatidomlain, while the inward traveling waves
are set to be zero. There are two ghost rings outside the boesdwhose density and velocity field
stay at the initial state. In the self-gravitating model,imeude the gravity potential of these two ghost
rings to avoid the un-physical cutting-off of the self-gitg\potential at the edges of the disk.

2.3.3 Measurement of the gap width

The gap width is a key quantity in this work, however the exaxsitions of gap boundaries are hard to
be determined analytically. Fortunately, we are focusingh® relative changes of gap width in a disk
with or without self-gravitating effects. So, we could defthe gap width by the disk’s surface density
profiles. To ensure the comparability, we set the surfacsitjeat the initial position of the planet as the
reference density. Then, the measurement of the gap wid#bisimulation is quite simple. At each side
of the planet’s orbit, we can find a position where the surfdessity is equal to the reference density.
If we got more than one positions, the nearest one (to theepléchosen. Then we get two positions
on both sides of the planet. We define this two radii as theriand outer boundary of the gap and the
gap width is the difference of their radial positions. Theasiwement in 2-D simulation is similar. The
only difference is that we use an azimuthal averaged depsifijle in the 2-D simulations(panel (b) in
fig.[2).

3 RESULTS

Our numerical simulations consist of two steps. First, wepac 1-D model that describes the radial
viscous evolution of a self-gravitating disk. The selfagtating effect of the gas is added in both as an
additional radial force field and an effective viscosityn&i the 1-D model is not suited to simulate the
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Fig.1 @ profile on the disk. Panel (a): The initi@l profiles. Panel (b): The fin&) profiles
(b) on the disk with different surface density

2-D gravitational turbulence and the behavior of a grawatatlly unstable disk, we concentrate on a
low surface density range to study the gap variation in aitatnally stable disk. Second, to reveal the
gap variation within the transition stage (from gravitatdly stable to unstable), we further perform a
series of fully self-consistent 2-D simulations with théfggavity of gas included. We then investigate
the orbital evolution of the embedded planet associatel thvé gap formation process.

3.1 1-D Simulation

Panel (a) of figll3 shows the variation of the gap width versoduion time in the self-gravitating and
non-self-gravitating models. Our 1-D simulations showvt,threa disk without the self-gravity effect, the
gap width is almost unchanged when the surface density gkmndass) increases. This is consistent with
the former analysis that when the self-gravity is absengdpewidth is determined by the dissipation of
the gas and the tidal force of the plahet Goldreich & Trema®&0, Lin & Papaloizou 1986. When the
self-gravity is included, we find the gap width increaseshassurface density increases. When the gap
width becomes stable, we measure the width difference legttree two gaps in different models for a
series of surface densities (panel (b) offfig. 3). It cleahlgvgs that there exists a critical surface density
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Fig.2 Surface density cross sections of the disks with differarfase densities. The surface
density is averaged over the azimuthal direction. Thesed®gshow the gap structures when
the disk’s self-gravity is included or excluded. When thekdi self-gravity is included, the
gap is slightly deeper and wider. Panel (b) shows how we nmedka gap width. Panel (d):
disk’s structure becomes very turbulent in a dense selfigtang disk. There is no clear gap
in that case.

aroundX; ~ 0.85M M S N. The self-gravity suppresses the gap formation processawhe< ¥; and
enlarges the gap when, > X;.

During the gap formation process, the self-gravity effdayp two opposing roles. On one hand, it
drives an effective viscosily Gammie 2001 which tends to enthle disk more dissipative. Therefore,
the gap is more difficult to be cleared and the gap formati@megss is suppressed. On the other hand,
the equilibrium at the position of the gap boundaries charagethe local self-gravitational potential
varies with the surface density there. When the densityesblgzomes sharp at the gap boundaries, the
local self-gravity potential may change direction and getwdcontract the disk. This effect may leads to
enlargement of the gap. The behavior of the gap width undetwho effects is described below.

