University of Southern Queensland

Faculty of Health, Engineering & Sciences

Wearable Technology and Gesture Recognition for Live

Performance Augmentation

A dissertation submitted by

Sathya Smith

in fulfilment of the requirements of

ENG4111/ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Honours) (Electrical & Electronic)

Submitted: 13 October, 2016

Abstract

The use of physical gestures within interactions between humans and computer systems is a
rapidly progressing research field that find itself increasingly present in smartphone and
computer applications. This dissertation intends to outline the various engineering design
processes involved in the creation of a simplistic and novel gesture recognition system geared
towards use in live entertainment performances. The system aims to help in increasing
fluidity of human-machine interaction in the entertainment industry by providing an
alternative input method for controlling other performance related systems such as mixers,

monitors, digital audio workstations and stage lighting.

Electronic methods of wearable body movement tracking, gesture recognition and wireless
interfacing are explored in order to determine a suitable design for the system to achieve a
practical result. The resulting system consists of a wearable hardware group as well as a
terminal hardware group, with associated software for each. The wearable design contains
an MPU6050 motion processing unit, Arduino Uno development board and a HopeRF HM-
TR wireless data link transceiver. The terminal group is responsible for receiving MIDI
commands and consists of an Arduino compatible ‘LeoStick’ board coupled with a second
transceiver. The usage of modern additive manufacturing methods was also investigated for

hardware enclosure creation to allow potential for rapid prototyping.

The GR is able to accurately provide movement data to a processor, which utilises a running
average based gesture recognition algorithm in an attempt to extract movement features
and respond to the presence of a pre-determined gesture by generating a MIDI command

that is then sent to a computer terminal for use with external applications.

Although the system did not fully live up to design objectives, it plays the role of an
important stepping stone in the creation of practical, entertainment-oriented gesture

recognition devices that are more accessible to the general public.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering
& Sciences, and the staff of the University of Southern Queensland, do not accept any
responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of
the Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this
exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to
the overall education within the student’s chosen degree program. This document, the
associated hardware, software, drawings, and other material set out in the associated
appendices should not be used for any other purpose: if they are so used, it is entirely at the

risk of the user.

Dean

Faculty of Health, Engineering & Sciences

ii

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set
out in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

SATHYA SMITH

0061033248

iii

Acknowledgments

The completion of this research project would not have been possible without the support
of many that are close to me. Firstly, I would like to thank my partner, Jorja Wicks, who
has also completed a research project towards her Electrical and Electronic Engineering
degree. Jorja is the most incredible study partner I could have ever wished for and I wouldn’t

want to have anyone else by my side.

I would also like to devote an enormous thank you to my wonderful parents, Katharina and
Graham, for putting so much faith in my abilities to fulfil my goals and passions. Their
kindness and encouragement has been crucial in motivating me to achieve the best result I
possibly can. I cannot thank you enough for all you have done for me throughout my life.
Next I would like to acknowledge my close friends in no particular order — Steve, Joe, Riley,
James, Matthew, Shannon and Daniel. You’re all excellent lads and I might’ve keeled over

somewhere along the way without you helping me kick back and re-focus.

Last, but not least, I would like to thank Dr. Andrew Maxwell for supervising my project

and providing me with guidance along the journey towards the end result of this dissertation.

You have all been a great help to me — thank you!

SATHYA SMITH

v

Contents

2 1] 0 = Lo i
Certification Of DiSSertation ... s sn e saess 1ii
ACKNOWIEAZIMENTS.....ccuiieiisnimsnssnsnsssssssnssss s ss s s s s ss s s e s E e s AR AR R AR e RS e R R e R R AR R R e RS iv
8y 0 00D T xi
03 T 0 1 0 xii
A 100 14 =) 5 U] =L xiii
(083 F=1 0 173 ol R 0 01 0 1 11 Ut 1) o 14
1.1, Preamble oo 14
1.2, A Brief Historical SUummarycccoouiuiiiiiiiiiiii e 16
1.3. Project Aim and ODJECEIVES «.eouvuuiiiiiiiiiiiiie e 17

F S T L ' s PSP 17
1.3.2. (0] o) 15T 117 S PSPPI 17

1.4. Motivation and Problem Statemento.ooieieiiiiie e, 18

1.5, Dissertation OVEIVIEWo.uuiiiiiiiieeiii ettt e 19
Chapter 2 - Literature ReVIEW.......cciinsmsmmssss s s ssssssssssssasas 20
2.1, Motion Measurementc..viuuiiiiiiiiiiiie ettt 20
2.1.1. ELeCtTIC SENSINE ..eetniiiee e 21
2.1.2. Mechanical SENSINEccuuuiiiiiiiii e 22
2.2, Processing and Controlooouiiiiiiiiie e 23
2.2.1. EXISTING USAZE . evneviniiiiine ittt et 23
2.2.2. ATAUINO cee e e 24
2.3. Recognition Methodscouuiiiiiiiiiiiiiii e 27
2.4, MIDI e e 30
2.5, Data TranSmiSSION ... cc.utut ittt et 31
2.6. 3D Printing ..oceeenieiiiii e 32
Chapter 3 - Methodology ... s sasas 33
3.1. Research Methodologiesc..iiiiiiiiiiiiiiiniiii e 33
3.1.1. Quantitative Research..........ooooiiiiiiiii 34
3.1.2. Qualitative Research.........ooooiiiiiii 34
3.2, Project Task Plam.......cooouiiiiii e 35
3.2.1. Background Research and Theorycccooviiiiiiiiiiniiiiineecn 35
3.2.2. Hardware DeSiZIooeuniiiiii e 37
3.2.3. SOFtWATE DESIEIL «.neeiiei i 38
3.2.4. Build and Prototypingcoeeiiiiiie e 38

vi

3.2.5. Design Evaluation..........cooiiiiiiiiiiii 39

3.3. Resource Requirements and Equipment...........cccooeiiiiiiiiiniinneee, 40
o4, THMEIIIIE .. 42
3.5, Consequential Effects.........oooiiiiii e 43
3.5.1. P2 (1 2P 43
3.5.2. SUSEAINADIIIEY ...t 43
(00 (B0 1)l T {5 o 44
4.1. Design Objectives and Requirementsc.oveiuuiiiiiiiiiiiiiiniiiei e 45
4.2, Component SEIECTIONo..uiiiiti et 46
4.2.1. Inertial Measurement Unit — MPUGOS0ccouviiiiiiiiiiiiiiiiiiiiiceceeeee, 46
4.2.2. Processing Unit — Arduino Uno R3........oooiiiiiiiiii e 48
4.2.3. Data Transmission — HopeRF HM-TRccocoiiiiiiiiii, 49
4.3. Enclosure Design and Wearability..........ccoooiiiiiiiiiiiii e, 50
4.3.1. Hardware Positioning..........cc.oviiiiiiiiiiiiii e 50
4.3.2. OPENSCAD ... e 51
4.3.3. WIS BIACE coveiiieiieii e 52
4.3.4. Main System HOUSING «...couuiiiiiiiiiiiiie e 53
4.3.5. Hardware ASSembLYooiiiiiiii e 55
4.4. Software requirements and ObJeCtIVEScoouuiiiiiiiiiiii e 62
4.4.1. OPeration MOAESoieeeiee et 63
4.4.2. Data ACUISTEIONuniiie et 63
4.4.3. Pre-PrOCESSIIEZ . c..ueiiieii e 64
4.4.4. Feature ExXtraction.........ccooviiiiiiii 64
4.4.5. GESTUTE CAPBUTE ..eevtieeeiii ettt 64

vii

4.4.6. MIDI Command TTansSImiSSION «.....eeee et 65

4.4.7. MIDI Command Receptioncceoeuuiiiiiiiiiiiiieiiis e 65

4.5. Arduino Program Creation...........ccoiiiiiiiiiiiiiiiei e 66
4.5.1. Library Inclusions and Variablesc...ccooiiiiiiiiiiiiii e, 66
4.5.2. InitialiSAtION «.eeeneii e 67
4.5.3. Sliding Window Tracking..........cccuoiiiiiiiiiiiii e 68
4.5.4. Training Modec..uviiiiiii e 70
4.5.5. MIDI Transmission and Receptioncoooveiiiiiiiiiiiiiiiiieecee 70
Chapter 5 - Results and TesSting.........couimnmsmnisssssssss s s 72
5.1. System Function Demonstrationccoooeiiiiiiiiiiiiiiiiec e 72
5.1.1. Gesture ReCOGNITION .. .ceuuuiiiiii et 72
5.1.2. Wireless Link TeStingceeueiiiiiiiiiiei e 7

5.2. Design Issues and System Feasibility..........coouiiiiiiiiiiiiiii e 79
5.2.1. Current Design Feasibilityooeviuiiiiiiiiii e 79
5.2.2. Design Issue Evaluationoooiiiiiiiiiiiii 79
Chapter 6 - Conclusions and Further Work ... 81
6.1, CONCIUSIONS ..iiteiii ettt ettt et e e e eeees 81
6.2. The Learning EXPeriencecccoviiiiiiiiiiiiiiiiiiin e 83
6.3. Future Work and Potential USes.........cociuuiiiiiiiiiiiiiiiiiees e 84
L3) o) 1 Lol 85
Appendix A - Project Specification ... 89

viii

Appendix B - Project Timeline........ccociminnssssssssssssssssssssssssss s 91

Appendix C - RiSK ASSESSIMENLcccimruismmmsmmsmsmssssmssmsssassssssssssnss 94
Appendix D - Component Datasheets ... 96
D.1. ATMega328 Datasheet (PAZe 1) ..vvviiiiiiiiiiiiiiiiiiiiiiiiiiiceceeeee e 97
D.2. MPUGO50 Pin DeSCIiPtIONS ...uueeiiiieeiiiiie e e et e e e e 98
D.3. HopeRF HM-TR Datasheet (Page 1)cccoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiceeeeeen, 99
D.4. Freetronics LeoStick Specifications.........coooeiiiiiiiiiiiiiiiiii e 100
Appendix E - MIDI Instruction Summary Table......mmsssssssses 101
Appendix F - Engineers Australia Code of Ethics (P.1) ...ccoummmmsmmsnssnssssssssssssssssssses 106
Appendix G - OpenSCAD Program Code and Models........c.cummnmmmmmmmmsmmsmsssmsssssns 108
G.1. Wrist Brace OpenSCAD HStINg.......oveuuiieiiiiieiii e 109
G.2. Wrist Brace Modular VIEWSooiiiuiiiiiiiieeiiie et 116
G.2.1. MPU-6050 MOEL......iieiiiiiiiiiisieee i 116
G.2.2. Wrist Brace Main VIEW........cooviiiiiiiiiiieei et 116
G.2.3. Wrist Brace Cover VIEWcciiuiiiiiiiiieeiieeei et e e e 117
G.3. Main System Housing Program Listingccoooviiiiiiiiiiiniiiiiieieeeeeen 118
G.4. Main Housing Model VIEWS.......ooiiiuiiiiiiiiiiiiii e 127
G.4.1. Transceiver Shape Modelovviiiiiiiiiiiii e 127
G.4.2. Arduino Uno Shape Modelccoouuiiiiiiiiiiiiiiiiiie e 127

X

G.4.3. Battery Shape Modeloiiiiiiiiiiiie e 128

G.4.4. Extra Space Shape Modelcocooiuiiiiiiiiiiiiiii e 128
G.4.5. Main Housing Model...........oooouiiiiiiiiiiiii e 129
G.4.6. Main Housing Cover VIEW.........oiiiiiiiiiiiiiieii e 129
Appendix H - Arduino Program COdeummmmmmmmmmimmimmssssssssssssssssssssssssssssssssssssssasses 130
H.1. Main Arduino Programi..........ooeiiii i 131
H.2. MIDI Command Transmission Code........cccviiiiiiiiiiineiiniiiei e 143
H.3. MIDI Command Receiver Code........coouiiiiiiiiiiiiiiiiiieieeiee e 144

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1 - Electrical Diadem (Sourced from Sjuve 2008)cccoviiiiiiiiiiiiiiiiiiiin. 16
2 - 'gest' gesture recognition system concept (Sourced from New Atlas 2016) 19
3 - Capacitive Touch Screen (Sourced from Electrotest Pty Ltd.)oeevveennnnnnn. 21
4 - Piezoelectric Accelerometer (Sourced from industrial-electronics.com)............ 22
5 - Arduino IDE.. ..o 26
6 - Breakdown of MIDI message COMPONENTSc..ueviuneiiineiiineeiieeiineeiineeiieeeiinens 30
7 - Six Degrees of Freedom.........c..oviiiiiiiiiiiiiii s 46
8 - DFRODOt 6 DOF SENSOT «..euiiiiiiiiiiiiieee e 47
9 - Arduino Uno R .o 48
10 - GOPTO HaIMeSS. ..u it 51
B 1C 01510l a1 i) 0 Yo < RSP 52
12 — Main Enclosure Top VIEWocoouiiiiiiiii e 53
13 - Main enclosure Side VIEWveiuuiiiiniiii e 54
14 — Wrist Drace PrototyPe «.eeeu ettt ettt 56
15 - Wearable group wiring diagram (Produced with fritzing)................ccccceeee. 58
16 - Completed wearable group assemblycccoooveiiiiiniiiiiiniiiiine e, 59
17 - Completed terminal group assemblycocouiviiiiiiiiiieiiiniiee e 60
18 - GR system process flowc.oviiiiiiiiiiiiniiii 62
19 - Limited tracking mode initial output.......ccooeeiiiiiiiiii 73
20 - Limited tracking mode resting statecccoveiiiiiiiiiiiiiiii 74
21 - Limited tracking mode twisting punch data............cooooviiiiiiiii, 75
22 - Training mode initial oUtPULviiiiiiii 76
24 - MIDI command transmission in decimal format..............ccooeviiieiiineiiineninnn. 78

x1

file:///C:/Users/Sathya/Google%20Drive/Bachelor%20of%20Engineering%20(Honours)/Engineering%20Research%20Project%202016/5%20-%20Dissertation/Document/Final%20Stages/SMITH_S_MAXWELL_SUBMISSION.docx%23_Toc464034658

Figure 25 - MIDI command reception shown through Arduino serial monitor 78

List of Tables

Table
Table
Table
Table
Table
Table
Table
Table

1 - Arduino Comparison Tablecooiiiiiiiiiiiiiei e e 25
2 - Comparison of various GR techniques (Sourced from LaViola 1999)................ 28
3 - Key research and background questionsccoeeiiiiiiiiiiiiiiniine e 36
4 - Research and dissertation reSOUICESoveiiuuiiiiiiiiineiiiiiniiiiiin e 40
5 - System hardware and facility reSOUICeS.........cccvvviiiiiiiiiiiiiniiiin e, 41
6 - Software and staff TESOUrCESiiiiiiiiei e 42
7 - Sensor t0 Arduino CONNECIONSuuiiin et ee et e e e 55
8 - Project Risk ASSESSIMENT ...couuuiiiiiiiiiiie e 95

xii

file:///C:/Users/Sathya/Google%20Drive/Bachelor%20of%20Engineering%20(Honours)/Engineering%20Research%20Project%202016/5%20-%20Dissertation/Document/Final%20Stages/SMITH_S_MAXWELL_TUESDAY.docx%23_Toc463950996

Nomenclature

ADC
CAD
DMP
DSP
EMG
EOG
FIFO
FSK
GR
GRS
HMI
IDE
IMU
IR
MCU
MEMS
MIDI
RAL
RAM
SPI
TTL
TWI
UART
USB

Analog-to-Digital Converter
Computer Aided Drawing

Digital Motion Processor

Digital Signal Processing
Electromyogram

Electroculogram

First In First Out

Frequency Shift Keying

Gesture Recognition

Gesture Recognition System
Human-machine interaction
Integrated Development Environment
Inertial Measurement Unit

Infra-red

Microcontroller Unit
Micro-electromechanical System
Musical Instrument Digital Interface
Remote Access Laboratory

Random Access Memory

Serial Peripheral Interface
Transistor-Transistor Logic

Two Wire Interface

Universal Asynchronous Receiver-Transmitter

Universal Serial Bus

xiii

Chapter 1

Introduction

This chapter is intended to make the reader familiar with the general concepts of gestures
and their use in the computing field. The preamble contains information pertaining to the
importance of gestures, as well as some examples of the most commonly experienced forms
of gesture recognition within modern society. Following this, motivations for the completion
of this research project are discusses, prior to the final subsections regarding project aims

and objectives.

1.1. Preamble

Humans have long spent time analysing the ties between their thoughts and physical
movements. Generally speaking, gestures are mostly widely known as physical movements;
often enacted subconsciously and can be used to communicate a wide variety of information.
Research into both humans and animals has shown that movement and gesture may possess
a higher influence on thought than was previously expected. The unique symbolic and
referential nature of human gestures is particularly as gestures such as waving, pointing at
an object, and the ‘OK’ symbol are fast paced, easy to understand methods of communicating
information and emotional state. Modern Human-Machine Interaction (HMI) systems utilise
this advantageous aspect of intelligent communication to further naturalise the experience

of working with computers.

14

HMI allows for the minimization of barriers between the human cognitive model of a gesture
and the computer’s understanding of the task (Kumar 2010). Advancements in computing
have seen a wealth of potential applications for human movement tracking, where the aim
is to use a HMI interface and a control system to allow movement trend analysis by the

user, with constant feedback from the machine (Suhas & Dileep 2015)

From this user interaction arises the concept of a Gesture Recognition System (GRS); an
electrical system designed to bridge the gap between a human user performing a movement,
and a computer system performing a desirable or undesirable action in the response to the

user.

One of the most notable examples of gesture utilisation in modern society lies in
smartphones. Statista Inc. (2016) estimates a record-breaking 2.08 billion smartphone users
worldwide as of 2016, meaning that every day new users are learning to Swipe, flick, pinch,
tilt and shake their smartphones to control various pieces of software. This method of
interaction may be highly desirable to those who find traditional computer input methods
to be tedious or unintuitive. While many industries stand to benefit from advances in the
HMI and GR fields, the theatre and entertainment industries are interesting stakeholders

for consideration and will be the primary focus over the course of this project.

In an attempt to widen the availability and usefulness of work previously completed in the
gesture recognition field, this research project involves the development of a simplistic
wearable GR system for the control of various theatrical technology elements using off-the-
shelf hardware and software components. Such a system aims to acquire the gestural
movement data of a performer in real-time through the use dynamic sensors. If a gestural
movement is detected, a Musical-Instrument-Digital-Interface (MIDI) command can then be

created to act as a controlling mechanism for systems that utilise the MIDI protocol.

Such a system possesses a range of uses in a theatre/stage setting, where the MIDI language
is commonly used. MIDI is most commonly used in digital audio workstations such as
Ableton Live and Reaper for live and/or recorded music production; as well as for control

of DMX lighting using a system such as ‘Lightjams’.

15

1.2. A Brief Historical Summary

Wearable technology has been an important asset to performers since the 1840s, one of the
first times that arc lamps were used to create special effect lighting for performance
enhancement (Sjuve 2008). These analog systems usually involved the use of incandescent
light bulbs, such as the ‘Electrical Diadem’ (See Figure 1) developed for a dancer who
performed as a part of the opera ballet ‘Farandole’ in 1884. The diadem operated very simply
and consisted of incandescent bulbs, a two part accumulator and a switch to allow the dancer

to control the light (Sjuve 2008).

