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Abstract 
 

The Australian sugar industry is a major part of the agricultural sector within Queensland 

and New South Wales. Through research it was noticed that there was no easy way for 

producers to evaluate the traffic pathways through the field. Therefore an investigation 

was devised to track the machinery during sugar cane harvesting to determine the 

potential increase in bulk density and therefore the decrease in plant production. A field 

trial was conducted in the Bundaberg region to assess the validity of such a program 

constructed to use GPS (global positioning system) data gathered from the load-out bins. 

Manual observations of the load-out bins during harvesting were also conducted to help 

validate the program. It was concluded that the program reported the correct answer, but 

was not running correctly due to limitations. The program was developed to report the 

number of times the growing bed was crossed and to help identify the potential loss of 

production in terms of sugar cane yield. From the measurements taken as part of the field 

trial, an average increase of 0.153tonne/m3 was witnessed within the traffic lanes. From 

this data, a yield decrease of 5% was inferred and subsequently a profit reduction of $0.03 

per metre of growing bed crossed. 
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1.0 Introduction 
 

With the increasing size of machinery used within the modern agricultural industry, soil 

health has become an ever increasing part of the farming management system. Soil 

compaction is a function of machine weight and therefore was the main focus point of 

this project (Hurney 1975).  

The larger machines that traffic the soil are causing a higher degree of damage than the 

previous lighter machines and this is beginning to negatively affect plant production. 

Root growth and water availability have been noticeably reduced in many studies 

involving soil compaction (Soane & van Ouwerkerk 1994). Therefore it would prove 

beneficial to the entire agricultural industry if a program could be created to report to the 

farmer on where any vehicle has travelled, and then producers could improve the 

management strategies undertaken.  

Due to the daily bin allocation process associated with sugar harvesting, there is an 

increased pressure on drivers to complete the task as quickly as possible. This causes the 

load-out and harvester drivers to move through the field in an unorganised manner. This 

leads to the load-outs entering the field at a point for easy access then manoeuvring under 

the harvester to be filled by crossing a number of growing beds (Hurney 1975).  

The sugar industry would benefit greatly from a program such as this because of the 

nature of the sugar cane growing cycle. Firstly, sugar cane is a ratoon crop which means 

that it is harvested every year and the subsequent crop is grown from the shoots left 

within the soil (Braunack et al. 2006); this allows for the accumulation of soil compaction 

throughout a number of years. As most producers in Australia use single row harvesters, 

this means that the traffic lanes within a sugar cane field account for approximately 50% 

of the layout. Therefore it is essential that any extra trafficked area can be accounted for 

and aimed to be minimised or mitigated (Barbosa & Magalhães 2015).  
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1.1 Project Aim 
 

This project aims to investigate machinery position during sugar cane harvest relative to 

the traffic lanes to determine the risk and degree of soil compaction on the growing bed.  

 

1.2 Project Objectives 
 

To achieve this aim a number of objectives must be met which are: 

1. Investigate the configurations and weight of machines that are likely to be used 

during the completion of harvest 

2. Determine the different traffic possibilities that a traffic lane can be subject to in 

terms of number of load-out bins and field characteristics 

3. Measure the soil compaction across the traffic lane before and after harvest, then 

observe the variability of compaction 

4. Investigate the machinery position through the field by attaching a GPS unit and 

analysing the data to determine how many times the growing beds were crossed 

during the harvesting process 

Project Specification can be found in Appendix A 

 

1.3 Dissertation Outline 
 

1.3.1 Literature Review 
 

This section will contain background literature on soil compaction in sugar cane and the 

parameters that affect it as a process throughout the field. Compaction management and 

how the production of sugar cane is effected are other brief topics that are described in 

this section. 
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1.3.2 Experimental Methodology 
 

The methodology and order of testing required to satisfy the objectives and aims of the 

project will be outlined in this section. The experimental design will be detailed and 

explained here along with the testing exercises.  

 

1.3.3 Results 
 

Results from the experimental method will be reported in this section detailing all the 

recorded values and begin to draw trends between the data; in the form of graphs and 

tables.  

 

1.3.4 Discussion 
 

This section will provide reasoning for the trends observed from the results and evaluate 

the program used to identify the crossing over of the growing beds during harvest. The 

usefulness and usability will be the main factors evaluated, but accuracy will also be 

evaluated briefly. 

 

1.3.5 Conclusion 
 

The conclusion will draw all the major findings together and provide a final evaluation of 

the program and the flow on effects if used correctly. This section will also include the 

need for further work and the areas that need to be repeated to ensure validity. 
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2.0 Literature Review 
 

This literature review investigates the fundamental background material concerning soil 

compaction to gain insight into the relationships between moisture and compaction within 

the soil during harvesting. The three main sections in focus are: 1) the mechanics of 

compaction and different parameters that influence the severity, 2) management practices 

for minimising compaction and, 3) compaction within the sugar cane industry. 

Understanding this material should provide sufficient information to allow for a better 

management plan to be formulated and integrated into a sugar cane production system. 

 

2.1 Soil Compaction 
 

2.1.1 General Characteristics 
 

Soil compaction describes the process of a particular volume of soil, when put under a 

force, deforming and compressing into a smaller volume. All soils consist of a certain 

percentage of sand, silt, clay and pore spaces and these constituents determine the texture 

of the soil and help to define a classification. Australia has its own classification standard 

which was published in 1996, and has since been revised (Isbell 1996). Many different 

countries have their own classification key due to the abundance of different soils found 

over the world.  

Compaction studies in cultivated soils are especially important in Queensland due to the 

larger amount of clay soils used for agricultural production. Clay soils are ideal for crop 

production because of their high water holding capacity. This high water holding capacity 

is achieved because of the increased amount of smaller pore spaces within the pore 

network (Haddadchi et al. 2015). As the pore spaces become smaller, the amount of 

suction needed to release the water increases due to soil physics (Zhang et al. 2016). The 

soil will have small pores due to clay particles being very small in comparison to sand 

and silt particles, therefore they fit together easier, lessening the size of the air voids 

(Gregorich et al. 2011); see figure 2.1. 
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Figure 2.1 Relative sizes of sand, silt and clay (University of Waikato 2013) 
 

As an animal or machine applies its weight to soil, it will cause compaction to a degree 

corresponding to certain parameters. In some instances the force applied will not be 

sufficient to cause permanent deformation (no change in density), but as discussed further 

in this chapter is dependent upon multiple factors. If an area is continually being used for 

grazing, compaction isn’t an issue due to the producer not relying on the area for 

intensive crop production. During times of drought, cultivation with a feed crop may be 

used for grazing; in this case the management of the animals is important. If the 

cultivation receives rainfall then the compaction susceptibility increases and the animals 

should be removed. 

Movement of water through the soil can be described by different methods. Gravity is the 

fundamental inducer of movement simply by the forces pulling all mass towards the 

earth’s centre; water is forced through the pore network of the soil. Coarse textured soils 

will have a low water holding capacity due to the larger pore sizes (lack of clay content). 

The size of the pores will determine how much (force) suction is needed to move the 

water from the pores (Yu et al. 2011). Due to matric potential, the smaller pores will 

retain water more easily than larger pores (Prathapar et al. 1992). 
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2.1.2 Soil Compaction Mechanics 
 

Tyre characteristics such as size, pressure and presence of lugs will influence the wheel-

soil contact area which directly correlates to the impact and degree of soil deformation. 

This is especially important in sugar cane fields as it is approximated that over 50% of the 

field experiences at least two machine passes (harvester and load-out bin) during a 

harvest event (Barbosa & Magalhães 2015). Barbosa and Magalhães (2015) reported that 

tractive tread tyres will exhibit a higher peak pressure when compared to a smooth 

treaded tyre under the same inflation pressure and approximately same tyre width. 

However, tyres with minimum void space (white area in figure 2.2) will result in the 

stress propoagtion over the full contact area (Barbosa & Magalhães 2015). Figure 2.2 

below shows the difference in contact area between a tractive treaded tyre and a smooth 

treaded tyre, under varying loads. Therefore it is more benficial to install smooth treaded 

tyres where possible to reduce the severity of the compaction, rather than minimise the 

effected area.   

 

Figure 2.2 Wheel-soil contact area as a function of load (light grey = lesser load, 
dark grey = larger load) between tractive treaded tyre (left) and smooth treaded tyre 
(right) (Barbosa & Magalhães 2015) 

 

Describing stresses that are propagated through the soil under the wheel contact area can 

be accomplished with the help of the equation that Boussinesq (1885) provided (equation 

3.1). This equation was formulated under the assumptions that the entire soil medium 

under investigation was an isotropic, homogenous volume; properties that are continuous 

across the whole volume (Boussinesq 1885; Horn & Lebert 1994). Equation 2.1 will 

return the principle stress 1V  (Pascals) of a point under a vertical point load, P, with a 
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radius from the point load and angle theta from the vertical to the radius explained in 

figure 2.3. 

 

1 2

3 cos
2

P
r

V T
S

          (2.1) 

 

Where  P  = load (Newtons) 

 r  = radius to load point (metres) 

 T  = angle between vertical and radius line of action (radians) 

 

Figure 2.3 Soil element stress under a point load (Defossez & Richard 2002) 
 

This method was valid for approximating the stresses in close proximity to the line of 

action of the applied load. This led Fröhlich (1934) to further investigate equation 2.1 and 

found with the addition of a concentration factor, that the wider scope of the stresses 

could be correctly determined. This concentration factor, xi ([ ), is chosen based on the 

strength of the soil; [ =4 is chosen for hard soil, 5 for firm and 6 for soft soils (Fröhlich 

1934; Söhne 1953). Söhne (1953) then proposed that the area under investigation should 

then be split up into 𝑛 number of loading elements each with a fraction of the total load 

acting at the centroid of the element. The total vertical stress 1V  (Pascals) is then 

calculated via equation 2.2 (Lamandé & Schjønning 2011; Söhne 1953) and demonstrated 

in figure 2.4. 
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Where [  = concentration factor 

P  = load (Newtons) 

 r  = radius from load point (metres) 

 T  = angle between vertical and radius line of action (radians) 

 

 

Figure 2.4 Stress distributions within a soil profile under a constant load with 
concentration factors of 4 (left), 5 (middle) and 6 (right) using equation 2.2 
(Defossez & Richard 2002) 

 

It is known that a tyre resting on the soil will not exhibit point load behaviour, rather a 

load over an area (pressure); an area that takes the shape of an ellipse as seen from figure 

2.2 exaggerated by the smooth treaded tyre (Barbosa & Magalhães 2015; Söhne 1953). 

Johnson and Burt (1990) then reported that triaxial stresses also needed to be understood 

due to trafficking causing stress in the vertical, longitudinal and transverse planes. These 

triaxial stresses are depicted in figure 2.5. If the load is static 1V  is the vertical normal 

stress (approximated by equation 3.2), 2V  is the longitudinal and 3V  is the transverse 

stress (Johnson & Burt 1990).  
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Figure 2.5 Triaxial stresses acting on a soil element under a static load (Defossez & 
Richard 2002) 

 

To find the longitudinal and transverse stresses, O'Sullivan et al. (1999) investigated the 

work of Gill and Vanden Berg (1967) who suggested that the mean stress was linked 

more to compaction rather than the principle stresses. 1V was calculated by Söhne (1953) 

then with the aid of regression constants and a concentration factor chosen based on the 

soil density, equation 2.3 will give an approximation for 2V  and 3V  (Gill & Vanden 

Berg 1967). 

 

1
1 2 3ln

n

c z c A cV [
V
§ ·

 � �¨ ¸
© ¹

        (2.3) 

 

Where 1V  is calculated from equation 2.2 (Pascals) 

nV  = principle stresses for n=2 & n=3 

 1 2 3, ,c c c  = regression constants 

 A  = wheel-soil contact area (metres2) 

 [  = concentration factor 

 



10 
 

Although shear stresses occur in the soil under a load, the mean normal stress was 

discovered to be dominant when considering compaction (O'Sullivan et al. 1999). As the 

stress on the soil increases, the volume of the soil will decrease at a rate due to its elastic 

nature (and isotropic assumptions). This elastic parameter labelled N  (kappa), describes 

the swelling index of the soil as seen in figure 2.6 (Ortigao 1995). If the stress induced on 

the soil never exceeds a proposed critical pressure cP , then the soil will be able to 

elastically deform without permanent damage to the structure (the rebound line will 

coincide with the compression line in figure 2.6). The critical pressure of the soil will 

change depending on the area under investigation. It will depend typically on soil grain 

size and moisture content (Bian et al. 2016; Horn & Lebert 1994). Once the stress 

exceeds the critical pressure of the soil the sample will begin to experience plastic 

deformation. This phenomenon is described by the virgin compression line and the rate of 

decrease is labelled O  (lambda). As the stress is released, the rebound line will propagate 

back towards zero stress at a rate of N  (Defossez & Richard 2002). 

 

 

Figure 2.6 Volume as a function of stress in a soil sample (O'Sullivan et al. 1999) 
 

2.1.3 Measuring Soil Compaction 
 

Soil compaction can be measured using volumetric measurements or a range of 

equipment. A common method to assess compaction is by measuring soil penetration 

resistance using a soil penetrometer. This device measures the force required to invert a 

cone of known dimensions into the soil. Force and area are known, and then the pressure 
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resistance can be calculated. Sensors can be attached that determine the depth into the 

profile that is being measured. Different configurations of this machine include a single 

unit mounted to a portable trolley which is better for small jobs; or multiple units 

mounted on a tractor which can map a larger area simultaneously (Fountas et al. 2013). 

The penetrometer is robust and readily usable; but the result that it provides can be 

skewed due to a number of soil characteristics. Soil moisture, for instance, needs to be 

taken into account when conducting this test because wet soil is more susceptible to 

manipulation by a force. To calibrate the penetrometer results, another test that measures 

the density of the soil needs to be undertaken so that samples can be compared.  

Bulk density is measured by taking a soil sample from the desired area either on the 

surface or at different depths. This sample is taken with a special steel cylinder that has a 

known volume and forced into the ground at the desired depth. As it is pushed into the 

ground the soil is trapped inside, then the extra soil that protrudes out each end is 

removed ensuring that the amount of dirt inside corresponds to the known volume.  Once 

collected the cylinder needs to be capped to ensure that no moisture escapes. Once at the 

lab, remove the caps and remove all the dirt from inside the ring into a container and 

weigh the sample (the weight of the container should be calculated before filling it with 

dirt). The bulk density is calculated by dividing the total weight of the soil sample by the 

known volume of the sample that was taken (measured in tonnes per cubic metre) (Chen 

et al. 2012). 