When the disk surface density is low, the dynamics of the gaswstly determined by the central
gravity GM., /r?. Although the global self-gravity potential of the disk isak, the gas exchanges
angular momentum more effectively with immediate neiglstdoy the local mutual gravity. This can
be expressed as an effective viscosity which suppressemfhformation process. As the disk density
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Fig.3 Gap widths in 1-D simulations. Panel (a): Width of gap versuslution time. From
top to bottom the surface density of disk decreases ffahW/ SN to 0.7MMSN. The
dashed lines denote the non-self-gravitating cases. $iecgap size almost doesn’t change
with disk’s density in the non-self-gravitating cases, ttashed lines denote4 M M SN
and 2.8M M SN are overlapped. Panel (b): The differences of gap width eetwthe
self-gravitating disk and the non-self-gravitating didihe surface density increases from
0.7TMMSN to2.8M MSN, the critical surface density is aroubid ~ 0.85M M SN.

increases, the global self-gravitational potential bedo make measurable influences to the central
gravity. We could just look at the outer boundary of the gapberer = r,,. When the gap is stable,
there is an equilibrium:

ﬁ GM, 1dP

Tob 2 + Eﬂ"’b’
given that the tidal force of the planet is balanced by theos#y dissipation. When the self-gravity
®,4(r, t)|op is included, the equilibrium becomes:

(17)

v GM. 1dP, d®

=, _590_ 18
Tob rgb Zdr|b+ dr Job (18)

As the gasis being cleared in the gap, the gradient of salfigtional potential becomes very sharp
at the boundaries. ThuB, (1, t) = —d®s,/dr|o, inCreases from negative (directs inward) to positive
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(directs outward). By assuming the tidal force of the plamet the viscous dissipation remain balanced,
we may find that whet, (o3, t) increases, the angular velocity required by the equilibrilecreases.
During this transition stage, the angular velocity of the g#r,;, is greater than that required by the
equilibrium. So the gas tends to drift outward. At the meaiteylihe pressure gradient and viscous
dissipation try to push the gas back. However, the disk haveen dominated by the gravitational
turbulence yet—the effective viscosity is still too low;, ~ 1073. The viscous timescale is as long
as10%yr and is much longer than the variation time scalégf(r.», t) which is only dozens of orbits
for a Jupiter mass planet. To retain the equilibrium, théesar density profile needs to become sharper
to generate a stronger pressure gradienty)dP/dr|.p, at the gap boundaries. However, the sharper
gradient of the surface density also enhances the graditime self-gravity potential at the boundaries.
Finally, the outer boundary moves outward until the anguédocity of the gas matches the required
value and a new equilibrium is achieved. A similar processiosat the inner boundary of the gap but
results in an inward drift of the gas. This combined effedtdes like a 'self-gravitational contraction’
of the two parts of the disk and makes the gap become wideregpukd. Furthermore, since the pressure
effect decreases asincreases, this effect is more pronounced as the disk bexdereser (Fifl3).

3.2 2-D Simulation

Our 1-D simulations suggest that when the surface densdgesis>;, the width of the gap increases
monotonically (for¥ up to2.8M M SN). To ensure this trend in a fully described self-gravitatitisk,

a series of 2-D hydrodynamic simulations are performed.drbéal evolution of the giant planet em-
bedded in a self-gravitating disk is also studied. Since2tflesimulation is very time consuming when
the disk self-gravity is included, we chose only 4 typicatface densities).7M M SN, 1.4AMMSN,
2.8MMSN and7MMSN.

3.2.1 Gap formation

Panel (a) and (b) of fig.]4 shows the evolution of gap width wetiéme in the self-gravitating and non-
self-gravitating disks. Different surface densities aemated by corresponding marks. Note that the
decrease of the gap width after ab@a0 P, is due to the decrease of the Hill radii when the planet is
migrating inward¢, decreases). It is clear that the surface density does nogetthe gap width when
the self-gravity is excluded, while the gap width in a setfagtating disk strongly depends on the surface
density (see panel (c) of Figl. 4). Panel (a) offfilg. 5 showso&ution of the normalized gap differences:
(9apsg — 9apnom)/gapnom- All the gap widths have been normalized by the correspansimi-major
axis of the planet to eliminate the migration effect. In d-geavitating disk, the gap width increases as
the disk’s surface density increases. However, it is natesli relation. Furthermore, the 2-D simulations
show that, the enlargement of the gap decreases when tleeswénsity exceeds 2M M SN and
becomes negative wheny, > 3.5M M SN (panel (b) of figlh). The gap width is recorded evéty
orbits, when the simulation is finished, we sum all the widtgether and find the averaged value. Note
that gap widths of the first00 orbits are dropped, since the gap is not well formed befaae fiy.[2
shows the gap structures under different situations andwewneasure the gap width. The gap size
is almost identical when the surface density is low. Whendisk becomes denser, the gap is slightly
deeper and wider in the self-gravitating disks. We meadwdlifferences of the averaged gap width
between the self-gravitating and non-self-gravitatinglele and interpolate these data (panel (b) of fig.
[B). The results suggest that there is another critical sard@nsity which is around;; ~ 3.5M MSN.
WhenX, > ¥y, the self-gravity suppresses the gap formation againcdliat, for a very dense disk
Y9 > TMMSN, the gap is not cleared. So it is significantly smaller thdreat(Panel (d) of fig.]2 and
fig.[6). The widths showed in fif] 4 are azimuthal averagedevalu