'

Figure 1 - Electrical Diadem (Sourced from Sjuve 2008)

Systems such as the electrical diadem required manual control via the performer or a
stagehand, outlining the main difference between older wearable systems and those used in
the field today, which are intended to be more automated and exist as a more fluid method

of control over using, for example buttons or touchpads
Although wearable technology was present such a long time ago, HMI became much more

prominent since the beginning of the digital era. In 1963, Ivan Sutherland demonstrated the

first instance of directly manipulating visible on-screen objects using a light-pen, which

16

included grabbing objects, moving them, changing size, and using constraints (Myers 1998).
Following this, many more instances of HMI research began to emerge as the computational
needs for more demanding purposes were met by new hardware developments. At this point

in time, HMI is an element of everyday life and is under constant development.

1.3. Project Aim and Objectives

1.3.1. Aim

This project aims to investigate the design of a novel GR system using off-the-shelf
components, which would allow performers to control external performance related systems

in a reliable, functional and easily setup manner for a reasonably low cost.

1.3.2. Objectives

The completion of this project requires the definition of the following key objectives:
e Design and develop a suitable data acquisition system.

e Implement a suitable processing algorithm to perform gesture classification and

recognition by extracting data features.

e Determine a viable method for creating a suitable MIDI command in response to the

presence of a gesture.

e Determine a suitable method of wirelessly transmitting the MIDI command to a

personal computer.

e Evaluate the performance of the system with respect to various requirements.

17

1.4. Motivation and Problem Statement

Various motivating factors have formed the foundations of the work completed in this
project, with the intent to solve a particular engineering problem. For a theatre performer,
the search for new and exciting methods of extending creative capability is never-ending.
This curious and explorative nature is key to preventing artistic expression from becoming
stale. The more tools at a performer’s disposal, the greater their potential to express their

creative talents and messages. Lindsay (2013) stated that:

“The audience needs to see, hear and feel a performance as fully as possible so
that it is a rich, emotional, and unforgettable event. Modern technologies have

given us the tools to enrich the whole of this experience.”

In addition to the importance of augmenting artistic capabilities, the financial expense of
current gesture recognition technology is a limiting factor placed on many who may be able
to utilise the system for profit. Wearable gesture recognition devices are still emerging
technologically, resulting in many prototypical systems and few commercially refined
instances. With regards to this project, the intention is to prove in concept that a novel
gesture recognition system can be created at a low cost using easily obtained hardware and

software elements.

Certain developers are well on their way to developing highly functional gesture recognition
devices, a good example of which being the “Gest” glove, which can be used for generalised
computer control (see Figure 2). Other notable examples include the Myo armband from
Thalmic Labs and the Leap Motion controller. Commercial GRSs such as these are intended
as generalised gesture controllers to be interfaced with smartphones and computers; however,
there exists very little in the way of live entertainment focused systems that have been well

established.

18

Figure 2 - 'gest' gesture recognition system concept (Sourced from New Atlas 2016)

1.5. Dissertation Overview

This subsection outlines the composition of this dissertation:

Chapter 2 presents an analysis of relevant literature and background information.

Chapter 3 explains the chosen methodology for undertaking the research project

Chapter 4 presents the design and build process for the system in regards to data

acquisition, gestural processing and data conversion and transmission.

Chapter 5 outlines the testing process for the system, and presents and discusses

the results of system testing.

Chapter 6 concludes the dissertation and includes discussion of outcomes and

recommendations for potential future work pertaining to the project.

19

Chapter 2

Literature Review

A comprehensive technical project requires extensive consideration of background
information pertaining to all relevant areas in order to ensure adequate knowledge of subject
matter. Publicly available GR and HMI research covers a broad range of specific information
areas, not all of which are relevant to this project; therefore, careful selection of literature

must be carried out.

2.1. Motion Measurement

The creation of a GR system necessitates a method of reading the physical movements of an
individual. In doing this, the sensors used for this purpose are effectively the computer’s
‘eyes and ears’. Searching the literature made it evident that a number of different types of
sensors are useful for this application including electric, optic, magnetic and mechanical.
Berman & Stern (2012) stated that despite the great number of GR system reviews present
in the literature, comprehensive analysis of sensor types for GR systems was lacking. Their
research involved investigation of different types of sensor stimulus, usage context and sensor
platform. The study is useful for this project; however, there is a main focus on optic sensors,
which are not suitable for this project in that the focus for this project is on using wearable

technology to achieve movement tracking.

20

2.1.1. Electric Sensing

Electric sensing is the most commonly used type of sensing throughout modern day to day
life (Berman & Stern, 2012), which accounts for touch screens, keyboards, computer mice
and systems that function based on reading bodily electrical signals such as electromyogram
(EMG) and electroculogram (EOG). Touch screen interfaces such as those found in tablets
and smartphones (See Figure 3), while being extremely responsive, generally do not fit with
the system model desired in this research project. It was evident that for an application such
as live stage performance, the requirement of wearing and constantly touching a display
would become cumbersome and due to the fragility of such displays, vigorous movement or

mechanical shock may render the system useless in the event of fatal damage.

Image processing Continuous re-imaging
controller of touch profile

Image of changes in
electrostatic field caused

by touch
Touch screen
(sensor)

Controller resolves
touch profile to
actual touch point

.. Coordinates fed back to
"W operating system

Figure 3 - Capacitive Touch Screen (Sourced from Electrotest Pty Ltd.)

21

2.1.2. Mechanical Sensing

Mechanical sensing appears to be the most commonly utilised approach for movement
detection in a performance environment. The most notable sensors used in this way are
microelectromechanical system (MEMS) based accelerometers and gyros. Berman & Stern
(2012) included a description of their functionality, where single and multiple axis
accelerometers are used to determine acceleration along predetermined axes in space by way
of a tiny shifting mass system. A change in acceleration causes a minute mechanical shift
inside the accelerometer itself, pictured below in Figure 4, which translates to a change in
the output signal of the relevant directional axis, so that varying levels of acceleration in

multiple directions can be tracked.

Housing Mass (m)
, \ + Signal
Material

Figure 4 - Piezoelectric Accelerometer (Sourced from industrial-electronics.com)

Gyros are similar in operation to accelerometers; however, they are used to detect angular
velocity, usually with an output of degrees per second. This functionality makes them very
useful in conjunction with accelerometers for a system that requires reliable motion tracking.
Gyros operate by creating a low-current electrical signal in response to the vibration of a
small mass within the MEMS unit, which is placed under a Coriolis force orthogonal to the
vibrating mass (Wikipedia 2016). These two components have been widely used in previous
research on the topic area and are able to operate to extremely high degrees of accuracy. As

such, these two components seem to be the most suitable for this project.

22

Suhas & Dileep (2015) demonstrated the use of the embedded Digital Motion Processor
(DMP), located within an MPU-6050 unit that has an overall purpose of reading sensor
data, which can be read from registers or buffered in a FIFO. The DMP is extremely useful
for such an application as it eliminates much of the necessity for sensor data pre-processing
by automatically performing those tasks for the developer. The MPU-6050 appeared to be

the most suitable motion tracking unit available for a simple application such as this project.

2.2. Processing and Control

2.2.1. Existing Usage

The second element requiring thorough understanding before selection is that of a hardware
controller for the wearable system. The microcontroller is responsible for acquiring sensor
data, implementing GR algorithms, generating a MIDI command, and finally transmitting
the MIDI command via wireless serial link. This was predicted to require extensive
computations; therefore, a microcontroller capable of performing these tasks efficiently and
accurately was necessary. Predko (1998) detailed the aspects of different types of
microcontrollers, which usually fit into three main areas: Embedded 8-bit microcontrollers,
16-32 bit microcontrollers, and digital signal processors. Further investigation was required

to determine the best route to follow for this decision.

An extremely relevant study performed by Xu et al. (2012) involved the creation of a
portable gesture recognition system consisting of a tri-axial accelerometer, C8051F206
microcontroller and a ZigBee 2.4 GHz Wi-Fi module. Unfortunately, it was not particularly
evident within the study whether feature extraction computations were enacted by the chip
itself, or by the PC once pre-processed gesture data had been received from the ZigBee

module.

23

It was somewhat difficult to find a great deal of previous work pertaining to GR systems
that possess the ability to detect motion and carry out signal processing algorithms on the
wearable module itself. Benbasat & Paradiso (2001) outlined this importance, stating that
‘The authors argue that the most interesting devices are those which incorporate enough
processing power to perform the software functions of the framework (recognition and
matching) on-board’. Throughout their research an Analog Devices ADuC812
microcontroller with a 12-bit ADC and an 8051 microprocessor core was utilised, which

allowed them to successfully implement their atomized GR framework.

2.2.2. Arduino

One of the most appealing control units for development of the system is the Arduino family
of development boards. Arduino is an open-source development platform that contains
hardware and software elements that are specifically tailored towards simplicity of use,
allowing for rapid project prototyping. Arduino boards have great development potential
and a wide range of features for conjunctive use with sensors and data transceivers — the

other components of interest for this project.

Potential choices of Arduino board include the Lilypad, Uno, Pro, Mega and Zero. Each of
these boards differ in number of features, power requirements and processing power. Table
1Table 1 - Arduino Comparison Table on the following page shows the differences between

each of the board models.

24

Table 1 - Arduino Comparison Table

ATSAMD21
ATmega ATmega32 ATmega256
Microcontroller ATmega328 G18
32u4 8P 0
3.3V
Operating Voltage 3.3V 5V 3.3/5V 5V
7-12V
3.35-12V or
Input Voltage 3.8V-5V 7-12V 7-12V
5-12V
20
Digital I/O Pins 9 14 14 54
6
Analog Inputs 4 6 6 16
256 kB
Flash Memory 32 kB 32 kB 32 kB 256 kB
32 kB
SRAM 2.5 kB 2 kB 2 kB 8 kB
None.
EEPROM 1kB 1 kB 1 kB 4 kB
48 MHz
Clock Speed 8 MHz 16 MHz 8or 16 MHz 16 MHz
68 mm X 30
Physical 50mm 68.6mm X 2.05 in X 101.52 mm
mm
Dimensions Diameter 53.4mm 2.1in X 53.3 mm
$49.90 USD
$24.95 $24.95
Approximate Cost $14.95 USD $45.95 USD
USD USD

25

It is evident from the comparison table that all of the compared boards have similar suitable
specifications, with the main differences being trade-offs between cost, physical size, number
of pins and memory. Arduino has placed emphasis on the LilyPad as being useful for
wearable technology applications, making it an attractive choice. Taking into account the
developmental nature of this project, it was decided that it may be more prudent to use a
board that does not require soldered connections and can easily be connected to a PC via

USB for programming purposes, such as the Uno.

This leads into another advantageous aspect of Arduino boards, which is the Arduino
Integrated Development Environment (IDE) (See Figure 5). This IDE possesses a text
editor, message area, text console, toolbar and menus. In addition it contains a serial monitor
for real or virtual data monitoring, which is highly useful for this project. Arduino programs,
also known as sketches utilise mostly C++ language code, as well as some functions specific
to the Arduino platform. The simplicity of the Arduino development process was deemed to

make it a solid choice for this project and was chosen for further investigation.

sketch_oct04a | Arduino 1.69 - o

File Edit Sketch Tools Help
sketch_oct04a

feid setupn) { ~
// put your setup code here, to run once:

}

void loop() {
// put your main code hers, to run repeatedly:

}

Figure 5 - Arduino IDE

26

2.3. Recognition Methods

Once methods of detecting motion of the body have been achieved, the gesture data must
be manipulated in various ways to eliminate problems and improve data reliability. There
are many different digital signal processing techniques used to optimise sensor data and
extract classified gestures from that data. As such, not all of these techniques are relevant
to this project, as well as some being far too complex to suit the given time frame. Generally
speaking, the computations involved appear to fall into three categories: Pre-processing,
feature extraction or a similar technique, and gesture classification. This algorithm focused
subsection aims to detail the current status of algorithms used in simple GR systems that

operate using inertial measurement units.

A survey conducted by LaViola (1999) provided useful summaries of the various methods
used to recognise and react to a gesture for applications similar to stage performance.
Although the study is over a decade old, technology has progressed relatively slowly in the
GR world as it is not a crucial research and development field, and the majority of the

techniques used during this time are still highly relevant.

The techniques analysed were suitable for the use of both instrumented gloves and vision
based GR systems. The three categories described for GR throughout the study were feature
extraction, learning algorithms, and miscellaneous techniques. A more detailed overview of
GR techniques can be found within Table 2 on the following page, which provides good

insight into the relevance of various methods to this project.

27

Table 2 - Comparison of various GR techniques (Sourced from LaViola 1999)

Vison Glove Postures-Size-Accuracy Gestures-Size-Accuracy Training Previous Work Adv. Knowledge
Template Matching Yes Yes Complex-Small-98% Simple-Small-96% Minimal Extensive No
Feature Extraction No Yes Complex-N/A-N/A Complex-N/A-N/A None Moderate No
Active Shape Models Yes No Simple-Small-N/A Simple-Small-N/A None Minimal No
Prnctpal Components Yes Yes Complex-Large-99% N/A-N/A-N/A Moderate Moderate No
Linear Fingertip Models Yes No Complex-Small-90% N/A-N/A-N/A Minimal Minimal No
Causal Analysis Yes No N/A-N/A-N/A Simple-Small-N/A Minimal Minimal No

Upon perusing the table, it is apparent that template matching is a technique of great

interest due to its compatibility with IMUs, excellent accuracy for complex postures and

simple gestures, minimal training requirements and extensive previous work to look on.

Another option is a feature extraction focused method, which is suited to more complex

gestures and does not require training prior to recognition and classification.

LaViola (1999) stated that: “template matching determines whether a given data record can

be classified as a member of a set of stored data records”. This process involves creating

desired templates (postures or movements), and then comparing the sensor input of the

system to those templates. The system can be configured so that when a match is found, an

arbitrary output is performed. The study further describes limitations and advantages of

using a template matching algorithm in such a system.

28

An example of a template matching algorithm was presented by Benbasat & Paradiso (2001),
which included a more refined approach involving ‘atomic’ gestures. The concept of atomised
gestures is that of defining simple and common movements as gestural ‘atoms’, which can
then be combined to form more complex gestures, without having to store that complex
gesture template itself. This means that the comparisons made are between the input and a
set of simple atomised gestures, rather than attempting to compare the input to an extremely

large array of complex gesture patterns, which may even be difficult to reproduce.

Feature extraction is an alternative method to template matching and while being considered
as a more complex route, the potential for advanced GR is greater. Feature extraction and
analysis involves analysis of raw sensor data in order to determine specific information about
the input, which may include properties such as mean signal level, standard deviation,
variance, velocity and acceleration (LaViola 1999). Also mentioned is the computational

burden for such a method.

It is important to note that GR techniques should also be accompanied by DSP techniques
intended for heightening system accuracy and reliability. One approach to this, conducted
by Xu et al. (2012) involved calibration, a moving average filter, a high-pass filter and
normalization. Calibration involves the removal of drift errors and offsets from sensor input
data, while the two filters are used to reduce high frequency noise, as well as the effects of
gravitational acceleration. Finally, normalization involves the division of the signal input
value over the entirety of that sensor’s numerical output range to give a value that can be

compared with other sensors, which may have differing voltage ranges or baselines.

29

2.4. MIDI

Musical Instrument Digital Interface (MIDI) is an important communications language and
is still widely used in live music and theatre. The provision of this standard has allowed for
many different types of musical instruments, home computers and multimedia equipment to
communicate with ease. Background knowledge and literature review of this protocol was
required in order to implement a suitable output for the GR system that can be easily read

and responded to by computer software.

MIDI messages are sent asynchronously in serial format at approximately 31.25 kbps, and
contain ten bits per message — A start bit, eight data bits, and a stop bit (Anderton, 1986).
The protocol involves the transmission and reception of messages, which are composed of a
status byte and one or two data bytes. Figure 6 below depicts a typical midi message

containing a status byte and two data bytes (note and velocity).

Status Byte Data Byte Data Byte 2

MiToJol1ToToloJoJ[foltJoloJol1]olt][[oftT1JofJo]1o]1]]

. | | I
Mote on MIDI CH(1) Note Number(C3) Velocity(101)
L] 1] |
144 Decimal 69 Decimal 101 Decimal
L L L]
o0H 45H 65H

Figure 6 - Breakdown of MIDI message components

30

The purpose of the status byte is to identify the message type and/or the purpose of the
data byte/s following the status byte. The status byte is capable of defining incoming
instructions such as note on/off events, velocity, polyphonic key pressure, control /program
changes, system related messages and various other commands. Data bytes contain the value
of the instruction itself as a value from 0-127. The receiver must then interpret these data
values depending on the status byte to perform certain functions. Appendix E contains a

table detailing the conventions for transmitting messages with MIDI.

2.5. Data Transmission

Methods for moving data from the wearable system to a computer application needed to be
explored extensively to ensure that an efficient and reliable method is used. There is a
plethora of different ways to create a communications link in this way including Wi-Fi,

Bluetooth, Radio frequency communication and Ethernet.

For a wearable application, the aim is to eliminate any physical connections between the
wearer and external systems, so wired connections are somewhat impractical, with the
exception of using wired connections for prototyping purposes. Therefore, only wireless links
were to be considered, with this subsection detailing the methods that have been used in
previous research. Note that the most desirable types of data link for this purpose are simple

FIFO serial data.

The first transmission method to be considered is 2.4GHz Wi-Fi, which is commonly used
with smartphones and personal computers. Xu, Zhou & Wen (2012) utilised a 2.4 GHz
ZigBee wireless transceivers for data transfer, which are known for their excellent price point
— e.g. the SparkFun nRF24L01+ Transceiver breakout at only $19.95. This cost can be
reduced by opting for the transceiver chip itself rather than a breakout; however, for the
purposes of the project it is far more viable to use a breakout board for prototyping and

development.

31

The second method to consider is that of other RF modules, which operate within frequency
bands from about 300 MHz to 1 GHz. Benbasat & Paradiso (2001) opted for an RF
Monolithics transmitter module with a maximum transmission rate of 19.2 kbps, and
transmission bands of 315 MHz and 916 MHz. Similar to this transceiver unit is the HopeRF
HM-TR wireless data link. These transceivers were offered to me by my project supervisor
Dr. Maxwell, as using them would mitigate the cost of the project itself. The choice of
wireless link is not crucial to the outcome of the project, but the chosen link does need to
possess reasonably high transmit/receive rate capabilities, as well as high reliability, i.e.
ensure FIFO packet integrity and an extremely low or non-existent potential for transmission

€rrors.

2.6. 3D Printing

Also known as ‘additive layer manufacturing’ or occasionally ‘rapid prototyping’, 3D printing
is a method of manufacturing physical objects from various materials for many different
purposes. In a world where new gadgets are dismissed in a fraction of the time they took to
develop, the ability to quickly build small objects is convenient and attractive. 3D printing
was considered for this project when determining the best method to produce hardware
enclosures that are specifically tailored to the components at hand. Dr. Maxwell possesses
enthusiasm in the field of 3D printing and suggested that it may be utilised to accompany

the project to deliver a more customised solution for enclosures.

32

Chapter 3

Methodology

The methodology chapter intends to outline the engineering processes undertaken towards
the completion of this project. The sections covered in this chapter are of utmost importance
when completing any major engineering task, as they contain much of the planning,
organisation and consideration of consequential effects necessary to ensure that no issues

will arise during the course, or after the completion of the research project.

3.1. Research Methodologies

To gain an understanding of how the research goal can be achieved, it is necessary to consider
various suitable research paradigms. A research review conducted by Borrego et al. (2009)
provided a good starting point for determining adequate engineering research techniques.
This review involved analysis of quantitative, qualitative and mixed research methods in
engineering education; however, the knowledge contained within can be applied to

engineering research in a similar manner.