Frame sampling is another way of measuring bulk density and relating to compaction 

where a square steel frame of 0.5m2 is hammered into the ground at the desired depth 

such that the layer of interest is within its bounds. The upper edge of the frame is then 

used as a reference level and the elevation of the soil surface is then measured (either by 

hand or electronic methods) 200 times within the square. A layer is then removed and 

weighed and then elevation measurements are in the same x-y coordinates as the first 

round which is used to calculate the volume of soil removed giving the bulk density. This 

process can be repeated at various thicknesses depending on the part of the profile being 

investigated (Soane & van Ouwerkerk 1994).  

Another simple method of calculating bulk density in the field is the rubber balloon 

method which involves using a balloon or bladder and filling it with water when placed 

into an area of soil that has been excavated. Pouring a known amount of water into the 

balloon and ensuring that the entire shape is pressed against the wall of the hole, the 

volume of dirt extracted can be calculated. The excavated soil is weighed and the bulk 

density is calculated (Soane & van Ouwerkerk 1994).  
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With recent upgrades in technology has come the introduction of measuring soil 

characteristics with minimum soil disruption. One of these methods is x-ray micro 

tomography where the soil is replicated through the use of images taken by a machine and 

then analysed. The image taken detects pore volume spaces by distinguishing between 

air, moisture and soil on a microscopic level through the use of penetrating waves. After 

testing, it can be observed that this technology is more accurate than the standard cone 

penetration test, but comes at a much higher price making it unfeasible for field testing. 

Figure 2.7 shows an x-ray tomography image of the soil core before and after 

compaction with the pore spaces shown in c, d, e and f (Menon et al. 2015). 

 

Figure 2.7 X-ray micro tomography image of a soil core (Menon et al. 2015) 
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Computer models can also be used to make an assessment of the risk of compaction in 

agricultural production systems. Programs do this based on initial investigation of the soil 

such as the moisture content and strength of the top and subsoil layers. Then an 

estimation of the amount and type of traffic that the area is looking to support is input. 

The model will take the inputs and perform energy flow algorithms which detail the flow 

paths that energy would mathematically travel to get from one place to another 

(Rücknagel et al. 2015).  

Another method is to lay strain transducers in the ground and apply forces to the gauged 

areas to investigate the displacement caused by the force. This is another robust test, but 

errors are still present due to the moisture content and density. Although problems are 

still present, this test will give indications instantaneously and can be calibrated readily 

(Shahgholi & Abuali 2015).  

 

2.1.4 Damage Remediation 
 

As seen above, the effects of soil compaction can have an impact on soil characteristics. 

These effects then have to be undone by disturbing the soil in the root zone to allow for 

voids to take in air and moisture. The easiest and quickest way to do this is by tilling the 

ground to the desired depth. This action will break up the topsoil allowing air into the 

system. This action will also however allow for any moisture in the topsoil to be 

liberated, which is undesired if the producer is expecting a period of dry after tilling.  

Tilling will decrease soil compaction only if undertaken correctly. The depth at which the 

soil is tilled is dependent upon the tines being used (shape, length and width etc.). The 

optimum working depth for maximum soil disturbance is called the critical depth. If the 

tine is used at a depth deeper than critical depth, the soil will begin to be compacted 

because the tine can no longer force the dirt up and out of the furrow; reducing the area 

disturbed also. Therefore tilling will only reduce soil compaction if used at critical depth 

or at a depth that is shallower than critical (Spoor & Godwin 1978). 

Another common method is crop rotation; from shallow rooting crops to plants with a 

deep, more vigorous deep rooting system (figure 2.8). This natural way of remediating 

soil compaction has set-backs as it will require an entire growing season to achieve 

results, and this method will also deplete the water availability in the soil. Depending on 

what crop is produced, it may be able to be grazed or used for hay production; which 
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means that it can reduce the damage of soil compaction while still benefiting the 

producer, provided it is not carried out at high rates (Calonego & Rosolem 2010). 

 

 

Figure 2.8 (Left) Deep rooting plant (right) and shallow rooting plant (FAO 2008) 
 

 

2.2 Soil Compaction Management 
 

Farming systems across the world are susceptible to soil compaction which is a leading 

cause of yield reduction. To reduce the in-field effects of compaction, certain 

management strategies can be implemented. Ng Cheong et al. (2009) describe 

management strategies of soil compaction within a sugar farming system. This study 

found that moisture and traffic management were imperative to the reduction in soil 

compaction (Antille et al. 2016; Ng Cheong et al. 2009). 

 

2.2.1 Moisture Management 
 

Managing soil moisture during events that require trafficking of the soil can be quite 

difficult due to the increased pressure on producers to minimise loss of possible profit. 

The longer that the crop stays in the field, the more the product will degrade. Increased 

soil moisture has been investigated and found to increase the effects of soil compaction 
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under traffic (Chen et al. 2016). This can be linked to soil cohesion and internal angle of 

friction within the soils, but have more of an effect in clayey soils; much like the 

Australian vertosol (Isbell 1996). These parameters describe the shearing resistance of the 

soil outlined by equation 2.4, which is the Mohr-Coulomb failure criterion used in 

traditional soil mechanics (Al-Shayea 2001). The internal angle of friction, I  (phi), 

describes the resistance for the soil particles to slide past (fail) each other when subjected 

to an axial load corresponding to a normal stress of nV . Soil cohesion is affected by the 

amount of clay found in the sample; due to the mineralogical properties of clay (Al-

Shayea 2001) 

 

tann CW V I �          (2.4) 

 

Where W  = shear stress (Pascals) 

 nV  = normal stress (Pascals) 

 I  = internal angle of friction (degrees) 

 C  = soil cohesion (Pascals) 

 

Compaction within a clay soil will be maximised at optimum water content; if the water 

content is higher or lower than this optimum, the compaction will have a lessened effect. 

As the moisture content increases (when lower than optimum) the water molecules cause 

the clay particles to separate slightly and this causes the electrostatic and electromagnetic 

attractions (van der Walls forces) to decrease (Al-Shayea 2001). Cohesion as a function 

of moisture content and clay content is shown in figure 2.9.  
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Figure 2.9 Effect of water content and clay content on soil cohesion (Al-Shayea 
2001) 

 

The internal angle of friction is hard to manage for any farmer, but is influenced by the 

moisture and clay content of the soil (Marui & Tiwari 2004). The moisture content can be 

managed to a degree if the area is under irrigation management; but seasonal rainfall will 

constantly affect the moisture status of the soil. As figure 2.10 depicts, the angle of 

internal friction for clay soils is maximum for samples with small water content, and 

found to not be affected by clay content at low moisture content.  As the soil with 

increased clay content increases in moisture content, the angle of internal friction 

becomes less and allows for the shear stress to lower for the same normal stress.  
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Figure 2.10 Effect of water content and clay content on internal angle of friction 
(Al-Shayea 2001) 

 

2.2.2 Machinery Management 
 

Random traffic within a field has an increased chance of causing compaction in areas that 

will dramatically affect the potential production rates of the soil. Repeating passes over 

the field for different operations without driving in the correct locations increases the 

density of the entire soil body (McKyes 1985). Progressively driving over the same wheel 

tracks will cause not only a change in bulk density deeper down the profile, but will also 

increase the volume of soil affected. Figure 2.11 describes how the density changes and 

the corresponding soil volume that is affected under a sprayer tyre after 1, 5, 10 and 15 

passes respectively from left to right.  
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Figure 2.11 Change in density for a clayey soil under a constant load for varying 
number of repeated passes (McKyes 1985) 

 

Raghavan et al. (1977) found that density change could be directly related to tyre inflation 

pressure and number of passes. This led to the derivation of equation 2.5 which returns 

bulk density, dJ  (tonnes/metre3), knowing the number of repeated passes, average wheel-

soil contact pressure and moisture content. As discussed above in the moisture 

management subsection, soil cohesion will be maximised if soil moisture content is at an 

optimum (figure 2.9). The third term in equation 2.5 accounts for this by adding the 

logarithm of moisture content below the optimum. 

 

� � � �log logd A B Np C wJ  � �        (2.5) 

 

Where , ,A B C  = soil constants 

 N  = number of repeated passes of tyre 

 p  = average wheel-soil contact pressure (Pascals) 

 w  = moisture content by weight (%), below the soil optimum 
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After further studies, Raghavan et al. (1977) discovered that wheel slip began to influence 

the compaction of sandy and clay soils up to a maximum of 35 percent wheel slip. At 

higher amounts of wheel slip the tyres begin to excavate the topsoil which means that the 

shear strain characteristics of the soil are of considerable importance. All factors were 

then included in equation 2.6. This function is limited in validity to moisture content 

values that are below the optimum humidity for compaction, and wheel slip rates smaller 

than 25 percent. Examples of soil constants can be found in McKyes (1985), page 111, 

table 5.1. 

 

� �1 1log *(1 ) logd o
o

NpA S B w
p

J J
 ½

 � � �® ¾
¯ ¿

      (2.6) 

 

Where oJ  = initial soil density (tonne/metre3) 

 1 1,A B  = soil constants 

 N  = number of repeated passes of tyre 

 p  = average wheel-soil contact pressure (Pascals) 

op  = tyre pressure at which minimum compaction occurs (Pascals) 

S  = wheel slip (%) 

w  = moisture content by weight (%), below the soil optimum 
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Figure 2.12 Root density distributions for a corn crop after 0, 1, 5 and 15 passes at a 
constant wheel-soil contact pressure (McKyes 1985) 

 

Figure 2.12 shows how the root density in a field of corn changes under varying amounts 

of repeated passes. As the soil density increases within the root zone, the plant needs to 

put more energy into drilling through the stronger soil. Further studies by McKyes (1985) 

set out to describe yield loss as a function of soil density, and is explained in equation 2.7. 

 

� �2* *
dry dryY Y C J J�  �         (2.7) 
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Where *Y  = maximum obtainable crop yield (tonnes/hectare) 

 Y  = actual crop yield (tonnes/hectare) 

 C  = compaction sensitivity factor 

 dryJ  = actual soil dry density (average of 10-40cm depth) (tonnes/metre3) 

 *
dryJ  = optimum soil dry density for maximum yield (tonnes/metre3) 

 

Control traffic farming (CTF) has improved farming systems all across Australia by 

reducing the amount of random traffic a field experiences. Dedicated traffic lanes were 

introduced as the machinery used within the agricultural industry became larger and 

heavier. These newer random traffic machines enabled farmers to be more productive at 

the cost of soil health (Tullberg et al. 2007).  

Permanent traffic lanes not only reduce the effect of compaction within the field, but also 

increase the tractive efficiency due to the localised compaction under the traffic lane 

(Taylor 1983). These lanes are formed based on the landscape and desired travel direction 

by the farmer with the help of guidance systems such as GPS (Global Positioning 

System). If the trafficking can be kept to the same lanes across every operation that 

occurs over the land, then a reduction in overlap of operations will also be observed 

(Gasso et al. 2014). However, implements will need to be a specific width (length from 

centre to centre of a set of traffic lanes) in order for them to be used effectively. Wheel 

centres on all machines will also need to be modified to suit the traffic lanes, which can 

be costly (McPhee et al. 1995). 

Once the traffic lanes have been established, the machines that pass over them now need 

to be as precise as possible. Many tractors now have the ability to be driven via GPS 

guidance. The basic items needed for operation of a guidance system are the satellites 

(subscriptions), the receiver (dish) on the tractor and the screen that is used to view all 

data (area completed, speed and rates). Depending on the guidance system installed, the 

accuracy of the driving can be more, or less dependable. Systems that offer more 

accuracy such as real time kinematic (RTK), will have a larger set-up cost due to the need 

for a base station. The base station is required for this option because the rover 

(tractor/machine) will transmit and receive signals from the base station as well as 
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directly from the satellite (Perez-Ruiz et al. 2012). These systems can cost between 

twenty and thirty thousand dollars, including base station; but the savings that are made 

on spraying and fertiliser can easily outweigh the set-up cost (Kingwell & Fuchsbichler 

2011).  

Tyre sizes and pressures can also be altered to improve the efficiency of the machine 

while reducing the effect of compaction. Section 2.1.2 discussed that a smaller peak 

pressure was desirable. This can be achieved through the implementation of larger 

diameter tyres which increase the contact area between the tyre and the soil surface. 

Schjønning et al. (2015) reported that increased tyre pressure will decrease the tyre-soil 

contact area; while decreasing pressure will increase the contact area. A larger contact 

area reduces the peak pressure because the same force is acting over a larger area of the 

soil. Therefore, to reduce the potential for increased soil compaction, tyres that are not 

being used for power should be smooth treaded, at an optimum tyre pressure and have a 

large diameter practical to the situation. 

 

2.3 Sugar Cane Production 
 

2.3.1 Bed Preparation 
 

Bed preparation is an intensive program that can be completed many ways depending on 

the machinery available. Firstly a tractor passes over the final ratoon harvested cane and 

tills the entire field to unearth the cane still left in the ground to ensure it does not shoot 

in the next season. This process also equilibrates the compaction across the entire field to 

a more productive level.  

If the field has an increased number of large clods after tilling, then another machine that 

has an action much like a rotary hoe is used to break down these large clods for ease of 

workability. Once the soil is free of large clods, another machine tows an implement that 

forces dirt from in between rows together to form half growing beds. Depending on the 

tractor, the implement can be used to do a single row, or multiple at a time.  

Once the half growing beds are formed, the plant cane is dropped in between a set of 

beds. Plant cane is cut from a growing crop into billets approximately 30cm in length. 

Along the stalk of the cane are nodes, and at every node there is an eye that can produce 
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new shoots of cane. The same implement that was used to open the row for the cane to be 

planted is used to cover the plant cane with dirt to allow growth.  

 

2.3.2 Harvesting 
 

As technology has advanced, the machines used during the harvesting processes of sugar 

cane have increased dramatically. Firstly the harvester itself is the biggest machine to 

traverse the lane weighing in at approximately 19 tonne (Deere & Co. 2016c). This 

machine (3520) was released in 2012 and adopted by many producers because of the 

advancements with cleaning and cutting efficiencies. Deere & Co. (2016c) have recently 

(May 2016) released a new model sugar cane harvester (CH570) that weighs an 

approximate 21.5 tonne with more technological advancements than the previous 3520 

(Deere & Co. 2016b). As this machine is very new to the market, most producers will still 

be using the 3520 or equivalent.  

The harvester can store a minimal amount in the on board system and therefore needs to 

be constantly unloading the cane into a load-out bin that drives alongside the harvester. 

