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Abstract

The agricultural industry is a leading contributor to the Australian economy with an

approximated revenue of $40 Billion in the 09/10 financial year. Weeds are portrayed

as costing the agricultural industry up to $4 Billion per annum in herbicide use and

lost production. Research into proposed methods to reduce this cost whilst maximising

agricultural produce with sustainable practices will benefit the Australian economy.

Blanket spraying is a procedure utilised by all broadacre farmers to manage and control

on-farm weeds. During fallow, paddocks typically have only a 20% coverage of weeds,

therefore, a blanket spray could unnecessarily spray as much as 80% of the field. Not only

is this an expensive waste of herbicide, it also has negative impacts on the environment

and possible accumulation in food products through residue buildup and runo↵.

Precision spraying platforms are available in agriculture which detect weeds in real time

and activate nozzle solenoids to deliver chemicals to the weed. Precision spraying, there-

fore, targets only weeds and results in herbicide saving and a decrease in herbicide re-

sistance. In theory this is impressive, however, adoption of this technology has been

poor throughout the agricultural industry due to the large capital expenses required to

purchase the systems and fear of change with no guarantee of the kill rate. There is

no quantitative data that provides proof on the accuracy of any weed detection system

commercially available. Therefore, this project aims to develop hardware and associated

software to form the basis of a standardised test procedure for evaluating weed detection

systems.

Initially an assessment of two commercial weed detection systems were undertaken, the

WeedSeeker and WEEDit platforms, to determine interfacing methods to recognise when

the systems detect weeds. This assessment led to the development of two separate Weed-

Check modules which could interface to the di↵erent platforms and capture a signal when



ii

a weed was detected. When this signal is recognised by the WeedCheck module, a camera

is triggered which captures an image of the weed, whilst also geotagging the image with

GPS position information.

Field trials were designed to test the accuracy of the weed detection platforms. These

trials were performed to gather information on three attributes. The first being the

accuracy of the weed detection platform. This included determining the hit and miss

rates of the technologies through taking images of the weeds detected and post analysing

them. The second interest was the spray footprint of the weed detection platforms, which

is important to ensure chemical is delivered to the weed. This test clearly showed the

WEEDit had a better spray footprint of approximately 500mm whereas the WeedSeeker

platform only had 150mm. The third stage of the trial involved using the GPS positions

to create weed maps. This, however, proved to be inaccurate as a GPS error of up to

4.3 metres was observed. The images of the weeds were then analysed to match identical

weeds captured within and between trials which formed the basis of the weed detection

accuracy assessment.

The outcomes of the trials proved a feasible method was developed for determining the

accuracy of weed detection platforms. Through matching weeds within the image frame, it

allowed an assessment of hit and miss rates of the two technologies. Unfortunately, due to

unforeseen GPS error the weed map comparison was deemed unreliable. Further future

development of the computer vision algorithm to automatically sort and match weeds

within frames would be an excellent method of validation. The final outcome of the project

found the WEEDit was better at detecting weeds under di↵erent conditions, whereas the

WeedSeeker platform regularly missed smaller weeds, however, this comparison was only

undertaken with a 0.16ha trial block due to GPS position errors. Further testing would

need to be conducted to verify these findings.

These findings and the software developed in this project have industry benefits as the

result sets a standard of comparison of new developments in weed detection platforms

against current commercial systems. This is of high significance to industry as there is no

advantage in developing agricultural robots to change farming systems if the attachments

and sensors available have not yet been validated. Robotics in agriculture can only be as

e↵ective as the sensors and implements available. To encourage adoption, farmers need

to clearly see the benefits of the change and know they are moving forward not backward

in weed control, sustainability and profitability.
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Chapter 1

Introduction

1.1 Project Aim

This dissertation aims to develop hardware and software which form the basis of a stan-

dard procedure for evaluating weed detection systems that can potentially be interfaced

to map weeds during precision spraying.

A standardised test procedure for weed detection systems has the benefit of enabling new

technological developments for weed detection to be compared against existing weed de-

tection systems. This would ensure future advancements are improving on the currently

available technology. Providing farmers with quantitative data on existing weed detec-

tion technologies may also aid in their adoption of the technology, benefiting both the

environment and their weed control management.

For the trial phase of this project, agricultural robotic platforms will be used to carry out

data collection for di↵erent weed detection systems.

1.2 Research Objectives

1. Design a trial protocol to determine weed detection accuracy and spray footprint.

2. Develop a universal ground truth method which would enable validation of com-

mercial weed detection technology.

3. Design software capable of interfacing with a range of weed detection technology to
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obtain a signal when a weed is detected.

4. Develop software that presents recorded data and allows labelling of correct or

incorrect weed detection.

5. Develop software that automatically generates weed maps of the field.

6. Collect data in a field to ground truth the weed detection systems and generate

weed maps using the developed software.

Once these steps are complete the protocol should present a hit and miss statistic of the

precision spraying technology and a weed map with accuracy within 0.5 metre.

1.3 Background

On a global scale agriculture plays an important role in the economies and health of the

world population. Wherever land is put to agricultural use, weeds will grow (Paap 2014).

A weed is a plant growing where it is not wanted and in competition with cultivated

and naturally growing plants (Natural Resource Management Ministerial Council 2007).

Weeds are one of the major problems a↵ecting Australia’s natural ecosystems and agri-

cultural vegetation as they compete with agronomic crops for nutrients and water. Weed

populations deplete necessary resources required for crop growth and to enable crops to

flourish to their maximum potential. This causes a decrease in crop development restrict-

ing productivity and yield potential, resulting in less produce. Weeds, along with other

invasive species, now arguably pose one of the most significant threats to biodiversity and

agricultural production (Natural Resource Management Ministerial Council 2007).

In Australia, the agricultural industry is a leading contributor to our economy. The

Australian Bureau of Statistics approximated an agricultural revenue of $40 billion for

the 09-10 financial year (Australian Bureau of Statistics 2012). This is produced from

approximately 425 million hectares, covering 55% of Australia’s land area. The total

economic cost of weeds to Australia is close to $4 billion per annum (Natural Resource

Management Ministerial Council 2007). It is therefore crucial for the future of agriculture

for weeds be assessed and controlled accordingly.

Weed populations are spatially and temporally variable within and between agricultural

fields (Peteinatos, Weis, Andujar, Rueda Ayala & Gerhards 2014). To obtain the neces-



1.3 Background 3

sary information about actual weed density and population, weed mapping is necessary

(Schuster, Nordmeyer & Rath 2007). The Department of Agriculture, Fisheries and

Forestry have published a field manual proposing a standardised, systematic weed as-

sessment procedure that can be applied across all land tenures. The manual suggests

decision-makers need comprehensive and objective data on weed distribution and spread

to set priorities and measure outcomes of weed research (McNaught, Thackway, Brown &

Parsons 2008). This proposal is supported by a publication released by the Department

of Environmental Conservation, which discusses the importance of mapping weed species

in setting priorities for control work (Brown, Bettink, Paczkowska, Cullity, Region &

Shane 2011).

1.3.1 Impacts of Weeds on Agriculture

The problem of weeds is a complex one. In order to reduce their impacts often various

methods must be coordinated. The presence of weeds in agriculture not only a↵ects

the production and crop quality, they can also be harmful to livestock (Paap 2014). In

agronomic crops, weeds compete for resources such as water, light and nutrients. This

competition reduces both the quality and quantity of the crop’s produce. The yield of

harvested crops will be a↵ected and unwanted weeds may cause contamination of the grain

sample. Management practices can be invoked to control weeds, however, this causes an

increase in the production cost of the crop by investment in machinery, herbicides and

labour (Paap 2014).

1.3.2 Weed Management Practices

There are various methods which can be adopted for controlling unwanted pest plants.

In Australia, most weed control methods are either through cultivation or the use of her-

bicides. Traditional farming practices relied heavily upon manual weed control through

various cultivation methods, such as ploughing, discing and scarifying. Modern precision

farming requires land conservation and soil sustainability practices to be adopted leav-

ing land more susceptible to weed populations. With the adoption of minimum tillage

farming, the reliance on herbicides has become crucial. However, often one method is not

su�cient to control serious weeds and an integrated approach may be necessary, this is

known as Intergrated Weed Managment (IWM). IWM is a ”sustainable management sys-
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tem that combines all appropriate weed control options” (Natural Resource Management

Ministerial Council 2007). IWM targets all weed species through various means through-

out the cropping season, with the aim to reduce weed populations and their impacts on

the crop.

The development of new technologies in agriculture can assist IWM by providing site spe-

cific weed control and improvements in data collection and management. This is evident

through the adoption of Precision Agriculture which has allowed detailed information

about variability in soil, crop health and weed density/populations to be collected and

used as a resource in farm management practices.

Chemical Application

Chemical control relies on the use of herbicides. Herbicides control weeds by altering the

normal growth patterns of the plant, through drying the leaves/stems or by defoliating

the plant (dropping leaves) (Department of Agriculture and Fisheries. n.d.). Herbicide

application is the most common and sometimes the only viable approach that can be used

in broad-acre farming. It involves mixing specific chemical/s (see Figure 1.1) with water,

which target specific plant groups, such as broad or narrow leaf. This mixture is then

applied to the field with a machine known as a boom spray, as shown in Figure 1.2.

Figure 1.1: Herbicides used to control weeds (Getty Images 2013)
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Blanket Spraying

Blanket spraying is a technique commonly utilised by farmers to deliver a range of her-

bicides for e↵ective weed management. This involves using a large agricultural machine,

commonly referred to in industry as a boom spray, to deliver the same quantity of her-

bicide to the entire field. Blanket spraying is an excellent control measure for weeds. It

results in all weeds being targeted and thus none being missed, as the entire paddock

is sprayed. However, with weeds becoming increasingly resistant to herbicides, a higher

chemical rate is needed for control, which is quickly becoming a costly exercise for farm-

ers. These higher herbicide applications also have negative impacts on the environment

and can potentially contaminate food produced for human consumption (Rose, Zwieten,

Zhang, Nguyen, Scanlan, Rose, McGrath, Vancov, Cavagnaro, Seymour, Kimber, Jenkins,

Claassens & Kennedy 2016).

Figure 1.2: A common spray unit used in broad-acre production systems (AGRONOMO 2015)

Precision Spraying

Precision spray technology has the potential to revolutionise weed management by more

e↵ective and e�cient control of weeds. Farmers commonly refer to this technology as

spot spraying, because that is exactly what it does, sprays individual plants. The sensors

used for precision spraying detect plants in fallow (i.e. di↵erentiates green from brown)

and sprays them with a predetermined chemical (Silburn, Rojas-Ponce, Fillols, Olsen,

McHugh & Baillie 2013). Spot spraying is a much more economical weed control strat-

egy over blanket spraying. Department of Primary Industry research in Northern NSW
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has shown the average weed cover in fallow paddocks is as low as 20% of the paddock

area. This means that often 80% of the herbicide is applied to bare soil and is there-

fore wasted. This method is ine�cient, expensive and environmentally unsustainable

(Mcintosh Distrubution 2015). Croplands Australia claim their WEEDit system, shown

in Figure 1.3, can save up to 90% chemical usage with an average saving of around 45%

(Croplands Australia 2015). The WeedSeeker system claims a similar saving of up to 90%

(Mcintosh Distrubution 2015). This method also reduces herbicide resistance and residue

build-up in soils from excessive overuse of chemical.

The benefits of this technology are listed below. More detailed impacts on waterways and

soils are provided in Section 2.3.

1. Reduced herbicide usage and input cost.

2. More sustainable use of water.

3. Reduced potential for environmental impact.

4. Maximised productivity.

5. Minimised chemical resistance.

6. Reduced residue and run-o↵ into waterways.

7. Reduced chemical drift.

8. Reduced contamination of:

(i) Livestock fodder.

(ii) Food for human consumption.

(iii) Air quality.
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Figure 1.3: WEEDit spot spraying technology

Non-Chemical Approach

Herbicide resistance is becoming a significant problem in Australian no-till farming sys-

tems. Many weed species have developed resistance to multiple herbicide groups (Brodie

2016). As these weeds develop further resistance to herbicides the need for a more robust

weed control method is becoming increasingly necessary. Recent technological develop-

ments have trialled two e↵ective, non-chemical approaches to weed control in agriculture.

None of the following alternative non-chemical approaches to weed control, discussed

below, are commercially available as yet and are still in early developmental stages.

Microwave Technology

Recently, microwave technology was found to be e↵ective in killing weeds. Cawood (2013)

made the discovery that microwave technology ruptures plant cells, causing them to

rapidly wilt and die. Microwaves cause water molecules inside the plant cells to rotate

and align with the direction of the waves. This movement causes friction and inevitably

results in the generation of heat. This heat then produces a build up of steam pressure in

the plant cells, eventually causing them to rupture. Weeds are killed within a second of

microwave exposure and seeds to a depth of five centimetres are rendered infertile. Ca-

wood (2013) found a percentage of soil microbes were also killed, however, were quickly

recolonised. Microwave technology has not yet become commercially available, the latest
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reports indicate release within the next 2 years (Brodie 2016).

Plucking Technology

Mechanical weed control is once again being taken into consideration for weed control in

agriculture. In the past, blanket mechanical weeding was carried out by discs attached

to large agricultural machinery which led to soil compaction issues, enormous amounts

of time required for workers as well as massive fuel costs and expensive wear and tear on

machinery. This, overtime, has been replaced by excessive herbicide use to control weeds,

especially with no till practices being adopted. Overuse of herbicides is now coming

into question for health safety reasons (Myers, Antoniou, Blumberg, Carroll, Colborn,

Everett, Hansen, Landrigan, Lanphear, Mesnage, Vandenberg, vom Saal, Welshons &

Benbrook 2016) as well as growing herbicide resistance issues.

New technologies are being developed and researched on a global level to reintroduce

mechanical weeding through the possibility of plucking weeds robotically. (Fadlallah &

Goher 2015) reviewed many robotic technologies including robots developed by (Blasco,

Aleixos, Roger, Rabatel & Molto 2002) and (Gobor, Lammers & Martinov 2013) whose

robot’s use robotic arms to pluck each weed. It was found the biggest drawback in the

robot developed by (Blasco et al. 2002) was issues with safety, accuracy and weed removal

e�ciency whilst (Gobor et al. 2013)’s robot had not yet been visualised. Further research

into this technology, especially to identify weeds and pluck them with robotic arms within

crop rows not just between them, would transform weed control significantly.

Naio technologies is currently developing a prototype in France to weed crops mechan-

ically. Supposedly this new technology will enable supervision free weeding which will

reduce the impact of herbicides on the environment and due to its lightweight body will

reduce soil compaction(Naio Technologies 2016). This robot has yet been seen in action

and thus has not been reviewed.

1.3.3 Interaction between Agricultural Chemicals and the Environment

Substantial on-farm benefits can be gained through the use of herbicides for weed control.

In most cases the use of herbicides are quicker and less expensive over other methods,

such as mechanical weeding (Freedman 2012). In broad-acre farming herbicide use is
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commonly the only viable option to control unwanted vegetation. However, if herbicides

are not used correctly damage to the crop and environment can result.

Incorrect or overuse of herbicides can cause contamination and pollution to the environ-

ment, including waterways and soils (U.S Fish and Wildlife Service 2009).