33

3.1.1. Quantitative Research

Quantitative research involves tackling a research problem from an objective point of view.
The aim of such practice is to attempt to reduce the possible causes of an outcome to a bare
minimum in an attempt to determine a cause-effect relationship between a theory or
hypothesis and the variables that contribute to the outcome. Quantitative methods usually
rely on data collection through surveys or experimentation, followed by statistical analysis
(Borrego et al, 2009). The results of this analysis can then be used to make generalisations
about the topic, which have been supported by research findings. There will be a substantial
amount of quantitative analysis involved within this project due to the quantitative nature
of electrical systems. Most, if not all of the elements of a GR system can be parametrised
and represented as a mathematical model. The presence of movement data from sensors,
algorithmic processing and MIDI representation as numerically based system components

means that mathematical and quantitative methods will need to be utilised.

3.1.2. Qualitative Research

Qualitative research differs from its quantitative counterpart in that it is a more subjective
method of analysing a system or trend. Qualitative analysis is subjective in nature, meaning
that it is often down to the discretion of the researcher as to whether a project element is
described in a certain way. Whether a GRS is considered to be functional or not can be
considered qualitative and arbitrary, as one person may believe that a GRS that is able to
recognise one gesture and perform one output is suitably functional, whereas another may
feel that while the system technically ‘works’, it does not possess the ability to process many

gestures and is of low functionality.

34

3.2. Project Task Plan

In order to successfully complete this research project it was required to establish a solid
project task plan to ensure that each necessary aspect is given an adequate amount of
attention. Planning in this way helps to distribute workload evenly throughout the project

completion period and eases the potential adverse effects of unforeseen circumstances.

3.2.1. Background Research and Theory

The first established task involved in the project was determined to be the performance of
relevant background research and investigation into the mathematical and engineering
concepts involved. Adequate preparation of research material assists in mitigating the
necessity to determine information that is not absolutely relevant to the project itself. The
project in its entirety required the asking of many research questions. Table & on the
following page indicates some of the more important research questions that required

investigation.

35

Table 3 - Key research and background questions

Project Section

Relevant Key Questions

Motivation and

Which engineering problem does the creation of this system solve?

Problem What are the system requirements to achieve this purpose?
Statement How will the project build upon existing technology?
What are they?
Gestures Which of them are most commonly used?
What role do they play within human communication?
How are they usually incorporated into HMI?
How can bodily movement be measured?
Which existing systems may be useful?
Which sensors are commonly used?
Hardware Which microcontrollers are commonly used?
What methods of wireless data transmission exist?
What is the most ideal method of ‘wearing’ this system?
Can 3D printing be used to create enclosures?
Which gestures should be added/tested with the system?
Gesture How will the system scan data in real-time?
Recognition How will the real-time data be analysed for significance?
Methods How will a MIDI command be assigned to a particular gesture?
What will the MIDI command be used to control?
System Where can the MIDI protocol be usefully applied?
Can the system be configured for any other purposes?
Applications

Who will be the main users of such a system?

Resources and

What types of equipment will be required during the project?

Equipment Will any facilities be required?
What are the important safety practices involved in electronic
; system design?
Consequential
- What are the ethical implications of completing this project? What
ects

about after completion?

Are there any legal issues involved?

36

Following the completion of the research and theoretical background section, the next step
was to use the new information acquired through literature review to begin designing various
aspects of the system. Although the previous section aimed to cover a broader range of
crucial questions, additional questions were required as a part of the design phase in order
to consolidate selection of components and planning for their assembly as a complete system.
Many of the issues in designing a system such as this tend to arise in the design and build

phases themselves and are difficult to pre-emptively cover.

3.2.2. Hardware Design

The hardware design phase involved the selection of necessary components - ensuring their
compatibility with other chosen components, suitability for gesture recognition applications

and reliability in terms of accuracy, precision and efficiency.

Prior to beginning thorough system design, a full risk assessment needed to be completed to
prevent any serious health & safety issues as electrical design projects typically involve
working with amounts of energy that can be extremely detrimental the body, equipment

and facilities.

The tasks to be completed for the hardware section were as follows:

1. Design of a suitable sensing setup using accelerometer/gyroscope combination sensors
for the measurement of rotational velocity and real world acceleration.

2. Select a suitable microcontroller for performing gestural data processing, MIDI
output creation and any other elements of control required.

3. Select a suitable data transmission system for communicating MIDI data between
the microcontroller and a personal computer.

4. Design of suitable enclosures for the sensor/s, microcontroller, transmitter and

battery to produce a reasonably protected and secure system.

37

3.2.3. Software Design

The next step in task planning for this project was to develop an idea of the requirements
of the software element of the system. First and foremost, the method of creating program
code needed to be designated based on the chosen microcontroller and sensor. There exists
a wide variety of potential candidates for programming languages that are capable of
performing GR related computations, but the chosen language is largely dependent on the

requirements of the ideal microcontroller.

The next task was to develop an idea of how gestures look when reading sensor data so that
an apt method of analysis and computation could be implemented. Once this was
determined, the focus was shifted to creating a pre-processing algorithm in an attempt to
make gestural data easier to work with when performing gesture classification and

recognition.

A robust way of classifying gestures, recognising them and then providing the user with an
output is the core of the system and provides its true functionality. The GR program needed
to be designed taking different techniques from literature, as well as knowledge of data

analysis methods from courses completed by the student.

3.2.4. Build and Prototyping

The build and prototyping phase was planned to involve the assembly of the hardware
system in addition to the software program. This process first involved the assembly of the
sensing unit, microcontroller, transmitter and power source as a complete unit, preferably
within 3D printed enclosures and with body attachment capability. The hardware needed
to be assembled as quickly as possible to allow adequate time for software program attention.
Following hardware assembly it was deemed necessary to perform testing to confirm sensor

and microcontroller efficacy.

38

The implementation of the GR algorithm in the form of program code was a crucial element
of the system, which had obviously lengthy time requirements due to likely nuances
occurring. The software program could then be tested using a predetermined set of gestures
to determine the accuracy of the system. Throughout this prototyping process careful notice

needed to be taken of any issues preventing the system from resolving to the desired output.

3.2.5. Design Evaluation

As with any engineering problem, a structured process needs to be used in order to ensure
that the design created is as well planned and produces optimal results. In most engineering
circles it is common to finalise a system design by reflecting and re-evaluating various aspects
of the design. These aspects were determined to include criteria such as functionality, cost,
efficiency, ergonomics and potential for future development. At the methodology
development stage, the system components that may need re-design were not evident and it

was decided that the matter would be better dealt with after completing the prototype.

39

3.3. Resource Requirements and Equipment

This research project was deemed to require quite a few different resources and pieces of
equipment. The tables below indicate the items that were required; however, this list aimed
to be quite broad and specifics regarding approximate system costs were not clear until later

in the project where the design was finalised.

Table 4 - Research and dissertation resources

Initial
Necessity Cost Availability Comment
Research
There is an extensive amount
High —
_ Very literature available for no cost,
Literature High internet,
low including articles present
libraries
within USQ’s databases.
Both a desktop and laptop
Personal Very
High In possession = computer are already possessed
computer low
and available.
Word
) Very Microsoft Word 2013 currently
processing High In possession
low installed on both PCs.
software

40

Table 5 - System hardware and facility resources

System
Cost Availability Comment
Resource
9V batteries are used for
9V battery None In possession
standalone Arduino operation
Low —
IMU roughly $10- High — online Accelerometer + Gyroscope
20
) None — Dr. Two required, one for
Transceiver In possession
Maxwell transmission, one for reception
Micro- None — Dr.
In possession Arduino Uno
controller Maxwell
Low —
Adequate wiring for sensor to
o online,
Wiring High Arduino, as well as internal
electronics
Arduino wiring.
shop
Access to 3D printers through Dr.
Enclosures Low Moderate Maxwell, or commercially
produced if required.
i Adequate structures for bodily
Mounting Low High - online
mounting of hardware
Soldering Low- Soldering iron present in home
In possession
Iron moderate working area.
Assorted safety equipment such
Safety as safety goggles, fire
) Low In possession o
equipment extinguishing method and

enclosed shoes.

41

Creating a timeline is extremely helpful when planning a research project and assists in
effective utilisation of time to achieve goals before the deadline. A simple timeline was
developed as a part of the initial project proposal submitted early in the project period;
however, various factors caused these time constraints to become unrealistic as problems
arose, and so it was advisable to create another Gantt chart to give a better representation

of how the project had progressed and which tasks remained to be completed. The final

Table 6 - Software and staff resources

System
Cost
Resource
Arduino
None
IDE
Analysis
software Moderate
(MATLAB)
Low —
MIDI
evaluation
testing
version is
software
free for 60
(Reaper)
days
Supervisor
Contact
N/A
and
Feedback
3.4. Timeline

Availability

Free download

In possession

Downloadable from

developer website

As often as possible,

within reason.

Comment

Software for Arduino
programming
MATLAB is to be used for
analysing data sets and
performing simulations and

calculations

A commonly used DAW, with
which I have prior experience

with music production.

Notional 21 hours of contact +
Dr. Maxwell’s time to use at his

discretion

version of the Gantt chart can be viewed in Appendix B.

42

3.5. Consequential Effects

The next aspect of this project’s methodology to cover is the assessment of consequential
effects that will arise throughout, or following the completion of the project. As an
engineering student it is important to gain an appreciation of how one’s work in various area
may have a wider effect on society and the environment. Safety, sustainability, legality and
ethics are all contenders for consideration before initiating project work to ensure that the

project falls within various guidelines.

3.5.1. Safety

To ensure the safety of all personnel involved in the development of this research project,
adequate assessment of risks and hazards needs to take place. Engineers Australia (2013)
provide a useful summary of guidelines to follow when planning a research project;
recognising that both professional engineers and students possess a duty of care to all people
in the workplace, wherever that work may be conducted. A formal risk assessment was
prepared (See Appendix C) prior to commencement of practical tasks in an attempt to

minimise risk of injury or equipment damage.

3.5.2. Sustainability

A part of the background research involved in preparing for the project was to take
environmental impacts into account. With the advent of consumer electronics, e-waste has
become a topic of much discussion amongst engineers and researchers. Electronic waste
comes in many forms and can contain highly hazardous materials such as lead, mercury,
arsenic and antimony trioxide (Clean Up Australia 2015). These substances eventually
contaminate local soil and groundwater causing a multitude of problems. In preparation for
the project, methods of mitigating contribution to the e-waste dilemma needed to be
considered. It is important that any electronics used for the purposes of the project are

disposed of carefully, if necessary.

43

Chapter 4

Design

This chapter describes the processes that were undertaken in the development of the GR
system concept. Design objectives, hardware specifications, enclosure design, software
requirements, algorithm design, data transmission and system assembly will be covered, so
that the reader may gain an appreciation of the steps taken in developing an optimal design

for the purposes of this project.

44

4.1. Design Objectives and Requirements

Before the commencement of system design, objectives and requirements needed to be

declared to ensure an end result that is capable of performing the tasks outlined in the

objectives section of Chapter. The following design objectives were developed after

conducting literature review and determining appropriate project methodology.

Reliability

Accuracy

Latency

Ergonomics

Ease of Use

Simplicity

Safety

The final version of the system should produce consistent results and should
not be prone to error. In addition, there should be little requirement for
maintenance.

The system should be able to accurately detect when a gesture has been
enacted, and should provide feedback to the user to indicate that this
recognition has been successful.

The time delay between a gestural action and the production of an output
should be sufficiently small that the user feels as though they are controlling
external systems in (almost) real time.

The wearable section of the system should be comfortable for long periods of
wear, light-weight and should be adjustable so that a performer of any size
or shape is able to make good use of it.

Ideally the system should be operable by almost anyone who possesses basic
computer skills and musical competency. This design requirements takes
system setup, interaction and troubleshooting into account.

Due to time, manufacturing and financial constraints, the aim is to have a
simple, functional system that is able to recognise between one and a handful
of gestures accurately and produce a usable MIDI output for each.

At no point during the use of the system should the wearer feel at risk of

electric shock or physical damage from hardware components.

45

4.2. Component Selection

After examining the various hardware components available during chapter 2, final decisions
needed to be made on the hardware components that would be used to build a prototype
system. The components chosen within this subsection are in no way the ‘perfect’
components for this purpose; however, adequate consideration was taken into account
regarding pricing and functionality to ensure that each of the chosen components is capable
of being combined into a fully functional system. Component optimisation is to be considered

later within this dissertation while performing system evaluation

4.2.1. Inertial Measurement Unit — MPU6050

Detection of movement was deemed to require the tracking of both acceleration and angular
velocity data in three dimensions so that the position and movement of the wearer’s wrist
may be tracked in real time. This is possible using a combination of an accelerometer and a
gyroscopic sensor. Single-axis variants of these sensors are available commercially, but would
not be suitable for tracking linear motion across multiple axes. Tri-axis accelerometers and
gyroscopes are far more suitable for such an application, where acceleration and angular
velocity in three degrees of freedom each can be tracked with ease. A combination of tri-axis
accelerometer and gyroscope provides six degrees of motion detection: X, Y and Z axis

acceleration, as well as yaw, pitch and roll velocity (Figure 7).

Figure 7 - Six Degrees of Freedom

46

The MPU6050 is a combination inertial movement sensor with a key focus on low power
requirements, low cost and high performance. The MPUG6050 consists of a 3-axis gyroscope
and a 3-axis gyroscope with an additional digital motion processor (DMP), which acts as a
preliminary signal processor and is capable of processing sensor data using ‘MotionFusion’
algorithms. DFRobot Australia created a breakout board for the MPU6050 sensor,

pictured below in Figure 8.

AUX_CL AUX_DA
Aoy .

fiog

- A

w1

& # - VIN GND SDA SCL I_NT L—:
00000 &

‘

Figure 8 - DFRobot 6 DOF sensor

This 6 DOF sensor breakout includes a low noise 3.3V regulator for supply to the MPU6050
and pull-up resistors for the I2C bus. The breakout board makes connection to a
microcontroller easy provided that the controller possesses 12C capabilities. 12C is a serial
communication protocol for a two-wire interface (SCL and SDA) developed by Philips and
is used my most major IC manufacturers for interfacing microcontrollers, memory, ADCs,

I/0O interfaces and other peripherals (12C Info 2016).

The desired data format is selected within controller program code and the MPU6050 can
be configured to produce sensor outputs across the two-wire interface in multiple forms

including raw data, quaternion and Euler values.

47

4.2.2. Processing Unit — Arduino Uno R3

Potential options for a processing unit were briefly discussed within the literature. The result
of those deliberations was the selection of the Arduino Uno as a suitable development board
for this project. The Uno pictured in Figure 9 has suitable features and processing capability
for simple on-board gesture recognition. Ease of development was a large contributing factor
in utilising this component, which was supplied by Dr. Maxwell. Much of the technical
specifications are covered within Table 1 - Arduino Comparison Table in chapter 2; however,

some of the more specific features still need to be covered.

The Uno is capable of performing transmission and reception of TTL level serial data using
digital I/O pins 0 (RX) and 1 (TX), which are connected to an ATmega8U2 USB-to-TTL
Serial chip. The board also comes with external interrupt, SPI and Twin Wire Interface
(TWI) capabilities, which will be further detailed later in the chapter. The TWI allows
simple connection of the aforementioned MPU6050 to the Uno board. Note also that the
Arduino Uno can be powered by a 9V battery due to its generous allowable input voltage
range, and in addition, the board is able to supply both 5V and 3.3V output to external
components, meaning that both the transmission unit and the sensor may be connected to

the Uno for power without requiring a separate supply

Figure 9 - Arduino Uno R3

48

4.2.3. Data Transmission — HopeRF HM-TR

This subsection details the selection of the data transmission system that transfers MIDI
commands generated by the development board wirelessly to a PC terminal. The HopeRF
HM-TR wireless data link transceiver supplied by Dr. Maxwell was determined to be the
best immediate choice of transceiver for the application due to its simple operation, ease of
availability and compatibility with the Arduino Uno. The transceivers feature high data rate

and long transmission distance, both of which are advantageous in an entertainment setting.

The HM-TR operates by means of frequency shift keying (FSK) in half duplex mode. FSK
involves the modulation of data onto a carrier waveform by altering the frequency of the
carrier over time, so that the data can be extracted at the receiver end simply by filtering
out the carrier frequency, producing the input data in its original form. The transceiver’s
standard universal asynchronous receiver-transmitter (UART) interface can be used in
combination with the UART on the Uno making communications between transceiver and

controller simple to setup and operate.

One transceiver is connected to the Arduino Uno, which receives a MIDI data stream in the
event of gesture recognition. The transceiver then modulates onto a 915 MHz carrier ready
for transmission. At the receiver, another identical transceiver is operated via a Freetronics
LeoStick, which reads received data and then outputs the data stream to the serial monitor
in the Arduino IDE. The Freetronics LeoStick is an Arduino compatible development board
approximately the size of a standard USB flash drive and has similar specifications to the

Arduino Uno.

49

4.3. Enclosure Design and Wearability

After selection of components, the next step was to decide on a suitable method of attaching
them to the wearer, as well as shielding said components from external damage. This
subsection provides details on positioning of hardware on the body in addition to the cases

that will be used to store the system hardware.

4.3.1. Hardware Positioning

The use of this system within a live entertainment setting means that many of those who
are likely to use it will be in motion frequently. This motion may be vigorous, therefore the
fastening mechanisms need to provide adequate adhesion to prevent wiring and enclosures
from detaching from their default positions and causing damage to enclosures or wearer. The
necessity for restrictive adhesion can be minimised by reducing enclosure weight; however,
based on the components selected it was unlikely that the wearable components of the system

would be bulky or of any significant weight.

Firstly, the sensing component of the system needed to be positioned on the wrist of the
wearer for recognition of simple arm gestures such as lateral and rotating arm movements.
As such, the wrist was deemed a likely position for the sensor, preferably on the upper side
to simulate the feeling of wearing a wristwatch. Wireless communication was considered for
use between the sensor and development board, but was not pursued as the requirement for
a separate power supply and transmitter for the sensor was not attractive. Instead, a simple

ribbon cable would be used for the pin connections between the sensor and the Uno (Vin,

GND, SCL, SDA and INT).

Following the positioning of the sensing component, an ideal method of attaching the
development board, transceiver and power supply to the wearer needed to be determined. It
was assumed that each of these components would be combined into a singular enclosure,
which was to be positioned on the back of the wearer as this is the least likely place for

bodily movement to influence positioning during a performance.

20

This central enclosure could then be mounted onto an elastic harness such as the GoPro
harness depicted in Figure 10, which is easily adjustable and would allow most body types

to easily wear the system.

Figure 10 - GoPro Harness

4.3.2. OpenSCAD

OpenSCAD is an open-source computer aided drawing (CAD) program oriented towards
those who are proficient in the writing of software syntax. The primary selling point of the
software is that it focuses on creating accurate computerised 3D drawings rather than
attractive graphical representations (Kintel 2016). This aspect of the software makes it useful
for the design of machine parts, or in the case of this project, models for 3D printed hardware

enclosures.