Configurations of the load-out bins are diverse; the source of power can come from either 

a tractor or truck and the towed bins can be single, double or triple axle trailers. Tractors 

and trucks may also have dual drive wheels and in some instances, the trailers may also 

have dual wheels for weight distribution (Meyer 1998). As discussed in section 2.1.2 and 

in figure 2.1, treaded tyres should only be installed on the drive wheels of these machines 

and smooth traction tires on the bins to reduce the severity of compaction. Front wheel 

assist (FWA) tractors are most common for this procedure and weigh up to approximately 

12.5 tonne unloaded (Deere & Co. 2016a). Load-out bins vary in size from smaller bins 

that can weight from 4 to 12 tonne when fully loaded, or larger bins that can be filled to 

16 tonne (Braunack et al. 2006). 

As the base cutter of the harvester moves along the ground it is idealised that it will not 

enter the ground and damage the cane root system in the soil. Ma et al. (2014) reports on 

the efficiency of different base cutter system designs and the related stool damage. As the 

harvester base cutter is cutting the cane it is being fed into the harvesting system, the 

damage to the cane left in the ground can be significant enough to disturb its growing 

ability for the next season. As each ratoon crop grows from the remnant cane in the 

ground, the sprawl of the new crop can be much greater than the previous; which causes 

the cane to become more tangled and possibly harder to harvest (Lu et al. 2008). 
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The sugar industry further impedes on the possible yield due to a localised area being 

managed so that a single farmer does not have all of his sugar harvested at its prime. This 

protocol was introduced because the mill can only handle a certain amount of sugar at a 

time; if every producer harvested at the same time the mill would not be able to process 

the entire mass. If the sugar is cut and not processed quickly, the sugars will begin to 

chemically react and break down; the billets have to be processed within 24 hours of 

harvesting. This means that within the supply area of the mill, each producer is rostered a 

certain time period to harvest sections of their crop; which may occur close to a rain event 

(Bundaberg Sugar 2016). 

 

2.3.3 Lane Use during Harvesting 
 

Dual row harvesters are very rare within the Australian sugar industry and therefore the 

majority of producers use single row harvesters. Single row cane harvesters will need to 

be driven over every row that has cane growing. Therefore, it is known that any traffic 

lane set will be used by a minimum of two machines (harvester and load-out bin/tractor). 

Depending on the length of a harvesting run, yield and the size of the load-out bins there 

may be need for multiple load-out bins to be used depending on the scenario. Assuming 

that the machinery can enter and exit from both ends of the traffic lanes, a single lane will 

experience a minimum of 4 machinery passes during harvest (figure 2.13). If the lane can 

only be entered from one side of the paddock, then machinery will need to reverse over 

the same part of the lane, multiplying the traffic by two (figure 2.15). If one lane is 

specifically investigated, it can be observed that it will experience double the traffic due 

to it being used twice for every row of sugar cane harvested. As seen in figure 2.15 the 

load-out bin travels along lanes one and two, while the harvester is on lanes three and 

four. They move in the upwards direction along the lane until the row is fully harvested 

and will then turn to the right to enter the next lane. The machines will then move 

downwards in the figure and reach the end of lanes two and three for the load-out bin, and 

four and five for the harvester; when at the end the machines will both turn left to enter 

the next lane. This process is repeated until the last row of sugar is harvested. If lane four 

is investigated, it can be observed that it receives two passes from both the harvester and 

the load-out bin because both machines only move one lane over every pass (Gui & Wu 

2014). 
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Figure 2.13 Cane harvested from the bed between lanes 1 & 2 exceeds the capacity 
of a single bin and therefore a second load-out bin is needed. The number inside the 
load-out bin defines how many bins have been used 

 

 

Figure 2.14 Field can only be entered from one end and therefore the machines have 
to reverse back over the lane to exit field 
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Figure 2.15 Schematic of lane use by harvester and load-out bin needing only 1 pass 
 

With this much traffic, it is important to ensure that all machinery are driving on the 

traffic lanes. The use of GPS for bed preparation and planting is generally used to allow 

for minimum error in the placement of the sugar cane, then the harvester can be set up 

with GPS also and use the same traffic lanes. As the cane is growing, external effects 

such as wind, rain or hail may cause the stalk to grow irregularly instead of 

predominately vertical. If this occurs, then the harvester may need to alter its path as it is 

harvesting.  

 

2.3.4 Effects of Compaction on Crop Production 
 

Soil compaction has many effects on the health of the soil which directly affects the 

production rates. Studies have previously shown that the effect of soil compaction has 

altered the production capacity of the ground (Barik et al. 2014). As stated above, 

compaction of soils will result in smaller pore volumes within the soil. The plants need to 

provide more suction to make the water available which requires increased energy.  

Nutrients that the plant needs for production are present in the soil solution, when the 

plants take up water, they are also being provided with these nutrients. It is necessary that 

the plants are supplied with an adequate amount of resources during production. Some 

nutrients can only be accessed by the plant if they are in close proximity to the roots of 

the plant; other nutrients are free to move with the soil solution. Soil compaction will 

both reduce the size of pores, making it harder to access water and nutrients, but also 
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decrease the hydraulic conductivity which reduces the rate that water enters the soil (Di 

Sante et al. 2015). 

 

Figure 2.16 (left) Mobile nutrient uptake potential area (right) immobile nutrient 
uptake potential area (Raun et al. 1995) 

 

Compaction will also affect the infiltration rates of rainfall into agricultural soils due to 

the shrinkage of the soil pores (Gui & Wu 2014). Figure 2.17 shows a soil sample with 

aggregates sieved and confined to 2-5 mm to investigate the difference in water 

infiltration before and after compaction, while fully saturated. White areas indicate soil 

aggregates while the colours ranging from blue to red indicate the velocity of water. Red 

corresponds to a velocity approximating to 0.4 ms-1 while the blue areas indicate a 

velocity much lower approximating to 0.005 ms-1. The speed of infiltration is expected to 

be quite high in a sample such as this due to the aggregate size being relatively large 

(figure 2.1) and this is reinforced by Valdes et al. (2014) who reported the infiltrations 

rate of clay to be in the range between 10-5 – 10-8 ms-1. Therefore, in clay soils it is 

imperative that the highest infiltration rate is achieved to allow the plants the maximum 

amount of available moisture. Figure 2.17 shows that after compaction the rate is similar 

in some areas, but the relative area that transmits water is much smaller (Menon et al. 

2015). 
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Figure 2.17 Cross sectional view of water velocity through a soil sample before and 
after arbitrary compaction (Menon et al. 2015) 

 

Limited root growth is an adverse effect of compaction in many agricultural production 

systems (Batey & McKenzie 2006). As soil is compacted the particles are forced closer 

together while the soil pores are reduced in size. This will affect the root growth of any 

plant as extra energy is needed to break through the harder soil. In this case, the roots will 

find it easier to propagate laterally rather than down the profile which ultimately reduces 

the maximum potential nutrient and water uptake area of the plant (Nunes et al. 2015). 

Figure 2.18 describes root length under different soil strengths for a maize crop, which 

have similar rooting systems to sugar cane plants. 
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Figure 2.18 Root length of maize under soils with varying soil penetration 
resistances (Lin et al. 2016) 

 

As the soil becomes more compacted, the root-soil contact area increases which decreases 

the oxygen diffusion rate. As the soil pores become smaller, they are more likely to be 

filled with water, which effects how much of the pore network can distribute oxygen 

throughout the system. If oxygen cannot be taken up or diffused back into the soil, then 

the production rate of the crop will be affected (Soane & van Ouwerkerk 1994).  
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3.0 Design and Methodology 
 

The following methodology details the steps taken to complete the field trials as well as 

the data gathering and analysis.  

 

3.1 Field Trial 
 

This section will contain an outline of the steps taken to complete the necessary testing 

when out in the field. Although timing of testing was dependant on factors that could not 

be predicted or controlled, the procedures remained constant. 

 

3.1.1 Site Selection 
 

The trial site was located near Bundaberg, QLD, (24°46'55.2"S 152°14'46.9"E) shown in 

figure 3.1. This site was chosen based on its attributes: I) conditions were typical for 

many areas of sugar cane being grown in Queensland; and II) the site was being harvested 

during the time of the dissertation and therefore all work could be completed.  
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Figure 3.1 Location of Bundaberg trial site 
 

 

Figure 3.2 Mean rainfall and temperatures for Bundaberg (BOM 2016) 
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3.1.2 Original Experimental Design 
 

Soil compaction was measured using a cone penetrometer at an interval of 20 centimetres 

(Braunack et al. 2006) perpendicular to the direction of the traffic lane. The testing run 

spanned across three growing beds and two traffic lanes to ensure that the effect of 

compaction in the traffic lanes was adequately measured. This process was completed 

three times along the harvesting run under the same conditions to help attain a 

comparable average. The penetrometer measured down to a depth of 600 millimetres 

ensuring that a sufficient portion of the soil profile was measured, other investigations 

have also used this depth (Braunack & McGarry 2006). This operation was conducted 

before and after harvesting to model the increase in compaction from the machines that 

are involved with harvesting. Figure 3.3 shows the layout for the penetrometer and soil 

cores that were to be collected for the different situations (1, 2 and 3 load out bins plus 

the harvester, and a control with zero traffic). 

 

 

Figure 3.3 Original design where the small black dots represent the penetrometer 
sample points and the larger blue dots represent the soil coring sample points. This 
would be repeated for 1, 2 and 3 load out bins plus the harvester. The green area 
represents the plant cane and brown strips represent the traffic lane. 

 

The variability of the configurations that the lane can experience was tested by observing 

a number of fields under different conditions. Firstly the scenario of the traffic lane only 
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is used by the harvester and one load-out bin, which is the more common occurrence. 

Another possible use of lanes is the harvester once and two or more load-out bins due to 

the first load-out bin being full before the complete harvest of the row.  

Bulk density and moisture measurements were taken as close as possible to the areas that 

the cone penetrometer was used to calibrate the compaction data (see figure 3.3). For 

bulk density, a steel cylinder of known volume was inserted into the ground at the same 

depth of 600 millimetres down the soil profile and split up into sections 100 millimetres 

in length. The dry weight of the soil was then found by drying the moisture out of the 

sample for 72 hours at 105 degrees. The weight of the solids divided by the known 

volume gives the bulk density. Moisture content was found by measuring the weight of 

the sample before and after drying; the difference in weight (without the weight of the 

bag) is the weight of water that was in the sample. The weight of water divided by the 

total wet weight of the sample is the moisture content (by weight) as a percentage. 

The accuracy of the driving of the load-out bin was determined by placing flexible poles 

into the centre of two traffic lanes. These poles represented the straight path that the 

machines should be driving along. A mark was made on the front (bulbar or front 

bumper) in the centre of the machine that was driving down the row and the flexible poles 

came in contact with the front of the machine. Observations were made on where the pole 

came in contact with the machine relative to the centre mark and recorded on a datasheet. 

The poles were set up in a row with a constant distance separating them of 1 metre for a 

length of 20 metres. This process was conducted multiple times during the harvest on 

random traffic lanes. This was not completed due to the GPS data being of more 

relevance and more accurate.  

The cone penetrometer was not taken to conduct testing due to the timeliness involved 

with the harvesting process. The location of the testing area was not decided until the 

property owner was allocated a volume of cane for the time period. This made the testing 

methods and procedures difficult to schedule because of the time dependency of both the 

harvesting and the testing itself. The cone penetrometer data is needed alongside the bulk 

density data to ensure the validity, which is explained further in section 5.0, and therefore 

the bulk density data is only referred to as a general outcome and not explicitly valid for 

this project.  

Adding to the difficulty for testing was that there was not a block of plant cane within 

close proximity to the area that was being harvested during the time allocation. Testing 

on the block of plant cane would have allowed for the results to be the most meaningful 

because the soil is much looser and susceptible to compaction.  
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3.1.3 Adjusted Experimental Design 
 

Observations were made on how many times a traffic lane receives traffic during the 

harvesting operation. As seen in figures 2.13, 2.14 & 2.15 above in chapter 2 there are 

multiple ways that a lane can be used during this process; because of this, some lanes 

experience more/less and heavier/lighter machinery. This was completed by simply 

observing the operations and making note of what machines enter/leave the traffic lane 

during the harvesting of the cane. The weights of each machine are known and a total 

weight for that lane will be deduced.  

The signature of the machines crossing the growing beds during harvesting was 

determined from the GPS data and then corresponded to the total amount of times that the 

soil in the growing bed was disturbed or compacted. The growing beds are prepared using 

a planter with high precision guidance and therefore assumed they have an accurate and 

relatively straight heading. The data from the load out bins was then analysed by 

manipulation in matlab to determine when the load out bins crossed over the growing 

bed. This data was taken while the load out bins were harvesting to ensure that there was 

no bias towards the drivers aiming to drive in the middle of the growing beds, and to 

simulate the characteristics of normal harvesting. 

 

 

Figure 3.4 Adjusted soil coring layout; the black dots represent the area from where 
the soil core was taken. 
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Due to the unavailability of the soil penetrometer, the soil compaction was measured by 

taking four soil cores within the traffic lane and one on the growing bed before and after 

harvest. The first two were taken 10 metres in from the headland of the block to ensure a 

significant buffer from the turning of vehicles. The next sets of cores were taken 20 

metres in from the headland in order to attain replicates of the same soil conditions. The 

growing bed core was taken from 20 metres in from the headland to give an estimate of 

the uncompacted soil density; inferring the relation between traffic and compaction. A 

soil core was then taken on the headland (core #6 in figure 3.4) where traffic was known 

to be very high. As the harvester turns around at the end of the traffic lane, it drives over 

the end 5-10 metres at a high frequency due to the minimal room for manoeuvring. 

Therefore this measurement would give an idea on the extreme value for compaction 

within the field. Figure 3.4 shows the layout of the collected soil cores and figure 3.5 

shows the block that the cores were taken from. A different block was used for the coring 

because while the observations were being made, there wasn’t sufficient time to complete 

the soil coring while the harvester was in operation. 

 

Figure 3.5 The two blocks that data was taken from, approximately 710 metres 
away from each other. The soil coring block was a third ratoon crop, while the 
observation block was second ratoon; refer to figure 3.4 for details on sampling area 
(Google Maps 2016) 
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The harvester and load out bins used during harvesting was of standard size for many 

sugar cane growing areas in Australia. Table 3.1 below outlines the machine weights and 

tyre characteristics that were used on this particular property. The tyre section widths and 

weights were used once the field observations were completed to calculate an 

approximate value for the load on each traffic lane of the field.  

 

Table 3.1 Machine and tyre characteristics 
 Load-Out 1 Load-Out 2 Harvester 

Front Wheels 

(mm) 

Section Width 587 587 335 

Total Diameter 1585 1585 993 

Centre-to-Centre 1913 1913 1965 

Rear Wheels 

(mm) 

Section Width 622 622 620 

Total Diameter 1805 1805 1628 

Centre-to-Centre 1878 1878 1880 

Weight 

(tonne) 

Empty 6 6 11 

Full 12 15 --- 

 

3.2 Data Analysis 
 

3.2.1 Observation Data 
 

Observation data was analysed with excel as its functions are able to handle the required 

calculations for the situations. Cells were arranged that the block was split up into the 

amount of traffic lanes observed, and divided into equal quarter lengths. The lengths were 

divided only into four parts due to the error involved with trying to observe where the 

machine is from the end of the field. Therefore the field was split up into approximately 

100 metre sections and the analysis of the observations was carried out.  