When the surface density exceetl8M M SN, the gravitational turbulence becomes significant.
fig.[@ show the density contours of the disk under differemfasie densities. The three figures in the
left column are the normal disks. Their disk structure doat@nge much when their surface density
increases fromd.7M M SN to 7TM M SN. The three figures in the right column are the self-gravitati
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Fig.4 The evolution of gap width in 2-D simulations. Panel (a): gagdth versus evolution
time in non-self-gravitating disks. The gap is cleared acbL00 orbits and reaches the max-
imum value. Then, the gap width decreases as the planettesgravard. All the widths are
azimuthal averaged. Panel (b): gap width versus evoluitioain self-gravitating disks. Panel
(c): differences of gap width in self-gravitating and naifgravitating cases. The gap width
does not change with the surface density of the non-selfitgtang disks.

disks. When the surface density increase8.8a/ M SN, the turbulence emerges at the outer part of
the disk, where the Toomi@ is relatively low. As the surface density increases more gifavitational
turbulence becomes stronger. When the disk’s surfacetgemngieeds’;;, the disk becomes gravita-
tional unstable(the last figure in the left column). At suéghhsurface density, the effective viscosity
caused by the self-gravitational turbulence will overcdhee’self-gravitational contraction’ effect and
dominate the gap formation process.

Comparing with our 1-D simulations, there are two majoretifnces. One is that our 2-D sim-
ulations indicate a smaller value of the first critical sagalensity>:; ~ 0.8. This suggests that the
'self-gravitational contraction’ is stronger in a 2-D digkis probably because in the 1-D simulations,
we adopt an artificial viscosity,..;, which turns out to be slightly larger than the numericatos
ity vnum IN OUr 2-D simulations. This makes the total effective viatpin the 1-D simulation slightly
larger than the one in the 2-D simulation. However, the diffee is quite small (our 1-D results indicate
31 ~ 0.85) and doesn’t change our main results.
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Fig.5 The relative differences of gap width in 2-D simulationsnélga): The relative width
differences between self-gravitating and non-self-dedivig disk. Gap width has been nor-
malized by the corresponding semi-major axis of the plamst fd eliminate the migration
effect. Panel (b): The time averaged relative differenegsws surface density of disk. The
dashed lines show the cubic spline interpolations and waddhe second critical surface
densityX;r =~ 3.5MMSN. The first oneX; =~ 0.8M M SN is coherent with our 1-D re-
sults. WhenX;; > ¥y > ¥; the “self-gravitating contraction” dominates the gap fation
process. Wherxy > X, the gravitational turbulence viscosity becomes dominbma
self-gravitating disk, gap width reaches maximum whrn~ 2M M SN. All the widths we
adopt are the azimuthal averaged value. Notice that, foradense disk:y > TM M SN,
the gap is not cleared. So it is significantly small.

The other difference is that our 1-D results suggest thagtmesize increases monotonically as
the surface density increases franTA/ M SN to 2.8 M M SN. However our 2-D results show that
the increasing trend bends down aro@id M SN. For the 1-D simulations, the angular momentum
exchange caused by the self-gravity effect was only desdriiy an effective viscosity,,. In this
descriptionys, = as,c2/Q(Gammie 2001), where

4

- 1)tcoolQ .

(v (19)

Oésg —
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and the right panels show the self-gravitating disk. Thdaser density of disk i, =
1.4MMSN,2.8MMSN,7MMSN from top to the bottom, respectively. The gravitational
turbulence emerges clearly wheg > 2.8 M M SN.