• Waterways are a↵ected by:

– Chemical spills or leaks

– Improperly discarded herbicide containers

– Rinsing equipment near drainage areas

– Surface run-o↵

– Leaching of herbicide into waterways and ground water

– Spray drift onto un-targeted crops

• Soil properties that may be a↵ected include:

– Soil chemistry such as pH, CEC and EC

– Changes to microbial population and activity

– Fertility and available nutrients

– Soil composition through a decline in organic matter

The introduction of site specific herbicide application (precision spraying) has reduced the

potential risk of environmental pollution as well as production costs for farmers (Schuster

et al. 2007). Heap and Trengove (2008) observed ”using broad-acre blanket spraying

results in the wrong application decision at almost every point in the paddock.” This is

because weeds tend to grow in clusters and are populated randomly throughout the field.

In a fallow field, the use of a blanket sprayer results in non-weed growing areas of the field

to also be sprayed, wasting chemical. Site specific herbicide application has the potential

to reduce herbicide applications by 10 to 80% with research indicating weed-free crop areas

that are not sprayed can yield up to 10% more produce (Heap & Trengove 2008). The

potential cost and environmental conservation factors of precision spraying are obvious.

Quality assurance of site specific precision spraying is necessary for farmers to ensure

weeds will be controlled e↵ectively using this technique. The aim of this project is to
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develop a standard procedure to validate the commercially available technology to pro-

vide farmers with quantitative measurements for an emotive adoption. Embracing this

technology will lead to the reduction of environmental impacts, increased e�ciency and

profitability for the farmer.

1.4 SwarmBot Platform

This project was sponsored by SwarmFarm Robotics. The SwarmFarm concept is to

use a swarm of lightweight autonomous robots to work together achieving better farming

systems. Two SwarmBots (see Figure 1.4) will be used in this project, one with an 8

metre WEEDit boom and one with an 8 metre WeedSeeker boom. The benefits of using

SwarmBots for this trial, is the ground speed and ground position can be standardised

between the two robots. The robots use RTK GPS for localisation, and have a ground

repeatability distance of 2cm. Furthermore, this means the two SwarmBots will have

position accuracy to within 2cm, which ensure a standardised ground sampling position.

The robots travel at a maximum speed of 10 km/hr. The software framework used on the

SwarmBot is Robot Operating System (ROS). ROS is an open-source operating system

for use in robotics. It provides a link between hardware abstraction, low-level device

control, high level systems and also controls messages passing between processes. ROS

will be used in this project to interface the proposed module being developed, to both

the SwarmBot and the weed detection platforms.

Figure 1.4: SwarmBot with WEEDit Boom



Chapter 2

Technologies to Validate and

Ground Truth Precision Spraying

2.1 Introduction

The primary areas researched for this project include; technology already available in

agriculture, computer vision techniques relevant to agricultural weed detection, as well as

weed mapping techniques and their associated benefits.

2.2 Commercial Weed Spot Spraying Technology

2.2.1 WEEDit

WEEDit units, which are a new technology for use in precision spraying, are attached to

the boom sprayer. These WEEDit units illuminate the ground with red light technology,

as shown in Figure 2.1. As the vehicle passes over a weed, the natural plant chemical

chlorophyll, responds to the red light by absorbing it and emitting Near Infrared (NIR)

back into the sensors. The system then reacts, within 1 millisecond, by activating partic-

ular sets of spray nozzles to deliver chemical to the targeted weeds identified by the unit

(Baillie, Fillols, McCarthy, Rees & Staier 2013). The WEEDit system, unlike some of its

competitors, does not require ongoing user calibration. The sensor samples the ground

every millimetre enabling it to function irrespective of changes in background conditions
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or light intensities. Simply, the sensors are not a↵ected by changes in background colour

(Romertron 2016). As a result, WEEDit technology can be used in full sunlight or com-

plete darkness. The user can, however, adjust the sensitivity of the sensor (ie the size of

plant it picks up) via a control panel in the cab.

Figure 2.1: WEEDit configuration on a common sprayer (Romertron 2016)

WEEDit configuration consists of sensors spaced at 1 metre intervals on the boom, op-

erating at a height of 1100mm from the ground surface. Each individual sensor controls

5 solenoids. When a weed is detected a signal is sent from the sensor to the solenoid,

causing an electromagnet to lift a plunger allowing fluid to be discharged through the noz-

zle. Each nozzle is spaced at 20cm intervals for a more accurate and precise application.

Nozzles spraying at an angle of 40 degrees are used to further reduce drift and ensure the

smallest footprint possible when spraying the weed (Croplands Australia 2015). The user

can change sensitivity and margin (before and after weed) to ensure the weed is hit.

2.2.2 WeedSeeker

WeedSeeker is a commercially available sensor for site specific precision herbicide appli-

cation. The WeedSeeker is a spectral reflectance sensor which uses red and NIR LEDs for

illumination and a photodiode to detect the intensity of light (Paap 2014). The system

is designed for discrimination of ’green’ vegetation from ’brown’ soil background and has

been readily adopted to control weeds in fallow (no crop) paddocks. The sensor is able to
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detect the presence of a weed by assessing the di↵erence between red and NIR reflectance

of vegetation and background (Sui, Thomasson, Hanks & Wooten 2008). When the sen-

sor identifies a weed, an electronic signal is sent to a solenoid valve, this signal receival

activates a nozzle to deliver chemical to the weed, this is shown in Figure 2.2.

Figure 2.2: How a WeedSeeker works (Crop Optics 2010)

The system allows adjustments for sensitivity and velocity. Unlike WEEDit, before the

WeedSeeker can be used the system must be calibrated on a plant-free surface within the

paddock and weed size sensitivity must be set. This entails toggling a calibrate switch,

which instantaneously sets the background chlorophyll levels for each individual sensor,

hence why it is important to calibrate on a plant free surface where chlorophyll levels will

be low (Crop Optics Australia 2010). Figure 2.3 shows the WeedSeeker modules mounted

on a boom in a fallow field.

Figure 2.3: WeedSeeker Configuration on a common sprayer (Southern Precision2015)



2.3 Weed Detection with Computer Vision in Agriculture 14

WeedSeeker configuration, for speeds up to 20 km/hr, consists of 1 sensor every 380mm

(15 inch), with a 250mm spacing from sensor bracket to spray tip. The operating height

of the sensors is recommended between 650-850mm from the ground to the sensor lens.

2.2.3 H-sensor

The H-sensor is a recent technology advancement in weed control for agriculture. This

sensor uses computer vision applications to classify weeds, based on their geometric prop-

erties. In Australia, the H-sensor is part way through a three year trial which has thus far

proved successful performance in lentils, faba beans, chickpeas, lupins, wheat and barley.

The technology can distinguish grass weeds in broadleaf crop types and broadleaf weeds in

grass crops. This technology therefore acts similar to a selective herbicide (Trengove 2016).

The H-sensor gathers red and near infrared images and separates all crop and weed

segments from the background stubble, soil and rock. It then identifies weeds from crop

plants based on leaf and plant shape parameters. Once this has been completed, it

initiates spray/ management decisions based on weed type and density. Each sensor

contains its own light source so can be used both under day and night conditions. The

sensor, however, does not perform very well in conditions where leaves overlap and the crop

canopy is closed, which greatly reduces the accuracy and applicability of the technology.

This technology is only useful in early stages of crop development, however, would still

enable weed control for post planting sprays, up until the canopy closes (Trengove 2016).

This sensor was not analysed as part of this project because it was unavailable for testing.

2.3 Weed Detection with Computer Vision in Agriculture

2.3.1 Computer Vision

Computer vision is a tool that deciphers useful information from digital images (Fallis

2013). Technological advances are starting to become more commonplace and are having

an enormous impact on modern day agriculture as the industry endeavours to improve

on-farm productivity (Chaudhury, Ward, Talasaz, Ivanov, Norman, Grodzinski, Patel &

Barron 2015). Computer vision involves the use of a camera and an algorithm to segment,

classify, detect, extract and discriminate features within an image frame. By and large,
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computer vision has many potential applications to revolutionise the agricultural industry

not limited to (Zachevsky 2012):

(i) Monitoring product quality

–Automatic inspection

(ii) Classification and sorting

–Automation of agricultural production

–Fruit and Vegetables inspection

(iii) Crop Monitoring

–Crop disease identification

–Crop pest identification

–Crop health status

–Weed Identification and Mapping

2.3.2 Weed Detection Methods using Computer Vision

Computer vision has the ability to discriminate weeds from soil and has the potential to

discriminate weeds from other surrounding plants. This can be achieved through using a

range of techniques, algorithms and sensors including:

• Infrared (IR) technology

• NIR technology

• Red light technology

• Low cost cameras

Spectral Reflectance Sensors

The development of narrow band spectral sensors has enabled individual plants to be

successfully detected. Current commercially available weed detection systems such as

WeedSeeker and WEEDit use Red, IR and NIR light technology to discriminate ’green’
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from ’brown’ for controlling weeds in fallow crops. The naturally occurring plant chemi-

cal chlorophyll reacts with these light frequencies by reflecting particular spectral wave-

lengths. Healthy vegetation absorbs blue and red light energy for use in respiration,

photosynthesis and for chlorophyll manufacturing. Green light energy is reflected by pig-

ments in the plant leaf and thus why we perceive plants as green. Chlorophyll reflects NIR

light energy and thus a healthy plant flourishing with chlorophyll pigments will reflect

much more NIR light energy than that of an unhealthy plant or soil alone (Sui et al. 2008).

These sensors use this reflectance data for discrimination between soil and vegetation.

Figure 2.4: Reflectance of vegetation and soil over di↵erent wavelengths

Figure 2.4 shows the percentage of light reflected o↵ soil and vegetation over di↵erent light

wavelengths. Observing the ’green vegetation’ line shows a 50% reflectance in the NIR

wavelength band. The red line represents ’soil’ reflectance. The graph clearly indicates

a distinct reflectance di↵erence between soil and vegetation, 10-20%, in this NIR (0.7-

1.1 µm) band and 10-30% di↵erence in the mid-infrared band (1.5-2.5 µm). Typically a

spectral sensor will use this reflectance intensity as a threshold to discriminate vegetation

from soil.

Imaging Sensors and Machine Vision

Research into the use of a low cost imaging sensor using machine vision algorithms/tech-

niques to classify crop and weeds based on leaf properties such as size, shape, colour and

texture, seems promising. High spatial resolution is possible with images captured from

high-resolution digital cameras. Such technology has the potential to discriminate weeds

both in crop and in fallow paddocks and would reduce the cost of herbicides, human labour

and environmental impacts. These benefits are maximised since this technology can be
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used in crops, thus herbicide reduction is possible during the several herbicide applica-

tions necessary throughout crop development. Computer vision could assist in improving

the IWM strategies in the future (Paap 2014). Machine vision algorithms require high

processing power which limits vehicle speed. However, as processing technology develops,

this limitation will gradually dissipate.

Steward & Tian (1999) developed a vision-based system which segmented vegetation

and estimated weed density in the inter-row region. Utilizing six di↵erent image filters

they were able to achieve promising discrimination. These trials were conducted under

controlled lighting conditions with none of the associated time constraints from real time

analysis. Their results indicate, with future work, this system could meet the challenge

of site specific weed management and weed variability estimation. Tian (2002) designed

a real-time machine vision system to capture images and detect plant density, through

the use of a Bayesian classifier (probability of an event, based on information related to

an event). This system was limited as it was only applied to inter-row application, of a

controlled zone, meaning it was not capable of discriminating weeds from crops when the

crop overhangs into the row.

2.4 Existing Technologies for Mapping Weeds

The most beneficial aspect of mapping weeds is the reduction in herbicide use. For this to

be e↵ective, reliable information on weed population and distribution is required. Weed

mapping is an approach involving the production of a detailed weed map combined with

other meta-data for precision agricultural application, mainly variable rate treatment

maps. This weed map can be integrated with other available information when making

decisions about weed control strategies to increase crop yield and quality (Paap 2014).

Mapping can be achieved through either human observation or remote sensing. Human

observation is time consuming, ine�cient and labour intensive. Thus remote sensing is a

more viable option. Remote sensing can produce weed maps where patches of weeds are

of su�cient size, however, is limited in spatial resolution and requires considerable time

and expense for image acquisition and processing (Swinton 2005).

Proximate sensing is an alternative option to remote sensing. It has the capabilities for

real-time detection and spot spraying of weeds. Proximate sensing features high spatial

resolution and with the aid of artificial lighting, can illuminate the ground and determine
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the spectral properties of crop and weeds.

Figure 2.5: Weed map created using vision technology (Tillett and Hague 2014)

A four year study was undertaken by Timmermann, Gerhards & Kuhbach (2003) to

determine the e↵ects of site specific weed management in crops. Weed maps were manually

created by segmenting the paddock into grids and sampling weed density within. An

example of a weed map is shown in Figure 2.5, with higher weed densities being shown in

red. The map provided detailed data for site specific weed management and as a result,

an average of 54% herbicide was saved over the 4 year period. While this study does not

present a viable method for creating weed maps, the outcome shows a significant decrease

in herbicide use as a result of using the weed map.

(Sui et al. 2008) developed a weed mapping system based on the spatial properties of

the weeds. This system was designed to collect weed-intensity data against spatial infor-

mation. This system included WeedSeeker PhD600 sensor modules for weed detection, a

GPS receiver for measuring location and a data acquisition and processing unit to col-

lect and process weed data and spatial information. The system was field evaluated in a

commercial cotton field for 2 years. They found the system performed well in collecting

weed data in conjunction with spatial information for creating weed maps of the field.

2.4.1 Weed Mapping using Computer Vision

Computer vision algorithms for use in agricultural weed detection has been an area of

interest in recent years. (Schuster et al. 2007) developed an algorithm to detect weeds
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and map them automatically using computer vision algorithms and a low cost camera.

The weed mapping was created by taking images of weeds from a moving tractor (speed

1-2km/hr). Each frame corresponded to 54cm x 40cm on the ground. These images were

then transferred to a computer and post-processed using a plant discrimination algorithm

that was developed. To validate the algorithm 60 test frames were processed. The research

concluded the algorithm generally worked well in discriminating monocotyledonous and

dicotyledonous weeds demonstrating the applicability of future automatic weed mapping,

using machine vision and image processing. However, development of a real time working

application would require higher than available processing power.

2.5 Method to Validate Spot Spraying

The presentation of data by (Gönen 2006) was determined to be an appropriate method

to display the data collected during the trial phase of this project. This data will be

recorded, analysed and sorted as dichotomous outcomes (positive/negative results). This

includes the true positives, true negatives, false positives and false negatives. This data

will be sorted into a table similar to that shown in Figure 2.6. This information will be

useful in evaluating the behaviour of the sensors after the trial has been completed. From

this table, statistical information can be calculated, which include specificity, sensitivity,

negative prediction ratio and positive prediction ratios.

Figure 2.6: Standard method of tabulating accuracy of the binary predictor

2.6 Literature Review - Summary and Discussion

Robotics in agriculture have the ability to revolutionise the agricultural industry by chang-

ing the way farmers think and as a result change farming practices. SwarmFarm’s concept

is to replace traditional farming practices with a fleet of small lightweight robots that can

move slower and be more accurate in their task. However, robotics in agriculture can only

be as e↵ective as the sensors and implements available. There is no advantage in devel-

oping agricultural robots to change farming systems if the attachments and sensors have
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not yet been validated. After reviewing available literature it became obvious there was

a need to validate the accuracy of this technology. Precision spraying development needs

to be at least as e↵ective as current blanket herbicide use, or it will not be implemented

by farmers as an e↵ective method of weed control. Currently there is no quantitative

data on the performance and behaviour of commercial weed detection sensors. Therefore,

a research idea was identified that could close this gap and provide performance data of

these sensors to farmers.