As each quarter of the traffic lane was investigated, the corresponding cell was coloured a 

different colour based on the degree of machinery that passed (see figure 4.1 in section 

4.0). Then the weights of the machines are known and can be used to determine the 

relationship between length and weight for each of the traffic lanes. The observations 
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were taken on field simultaneously with the load-outs with the GPS to help give reference 

when analysing the GPS data in matlab.  

 

3.2.2 Guidance Data Points 
 

The GPS units that were fastened to the load-out bins resulted in a number of data points 

containing easting and northing values. These easting and northing values were then 

manipulated with the use of matlab (version 2014a) (MathWorks 2014) to trim unwanted 

data and evaluate the changes in direction while travelling along the traffic lane to 

determine how many times the growing bed was crossed over. The program was able to 

assess the total amount of data, trim the unwanted points and analyse the situation to 

determine possible growing bed crosses autonomously.  

 

3.2.3 Bulk Density Data 
 

The bulk density measurements will be collected and analysed briefly due to the 

inadequate number of samples to make a valid discussion. The results that yielded from 

this procedure however, helped back up why the tracking data is important to gather and 

analyse. Once the cores were taken they were wrapped up in oven bags and weighed wet. 

Once the weights were recorded the samples were dried at 105 degrees for 72 hours and 

the dry weights were then recorded. The dry weight divided by the volume of the sample 

yields the bulk density. Simple data analysis features in excel were used to manipulate the 

bulk density data to provide graphs and the change in bulk density over the harvest event.  
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4.0 Results  
 

This section incorporates the results that were gathered during the project for the soil 

compaction component and the machinery tracking with the GPS units as well as the 

observations that were made.  

 

4.1 Machinery Tracking Observations 
 

4.1.1 Number of load-out passes per section of Traffic Lane 
 

Figure 4.1 shows a variability map of the gross amount of machines that each 100 metre 

section of the traffic lane received during the testing period (sections are labelled in 

figure 4.1). The observed values are seen to vary from two machines per section to an 

extreme of seven machinery passes. Firstly, a trend can be seen that the top half (sections 

1 and 2) of the field has experienced significantly more machinery passes than the bottom 

half. Table 4.1 gives an overview on the total amount of passes per section of traffic lane. 

 

Table 4.1 Total amount of load-out passes per traffic lane section over the entire 
field 

Number of Passes Amount per field section 

0 12 

2 54 

3 44 

4 31 

5 16 

6 5 

7 2 
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Figure 4.1 Traffic lanes and corresponding observed amount of traffic experienced during harvesting with section numbers to the right of the winch line 
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The areas that show only harvester passes were not part of the effective observation area, 

but are included to show that if harvesting is conducted the same way for every ratoon 

crop, then a small number of the traffic lanes on the end of the field will experience only 

the harvester as traffic. These areas experienced no load-out bin traffic because the as the 

harvester is unloading the cane, the load-out bin sits two traffic lanes (or two growing 

beds are in between the machines) to the left or right depending on the direction of travel.  

Sections 1 and 2 tend to have a larger number of machinery passes because that end of the 

field was closer to the road leading to the sugar cane railway line. The load-out would 

enter the field from the top of figure 4.1 and be filling up within the first 100 metres 

which caused them to back out of the field on the same set of traffic lanes increasing the 

amount of passes. Other instances saw the increase in passes throughout sections 1 and 2 

by the load-outs entering the field and catching up to the load-out being filled in order to 

be ready so the harvester doesn’t have to slow down or stop. This involved the load-outs 

entering a set of traffic lanes offset from the set being harvested currently to avoid 

collecting trash being extracted by the harvester. Once the current load-out is full the next 

one pulls over across multiple growing beds and sets up under the harvester to be filled.  

Therefore table 4.2 shows the average amount of machinery passes for each of the 100 

metre sections across the entire field. Also from the observations, it can be deducted 

whether the load-out bin was full, filling or empty in each of the different sections of the 

field. Empty and full weights are given in table 3.1 above in section 3.0, and filling 

weight was assumed to be the mid-point (average) between these two values. Figure 4.2 

shows the equivalent weight that each traffic lane sustained during harvesting. 

 

Table 4.2 Average amount of load-out bin passes in each 100 metre section of the 
field 

Field Section (as in figure 4.1) Average Load-Out Passes/traffic lane 

1 4.42 

2 3.24 

3 2.63 

4 2.55 
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4.1.2 Total Load-Out bin weight per section of traffic lane 
 

 

 
Figure 4.2 Traffic lanes and corresponding load-out bin weight ranges during harvest across the entire observed field (amounts given in tonnes) 
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Table 4.3 below shows the weights for the full, empty and filling load-out bins that were 

used to determine figure 4.2 above. The total weight was calculated and then halved 

because this analysis is investigating one single traffic lane; when the load-out bin travels 

over the lane, only half of the weight is on a single lane (assuming the load-out bin is 

symmetric along the long axis). The accuracy of this data is not high due to the human 

error involved with taking such observations; it is limited by the distance and the 

observer’s depth perception.  

 

Table 4.3 Load-Out bin weights for different scenarios  
 

Load-Out Bin 1 Load-Out Bin 2 

Full weight (tonne) 6 7.5 

Filling weight (tonne) 4.5 5.25 

Empty weight (tonne) 3 3 

 

The same trend as seen in figure 4.1 can be seen in figure 4.2 as sections 1 and 2 have a 

higher average loading then sections 3 and 4; this is directly related to the amount of 

traffic that the area receives. From this result, the average load/section can be calculated 

as well as the occurrence of the different loading situations to determine the distribution 

of the weight across the field. Table 4.4 outlines the different loading ranges and the 

corresponding amount observed within the field for each section of each traffic lane. This 

data was calculated excluding the weight of the harvester; this data is the weight added by 

the load-out bins only. Table 4.5 shows the calculated averages of loading that each 

section was subject to. 

 

Table 4.4 Occurrence of different load ranges for all sections and traffic lanes 

Load Range (tonne) Frequency throughout the field 

8-12.9 70 

13-17.9 31 



 

43 
 

18-22.9 30 

23-27.9 15 

28-32.9 4 

33+ 2 

 

From this data it is observed that 46% of the field is loaded with 8-12.9 tonnes, 20.4% is 

subject to a load of 13-17.9 tonnes and 19.7% is loaded with 18-22.9 tonnes. The 

remaining 13.9% of the field is made up of loads between 23 and the peak load of 34.5 

tonnes which corresponds to the area near the headland (section 1). It should be noted that 

this data pertains to the traffic experienced by the traffic lane; the loads that the growing 

bed experienced (while the machine crossed over) will differ from these values and are 

reported further in this chapter.  

 

Table 4.5 Average load per traffic lanes for the different sections over the entire 
field 

Field Section Average load/traffic lane (tonne) 

1 21.2 

2 16.1 

3 13.0 

4 12.1 

 

Traffic lanes situated in section 1 receive an average of 21.2 tonnes while those in section 

4 receive nearly half at 12.1 tonnes. This trend has followed through from the tracking 

variability in figure 4.1 due to the increased amount of traffic experienced in this area.  
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4.2 Guidance data from Load-Out Bins 
 

The GPS units used to sample the data for this section was fastened to the roof of each 

load-out bin in order for them to receive adequate signal. The units were aimed to be 

started at the same time that the harvester started harvesting the observation block (figure 

3.5 in chapter 3.0). The machines were briefly stationary (for a tea break) while 

harvesting the previous block and it was decided that they would begin sampling then. It 

was later discovered that the GPS units had an automatic time-out feature that didn’t 

allow the full observation block to be sampled. 24 traffic lane runs from the observation 

block were collected; but numerous more from the previous block were available. It was 

then decided that the samples from the observation block would be used to calibrate the 

program used to analyse the GPS data because the observations made in section 4.1 

above can be used to ensure the correct data is being used. Once calibrated, the program 

would then be used on all available traffic lane runs to ensure a useful amount of data was 

being analysed.  

 

4.2.1 Data cleaning and manipulation 
 

The raw data from the GPS units contained points that could be removed before the 

construction of the program initiated. The group of points that show the load-out bins 

travelling to the road where the railway line was situated parallel to the road were first to 

be removed. But this process was manual because the program could not determine the 

bounds of the testing area automatically. Figure 4.3 shows the raw data collected from 

load-out bin 2 and the cleaning of the raw data where the data collected on the road to the 

railway line is deleted in figure 4.4.  
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Figure 4.3 Raw GPS data collected from Load-Out bin 2  
 

 

Figure 4.4 Corrected data for load-out bin 2 with the points travelling to the railway 
line deleted  
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Once the road to the railway was deleted, all other cleaning up was completed manually 

due to the difficulty in removing the traffic lane runs by themselves. Therefore the 

program was manufactured so that it could provide the trail the load-out bin left while it 

was travelling (to ensure that the correct run was being separated) and remove the run up 

the traffic lane from the rest of the data. The traffic runs are the parallel lines in the area 

between point A and B (on figure 4.4) except the thicker line to the north east of the 

majority of parallel lines labelled access road. This was completed for entire number of 

traffic lanes and then further investigated individually. 

 

4.2.2 Analysis of Traffic Lane Sets 
 

Figure 4.5 below shows a zoomed image (for ease of differentiation) of the recorded 

traffic lane runs from A to B and the constant changing of direction investigated. The 

traffic lane runs at the bottom of the group are grouped more tightly due to the presence 

of a winch row between different blocks of sugar cane. The load-out bins will use this 

row to move from one end of the field to the other to minimise compaction on the soil 

used for growing; this is only feasible when the winch row is within three to four traffic 

lanes away from the harvester.  

 

Figure 4.5 Zoomed image showing the traffic lane runs made by load-out bin 1 
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It was decided a value of 40 degrees would be used to determine if load-out bin 1 had 

changed course enough to be assumed that it had crossed the growing bed. Why this was 

chosen is explained further in chapter 5. Observations recorded that there was a pass over 

of the growing bed between lane 6 & 7 by load-out bin 1 and 2. This was then checked by 

applying the program to those specific traffic lanes and the result from that is outlined 

below (growing bed in between traffic lane 6 & 7 corresponds to rows 13 to 17 of the 

program) in table 4.6. After observing this and checking with the other reference lanes, it 

was decided that the program was functioning as intended. The below results are in the 

form of number of direction changes larger than 40 degrees between points in the 

distance between each end of the field from a given entered traffic lane set. The traffic 

lane number here does not correspond to the traffic lanes discussed in the above 

observation section. As stated above, the data from the GPS units does not correlate to the 

observation data and therefore should not be confused. 

 

Table 4.6 Direction changes for each set of traffic lanes entered by load-out bin 1 

Traffic Lane Set Entered 
Number of Direction 

Changes 

Observed Direction 

Changes 

1 8 Not Observed 

2 0 Not Observed 

3 0 Not Observed 

4 0 Not Observed 

5 0 Not Observed 

6 4 Not Observed 

7 46 Not Observed 

8 5 Not Observed 

9 0 0 

10 0 0 
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11 4 4 

12 0 0 

13 3 3 

14 70 0 

15 0 0 

16 0 0 

17 1 0 

 

It can be observed that there are some discrepancies that resulted from the program being 

unable to handle certain situations (traffic lane set 1, 7, 8, 11 and 14 in table 4.6). These 

scenarios involved the harvester manoeuvring in a discontinued path due to obstructions 

within the field, or simply by stopping and allowing the GPS to ‘roam’. Roaming occurs 

when the GPS unit is stationary and data is still being collected. Given the accuracy of the 

GPS units used, the data points wavered slightly from the actual position of the GPS unit 

in the field. This caused the data to assume the machine was moving slightly around the 

actual point that the GPS was located; which caused the load-out bin data to appear to be 

moving. More information regarding these discrepancies is explained in the discussion 

within chapter 5.0.  

As seen, lanes 14 and 17 from the program did not calculate to be the same value as the 

observed amount seen for those specific lanes and this is because of the scenario 

explained above where the machine was stationary while the GPS was gathering data. All 

other data from the program agrees with the observed values. The program was run for 

load-out bin 1 and then checked by applying to load-out bin 2. The results for load-out 

bin 2 are outlined in table 4.7. 
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Table 4.7 Direction changes for each set of traffic lanes entered by load-out bin 2 

Traffic Lane Set Entered 
Number of Direction 

Changes 

Observed Direction 

Changes 

1 6 Not Observed 

2 0 Not Observed 

3 3 Not Observed 

4 34 Not Observed 

5 0 Not Observed 

6 0 Not Observed 

7 0 0 

8 5 4 

9 0 0 

10 2 2 

11 0 0 

12 2 2 

13 1 1 

14 1 2 

15 1 0 

16 0 0 

17 0 0 

18 1 1 
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19 0 0 

20 0 0 

 

Load-out bin 2 was operated by a different driver which exhibited different driving 

techniques on and off the field. Therefore after close observation preliminary 

observations from the program outputs it was decided that the turning angle should 

change to 25 degrees. The model was then run and the results from table 4.7 further 

increase the validity of the program due to most of the observed values equating to the 

calculated values. Small discrepancies are still present in calculated rows 8, 14 and 15 

which are due to some simple errors. Rows 1 and 4 are also the outcome of minor errors 

within the data which will be discussed further in chapter 5.0. As the driver is turning 

more slightly than the driver of load-out bin 1, the program calculates a single turning 

manoeuvre to be more than the actual; this scenario is also explained further in chapter 

5.0.  

Once the program was considered complete and working in order, the results were 

calculated for the total amount of growing bed passes that each machine made during the 

time the GPS units were gathering data. The results are below in table 4.8. 

 

Table 4.8 Total growing bed pass-overs for the load-out bins 
 

Load-Out Bin 1 Load-Out Bin 2 

Total Growing Bed Passes 16 18 

 

These results have been attained by further manual investigation of the traffic lanes that 

are displaying inaccurate values for the number of traffic lane passes (in table 4.6 & 4.7).  