The cooling time scale is determined by the internal eneggypit ared/ and the cooling function,

U o)
tcoo - = = 577 20
SR TG DA (20)
and(Hubney 1990) y
g T
A=—(T*-T" . 21
3 ( c 0)1+7_2 ( )

T. = 280K (a/1AU)~1/? is the mid-plane temperature of the disk &fgd = 10K is a minimum
temperature of background sources(Stamatetlak 2007). Using the analytic approximation of the

Rosseland mean opacity for molecules (Bell & Lin 1994),
Y 2/373

—)*°T

2H VI

(22)

K = ko
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we can get the optical depth(Riceet al. 2010),

) ) )
~ Hi(—,T)— = H(—)>/3T3. 23
T ”(21—1’ )2H (2H) ¢ (23)
Then we get
160 H(Z)%/3T3
A= — (T} -T, 2. 24
O e .

At the location of the giant planet, whese= 5.2AU, H/r = 0.02 andX = 1M M SN, we found that

by 5/3m3\2 . 103

(H(zH) T2) ~10° > 1. (25)
Thus, we have\ o« X%/, This gives us ..., « %3 andv,, o« /3. So, as the surface density
Y increases, the dissipation in the disk becomes weaker anghitforms more effectively. This result
could be valid wher® is much larger than unity (Ricef al, 2010 estimated tha&) > 2). In some high-
density simulations, howevep, is close to unity after several hundred orbits (fig. 1). So wiebe that
the real self-gravitating effect of a dense disk should Beutated by the realtime density distribution
consistently and the 2-D simulations should be more seiGistent.

3.2.2 Migration of the giant planet

Besides the gap formation, the orbital migration of the ptasm another important outcome of the disk-
planet interactions. The upper panel of fi§j. 7 shows the riaraf the planet embedded in a series
of disks. The dashed lines are the results with the selfigraf’the gas included, while the solid lines

are those results without the self-gravity of gas. From twphe bottom, the surface density of the
disk increases from.7M M SN to TM M SN. One may find that all the migrations experience two
stages. At the first stage, the giant planet is still surrednlly the gas and undergoes the type | (or
type-I-like) migration whose time scale should be inverg@bportional to the disk’s surface density

(Tanakaet al. 2002),

M, M, Cs
M, Yoa2 " apQy,

T=(27+11y)7" 2ot ooyt (26)

p p
Our results show that at this stage, the migration rates efptanet is greater as the disk becomes
denser(slope of the migration curve in the upper panel & igd panel (a) in fig.]18). It is qualitatively
agree with the analytic predictions we mentioned above hisccbuld be a proof of the consistency of
our simulations. The lower panel of fig).7 shows the relatifieences of migration (semi-major axis
vs. time) between the self-gravitating cases and the namoalself-gravitating) cases. The differences
are normalized by the values from the corresponding norasd <

As the gas located in the gap region is cleared, the migratiadhe giant planet steps into the
second stage when the migration rate of the planet is significreduced. This is usually called type Il
migration. According to linear analysis, the time scaleygiet Il migration is supposed to be inversely
proportional to the effective viscosity on the disk. From filjwe can find that the type Il migrations
in different surface density have almost the same slope lieself-gravity of disk is exclude. This
is reasonable since the effective viscosity should not neépa the surface density. However, we find
that the migration rate in the denser disk is indeed largan the rate in the thinner disk(also in panel
(b) of fig[8). The reason is that there is an inner boundaryindisk model. When the planet is getting
close to the inner boundary, most of the inner disk has flowgidatour inner boundary. As a result,
the torque from the inner disk(positive torque) is weaked #e net negative torque is greater. That
means the planet will drop to the central star faster wherts$ gloser to the inner boundary in our
simulations. At the meanwhile, a planet migrates faster deaser disk than in a thinner disk before
the gap is cleared. So, when the migration steps into theltyjggime, a planet embedded in a denser
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Fig.7 Upper panel: orbital migrations of the planet with or withdisk’s self-gravity. Blue
solid lines show the migration in non-self-gravitatingldiswhile the red solid lines show
the migration in self-gravitating disks. Lower panel: théatences of migrations between
the self-gravitating cases and non-self-gravitating sas@mal cases). The value has been
normalized by the value from corresponding normal cases difference on the migration is
significant only when the disk is very dense.

disk will be closer to the inner boundary of the disk and wakHarger inward migration rate. While

in the self-gravitating disk, the type Il migration rate olgas versus the disk’s surface density, because
the effective viscosity is related to the disk’s surfacedigmow. When the surface density is low, the
difference of the semi-major evolution is very smatl:2% (lower panel of fig.J7). When the surface
density is higheiXy > 7.0M M SN), the difference becomes very significant.