The trial phase of this project will involve the use of commercially available spectral

sensors (WeedSeeker and WEEDit) to determine the accuracy and repeatability of the

di↵erent weed detection platforms through the development of a module to capture images

instantaneously when weeds are detected. Computer vision algorithms will then be fused

with manual sorting of the images to ground truth the repeatability and accuracy of the

sensor’s behaviour.

Through the literature review, available weed detection platforms were introduced which

have not been validated for accuracy and therefore, this project aims to develop a protocol

and associated test hardware that has the ability to close this gap in the industry. These

gaps include information on precision agriculture spray foot prints and ground truthing

methods to validate commercial weed detection methods. Therefore, software develop-

ment is necessary in this project to enable the above objectives to be met, including

interfacing, recording and generating weed maps.



Chapter 3

Hardware Development of Weed

Validation Module

This chapter outlines the steps taken to design and develop the module that would be used

to validate the weed detection platforms. The selection of the hardware is also outlined

within this chapter. The methods used to interface the module being developed to the

weed detection platforms are also outlined and discussed.

The module being developed will be referred to as WeedCheck. The WeedCheck module

will interface to both the WeedSeeker and WEEDit systems. When a weed is detected,

the WeedCheck module will instantaneously trigger a camera to capture a frame of the

ground. These frames will be used to determine if there was actually a weed present when

the sensor reacted. The images will also be geo-tagged.

3.1 Idea Initiation

Prior to selecting any hardware it was important to clearly define how the WeedCheck

module would function.
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Figure 3.1: Block Diagram of WeedCheck Idea

When a weed is detected by the commercial weed detection systems, WEEDit and Weed-

Seeker, it is essential this trigger be instantaneously recognised by WeedCheck. The sim-

plest technique which enables this to occur is through the use of a 12V signal that triggers

the spray nozzle as a digital input into a development board. The WEEDit system has the

potential to interface through serial connection and therefore serial communication should

also be viable from the selected board. At the instant a weed is detected the camera must

be triggered remotely to capture 2 frames of the ground. This repetition is required to

minimise the risk of missing the weed in the image. To enable geo-tagging weeds and

photographs, the development board will need to have ROS framework installed to com-

municate with the GPS on the SwarmBot. A block diagram of the WeedCheck module

is provided in Figure 3.1, which showing the types of hardware used in the design.

3.2 Hardware Selection

This stage of the project involved choosing the appropriate hardware for the WeedCheck

module. This selection included both an appropriate development board for running the

program and a sensor for capturing real time images of weeds when they were detected

by the spot spraying technology.

3.2.1 Development Board Requirements

The selection of an appropriate development board was primarily based on integration to

the SwarmBot and weed detection platforms (WEEDit and WeedSeeker). It was also im-

portant for the selected board to have digital inputs and serial communication. Table 3.1

shows the specific requirements needed for the development board so the WeedCheck

module can operate and interface to the weed detection platforms.
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Table 3.1: Requirements for Development Board

Operating System Linux

Digital Communication I/O Pins

Serial Port USB or RS232

Software Requirements ROS

Networking Capabilities Ethernet or WiFi

Storage >16GB

Raspberry Pi

After consideration, the Raspberry Pi 3 (RPi) was selected and purchased for a feasibility

analysis for this project. RPi is a low cost, credit card sized single board computer, shown

in Figure 3.2. RPi is a well known board primarily used for computer vision applications

as it is python based, and OpenCV can be installed very easily. The SwarmBot platform

used for testing in this project, operate using a framework known as ROS. It is essential

the selected board can both support and permit this framework to be installed. The RPi

runs an operating system known as Raspbian which does supports ROS installation from

source/ binary files.

Figure 3.2: Raspberry Pi 3 (Raspberry Pi 2016)

Further research into installing ROS frameworks onto RPi Raspbian operating system

proved this to be a very di�cult task. To overcome this, the Raspbian operating system
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was removed and Linux MATE 16.06 was installed. This enabled full integration to the

SwarmBot platform. Not only was ROS installed much easier, but it also enabled access

to custom message types from the SwarmBot without being required to write drivers.

The benefits of this are numerous, for example with geotagging images. The locomotion

package on the SwarmBot uses a NatSavFix message to publish the vehicle’s GPS position.

The ability to subscribe to this message directly from the RPi is important for geotagging

images and the weed mapping portion of this thesis. Another benefit of installing the full

framework of ROS, is that the GPS driver being used will communicate with any GPS

that outputs an NMEA sentence. This means the module can be interfaced easily to GPS

on traditional tractors.

Table 3.2: Hardware Specifications for Raspberry Pi 3

Operating System Rasbian (configurable to run Linux)

Digital Communication
I/O Pins

Camera Interface

Serial Port 4 x USB

ROS Installable

CPU 1.2GHz quad-core ARMv8

Network Capabilities Ethernet and WiFi

Storage up to 128GB

Table 3.2 shows the hardware features and specifications of the RPi development board.

The Ethernet port allows the RPi to be networked with the SwarmBot’s router. Ethernet

is needed for ROS to communicate with the ROS Master on the SwarmBots. Other

benefits of the Ethernet port is it enables remote access through SSH into the WeedCheck

module for testing and software development in the field. The RPi’s operating system is

installed on its Micro SD card. A 32GB card was used to ensure ample free storage for

the data collection phase. As discussed above, GPIOs are required for interfacing to the

WeedSeeker and the USB port can be used for communication to the serial port on the

WEEDit. The RPi camera interface is a very easy and simple way to integrate a digital

image sensor onto the board. The CSI (camera interface) port on the RPi will used for

imaging.
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3.2.2 Image Sensor Requirements

The image sensor was selected on its capability to interface with the chosen development

board, as well as the camera specifications such as frame rate and image quality. The

data collection phase of this project will take place outdoors in a sunny environment.

It is therefore imperative the camera settings can be adjusted for outdoor use to remove

unwanted brightness and white balance errors. The camera shutter speed should be easily

altered to remove unwanted motion blur. Table 3.3 shows the requirements of the image

sensor for the WeedCheck module.

Table 3.3: Image Sensor Requirements

Frame Rate 2 fps

Megapixel 5

Sensor Adjustment Manual through program

Balance Adjustment Outdoor setting

Trigger Remote

Pi Camera

The Pi Camera is a sensor specifically designed for use with the RPi. It is a small and

robust sensor that features a CSI ribbon to connect easily with the CSI port on the RPi

for instant interfacing.

The camera sensor is a fundamental component of the WeedCheck module being developed

in this project. The camera sensor must be capable of capturing high quality images in

an outdoor environment in such a way that the marker dye can be distinctively seen in

the images. It is beneficial to use this particular camera module as it was specifically

designed for the RPi and can be triggered easily from a python script.

The sensor specifications are showed below in Table 3.4.
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Table 3.4: Pi Camera Specifications

Sensor Sony IMX219 sensor

Frame Rate up to 30 fps

Megapixel 8

Pixels 3296 (H) x 2512 (V)

Sensor Adjustment Manual through program

Balance Adjustment Outdoor setting

Trigger Remote

Connector CSI connector

Figure 3.3: PiCamera (Raspberry Pi 2016)

Table 3.4 shows the hardware specifications of the Pi Camera. This camera features

the necessary requirements shown above in Table 3.3. The RPi development board and

camera module, shown in Figure 3.3, meet the hardware requirements for this project,

and were therefore selected for use in developing the WeedCheck module.

3.3 WeedCheck Module Development

The WeedCheck module consists of a simple design comprising of a RPi and a camera

module mounted inside a plastic box. The purpose of the WeedCheck module is to validate

existing and developing technology, thus it must be able to interface with any weed

detection platform and capture images of the weeds as they are detected. It is therefore

essential to ensure the module can easily interface to any weed detection platform. For

this project two WeedCheck modules were developed, one for the WeedSeeker and one
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for the WEEDit. It is possible for the WEEDit platform to interface the same way as the

WeedSeeker, through using the 12V signal to the solenoid as a digital input. However, for

this project it was decided the WEEDit module will be interfaced via serial to demonstrate

the simplicity and versatility of the module. Also nozzle activity across the whole boom

is of interest later in this project in Chapter 4.6.

Figure 3.4 shows the development of WeedCheck. The RPi was mounted inside a plastic

box and a hole was drilled in the lid for the camera lens to fit into as seen in Figure 3.5.

The module is powered via 5V USB power source. A hole was also drilled giving access

to the Ethernet adaptor on the RPi.

Figure 3.4: WeedCheck module de-

velopment

Figure 3.5: WeedCheck Module

The WeedSeeker and WEEDit platforms will use di↵erent communication protocols when

interfacing to the WeedCheck module. The WEEDit console supports serial communica-

tion through a fully bu↵ered RS232 port. Therefore, sending a polling serial request to

the console, will return a string of nozzle activity. This will be used to determine when

the WEEDit detects a weed. However, the WeedSeeker does not support serial commu-

nication. Therefore, to interface with the WeedSeeker modules, the 12 volt signal that

triggers the nozzle solenoid will be tapped into. This signal will be used as a digital input

into the WeedCheck module.
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3.3.1 Interfacing to WeedSeeker

The WeedSeeker platform interfaces to the WeedCheck module through a series of digital

inputs. When a weed is detected by the WeedSeeker camera module, a 12V signal is sent

to the nozzle solenoid to trigger it. The RPi’s digital input is 3.3V, meaning the 12V

signal needs to be stepped down to 3.3V before it can be used to trigger the RPi digital

input to high. To achieve this, a voltage divider module was built for each digital input.

Using two series resistors and the 12V input voltage, a 3.3V output was created. This

was achieved using equation 3.1 below.

V out = V in.

R2

R1 +R2
(3.1)

Using a R1 = 2.7K ohm and R2 = 1K ohm resistor and an input voltage of V
i

n = 12V a

voltage of V
o

ut = 3.24 V was obtained.

Figure 3.6: Voltage Divider Diagram Figure 3.7: Voltage Divider Module

Figure 3.6 shows a schematic diagram of the voltage divider, whereas Figure 3.7 shows

the module built to drop three 12V inputs voltages to three 3.3 V digital input.
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Figure 3.8: WeedSeeker Hardware Diagram

Figure 3.8 shows the design hardware for the WeedCheck module to interface with the

WeedSeeker platform. Essentially the WeedCheck module listens for detected weeds via

the GPIO pins on the RPi and triggers the camera at every detected weed occurrence.

3.3.2 Interfacing to WEEDit

The WEEDit platform interfaces to the WeedCheck module through a USB to RS232

serial converter. The WEEDit user console has a serial port available for use. Using

serial connection enables all communication to be done within the software, and thus

minimal hardware is required for these modules to interface.

Figure 3.9: WEEDit Hardware Diagram
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Figure 3.9 shows the design hardware for the WeedCheck module to interface with the

WEEDit platform. The communication protocol and associated software will be discussed

in Chapter 4.

3.4 Boom Configuration

For the trial phase of the project two SwarmBots will be used fitted with a RTK GPS. Both

SwarmBots will have 8 metre booms attached, however, one will be fitted with WeedSeeker

modules and one will be equipped with WEEDit modules. These have slightly di↵erent

configurations and are discussed below in Sections 3.4.1 and 3.4.2.

3.4.1 WeedSeeker Boom

• 1 WeedSeeker Camera Module per 380mm on the boom, mounted at 700mm high.

Mounting starts in the centre of the boom.

• 1 Nozzle is controlled by each Camera Module, and mounted directly behind it.

• Nozzles are spaced 100mm behind the camera module at a height of 700mm from

the ground.

• Nozzles are TeeJet 6503E.

• A total of 21 WEEDit Camera Modules and 21 Nozzles are fitted on the boom.

3.4.2 WEEDit Boom

• 1 WEEDit Camera Module per 100mm on the boom, mounted at 1100mm high.

Cameras are mounted 500mm either side of the boom centre.

• 5 Nozzles are controlled by each Camera Module, spaced at 20cm.

• Nozzles are spaced 450mm behind the camera module at a height of 700mm from

the ground.

• Nozzles are TeeJet 4003E.

• A total of 8 WEEDit Camera Module and 40 Nozzles are fitted on the boom.
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3.5 Installation

As stated above in Section 3.4.1 and 3.4.2 the WeedSeeker and WEEDit modules are

mounted in a slightly di↵erent configuration. However, the nozzle height for both systems

are the same at 700mm from the ground. The data collection phase of this project will

involve a WeedCheck module mounted on both the WeedSeeker and WEEDit boom.

The WeedCheck module was mounted at the height of the nozzles, which gave the same

Ground Sample Distance (GSD) of 1 metre, on both booms. One WeedCheck will be used

per boom, and thus only a 1 metre section of the boom will be analysed. The WeedCheck

module was mounted in the centre of this 1 metre section. It was found that a height of

700mm gave a 1000mm ground sampling distance. The width of this field of view (FOV)

is important to ensure the WeedCheck camera has the same FOV as the weed detection

modules being assessed, to ensure the weeds detected can be captured by the WeedCheck

camera.

WEEDit uses one sensor to detect the 1000mm wide ground spacing which can indepen-

dently trigger five nozzles spaced 200mm apart. Therefore, 5 nozzles and 1 camera were

able to be tested. The WeedSeeker has one camera per nozzle at a spacing of 380mm.

Therefore, only 2 nozzles fit within the 1000mm FOV of the WeedCheck camera. This

being said the activity of three nozzles were still recorded as it gave a similar ground

sample as the WEEDit for overlaying data sets for the weed mapping. Figure 3.10 and

Figure 3.11 illustrate the mounting positions of the WeedCheck module for the di↵erent

boom configurations.

Figure 3.10: WeedCheck installation onWeed-

Seeker Boom

Figure 3.11: WeedCheck installation on

WEEDit Boom
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Figure 3.12 shows the ground sample width being determined for the WeedCheck module.

Figure 3.12: Determining Ground Sample Width

3.6 Summary

The hardware development chapter introduced the WeedCheck module and its hardware

specifications. Two WeedCheck modules were developed for this project, and thus this

chapter outlines and discusses the development of each WeedCheck module. The only

di↵erence in the two modules being developed was the method of interfacing to the weed

detection platforms. The WEEDit will user serial communication to determine when

weeds are detected, whereas the WeedSeeker will use the 12V signal from the nozzle

solenoid to trigger a digital input on the RPi. The hardware design for both methods of

interfacing were shown in this chapter.



Chapter 4

Software Development

This chapter outlines the steps taken to design and produce the software of the WeedCheck

module. This includes an outline of the entire software developed for this project. The

software designed and implemented in this chapter aims to meet the software requirements

of the project objectives.

The software can be broken into seven sections which are shown in Figure 4.1 as a simple

block diagram of the WeedCheck system. These sections are; file management, weed

detected, SwarmBot messages, trigger camera, record file, weed mapping and finally image

analysis.

Figure 4.1: Block Diagram of WeedCheck Software

The RPi was developed for use with the Python programming language, which is conve-

niently compatible with ROS. Rospy is a pure Python library with an API which enables
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python programs to easily interface with ROS. The software for the WeedCheck module

was therefore written using Python and rospy. As stated above in Chapter 3 the WEEDit

and WeedSeeker interface di↵erently to the WeedCheck module. Keeping this in mind, the

core program of the WeedCheck module was kept the same, which is shown in Figure 4.2.