 

4.2.3 Total affected area by passing over growing bed 
 

Now that the number of growing bed passes has been calculated, the size of the tyres can 

be input to give an approximation into the total amount of area affected within the 
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sampled area. This was completed for the entire sampling area that each load-out bin 

collected data for. Firstly, for ease of calculation, it was decided that when the load-out 

bins travelled across the growing bed, they did so at the same angle used to complete the 

program (load-out 1 – 40 degrees & load-out 2 – 25 degrees). This isn’t a true assumption 

for every case, but the values calculated for this scenario will give a good approximation 

of affected area. For every time the load-out bin was modelled to cross over the growing 

bed, it is known that each wheel passes over. The rear wheels have a larger section width 

and therefore the dimensions of the rear wheels were chosen to complete the analysis; this 

ensures the worst case scenario for discussion purposes. It was decided that the area under 

investigation would be between where the two rear wheels of the load-out bin would 

generally traffic up and down the lanes. Figure 4.6 shows the area under investigation. 

 

Figure 4.6 The area of the growing bed in between the inside of the rear wheels of 
the load-out bin is the area under investigation 

 

Therefore for every time that a load-out bin 1 passed over the growing bed it effected 

4.68m2 & load-out bin 2 effected 7.11m2 (these values incorporate all four wheel tracks). 

Using the results of the total amount of growing bed passes in table 4.8 the resulting total 

effected area for each of the load-out bins and the field in total (20 rows sampled) is 

outlined in table 4.9.  
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Table 4.9 Total effected area by both load-out bins within the sampled area by 
passing over the growing bed 

 Effected Area (m2) 
Percentage of Sampled 

Field (%) 

Load-Out Bin 1 74.81 0.77 

Load-Out Bin 2  128.0 1.32 

Total 202.82 2.09 

 

These values may not seem significant, but as we investigate the total amount of traffic 

that the field receives by normal trafficking, approximately 50% is traffic lane (due to the 

single row harvester). It must be kept in mind that this investigation only included a 

single harvest event for the sugar cane block. If the traffic was measured over the 

multiple ratoon crops, the total amount of effected area would increase. After the final 

harvest is completed, the growing bed could be subject to an effected area of up to 5-

10%. Depending on the drivers, yield and harvesting run length, these values will vary 

among different farming blocks.  

 

4.3 Soil Compaction Data 
 

4.3.1 Gravimetric Moisture Content data  
 

The gravimetric soil water content was measured from the soil cores taken before the 

harvest event to give an indication of how wet the soil was. As explained in chapter 2.0 

soils with higher moisture content will compact to a higher degree than soil with lower 

moisture content. Therefore table 4.10 reports the initial soil moisture contents for the 

different soil cores at the measured depths. 
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Table 4.10 Gravimetric soil moisture content (%) of each soil cores before harvest 

 Core Number (from figure 3.4) 

Depth (mm) 1 2 3 4 5 6 

0-100 16.4 14.4 15.6 15.9 13.9 12.7 

100-200 13.2 14.0 14.1 14.1 12.7 13.2 

200-300 12.2 22.6 13.1 13.7 12.5 12.7 

300-400 12.4 14.5 14.1 12.4 16.2 12.7 

400-500 14.5 21.9 20.6 15.4 23.4 13.2 

500-600 19.0 24.9 22.0 22.4 25.9 16.3 

600-700 18.9 22.9 22.0 23.4 23.8 20.8 

 

From figure 3.4 it can be observed that cores 1, 2, 3 and 4 should show similar qualities 

as they each lay within the traffic lane inside the buffer zone of the field. Even with the 

small amount of data collected, a trend can be seen between these 4 soil cores with most 

values being within 10-20% of each other with some obvious outliers corresponding to 

the moisture content for cores 1 and 2 at depths of 600-700mm and 200-300mm 

respectively. Soil core 5 which was taken from the growing bed, giving ideal 

circumstances (which cannot be confirmed due to the lack of history of the block), would 

expect to exhibit higher moisture contents at increased depths due to the decrease in soil 

compaction. The shallower depths of soil core 5 are lower than the traffic lane soil cores 

in this instance most likely because of the sugar cane using the soil moisture for growth 

(the growing bed soil moisture is easier to access than the traffic lane soil moisture). Soil 

core 6 which was taken from the outer edge of the crop would expect to have lower 

moisture contents at each depth due to the crop use as well as increased traffic resulting in 

increased soil compaction at all depths. This is observed as it is lowest or equal lowest for 

the depths of 0-100mm, 400-500mm, 500-600mm and 600-700mm, and within 0.5 of a 

percent of the lowest value for all other depths. 
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4.3.2 Bulk Density data 
 

The increase/decrease in bulk density for each of the soil cores within the traffic lanes 

were calculated and reported in table 4.11 below. 

 

Table 4.11 Increase in bulk density (tonne/m3) due to harvest for soil cores 1, 2, 3, 4 
and 5 at different depths 

 Core Number (from figure 3.4) 

Depth (mm) 1 2 3 4 5 

0-100 0.5037 -0.0848 0.0734 0.1569 -0.2616 

100-200 0.0737 0.2124 0.028 0.218 -0.3112 

200-300 0.2804 0.2981 0.1563 0.2116 -0.0369 

300-400 0.0538 0.3464 -0.0777 0.0114 0.0074 

400-500 -0.0504 0.0738 -0.0606 -0.0054 0.1682 

500-600 -0.1199 0.0646 0.1773 0.0839 -0.0769 

600-700 -0.2318 0.1643 -0.087 0.0863 -0.1305 

 

The negative values present in table 4.11 represent a bulk density decrease due to 

harvesting, which is very unlikely and more likely due to error in not taking enough 

samples. Samples could not be taken from exactly the same spot after harvest and this 

also introduces some error in the calculations due to certain soil characteristics 

(discontinuities in soil type and texture etc.). Although it is observed that the negative 

values are small (disregarding soil core 1 at 600-700mm depth) which indicates that with 

more replicates, the testing would have been much more accurate and the negative values 

would be expected to filter out. Soil core 5 data was taken before and after to assess the 

bulk density of soil that was not influenced by traffic during the harvest event. Soil core 6 

wasn’t taken after harvest, it was intended to give a potential indication of the highest 

bulk density within the field and provide a comparison value.  
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5.0 Discussion 
 

This section of the dissertation will investigate the outcomes outlined in the results and 

begin to draw conclusions as to why certain results were attained.  

 

5.1 Machinery Tracking Observations 
 

The first obvious trend within the observed machinery data was that the top two sections 

of the field experienced up to 3 times as much traffic as the lower two sections in figure 

4.1. It was discussed that this occurred due to the road that led to the railway line being 

situated closer to the top side of the field; meaning the machines could unload and get 

back to the field quicker if they used this road. The increased traffic in the top two 

sections directly relates to the total weight that the section experienced during the 

harvesting. The machines that fill up within the top two sections would reverse back over 

the same traffic lane and this caused the top two sections to experience double the traffic 

relative to the bottom two sections on the same traffic lane.  

This data is not of the best resolution due to the field being split up into 4 sections of 

approximately 100 metres in length. A more detailed variation map would provide better 

data when considering which areas of the field are experiencing larger amounts of traffic. 

In the investigation above (figure 4.1 & 4.2) a large amount of the section isn’t subject to 

the labelled traffic passes / weight that are shown. In some instances the machine only 

travelled 20 metres into the section, but when the investigation was completed the entire 

100 metre section would be shown to have been subject to the machine passes.  

This process can be made more automated by improving the program that was produced 

in matlab to determine lengths of travel as well as traffic lane passes. The next section 

will discuss the program and will further investigate this possibility.  
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5.2 Evaluation of Lane Use Program 
 

5.2.1 Data gathering 
 

The matlab program was created to automatically calculate how many times each of the 

load-out bins changed direction within the field, which inferred a crossing of the growing 

bed. The GPS data was gathered from the load-out bins during the harvesting event on the 

observation block (figure 3.5); but the GPS units experienced trouble when gathering this 

data. The GPS units were attached to the roof of each machine before they started 

harvesting the observation block to ensure that the entire observation block was 

investigated. This meant that the units needed to be gathering data for a large period of 

time, up to 5 hours. When the GPS units were taken off the machines to receive the data, 

it was noticed that an error had occurred and the machines stopped gathering data 

approximately half way through the observation block (due to the units losing signal with 

the satellites and then timing out of the session). The units gathered some data from the 

previously harvested block and it was decided that this data be used in conjunction with 

the data from the observation block; as long as the observation block data was used to 

calibrate the program (because it could be checked against the observation data).  

 

5.2.2 Post Processing 
 

When the data was downloaded from the GPS unit, it underwent post-processing with the 

help of a University of Southern Queensland surveying and spatial science colleague. The 

post-processing was completed by running the data through a program that can increase 

the accuracy of each of the points based on the location from where the data was taken 

and the time at which it was taken. The estimated accuracies of the processed data points 

ranges are below in table 5.1. This ensured that the data used in the program was accurate 

enough for the program that was being created to investigate the machinery position 

within the field.  
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Table 5.1 Accuracy range and percentage of data 

Range (cm) Percentage (%) 

0-5 - 

5-15 82.62 

15-30 6.95 

30-50 2.67 

50-100 2.57 

100-200 5.12 

200-500 0.08 

 

 

5.2.3 Program Limitations  
 

After the program was completed, it was discovered that there were some limitations; but 

due to time constraints these limitations were not able to be overcome. The first limitation 

noticed was the manner in which the crossing of the growing bed was calculated. The 

program determined the amount of times the direction of the machine changed to return 

the amount of times the growing bed was crossed. This was validated using the manual 

observation data collected to ensure that the result was correct. But this outcome was 

coincidental in that after reasonable examination, the direction changes couldn’t give an 

accurate representation of growing bed crosses. Figure 5.1 shows a scenario with 

multiple direction changes and a different amount of growing bed changes.  
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Figure 5.1 Scenario showing 2 direction changes and 4 growing bed crossings; red 
line shows the load-out path 

 

Therefore it was decided that this method was not entirely suitable to determine the 

amount of times each of the load-out bins crossed the growing bed. In some instances the 

program resulted in the correct answer according to the observation results, but this was 

merely a coincidence.  

Another limitation that was observed was that the program couldn’t adapt to the changing 

speed of the load-out bins. When the load-outs crossed over the growing bed quickly, the 

change in direction is larger because it happens more sudden. The slower crossings of the 

load-outs will have a much smaller change in direction between data points. Figure 5.2 & 

figure 5.3 shows the difference between a slow turning vehicle and a fast turning vehicle 

and the difference in the angle between the two scenarios. Future work could involve 

incorporating a dynamic average location to help alleviate these limitations. 
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Figure 5.2 Data points showing the path of a load-out bin travelling slow across the 
growing bed 

 

 

Figure 5.3 Data points showing the path of a load-out bin travelling fast across the 
growing bed 
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As seen in figure 5.2 & 5.3 as the machine passes more quickly over the growing bed the 

data points are more spread apart which means that after travelling a certain path, the 

angle between the points grows larger. When the machine passes more slowly over the 

growing bed in the same manner, the angle is decreased and this may cause problems 

when the program is running. If the turning angle is set to a certain amount and the 

machine passes more quickly over the growing beds and the angle is greater than this 

value, then the crossing of the growing bed will be left out from the calculations.  

The two load-out bins were driven by different people and therefore the driving style of 

the different drivers wasn’t the same and the program had to account for this. It was 

found that one of the drivers turned sharper than the other and therefore the program had 

to be completed and designed differently for each of the load-out bins.  

As the load-out bins travelled down certain traffic lanes, the pathway was blocked or 

obstructions caused the harvester to deviate from travelling straight and constantly 

through the field. Stopping in the field cause the GPS units to roam and record data that 

was not the same, but very close to the actual location of the load-out bin (due to GPS 

accuracy). As seen in figure 5.4 this caused the program to think that there were many 

direction changes, but it simply meant the machine wasn’t moving.  

 

Figure 5.4 Stationary machine causing data points to roam around the machine 
location and the large change in direction angles θ 
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Therefore the stationary machine causes the program to calculate an over-exaggeration of 

direction changes. Another driving characteristic that caused the inappropriate calculation 

of the number of growing bed crosses was the reversing of the machines within the field. 

These circumstances caused problems in the same way that the stopping of machines did.  

To improve these limitations it would be advised that the lane crossings be distinguished 

by investigating when the GPS trail data from the load-outs crosses a reference line that 

describes the growing bed. A reference line for each of the growing beds (1.83 metres 

apart) can be described and then it could be determined when the load-outs crossed the 

growing bed and how many growing beds; or a lateral movement perpendicular to the 

growing beds. This would require a far more detailed analysis and a much more intricate 

program coding to calculate.  

 

5.3 Soil Bulk Density  
 

To prepare figure 4.2 different weights were used for different scenarios involving the 

load-out bins. If the load-out was empty, half full or full; the corresponding weight was 

used to determine the variability within the field. Full and empty weights were easily 

calculable and the half full weight was the average of these two values. This is a fair 

assumption due to the resolution of the variability map already being relatively 

inaccurate.  

The soil bulk density samples taken during this dissertation were minimal and should not 

be used as true evidence of the situation. But the samples that were taken did exhibit the 

characteristics that were expected. To further increase the validity of the bulk density 

data, many more samples need to be taken before and after harvesting on a fallow area in 

the field. The fallow field will allow for all of the measurements to be compared to an 

initial level of compaction at the start of the growing stage. To ascertain a better average 

increase in bulk density, more soil core samples need to be taken. To further increase the 

accuracy, the testing method could be improved; using bulk density rings inserted at the 

depths in focus rather than using the soil corer and approximations on lengths of soil 

cores. The use of the soil cone penetrometer is also advised for further accuracy. 

The core from the growing bed was taken to indicate a productive state of the soil used 

for the growing of the sugar cane. This was not a control to compare the traffic lanes with 

because a control for this testing would be a field that has been planted with plant cane. 
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The core on the growing bed was taken before and after harvesting, but this was to give 

an average for the area. Further studies would involve not only trafficking over the traffic 

lanes but also the growing beds to show the increase in bulk density due to the load-out 

bins crossing.  

A core was taken from the headland of the crop to indicate a theoretical maximum based 

on the machinery used during the harvesting process. But as the sugar cane is a ratoon 

crop, this headland area may have received undisturbed compaction for up to four years. 

The headland receives extra traffic due to the machines involved with the harvest turning 

around and general traffic at the end of the field.  