In this paper, we concentrate on the variations of the mignatate under the effect of disk’s self-
gravity which is the source of the turbulent viscosity. R&iag of fig.[8 shows the evolution of the
migration rate ¢,) with the self-gravitating effect included. After aba(i0 orbits, the migration rate
reaches different stable values according to the surfacsitgeof the disk. We measure this stable mi-
gration rate in each run and the results are shown in paneifdg.[8. The red circles are the results
with self-gravity of gas included and the blue squares aredbults without the self-gravity. The migra-
tion rate weakly increases with the surface density in asalfigravitating disk. This indicates that the
effective viscosity barely changes with the surface dgngiten the self-gravitating effect is excluded.
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Fig.8 The migration raté versus surface density of disk. Panel (a): The migratiavatsus
evolution time in the self-gravitating disk with varies fage densities: reaches steady value
after the gap is cleared & 200 orbits). Panel (b): The migration rate versus surface densi
of disk. In the self-gravitating disk; is proportional toXq (red circles). While in the non-
self-gravitating disk, this relation is very weak (bluetaawles).

However, in a self-gravitating disk, the migration ratereggses quickly as the surface density increases.
Our results suggest that, in a self-gravitating disk, thgration of a giant planet is slightly slowed
(almost identical with the non-self-gravitating case) witee surface density is moderate. However, the
migration of the giant planet becomes faster than that imthreself-gravitating disk when the surface
density exceed2.8M M SN. In a very dense disk, = 7TM M SN, the migration of the giant planet
could be very fast and the time scale could be as shott 8y (fig.[8).

The quick increase of the migration rate indicates that ffectve viscosity is mostly determined
by the gravitational turbulent viscosity and increase$hie surface density of a self-gravitating disk.
We sum all the angular momentum of the whole disk and measuxaiiation rate. Since the size of
the disk does not change with time, its angular momentunatian is only determined by the radial
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mass flow and angular velocity variation, which are both #sults of the viscous dissipation when
the gap is stable. Therefore, this angular momentum vanatte will roughly indicate the effective
viscosity v.s¢ on the disk. The associated results are shown irig. 9. Papedhows the angular
momentum variations versus time in a disk whExe= 2.8 M M SN. The result with the disk’s self-
gravity included is denoted by the red dashed line, and tleendttn self-gravity excluded is denoted by
the blue solid line. The large variation rate before 300F, is the result of the gap formation process,
where gas is driven away by the tidal torque of the planet asdlts in a sharp decrease in the total
mass of the disk. When the planet migrates significantly 600F,), the gap moves close to the inner
boundary of the disk. The total angular momentum of the diskdases as the gap moves out of the
disk’s inner boundary (total mass increases). We estirhataveraged dissipation rate only at the steady
state of each run3002 < t < 500P,) and the results are shown in panel (b) of fiy. 9. Since we do
not adopt any artificial viscosity, for a non-self-gravit@tdiskv. s = vpnum, and for a self-gravitating
disk verr = vnum + Vsg. Our results show that the effective viscosity; ¢ increases witte in the
self-gravitating disk. For the non-self-gravitating diske v. sy only slightly increases witlXy. Then

we find thatv,, is roughly proportional t&, (green stars in panel (b) of figl 9).

These results are in very good quantitative agreement Wwghntigration rates we obtained above,
except for the very high surface densiy = 7M M SN, where the migration time scale-(1.2 x
10*yr) is much shorter than the viscous time scale2.1 x 10*yr). In fact, in such a dense disk, the
planet cannot clear a gap before it reaches the inner boyfatpi@). As the Toomré) decreases along
the disk radius, the gravitational turbulence becomesgegpas the radius increases. This generates a
vortensity gradient across the corotation region of thatgitanet and exerts a large negative corotation
torque on the planét Masset & Papaloizou 2003. We furtheutate the torques exerted on the planet.
Figure[I0 shows the azimuthal averaged torque as a fundtitre alistance to planet. It clearly shows
that, in a non-self-gravitating disk, the torque densitglimost symmetric with the position of planet.
There is a great negative torque within the corotation regfdhe planet, which drags the planetinward
even faster. This result is in good agreement with that obthby Baruteaet al. (2011).