The program acts as a 3D compiler rather than an interactive modeller, allowing the user
to create complicated 3D models by forming union, differences, translations and/or rotations
between basic prism shapes such as rectangular boxes and cylinders. The simplicity of the
program means that models can be developed rapidly with knowledge of only a few
commands, thus the program was selected for use in the development of enclosures for the

sensing unit and the main system circuit.

ol

4.3.3. Wrist Brace

The wrist brace for the sensing unit needed to be designed ergonomically so that the wearer’s
wrist movements are not impeded by the enclosure. For the fastening mechanism, a simple
Velcro strap allows usage by a range of wrist diameters while still being strong enough to
hold the enclosure against the limb. For the main section of the wrist brace, a 3D CAD
model needed to be created, which may then be utilised with a 3D printer to create a physical
model of the enclosure. An overall enclosure size of approximately 40mm x 30mm was

deemed appropriate for most wrist sizes while keeping the design compact.

A 3D OpenSCAD model was developed for the wrist brace with the following features:

e Rounded wrist contact surface for shape tapering.

e Two 2.5mm slots with rounded corners for strap insertion.

e A 10mm x 2mm slot for the ribbon cable.

e An open upper side for sensor access with a cover for when the system is in use.

e Pillar structures to fit into the mounting holes of the sensor board.

OpenSCAD program code for the wrist brace can be viewed in Appendix G

Figure 11 - Sensor wrist brace

52

4.3.4. Main System Housing

The next enclosure design task was to design a housing for the main section of hardware,
which includes the development board, transmitter and power supply as well as any wiring
and routing using Vero board if necessary. The power supply used to power the entire main
section is a 9V battery, chosen for simplicity’s sake; however, a rechargeable battery system
is something to consider for further system refinement in the future. Firstly, each of the
aforementioned needed to be accurately measured, which was done using Vernier callipers.
A simple arrangement of the components situated side by side was applied and a mock-up

of a simple housing was created in OpenSCAD, visible within Figure 12 and Figure 13.

Figure 12 — Main Enclosure Top View

53

-’

By

2.1lmm Power Slot
1lmm x 9mm

USB Slot
12mm x 10.8mm

Antenna Cutout
r = 12mm

Figure 13 - Main enclosure side view

Unfortunately time was short when designing this enclosure and although it is suitable for
this research project, more optimal approaches would exist. Regardless of this fact, special
care was taken in the design of the enclosure with the intention of fabrication later in the
project period once prototyping had been completed. Special care was taken to ensure that
each component had a reasonable amount of space by concatenating an extra few millimetres
onto size measurements for each of the components. Mounting pylons were also added to
the design for securing the components that have mounting holes, which was foreseen to

negate the requirement for other adhesion methods and allow easy removal of components.

The design has final length, width and height parameters of 116mm, 104mm and 35mm
respectively, making it a reasonably sized enclosure for a performance application. Potential
suggestions for further optimisation of the enclosure include removal of the
compartmentalisation walls to allow further compaction of components, a general shape that
is better tapered to the components being used and the possibility of a soft enclosure that
would completely minimise the volumetric requirements of the chosen hardware. This
concludes the design of enclosures, which ideally were to be prototyped through additive

manufacturing.

04

4.3.5. Hardware Assembly

To ensure correct operation of hardware, planning was undertaken in order to understand
the physical connections that are necessary between each of the components. These
components can be divided into two subgroups — those that are connected to the Arduino
Uno development board, and those that are connected to the PC. From this point onwards,
these groups will be referred to as the wearable group and the terminal group. The wearable
group consists of the sensor, Arduino, RF transmitter and battery; while the terminal group

consists of the LeoStick and the RF receiver.

The first group to be assembled was the wearable group. The connection of the 6 DOF sensor
to the Arduino required a 5-wire ribbon cable so that it would be ready for wear once
enclosures had been produced. Correct wiring connections were determined by inspecting
the MPUG6050 datasheet supplied online by InvenSense. These connections are shown in
Table 7 below. The MPU6050 Vin pin requires an input voltage between 2.375 V and 3.46
V, hence it was connected to the 3.3 V output of the Arduino Uno, which is produced by an
on-board voltage regulator. As for the SDA and SCL lines that form the 12C/TWI interface,
connections were made between these pins and analog pins A4 and A5 on the Arduino,
which correspond to the Arduino’s own I2C lines. Note that third party library functions
are required when programming the Arduino in order to utilise this communications

protocol.

Table 7 - Sensor to Arduino connections

6 DOF Sensor Pin Arduino Uno Pin
Vin Regulated 3.3V supply
GND GND
SDA Analog pin A4
SCL Analog pin A5
INT Digital pin 2

95

A sensor without a suitable enclosure for performing arm movements was an unattractive
prospect and so a prototype of the wrist brace was fabricated by Dr. Maxwell using his
personal 3D printer, which although imperfect, would provide a suitable mounting medium
to provide true sensor positioning before the enclosure designs had be further refined. This
enclosure is depicted in Figure 14 and is of a prototypical nature with no lid, created purely

for testing purposes.

Figure 14 — Wrist brace prototype

With the required sensor connections to the Arduino finalised, the next step was to determine
connections for the transceiver. The HM-TR wireless data link only required connection of
four pins to the development board: Vce, GND, DTX, and DRX. The transceiver requires a
Ve supply of approximately 5 V and an electrical grounding connection, both of which were
easily connected to the relevant pins on the Arduino board. DRX and DTX are the pins
responsible for UART based serial communications and were subsequently connected to the

Arduino hardware UART on digital pins 0 and 1. The transparent nature of the transceiver

o6

allows for easy communications setup as the chip performs its own self-controlled protocol
translation, allowing for communication with the transceiver using Arduino serial functions.
As has been previously mentioned, the Arduino Uno is able to supply 3.3 V to the sensor
and 5 V to the transceiver without the requirement of an external voltage regulator. A 9 V
battery can be connected to the Arduino; however, this was not the most ideal choice of
power supply for the system. For testing purposes the 9 V battery sufficed, but a replacement
power supply for future project work is discussed in the next chapter. A battery case with a
2.1 mm jack was chosen to allow easy connection and disconnection of the battery during

prototyping.

It was predicted that once the main housing had been created, this battery case would be
eliminated and connections would be made directly to the Vin and GND along with a switch
to allow disconnection of the battery power without having to remove the battery itself.
This concluded the necessary planning for assembling the wearable group and a simple wiring
diagram was created to aid in physical assembly, which lies on the following page (See Figure
15). ‘Fritzing’ software was utilised to create the diagram as it contains 2D models of the
Arduino Uno in addition to various other components commonly used with such
development boards. Note that the sensor and transceiver components used within the
diagram are not the correct models, but still possess the same pins as the components used,

hence they were still adequate for visualisation purposes.

27

A
>
>
3
(o8
c
-
3
o

WL

~=WMd) VLIZIQ
1 [
now s ;nT

. NI 90T¥NY

® sparkfun

LSM303C VPD_T0

Breakout SDA/SBI/SDO

fritzing

Figure 15 - Wearable group wiring diagram (Produced with fritzing)

58

Following the completion of the wiring diagram, physical assembly of the components as
discussed was carried out. The ribbon cable used for the sensor required the addition of
small screw-clamp headers to the Arduino pin headers to create a solid connection. Solderless
breadboard wires were used to connect the transceiver to the Arduino as much of the Uno
programming would not require the transceiver to be connected. At this point all of the
components had been physically interfaced and were ready for software development. The

physical assembly of the wearable group electronics is presented below in Figure 16.

Figure 16 - Completed wearable group assembly

29

Following the completion of the wearable group assembly, development of the terminal group
commenced. This was a simple process and only required another transceiver be connected
to the Freetronics LeoStick. In this case the transceiver was connected to the LeoStick in
much the same way as was the case in the wearable group, however this time a small
breadboard was used to mount both components and attach the four necessary breadboard
wires (See Figure 17). Creation of an enclosure for the terminal group was considered, but
was avoided due to time constraints and was considered to be unnecessary as there would

be little threat of physical damage when plugged into a laptop USB port.

2\ \

Figure 17 - Completed terminal group assembly

60

An important design consideration to mention is the fact that the LeoStick only possesses
one hardware UART, meaning that serial communications between the board and the
transceiver would not be possible at the same time as communications between the board
and the computer USB port. This problem could have been solved by either scheduling
UART usage so that the transceiver and the USB port share usage of the hardware UART
or by utilising SoftwareSerial. SoftwareSerial is an Arduino library that contains functions
allowing the use of digital pins (other than pins 0 and 1) as a virtual UART, meaning that
the hardware UART would be fully devoted to presenting received data to the PC. Further

details on the usage of SoftwareSerial for this purpose are detailed later in this chapter.
The hardware assembly section was concluded resulting both the wearable group and the

terminal group having been assembled and in a suitably ready state for application of a GR

program and to cover transmission of generated MIDI commands over the transceiver link.

61

4.4. Software requirements and objectives

Prior to carrying out any writing of program code, software design objectives and
requirements needed to be developed to ensure system functionality corresponding with the
project objectives mentioned in Chapter 1. The software objectives and requirements were
needed to divide the intended program into sections so that a function or program element
could be devoted to each major aspect of the overall system process. The flow chart presented
below shows the significant steps involved in transforming the input, an arm movement,

into a MIDI output that is ready to be utilised by external hardware or software.

User Perception User Movement

Sensing W

Pre-processing

-
LS

ik

Feature Extraction

¢ UserFeedback |€—— Gesture Capture

MIDI Conversion

it

1

Wireless
transmission

Computer

Application

Figure 18 - GR system process flow

62

4.4.1. Operation Modes

For the GR system to be capable of remembering a gesture and recognising that gesture
when it is enacted, a minimum of two operation modes are required. A training mode, where
the user may choose a gesture to be recognised, which is then saved in system memory and
a running mode that carries out comparison of current movement data with the trained
gesture template/s and produces an output. In order to implement an algorithm based on
template matching, the training mode must be capable of storing an accurate rendition of a
desired gesture, which has a low probability of unintentional recognition and a high rate of
intentional recognition. Therefore, the training process should involve a reasonable number

of repetitions of the gesture to be trained so that a precise template can be constructed.

4.4.2. Data Acquisition

The MPU6050 provides highly useful positional data in three dimensional space, which can
be sampled at a high rate through its FIFO buffer using the Arduino Uno (Up to about 400
Hz). Sampling rate is an important aspect of data acquisition as sample rates that are too
low tend to produce unsavoury results. This sampling rate must be high enough that

reasonably fast arm movements are tracked in their entirety.

In addition, the acquired data must be in a suitable format for mathematical manipulation,
as any computations that are performed on error-ridden data only exaggerate the issue. The
trade-off that needed to be made here was between accuracy of time based movement data
and the amount of data that can be stored for computation. The compact nature of the
Arduino Uno means that there is a very limited amount of memory with which to store
movement data that requires further computation. With only 2 kB of SRAM for variable
storage, completely filling the available memory is no difficult task when using data forms
that take up many bytes per variable. Ideally 8 bit integers are used over longer data formats

such as 16 bit integers or 32 bit long integers whenever possible.

63

4.4.3. Pre-processing

Fortunately the use of the MPUG6050 as the sensor for this project negates much of the need
for pre-processing of data. Pre-processing acquired data would usually involve the use of
techniques such as low pass filtering, normalization and drift correction; however,
implementation of these techniques in code was not required as the MPU6050 performs much
of this processing before the acquired data is read by the Arduino. Hence, it was decided
that rather than performing such pre-processing, this section would only consist of forming
a sliding window of data to allow real time movement tracking, which will be discussed

further later.

4.4.4. Feature Extraction

Feature extraction aims to perform various statistical computations on incoming data in an
attempt to isolate data elements that can be used to distinguish different types of movements
from positional data. In order to carry out this process, a running average filter needed to
be applied to the data (further details within the ‘Arduino Program Creation’ section) as a
simple method of differentiating the data produced by different movements, which is in turn
used in the creation of a gesture template. The feature extraction aspect of the program
needed to be comprehensive enough to be able to recognise similar movements with a high

degree of accuracy, while using minimal amounts of processing power and memory.

4.4.5. Gesture Capture

The gesture capture section is responsible for comparing incoming movement data with a
stored template and determining whether a match exists between the two. The comparison
process needed to be performed at a high speed to ensure low latency between wearer
movements and their observation of the output. The most suitable method of comparison
for the system was deemed to be a simple threshold comparison of running average trends,

which involves comparing the current running average to a trend template by determining

64

whether the current position is within a certain distance of the trend template. This method
would require a comparison for each positional and rotational vector, and if the comparison
is returned as true for most or all of the vectors, a gesture is present and would warrant the

transmission of a MIDI command.

4.4.6. MIDI Command Transmission

It was predicted that the creation of GR program code would take an extensive period of
time, and so the requirements of the system to produce a MIDI response to a gesture needed
to be kept relatively basic. Once a gesture had been captured and confirmed, the system
would then need to determine which MIDI command to send to the PC. Ideally many
commands would be possible, with a range of different movements triggering the output of
each; however, for conceptual proofing purposes, all that would be required of this software
section is the definition of an arbitrary command, followed by its transmission to the PC.

Additional considerations included the frequency of transmission.

Based on the assumption that the vast majority of arm gestures are not usually performed
in less than one second, the Arduino would not be required to send more frequently than at
this speed. To ensure low latency between system input and output, the Arduino would need
to check more frequently than once per second to determine whether a gesture has been

recognised, and if so, send the MIDI data to the PC.

4.4.7. MIDI Command Reception

The location of the terminal group at the PC means that the receiver simply needs to check
for transceiver data repeatedly at a rate that is fast enough to keep system latency low. The
receiver then needed to be able to setup and perform serial communications compliant with

the MIDI protocol to allow the data to be utilised by external applications.

65

4.5. Arduino Program Creation

Once the software objectives and requirements had been defined, work could be commenced
on writing Arduino software that carries out each of the necessary functions. Arduino
software was separated into three program listings — The main GR program to be uploaded
to the Arduino Uno, the MIDI transmission program to be appended to the main program

once complete, and finally the MIDI reception program to be uploaded to the LeoStick.

This section covers the software functions used to achieve the design requirements. The
‘skeleton’ of the program stems from a piece of Arduino code developed by Jeff Rowberg
that demonstrates the use of I12C with the MPU6050 sensor. This code example,
‘MPU6050 DMP6.ino’, was freely accessible to the public at the time of 11 October 2016
and is likely still available at the following address:

< https://github.com/jrowberg/i2cdevlib /tree /master/Arduino/MPU6050 >

The full main program listing can be found in Appendix H.

4.5.1. Library Inclusions and Variables

The main program required the inclusion of a number of software libraries to provide
additional functionality on top of what the Arduino was already capable of achieving.
Further details on the functions contained within libraries will be described when detailing
program functions of the GR system. A list of utilised libraries is provided on the following

page.

66

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

Table 8 - Applicable Arduino libraries

Arduino Library

Description

I2Cdev.h

I12C communications library. Used to create interfacing between

the Arduino and the MPUG6050 sensor.

MPU6050 6Axis
_MotionApps20.h

MPUG6050 library. Used to setup the sensor for movement
tracking and to read positional data from FIFO buffer

Wire.h

TWI library. Only required in the event that the I2Cdev.h

library needs definitions from this header file.

elapsedMillis.h

Timing library. Useful for tracking the amount of time a section

of program takes to execute.

Electronically erasable programmable read only memory library.

EEPROM. h Used to allow more permanent storage of variables, which will
not be lost after system shutdown.
4.5.2. Initialisation

The first initialisation step of the main program is the definition of test integers

ArrayIndex, ArrayIndexDelay and TrainingCount, as well as modal definitions used

for testing — TestMode, DispMode and WindowArraySize. WindowArraySize defines

the size of the sliding window of data to be analysed by the recognition algorithm and was

selected to be 30 samples.

General variable definition follows, which defines necessary variables and containers for use

with the I2C and MPUG6050 libraries. These include the Boolean variable dmpReady,

integers for I2C communications such as mpuIntStatus, devStatus, packetSize and

fifoCount as well as orientation and motion variables for use the with DMP including a

quaternion container, vector integers for acceleration values and floating point numbers for

euler angles and yaw/pitch/roll values.

67

4.5.3. Sliding Window Tracking

Sliding window implementation necessitated the definition of many variables specific to the
sliding window. Window arrays containing 30 indices needed to be created for yaw, pitch
and roll as well as x, y and z axis accelerations. With the use of a running average in mind
for later in the program, 32 bit integers needed to be created to hold the sums of window
values for each of the degrees of freedom. 32 bits were required as each of the numbers can
potentially be in the thousands in decimal format, so a large binary representation was
necessary. Following this, 16 bit integer running average variables were created to hold
calculate averages for the window; and finally 16 bit integer arrays needed to be defined for
the storage of multiple window averages during training mode for later comparison by

recognition code.

The setup procedure for the program loop involved utilisation of I12C and MPUG6050 library
functions to initialise and ready the MPU6050 for data acquisition. This was achieved using
MPU6050 example code, which begins serial communications at a baud rate of 38400 bps
and initialises the MPU with mpu.initialise () and mpu.testConnection (). The
DMP is then loaded and configured using mpu.dmpInitialise (), and finally offsets for
each of the gyro axes and the z axis accelerometer are set. Default values for offsets were
used, which are provided within the MPU6050 datasheet. Provided there are no issues
initialising the MPU, the DMP is enabled and flagged as such, followed by determination of
expected incoming data packet size using mpu.dmpGetFIFOPacketSize (). Window
arrays are then initialised so that all 30 values of each array are equal to zero, concluding

the setup process.

The main program loop, loop () as well as the aforementioned setup procedure include a
number of prompts that are sent along the serial connection to the PC when connected using
a USB cable. These prompts are viewed using the built-in serial monitor in the Arduino
IDE. At the beginning of the main program loop, elapsedMillis is called to begin a
millisecond timer that is used to track the time taken for the program to iterate through a
single window of data, i.e. 30 samples. 12C library functions are called to check interrupt

status, and to read the FIFO buffer from the MPU in order to retrieve positional data.

68

Once FIFO data is retrieved, each of the six positional vector values are extracted and stored
into window arrays. The following code section carries out this process, in addition to

calculating the current running average of data.

// Populate yaw, pitch and roll window arrays

Window Yaw[ArrayIndex] = ypr[0] * 180/M PI;
Window Pitch[ArrayIndex] = ypr([1l] * 180/M PI;
Window Roll[ArrayIndex] = ypr[2] * 180/M PI;

// Populate window array with current accel vals

Window Accel X[ArrayIndex] = aaReal.x;
Window Accel Y[ArrayIndex] = aaReal.y;
Window Accel Z[ArrayIndex] = aaReal.z;

// Add fetched positional values to respective sum
Sum Yaw = Sum Yaw + Window Yaw[ArrayIndex];
Sum Pitch = Sum Pitch + Window Pitch[ArrayIndex];
Sum Roll = Sum Roll + Window Roll[ArrayIndex];
Sum Accel X = Sum Accel X + Window Accel X[ArrayIndex];
Sum Accel Y = Sum Accel Y + Window Accel Y[ArrayIndex];
Sum Accel Z = Sum Accel Z + Window Accel Z[ArraylIndex];

// Calculation of averages
Window Average Yaw = Sum Yaw/WindowArraySize;
Window Average Pitch = Sum Pitch/WindowArraySize;
Window Average Roll = Sum Roll/WindowArraySize;

Window Average X Sum Accel X/WindowArraySize;

Window Average Y Sum Accel Y/WindowArraySize;

Window Average Z = Sum Accel Z/WindowArraySize;

Once the running average has been calculated, each of the values are displayed depending
on the chosen display mode (DispMode), which can be set low for direct yaw, pitch, roll
and x, y and z acceleration values, or high for running averages of each. The loop iteration
is then concluded and will either stop the program, displaying elapsed run time, or will

continue to run depending on the chosen TestMode value at the beginning of the program.