 

5.3.1 Production Loss due to Soil Compaction 
 

The increase in bulk density causes stunted growth to the sugar crop due to the limitations 

involved with root growth and water availability. From previous studies it has been 

known to directly affect the yield of the sugar cane at harvesting (Braunack 1999). It was 

discovered that sugar cane in the Queensland region was at optimum growth when the 

soil bulk density was 90% of the maximum soil bulk density (figure 5.5) for that 

particular soil. Braunack (1999) then underwent some economic analysis and discovered 

that loss due to traffic compaction averaged throughout Queensland ranged between $145 

to $431 per hectare at a yield loss of 5% and 15% respectively. This data was taken 16 

years ago and the new prices of sugar cane have surely deviated, but this was the latest 

data that could be found regarding this information; the machines have grown in size and 

weight and the sugar cane itself has most likely seen an increase in sell price. From figure 

5.5 it can be observed that compaction levels above and below the optimum cause 

lowered levels of yield. The smaller degree of compactness may cause the yield to drop 

due to plant stability during weather events that cause the destruction/deformation of the 

plants. Higher levels of compactness will cause decreased root growth and therefore limit 

the amount of growing that the cane can sustain (Magarey et al. 1999). 
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Figure 5.5 Sugar Cane yield as a function of degree of compactness (relative to the 
maximum bulk density of the soil) (yield measured in tonnes of cane per hectare) 
(Braunack 1999)  

 

This dissertation focused on the increase in bulk density and therefore the degree of 

compactness that is occurring above the optimum. Table 5.2 below shows the profit loss 

due to soil compaction in dollars per hectare for different regions across Australia; this 

data is old as new data surrounding this was hard to obtain as it’s not freely available. 

More recent costings were not freely available and therefore this data will be used for the 

analysis with recent economic characteristics in mind.  

 

Table 5.2 Potential loss to sugar cane growers due to varying yield losses caused by 
soil compaction ($/ha) (Braunack 1999) 
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Table 5.2 outlines the potential loss due to soil compaction at different rates of yield loss. 

Even at 5% yield loss the potential loss in dollars per hectare can reach up to $166/ha, 

and this figure differs depending on the region under investigation and the current prices 

of sugar. The field involved with this dissertation was expected to yield approximately 

80-100 tonne/ha which relates closely with the Northern region above in table 5.2. The 

most damaging scenario is considered (15% yield loss) for the following analysis. 

From the results in section 4.2 above it was calculated that 202.82 m2 of growing bed was 

effected by traffic and has therefore been subject to soil compaction. This result 

corresponds to the 15 rows sampled from the load-out bins. As seen from figure 3.5 in 

the methodology section above, each block is made up of approximately 40 growing bed 

rows and there are 14 blocks of this size in the area that the trails were conducted. If the 

area was investigated as a whole, then the total area subject to the soil compaction would 

be 7581.4 m2 (0.75814 ha). This equates to a loss of $264.50 at a yield loss of 15% for the 

total area in figure 3.5 for the single year that this analysis was completed. It must be 

remembered that this was a single year of harvest as part of a four year cycle and 

therefore the total effected area could increase to approximately 5 hectares from the load-

out bins alone. This increases the cost of driving over the growing bed to $581.45 for the 

four year period with the old pricing of sugar cane and compaction damage.  

Using this old data a cost per metre of crossing of growing bed can be determined as 

below: 

2Area inolved with 1m of tyre traffic=1*0.622 0.622m   

20.622 0.0000622m ha   

0.0000622*348.88 $0.0217 / /m load out �   

 

This value increases to $0.0311/m/load-out when investigating a 15% decrease in yield 

within the Herbert-Burdekin region. This means that for every metre of growing bed the 

load-out bin traffics over, the loss of profit is equal to $0.03. This value accumulates over 

the four years that the cane is being grown and harvested.  

As indicated earlier, this information is out of date and the machinery used to conduct this 

previous experiment was not as large as those seen in the industry currently. Further work 

in this area would be to gather more recent data and prices on sugar cane.  
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6.0 Conclusions 
 

This project was conducted to investigate the effect of soil compaction during sugar cane 

harvesting. It was also undertaken to determine if a program could be devised to calculate 

the amount of times the growing beds were crossed. After researching the approximate 

prices for sugar cane within Australia, an analysis was completed and the loss of profit 

per metre of crossed growing bed was calculated (based on the wheel characteristics from 

the property used for testing in this dissertation). This project found that the proposed 

program was able to be devised but not without its limitations. It was concluded that the 

results from the program were validated from the observation results, but this was a 

coincidence. The program counted the number of direction changes, but this was found to 

yield results that did not properly calculate the number of growing bed changes. With 

small changes in the process of calculation, the program could be modified to report the 

correct answer.  

Results from the soil coring were as expected from the literature where the traffic lanes 

saw an increase in bulk density after the harvester and load-out bins passed. The top 

40cm of the soil within the traffic lane resulted in an average increase of 0.153tonnes/m3 

after being subject to 3 load-out bin passes. The increased gravimetric moisture content 

within this upper 40cm layer was also concluded to have aided in the increase in bulk 

density.  

Further work that could be conducted from this dissertations conclusion could firstly be 

the further investigation of the bulk density increases in different sections of the field. 

This project only measured the increase in bulk density within the traffic lane, not the 

growing bed itself; this would further validate the need for a program to calculate the 

number of growing bed crosses.  

The program used to calculate the growing bed passes can be further worked on by 

improving the method in which it conducts the analysis. If this process could be 

improved, it would be highly beneficial to the agricultural industry; not only within sugar 

harvesting but many other cereal and premium cropping systems. Further to this, the 

filling rate could be worked in along with the position and scenario within the field 

(filling or empty) and determine a value for weight per metre of field in each of the traffic 

lanes.  
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Appendix 

A Project Specification 
 

ENG4111/4112 Research Project 

Project Specification 

For:  David West  

Title: Tracking Machinery to Investigate the Effect of Compaction during 

Sugar Cane Harvesting 

Major:  Agricultural 

Supervisor: Dr Troy Jensen   

Enrolment:  ENG4111 – ONC S1, 2016 

  ENG4112 – ONC S2, 2016 

Project Aim: This project aims to investigate machinery position during sugar cane 

harvest relative to the traffic lanes to determine the potentially affected 

area by soil compaction within the growing bed and therefore the 

potential loss of profit. 

Programme: Issue B, 16th September 2016 

1. Continue Research on soil compaction and the effect on the soil 

structure of the soil and also research the processes involved with sugar 

cane from planting to harvesting. 

2. Research the weight of each machine that potentially passes over the 

soil and consider the different wheel configurations and hence, the force 

exerted by each wheel. 

3. Research and explain how the compaction effect is measured and how 

the machinery will be tracked in the field. 
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4. Conduct initial testing on the traffic lanes before harvesting and log all 

data on a computer. 

5. Conduct testing on the traffic lanes after harvesting and log data to 

begin to compare the differences. 

6. Determine positions of the traffic lanes with the use of a computer 

program and the path taken by the machinery to investigate how much of 

the time the machinery crossed over the growing bed. 

7. Analyse the data and draw conclusions involving soil compaction 

within the growing bed and potential productivity loss. 
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B Matlab Code 

B.1 Load-Out Bin program 
% APPENDIX B.1 
% ENG4111/4112 
% Engineering Research Project part 1 & 2 
% Author: DAVID WEST 
% Student Number: 0061046391 
% Supervisor: Dr. Troy Jensen 
% ---------------------------------------------------------------- 
% This program computes the amount of times the growing bed is 
crossed by 
% the load-out bins given the appropriate data is input (easting 
and 
% northing data points). The usability of this program is not of a 
% satisfactory level and is hard interpret, therefore it is known 
that a 
% refined version should be created if further work is to be 
conducted. 
% There are many assumptions and cases that it cannot handle 
including: 
%   - the scenario when the load-out changes direction and 
maintains that 
%   direction for a period where it crosses mutiple lanes, this 
program  
%   will compute the change in direction as a single lane cross 
instead of 
%   multiple. 
%   - other scenarios are outlined in the discussion of the 
related 
%   dissertation. 
% ---------------------------------------------------------------- 
  
clear all  
close all 
clc 
  
%% Load out 1 
%----------------------------------------------------------------- 
% import raw data 
LOB_1_data_raw=xlsread('DWEST_LOAD_OUT_1.SVY.xlsx'); 
  
LOB_1_easting_raw=LOB_1_data_raw(:,2); 
LOB_1_northing_raw=LOB_1_data_raw(:,3); 
  
LOB_1_dE_raw=zeros(10,1); 
LOB_1_dN_raw=zeros(10,1); 
  
% dE = E2-E1 
% dN = N2-N1 
for i=1:length(LOB_1_easting_raw)-1 
    LOB_1_dE_raw(i)=LOB_1_easting_raw(i+1)-LOB_1_easting_raw(i); 
end 
  
for i=1:length(LOB_1_northing_raw)-1 
    LOB_1_dN_raw(i)=LOB_1_northing_raw(i+1)-LOB_1_northing_raw(i); 
end 
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% azimuth=atan(dE/dN) 
LOB_1_azimuth_raw=atan(LOB_1_dE_raw./LOB_1_dN_raw); 
  
% distance=sqrt(dE^2 + dN^2) 
LOB_1_distance_raw=sqrt((LOB_1_dE_raw.^2)+(LOB_1_dN_raw.^2)); 
  
%----------------------------------------------------------------- 
% determing unwanted data 
% when machine not moving (distance = 0) 
  
j=0; 
LOB_1_distance_not_move_cor=[0;0]; 
LOB_1_azimuth_not_move_cor=[0;0]; 
LOB_1_easting_not_move_cor=[0;0]; 
LOB_1_northing_not_move_cor=[0;0]; 
  
for i=1:length(LOB_1_distance_raw) 
    if LOB_1_distance_raw(i)>0 
        j=j+1; 
        LOB_1_distance_not_move_cor(j)=LOB_1_distance_raw(i); 
        LOB_1_azimuth_not_move_cor(j)=LOB_1_azimuth_raw(i); 
        LOB_1_easting_not_move_cor(j)=LOB_1_easting_raw(i); 
        LOB_1_northing_not_move_cor(j)=LOB_1_northing_raw(i); 
    end 
end 
  
% delete data east of 4.241e+5 
  
j=0; 
LOB_1_easting_road_cor=[0;0]; 
LOB_1_northing_road_cor=[0;0]; 
LOB_1_azimuth_road_cor=[0;0]; 
  
for i=1:length(LOB_1_easting_not_move_cor) 
    if LOB_1_easting_not_move_cor(i)<4.2396e+5 
        j=j+1; 
        LOB_1_easting_road_cor(j)=LOB_1_easting_not_move_cor(i); 
        LOB_1_northing_road_cor(j)=LOB_1_northing_not_move_cor(i); 
        LOB_1_azimuth_road_cor(j)=LOB_1_azimuth_not_move_cor(i); 
    end 
end 
  
% for i=5667:5890 
%     figure(1) 
%     plot(LOB_1_easting_road_cor(i),LOB_1_northing_road_cor(i)) 
%     hold on 
% end 
  
LOB_1_row_01=503:767;    % s empty f full 
LOB_1_row_02=823:952;    % s full f empty 
LOB_1_row_03=1015:1056;  % empty all the way 
LOB_1_row_04=1058:1239;  % full all the way 
LOB_1_row_05=1324:1528;  % s full f empty 
LOB_1_row_06=1649:1850;  % s empty f full 
LOB_1_row_07=1887:2228;  % s full f empty obstruction near middle 
LOB_1_row_08=2247:2413;  % s empty f full obstruction near middle 
LOB_1_row_09=2445:2655;  % s full f empty 
LOB_1_row_10=2682:2790;  % s empty f full 
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LOB_1_row_11=2832:3077;  % filling up all the way, obstruction in 
middle 
LOB_1_row_12=3152:3395;  % filling up all the way 
LOB_1_row_13=4858:4937;  % empty all the way 
LOB_1_row_14=5353:5645;  % filling up all the way, stop in the 
middle 
LOB_1_row_15=5682:5890;  % filling up all the way 
LOB_1_row_16=5955:6112;  % s empty f full 
LOB_1_row_17=6330:6458;  % s full f empty 
  
LOB_1_azimuth_row_01=LOB_1_azimuth_road_cor(LOB_1_row_01); 
LOB_1_azimuth_row_02=LOB_1_azimuth_road_cor(LOB_1_row_02); 
LOB_1_azimuth_row_03=LOB_1_azimuth_road_cor(LOB_1_row_03); 
LOB_1_azimuth_row_04=LOB_1_azimuth_road_cor(LOB_1_row_04); 
LOB_1_azimuth_row_05=LOB_1_azimuth_road_cor(LOB_1_row_05); 
LOB_1_azimuth_row_06=LOB_1_azimuth_road_cor(LOB_1_row_06); 
LOB_1_azimuth_row_07=LOB_1_azimuth_road_cor(LOB_1_row_07); 
LOB_1_azimuth_row_08=LOB_1_azimuth_road_cor(LOB_1_row_08); 
LOB_1_azimuth_row_09=LOB_1_azimuth_road_cor(LOB_1_row_09); 
LOB_1_azimuth_row_10=LOB_1_azimuth_road_cor(LOB_1_row_10); 
LOB_1_azimuth_row_11=LOB_1_azimuth_road_cor(LOB_1_row_11); 
LOB_1_azimuth_row_12=LOB_1_azimuth_road_cor(LOB_1_row_12); 
LOB_1_azimuth_row_13=LOB_1_azimuth_road_cor(LOB_1_row_13); 
LOB_1_azimuth_row_14=LOB_1_azimuth_road_cor(LOB_1_row_14); 
LOB_1_azimuth_row_15=LOB_1_azimuth_road_cor(LOB_1_row_15); 
LOB_1_azimuth_row_16=LOB_1_azimuth_road_cor(LOB_1_row_16); 
LOB_1_azimuth_row_17=LOB_1_azimuth_road_cor(LOB_1_row_17); 
  
%% Load out 2 
%----------------------------------------------------------------- 
  
LOB_2_data_raw=xlsread('NEW_LOADOUT_BIN_DWEST.SVY.xlsx'); 
  
LOB_2_easting_raw=LOB_2_data_raw(:,2); 
LOB_2_northing_raw=LOB_2_data_raw(:,3); 
  
LOB_2_dE_raw=zeros(10,1); 
LOB_2_dN_raw=zeros(10,1); 
  
% dE = E2-E1 
% dN = N2-N1 
  
for i=1:length(LOB_2_easting_raw)-1 
    LOB_2_dE_raw(i)=LOB_2_easting_raw(i+1)-LOB_2_easting_raw(i); 
end 
  
for i=1:length(LOB_2_northing_raw)-1 
    LOB_2_dN_raw(i)=LOB_2_northing_raw(i+1)-LOB_2_northing_raw(i); 
end 
  
% azimuth=atan(dE/dN) 
  
LOB_2_azimuth_raw=atan(LOB_2_dE_raw./LOB_2_dN_raw); 
  
% distance=sqrt(dE^2 + dN^2) 
LOB_2_distance_raw=sqrt((LOB_2_dE_raw.^2)+(LOB_2_dN_raw.^2)); 
  