Figure 4.2: WeedCheck Program Flow Chart

On initialisation of the program a directory with the date and time is created which

becomes the working directory. The software then looks for GPS messages being published

from the SwarmBot. The software will not continue past this point if there is no GPS

data. Once subscribed to these messages, the localisation variables are updated five times

a second. The software is actively looking for weed triggers, either through the GPIO

pins or the serial connection. When a weed is detected, a flag is set which will trigger the
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camera to instantaneously take two frames to capture the weed. A new line will then be

added to the text file with the robots GPS position and orientation. The flag will reset

once the signal drops back to low again. The purpose of the flag is to ensure the camera

is only triggered once per weed.

After data is collected, the images will then be processed and a weed map will be created.

The post processing will take place in MATLAB. The data will be sorted into true posi-

tives, true negatives, false positives and false negatives. This analysis will be undertaken

using a combination of computer vision and manual hand labelling.

4.1 File Management

The trial phase of this project involves an abundance of images being collected. It was

therefore imperative for a robust file management system to be created to ensure both

the images and text files were named and stored in correct directories to ensure no data

was accidentally overwritten or deleted. The simplest way to do this was to create a time

stamped directory inside a date stamped directory. On initialisation of the program, the

software checks to see if a date directory exists, then creates one if the test is false, and

places a time stamped directory inside that folder. This is performed using a python

function called os.path.join and os.path.isdir, which is shown below in Listing 4.1. Once

this directory has been created it becomes the current working directory. This means

every time the program is run a di↵erent working directory will be created.

1 d i r = os . path . j o i n ( ’ /home/ pi1 / n o z z l e a c t i v i t y ’ , date ) # Sets Date d i r e c t o r y

2 d i r = ( os . path . j o i n ( d i r , ’%s ’ ) % ( time ) ) # Sets Time Direc to ry

3 t e s t = os . path . i s d i r ( d i r ) #Tests i f d i r e c t o r y e x i s t s

4 i f t e s t == False :

5 os . makedirs ( d i r ) # I f i t doesnt , i t makes i t

Listing 4.1: File Managment Program Listing

During initialisation of the program a .txt file is created which is time and date stamped.

This file is also initialised with headings, shown in Figure 4.3, for easy importing data

into MATLAB for post processing.

Figure 4.3: Data file headings



4.2 WEEDit Serial Publisher 36

4.2 WEEDit Serial Publisher

As stated above the WEEDit interfacing was achieved through serial communication. The

serial communication with the WEEDit console is based on polling. When the WEEDit

console receives certain messages it responds by sending strings of information back over

the serial. For this to be achieved it was necessary to write a serial driver which would

send high frequency messages to the console and store the returned string as a published

node in ROS. For connection to the external tracking system, only three lines are needed:

TX, RX and Ground. The configuration of the RS232 port is as follows: 38400 baud,

8N1, no handshake.

The poll request was sent over the serial connection at a sample rate of 5 hertz. The poll

request has the format shown in Figure 4.4.

Figure 4.4: WEEDit Poll Request

The WEEDit console will then reply to the Poll request by returning a status string of

nozzle activity. The returned string has the following format shown below in Figure 4.5.

Figure 4.5: WEEDit Nozzle Activity Publisher

The activity of every nozzle in the system is represented in Binary string. Binary 1

indicates the nozzle is on, and thus a weed was detected, and binary 0 represents no weed.

Every time the serial returned a nozzle activity string, the nozzle activity published node

in ROS was updated. Figure 4.6 shows the entire nozzle string being printed to a Linux

terminal during testing serial communication.
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Figure 4.6: WEEDit Nozzle Activity Publisher

4.3 Subscribe to SwarmBot Messages

The Swarmbot’s locomotion package publishes position information at a rate of 5 Hertz.

This information is available in ROS via a published node labelled robot pose in the

rostopic list on the SwarmBot. The WeedCheck module must subscribe to this robot pose

node to capture the position data for geo-referencing images and the nozzle activity during

the trial. Subscribing to this node is remarkably simple using a ROS listener node.

Every time the robot pose node republishes data, the listener node will capture the data.

This was incorporated into the main function for the WeedCheck module to update the

locomotion variables in the software every time they are published. A snippet of the

program is shown below.

1 de f l i s t e n e r ( ) :

2

3 rospy . i n i t n od e ( ’ l i s t e n e r ’ , anonymous=True )

4 rospy . Subsc r ibe r ( ’ / SwarmbotLocal i sat ion / robot pose ’ , PoseStamped , c a l l b a ck

)

5 rospy . Subsc r ibe r ( ’ / SwarmbotPlatformControl ler / w e e d i t n o z z l e a c t i v i t y ’ ,

w e e d i t n o z z l e a c t i v i t y , c a l l b a ck weed i t )

6 rospy . sp in ( )

7

8 i f name == ’ ma in ’ :

9 l i s t e n e r ( )

Listing 4.2: Subscribing to SwarmBot GPS Messages
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Line 3, in the Listing 4.2 above, is where the listener function subscribes to the GPS

messages from the SwarmBot. These messages are stored in memory, and a function

named callback is called. The callback function is where the software determines if a weed

is detected and whether or not to record data based on this finding. Figure 4.7 below

shows the localisation parameters being printed to the Linux terminal during testing of

the program.

Figure 4.7: Robot Localisation Subscriber Testing

4.4 Determining if a Weed is Detected

For simplicity purposes it was decided individual WeedSeeker and WEEDit launch files for

the WeedCheck module would be created. This means the user needs to simply launch

the relevant software. Once launched the software constantly checks for any incoming

weed activity, through either serial or GPIO pins.

Every time the callback function is called, a time stamp is assigned to a global variable in

the main program which later stamps the images and text files for easy sorting of data.

The WEEDit launch file subscribes to both the robot pose and weed it nozzle activity

published ROS nodes. This 40 bit binary string contains ones and zeros, where ones

indicate the nozzle is active. When the nozzles of interest (located within the 1m section

of boom) change from 0 to 1 the camera is triggered and position information is stored.

The WeedSeeker outputs a 12V signal when a weed is detected which triggers the nozzle

solenoid. This signal was tapped into to trigger the WeedCheck module. This tapped

signal travels through the voltage divider to set a digital pin to high, which indicates to
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the WeedCheck module a weed has been detected. This high digital pin then triggers the

camera to capture an image and stores the position information.

In summary, the WeedCheck software stores an array called nozzle activity which contains

binary information on the nozzle activity. Due to the di↵erent spacing of the WeedSeeker

and WEEDit modules the nozzle activity array are di↵erent sizes; WeedSeeker is a 3x1

and WEEDit is a 5x1 element array. Figure 4.8 shows the nozzle activity array for the

WEEDit region of interest being printed to the Linux terminal during testing.

Figure 4.8: WEEDit Region of Interest Nozzle Activity String

When a 1 appears in the Binary string of the nozzle activity array, it indicates a weed is

detected and a weed flag is set, which triggers the camera and the data file is updated

with a new line of information. This includes the time stamp, the weed number, nozzle

activity string, the latitude, longitude and heading of the robot. The format of this text

file is tab delimited so it can be very easily imported and post processed in MATLAB.

The program waits for the weed flag to toggle before entering the loop again. This ensures

only one location and one set of images are taken per weed. An example of a data file

from the field trial has been included, seen in Figure 4.9.
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Figure 4.9: WeedCheck Data File

4.5 Trigger Camera

As stated in Section 4.4 the nozzle activity array contains a binary string of the nozzle

activity. When there is a binary 1 in this array, it indicates a weed has been detected.

The program therefore looks at the nozzle activity array to determine whether or not to

trigger the camera. Listing 4.3 shows an example of the software logic. On line 4 the

program tests whether the 15th element of the nozzle activity string is active. If it is and

the pin flag is set to 0, which it is by default, then the pin flag and image flag will be

set high. When the image flag is high, line 16 of the program returns true and the data

record loop is entered. When the 15th element of the nozzle activity string is set back

to 0 the pin flag will reset. This will ensure the camera is only triggered once per weed

detected.

1 #Def ine nozz l e a c t i v i t y array

2 n o z z l e a c t i v i t y = i n f o . c h ann e l a c t i v i t y

3 # Set image and pin f l a g s

4 i f n o z z l e a c t i v i t y [ 1 5 ] == 1 :

5 i f PIN15 FLAG == 0 :

6 camera number = 1

7 PIN15 FLAG = 1

8 IMAGE1 FLAG = 1

9 e l s e :

10 IMAGE1 FLAG = 0

11 e l s e :

12 PIN15 FLAG = 0
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13 IMAGE1 FLAG = 0

14

15 #I f Weed i s detec ted and image f l a g i s s e t to 1 , en te r data r e co rd ing loop

16 i f IMAGE1 FLAG == 1 or IMAGE2 FLAG == 1 or IMAGE3 FLAG == 1 or IMAGE4 FLAG

== 1 or IMAGE5 FLAG == 1 :

17

18 ente r data loop ( )

19 camera . capture ( os . path . j o i n (GPS dir , ’%d camera %d %s Frame%d . jpg ’ ) % (

weed capture number , camera number , nozz l e t ime , 1) )

20 camera . capture ( os . path . j o i n (GPS dir , ’%d camera %d %s Frame%d . jpg ’ ) % (

weed capture number , camera number , nozz l e t ime , 2) )

21 f = open ( GPS f i le , ’ a ’ )

22 f . wr i t e ( ( ’%s \ t%d\ t%d\ t%d\ t%d\ t%d\ t%d\ t%f \ t%f \ t%f \n ’ ) % ( nozz l e t ime ,

weed capture number , n o z z l e a c t i v i t y [ 0 ] , n o z z l e a c t i v i t y [ 1 ] ,

n o z z l e a c t i v i t y [ 2 ] , n o z z l e a c t i v i t y [ 3 ] , n o z z l e a c t i v i t y [ 4 ] , utmx , utmy ,

yaw) )

23 f . c l o s e ( )

Listing 4.3: Camera Trigger Code

Line 19 and 20 of Listing 4.3 is where the camera is triggered. Two frames are taken,

which will be stitched together later for a larger ground sample distance. Line 22 is where

the text file is updated with GPS information.

4.6 Weed Position Transforms

This phase of the project took place after data collection and was completed by post

processing the .txt data file. A high GPS precision was obtained through tagging the

images with the Real Time Kinematic (RTK) Global Positioning System (GPS) on board

the SwarmBot. This GPS data is available from the .txt file that is written every time a

weed is detected.

The GPS data being recorded into the .txt file is the front chassis position of the robot.

It is therefore imperative for an accurate weed map, to transform the points back to the

nozzle position. Figure 4.10 shows this concept quite simply. To achieve this transforma-

tion Universal Transverse Mercator (UTM) projection must be used. UTM is similar to

GPS coordinates, however, it is a flat representation of the earth surface rather than a

spherical representation. UTM uses a 2-dimensional Cartesian coordinate system to give
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locations and is measured in metres. This means using UTM the x and y di↵erence can

be subtracted from the chassis position to obtain the weed location.

The robot pose node contains the localisation data in a UTM frame and therefore no

transform is needed at this point. However, the heading of the robot needs to be taken

into consideration to ensure the transform to the nozzle position is correct.

Figure 4.10: Weed position calculation

MATLAB was used to complete the transforms. Firstly a MATLAB program was written

to simulate the transform to ensure it was correct. Figure 4.11 shows the output of the

software. The green dot in the centre is the robot chassis position, and the blue circles

down the bottom are the position of each nozzle on the WEEDit boom. As you can

see from the figure, the distance in the y direction is constant for all nozzle positions,

however, the x distance changes for each nozzle. Listing 4.4 indicates how each vector

was calculated for di↵erent x with a constant y value. Line 5 in the listing shows the

vector from chassis position to nozzle position, denoted by the red line in Figure 4.11.

This vector is rotated through the yaw of the robot, in this case 0 degrees, and then

plotted.

1 xDistance = � 3 . 9 : 0 . 2 : 3 . 9 ;

2 yDistance = �2;

3

4 f o r i = 1 :40

5 V( i ) = [�xDistance ( i ) ; �yDistance ] ;

6 end

Listing 4.4: Transform
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Figure 4.11: Nozzle Positions Transform from SwarmBot Chassis

The simulation transforms were tested and shown to perform correctly for a heading

of zero. Adaptations were needed so the transforms would be calculated correctly for

di↵erent robot headings. This was achieved by altering the script to incorporate a rotation

matrix. This would rotate the vector through the robot heading, before undertaking the

linear translation. This can be seen below in Listing 4.5. Figure 4.12 shows the transform

and rotation of the nozzle positions.

Figure 4.12: Nozzle Positions Transform and Rotation from SwarmBot Chassis
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1 xDistance = � 3 . 9 : 0 . 2 : 3 . 9 ;

2 yDistance = �2;

3 yaw = 40 ;

4

5 f o r i = 1 :40

6 %Def ine Vectors f o r Rotation

7 V = [�xDistance ( i ) ; �yDistance ] ;

8 Rotater = [ cosd (yaw) , �s ind (yaw) ; s ind (yaw) , cosd (yaw) ] ;

9

10 %Weed Pos i t i on Matrix

11 WeedPosition = Rotater ⇤ V;

12 end

Listing 4.5: Transform and Rotation

4.7 Weed Mapping

This section of the project also took place after data collection. Mapping the weed

positions is useful to determine repeatability of the modules in detecting weeds, this can

be achieved by overlaying various weed maps. The aim of this section was to produce

code that would enable the weed positions to be mapped on Google Earth. Keyhole

Markup Language (KML) is an xml notation for expressing geographic annotation and

visualization on two or three-dimensional maps. KML was developed for use with Google

Earth and thus was adopted as the format to plot weeds on Google Earth. There are

various CSV to KML converters online. For this project Earth Point was used (Bill

Clark 2016).

After the nozzle position transformation had been completed, it was necessary to convert

the UTM projected points back into latitude and longitude for use with Google Earth.

This was done using a function in MATLAB. The data was then written to a text file in

a format so it could be uploaded to Earth Point to convert it to KML file. This involved

a .txt file with Latitude, Longitude, Icon, IconScale headings and associated data under

these headings. Listing 4.6 below shows the sample code that creates the text file for

upload to Earth Point. The Icon used here is just a round blob, the colour and size of this

icon can be easily set. The images captured can also be used as the icon, which means

the weed image can be plotted onto Google Earth at its actual position.
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1 Icon = 41

2 I conSca l e = 0 .5

3 IconColor = ’ DodgerBlue ’

4 % Write KML F i l e f o r Weed Map

5 f i d = fopen ( ’WEEDitCameraOverlay fullT2 . txt ’ , ’w ’ ) ;

6 f p r i n t f ( f i d , ’%s \ t%s \ t%s \ t%s \ t%s \ t%s \n ’ , ’ Lat i tude ’ , ’ Longitude ’ , ’ De s c r ip t i on ’ ,

’ Icon ’ , ’ I conSca l e ’ , ’ I conColor ’ ) ;

7

8 f o r i = 1 : s i z e ( l a t , 1 )

9 f p r i n t f ( f i d , ’ %12.12 f \ t%12.12 f \ t%f \ t%f \ t%f \ t%s \n ’ , l a t ( i ) , lon ( i ) ,

De s c r ip t i on ( i ) , Icon , IconSca le , IconColor ) ;

10 end

11 f c l o s e ( f i d ) ;

Listing 4.6: Text File Ouput for Earth Point KML

As discussed elsewhere the WeedCheck program only looks at a 1 metre section of the

boom. However, a secondary launch file was also written which simultaneously captures

nozzle activity for the entire WEEDit boom. This enabled a full scale weed map to

be produced of the area covered. The nozzle activity will be denoted by green blobs

to indicate weed locations on the map. The entire array of nozzle activity can now be

recorded using a sample rate of 5 hertz, giving a very fine ground resolution. This will

enable the development of a full swath weed map for the WEEDit boom, as seen in Figure

4.13. This process was not carried out for the WeedSeeker platform as it would require

18 additional voltage dividers to drop the 12V signal from the remaining Weed Seeker

cameras through the voltage divider.
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Figure 4.13: Sample Weed Map from Entire Length of WEEDit Boom

4.8 Image Stitching

This section of the software was completed after data was collected. As stated above, two

frames are captured for every weed detected, this was to ensure there were no timing errors

and the weed can be viewed within the frame. This software step included stitching the

two frames together to generate one image. This was completed using open source code

written with OpenCV by PyImageSearch’s Adrian Rosebrock (Adrian Rosebrock 2016).