69

4.5.4. Training Mode

There are three possible running modes that can be used with the program by altering the
definition of TestMode in the test variables section of program code. TestMode O acts as
a limited running mode, which will read positional values until the window array has been
filled and will then halt, waiting for user input to begin this process again. This mode was
useful in determining ideal window size and elapsed time for filling the window array.
TestMode 1 is a full running mode, where running averages are calculated continuously
and are compared to a saved gesture template stored in EEPROM. The final mode,
TestMode 2 engages training mode, where the user is able to store a desired gesture by

enacting it five times before a template is generated based on the five movements.

4.5.5. MIDI Transmission and Reception

Two programs were developed for dealing with the MIDI output required of the system, one
for transmission and one for reception. The goals for the design of the transmission program
were to select a typical MIDI command and send it across the wireless link so that it could
be accurately reproduced at the receiving end. No library functions were required for the
HM-TR transceiver due to its own data conversion and modulation capabilities. The

transmission code begins by opening serial connections at a baud rate of 9600 bits per second:

void setup ()

{
Serial.begin(9600); // Monitoring via USB

The continuous loop for the transmitter program involve a simple process of tracking elapsed
time so that the MIDI command as well as a new line are sent every second using
Serial.print (). The MIDI command to be sent was a standard ‘Note On’ command of
decimal value 144, or binary value 10010000. The full program listing for command

transmission can be viewed in Appendix H.

70

An accompanying receiver program was also created to receive the incoming command. The
LeoStick required the use of the SoftwareSerial.h library, which allowed the creation
of a virtual UART on digital pins 10 and 11 for Rx and Tx respectively. The program begins
in a similar way to the transmission program firstly by opening serial connections between
the computer USB port and the LeoStick using Serial.begin (9600), setting the data
rate to 9600 bits per second. The controller then waits for the serial connection, followed by

opening virtual serial communications with the transceiver using:

mySerial.begin (9600).

The process of data retrieval involves a looped process that first checks for serial data
availability, and if available, reads the mySerial data into an integer. A check is then
performed to determine whether the retrieved data is a digit with isDigit and if so,
appends the digit onto an output string. The output string is presented over the serial
monitor once a new line is detected, thereby showing the binary form of the MIDI command

using the following function:

Serial.println(inputstring.toInt (), BIN);

Each of the aspects of the developed Arduino code have now been covered, with further
discussion of functionality in the results and testing chapter. Unfortunately, due to the
nebulous nature of the project earlier in the research period, the functionality of the software

section is somewhat lacking, which will also be discussed in the next chapter.

71

Chapter 5

Testing and Results

This chapters aims to summarise the end-game functionality of the system design outlined
in the previous chapter. Following this, implementation issues will be detailed and analysis
of the system’s fulfilment of the project objectives will be presented. Much of this section
involves qualitative analysis of the system, with the aim being to determine the current
stage of development including the aspects that still require implementation and the

feasibility of the system as a whole.

5.1. System Function Demonstration

To gain an appreciation of the system development progress thus far, the resulting system

interface and output data is presented in the following subsections.

5.1.1. Gesture Recognition

The first system output to be demonstrated was the use of the limited tracking mode
(TestMode 0) along with the running average display mode. Software functionality still
needed to be added to allow the switching of modes ‘on the fly’, which would not only require

addition of a mode switching method in software, but also a method of interfacing with the

72

GR system without personal computer access. In its current state, the software only allows
the selection of one mode at any one time, with a requirement for program re-upload if the
user wishes to change modes. The limited tracking mode that is set to display running
average data required 51% of the 32 kB program storage space and utilised 64% of dynamic
memory for global variables, leaving the rest for use with local variables. The initial output

when opening the serial monitor is shown in below.

Initializing IZC dewvices...Testing sensocr connections.. . MPUE050 connection successful

Display mode 1 - Moving average data
Test mode 0 - Limited tracking: Number of walues to be read is egqual to window size.
This mode i1s used for determining elapsed times for wvarious dats set sizes.

Send any character to begin motion tracking:

£ >

Autoscroll Mo line ending w | |:ﬂqﬂﬂ baud

Figure 19 - Limited tracking mode initial output

The output aims to provide a reasonable serial user interface, primarily for development
purposes; however, anything much more extensive would require the use of other software

such as ‘Processing’.

73

The serial monitor window below shows a typical running average output sequence in limited
tracking mode while the sensor is at rest. The limited tracking output of 30 samples takes
approximately 1.5 seconds each time to complete tracking and it is worth noting that the
data is seemingly fairly consistent over the window period. When conducting testing with
the system in full tracking mode; however, the presence of significant yaw drift was evident
and occurred at a rate of approximately one degree per second. This drift could be remedied
either by manually decreasing the yaw value by one degree each second, however, this

method would not be as reliable as determining the root of the issue.

Send any character to begin motion tracking:

FIFO overflow!
Zv. ¥ER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 70
YER 71
YER 71
YER 71
YER 71
YER 71
YER 71
YER 71
YER 71
YER 71
YER 71
YER 71

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

Bv. HEYZ

Av.

Rv.

Rv.

By

By

By

Rv.

Rv.

B

By

By

Rv.

Rv.

Rv.

By

By

Av.

Rv.

Rv.

B

By

By

Rv.

Rv.

Rv.

B 3Z5
B 3Z5
Av. 3Z5
Rv. 3Z5

W w w w wmowm ol owm W W W W W Wl wm W W W W W w Wl

-142Z5
-1425
-14Z25
-14Z25
-142Z5
-142Z5
-142Z86
-14Z25
-l4zg
-l4z8
-142Z86
-142Z86
-l4zg
-l4zg
-l4zg
-142Z86
-142Z86
-l4zg
-l4zg
-l4zg
-14Z28
-142Z86
-142Z86
-l4zg
-l4zg
-l4zg
-142Z86
-1427
=1427
-14z27

Elapsed time for 20 elements was 1467 milliseconds

<

>

Autoscroll

No line ending vl |38400 baud W

Figure 20 - Limited tracking mode resting state

74

Issues are introduced when attempting to track a movement using the running average filter.
The monitor output in Figure 21 shows an output data stream for a twisting punch
movement, with the wrist placed against the hip palm side up and then extended to a
forward punch position by rotating the fist. The issue found here was that the running
average data took far too long to change significantly, and so the latency between performing

the gesture and seeing the resultant change in output was very high.

Send any character to begin motion tracking:

FIFQ overflow!

Zv. YER 114 -53
Y¥ER 114 -535
¥ER 114 -53
Y¥ER 114 -535
¥ER 114 -53
Y¥ER 114 -53
¥ER 114 -53

[y

By 4534

Bw. 4332

Doy 4530

Bw. 4388

Doy 4575 -125%

B 49a8 -1258

Doy 451s -1227
¥ER -55 B 4854 -1157
¥PR 105 -55 B 4804 -10585
¥ER -55 B 4888 —-1040
¥PR 103 -58 B 4542 -1004
¥PR 100 -58 B 4350 —-385
¥PR 87 -54 Lw_ H¥Z 40898 -371
¥PR 54 B 3851 —-5348
¥PR 51 -43 Lw_ H¥Z 3567 -331
¥PR B3 —48 v, H¥ZI 3271 -317
¥PR B& -43 Lw_. H¥Z Z961 -314
¥PR B4 —40 v, H¥ZI Zae0 —305
¥PR B2 -37 v H¥Z Z367 -B85
¥PR 20 v, H¥ZI Z078 —-85Z
¥PR 78 v H¥Z 1737 -81z2
¥PR 75 Rwv. H¥ZI 1521 -787
¥PR 73 v H¥Z 1247 -723
¥PR 71 v, K¥ZI 572 -&aT7e
¥PR &3 Lwv_ X¥Z 700 —-6Z8
¥PR &8 Rw. KY¥YZI 431 -581
¥PR &4 Lw_. H¥Z 164 -534
¥PR &2 v, HY¥Z -101 —487
¥PR 53 Lw_. H¥Z -364 -437
¥PR 57 v, HY¥ZI -624 —388

Elapsed time for 30 elements was 1462 milliseconds

{ >

o
m oo
[
=]

m
KR
m

Ra

[

o e

[y
B3 K R R ORY R KD R R
a k)R RD R RYORY R RS

()

(L]

=]

[y

2
Z
2

RaoR) L W e Ny @y -] 00 D0 WD

Autoscroll No line ending v | |35400 baud

Figure 21 - Limited tracking mode twisting punch data

75

As for the training mode, the interface is much the same; however, rather than simply
prompting the user to begin movement tracking, an explanation of the training procedure is
provided with a prompt to begin the countdown before performing the gesture. The
countdown counts down from 3, taking four seconds to reach ‘Go!’, which triggers movement
tracking for one window period (approximately 1.5 s) and then saves the resultant trend.

Another prompt is then provided, followed by a countdown for the next practice run.

Initializing IZC devices...Testing sensor connections. . MPUS050 connection successful

Display mode 1 - Moving average data

Test mode Z — Training: Addition of a new gesture
e £
Gesture training mode has been initiated - please note that only one gesture may be recorded

at this time. Perform the desired movement immediately after the countdown.
This process will occcur five times, then the gesture model will ke czalculated and recorded.

Send any character to begin gesture training!

Figure 22 - Training mode initial output

The intention was then to use these window trends to produce a final gesture trend, which
could then be used for real time matching using correlation. Time constraints did not allow
for this implementation, and as such, no actual gesture recognition is able to take place
within the system; however, implementation of these features would not require a significant
amount of time on top of the program code that had already been produced to complete this

dissertation.

76

A major issue with the training mode program is the lack of memory present for extensive
computations. Upon compilation of the training mode it was evident that the storage
memory requirements for all of the necessary variables was becoming an issue. The compiler
noted that 75% of dynamic needed to be allocated for global variables, leaving only a small
amount to local variables. This huge amount of global variable allocation suggests that
SRAM usage could have been substantially reduced if more care was taken in defining
variables locally rather than globally, so that largely unused variables are replaced when

necessary.

Another cause of this memory issue was the fact that string printed on the serial data line
are stored in SRAM, unless specified otherwise by enclosing the quoted string within
brackets and placing a leading ‘F’. This function causes the string to be stored within flash
memory rather than SRAM and helped to reduce the amount of SRAM wastage. SRAM
expansion is possible using various SRAM chips such as the 23K256, which can interface

with the Arduino via Serial Peripheral Interface (SPI) protocol.

5.1.2. Wireless Link Testing

Testing of the wireless data link was a simple process and worked as intended. The
transmission and reception programs needed to be uploaded to the Arduino Uno and the
Freetronics LeoStick respectively. The LeoStick would then remain connected to the PC and
the Uno would be disconnected and attached to the 9 V battery. Transmission began
automatically after the Arduino’s bootloader sequence and was confirmed by a periodic red
LED flash on the transmitter every second. The receiver flashed green at the same rate
showing that a connection had been made and that data would be visible on the IDE serial

monitor.

The correct transmission value of 144 was confirmed by observing the serial monitor while
the Arduino was connected to the PC. Serial data was sent at a baud rate of 9600 bits per
second, with the correct output appearing in the monitor each second (Figure 23). Reception
was also observed to be correct, with the monitor displaying a binary value of 10010000

each second (Figure 24).

7

Autoscroll

Figure 23 - MIDI command transmission in decimal format

Initialising MIDI commsand receiver system! ~
Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 100

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000

Command: 10010000 v

[¥] Autoscrol Nolineending v |9600baud v

Figure 24 - MIDI command reception shown through Arduino serial monitor

78

5.2. Design Issues and System Feasibility

The last stage of the results and testing phase of the project was to assess the current state
of the conceived design in relation to project and design objectives and to determine the

issues that impeded project efficacy.

5.2.1. Current Design Feasibility

In its current state, the system is somewhat lacking due to various design issues. The
intended use of the GR system within a performance environment would require would
require alterations to the structure of the system to improve its capability of real time
external system control. The system design is able to acquire suitable movement data such
that there were no issues regarding the sensing system, which has potential that exceeds the

abilities of the associated software created in the research project.

The system’s ability to process movement data and extract mathematical meaning from that
data is minimal when compared to GR systems that utilise much more powerful recognition
algorithms and hardware, and could be improved significantly by applying additional
computations to determine movement vectors and correlation for vector matching. In
addition, reconsideration of the development board used for the project would allow an

increase in system complexity.

5.2.2. Design Issue Evaluation

The GR system’s abilities are impeded by design issues that were not evident until design
had already taken place, and thus it is necessary to detail those issues so that they may be

taken into account when conducting future work on the system.

The first issue to mention is that of the battery used to supply power to the wearable system.

Notably power drain was observed late in the project when diagnosing a malfunctioning

79

transceiver that was attached to the Arduino Uno. Monitoring of the battery voltage during
system operation made it apparent that the wearable system was draining the battery at a
rate of approximately 0.01 V every few seconds. Problems were observed with functionality
once the battery voltage level dropped to roughly 6.5 V. Hence, a 9 V battery connected to
the Arduino would not hold a usable voltage for long enough to endure the duration of a
performance that lasts more than a few minutes. While being convenient for use with the
Arduino board utilised for this project due to their fast drain were definitely a mitigating

factor in the usability of the system.

According to Cybergibbons (2013), the suitability of a 9 V for powering Arduino boards is
a common misconception and they are often not recommended. The main reason for this
being the inefficiency of the on-board linear voltage regulator, which has a reputation for
high power consumption. The use of an external switch-mode voltage regulator circuit to
supply the necessary 5 V operating voltage of the Arduino may have allowed extended
battery life. The other obvious choice for improving battery life is to opt for a higher capacity

battery.

Another issue affecting the ability of the system to fulfil design requirements is that of its
minimal algorithmic complexity. Analysis of running average trends was theoretically
feasible for simple feature extraction during the design process; however, modern commercial
gesture recognition systems such as those investigated within the literature review chapter
have multiple significant layers of mathematical complexity, using probability based
methods such as hidden markov models for gesture prediction, data correlation for
comparison of movement data as well as peak detection, calculation of standard deviation

and gestural velocity to further parametrise the movements.

80

Chapter 6

Conclusions and Further Work

6.1. Conclusions

The aim of this research project was to investigate the design of a novel GR system using
off-the-shelf components, which would create a medium for the augmentation of
entertainment oriented performances such as live music shows and theatre productions with
an emphasis placed on system reliability, functionality and easy setup for a low price point.
The project work involved resulted in the creation of a highly functional hardware system

with accompanying enclosure designs and simple gesture recognition software.

Early stages of the project involved research into the current industry state of gesture
recognition in terms of both hardware and software elements. Methods of bodily movement
tracking, gesture recognition algorithms, MIDI interfacing, data transmission and additive
manufacturing were investigated in depth to gain an appreciation of typical system elements.
Review of commercial gesture recognition systems, as well as those in research and
development was conducted to assist in defining the scope of the project and to develop

realistic project goals.

81

Research methodology was developed for the project was developed by considering
qualitative and quantitative research techniques and a project task plan was developed to
ensure that all important aspects of engineering design were covered. A timeline was then
created to assist in the time keeping aspects of the project and to provide guidelines for the
importance of each project section. Assessment of consequential effects involved taking
potential safety, ethics and sustainability issues into account to minimise any adverse
circumstances that may have arisen over the course of the project, or following its

completion.

System design involved selection of appropriate hardware components, design of hardware
enclosures and wearable mounting gear, and finally the development of suitable software for
performing gesture recognition and creating a wirelessly transmittable instruction based on
the MIDI protocol. The resulting hardware system consisted of an acceleration and rotational
velocity sensor, Arduino compatible development boards and radio frequency transceivers

that complied with hardware requirements.

Enclosure design involved using OpenSCAD software to design enclosures tailored to the
chosen hardware. A prototype of the sensor wrist brace was created for development;
however, the main enclosure design remained simply that due to time constraints and

nuances involved in the 3D printing process.

An attempt was made at creating running average based gesture recognition software that
could be self-contained within the Arduino Uno board, but proved to require further
complexity to be able to perform the functions that were outlined in the software
requirements. The last design step involved producing software that would allow

transmission of a MIDI instruction from the wearable system to the PC situated receiver.

The functionality of the system was reviewed after testing and suggestions were made
regarding remedies to design issues that arose late in the piece. The current state of the
design was also evaluated. In summary, a simple system was created that met, or at least

partially met each of the project objectives outlined at the beginning of the project.

82

6.2. The Learning Experience

The most important end result of this project’s completion has been a vast attainment of
knowledge that, for the most part, had not been presented within courses completed as part
of the Bachelor of Engineering program. This knowledge gained throughout the project

included, but was not limited to:

e Arduino based hardware and software development.

e Inertial measurement based data acquisition systems.

e Practical usage of radio frequency communications hardware.

e 3D CAD design for parts produced through additive manufacturing.

e Gesture recognition techniques and algorithms

In choosing to carry out my own research project I brought it upon myself to create a
challenge in the sense of learning to work with multiple types of technology that I had not
previously worked with in the slightest. In doing so, I have gained extremely advantageous
knowledge of the aforementioned subject areas, which are of great interest to me and are

becoming increasingly relevant.

The vast majority of projects offered by the faculty did not feel suitable for my interests as
I wished to incorporate research interests that I am particularly passionate about into my
project work, such as the use of electronics to increase the fluidity of human-machine

interaction, in addition to incorporating my hobby-based interest in music production.

This project has been an interesting journey and although much work was put into creating
the GR system, the outcome is lacklustre to some extent. Due to this fact, I will endeavour
to continue my development of the GR system following the completion of the research
project, so that I may eventually produce a system capable of adding personalisation and an

interesting new medium with which to express my musical interests.

83

6.3. Future Work and Potential Uses

The completion of this research project has revealed that further design of new system
elements and re-design of certain existing elements would be fruitful in attaining an end

product that has expansive practical uses.

Future work on this current system would include:

= Re-structuring of program code to improve the system’s overall efficiency and to
create a more modular approach to the problem.

= The creation of computer software that would allow easy interfacing

= (Consideration of a controller that is more capable in relation to processing power
and available memory without increasing physical footprint and without sacrificing
the low cost nature of the system.

= Selection of a more adequate power supply for the wearable system with a higher
capacity and stable voltage and current levels.

= (Consideration of alternate recognition algorithms to provide a user with more options

for applications.

Potential uses for the system in a more refined state and potentially with other

modifications include:

= Applying the system to a performance as a GR based MIDI controller with various
movements triggering virtual instrument samples at various velocities, or even the
selection and control of audio filters.

= Using the system to control DMX stage lighting through performer movements,
reducing the need for manual lighting control.

= Using the system to control other technical aspects of a performance such as mixer

channel gain, in-ear monitor volume and/or instrument volume.

84

References

Anderton, C 1986, MIDI for Musicians, Amsco Publications, New York.

Azad, R, Azad, B, Khalifa, NB & Jamali, S 2014, 'Real-time Human-computer Interaction
Based on Face and Hand Gesture Recognition', International Journal in Foundations of

Computer Science & Technology (IJFCST), vol 4, no. 4, pp. 37-48.

Benbasat, A & Paradiso, J 2001, 'An Inertial Measurement Framework for Gesture
Recognition and Applications', Gesture and Sign Language in Human-machine Interaction,

pp. 9-20.

Benbasat, A & Paradiso, J 2001, 'Compact, Configurable Inertial Gesture Recognition',
Ezxtended Abstracts on Human Factors in Computing Systems, pp. 183-184.