%----------------------------------------------------------------- 
% determing unwanted data 
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% when machine not moving (distance = 0) 
  
j=0; 
LOB_2_distance_not_move_cor=[0;0]; 
LOB_2_azimuth_not_move_cor=[0;0]; 
LOB_2_easting_not_move_cor=[0;0]; 
LOB_2_northing_not_move_cor=[0;0]; 
  
for i=1:length(LOB_2_distance_raw) 
    if LOB_2_distance_raw(i)>0 
        j=j+1; 
        LOB_2_distance_not_move_cor(j)=LOB_2_distance_raw(i); 
        LOB_2_azimuth_not_move_cor(j)=LOB_2_azimuth_raw(i); 
        LOB_2_easting_not_move_cor(j)=LOB_2_easting_raw(i); 
        LOB_2_northing_not_move_cor(j)=LOB_2_northing_raw(i); 
    end 
end 
  
% delete data east of 4.2396e+5 
  
j=0; 
LOB_2_easting_road_cor=[0;0]; 
LOB_2_northing_road_cor=[0;0]; 
LOB_2_azimuth_road_cor=[0;0]; 
  
for i=1:length(LOB_2_easting_not_move_cor) 
    if LOB_2_easting_not_move_cor(i)<4.2396e+5 
        j=j+1; 
        LOB_2_easting_road_cor(j)=LOB_2_easting_not_move_cor(i); 
        LOB_2_northing_road_cor(j)=LOB_2_northing_not_move_cor(i); 
        LOB_2_azimuth_road_cor(j)=LOB_2_azimuth_not_move_cor(i); 
    end 
end 
  
  
% for i=8350:8565 
%     figure(1) 
%     plot(LOB_2_easting_road_cor(i),LOB_2_northing_road_cor(i)) 
%     hold on 
% end 
  
LOB_2_row_01=320:550;     % empty all the way 
LOB_2_row_02=585:829;     % filling all the way 
LOB_2_row_03=1210:1330;   % short run filling up 
LOB_2_row_04=1460:1685;   % s filling f empty 
LOB_2_row_05=1902:2135;   % s filling f empty 
LOB_2_row_06=2299:2550;   % filling all the way 
LOB_2_row_07=2600:2661;   % empty all the way 
LOB_2_row_08=4400:4605;   % s empty f filling 
LOB_2_row_09=4650:4770;   % s filling f full 
LOB_2_row_10=4841:4890;   % empty all the way 
LOB_2_row_11=4910:5100;   % filling all the way 
LOB_2_row_12=5609:5840;   % filling all the way 
LOB_2_row_13=5925:6141;   % filling all the way 
LOB_2_row_14=6180:6324;   % s filling f full 
LOB_2_row_15=6345:6470;   % s empty f filling 
LOB_2_row_16=6520:6750;   % filling all the way 
LOB_2_row_17=6830:7060;   % filling all the way 
LOB_2_row_18=7292:7530;   % s empty f filling 
LOB_2_row_19=7987:8160;   % filling all the way 
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LOB_2_row_20=8350:8565;   % filling all the way 
  
LOB_2_azimuth_row_01=LOB_2_azimuth_road_cor(LOB_2_row_01); 
LOB_2_azimuth_row_02=LOB_2_azimuth_road_cor(LOB_2_row_02); 
LOB_2_azimuth_row_03=LOB_2_azimuth_road_cor(LOB_2_row_03); 
LOB_2_azimuth_row_04=LOB_2_azimuth_road_cor(LOB_2_row_04); 
LOB_2_azimuth_row_05=LOB_2_azimuth_road_cor(LOB_2_row_05); 
LOB_2_azimuth_row_06=LOB_2_azimuth_road_cor(LOB_2_row_06); 
LOB_2_azimuth_row_07=LOB_2_azimuth_road_cor(LOB_2_row_07); 
LOB_2_azimuth_row_08=LOB_2_azimuth_road_cor(LOB_2_row_08); 
LOB_2_azimuth_row_09=LOB_2_azimuth_road_cor(LOB_2_row_09); 
LOB_2_azimuth_row_10=LOB_2_azimuth_road_cor(LOB_2_row_10); 
LOB_2_azimuth_row_11=LOB_2_azimuth_road_cor(LOB_2_row_11); 
LOB_2_azimuth_row_12=LOB_2_azimuth_road_cor(LOB_2_row_12); 
LOB_2_azimuth_row_13=LOB_2_azimuth_road_cor(LOB_2_row_13); 
LOB_2_azimuth_row_14=LOB_2_azimuth_road_cor(LOB_2_row_14); 
LOB_2_azimuth_row_15=LOB_2_azimuth_road_cor(LOB_2_row_15); 
LOB_2_azimuth_row_16=LOB_2_azimuth_road_cor(LOB_2_row_16); 
LOB_2_azimuth_row_17=LOB_2_azimuth_road_cor(LOB_2_row_17); 
LOB_2_azimuth_row_18=LOB_2_azimuth_road_cor(LOB_2_row_18); 
LOB_2_azimuth_row_19=LOB_2_azimuth_road_cor(LOB_2_row_19); 
LOB_2_azimuth_row_20=LOB_2_azimuth_road_cor(LOB_2_row_20); 
  
%% Determine changes in azimuth 
% Load out 1 
  
LOB_1_azimuth_deg_01=LOB_1_azimuth_row_01*360/pi; 
LOB_1_azimuth_deg_02=LOB_1_azimuth_row_02*360/pi; 
LOB_1_azimuth_deg_03=LOB_1_azimuth_row_03*360/pi; 
LOB_1_azimuth_deg_04=LOB_1_azimuth_row_04*360/pi; 
LOB_1_azimuth_deg_05=LOB_1_azimuth_row_05*360/pi; 
LOB_1_azimuth_deg_06=LOB_1_azimuth_row_06*360/pi; 
LOB_1_azimuth_deg_07=LOB_1_azimuth_row_07*360/pi; 
LOB_1_azimuth_deg_08=LOB_1_azimuth_row_08*360/pi; 
LOB_1_azimuth_deg_09=LOB_1_azimuth_row_09*360/pi; 
LOB_1_azimuth_deg_10=LOB_1_azimuth_row_10*360/pi; 
LOB_1_azimuth_deg_11=LOB_1_azimuth_row_11*360/pi; 
LOB_1_azimuth_deg_12=LOB_1_azimuth_row_12*360/pi; 
LOB_1_azimuth_deg_13=LOB_1_azimuth_row_13*360/pi; 
LOB_1_azimuth_deg_14=LOB_1_azimuth_row_14*360/pi; 
LOB_1_azimuth_deg_15=LOB_1_azimuth_row_15*360/pi; 
LOB_1_azimuth_deg_16=LOB_1_azimuth_row_16*360/pi; 
LOB_1_azimuth_deg_17=LOB_1_azimuth_row_17*360/pi; 
  
turning_deg_1=40; 
  
LOB_1_j_row_01=0; 
  
for i=2:length(LOB_1_azimuth_deg_01) 
    if LOB_1_azimuth_deg_01(i)<LOB_1_azimuth_deg_01(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_01(i)>LOB_1_azimuth_deg_01(i-
1)+turning_deg_1 
        LOB_1_j_row_01=LOB_1_j_row_01+1; 
    end 
end 
  
LOB_1_j_row_02=0; 
  
for i=2:length(LOB_1_azimuth_deg_02) 
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    if LOB_1_azimuth_deg_02(i)<LOB_1_azimuth_deg_02(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_02(i)>LOB_1_azimuth_deg_02(i-
1)+turning_deg_1 
        LOB_1_j_row_02=LOB_1_j_row_02+1; 
    end 
end 
  
LOB_1_j_row_03=0; 
  
for i=2:length(LOB_1_azimuth_deg_03) 
    if LOB_1_azimuth_deg_03(i)<LOB_1_azimuth_deg_03(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_03(i)>LOB_1_azimuth_deg_03(i-
1)+turning_deg_1 
        LOB_1_j_row_03=LOB_1_j_row_03+1; 
    end 
end 
  
LOB_1_j_row_04=0; 
  
for i=2:length(LOB_1_azimuth_deg_04) 
    if LOB_1_azimuth_deg_04(i)<LOB_1_azimuth_deg_04(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_04(i)>LOB_1_azimuth_deg_04(i-
1)+turning_deg_1 
        LOB_1_j_row_04=LOB_1_j_row_04+1; 
    end 
end 
  
LOB_1_j_row_05=0; 
  
for i=2:length(LOB_1_azimuth_deg_05) 
    if LOB_1_azimuth_deg_05(i)<LOB_1_azimuth_deg_05(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_05(i)>LOB_1_azimuth_deg_05(i-
1)+turning_deg_1 
        LOB_1_j_row_05=LOB_1_j_row_05+1; 
    end 
end 
  
LOB_1_j_row_06=0; 
  
for i=2:length(LOB_1_azimuth_deg_06) 
    if LOB_1_azimuth_deg_06(i)<LOB_1_azimuth_deg_06(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_06(i)>LOB_1_azimuth_deg_06(i-
1)+turning_deg_1 
        LOB_1_j_row_06=LOB_1_j_row_06+1; 
    end 
end 
  
LOB_1_j_row_07=0;   % middle obstruction 
  
for i=2:length(LOB_1_azimuth_deg_07) 
    if LOB_1_azimuth_deg_07(i)<LOB_1_azimuth_deg_07(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_07(i)>LOB_1_azimuth_deg_07(i-
1)+turning_deg_1 
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        LOB_1_j_row_07=LOB_1_j_row_07+1; 
    end 
end 
  
LOB_1_j_row_08=0;   % middle obstruction 
  
for i=2:length(LOB_1_azimuth_deg_08) 
    if LOB_1_azimuth_deg_08(i)<LOB_1_azimuth_deg_08(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_08(i)>LOB_1_azimuth_deg_08(i-
1)+turning_deg_1 
        LOB_1_j_row_08=LOB_1_j_row_08+1; 
    end 
end 
  
LOB_1_j_row_09=0;    
  
for i=2:length(LOB_1_azimuth_deg_09) 
    if LOB_1_azimuth_deg_09(i)<LOB_1_azimuth_deg_09(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_09(i)>LOB_1_azimuth_deg_09(i-
1)+turning_deg_1 
        LOB_1_j_row_09=LOB_1_j_row_09+1; 
    end 
end 
  
LOB_1_j_row_10=0;    
  
for i=2:length(LOB_1_azimuth_deg_10) 
    if LOB_1_azimuth_deg_10(i)<LOB_1_azimuth_deg_10(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_10(i)>LOB_1_azimuth_deg_10(i-
1)+turning_deg_1 
        LOB_1_j_row_10=LOB_1_j_row_10+1; 
    end 
end 
  
LOB_1_j_row_11=0;    
  
for i=2:length(LOB_1_azimuth_deg_11) 
    if LOB_1_azimuth_deg_11(i)<LOB_1_azimuth_deg_11(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_11(i)>LOB_1_azimuth_deg_11(i-
1)+turning_deg_1 
        LOB_1_j_row_11=LOB_1_j_row_11+1; 
    end 
end 
  
LOB_1_j_row_12=0;    
  
for i=2:length(LOB_1_azimuth_deg_12) 
    if LOB_1_azimuth_deg_12(i)<LOB_1_azimuth_deg_12(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_12(i)>LOB_1_azimuth_deg_12(i-
1)+turning_deg_1 
        LOB_1_j_row_12=LOB_1_j_row_12+1; 
    end 
end 
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LOB_1_j_row_13=0;    
  
for i=2:length(LOB_1_azimuth_deg_13) 
    if LOB_1_azimuth_deg_13(i)<LOB_1_azimuth_deg_13(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_13(i)>LOB_1_azimuth_deg_13(i-
1)+turning_deg_1 
        LOB_1_j_row_13=LOB_1_j_row_13+1; 
    end 
end 
  
LOB_1_j_row_14=0; 
  
for i=2:length(LOB_1_azimuth_deg_14) 
    if LOB_1_azimuth_deg_14(i)<LOB_1_azimuth_deg_14(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_14(i)>LOB_1_azimuth_deg_14(i-
1)+turning_deg_1 
        LOB_1_j_row_14=LOB_1_j_row_14+1; 
    end 
end 
  
LOB_1_j_row_15=0; 
  
for i=2:length(LOB_1_azimuth_deg_15) 
    if LOB_1_azimuth_deg_15(i)<LOB_1_azimuth_deg_15(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_15(i)>LOB_1_azimuth_deg_15(i-
1)+turning_deg_1 
        LOB_1_j_row_15=LOB_1_j_row_15+1; 
    end 
end 
  
LOB_1_j_row_16=0; 
  
for i=2:length(LOB_1_azimuth_deg_16) 
    if LOB_1_azimuth_deg_16(i)<LOB_1_azimuth_deg_16(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_16(i)>LOB_1_azimuth_deg_16(i-
1)+turning_deg_1 
        LOB_1_j_row_16=LOB_1_j_row_16+1; 
    end 
end 
  
LOB_1_j_row_17=0; 
  
for i=2:length(LOB_1_azimuth_deg_17) 
    if LOB_1_azimuth_deg_17(i)<LOB_1_azimuth_deg_17(i-1)-
turning_deg_1 ||... 
            LOB_1_azimuth_deg_17(i)>LOB_1_azimuth_deg_17(i-
1)+turning_deg_1 
        LOB_1_j_row_17=LOB_1_j_row_17+1; 
    end 
end 
  
% Load out 2 ----------------------------------------------------- 
LOB_2_azimuth_deg_01=LOB_2_azimuth_row_01*360/pi; 
LOB_2_azimuth_deg_02=LOB_2_azimuth_row_02*360/pi; 
LOB_2_azimuth_deg_03=LOB_2_azimuth_row_03*360/pi; 
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LOB_2_azimuth_deg_04=LOB_2_azimuth_row_04*360/pi; 
LOB_2_azimuth_deg_05=LOB_2_azimuth_row_05*360/pi; 
LOB_2_azimuth_deg_06=LOB_2_azimuth_row_06*360/pi; 
LOB_2_azimuth_deg_07=LOB_2_azimuth_row_07*360/pi; 
LOB_2_azimuth_deg_08=LOB_2_azimuth_row_08*360/pi; 
LOB_2_azimuth_deg_09=LOB_2_azimuth_row_09*360/pi; 
LOB_2_azimuth_deg_10=LOB_2_azimuth_row_10*360/pi; 
LOB_2_azimuth_deg_11=LOB_2_azimuth_row_11*360/pi; 
LOB_2_azimuth_deg_12=LOB_2_azimuth_row_12*360/pi; 
LOB_2_azimuth_deg_13=LOB_2_azimuth_row_13*360/pi; 
LOB_2_azimuth_deg_14=LOB_2_azimuth_row_14*360/pi; 
LOB_2_azimuth_deg_15=LOB_2_azimuth_row_15*360/pi; 
LOB_2_azimuth_deg_16=LOB_2_azimuth_row_16*360/pi; 
LOB_2_azimuth_deg_17=LOB_2_azimuth_row_17*360/pi; 
LOB_2_azimuth_deg_18=LOB_2_azimuth_row_18*360/pi; 
LOB_2_azimuth_deg_19=LOB_2_azimuth_row_19*360/pi; 
LOB_2_azimuth_deg_20=LOB_2_azimuth_row_20*360/pi; 
  
turning_deg_2=20; 
  