Using the open sourced code was very simple. A script was written which loops through

all the images in the working directory and calls the image stitcher to stitch the two frames

together. The resulting image was then labelled and stored in a separate directory.
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Figure 4.14: Frame 1 Figure 4.15: Frame 2

Figure 4.16: Stitching Figure 4.17: Stitched Frame

Figure 4.14 - 4.17 shows the process of stitching the frames together. Figure 4.14 and

Figure 4.15 are the two frames taken during data collection. Figure 4.16 shows the

common points found between the two frames, and finally Figure 4.17 shows the resulting

image after the stitching process is complete.

Comp

4.9 Computer Vision Algorithm Development

The development of the computer vision algorithm took place after the data collection

phase of this project. This section refers to the techniques used to construct the com-

puter vision algorithm used in image classification and sorting. It is important to know

whether a weed is present in the captured frame and therefore a computer vision algo-

rithm was implemented to automatically detect weeds within the frame. The computer

vision algorithm was implemented using the computer vision toolbox in MATLAB.
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Figure 4.18: Frame used to determine computer vision thresholds

Thresholding pixel values in di↵erent colour channels and colour spaces proved to be a

robust method for detecting whether weeds were present within the frames. The first step

in this process was to find which colour spaces and associated channels were suitable for

use. This was completed using MATLAB computer vision code from (Byles 2016). An

image was selected from the collected data, and the RGB and HSV colour spaces were

plotted using a surf plot in MATLAB. Figure 4.18 was the image used for the thresholding

analysis.

Figure 4.19: RGB Red Pixel Figure 4.20: RGB Green Pixel

Figure 4.21: RGB Blue Pixel Figure 4.22: HSV Hue Pixel
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Figure 4.23: HSV Saturation Pixel Figure 4.24: HSV Value Pixel

Figure 4.19 - 4.24 show the surf models generated from MATLAB. Observing these Fig-

ures it is obvious the shadow from the boom has a negative e↵ect on most of the colour

channels. The Hue colour channel, shown in Figure 4.22, shows the weed quite promi-

nently in the top of the frame. This indicates that Hue may be a good channel for colour

thresholding. Figure 4.20 shows some very high pixel values in the region where the plant

is in the frame. This is logical because the weed is green, and the soil is brown and thus

the weed would have a higher green intensity.

Using MATLAB skeleton code from (Byles 2016), a pixel threshold algorithm was created.

This was achieved by using the surf plots to find appropriate thresholding values. The

pixels range from 0 which is black to 255 which is white. Listing 4.7 shows sample code

of the thresholding.

Various computer vision techniques were used when performing the thresholding on the

test image. The steps were:

• Sets Hue channel pixel to 0 if the Hue value is below 0.15 or above 0.25. This can

be seen in Figure 4.25 below.

• Converts the Hue array to a binary image, seen in Figure 4.26.

• Remove the small objects from the binary image, using bwareaopen function in

MATLAB. This can be seen in Figure 4.27.

• Sets the Hue channel pixel to 0 if the Blue channel has a value higher than 150 and

the pixel in the Hue array is a 1.

• Sets Hue channel pixel to 0 if the Red, Green or Blue channels are all below 100.

• Sets the Hue channel pixel to 0 if the Green channel value is below 150. The result

of this thresholding can be seen in Figure 4.28.
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• The image dilated to make blobs larger, using imdialate function in MATLAB. This

can be seen in Figure 4.29 below.

• Places a box around the biggest blob detected in the frame, using regionprops in

MATLAB. The final image can be seen in Figure 4.30.

1

2 f o r i = 1 : s i z e (Hue , 1 ) ;

3 f o r j = 1 : s i z e (Hue , 2 ) ;

4 i f (Hue( i , j ) < 0 .15 | | Hue( i , j ) > 0 . 25 ) ;

5 Hue( i , j ) = 0 ;

6 end

7 end

8 end

9

10 Hue = imbinar i z e (Hue) ;

11 Hue = bwareaopen (Hue ,5000 ) ;

12

13 f o r i = 1 : s i z e (Hue , 1 ) ;

14 f o r j = 1 : s i z e (Hue , 2 ) ;

15 i f (Hue( i , j ) == 1) && Blue ( i , j ) >150;

16 Hue( i , j ) = 0 ;

17 end

18

19 i f Red( i , j ) < 100 && Green ( i , j )<100 && Blue ( i , j )<100

20 Hue( i , j ) = 0 ;

21 end

22 i f Green ( i , j )<150

23 Hue( i , j ) = 0 ;

24 end

25 end

26 end

27

28 Hue = imd i l a t e (Hue , se ) ;

Listing 4.7: Thresholding Code
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Figure 4.25: First threshold Figure 4.26: Create binary array

Figure 4.27: Removed small blobs Figure 4.28: Apply second threshold filter

Figure 4.29: Dilate the image Figure 4.30: Put a box over the weed
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4.10 Summary

The software design stage of this project was important, the bulk development within

this project transpired within the software. This chapter summarised the various software

developed for real time data collection as well as software for post processing the data.

The software developed within this chapter meets the requirements of the project’s soft-

ware objectives. Section 4.4 outlines the software designed to interface with the Weed-

Seeker and WEEDit platforms to obtain a signal when a weed is detected. Section 4.9

refers to the computer vision software designed to present recorded data and the automatic

labelling of whether a weed was detected within the frame. Section 4.7 and Section 4.6

above discuss how the weed position was determined from the robot chassis position and

then explains the software development of the weed mapping program. This proves these

proposed outcomes of this project were met.



Chapter 5

Results and Evaluation

The hardware and software developed in the above sections were used to construct the

WeedCheck module. The following chapter discusses the development and implementation

of a field trial, designed to collect data for validating the accuracy of commercial weed

detection platforms. The experimental design procedures implemented throughout the

trial are introduced in this chapter, plus the results of the trial as well as the di↵erent

sources of error introduced throughout the data collection phase.

5.1 Experimental Tests

The data required for this project was obtained through a fieldwork programme designed

to test various features of commercial weed detection systems. The aim of the experiment

was to design a trial protocol for comparing two weed detection platforms. The objectives

of the experiment were to determine: (i) the weed detection accuracy, (ii) the spray

footprint and (iii) the repeatability of the commercial weed detection systems. To achieve

this the protocol development was broken into three stages these being accuracy, spray

footprint and weed mapping.

5.1.1 Weed Detection Accuracy

The aim of the first stage of the protocol was to give quantitative information on the true

positives, false positives, true negatives and false negatives of both the WeedSeeker and

WEEDit systems. Table 5.1 below shows how each of the binary classifications are tested
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in the protocol.

Table 5.1: Protocol stage 1

Binary Classification

Test

How was it tested?

True positive When a weed is detected the WeedCheck module will pho-

tograph the ground. The image is a true positive if a weed

is present in the frame

False positive When a weed is detected the WeedCheck module will photo-

graph the ground. The image is a false positive if NO weed

is present in the frame

True negative Every 60 seconds throughout the trial, if there was no nozzle

activity, the camera would be triggered. This image is stored

in a separate directory. If there is NOT a weed in the frame

it is a true negative.

False negative Every 60 seconds throughout the trial, if there was no nozzle

activity, the camera would be triggered. This image is stored

in a separate directory. If there is a weed in the frame it is

a false negative.

5.1.2 Spray Footprint

The spray footprint refers to the spray length of the liquid applied to the ground, as

denoted in Figure 5.1 and Figure 5.2. When a weed is detected the nozzle solenoid is

opened to deliver chemical to the weed. The length of time the nozzle solenoid is open

will a↵ect the spray footprint and the platform’s ability to deliver chemical to the entire

plant. Figure 5.1 below shows a small footprint with part of the plant being missed,

whereas Figure 5.2 shows a scenario with a larger spray footprint with chemical being

delivered to the entire weed.
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Figure 5.1: Small spray footprint Figure 5.2: Large spray footprint

In this stage of the protocol, the aim is to determine the di↵erence in spray footprint

between the two commercial weed detection systems to test whether the chemical was

delivered to the entire weed. WEEDit system has an adjustable margin to spray before

and after the weed. Its default value is 200mm either side of the weed. WeedSeeker has

no such calibration parameter, the nozzle is activated when on top of the weed.

Dye was added to the spray tank on both SwarmBots so the spray footprint could be

easily assessed. White pigment was added to the WEEDit tank whilst blue pigment was

added to the WeedSeeker boom. The dye was added to the tank so the footprint of

each system was visible on the images acquired by the WeedCheck module. With each

repetition, the dye marker on the weeds was still easily visible and became brighter due

to overlap.

The spray footprint measurements were both observed during the trial and were physically

measured using marker paper after the trial had been completed. This included placing

marker paper encircling weeds in the paddock then running the platform over the weed.

The marker dye was then visible on the paper and thus a measurement was able to be

recorded. This test was repeated three times with various sized weeds and the average

values were calculated and used for further analysis.

5.1.3 Weed Mapping

The final section of the protocol was to overlay various weed maps on top of each other.

These overlays were used to determine the repeatability between di↵erent passes over the

same block and to assess whether the maps line up from the di↵erent weed detection

platforms. The maps were analysed using both Google Earth and MATLAB figures.

The first test in this section was to overlay the weed maps from multiple passes of the
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same system. As the field trial was carried out on the same ground three times under

di↵erent environmental conditions, it is of interest to see if the sensors behaved di↵erently.

For example, the weed positions from the three passes of the WEEDit were overlaid on

the same plot. This information can then be analysed to determine the repeatability of

the sensors.

The second proposed test in this section was to overlay the WeedSeeker and WEEDit weed

maps to assess the discrepancy between the systems. If GPS proves to be a valid method

to compare the systems a correction on the WeedSeeker data samples is first required.

Figure 5.3 below shows the FOV of both the WEEDit and WeedSeeker units. The green

blobs in the diagram represent weeds. The position of any weed detected within the FOV

will be taken from the centroid of that platform’s FOV. For example, in the case of weed

1, the weed position would be recorded di↵erently between the WEEDit and WeedSeeker

modules. The WEEDit platform would record the weed’s position as the centroid of

WEEDit sensor 1’s FOV (shown in Figure 5.3, denoted by the blue dot. However, the

same weed when recognised with the WeedSeeker would have a slightly di↵erent position.

The position would be taken as the centre of the WeedSeeker Sensor 1’s FOV, denoted by

the red dot in the figure. To correct this discrepancy in the recorded data, the WEEDit

and WeedSeeker data were compared and if there was a data point in the WeedSeeker

array within 0.19m of the WEEDit array the points were adjusted and matched.

Figure 5.3: GPS Correction for weed map
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5.1.4 Experimental Design

This section outlines techniques employed to ensure the field trial results were sound,

reliable and valid. These procedures ensure the experiment is measuring precisely what

it is intended to measure.

Accuracy

To maximise accuracy within the experimental design various procedures were under-

taken. This included conducting the experiments with spray application of dye for easy

visibility, which were assessed by visual inspection and through a computer vision algo-

rithm. GPS position data collection and hand matching weed images between and within

trials as well as visual observations of the platform behaviours were conducted throughout

the experiment. These three processes provided a fail safe and robust method for ensuring

the collected data could be reliably analysed to meet the project’s objectives.

GPS was used in the experiment to geotag weed locations to produce a weed map of the

detected weeds. The GPS data from each trial can be overlaid to observe the behaviour of

the weed detection sensors both for repeatability of the individual sensor and to compare

the di↵erent systems.

Due to the large number of images taken throughout the trials it was extremely di�cult

to individually match the weed image manually between repetitions and between sensors.

Therefore, a small random sample of a cross section of images were chosen and matched

through visual inspection to validate the findings. The hand matched images were used to

determine if there were any GPS inaccuracies or discrepancies between the weed positions

as well as compare hit and misses of particular weeds.

Repeatability

To ensure repeatability, the field trial for this project was conducted three times, with

results being visually matched and GPS locations converted to a map. Three repetitions

allowed more confidence and stability in the results obtained from this experiment, as

repetition removes bias and error from experimental data. Repetition is re-running the

exact same experiment with the same method on the same or similar system and obtaining
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the same or very similar results (Vitek & Kalibera 2011). With this in mind, the exact

same procedure was implemented for each experiment and each repeated trial. The aim

of repeating the trial was not only to minimise errors in the experimental procedure, it

also gave an understanding of the ability of commercial weed sensors to reproduce similar

performance over the same area. It is expected commercial sensors would have minimal

variances in hit and miss rates between the repeated trials.

Standardisation

Standardised procedures were established throughout the experiment to reduce the chances

of bias occurring in the results and ensuring reliability. The two SwarmBots used in the

trials were identical including all software and hardware, apart from the booms and mod-

ules being tested.

The GPS modules on each robot were exactly the same, both with correction signals being

sent from the same RTK base station to give a theoretical position accuracy of 2cm. The

same area was used for every repetition and test throughout the course of the trial phase.

The two SwarmBots were given the same waypoint file, meaning the exact same path

would be travelled by both robots (assuming no GPS inaccuracies).

To standardise the environmental conditions the SwarmBots travelled concurrently, with

one behind the other as seen in Figure 5.4. The weed detection systems were tested con-

currently to ensure sunlight levels and weather conditions remained constant between the

tests. This reduced the possibility of lighting and wind di↵erences between experiments,

which may have a↵ected the behaviour of the sensors. The WeedCheck module was also

mounted in the same location on the WeedSeeker and WEEDit boom, to ensure the same

ground sample field of view. Standardising the ground sample field of view was important

in matching weed images between tests and trials.

Throughout each repeated trial the speed remained constant for both robots with 2.5 m/s

on repeated tests 1 and 2 and 1m/s on repeated test 3. The speeds were exactly the same

for both platforms being concurrently tested. The core software design of the WeedCheck

module was also standardised between the two modules developed. The only di↵erence

between the WeedCheck modules were the way they interfaced to the commercial weed

detection platforms, which is explained in Section 3.3.1 and Section 3.3.2 above.
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Standardising these variables ensured the independent variable, that is the weed detection

platform, is the only reason for the di↵erence in the results, that being the number of

weeds detected. This ensures validity in data collected.