4 CONCLUSIONSAND DISCUSSIONS

In this paper, we concentrate on the gap formation procedsruhe effect of a disk’s self-gravity. We
first perform a series of 1-D simulations, where the disklé-geavity is modeled by a gravitational
effective viscosityr,, and a time dependent azimuthal-averaged self-gravityngiate We find that
when the surface density of the disk is low, the self-grapibfential is too weak to affect the gap
formation process and the gravitational effective visigosuppresses the growth of the gap. As we
increase the surface density of the disk, the self-graoitat potential becomes stronger. It leads to
a 'self-gravitational contraction’ effect at each boundaf the gap and tends to enlarge the gap size.
When the surface density exceeds a critical valiye,> >;, the net self-gravitating effect begins to
benefit the gap formation process and the gap width incregiseshe surface density of the disk. We
estimate this critical surface density is arougd ~ 0.8M M SN (section3.1). Since we recognize
that the gravitational turbulence viscosity could not beadi®ed consistently in a 1-D simulation, we
further perform a series of 2-D simulations where the disk¥-gravity is fully calculated by the real-
time density distribution on the disk. We find that the widthh® gap will not increases with the surface
density monotonically in a self-gravitating disk. The gtational turbulence becomes stronger as the
disk’s surface density increases and the associatedieffetscosity overwhelms the 'self-gravitational
contraction’ effect when the surface density of disk exseadother critical valué&:;;. We estimate
Y ~ 3.5MMSN (sectioh3.Z]1). The value df; andX;; depend on the disk settings. Here we
only gives the typical ones. Especially fir;, to find its exact value more surface densities beyond
2.8M M SN are needed to be tested.

The associated migration rate of the giant planet is alsdiextiuin this paper. Our 2-D simulations
show that the migration rate of the giant planet is slighglyuced in a self-gravitating disk with moderate
surface densityX, < 2M M SN, see fid.V). However, it increases with the surface densitlyeodisk
where the gravitational turbulence becomes dominant. Wherplanet is still able to open a clear
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Fig.9 Panel (a): The absolute angular momentum variations vessation time. In a self-
gravitating disk, the angular momentum variation (red éddme) is always larger than that
in a non-self-gravitating disk (blue solid line), wheXy = 2.8M MSN. Panel (b): The
effective viscosity versus surface density of disk. In a-sefi-gravitating disk, the effective
viscosity is mainly due to the numerical dissipation s = v,., (blue rectangles). While in
a self-gravitating disk, the gravitational turbulencetie tnain source of dissipations; =
Unum + Vsg (red circles). The net gravitational viscosity effeg}, is then shown by green
stars, which is proportional t8.

gap on the disk, its migration rate is just proportional te éffective viscosity due to the gravitational
turbulence. Furthermore, in a very dense disk> 7M M SN, the strong effective viscosity prevents
the gap formation even for a Jupiter mass planet. The maraitnescale then becomes much shorter
than the viscous timescale 10%*yr. This is caused by a large negative corotation drag whichds t
result of the vortensity gradient around the planet (sd&@.2).

According to our results we find that, (1) the self-gravitgteffect may not be treated as simply an
effective viscosity, especially for a moderate surfacesggrnOur simulations reveal that the self-gravity
plays two opposite roles in the gap formation process ataheegime and the net effect depends on the
surface density of the disk. (2) The gravitational visgpaitd the associated migration rate of the giant
planet increase with the surface density in a dense selitgtiag disk ¢y > 2.8M M SN). For a very
dense disky > 7TM M SN, where giant planets usually form, the the gravitationfdetive viscosity
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is too strong to allow a clear gap to form and the migratioresoale of a giant planet could be much
shorter than the type Il migration.