Berman, S & Stern, H 2012, 'Sensors for Gesture Recognition Systems', IEEFE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol 42, no. 3, pp.
277-290.

Borrego, M, Douglas, E & Amelink, C 2009, 'Quantitative, Qualitative, and Mixed Research
Methods in Engineering Education', Journal of Engineering Education, vol 98, no. 1, pp. 53-
66.

Camurri, A, Mazzarino, B, Ricchetti, M, Timmers, R & Volpe, G 2003, 'Multimodal Analysis

of Expressive Gesture in Music and Dance Performances', International Gesture Workshop,

Springer Publishing.

85

Chinmaya, KT, Amal, S, Aswath, S & Ganesha, U 2014, 'Human Gesture Recognition for
Real-Time Control of Humanoid Robot', International Journal of Advances in Mechanical

& Automobile Engineering (IJAMAE), vol 1, no. 1, pp. 96-100.

Clay, A, Couture, N, Nigay, L, De La Riviere, J-B, Martin, J-C, Courgeon, M, Desainte-
Catherine, M, Orvain, E, Girondel, V & Domenger, G 2012, 'Interactions and Systems for

Augmenting a Live Dance Performance', International Symposium on Mized and Augmented

Reality (ISMAR-AMH), pp. 29-38.

CyberGibbons 2013, Arduino misconceptions 6: a 9V battery is a good power source, viewed

October 2016, <cybergibbons.com /uncategorized /arduino-misconceptions-6-a-9v-battery-is-

a-good-power-source/>.

Fang, Y, Wang, K, Cheng, J & Lu, H 2007, 'A Real-Time Hand Gesture Recognition
Method', 2007 IEEE International Conference on Multimedia and Expo, pp. 995-998.

Gupta, N, Singh, R & Bhatia, S 2014, 'Hand Gesture Recognition using Ultrasonic Sensor
and ATmegal28 Microcontroller', International Journal of Research in Engineering and

Technology (IJRET), vol 3, no. 6.

12C Info 2016, I2C Info - I2C Bus, Interface and Protocol, viewed Sep 2016,
<http://i2¢c.info>.

Jessop, EN 2010, 'A Gestural Media Framework: Tools for Expressive Gesture Recognition
Method', Massachusetts Institute of Technology.

Kintel, M 2016, About OpenSCAD, viewed Sep 2016,

<http://www.openscad.org/about.html>.

Kumar, AEA 2010, 'Human Computer Interface Using EMG Signals: Hand Gesture Based

Manipulator Control', Amrita School of Engineering, Coimbatore.

86

cybergibbons.com/uncategorized/arduino-misconceptions-6-a-9v-battery-is-a-good-power-source/
cybergibbons.com/uncategorized/arduino-misconceptions-6-a-9v-battery-is-a-good-power-source/
http://i2c.info/
http://www.openscad.org/about.html

LaViola, J 1999, 'A Survey of Hand Posture and Gesture Recognition Techniques and

Technology', Department of Computer Science, Brown University, Rhode Island.

Leroi-Gourhan, A 1993, Gesture and Speech, MIT Press.

Liu, J, Pan, Z & Li, X 2010, 'An Accelerometer-based Gesture Recognition Algorithm and
its Application for 3D Interaction', Comput. Sci. Inf. Syst., vol 7, no. 1, pp. 177-188.

Lyons, KEA 2007, 'GART: The Gesture and Activity Recognition Toolkit', Springer
Publishing, USA.

Market Reserach Man, LLC. 2015, Quantitative vs. Qualitative Research: What's the

Difference?, viewed July 2016, <http://www.mymarketresearchmethods.com/quantitative-

vs-qualitative-research-whats-the-difference/>.

Myers, BA 1998, 'A Brief History of Human-machine Interaction Technology', Interactions,
vol 5, no. 2, pp. 44-54.

Nallaperumal, K 2013, Engineering Research Methodology A Computer Science and

Engineering and Information and Communication Technologies Perspective.

Parab, PEA 2014, 'Hand Gesture Recognition Using Microcontroller & Flex Sensor',
International Journal of Scientific Research and Education, vol 2, no. 3, pp. 518-522.

Patel, B, Shah, V & Kshirsagar, R 2011, 'Microcontroller Based Gesture Recognition System
for the Handicap People', Proceedings of Journal of Engineering Research and Studies,

Surat, India, 2011.
Predko, M 1998, Handbook of Microcontrollers, McGraw-Hill, New York, USA.

Simmonds, A 1997, Data Communications and Transmission Principles, MacMillan Press

Ltd, Great Britain.

87

http://www.mymarketresearchmethods.com/quantitative-vs-qualitative-research-whats-the-difference/
http://www.mymarketresearchmethods.com/quantitative-vs-qualitative-research-whats-the-difference/

Sjuve, E 2008, 'Gestures, Interfaces and Other Secrets of the Stage', in Transdisciplinary
Digital Art. Sound, Vision and the New Screen, Springer Publishing, USA.

Starner, T, Weaver, J & Pentland, A 1998, 'Real-time American Sign Language Recognition
Using Desk and Wearable Computer Based Video', IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol 20, no. 12, pp. 1371-1375.

Statista Inc. 2016, Number of smartphone users worldwide from 2014 to 2019 (in millions),

viewed 15 June 2016, <http://www.statista.com/statistics/330695/number-of-smartphone-

users-worldwide/>.

Suhas, S & Dileep, MK 2015, 'Gesture Controlled User Interface Using Inertial Measurement

Unit', International Journal of Engineering Research and Technology, vol 4, no. 5.

Wheeler, KR, Chang, MH & Knuth, KH 2006, 'Gesture-based Control and EMG
Decomposition', IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol 36, no. 4, pp. 503-514.

Wikipedia, TFE 2016, Coriolis force, viewed July 2016,

<https://en.wikipedia.org /wiki/Coriolis force>.

Xu, R, Zhou, S & Wen, L 2012, 'MEMS Accelerometer Based Nonspecific-user Hand Gesture
Recognition', IEEFE Sensors Journal, vol 12, no. 5, pp. 1166-1173.

88

http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://en.wikipedia.org/wiki/Coriolis_force

Appendix A

Project Specification

89

ENG4111/4112 Research Project

Project Specification
For: Sathya Smith
Title: Utilisation of wearable actuators and gesture recognition to
augment live stage performances
Major: Electrical/Electronic Engineering
Supervisors: Andrew Maxwell
Enrolment: ENG4111 - ONC 51, 2016
ENG4112 — ONC 52, 2016
Project Aim: To develop an efficient and reliable system for recognising

gestures created by the human body, with the aim of
determining the feasibility of using such a system as a tool in
live stage performances.

Programme: Issue B, 16 March 2016

1.

Review existing gesture control systems, as well as systems used to
control vanous elements of live stage performance.

. Research relevant data logging and gesture capture methods and

software.

. Research and select suitable microcontroller/s, WiFi/Radio transmission

module/s and sensors to be potentizally used in the physical wearable
sensing system design.

. Prepare a suggested design for the physical wearable sensing system to

be suitable for interfacing with the computer-based system.

. Prepare a suggested design for the PC based system implementing a

gesture capture method for basic performance gestures.

. Investigate methods of increasing the reliability of captured gesture data.

. Investigate and implement methods of outputting gestures as MIDI

commands.

If time and resources permit:

8.

Produce a simple plugin to allow the system to be used in a digital audio
workstation and demonstrate potential uses.

90

Appendix B

Project Timeline

91

13082015

Smith_S_Maxwell_Timeline

Background Reserach &
Develop understanding of problem
Seek literature
Conduct literature review

Develop project methodology

Complete preliminary report

Hardware Design
Consult additional hardware
Decide on components to be used
Qwutline specifications and plan for

Evaluate efficacy of chosen

Begin designing device enclosures.

Software Design
Develop general model of system
Qwtline real-time data analysis

Develop algorthmic plan for GRS

Build & Prototyping
Conduct hardware assembly
Print enclosures and fit hardware
Conduct initial sensor testing
Implement GR program
Conduct recognition testing
Re-evaluate design efficacy

Re-design elements if required

Results & Design evaluation
Analyse results of testing in
Prepare results to present in

Discuss results

Smith 5 Maowell_Timaline | Teamd&ani

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

JU0 DUbouoD 0o ooooo oooo

Start

Mar 8, 2016
Mar 15, 2016
Mar 29, 2016
Apr 21, 2016

May 12, 20186

Start

May 25, 2018
Jun 2, 2016
Jun 17, 2016
Jun 24, 2016

Jul 1, 2016

Start
Jul 12, 20168
Jul 18, 2016

Jul 28, 2016

Start
Jul 12, 20186
Jul 19, 20186
Jul 26, 2016
Jul 30, 2016
Aug 20, 2016
Aug 27,2016

Aug 27, 2016

Start
Sep 4, 2016
Sep 20, 2016

Sep 27, 2016

Due

Mar 15, 20186
Mar 28, 2016
Apr 21, 2016
May 12, 2018

May 25, 2016

Due

Jun 3, 2016
Jun 17, 2016
Jun 24, 2016
Jul 1, 2018

Jul 12, 2018

Due
Jul 19, 2018
Jul 26, 2018

Aug 15, 2016

Due
Jul 18, 2016
Jul 26, 2016
Jul 30, 2016
Aug 20, 2118
Aug 27, 2118
Sep 4, 2016

Oect 1, 2016

Due
Sep 20, 2016
Sep 27, 2016

Oct 1, 2016

A BEE ANt COM/GEntt St = 757 T P = 757 T T ALEEr = SCUEOM = &Compiany=-&hite_ completet-talsasste fllter-&color filter-

[\

Assigned

Assigned

Assigned

Assigned

Assigned

13092016

Documentation
Dissertation write-up
Partial dissertation draft due

Final dissertation due

Smith_ S Maowell_Timaline | Team Gantt

0%
0%
0%

0%

JUL

93

Start
Aug 15, 2016
Sep 7, 2016

Oct 13, 2016

Due
QOct 13, 2016
Sep 7, 2016

Oct 13, 2016

Assigned

Appendix C

Risk Assessment

94

Identified
Hazard

Significance of risk

Table 9 - Project Risk Assessment

Likelihood of exposure

Consequences

Control measures

Risk of
electric shock
from power

supplies

Risk of
damage to
electronic

equipment

Risk of eye

strain

High — 240V AC
mains electrocution
can cause extensive
bodily damage and
can be potentially
fatal.

Moderate — damage
to project equipment
would extend time
required for

completion

Moderate — Much of
the project requires
significant computer

usage

Very low - the only power
supplies to be used was a
9V battery and a laptop

charger.

Moderate — A great deal
of handling of equipment
is required throughout the

project

High — Looking at
computer screens for
extended periods of time

while word processing etc.

95

Potential for severe
bodily damage in the
event of shock from

mains supply.

Damage to equipment
required for project
completion, which would

need replacing.

Eye fatigue or soreness
as well as the possibility
of headaches or blurred

vision

Ensure caution is taken when
connecting the laptop charger

to 240V mains supply.

Double check when
connecting power to a piece
of equipment and make sure
all instructions for use are

followed.

Take regular breaks when
working with screens to allow

eyes to readjust

Appendix D

Component Datasheets

96

D.1. ATMega328 Datasheet (page 1)

Features
* High Performance, Low Powsr AVR® 8-Bit Microcontroller

» Advanced RISC Architecture
— 131 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers A mEl

~ Fully Static Operation
— Up to 20 MIPS Throughput at 20 MHz I
— On-chip 2-cycle Multiplier
: Hm&fmmx B:::nf In-System Salf:ruugm Flash
- PrOgam memaory . &
Tmegad8PA/BSPAHEEPAMZER) -
- gﬁ&mmmﬂx Bytes EEPROM {ATmegadBPA/BEPAHGEPA/IZER) 8-bit Avﬂ
— 512 KH K/2K Bytes Internal SRAM (ATmegadSPA/BEPAH 6EPAI2ER) i
- Writa/Erase Cycles: 10,000 Fl?alu"ltal,ﬂm EEPROM, Microcontroller
 Optional Bout Gt Soction with Mipenderd Lock Eits with 4/8/16/32K
In-System Programmi On-chip Boot Progr
True Road Whie Wrte Oparation - Bytes In-System
- ramming Lock for Software Securi
« Poriphesel Foatunes = Securty Programmable
— Two 8-bit Timer'Counters with Separate Prescaler and Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Caplure Flash
Mode
— Real Time Counter with Separate Oscillator
— Six PWM Channals
— 8-channel 10-bit ADC in TQFP and QFNMLF package ATmega.‘.‘lB PA
- B-:rwml 10-bit ADC in PDIP Package
Pllgmrrnd:h Serial USART AT"’IEQHBB PA
— Master/Slave SPI Serial Interface i ATITIEQEI" 68PA
- i 2-wire Serial Interface (Phili ibile
- Wmnmhh mmmm Timer mﬁs-apum“ Dn-dimmrﬂsd]lmr ATmega328P
- On-chip Analog Comparator
- Intermupt and Wake-up on Fin Change
= Special Microcontroller Features
- Power-on Reset and Programmable Browm-out Detection
— Internal Calibrated Oscillator
— External and Internal Intermupt Sources
- Six Sleep Modes: kdle, ADC Moise Reduction, Power-save, Power-down, Standby,
and Extended Standby
= 10 and Packages

-3 mable VO Lines
BB-::%STJMT(FF,!LMDFMHLFmdSZMMF Summary

Operating Voltage:
-18- Emmnmmmmmm

= Speed Grade:
- 0-20 MHz @ 1.8-5.5V
* Low Power Consumption at 1 MHz, 1.8Y, 25°C for ATmegadBPABEPA/MGBPASI2EP:
- Active Mode: 0.2 mA
- Power-down Mode: 0.1 pA
- Power-save Mode: 0.75 pA (Including 32 kHz ATC)

Rav. 8161 CE-AVR-05" 00

97

D.2.

MPUG6050 Pin Descriptions

InvenSense

MPU-6000/MPU-6050 Product Specification

Rewvision: 3.4
Release Dabe: 08192013

7 Applications Information
741 Pin Out and Signal Description

10 XN

[~]
B
= I
Arnoead El

OFK Package
Dd-pin, dmim 3 &nm & Ldmn

mlzl
.I.NIE'

Pin Mumber :‘:‘ ﬁ Pl Mams PIn Description
1 ¥ ¥ CLKIN Optional extemnal reference clock Input. Connact to GND H unused.
5 ¥ ¥ ALE_DA, Iz master serlal dats, for connecting fo extemal sensors
7 ¥ ¥ ALX_CL I°C Mastar seral ciock. Tor connecting to extemal s5ensors
E ¥ ics 5P| chip seliact (D-SP1 mode)
8 ¥ VLOGIC Digital 0 supgly voitage
e ¥ ADD ! SDO FC Siave Anaress LSE (ADD) SPI senal data output (SD0)
E ¥ ADD T Siave Address LSE (ADD)
10 ¥ ¥ REGOUT Reguiator filter capachior connaction
11 ¥ ¥ FEYNC Frame synchionization dighal Input. Connect to GND I unused.
12 ¥ ¥ INT Intesrupt digital output (iobam poée or ppen-drain}
13 ¥ ¥ VDD Power supply voltage and Digtal 1O supply voitage
16 ¥ ¥ GND Power SUpply ground
19, ¥ ¥ RESW Reserved. Do not connect
20 ¥ ¥ CROUT Change pump capacior connection
22 ¥ ¥ RESW Reserved. [0 not conmect
23 ¥ SCL JSCLK F°C senlal ciock (SCL); SPI senal clock (SCLK)
23 ¥ SCL PG senal ciock (SCL)
24 ¥ ENER] F'C selal data (SDA), SPI serial data input (SO1)
24 S0A I'C sena data [SDA)
2-135'- “1-5?-1 1?‘- ¥ HC Mot Intemally connected. May be usad for PCE frace rouing.
Top Wiew Top View
: . 3 g 173
ciicgd ppd8dd
EEEaED PTEEERTE
cum| v | @ [e]ee o1 | w BE
[e =E]
L H - LB Lo [| LA
:l MPU-6000 |: :l MPU-6030 E
o K [=]= wel4] (=]ne
=] 3 S]
o on 7] 0 e ry 5]

GFN Pachage
2d-pin, dmim 1 dmm @0 San Padarity ol

21 of 52

98

Document Mumber PE-MPU-E000A-00

Ormstation of Asas of Senaitheity sad
Rolation

D.3. HopeRF HM-TR Datasheet (page 1)

HOPE RF HM-TR

HM-TR Transparent Wireless Data Link Module

1. General

HM-TR series transparent wireless data link module is developed by Hope
microelectronics Co. Lid, dedicated for applications that needs wireless data transmission.
It features high data rate, longer transmission distance. The communication protocol is
seif controlled and completely transparent to user interface. The module can be
embedded to your current design so that wireless communication can be set up easily.

2. Features
FSK technology, half duplex mode, robust to interference

=

2. ISM band, no need to apply frequency usage license

3. Operation frequency can be configured and can be used in FDMA applications

4. Transmitting frequency deviation and receiver bandwidth can be selected.

5. Protocol translation is self controlled, easy to use.

6. Data rate can be select from a wide range.

7. Provide ENABLE pin to control duty-cycle to satisfy different application requirements

B. High sensitivity. long transmission range.

9. Standard UART interface, TTL or RS232 logic level selectable

10. Very reliable, small size, easier mounting.

11. Mo tuning in producing

3. Application

1.Remaotecontrol,remote measurement system 5. Data collection
2. Wireless metering 6. IT home appliance
3. Access control 7. Smart house products
4. |dentity dizcrimination 8. Baby monitoring

4. Mechanical appearance

HM-TRI-232 HM-TROYGOLTTL
Tel: +B6-T55-82073806 Fax: +B6-755-82073550 E-mail: mlescehoperfcom ttp:iwwwhopericom

99

D 4.

Freetronics LeoStick Specifications

MCU Type
Orperating
Woltage
MCU Clock
Spesd

Input Yoltage

Digital 110
pins

PN Cutput

Pins
Anslog Input
Pins
Analog
Resolution
Current Per
110 Pin
Total Current
For All 110
Pins
Current For
3.3 Output

Flash Memory

SRAM,
EEPROM

Sernal

SPI [Serial

Perigheral
Irmterface)

[2C [=aka TW,
Tweo Wire
Irterface)

Crther

Microcontroller

Atmel ATmegad2ud

i

15 MH=z
LeoStick
B DC via USE port or "BV header

14 {5 provide PVWM output)

3, 58,8 8 10and 11 V2.0), 3, 5 8, 10 and 11 (eardier models, V1.0)

5 (analog input pins also support digital 110,
giwing 20 digital 110 total if required)

10 bits, 0-1023 at 5 AREF is approx 0.00488Y, 4.88Bm\ per step

40 prA. prisccinnum
200mA miscginnunm

B0mmA nnescinmum

Memory

32 KB Flash Memaory, of which approscimately 2 KB is used by the
bootloader

25 KB SRAM, 1 KB EEPROM

Communications

1 x hardware USART (Rx=DJ, TX=0D1)

On six-pin ICSP header (MISO=1, SCK=3, MOSI=4, see schematic
for layout.)

12C ska TWI (Two Wire Interface) (SDA=D2, SCL=D3.)