Randomisation

Randomisation is also essential as it minimises the chances of a biased result. Randomi-

sation reduced bias by equalising other factors that have not been explicitly accounted for

in the experimental design. Randomisation procedures were established throughout the

field trials through randomly assigning which platform would lead the experiment. This

reduces the external variation such as weather conditions and marker dye which may have

impacted results.

During the analysis phase, selection of images and tests to be hand matched was random.

Due to the large volume of images detected only 5% of the images will be sorted and

manually matched. Similarly, the sample of weeds for visual observation in the paddock

during the trial phase was also randomly selected. This also included the selection of

weeds used to assess spray footprints.

5.1.5 Field Trials

The experiment was conducted on a private broad acre property in Gindie, QLD. The

trial area for data collection was selected to be a 3.2 ha block of a fallow paddock. This

involved two 8 metre swaths, 1 down and 1 up, on the edge of a large field. The test was

repeated three times, over three days with di↵erent weather conditions to determine the

e↵ect of the environment on the systems. The weather conditions recorded during the

tests, can be seen below in Table 5.2.

Sections 5.1.1 - 5.1.3 above outline the purpose of the field trial as well as the types of

data to be collected and observed throughout each trial. During the data collection the

SwarmBots followed one another so the tests of both systems occurred concurrently, this

can be seen in Figure 5.4. During the first two tests the ground speed was set to 2.5 m/s

(9km /hr) and the third test was carried out at 1 m/s (3.6km/hr). This was to see the

e↵ect of speed on the sensors.
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Figure 5.4: Schematic of Field Trial

Table 5.2: Data collection weather conditions

Day Weather Time Wind Speed (km/hr)

1 Sunny 1 pm 7.0

2 Sunny/ Cloudy 10 am 16.4

3 Overcast 5 pm 9.1

5.2 Results

The data presented in this section is derived from the field trials discussed above. These

results were both generated from collected data and through visual observations through-

out the trials.

5.2.1 Weed Detection Accuracy

By Visual Inspection

During the data collection phase the SwarmBots were personally followed, to visually

monitor the accuracy and spray footprint of the di↵erent weed detection systems. These

observations were recorded and presented below in Table 5.3. These inspections revealed

the WEEDit sensor had an extremely high hit rate when compared to the WeedSeeker

sensors. It was also noted the WEEDit system detected smaller weeds more consistently

than the WeedSeeker sensors, which failed to detect a larger percentage of these smaller

weeds.
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The spray footprint of the two systems is also shown in Table 5.3. The WEEDit sys-

tem had a footprint of approximately 500mm from nozzle on to nozzle o↵, whereas the

WeedSeeker platform had a smaller footprint of 150mm.

A larger spray footprint is important when using precision spraying as chemical drift,

due to wind, greatly e↵ects the accuracy and ability to hit the target. A larger spray

footprint gives a smaller margin of error to ensure the chemical is delivered to the plant

guaranteeing a higher kill rate.

Table 5.3: Visual inspection of hit rates

WeedSeeker WEEDit

Small Weeds 80% 100%

Large Weeds 95% 100%

Footprint 150mm 500mm

By Computer Vision

After the data collection was completed, the next step was to sort the image data to

determine the hit and miss rates of each weed detection technology. This was completed

using a combination of computer vision and manual hand labelling. The computer vi-

sion algorithm developed in 4.9 was not su�cient enough to be 100% reliable. Therefore,

after the computer vision algorithm had analysed and classified the images it was nec-

essary to undertake a manual hand correction to accurately sort the data. Even though

the computer vision algorithm was not 100% reliable, it proves the possibility of future

development in automatically sorting images.

Table 5.4 show the results of the computer vision program. It is obvious from these

results, the computer vision software was built to be very sensitive. The vision software

yielded no false positives, however, there is a large percentage of false negatives. The data

shows 45.5% of the WeedSeeker data and 39.9% WEEDit data were sorted incorrectly. It

was found the colour of the marker dye used in the trial had a significant e↵ect on the

ability to use colour thresholding to detect and classify weeds within the image frame.
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Table 5.4: Results of computer vision sorting

WeedSeeker WEEDit

True Positives 392 635

True Negatives 21 5

False Positives 0 0

False Negatives 346 425

By Hand Validation

After the computer vision program had sorted the images there was still some hand la-

belling corrections that needed to be undertaken due to the high number of false negatives.

This was completed by manually viewing the negative labelled images from the computer

vision software and correctly sorting them. The images from each trial repetition were

sorted and the average value from these tests were used for the analysis below. Table 5.5

and Table 5.6 present the results of the hit and miss rates from the repeated trials. The

numbers represent images captured with the WeedCheck module.

Table 5.5 presents a discrepancy between the number of weeds captured over the duration

of each three repetitions. After the trial, an intermittent timing error in the WeedCheck

module was discovered. This was caused by a hardware limitation in the RPi camera

simply due to the fact the frame rate was not high enough. Because of the large density

of the weeds in the paddock some weeds were not able to be captured because the camera

was already busy when the trigger command was issued. This did not a↵ect the position

data from being written to the data file.

Table 5.5: WeedSeeker results

WeedSeeker Test 1 WeedSeeker Test 2 WeedSeeker Test 3 Average

True Positives 675 732 800 736

True Negatives 21 19 21 20

False Positives 1 2 4 2

False Negatives 26 16 29 24
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Table 5.6 similarly shows the results from the WEEDit repeated test trials. It can be

seen that test 1 and 2 have very similar values, whereas test 3 has only three quarters of

the true positive result. This was caused by a GPS drop out for some of the trial. This

can be seen in the weed map in Figure 5.6 below.

Table 5.6: WEEDit results

WEEDit Test 1 WEEDit Test 2 WEEDit Test 3 Average

True Positives 1205 1198 913 1105

True Negatives 3 3 6 4

False Positives 38(14) 31(21) 27 (20) 32(18)

False Negatives 0 0 0 0

Table 5.6 shows a high number of false positives for the WEEDit system. However, for

a large majority of images sorted into this category a dark shadow was cast over most

of the frame. Therefore, a weed may have been present under the shadow, but was not

visible within the frame. An example of these images can be seen in Figure 5.5 below.

To overcome this problem, images with excessive shadow in the frames were disregarded

and the corrected values are shown in the brackets in Table 5.6. These values were used

for the analysis.

Figure 5.5: Shadow e↵ect on sorting image
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Table 5.7 and Table 5.8 show the average hit and miss rates from the field trial. This data

was used to perform a sensitivity and specificity analysis. The results from this analysis

are shown in Table 5.9.

Table 5.7: WeedSeeker Results

Forecast
Observed

Positive (P) Negative (N) Total

Positive (P) 736 2 738

Negative (N) 24 20 48

Total 760 22 1568

Table 5.8: WEEDit Results

Forecast
Observed

Positive (P) Negative (N) Total

Positive (P) 1105 18 1123

Negative (N) 0 4 4

Total 1105 36 2268

Sensitivity is the probability the test result will be positive when a weed is present (true

positive rate, expressed as a percentage). Whereas, specificity is the probability the test

result will be negative when a weed is not present (true negative rate, expressed as a

percentage). The positive predictive value is the probability the weed is present when

the test is positive (expressed as a percentage). The negative predictive value is the

probability the weed is not present when the test is negative (expressed as a percentage).

These statistics are mathematically represented below in Equation 5.1 - 5.4.

Sensitivity =
PP

PP + PN

(5.1)

Sensitivity =
PP

PP + PN

(5.2)

Positive Predictive Value =
PP

PP +NP

(5.3)
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Negative Predictive Value =
NN

PN +NN

(5.4)

Table 5.9: Data Statistic

WeedSeeker WEEDit

Sensitivity 0.97 1

Specificity 0.91 0.11

Positive Predictive Value 0.997 0.984

Negative Predictive Value 0.417 1

Table 5.9 presents the statistical analysis on the accuracy of weed detection systems. It

can be seen the sensitivity of the WeedSeeker and the WEEDit systems are quite similar.

This variable refers to the probability of the modules to positively detect a weed when

one is present. The WEEDit system had zero false negatives which indicates its ability to

detect a weed is excellent. The WeedSeeker sensitivity result is 97% which is still a very

high percentage accuracy. However, the table depicts quite a large di↵erence in specificity

between the weed detection systems. This statistic refers to the probability a weed will not

be detected when there is not one present. The results indicate the WeedSeeker system

has a better ability to prevent false firing over the WEEDit system. However, this result

was not observed through visual inspection during the trial. Various errors could have

been introduced a↵ecting this result, such as during the manual sorting of the WEEDit

images. As stated above, the e↵ect of shadow in the images posed as a problem when

sorting. Also it was quite di�cult to detect small weeds within the frame and therefore

some may have been sorted incorrectly.

The Positive predictive value of the WeedSeeker and WEEDit were very similar, with

only a 0.013% di↵erence. This statistic refers to the probability a weed is present when

the system detects a weed. There is a large variance in the negative predictive value

between the two systems. This statistic refers to the probability the system successfully

did not detect a weed. This statistic shows the WEEDit system has a better ability to

correctly detect when there is not a weed present, whereas the WeedSeeker has only a

0.417 negative predictive value. This indicates the system struggles in detecting some

weeds, which as confirmed through observation, were mainly smaller weeds.

Therefore, the results from this test indicate the WEEDit sensors are more sensitive
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in detecting weeds than the WeedSeeker system. Even though there were minimal false

positives with the WEEDit sensors, it is more advantageous to have a few false fires rather

than multiple missed weeds which was shown to occur with the WeedSeeker sensors.

5.2.2 Repeatability

This section presents results of the proposed methods used to show the repeatability

of two commercial weed detection platforms. Two proposed methods were employed to

test the behaviour of the sensors over the same section of ground during their repeated

trials. This included generating weed maps from the GPS data as well as manual hand

matching of weeds within image frames. An independent comparison of the WEEDit and

the WeedSeeker systems was undertaken between their repeated trials. Section 5.3 below

will compare the WEEDit and WeedSeeker platforms against one another.

The repeatability of WEEDit and WeedSeeker systems were separately analysed, this

involved referring individually to the data from each system’s repeated trials, to determine

the sensor’s behaviour between trials. This was achieved by generating a weed map to

overlay the weed positions from the three repeated trials. The use of RTK GPS was

expected to give highly accurate weed positions and it was speculated the data from the

di↵erent trials would overlay quite well. However, the generated maps seen below in

Figure 5.6 and Figure 5.7 proved this expectation to be incorrect. The di↵erent sized

markers and colours in the figure represent data from the repeated trials.

As discussed above in Section 5.2.1 there was a GPS drop out for some of the data in

test three of the WEEDit trials, which is apparent in Figure 5.6 as some of the black

marker dots are missing. It was found at this stage, trial 2 of the WeedSeeker repeated

run failed to record the GPS positions. This is apparent in Figure 5.7, where only the

weed positions of test 1 and test 3 are displayed. Comparing Figure 5.6 and Figure 5.7 it

appears the WeedSeeker system has a better repeatability as the weed positions are much

closer together when compared to the WEEDit map, however, this is still a poor result.

Therefore, these weed maps indicate either the sensor’s repeatability is poor, or there is a

GPS position error. The ground speed of the trial did not seem to have an e↵ect on the

sensors ability to detect weeds.
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Figure 5.6: WEEDit weed map of the repeated trials

Figure 5.7: WeedSeeker weed map of the repeated trials

Figure 5.8 shows an example of GPS positions recorded throughout the repeated trials.

This figure is a zoomed in snippet of Figure 5.6. This dataset is after the 0.19m GPS

correction had been applied. The image shows two weeds which were detected throughout

the three trials have very similar GPS positions and are thus very close to one another,

signified by the three coloured dots on top of each other. Whereas in one case, depicted

by the top left side marker, the weed was only detected in trial 1 and 3. The standalone

green dots represent the weeds only detected in trial 2.
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Figure 5.8: Example of WEEDit matched GPS points

To determine if the GPS was the source of error, a random sample of weed images were

manually sorted and matched. This involved visual inspection of various frames to match

up identical weeds in exact locations. Two tests were randomly selected for this anal-

ysis which were test 1 and 3. Matching weeds within frames was quite a tedious task

and therefore only a small 5% sample of the images were matched. An image in test 1

was randomly selected, then the GPS coordinates of that weed were then searched and

matched with GPS coordinates from test 3. Images from around this GPS position in test

3 were then visually searched to find the identical images from test 1 around that spe-

cific location. These images were sorted through and then visually matched and recorded

when paired, with their GPS position noted. This method proved to work well and the

results from this manual sorting can be seen in Table 5.6.

Through visual inspection and observation of the trial, it was surmised there was a GPS

position error in the weed map. The WEEDit sensors have no visual discrepancies between

the repeated trials. Therefore, the next step was to compare the geo-tagged position of

the hand matched images to determine the GPS error. This was achieved with a simple

MATLAB script which calculated the distance between the recorded positions. The results

from this can also be seen in Appendix B, Table B.1 and Table B.2. The GPS o↵sets

calculated are summarised in Table 5.10 and Table 5.11.
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This method ground truthed there was a GPS position error during data collection. Ta-

ble 5.10 and Table 5.11 presents the minimum, maximum, average and standard deviation

of the GPS error. It can be seen the WEEDit has a smaller mean position error of 0.415m

and the WeedSeeker has a larger mean position error of 0.618m. However, the standard

deviation of the WeedSeeker error is quite large and thus represents a large spread from

the mean which is caused by three outliers of above 3m position inaccuracy. With these

excluded the average error would be much less, which is reflected in the weed map pre-

sented in Figure 5.6.

Table 5.10: WEEDit GPS Position Error

Minimum error (m) 0.0196

Maximum error (m) 1.265

Average error (m) 0.415

Standard Deviation 0.309

Table 5.11: WeedSeeker GPS Position Error

Minimum error (m) 0.018

Maximum error (m) 3.848

Average error (m) 0.618

Standard Deviation 0.868

After analysing the GPS error in this project, it has proved the weed mapping concept is

not feasible for comparing and validating the repeatability of the weed detection sensors.

This is due to a range of errors such as GPS drop out and excessive position variation.

After this conclusion, an analysis on the manually matched weeds was carried out. After

manually hand matching a random sample of weed images collected throughout the trial

an analysis could be carried out to determine the hit and miss rates between repeated

trials, these results are discussed in the sections below.

WEEDit

This section focuses on using the hand matched images to generate repeatability statistics

of the WEEDit system. A random weed image was selected from the WEEDit data

collected and approximately 10-15 images were analysed around this to determine whether
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the same weeds are present over each trial repetition. Then another random place in the

image director was selected and further images analysed. This process was repeated until

approximately 5% of the data had been analysed, equating to an area of 0.16ha.

Figure 5.9 and Figure 5.10 below show two weed frames matched during the repeated

trials for the WEEDit. In the figure on the right, the marker dye being sprayed onto the

weed is clearly visible. In the figure on the left it is harder to see, however, upon close

inspection the dye is visible. Table 5.12 shows the percentage of matched weeds between

trial 1 and trial 3. The results indicate test 1 detected 98.4% of the weeds identified in

test 3, and similarly test 3 detected 91.8% of the weeds identified in test 1.