LOB_2_j_row_01=0; 
  
for i=2:length(LOB_2_azimuth_deg_01) 
    if LOB_2_azimuth_deg_01(i)<LOB_2_azimuth_deg_01(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_01(i)>LOB_2_azimuth_deg_01(i-
1)+turning_deg_2 
        LOB_2_j_row_01=LOB_2_j_row_01+1; 
    end 
end 
  
LOB_2_j_row_02=0; 
  
for i=2:length(LOB_2_azimuth_deg_02) 
    if LOB_2_azimuth_deg_02(i)<LOB_2_azimuth_deg_02(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_02(i)>LOB_2_azimuth_deg_02(i-
1)+turning_deg_2 
        LOB_2_j_row_02=LOB_2_j_row_02+1; 
    end 
end 
  
LOB_2_j_row_03=0; 
  
for i=2:length(LOB_2_azimuth_deg_03) 
    if LOB_2_azimuth_deg_03(i)<LOB_2_azimuth_deg_03(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_03(i)>LOB_2_azimuth_deg_03(i-
1)+turning_deg_2 
        LOB_2_j_row_03=LOB_2_j_row_03+1; 
    end 
end 
  
LOB_2_j_row_04=0; 
  
for i=2:length(LOB_2_azimuth_deg_04) 
    if LOB_2_azimuth_deg_04(i)<LOB_2_azimuth_deg_04(i-1)-
turning_deg_2 ||... 
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            LOB_2_azimuth_deg_04(i)>LOB_2_azimuth_deg_04(i-
1)+turning_deg_2 
        LOB_2_j_row_04=LOB_2_j_row_04+1; 
    end 
end 
  
LOB_2_j_row_05=0; 
  
for i=2:length(LOB_2_azimuth_deg_05) 
    if LOB_2_azimuth_deg_05(i)<LOB_2_azimuth_deg_05(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_05(i)>LOB_2_azimuth_deg_05(i-
1)+turning_deg_2 
        LOB_2_j_row_05=LOB_2_j_row_05+1; 
    end 
end 
  
LOB_2_j_row_06=0; 
  
for i=2:length(LOB_2_azimuth_deg_06) 
    if LOB_2_azimuth_deg_06(i)<LOB_2_azimuth_deg_06(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_06(i)>LOB_2_azimuth_deg_06(i-
1)+turning_deg_2 
        LOB_2_j_row_06=LOB_2_j_row_06+1; 
    end 
end 
  
LOB_2_j_row_07=0; 
  
for i=2:length(LOB_2_azimuth_deg_07) 
    if LOB_2_azimuth_deg_07(i)<LOB_2_azimuth_deg_07(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_07(i)>LOB_2_azimuth_deg_07(i-
1)+turning_deg_2 
        LOB_2_j_row_07=LOB_2_j_row_07+1; 
    end 
end 
  
LOB_2_j_row_08=0; 
  
for i=2:length(LOB_2_azimuth_deg_08) 
    if LOB_2_azimuth_deg_08(i)<LOB_2_azimuth_deg_08(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_08(i)>LOB_2_azimuth_deg_08(i-
1)+turning_deg_2 
        LOB_2_j_row_08=LOB_2_j_row_08+1; 
    end 
end 
  
LOB_2_j_row_09=0; 
  
for i=2:length(LOB_2_azimuth_deg_09) 
    if LOB_2_azimuth_deg_09(i)<LOB_2_azimuth_deg_09(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_09(i)>LOB_2_azimuth_deg_09(i-
1)+turning_deg_2 
        LOB_2_j_row_09=LOB_2_j_row_09+1; 
    end 
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end 
  
LOB_2_j_row_10=0; 
  
for i=2:length(LOB_2_azimuth_deg_10) 
    if LOB_2_azimuth_deg_10(i)<LOB_2_azimuth_deg_10(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_10(i)>LOB_2_azimuth_deg_10(i-
1)+turning_deg_2 
        LOB_2_j_row_10=LOB_2_j_row_10+1; 
    end 
end 
  
LOB_2_j_row_11=0; 
  
for i=2:length(LOB_2_azimuth_deg_11) 
    if LOB_2_azimuth_deg_11(i)<LOB_2_azimuth_deg_11(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_11(i)>LOB_2_azimuth_deg_11(i-
1)+turning_deg_2 
        LOB_2_j_row_11=LOB_2_j_row_11+1; 
    end 
end 
  
LOB_2_j_row_12=0; 
  
for i=2:length(LOB_2_azimuth_deg_12) 
    if LOB_2_azimuth_deg_12(i)<LOB_2_azimuth_deg_12(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_12(i)>LOB_2_azimuth_deg_12(i-
1)+turning_deg_2 
        LOB_2_j_row_12=LOB_2_j_row_12+1; 
    end 
end 
  
LOB_2_j_row_13=0; 
  
for i=2:length(LOB_2_azimuth_deg_13) 
    if LOB_2_azimuth_deg_13(i)<LOB_2_azimuth_deg_13(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_13(i)>LOB_2_azimuth_deg_13(i-
1)+turning_deg_2 
        LOB_2_j_row_13=LOB_2_j_row_13+1; 
    end 
end 
  
LOB_2_j_row_14=0; 
  
for i=2:length(LOB_2_azimuth_deg_14) 
    if LOB_2_azimuth_deg_14(i)<LOB_2_azimuth_deg_14(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_14(i)>LOB_2_azimuth_deg_14(i-
1)+turning_deg_2 
        LOB_2_j_row_14=LOB_2_j_row_14+1; 
    end 
end 
  
LOB_2_j_row_15=0; 
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for i=2:length(LOB_2_azimuth_deg_15) 
    if LOB_2_azimuth_deg_15(i)<LOB_2_azimuth_deg_15(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_15(i)>LOB_2_azimuth_deg_15(i-
1)+turning_deg_2 
        LOB_2_j_row_15=LOB_2_j_row_15+1; 
    end 
end 
  
LOB_2_j_row_16=0; 
  
for i=2:length(LOB_2_azimuth_deg_16) 
    if LOB_2_azimuth_deg_16(i)<LOB_2_azimuth_deg_16(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_16(i)>LOB_2_azimuth_deg_16(i-
1)+turning_deg_2 
        LOB_2_j_row_16=LOB_2_j_row_16+1; 
    end 
end 
  
LOB_2_j_row_17=0; 
  
for i=2:length(LOB_2_azimuth_deg_17) 
    if LOB_2_azimuth_deg_17(i)<LOB_2_azimuth_deg_17(i-1)-
turning_deg_2 ||...  
            LOB_2_azimuth_deg_17(i)>LOB_2_azimuth_deg_17(i-
1)+turning_deg_2 
        LOB_2_j_row_17=LOB_2_j_row_17+1; 
    end 
end 
  
LOB_2_j_row_18=0; 
  
for i=2:length(LOB_2_azimuth_deg_18) 
    if LOB_2_azimuth_deg_18(i)<LOB_2_azimuth_deg_18(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_18(i)>LOB_2_azimuth_deg_18(i-
1)+turning_deg_2 
        LOB_2_j_row_18=LOB_2_j_row_18+1; 
    end 
end 
  
LOB_2_j_row_19=0; 
  
for i=2:length(LOB_2_azimuth_deg_19) 
    if LOB_2_azimuth_deg_19(i)<LOB_2_azimuth_deg_19(i-1)-
turning_deg_2 ||... 
            LOB_2_azimuth_deg_19(i)>LOB_2_azimuth_deg_19(i-
1)+turning_deg_2 
        LOB_2_j_row_19=LOB_2_j_row_19+1; 
    end 
end 
  
LOB_2_j_row_20=0; 
  
for i=2:length(LOB_2_azimuth_deg_20) 
    if LOB_2_azimuth_deg_20(i)<LOB_2_azimuth_deg_20(i-1)-
turning_deg_2 ||... 
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            LOB_2_azimuth_deg_20(i)>LOB_2_azimuth_deg_20(i-
1)+turning_deg_2 
        LOB_2_j_row_20=LOB_2_j_row_20+1; 
    end 
end 
  
plot (LOB_2_easting_road_cor(LOB_2_row_01),... 
    LOB_2_northing_road_cor(LOB_2_row_01),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_02),... 
    LOB_2_northing_road_cor(LOB_2_row_02),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_03),... 
    LOB_2_northing_road_cor(LOB_2_row_03),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_04),... 
    LOB_2_northing_road_cor(LOB_2_row_04),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_05),... 
    LOB_2_northing_road_cor(LOB_2_row_05),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_06),... 
    LOB_2_northing_road_cor(LOB_2_row_06),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_07),... 
    LOB_2_northing_road_cor(LOB_2_row_07),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_08),... 
    LOB_2_northing_road_cor(LOB_2_row_08),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_09),... 
    LOB_2_northing_road_cor(LOB_2_row_09),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_10),... 
    LOB_2_northing_road_cor(LOB_2_row_10),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_11),... 
    LOB_2_northing_road_cor(LOB_2_row_11),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_12),... 
    LOB_2_northing_road_cor(LOB_2_row_12),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_13),... 
    LOB_2_northing_road_cor(LOB_2_row_13),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_14),... 
    LOB_2_northing_road_cor(LOB_2_row_14),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_15),... 
    LOB_2_northing_road_cor(LOB_2_row_15),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_16),... 
    LOB_2_northing_road_cor(LOB_2_row_16),'b','MarkerSize',1), 
hold on 
plot (LOB_2_easting_road_cor(LOB_2_row_17),... 
    LOB_2_northing_road_cor(LOB_2_row_17),'b','MarkerSize',1) 
title 'Load-Out Bin 1 Traffic Lane runs' 
xlabel 'Easting (m)' 
ylabel 'Northing (m)' 
  
Total_j_row_01=LOB_1_j_row_01+LOB_2_j_row_01; 
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Total_j_row_02=LOB_1_j_row_02+LOB_2_j_row_02; 
Total_j_row_03=LOB_1_j_row_03+LOB_2_j_row_03; 
Total_j_row_04=LOB_1_j_row_04+LOB_2_j_row_04; 
Total_j_row_05=LOB_1_j_row_05+LOB_2_j_row_05; 
Total_j_row_06=LOB_1_j_row_06+LOB_2_j_row_06; 
Total_j_row_07=LOB_1_j_row_07+LOB_2_j_row_07; 
Total_j_row_08=LOB_1_j_row_08+LOB_2_j_row_08; 
Total_j_row_09=LOB_1_j_row_09+LOB_2_j_row_09; 
Total_j_row_10=LOB_1_j_row_10+LOB_2_j_row_10; 
Total_j_row_11=LOB_1_j_row_11+LOB_2_j_row_11; 
Total_j_row_12=LOB_1_j_row_12+LOB_2_j_row_12; 
Total_j_row_13=LOB_1_j_row_13+LOB_2_j_row_13; 
Total_j_row_14=LOB_1_j_row_14+LOB_2_j_row_14; 
Total_j_row_15=LOB_1_j_row_15+LOB_2_j_row_15; 
Total_j_row_16=LOB_1_j_row_16+LOB_2_j_row_16; 
Total_j_row_17=LOB_1_j_row_17+LOB_2_j_row_17; 
Total_j_row_18=LOB_2_j_row_18; 
Total_j_row_19=LOB_2_j_row_19; 
Total_j_row_20=LOB_2_j_row_20; 
  
%% Affected area 
  
front_wheels=0.587; 
rear_wheels=0.622; 
distance_across_bed=1.83-0.622; 
total_j_LOB_1=16; 
total_j_LOB_2=18; 
total_area_20=19*1.83*400; 
effected_area=2*rear_wheels*distance_across_bed; 
  
effected_area_LOB_1=total_j_LOB_1*effected_area; 
effected_area_LOB_2=total_j_LOB_2*effected_area; 
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B.2 Soil bulk density program 
% % APPENDIX B.2 
% ENG4111/4112 
% Engineering Research Project part 1 & 2 
% Author: DAVID WEST 
% Student Number: 0061046391 
% Supervisor: Dr. Troy Jensen 
% ---------------------------------------------------------------- 
  
close all 
clear all 
clc 
  
% ---------------------------------------------------------------- 
data=xlsread('Matlab_Soil_Weights.xlsx'); 
  
depth=[-5;-15;-25;-35;-45;-55;-65]; 
before_core=data(:,1); 
before_wet_weight=data(:,2); 
before_dry_weight=data(:,3); 
before_water_weight=data(:,4); 
before_moisture_content=data(:,5); 
before_bulk_density=data(:,6); 
  
before_den_core_1=before_bulk_density(1:7); 
before_den_core_2=before_bulk_density(8:14); 
before_den_core_3=before_bulk_density(15:21); 
before_den_core_4=before_bulk_density(22:28); 
before_den_core_5=before_bulk_density(29:35); 
before_den_core_6=before_bulk_density(36:42); 
  
after_core=data(1:35,7); 
after_wet_weight=data(1:35,8); 
after_dry_weight=data(1:35,9); 
after_water_weight=data(1:35,10); 
after_moisture_content=data(1:35,11); 
after_bulk_density=data(1:35,12); 
  
after_den_core_1=after_bulk_density(1:7); 
after_den_core_2=after_bulk_density(8:14); 
after_den_core_3=after_bulk_density(15:21); 
after_den_core_4=after_bulk_density(22:28); 
after_den_core_5=after_bulk_density(29:35); 
  
figure (1) 
subplot (2,2,1) 
plot 
(before_den_core_1,depth,after_den_core_1,depth,before_den_core_6,
depth) 
title 'Soil Core 1 Bulk Density' 
xlabel 'Bulk Density (g/cm^3)' 
ylabel 'Depth (m)' 
  
subplot (2,2,2) 
plot 
(before_den_core_2,depth,after_den_core_2,depth,before_den_core_6,
depth) 
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subplot (2,2,3) 
plot 
(before_den_core_3,depth,after_den_core_3,depth,before_den_core_6,
depth) 
  
subplot (2,2,4) 
plot 
(before_den_core_4,depth,after_den_core_4,depth,before_den_core_6,
depth) 
  
figure (2) 
plot 
(before_den_core_5,depth,after_den_core_5,depth,before_den_core_6,
depth) 
%----------------------------------------------------------------- 
 
 