Imtegrated ISE programming and communication port. Many other
one-wire, multFwire, LCD and expansion devices supported by free
code and libraries

100

Appendix E

MIDI Summary Table

101

MIDI 1.0 Specification Message Summary (Sourced from The MIDI Association)

Status Data Byte(s) Description
D7----DO D7----DO
Channel Voice Messages [nnnn = 0-15 (MIDI Channel Number 1-16)]
1000nnnn Okkkkkkk Note Off event. This message is sent when a note is released (ended). (kkkkkkk)
Ovvvvvvy is the key (note) number. (vwvvvwv) is the velocity.
1001nnnn Okkkkkkk Note On event. This message is sent when a note is depressed (start). (kkkkkkk)
Ovvvvvwy is the key (note) number. (vwvvvwv) is the velocity.
1010nnnn Okkkkkkk Polyphonic Key Pressure (Aftertouch). This message is most often sent by
Ovvvvvvy pressing down on the key after it "bottoms out". (kkkkkkk) is the key (note)
number. (VWvvvwv) is the pressure value.
1011nnnn Occccececc Control Change. This message is sent when a controller value changes.
Ovvvvvwy Controllers include devices such as pedals and levers. Controller numbers 120-
127 are reserved as "Channel Mode Messages" (below). (cccccec) is the
controller number (0-119). (vwvvvwv) is the controller value (0-127).
1100nnnn Oppppppp Program Change. This message sent when the patch number changes. (ppppppp)
is the new program number.
1101nnnn Ovvvvvvv Channel Pressure (After-touch). This message is most often sent by pressing
down onthe key after it "bottoms out". This message is different from polyphonic
after-touch. Use this message to send the single greatest pressure value (of all the
current depressed keys). (vvvvvwv) is the pressure value.
1110nnnn ottt Pitch Bend Change. Ommmmmmm This message is sent to indicate a change in
Ommmmmmm the pitch bender (wheel or lever, typically). The pitch bender is measured by a
fourteen bit value. Center (no pitch change) is 2000H. Sensitivity is a function of
the transmitter. (IllIIl) are the least significant 7 bits. (mmmmmm) are the most
significant 7 bits.

Channel Mode Messages (See also Control Change, above)

102

1011nnnn

Occccccce

Ovvvvvvv

Channel Mode Messages. This the same code as the Control Change (above), but
implements Mode control and special message by using reserved controller

numbers 120-127. The commands are:

All Sound Off. When All Sound Off is received all oscillators will turn off, and
their volume envelopes are set to zero as soon as possible. ¢ = 120, v = 0: All

Sound Off

Reset All Controllers. When Reset All Controllers is received, all controller
values are reset to their default values. (See specific Recommended Practices for
defaults).

¢ =121, v = x: Value must only be zero unless otherwise allowed in a specific

Recommended Practice.

Local Control. When Local Control is Off, all devices on a given channel will
respond only to data received over MIDI. Played data, etc. will be ignored. Local
Control On restores the functions of the normal controllers.
c = 122, \% = 0: Local Control Off
¢ =122, v =127: Local Control On

All Notes Off. When an All Notes Off is received, all oscillators will turn off. ¢
=123, v = 0: All Notes Off (See text for description of actual mode commands.)
c = 124, % = 0: Oomni Mode Off
c = 125, % = 0: Omni Mode On
¢ =126, v = M: Mono Mode On (Poly Off) where M is the number of channels
(Omni Off) or 0 (Omni On)
¢ =127, v =0: Poly Mode On (Mono Off) (Note: These four messages also cause
All Notes Off)

System Common Messages

11110000

System Exclusive. This message type allows manufacturers to create their own
messages (such as bulk dumps, patch parameters, and other non-spec data) and

provides a mechanism for creating additional MIDI Specification messages. The

103

Oddddddd

0ddddddd
11110111

called Universal Exclusive Messages, which are not manufacturer-specific. If a
device recognises the ID code as its own (or as a supported Universal message)
it will listen to the rest of the message (0ddddddd). Otherwise, the message will
be ignored. (Note: Only Real-Time messages may be interleaved with a System

Exclusive.)

11110001

Onnndddd

MIDI Time Code Quarter Frame. nnn = Message Type
dddd = Values

11110010

ofm

Ommmmmmm

Song Position Pointer. This is an internal 14 bit register that holds the number of
MIDI beats (1 beat= six MIDI clocks) since the start of the song. | is the LSB, m
the MSB.

11110011

0555555S

Song Select. The Song Select specifies which sequence or song is to be played.

11110100

Undefined. (Reserved)

11110101

Undefined. (Reserved)

11110110

Tune Request. Upon receiving a Tune Request, all analog synthesizers should

tune their oscillators.

11110111

End of Exclusive. Used to terminate a System Exclusive dump (see above).

System Real-Time Messages

11111000 Timing Clock. Sent 24 times per quarter note when synchronization is required
(see text).

11111001 Undefined. (Reserved)

11111010 Start. Start the current sequence playing. (This message will be followed with
Timing Clocks).

11111011 Continue. Continue at the point the sequence was Stopped.

104

11111100

Stop. Stop the current sequence.

11111101

Undefined. (Reserved)

11111110

Active Sensing. This message is intended to be sent repeatedly to tell the receiver
that a connection is alive. Use of this message is optional. When initially
received, the receiver will expect to receive another Active Sensing message each
300ms (max), and if it does not then it will assume that the connection has been
terminated. At termination, the receiver will turn off all voices and return to

normal (non- active sensing) operation.

11111111

Reset. Reset all receivers in the system to power-up status. This should be used
sparingly, preferably under manual control. In particular, it should not be sent on

power-up.

105

Appendix F

Engineers Australia
Code of Ethics — p. 1

106

2

ENGINEERE
AU TRALN

As engineering praciitioners, we use our knowledge and skills for the benefit of the
community to create engineering solutions for a sustainable future. In doing so, we
sirive to serve the community ahead of other personal or seclional interests.

Our Code of Ethics defines the values and principles that shape the decisions we make in
engineering practice. The related Guidelines on Professional Conduct provide a framework
for mambers of Engineers Australia to use when exercising their judgment in the practice
of anginaaring.

As membears of Engineers Australia, we commit to practisa in accordance with the Code of
Ethics and accept that we will be hald accountable for our conduct under Enginears Australia’s
disciplinary regulations.

In the course of engineering practice we will:

1. DEMONSTRATE INTEGRITY
1.1 Act on the basis of a well-informed conscienca
1.2 Ba honest and trustwarthy
1.3 Respect the dignity of all parsons

2. PRACTISE COMPETENTLY
2.1 Maintain and develop knowledge and skills
22 Represent areas of competence objectively
23 Act on the basis of adequate knowledge

3. EXERCISE LEADERSHIP
3.1 Uphold the reputation and trustworthiness of the practice of engineering
3.2 Support and encourage diversity
33 Communicate honastly and effectively, taking into account the reliance of others

on engineering expartise
4. PROMOTE SUSTAINABILITY

4.1 Engage responsibly with the community and other stakeholdars

4.2 Practise enginearing to foster the health, safety and wellbeing of the community
and the environment

4.3 Balance tha needs of the presant with the needs of future generations

Confinued ower 20=

107

Appendix G

OpenSCAD Program Code and
Models

108

G.1. Wrist Brace OpenSCAD listing

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//

~ Student Details ~

Sathya Smith - Engineering Research Project 2016

Supervisor: Dr. Andrew Maxwell
Smith armbraceVz.scad
~ Description ~
This CAD file contains the intended 3D design for
the inertial measurement unit housing. The device
to be housed is the MPU6050 6 DOF IMU.
~ Specifications~
Device length - 21lmm
Device width - 14mm
Desired housing length - 40mm
Desired housing width - 30mm

~ Variables ~

MPUlength = 21.5; // Added 0.5mm to ensure fit
MPUwidth = 14.5; // Added 0.5mm to ensure fit

MPUheight

5;

109

// ~ Specify desired module ~

//MPU650 Blank();

bracket () ;

cover () ;

/= -
[mm e -

// The Cover module creates a 1lid for the wristbound sensor

housing.

module cover () {

union () {

translate([0,5,9.25]) rotate ([0,0,901)
cube ([MPUwidth+5,MPUlength,1]);

difference () {
rotate ([-90,0,0]) translate ([-10.75,-10,10.75+4.251])

roundCornersCube (31,1, 30,2);
translate([-30,-0.5,8.5]) cube([40,31,1.5]);

110

module bracket () {

difference () {

translate ([-MPUlength/2,15,2.5])

roundCornersCube (40,5, 30,2);
translate ([0,5,1])

rotate ([90,0,180])

cylinder (r = 100/2,

rotate ([90,0,180])

cylinder(r = 100/2, h=60,$fn=
rotate([90,0,1807)
cylinder(r = 100/2, h=60,$fn=

rotate ([90,0,180])
cylinder(r = 100/2,
rotate ([90,0,180])
cylinder(r = 100/2,
rotate([90,0,1807)
cube([2.5,11,27
rotate (
cube([2.5,11,27

}

[9
1)
[90,0,1801)
1) 7

4

h=60, Sfn=

h=60, $fn=

h=60, Sfn=

rotate([90,0,0])

MPU650 Blank () ;

translate ([MPUlength/2,-49,-11)
100) ;

translate ([MPUlength/2+3,-49,-11])
100) ;

translate ([MPUlength/2+5,
100) ;

491]-])

translate ([MPUlength/2-3,-49,-11)
100) ;

translate ([MPUlength/2-5,-49,-11)
100) ;

translate([-6.75,-5,1.5])

translate ([25.75,-5,1.5])

// Draw cylinders for strap hole smoothing

rotate([90,0,180])
h=27,$fn=100) ;

rotate([90,0,180])
h=27,$fn=100) ;

1.3,

1.3,

translate([-

translate ([

7.75,4.2,1.5]) <cylinder(r =

-7.75,0.8,1.5]) cylinder(r =

rotate([90,0,180])
h=27,$fn=100) ;

rotate([90,0,180])

.3, h=27,3$fn=100) ;

1.3,

=

translate ([29.25,4.2,1.5])

translate ([29.25,0.8,1.5])

cylinder(r =

cylinder(r =

111

module MPU650 Blank () {

difference () {

union () {
rotate ([0,0,90]) cube ([MPUwidth,MPUlength,5]);
rotate([0,0,90]) translate ([MPUwidth, 0,0])
cube ([5,MPUlength, 5]);
rotate ([0,0,9071) translate ([0, (MPUlength/2)-5,11])

cube ([50,10,21);
}
union () {
rotate([0,0,90]) translate([1.5+0.8, 1.5+1.3, 01])
cylinder(r = 3/2, h = 3, $fn=30);
rotate([0,0,90]) translate([1.5+0.8, MPUlength-
1.5-1.3,0]) cylinder(r = 3/2, h = 3, $fn=30);

// DESIGN CODE CREATED BY SATHYA SMITH CONCLUDES HERE
// The function that follows was used to generate rounded

// corners.

112

// The following section includes modules for the creation of a
cube with rounded corners, Copyright is held by Sergio Vilches
2011

/~k

http://codeviewer.org/view/code:1b36

Copyright (C) 2011 Sergio Vilches

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received
a copy of the GNU General Public License along with this program.
If not, see <http://www.gnu.org/licenses/>.

Contact: s.vilches.e@gmail.com

Round Corners Cube (Extruded)
roundCornersCube (x,y,z,r) Where:

- x = Xdir width

- y = Ydir width

- z = Height of the cube
- r = Rounding radious

Example: roundCornerCube (10,10,2,1);
*Some times it's needed to use F6 to see good results!

*/
// Test it!
// roundCornersCube (10,5,2,1);

113

mailto:s.vilches.e@gmail.com

module createMeniscus (h, radius)

// This module creates the shape that needs to be substracted from
a cube to make its corners rounded.

difference () {

//This shape is basically the difference between a quarter of
cylinder and a cube

translate ([radius/2+0.1,radius/2+0.1,07]) {
cube ([radius+0.2,radius+0.1,h+0.2],center=true) ;
// All that 0.x numbers are to avoid "ghost boundaries" when
substracting

}

cylinder (h=h+0.2, r=radius, $fn = 25, center=true);

module roundCornersCube (xX,Vy,2Z,Tr)
// Now we just substract the shape we have created in the four

corners

difference () {

cube([x,y,2], center=true);

translate ([x/2-r,y/2-r]){ // We move to the first corner (x,V)
rotate (0) {

createMeniscus(z,r); // And substract the meniscus

}
translate ([-x/2+r,y/2-r]) {
// To the second corner (-x,YV)
rotate (90) {
createMeniscus(z, r);
// But this time we have to rotate the meniscus 90 deg

}

114

translate ([-x/2+r,-y/2+r]){ //
rotate (180) {
createMeniscus (z, r) ;

translate ([x/2-r,-y/2+r]) {
rotate (270) {
createMeniscus (z,r) ;

115

G.2. Wrist Brace Modular Views

G.2.1. MPU-6050 Model

G.2.2. Wrist Brace Main View

116

G.2.3. Wrist Brace Cover View

117

G.3. Main System Housing Program Listing

//
//
//
//
//

//
//
//
//

~ Student Details ~

Sathya Smith - Engineering Research Project 2016
Supervisor: Dr. Andrew Maxwell
Smith armbraceVz.scad

~ Description ~

This OpenSCAD file contains the intended 3D design for the

main hardware housing adhered to the back of the wearer with an

elastic harness

//

//
//
//

//
//

//
//

~ Specifications ~

Arduino:
ArdLen = 72; // Actual length = 69, 3.2mm extra
Ardwid = 60; // Actual width = 54, 6mm extra

Ardhole = 1.5; // Arduino mounting hole radius

Battery:
BatLen = 55;
BatLenEx = 2.8;
BatwWid = 29;
BatWidEx = 3.1;

// Actual length = 52.2, 2.8mm extra

// Actual width = 25.9, 3.1lmm extra

Transceiver:
TranLen = 46; // Actual length = 43.6, 2.4mm

118

extra
TranlenEx = 2.4;

TranWid = 29; // Actual width = 23.7, 5.3mm extra

TranWidEx = 5.3;
TranHole = 1.7/2;
AntHole = 12;
TranBoardThick = 3.3;

//

// Ports/holes:
USBLen = 12; // Actual length = 11.8mm
USBWid = 10.8; // Actual width = 10.6mm

USBDep 6.3;
PowerLen = 9; // Actual len = 8.6mm
PowerWid = 11; //Actual wid = 10.7mm

// Housing:

Houselen = 116;
HouseWid = 104;
HouseBaseThick = 5;
// Misc.:
WallThick = 5; // Wall/divider thickness
BoardThick = 4; // Approximate board thickness,

solder joints into account
CompHeight = 31;
HouseHeight = 35;
PillarHeight = CompHeight/4;
//

taking

119

// ~ Module Selection ~

//Transceiver () ;
//Arduino () ;
//Battery () ;
//ExtraSpace () ;
Housing () ;
Lid();

module Arduino () {

// This module creates an appropriate model of the space that
will be taken up within the housing by the Arduino Uno board. This
is achieved by forming an appropriately sized rectangular block
and subtracting cylinders for mounting posts, as well as creating
a union between the main block and others in order to create port

holes in the housing.

difference () {

union () {

// Main Arduino block
cube ([ArdWid, ArdLen, CompHeight]) ;

// USB port block
translate([3.17+31.6-3.2,ArdLen-1,BoardThick])
cube ([15,CompHeight, 15]);

// 2.1lmm power port block
translate([3.17+3.6,ArdLen-1,BoardThick])
cube ([11,CompHeight,13]);
}

120

// Cylinders to create mounting pillars in housing
translate([10.47+0.05,0.9+1.5+Ardhole,0]) cylinder (h
PillarHeight, r = Ardhole, $fn = 50);
translate([10.47+0.05+24.8+3,0.9+1.5+Ardhole,0])
cylinder (h = PillarHeight, r = Ardhole, $fn = 50);
translate([3.97+1.5,ArdLen-15.3,01]) cylinder (h =
PillarHeight, r = Ardhole, $fn = 50);
translate ([ArdWid-(0.9+3.17+1.5) ,ArdLen-16.8,01])
cylinder (h = PillarHeight, r = Ardhole, $fn = 50);
}

module Battery () {

// The battery module creates a simple cube to represent the
appropriately measured size of the 9V battery.

cube ([BatWid, BatLen, CompHeight]) ;

module Transceiver () {

// The Transceiver module creates a suitable model for the HM-
TR transceiver that is to be used to transmit serial data
wirelessly. Careful notice is taken of the size of the antenna
hole as it will need to be tightened following insertion of the

transceiver board.

difference () {

union () {

// Main transceiver block
cube ([TranLen, TranWid, CompHeight]) ;

121

// 915MHz antenna hole
rotate([0,-90,01)
translate ([TranBoardThick+6.7, TranWidEx/2+5.3,-1]) cylinder(h =
PillarHeight,r = AntHole/2, $fn = 50);
}

// Transceiver mounting post cylinders

translate ([11l.3+TranHole+TranLenEx/2, TranWidEx/2+1.7+TranHole, 0]
) cylinder(h = PillarHeight, r = TranHole, $fn = 50);
translate ([TranLen-TranLenEx/2-1.6-TranHole, TranWid-
TranWidEx/2-3.7-TranHole, 0]) cylinder(h = PillarHeight, r =
TranHole, $fn = 50);
}

module ExtraSpace () {

// The ExtraSpace module forms a cavity in the south-eastern
section of the housing, which is to be used for wire routing

purposes.

union () {

translate ([WallThick,0,07) cube ([HouseWid-3*WallThick-
TranLen, TranWid, CompHeight]) ;

translate ([ArdWid-TranLen+WallThick, HouseLen—
2*WallThick-ArdLen-WallThick-1,0]) cube ([HouseWid-3*WallThick-
ArdWid, HouseLen-TranWid-3*WallThick-BatLen+1, CompHeight]) ;

122

module Housing () {

// The Housing module builds the housing by forming a main
block with x,y,z elements of HouseWid, HouselLen and HouseHeight,
followed by the subtraction of each of the Arduino, Transceiver,
Battery and ExtraSpace modules, forming suitable spaces for each
to sit within the housing. In addition, wall sections have been
removed for wiring access purposes.

difference () {

// Main housing block

cube ([HouseWid, HouselLen, HouseHeight]) ;
// Subtraction of Arduino

translate ([WallThick,2*WallThick+TranWid, HouseBaseThick])
Arduino () ;

// Subtraction of Transceiver
translate ([WallThick,WallThick, HouseBaseThick])
Transceiver () ;

// Subtraction of Battery

translate ([2*WallThick+ArdWid, 2*WallThick+TranWid+ (HouseLen-
3*WallThick-BatLen-TranWid) , HouseBaseThick]) Battery();

// Subtraction of ExtraSpace

translate ([1*WallThick+TranLen,WallThick, HouseBaseThick])
ExtraSpace();

123

// Wiring space allowance
translate ([WallThick+ArdWid-1, HouseLen-2*WallThick-
2,HouseBaseThick]) cube([WallThick+2,WallThick+2,CompHeight]) ;
translate ([WallThick+ArdWid-1, HouseLen-4*WallThick-2-
BatLen, HouseBaseThick])
cube ([WallThick+2,2*WallThick+2,CompHeight]) ;
translate ([TranLen-2*WallThick,WallThick+TranWid-
1,HouseBaseThick]) cube ([3*WallThick,WallThick+2, CompHeight]) ;
}

module Lid () {

// The Lid module is the final module created for the hardware
housing and creates a smooth fitted 1lid by subtracting the top of
the housing from a cube with rounded ends.

difference () {

rotate ([-90,0,0]) translate ([HouseWid/2, -
100, HouselLen/2]) roundCornersCube (HouseWid-1,WallThick, HouseLen—

1,WallThick);

translate([0,0,65]) Housing();

124

// The following section includes modules for the creation of a
cube with rounded corners, Copyright is held by Sergio Vilches
2011

/~k

http://codeviewer.org/view/code:1b36

Copyright (C) 2011 Sergio Vilches

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details. You should have received
a copy of the GNU General Public License along with this program.
If not, see <http://www.gnu.org/licenses/>.