Table 5.12: WEEDit repeatability percentage

WEEDit

Test 1 Test 3

98.4% 91.8%

Figure 5.9: Image from Test 1 Figure 5.10: Image from Test 3

After analysing the weeds not detected in test 3, there was an apparent trend that the

small weeds were the ones missed in the third test. This may have been a result of the

cloudy weather in test 3 a↵ecting the weed reflectance. Figure 5.11 below shows a weed

detected in test 1 and was not identified in test 3. This weed is quite small, with a

diameter of around 30mm.
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Figure 5.11: Example of missed weed from WEEDit test 3

WeedSeeker

An identical approach was taken with analysing the WeedSeeker images to match up

weeds between repeated trials. WeedSeeker required user calibration every time the sys-

tem is powered on, which sets the background chlorophyll levels. This calibration is

greatly a↵ected by background lighting and therefore many calibrations may be needed

throughout the day. However, because each trial run took 20 minutes only one calibration

was undertaken on the system immediately prior to running the test.

Table 5.13 shows the repeatability results of the WeedSeeker modules between test 1 and

test 3 repeated trials. The results indicate test 1 detected 95% of weeds identified in test

3. Similarly test 3 detected 82% of the weeds identified in test 1. These results show

there is a large percentage of weeds missed in test 3 of the trial. It is interesting that test

3 for both the WEEDit and WeedSeeker repeated trials had larger error percentages. It

is possible the cloudy environment a↵ected the performance of both systems, which is of

interest for further research as would be information important to industry. If cloud covers

a↵ects accuracy and thus kill rate, this is of very high significance for field commercial

use. To conclude this result, further testing would need to be undertaken under di↵ering

environmental conditions, however, this was outside the scope of this project.
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Table 5.13: WeedSeeker repeatability percentage

WeedSeeker

Test 1 Test 3

95% 82%

Figure 5.12: WeedSeeker image from test 1 Figure 5.13: WeedSeeker image from test 3

An analysis of Test 3 was undertaken on the types of weeds not detected by the Weed-

Seeker. The behaviour of this system’s results were similar to the WEEDit Test 3 results;

with many of the small weeds not being detected. However, unlike the WEEDit system

there were also some large weeds not detected. Figure 5.14 below shows a weed detected

in test 1 that was not identified in test 3 by the WeedSeeker platform. This weed is quite

small with a diameter around 40mm. The size of weeds missed by the WeedSeeker range

from 10mm - 200mm. These results can be further verified by the visual observation data

collected during the trials, shown in Table 5.3. It was observed the WeedSeeker’s weakest

point was the ability to recognise and hit smaller weeds.
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Figure 5.14: Example of missed weed from WeedSeeker test 3

5.3 Comparison of WeedSeeker and WEEDit

This section compares the behaviour of the WeedSeeker and WEEDit systems against

one another. Even though in the above sections the weed map was disproved to be a

valid method of comparison due to GPS position errors, a weed map was still produced to

overlay the recorded positions of the WeedSeeker and the WEEDit trials. The weed maps

were originally generated because it was expected that when overlaying the WeedSeeker

and WEEDit trial data, the maps would visually show the locations of weeds either

detected or missed between the two systems. It was surmised the same weed would be

detected by both systems and the GPS position would be within 2.5cm, therefore allowing

an easy analysis and observation of the weed map as an accurate comparison of the two

systems.

It was thought the GPS error may have been introduced between the repeated trials due

to satellite movement, thus by creating a weed map between the WEEDit and Weed-

Seeker tests carried out concurrently, the GPS error may have been much less. Therefore,

the weed map was still produced. These maps can be seen below in Figure 5.15 and

Figure 5.16. The data from trials 1 and 3 from the di↵erent weed detection technologies

were overlaid. Figure 5.16 again shows there was a GPS drop out for part of the WEEDit

trial 3. Ignoring this section of the figure, it is still apparent the weed positions are not

similar, otherwise the green and blue markers would be laying on top of each other. Both
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these maps further reinforce GPS is not a valid method for comparison.

Figure 5.15: WeedSeeker and WEEDit test

1 overlay

Figure 5.16: WeedSeeker and WEEDit test

3 overlay

After disproving the validity of the GPS positions to compare the WEEDit and Weed-

Seeker platform, the weed images collected during the trial were once again analysed

visually by hand. The same image numbers used in the repeatability analysis were com-

pared, however, this time to compare the weed detection platforms. Manual matching of

images between the WeedSeeker and WEEDit trials was carried out. The results from

this analysis can be seen in Appendix B, Table B.3. The images were used to ground

truth weed recorded positions, from this a calculation to determine the GPS position

error between the WEEDit and WeedSeeker systems could be performed. These results

are shown in Table 5.14. The table shows the minimum GPS error is only 7cm, which

would be an acceptable error. However, the maximum error is 4.3m with the average

error being 1.9m. These results cements the fact that the GPS position data recorded in

this experiment cannot be used to validate the weed detection platforms.

Table 5.14: Weed GPS position error between platforms

Minimum error (m) 0.07

Maximum error (m) 4.3

Average error (m) 1.901

After the image matching and comparison between the WeedSeeker and WEEDit plat-

forms Table 5.15 was produced to show the hit and miss rates of the systems. A random

selection of 47 images, equating to 0.16ha, were matched and labelled accordingly. Due

to time constraints only 4% of the collected data was analysed in this section. This

comparison did, however, yield some expected results. Table 5.15 show that of the 47

images analysed the WEEDit platform missed only 1 weed detected by the WeedSeeker
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platform. Whereas the WeedSeeker missed 9 weeds detected by the WEEDit platform.

These missed weeds range from approximately 10mm to 200mm, confirmed by visual

observation throughout the trials.

Table 5.15: Comparison of WEEDit and WeedSeeker performance

WEEDit WeedSeeker

Hit 46 38

Missed 1 9

Table 5.16 below shows the percentage of weeds detected between the systems. These

results show the WeedSeeker system detected only 80.85% of the weeds the WEEDit

system detected. Similarly the WEEDit detected 97.88% of the weeds the WeedSeeker

detected. A statistical significance calculation can be undertaken on the collected data to

determine whether the sample size of the experiment accurately represents the data. With

a population size of 1200 images and a sample size of 47 images being analysed, with a

90% confidence level that the results actually portray behaviour of the population, a 12%

margin of error was statistically calculated. A P-value of 0.007 was obtained. Essentially

this P-value represents the probability that the WEEDit and WeedSeeker sensors operate

identically. Therefore a low P-value means that from the results of this experiment the

platforms do not act identically.

Table 5.16: Percentage of weeds detected by the di↵erent platforms

Comparison percentage

WeedSeeker WEEDit

80.85% 97.88%

5.4 Weed Mapping

The entire WEEDit nozzle activity (8m section) was also recorded in trial 1. The ob-

jectives of this section was to produce a full boom weed map, to prove the possibility of

geo-tagging every weed detected over the length of the boom. Geotagging every weed

sprayed within the paddock provides the ability to produce an entire field map. With

the use of multiple WeedCheck modules to cover the entire ground view of the boom, the

entire system could be evaluated. This method proves with a more accurate GPS there is



5.4 Weed Mapping 76

the possibility to record every single spray application within a field. The benefits of this

would have a large impact on the agricultural industry, especially if the application was

also tagged with weather conditions. This would mean quantitative data on every spray

would be available and may limit legal issues with spray drift.

Other benefits of geotagging weed locations with weather information include the possible

use of herbicides that have been taken o↵ the shelf due to user misuse and o↵ label use.

Imagine if every weed sprayed was logged into a database with weather conditions and

chemical application rate data, it would allow governmental bodies to track the use and

application of chemicals. This is especially important for restricted chemicals proven as

outstanding knockdowns in controlling weeds, however, due to misuse and residual build

up the products have been banned. This means farmers could insure themselves against

spray drift and minimise legal ramifications because quantitative data would be stored and

analysed if a problem was to occur. This would be very possible in agricultural robotics

especially with chemical application constraints being applied to the robotic software, the

robot could stop and start depending upon various conditions such as wind and delta-t.

This would mean chemicals could not be misused and therefore may see the return of

unique herbicides that have been banned. This would be advantageous to industry as

with a wider array of chemicals for use, it would help the fight against resistance.

Recording weed position, application rate and weather information would allow for resid-

ual chemical calculations on soil and waterways, which would pose as a huge environmen-

tal benefit. In the future, with this technology, it may be possible to spray 24D up to

the fence of a cotton crop providing the weather conditions were optimal and recorded.

The farmer would then have the data to prove the wind direction was away from the

neighbouring farm if litigation arises.

Even though the GPS data in this project proved to have inconsistent positions and large

variances between trials the production of a full scale weed map would still be possible

with a more precise GPS. Regardless of this, a weed map was produced over the full

length of the WEEDit boom, which proves the ability to geo-tag every weed within the

field, even though the positions acquired in this experiment may be inaccurate. These

weed positions were overlaid on Google Earth, so the weed can be seen on a satellite map.

Figure 5.17 and Figure 5.18 show the same data set once they were uploaded into Google

Earth. The figure on the left hand side shows the full run throughout the trial, whereas

the right hand image shows a closer view of the data.
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Figure 5.17: WEEDit full nozzle map Figure 5.18: WEEDit zoomed nozzle map

The images collected by the WeedCheck module during the trial can be plotted on Google

Earth by using the recorded geo-tagged data. This application would be useful for farmers

and agronomists to remotely and virtually walk through the field to identify specific weed

species and weed distribution patterns for future spray applications. The GPS inaccuracy

was deemed acceptable in this section, as the maximum weed position error found in the

experiment is 4.3m, shown in Table 5.14. This error would not a↵ect the ability to

determine trends and patterns of weed species within di↵erent areas of the field, for a

more direct and targeted spray application. The Google Earth weed image map can be

seen below in Figure 5.19.

Figure 5.19: Images overlaid on Google Earth
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5.5 Sources of error

Throughout this project many sources of errors were introduced, these are discussed in

the following sections.

5.5.1 GPS error

As mentioned above there is a large GPS position error which was unexpected. This

error could be minimised with further software development and implementation of a

more precise GPS system. A variety of methods were used to overcome the errors in

results from the GPS variance. Manual hand matching of images within repetitions and

between trials proved to be a robust method for analysing the data. This method enabled

calculations of repeatability and the generation of comparison statistics of the sensors.

Therefore, a comparison on the reliability of WeedSeeker and WEEDit platforms was still

able to be completed.

A further GPS error became evident when assessing data. The test 3 results of the

WeedSeeker trial was missing data in sections and test 2 of the WeedSeeker trial was also

missing a large amount of GPS data. This a↵ected the ability to produce weed maps that

overlay the data from the trials. This GPS error did not a↵ect the results of the project,

as it was deemed using GPS to create weed maps was not a valid method for validating

the commercial weed detection technology.

5.5.2 WeedCheck interfacing methods

A small error was introduced through the used of the serial communication with the

WEEDit platform. Essentially the nozzle activity string was updated at a constant rate

of 5 hertz. When the robot was travelling at 2.5m/s this only gives a ground resolution

of 0.5 metres. This error is not present with the WeedSeeker interfacing method because

the 12V signal is essentially a hardware trigger.

The WEEDit WeedCheck module is actively looking for changes in the nozzle activity

string five times a second, whereas the WeedSeeker WeedCheck module is triggered any

time a weed is detected. This resulted in a separate error being present in the WeedSeeker

module, because the RPi camera frame rate was not quick enough. This resulted in
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random errors throughout the trial, where the camera would be busy and the weed would

not be captured. This error did not a↵ect the analysis of the weed detection accuracy

because the missed images could be identified by the frame numbers and therefore the

images around the skipped frames were matched and the missing images were disregarded

in all datasets.

5.5.3 Computer vision algorithm

The computer vision algorithm developed to sort and analyse the images from the trial

proved to have a large false negative sample. This error was introduced because the

marker dye used throughout the trial caused issues when running colour thresholding

algorithms.

The shadow cast from the sun also a↵ected the ability to sort weeds through computer

vision techniques, such as colour thresholding. Computer vision techniques are very sen-

sitive to lighting. The shadow caused a large dark region over part of the images, which

a↵ected the colour thresholding algorithm’s ability to positively detect weeds. Therefore,

manual sorting was needed after the computer vision analysis was completed so results

were not a↵ected.

5.5.4 Image Capture

Unfortunately due to the timing of the repetitions, during trial 3, a shadow was cast over

some of the images captured. This was due to the position of the sun when the robot

turned at the end of the first swath. This a↵ected the quality of images recorded because

some of the frames were too dark to identify whether a weed was present. This a↵ected

the ability to sort the images both with computer vision algorithms and through manual

hand labelling. It was quite di�cult to detect small weeds within the frame and therefore

some may have been sorted incorrectly. To overcome this error, images were adjusted to

try make weeds more visible, if this was not possible then the images with shadows cast

were disregarded during analysis and thus did not a↵ect results.
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5.5.5 Human error

Human error could have been introduced into various parts of this project. This includes

the calibration of the WeedSeeker unit, which would have a↵ected the results from those

trials. However, this calibration was carried out exactly as per the user handbook to

ensure the error remained minimal. The weed sensitivity size is also a parameter that can

be changed on both the WeedSeeker and WEEDit platforms. To minimise the impact of

weed size sensitivity the modules were set to have the same sensitivity.

Human error may also be present in the hand matching of images between trials and

within them. This error could also a↵ect the validity of the results. To minimise this

error, the images sorted were double checked twice by two separate individuals.

Another possible human error could be introduced in the mounting of the WeedCheck

module. If the module was not mounted to have the exact same ground sample distance

and field of view, the ability to match weeds would have been compromised. To min-

imise the e↵ect of this error a ground sample calibration was undertaken to ensure the

WeedCheck modules had identical field of views.

5.5.6 Experimental Errors

Even though all steps were taken to ensure standardisation, some unforeseen errors oc-

curred through the use of a di↵erent robot for each platform being tested as this proved to

introduce a higher level of GPS variance between positioning data for the di↵erent plat-

forms being tested. To confirm and overcome this error, a sample of images with weeds

detected were hand matched and compared. This enabled confirmation of a position error

in the GPS. The matched weed images were then used to analyse the commercial weed

detection systems.

The tests were undertaken concurrently so each platform being tested occurred during the

exact same weather conditions, including sun position, wind and reflectance. However,

the three repetitions were undertaken over separate days and times of the day when

weather conditions were obviously not identical. This is of interest to observe the e↵ect

weather conditions had on the results collected. After analysing the results, it is possible

that during trial 3 when the weather conditions were cloudy, this cloudiness could have

led to a reduced weed reflectance making detection of smaller weeds less likely to be
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identified. Therefore, this could have caused a higher percentage error in repeatability.

The WEEDit system claims the sensors are not a↵ected by background lighting and

environmental conditions, however, the results of this project show that cloud cover could

have had an e↵ect. Further research into this area would yield more accurate results.

Due to the inaccuracy of the GPS position it was determined the accepted method to

validate weed detection accuracy was through labelling and matching weed images that

were collected from the WeedCheck module. However, due to the large sample of images

that were obtained during the trial, only 5% of the data was able to be analysed. This is

only a small portion of the data set and therefore may introduce an error in the reliability

of the results. To reduce this error more images could be analysed.

5.6 Summary

The project presents the successful development of the WeedCheck module which has

the ability to photograph weeds at the instant they are detected by commercial weed

detection sensors. By classifying these images using both computer vision and manual

sorting, identical weeds were able to be successfully matched across platforms and rep-

etitions. Although this method is quite labour intensive results from this project prove

a robust method to validate and compare the accuracy of di↵erent weed detection plat-

forms. Through advancement and further computer vision algorithms this matching may

be possible automatically.