So, a giant planet is unlikely to stay at large separatiomftbe central star if the disk is still
dense after the planet has formed. This is not a problem focdthe accretion model. A planet core
usually needg0%~"yr to reach10M,.(Mizuno 1980), while the gas disk would been dispersed withi
105yr (Wolk & Walter 1996). If the giant planet could successfutlym, its migration would be very
slow or even be stopped since the disk is already too thin nergee large gravitational viscosity and
could not deliver enough angular momentum effectively. phablem is, because of the long timescale
required by the core growth stage, a giant planetis unlitefprm in a wide orbit by the core accretion
model(Dodson-Robinscet at. 2009). For a multiple-planet system, if the outer planenigléer than
the inner one, the two inward migrating planets may becoappid into mutual mean motion resonance
and migrate outward together(Zhang & Zhou 2010a;Zhang &ZH&L0b). This could be an effective
way to form giant planets at large separation from their btzst For a single giant planet, however, it is
still a problem. Some work shows that the radiative effecy aifect the direction of the migration and
could result in outward migration(Kalasal. 2008;B Kley 2010).

If the giant planet forms through the gravitational fragtagion of a very dense disk, it would
probably migrate inward quickly. However, we emphasizé tieado not adopt any cooling process in
our 2-D simulations. This is because we do not want to intcedany poorly understood factors in our
simulations, which would add too many uncertainties to #siits. In our 2-D simulations, we assume
a very cold disk withH/r fixed at0.02 and adopt a locally isothermal equation of state, therefore
the cooling in our model is in fact perfect. Hence, the effectiscosity due to the self-gravitational
turbulence increases with the surface density of the diskrasults in fast inward migration in a dense
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disk. If proper cooling process were included, the grawmited! viscosity would become less effective,
slowing the migration rate of the giant planet. This showddudly considered in future work.

We also notice that the existence of the giant planet magérithe onset of gravitational instability
in the disk. Strong spiral structures caused by the giamighlmay generate a local minimum@fand
cause global instability when the averaggik still far above unity (figl and figl6). This effect depends
on the mass of the giant planet and the disk where it is emloedde details are also the subject of
future work under preparation.
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Appendix A: REFINED TREATMENT OF GRAVITY IN THE VICINITY OF PLANET

When we calculate the torque exerted on the planet by a soajleof gas, the mass of this cell is
usually treated as a mass point located at its center. Wheeplémet travels very close to the center
of the cell, we get a gravitational singularity and the ptameuld suffer extremely large gravity force.
However, since the density is uniform within a cell, the ratcé exerted on the planet should vanish
because of the symmetry of the cell. A softening length isagwneeded to avoid the singularidy, =
~GM,/(|r —1y| +e).

The softening length could only reduce the amplitude of the gravity impulses, éasy, it could
not result in the real gravity exerted on the planet. Theahof softening length is very tricky: a small
could not reduce the singularity effectively, while a lagye would eliminate too much physical effect.
It is usually set to be a large fraction (e(gé — 0.8) of the scale height of the disk or the Hill radius of
the planet. However, in a low resolution grid, the Hill raglanly covers a few cells. Many local physical
interactions between the planet and disk would be concéfalezichose= compared to the Hill radius.
To more reliably model the gravity felt by the planet, we traaingle cell as a uniform area and the
gravity exerted on planet is an integration over this areg,the gravity force at the direction reads:

Fyi;=GM,o / o / o r?sin(0 — 6,)
' (
Ti,% 0.

2 412 — 217y, cos(0 — 6,) +€)3/2
¢ is now an integration softening parameter which is very srivabur simulations, we set= 10*in
dimensionless units (the radius of the Roche lobe now@s07 and grid size is- 0.01). This treatment
is performed irb x 5 cells around the cell where the planetis located. The caliside thiss x 5 region
are treated as point masses as usual.

A comparison of different treatments of gravity is perfodné/e set a region df x 5-grid whose
surface density is uniform and, = 1M M SN. Outside this region the surface density is set td) be
(fig. [AJ). As the planet travels through this region, thevigyaexerted on it should change smoothly
and symmetrically from the positive to the negative extreama vanishes at the center of this area. The
results are shown in fif._A.2. It is clear that the gravity iglesmoothed by the large~ 1gridsize
while the smaller one = 0.1 — 0.2Rr,cne introduces nonphysical gravity impulses (panel (b) of Fig.
[A2). Only the integration results with smalk 10~*~~° could void the nonphysical gravity impulses
(panel (a) of figCA.R).