Contact: s.vilches.e@gmail.com

Round Corners Cube (Extruded)
roundCornersCube (x,y,z,r) Where:

- x = Xdir width

- y = Ydir width

- z = Height of the cube
- r = Rounding radious

Example: roundCornerCube (10,10,2,1);
*Some times it's needed to use F6 to see good results!

*/
// Test it!
// roundCornersCube (10,5,2,1);

125

mailto:s.vilches.e@gmail.com

module createMeniscus (h,radius) // This module creates the shape
that needs to be substracted from a cube to make its corners
rounded.
difference () {

translate ([radius/2+0.1,radius/2+0.1,07]) {

cube ([radius+0.2,radius+0.1,h+0.2], center=true); //
All that O0.x numbers are to avoid "ghost boundaries" when
substracting
}
cylinder (h=h+0.2, r=radius, $fn = 25, center=true);
}
module roundCornersCube (x,Vy,z,r) // Now we Jjust substract the

shape we have created in the four corners
difference () {
cube ([x,vy,2z], center=true);
translate([x/2-r,y/2-r]1){ // We move to the first corner (x,Vy)
rotate (0) {

createMeniscus (z,r); // And substract the meniscus

}
translate([-x/2+r,y/2-r]){ // To the second corner (-x,Vy)
rotate (90) {
createMeniscus(z,r); // But this time we have to rotate
the meniscus 90 deg

}

translate ([-x/2+r,-y/2+x]){ //
rotate (180) {

createMeniscus(z, r);

translate ([x/2-r,-y/2+r]) {
rotate (270) {
createMeniscus(z, r);

HH}

126

G 4. Main Housing Model Views

G.4.1. Transceiver Shape Model

\

G.4.2. Arduino Uno Shape Model

127

G.4.3. Battery Shape Model

==

G.4.4. Extra Space Shape Model

I

128

G.4.5. Main Housing Model

G.4.6. Main Housing Cover View

129

Appendix H

Arduino Program Code

130

H.1. Main Arduino Program

F e R R R e //
// Engineering Research Project 2016

// Student: Sathya Smith

// Supervisor: Andrew Maxwell

// University of Southern Queensland - Faculty of Health, Engineering and
Sciences

// Program code for Arduino based gesture recognition system.

//

// *** Disclaimer ***

//

// This program contains sections of code utilised with permission from the
// creators, with licensing information presented within the program. The
creator

// of this software program does not take credit for the development

// of various libraries and pieces of example code, as they are simply

// basic building blocks used to quicken the process of system development
// for this engineering research project.

//

F e R R //

//
// === INCLUDE LIBRARIES ===
//

// Include header file of I2C communications
#include "I2Cdev.h"

// Include header file for MPU6050 6-axis DMP
#include "MPU6050 6Axis MotionApps20.h"

// Include header file Wire.h if I2Cdev.h utilises Arduino Wire

#if IZCDEV_IMPLEMENTATION == IZCDEV_ARDUINO_WIRE
#include "Wire.h"
#endif

// Include elapsedMillis header file for tracking program output rate
#include "elapsedMillis.h"

131

//
#include "EEPROM.h"
// MPU6050 address -

MPU6050 mpu;

0x68

Include EEPROM capabilities

//

/] === TEST VARIABLES ===
//

// Setup Test integers for development

int ArrayIndex = 0;

int ArrayIndexDelay = 0;

int TrainingCount = 0;
to arrays
// Mode definition

#define TestMode 2
2 - training

#define DispMode 1

for running averages

#define WindowArraySize 30

// Counter for test purposes
// Delay counter for skipping readings

// Training mode counter for adding values
// 0 - limited tracking, 1 - full tracking,
// Set low for YPR and XYZ data,

set high

// Sliding window size

//

//
//

#define LED PIN 13
bool blinkState =
(indicative of activity)

// MPU control/status vars
bool dmpReady = false;
uint8 t mpulntStatus;
uint8 t devStatus;

(0 = success, !0 = error)
uintlé_ t packetSize;

bytes)
uintl6é t fifoCount;

uint8 t fifoBuffer[64];

// orientation/motion wvars

true;

GENERAL VARIABLES ===

// Definition of LED PIN for simplicity
// Set true to allow Arduino LED blinking

// set true if DMP init was successful

// holds actual interrupt status byte from MPU
// return status after each device operation
// expected DMP packet size (default is 42

// count of all bytes currently in FIFO
// FIFO storage buffer

132

Quaternion qg;

Vect
Vect

orIntlo aa;
orIntloc aaReal;

sensor measurements

Vect

orIntl6 aaWorld;

measurements

Vect

orFloat gravity;

float euler[3];
float yprl31];

and gravity vector

//
//

[w,

Yr
[x,

%,
[x,

//

z]

Yr

/1%, Y,
//
//

//

[x, ¥V,

[psi,

Yr

z]

z]
theta,
[yaw, pitch,

z]

quaternion container

accel sensor measurements

phi]
roll]

gravity-free accel

world-frame accel sensor

gravity vector

Euler angle container

yvaw/pitch/roll container

//

// === SLIDING WINDOW VAR CREATION ===
//

/* Yaw, Pitch and Roll arrays */

int Window Yaw[WindowArraySize];

about z-axis

int Window Pitch[WindowArraySize];

about y-axis

int Window Roll[WindowArraySize];

about x-axis

/* X, Y and Z accelerometer arrays */

int Window Accel X[WindowArraySize];
int Window Accel Y[WindowArraySize];
int Window Accel Z[WindowArraySize];

/* Sum arrays - 4 bytes per sum */

long
long
long
long
long
long

0;
Sum _Pitch = 0;
Sum Roll = 0;
Sum Accel X =
Sum Accel Y
Sum Accel 7

Sum Yaw =

/* Running Average array */

int
int
int
int
int

int

Window Average Yaw

Window Average Pitch =

Window Average Roll =

Window Average X
Window Average Y
Window Average 7

0;
0;

0;
0;
0;

133

// Yaw
// Pitch
// Roll

// x-axis
// y-axis

// z—-axis

value

value

value

array - rotation
array - rotation
array - rotation

acceleration array

acceleration array

acceleration array

/* Template average array - length = 5 for five gesture movement average
*/

int Gesture Average Yaw[4];

int Gesture Average Pitch[4];

int Gesture Average Roll[4];

int Gesture Average X[4];

int Gesture Average Y[4];

int Gesture Average Z[4];

/* Gesture template array */
int GestureTemplate[5]; // 6 value array containing mean values for
each degree of freedom for a gesture

//

/] === INTERRUPT DETECTION ===

//

volatile bool mpulnterrupt = false; // indicates whether MPU interrupt

pin has gone high
void dmpDataReady () {
mpulnterrupt = true;

//
// === INITIAL SETUP —
//

void setup () {

// join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)

#elif IZCDEV_IMPLEMENTATION == IZCDEV_BUILTIN_FASTWIRE
Fastwire::setup (400, true);
#endif

// initialize serial communication
Serial.begin (38400) ;
while(!Serial); // wait for Leonardo enumeration, others continue
immediately

134

// initialize device
Serial.println(M"#-——————=——————————

—— #");

Serial.println("™ ");

Serial.print (F("Initializing I2C devices..."));

mpu.initialize();

// verify connection

Serial.print (F("Testing sensor connections..."));

Serial.println (mpu.testConnection () ? F("MPU6050 connection
successful") : F("MPU6050 connection failed")):;

Serial.println(" ");

// Choose display mode
if (DispMode == 0) {
Serial.println("Display mode\t 0 - YPR and RealAccel data");

else if (DispMode == 1) {

Serial.println("Display mode\t 1 - Moving average data");

// Choose test mode
if (TestMode == 0) {
Serial.println ("Test mode\t 0 - Limited tracking: Number of values

to be read is equal to window size.\n This mode is used for determining

elapsed times for various data set sizes.");
}
else 1f(TestMode == 1) {
Serial.println("Test mode\t 1 - Tracking: Running averages are

displayed as they are calculated\n\t\t\t\tand are compared to gesture data

in memory.");
}
else 1f(TestMode == 2) {
Serial.println("Test mode\t 2 - Training: Addition of a new

gesture") ;

}

Serial.println("™ ");
Serial.println("#--=———--—=—————————————————————— - ————————

135

// wait for ready
if (TestMode != 2){

Serial.println("\nSend any character to begin motion tracking:

")

while (Serial.available() && Serial.read()); // empty buffer
while (!Serial.available()): // wait for data
while (Serial.available() && Serial.read()); // empty buffer again

// load and configure the DMP
devStatus

// Gyro and Accel offsets
.setXGyroOffset (220) ;
.setY¥GyroOffset (76);
.setZGyroOffset (-85);
.setZAccelOffset (1788);

mpu
mpu
mpu

mpu

// make sure it worked

mpu.dmpInitialize();

// 1688 factory default for my test chip

(returns 0 if so)

RISING) ;

function knows it's

if (devStatus == 0)
{
// turn on the DMP, now that it's ready
mpu.setDMPEnabled (true) ;
// enable Arduino interrupt detection
attachInterrupt (0, dmpDataReady,
mpulntStatus = mpu.getIntStatus{();
// set our DMP Ready flag so the main loop ()
okay to use it
dmpReady = true;
// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {
// ERROR!
// 1 = initial memory load failed

// 2 = DMP configuration updates failed

// (if it's going to break, usually the code will be 1)
Serial.print (F("DMP Initialization failed (code "));
Serial.print (devStatus);

Serial.println(F(")"));

136

// configure LED for output
pinMode (LED_PIN, OUTPUT) ;

// Initialise Window arrays at O

for (int 1 = 0; 1 < WindowArraySize; i++) {
Window Yaw([i] = O;
Window Pitch[i] = O;
Window Roll[i] = 0;
Window Accel X[i] = O0;
Window Accel Y[i] = 0;
Window Accel z[i] = 0;
}
}
//
/] === MAIN PROGRAM LOOP ===
//

void loop () {

// If TestMode was set to 2 at the beginning of the program display
training mode information

// Only display this information on the first training run

if (TestMode == 2 && TrainingCount == 0) {
Serial.print ("Gesture training mode has been initiated - please note
that only one gesture may be recorded\nat this time. ");

Serial.print ("Perform the desired movement immediately after the
countdown.\nThis process will occur five times, then the gesture model will
be calculated and recorded.\n");

Serial.println ("\nSend any character to begin gesture training! ");

while (Serial.available() && Serial.read()); // empty buffer

while (!Serial.available()); // wait for data
while (Serial.available() && Serial.read()); // empty buffer again
Serial.print ("3...");
delay (1000) ;
Serial.print("2...");

delay (1000) ;
Serial.print("1...");
delay (1000) ;
Serial.print ("Go!");

137

delay (1000) ;

// For consecutive training runs - prompt to send another character for

next run

else if(TestMode == 2 && TrainingCount != 0)
{
Serial.print ("Training run ");
Serial.print (TrainingCount+1) ;

Serial.print (F(" completed, send any character to begin the next
countdown.")) ;
}
elapsedMillis ElapsedTime; // Begin timer to track practice run period

// while loop will iterate infinitely in full tracking mode, but
// only for WindowArraySize no. of values for limited tracking mode

// as well as training mode

while (ArrayIndex < WindowArraySize) {

// 1f dmp programming failed, don't try to do anything
if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
while (!mpulnterrupt && fifoCount < packetSize) {

}

// reset interrupt flag and get INT STATUS byte

mpulnterrupt = false;

mpulntStatus mpu.getIntStatus();
// get current FIFO count
fifoCount = mpu.getFIFOCount () ;

// check for overflow (this should never happen unless our code is too
inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
// reset so we can continue cleanly
mpu.resetFIFO() ;
Serial.println(F("FIFO overflow!"));

138

// otherwise, check for DMP data ready interrupt (this should happen
frequently)
} else if (mpulIntStatus & 0x02) {
// wait for correct available data length, should be a VERY short
wait

while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount () ;

// read a packet from FIFO
mpu.getFIFOBytes (fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;

// Subtract old values from sum
Sum Yaw = Sum Yaw - Window_Yaw[ArrayIndex];
Sum_Pitch = Sum Pitch - Window Pitch[ArrayIndex];
Sum Roll = Sum Roll - Window Roll[ArrayIndex];
Sum Accel X = Sum Accel X - Window Accel X[ArrayIndex];
Sum Accel Y = Sum Accel Y - Window Accel Y[ArrayIndex];
Sum Accel 7Z = Sum Accel 7z - Window Accel Z[ArrayIndex];

// Get positional angle in degrees
mpu.dmpGetQuaternion (&q, fifoBuffer);
mpu.dmpGetGravity (&gravity, &q);
mpu.dmpGetYawPitchRoll (ypr, &g, &gravity);

// Populate yaw, pitch and roll window arrays

Window Yaw[ArrayIndex] = ypr[0] * 180/M PI;
Window Pitch[ArrayIndex] = ypr[l] * 180/M PI;
Window Roll[ArrayIndex] = ypr[2] * 180/M_PI;

// Get adjusted real acceleration
mpu.dmpGetQuaternion (&q, fifoBuffer);
mpu.dmpGetAccel (&aa, fifoBuffer);
mpu.dmpGetGravity (&gravity, &q);
mpu.dmpGetLinearAccel (&aaReal, &aa, &gravity);

// Populate window array with current accel vals

Window Accel X[ArrayIndex] = aaReal.x;
Window Accel Y[ArrayIndex] = aaReal.y;
Window Accel Z[ArrayIndex] = aaReal.z;

139

// Add fetched positional values to respective sum
Sum_Yaw = Sum_Yaw + Window Yaw[ArrayIndex];
Sum_Pitch = Sum Pitch + Window Pitch[ArrayIndex];
Sum Roll = Sum Roll + Window Roll[ArrayIndex];
Sum Accel X = Sum Accel X + Window Accel X[ArrayIndex];
Sum Accel Y = Sum Accel Y + Window Accel Y[ArrayIndex];
Sum Accel Z = Sum Accel Z + Window Accel Z[ArrayIndex];

// Increment to next index for next positional readings
ArrayIndex = ArrayIndex + 1;

// Circular array population - index returns to 0 after final value
if (ArrayIndex >= WindowArraySize && TestMode == 1) {
ArrayIndex = 0;

// Calculation of averages
Window Average Yaw = Sum Yaw/WindowArraySize;
Window Average Pitch = Sum Pitch/WindowArraySize;
Window Average Roll = Sum Roll/WindowArraySize;

Window Average X Sum_ Accel X/WindowArraySize;

Window Average Y = Sum Accel Y/WindowArraySize;

Window Average 7 Sum Accel Z/WindowArraySize;
// If in training mode and not the last practice run, add window average
to gesture array
if (TestMode == 2 && TrainingCount <= 4)
{

// Populate average positional values for trained gesture

Gesture Average Yaw[TrainingCount] = Window Average Yaw;
Gesture Average Pitch[TrainingCount] = Window Average Pitch;
Gesture Average Roll[TrainingCount] = Window Average Roll;
Gesture Average X[TrainingCount] = Window Average X;

Gesture Average Y[TrainingCount] = Window Average Y;

Gesture Average Z[TrainingCount] = Window Average 7;

// Incrememnt training counter until gesture has been repeated 5
times

TrainingCount++;

// Display real time positional values if DispMode is set low
if (DispMode == 0)
{

140

// Display running average positional values if

high

Serial.
Serial.
Serial.
Serial.

Serial
Serial

Serial.

Serial.

Serial

Serial.
Serial.
Serial.

Serial

.print

print ("YPR\t")
print (Window Yaw[ArrayIndex]);

"\).

(
(
print(
(Window Pitch[ArrayIndex]);
(
(
(

print
n\).

.print (Window Roll[ArrayIndex]);

print ("\t");

print ("XYzZ\t");

.print (aaReal.x) ;

n\).

(
(
print (
print (aaReal.y);

print ("\t");

.println(aaReal.z);

if (DispMode == 1)

{
Serial.print ("Av. YPR\t")
Serial.print (Window_. Average Yaw) ;
Serial.print ("\t");
Serial.print (Window Average Pitch);
Serial.print ("\t");
Serial.print (Window Average Roll);
Serial.print ("\t");
Serial.print ("Av. XYZ\t");
Serial.print (Window Average X);
Serial.print ("\t");
Serial.print (Window Average Y);
Serial.print ("\t");
Serial.println(Window Average 7Z);

DispMode is set

// Display elapsed running time

Serial.

Serial.

Serial
Serial

print (F("Elapsed time for "));

print (WindowArraySize) ;

(
.print (F(" elements was "));
.print (ElapsedTime) ;
print (F(" milliseconds"));

Serial.

141

// Reset elapsed time
ElapsedTime = 0;

if (TestMode == 0) {
// Begin next motion tracking loop
Serial.println(F("\nSend any character to begin motion tracking: "));

while (Serial.available() && Serial.read()); // empty buffer
while (!Serial.available()):; // wait for data
while (Serial.available() && Serial.read()); // empty buffer again

ArrayIndex = 0;

/s //
// LICENSING INFORMATION //
B //
/*

I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg

Permission is hereby granted, free of charge, to any person obtaining a
copy

of this software and associated documentation files (the "Software"), to
deal

in the Software without restriction, including without limitation the
rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

*/

142

H.2. MIDI Command Transmission Code

e R R R
-—==//

// Engineering Research Project 2016

// Student: Sathya Smith

// Supervisor: Andrew Maxwell
// University of Southern Queensland - Faculty of Health, Engineering
and Sciences

// Program code for Arduino based gesture recognition system.

long lastSendTime = 0; // Initialise sending period counter
int NoteOn = 144; // Decimal MIDI command 'Note On' - 10010000

void setup ()

{
Serial.begin(9600); // Monitoring via USB

void loop ()

{
// Track elapsed program run time
long thisTime = millis{();

// If one second elapsed - send
if (thisTime > lastSendTime + 1000)
{

Serial.print (NoteOn) ; // Send MIDI command
Serial.print ("\n"); // Send new line
lastSendTime = thisTime; // Reset sending period counter

143

H.3. MIDI Command Receiver Code

e R R R
-—==//

// Engineering Research Project 2016

// Student: Sathya Smith

// Supervisor: Andrew Maxwell
// University of Southern Queensland - Faculty of Health, Engineering
and Sciences

// Program code for Arduino based gesture recognition system.

#include <SoftwareSerial.h>

SoftwareSerial mySerial (10, 11); // Create software serial port with
RX - 10, TX - 11

String inputstring = "";

void setup () {

// Open serial communications
Serial.begin(9600) ;

while (!Serial) {

; // wait for serial port to connect.
Serial.println("Initialising MIDI command receiver system!");
// set the data rate for the SoftwareSerial port

mySerial.begin (9600) ;
mySerial.println ("Data incoming...");

void loop () {

144

// Read receiver data and present in binary format
while (mySerial.available() > 0) {

//Serial.print ("\nReceived MIDI command: ");

int inputchar = mySerial.read();

if (isDigit (inputchar)) {

inputstring += (char)inputchar;
}
if (inputchar == '\n') {
Serial.print ("Received MIDI Command: ");

Serial.println(inputstring.toInt (), BIN);

inputstring = "";

145