The benefit of this outcome of this project are directly beneficial to the agricultural in-

dustry. If farmers have quantitative data available comparing weed detection platform

performance under a variety of conditions, which can be tested using the WeedCheck mod-

ule and analysed through matching weed frames, it may influence the chances of adoption

of this technology on farm. Imagine the positive environmental impacts if every farmer

adopted precision spraying technology. Residual chemical in soils would be reduced, the

chances of chemical leaching minimised and weed resistance to herbicides would also be

decreased.

In the literature review of this project it was found the total economic cost of weeds to

agriculture is $4 Billion per year with the average chemical saving from using precision

spraying technology being around 45%. If the outcome of the WeedCheck module assisted
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farmer adoption of precision spraying technology, the saving to the industry could be up

to $1.8 Billion dollars annually, plus environmental and human/animal health benefits

which are invaluable.

Section 5.1 in this chapter presents the design of the trial protocol developed for testing,

to determine the weed detection platform’s accuracy and spray footprint. Within this

chapter, Section 5.2.1 outlines the development of a universal ground truth method which

both enable validation of commercial weed detection technology and enables calculation

of GPS inaccuracy and o↵sets. Section 5.2 of this chapter presents the results from the

field trials collected and the associated weed maps generated, yet disproved. This proves

these proposed outcomes of this project were met.



Chapter 6

Conclusions and Further Work

6.1 Achievement of Project Objectives

The following objectives have been assessed:

• Design a trial protocol to determine weed detection accuracy and spray

footprint.

A fieldwork experiment was designed to implement and successfully obtain data

on the accuracy of di↵erent weed detection platforms. Section 5.1 describes the

experimental methods used for the trial phase of the project. The results from the

trial can be seen in Chapter 6 - Results and Evaluation. Accuracy and footprint

which correspond to kill-rate are important for commercial applications of precision

spraying technology.

• Develop a universal ground truth method which would enable validation

of commercial weed detection technology.

The trial phase of the experiment yielded both expected and unexpected results.

Section 5.2.2 discusses and introduces di↵erent methods used for ground truth and

validation of the commercial weed detection technology. Through trial and error it

has been determined which methods are valid for comparing the accuracy of weed

detection platforms. This project has proved GPS cannot be relied upon as a usable

platform for validating the accuracy of each weed detection platform. In theory the

method is highly plausible, however, unforeseen variance in GPS location skewed

the results so map overlays do not easily portray the accuracy of the platforms.
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To overcome the GPS error, Section 5.2.2 explains the use of a random selection

of images which were matched originally by their GPS coordinates, then double

checked for accuracy by visual confirmation of images to ensure the exact same

location of ground area was captured in each matched image. This enabled an

accurate comparison of GPS coordinate precision at each weed location tested as well

as being able to assess whether weeds were detected or failed to be detected, by each

platform tested. Due to the time consuming nature of this task, a small cross-section

of images (5%) were randomly chosen to validate the GPS coordinates recorded.

These showed an average error of 1.9m with an error range of 0.7-4.3m even though

the RTK was updated every 200 ms. Hand matching of images visually proved to

be a valid method of comparison, however, too time consuming for commercial use.

Hence future research into the development of a computer vision algorithm to sort

images captured would be beneficial. The concept of using a low cost camera and

dye to capture the weed detection platform accuracy is very workable, however,

alternative methods to collect and/or sort this data need to be addressed in future

research.

• Design software capable of interfacing with a range of weed detection

technology to obtain a signal when a weed is detected.

The software development and design for the WeedCheck module can be found

in Chapter 5 - Software Development. Two methods were used to interface with

the di↵erent weed detection platforms, which are discussed in Section 4.4. These

methods both proved to be e↵ective methods in obtaining a signal from the weed

detection platform when a weed was detected. The software developed has an ap-

plication within the agricultural industry to validate new developments in weed

detection systems. This would enable a quantitative comparison between technolo-

gies to determine whether new developments were actually better than available

technology.

• Develop software that presents recorded data and allows labelling of cor-

rect or incorrect weed detection.

Chapter 5 describes the software used to record and sort the images based on

whether a weed was present within the image frame. The computer vision algorithm

used for detecting and sorting weeds within frames is described in Section 4.9. This

algorithm proved the ability for computer vision to correctly identify weeds and sort

the images based on this finding. The algorithm implemented was very sensitive
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and thus a large portion of the images were incorrectly labelled as negatives. Fur-

ther development of this algorithm to automatically match and sort images would

prove highly significant to ensure accurate comparisons for industry. The computer

vision program sorted and presented the images in clearly labelled directories which

allowed manual correction of the images by sorting them into their correct directo-

ries. The software successfully enabled accurate recording of usable data with frame

and positioning information attached which is beneficial to industry for comparing

weed detection technology.

• Develop software that automatically generates weed maps of the field.

Software was developed to automatically generate weed maps of the field from the

collected data obtained in the field trials. An explanation of the software devel-

opment can be viewed in Section 4.7. The weed maps produced to validate the

repeatability and compare the di↵erent modules were disregarded as an e↵ective

method. This was a result of inaccurate GPS data being obtained.

However, the software developed within the project successfully proves the feasibility

of creating weed maps if the GPS positions recorded had a higher accuracy. This

objective aims to develop software to automatically generate weed maps from the

data collected in the field. Section 4.7 discusses the successful implementation of

the weed mapping software. Therefore, this objective has been met, however, the

maps were not useful for analysis in this instance because of the position variance

in GPS.

The benefits of generating weed maps throughout the growing season would enable

the identification of growth patterns and species distribution throughout the field.

This information would be useful for site selective weed management systems for a

more targeted approach to weed control.

• Collect data in a field to ground truth the weed detection systems and

generate weed maps using the developed software.

Chapter 6 describes the experimental design procedures undertaken during the trial

when data collection occurred. Section 5.2.2 presents the weed maps automati-

cally generated to overlay the data from the repeated trials for the WEEDit and

WeedSeeker systems. A comparison of the WEEDit and WeedSeeker was under-

taken in Section5.3. This analysis included using the images collected in the trial

to ground truth and validate the accuracy of the two systems. The analysis also
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ground truthed the GPS position accuracy between trials. Section 5.4 presents a

weed map produced from the entire WEEDit boom. Also this section provides in-

formation on how images can be overlaid on Google Earth. This could be beneficial

to industry as would enable virtual walk through or flyovers to remotely inspect

weed species, densities and distribution within a field. This objective has therefore

been met throughout various sections of the project.

In conclusion, this project disproves GPS as an accurate method of validation for testing

the accuracy of weed detection platforms. Visual inspection and hand matching of images

captured proved to be a robust method of validation, however, inapplicable to industry

due to the time consuming nature of the task. The project did, however, prove the

successful development of software and hardware in the form of a WeedCheck module

to enable instantaneous image capture when these weed detection platforms identified a

weed. This module enabled comparison of weed detection platforms both within trials

for repeatability and between trials for comparison. The WeedCheck module had the

added benefit of being versatile in its connectability to di↵erent platforms. This module

proved to work successfully and enabled all outcomes of this project to be met. With

further modification to this project, namely in the use of dye colours used for assessment

in conjunction with further development of the computer vision software to analyse the

data more e�ciently, a more accurate automatic sorting and thus comparison would be

possible for commercial use. This would enable farmers to have access to important

comparison and repeatability data they can use to access whether to implement precision

spraying practices commercially.

The results of this project cannot definitively portray which weed detection platform is

better than the other due to the small percentage of frames that had to be hand analysed

and matched after the GPS proved unsuccessful. However, what has been proved is that

over an area of 0.16ha, the WEEDit proved to be better. What was also proven throughout

this project is a method for validation and comparison of weed detection accuracy, just

not through GPS. The development of a computer vision algorithm that would take the

manual sorting out of matching weeds across frames would be an excellent procedure for

validation.
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6.2 Further Work

This project identified a large variance in GPS positions between and within the repeated

trials. This error could be eliminated with further software and hardware development.

To further standardise the trials the WeedCheck module could be interfaced to the di↵er-

ent sensors identically. This would determine if there is a timing error in either method

of interfacing, which may have a↵ected the weed maps.

The WeedSeeker WeedCheck module had an intermittent error where the camera would

be busy when the trigger was sent, resulting in some weeds not being captured. This

was due to a slow frame rate on the RPi camera. In future testing, the camera on the

WeedCheck module should be replaced with a sensor with a higher frame rate. This will

provide more accurate weed images and eliminate errors in triggering the camera.

Future testing with repeated trials under di↵erent weather conditions could validate

whether the sensor’s performance is a↵ected by cloudy and overcast weather. The ground

speed could also be adjusted and repeated to determine the e↵ect of this on commercial

weed detection platform behaviour.

This research proved the ability to use computer vision algorithms to automatically de-

tect weeds within an image. Further development of this algorithm could prove to have

increased success. Shadow from the sun was present in most weed images, which a↵ected

the ability of the computer vision program. Therefore, to create the optimal environment

for computer vision, a sun shield and own light source could be used. This would eliminate

the error seen in the images due to the shadow from the sun and would make identification

of weeds much easier, both for computer vision and manual sorting. The project proved

matching weeds within and between trials was the most robust method for validating the

commercial sensors. Further development of computer vision which compares plant and

stubble geometry could enable automatic matching and classification of weed frames.
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Project Specifications

For: William McCarthy

Title: Standardised test procedure to evaluate the e�cacy of automated weed spot spray-

ing

Major: Agricultural Engineering

Supervisors: Dr Cheryl McCarthy

Enrolment: ENG4111 EXT S1, 2016 ENG4112 EXT S2, 2016

Aim: To develop a standard procedure for evaluating e�cacy of existing weed detection

systems that can potentially be used by agronomists.

1. Review automated weed spot spraying technologies and their performance for di↵er-

ent industries, e.g. existing industry reports that describe hit and miss rate, ground

conditions, day and night operation.

2. Design a trial protocol to determine weed detection accuracy and spray footprint.

3. Identify up to 3 existing weed spot spraying technologies to evaluate on a ground

platform.

4. Develop a method and / or electronic module that potentially interfaces with a range

of existing weed spot spraying technologies and records additional metadata (e.g.

a camera image and GPS location) whenever a weed is detected, and at periodic

intervals so that the metadata can be reviewed for missed weeds.
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5. Perform trials of weed detection accuracy and spray footprint.

6. Develop software that (a) presents recorded metadata and allows manual labeling

of correct and incorrect weed detection; and (b) automatically generates maps of

weed detection performance from the recorded metadata and labels.

If time and resources permits

7. Extend the software to produce an interface overlaid on Google Earth.

8. Using the developed software, evaluate the performance of a weed detection tech-

nology after multiple passes over the same field locations.
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Results

Table B.1: WeedSeeker Repeatability Test - Hand Validated

Weed Image Number Test1 Weed Image Number Test3 GPS Position Error (m)

31 38 0.06

31 38 0.06

32 39 0.02

32 39 0.02

34 40 0.09

34 40 0.09

35 41 0.09

35 41 0.09

36 Failed To Detect Weed -

36 42 0.10

39 42 3.85

40 44 1.01

40 44 1.01

41 46 0.48

42 46 0.48

201 185 0.99

201 185 0.99

Failed To Detect Weed 186 -

204 Failed To Detect Weed -

204 186 0.54
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205 187 0.28

205 187 0.28

206 Failed To Detect Weed -

207 189 0.23

207 189 0.23

208 190 1.69

208 Failed To Detect Weed

209 191 0.06

209 191 0.06

480 430 0.02

480 430 0.02

484 Failed To Detect Weed -

484 Failed To Detect Weed -

485 432 0.09

486 433 0.04

313 283 0.53

314 284 0.05

314 Failed To Detect Weed -

640 560 0.76

641 561 0.09

641 561 0.09

642 562 0.12

643 563 1.75

643 563 1.75

644 564 0.05

644 564 0.05

645 Failed To Detect Weed -

645 Failed To Detect Weed -

646 565 1.33

646 565 1.33

647 566 1.43

901 798 0.15

901 798 0.15
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902 799 1.10

902 799 1.10

903 799 2.67

903 Failed To Detect Weed -

Failed To Detect Weed 800

1100 904 3.33

Failed To Detect Weed 904

1102 905 0.02

1102 905 0.02

1103 Failed To Detect Weed -

1105 Failed To Detect Weed -

1106 908 0.04

Average error (m) 0.617529

Minimum error (m) 0.018192

Maximum error (m) 3.848142

Range (m) 3.82995

Table B.2: WEEDit Repeatability Test - Hand Validated

Weed Image Number Test1 Weed Image Number Test3 GPS Position Error (m)

81 72 0.28

82 73 0.39

83 74 0.32

84 75 1.20

87 77 0.02

86 76 0.04

85 75 0.17

87 78 1.26

89 79 0.66

90 79 0.54

332 290 0.17

333 291 0.21
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333 291 0.21

334 292 0.27

335 293 1.14

336 294 0.31

337 294 0.58

336 294 0.31

337 295 0.19

338 295 0.69

338 296 0.35

339 296 0.51

340 297 0.15

341 Failed To Detect Weed -

342 298 0.28

343 298 0.58

922 689 0.59

922 690 0.68

923 Failed To Detect Weed -

924 691 0.34

924 691 0.34

925 Failed To Detect Weed -

925 692 0.65

926 692 0.32

926 693 0.96

927 693 0.02

928 694 0.18

929 695 0.13

930 695 0.83

930 696 0.44

1200 920 0.51

1201 921 0.02

1201 921 0.02

1202 922 0.42

1203 922 0.44
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1203 923 0.84

1204 924 0.81

1206 Failed To Detect Weed -

1206 925 0.30

1207 926 0.11

1207 926 0.11

1208 926 0.54

Failed To Detect Weed 927 -

1208 927 0.73

1209 928 0.25

1209 928 0.25

1210 928 0.64

1210 929 0.66

1211 929 0.02

1211 929 0.02

1212 930 0.38

Average error (m) 0.415319

Minimum error (m) 0.01955

Maximum error (m) 1.264973

Range (m) 1.245423

Table B.3: WeedSeeker and WEEDit Comparison - Hand Validated

WeedSeeker Weed Number WEEDit Weed Number GPS Position Error (m)

32 40 1.65

32 40 1.65

34 42 1.77

34 42 1.77

Failed To Detect Weed 43 -

35 43 2.43

35 44 3.31

36 44 2.99
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36 45 4.31

Failed To Detect Weed 45 -

39 46 2.14

40 46 2.14

40 47 2.81

Failed To Detect Weed 47 -

Failed To Detect Weed 48 -

41 48 0.75

41 49 1.86

Failed To Detect Weed 49 -

46 50 1.50

201 202 2.64

201 202 2.64

204 204 2.19

205 204 0.70

Failed To Detect Weed 205 -

Failed To Detect Weed 206 -

206 206 0.99

Failed To Detect Weed 207 -

206 207 1.84

207 208 1.27

207 208 1.27

208 209 1.62

208 209 1.62

Failed To Detect Weed 210 -

209 211 1.56

209 Failed To Detect Weed -

481 525 1.18

481 526 2.05

483 526 0.87

485 527 1.36

485 527 1.36

1105 1188 1.31
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1105 1189 2.40

1105 1188 1.31

1103 1187 2.18

1102 1185 1.14

1100 1184 2.93

1100 1184 2.93

Average error (m) 1.90

Minimum error (m) 0.70

Maximum error (m) 4.31

Range (m) 3.61
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