We also test the net torque of the whole disk under differe@tinents. The result is shown in fig.
A3l When we treat a cell of the disk as a point mass, the mgna&ity between the planet and the cell
is very sensitive to the distance between them. When theepteawvels through a high density cell and
is very close to the cell center, its net torque will be dortedaby this single cell. As the planet keeps
passing by these point masses, the net torque exerted anilides violently(the blue line in fig._Al3).
On contrast, when we treat a cell as a continuous uniform #éneanet gravity from the cell vanishes
when the planet locates at the center. As a result, the rigiedrecomes more smooth and reliable(the
red line in fig[A.3).

This paper was prepared with the RAMEX macro v1.2.

drdf. (A1)
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Fig.A.1 A 5 x 5-grid in the vicinity of the planet. When we calculate theqioe exerted
on the planet by this area, each cell is treated as an unifegmiastead of mass point. The
dotted line shows the track of the planet in the comparisstste

Appendix B: SELF-GRAVITY FORCE OF THE DISK

The self-gravitating effect of gas is included in the evimatof the disk. As the density distribution is
changing with time, the gravity potential of the disk evahand needs to be determined by solving the
Poisson equation at each time st&®, = 47rGX. Integrating it over the disk in polar coordinates
we get:

E(rla 9/) 110t
P 0) = 2G dr'de B.1
p(r,0) // (r2 4+ r'2 — 2rr’ cos(0’ — 9))1/2T s (B.1)

However, solving this equation directly is very “expensigeen in coarse resolution and the Fast Fourier
Transform (FFT) method is one of the best choices.
The self-gravity force exerting on each cell in the radiaédiion reads:

S, 00 (r — 1" cos(0' —60)) .,
Si(r,0) = —2G dr'd’. B.2
(r-) // (r2 + 12 — 2rr' cos(6' — 0))3/2 " (B.2)
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Fig.A.2 A test of the gravity torques exerted on the planet undeeuifit treatments. The
planet travels in a circular orbit and the disk is divided ar266x512 cells. The center of

test area—ax5-grid(A.D)—locates atr = 110. The x-axis denotes the cell numbers(grid).

Panel (a): cells around the planet are treated as uniforesawe perform integration over
each of these cells to find the torques they exerted on thefpl@he smoothing length used
in the integration is shown in legengino = integ10~> means the softening length used in
the integration iS0~° in our unit. Panel (b): cells are treated as point mass. Wenasshe
mass of a cell concentrates at its center. The gravity betwes planet and a cell center is
calculated with a softening length to avoid singularity.o = 0.1 Roche means the softening
length is one tenth of the initial Roche radius of the planbkichv is ~ 0.069 in our units.
smo = lgridsize means the softening length equals to the grid size. Treagflg as point
masses usually results in large gravity impulses or overeghed gravity, while treating cells
as area gives more smooth results and avoids any un-phgsiiiations.

Note that the right hand of the above equation is the conieslwtf (') and K (» — »’), where

(r—1r"cos(¢ —0))

K= -2G .
(r2 + 12 — 2r1’ cos(0' — 0))3/2

(B.3)
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According to the 'convolution theorem’ we can ggt by two Fourier transformg() and one reversed

Fourier transformf —)(William et al. 1992):

S, = F Y F(2)F(K)). (B.4)

The kernelK in fact does not change with time and only needs to be cakuitaice at the beginning of

the simulation. The self-gravity force in the azimuthakdtion can be obtained similarly. The detailed
introduction of this method can be found in many computationethod handbooks, e.g. “Numerical
recipes” (Williamet al. 1992).
To avoid the self-gravity potential being abruptly cut dffeach boundary of the disk, we add two

buffer rings immediately outside the boundaries. The wafteach buffer ring i€.3 in our units and

their surface densities do not evolve with time. We integjthé radial gravities of these two buffer rings
and add them to the total gravity of the disk.
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Fig.A.3 Another test of the gravity torques exerted on the planetuddferent treatments.
We test the net torques exerted on the planet by the whole Bisk solid line shows the
torque when we treat the cells as point masses, while theotiellise shows the torque when
the cells around the planet are treated as uniform areadafde oscillations in the former
torque are the results when the planet travels through semseccells (close to a large point
mass). It is clearly that the later treatment gives morebddi results.
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