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Abstract

With the technological advancements of UAVs, researchers are finding more ways to har-

ness their capabilities to reduce expenses in everyday society. Machine vision is at the

forefront of this research and in particular image recognition. Training a machine to iden-

tify objects and di↵erentiate them from others plays an integral role in the advancement

of artificial intelligence. This project aims to design an algorithm capable of automatically

detecting sharks from a UAV. Testing is performed by post-processing aerial footage of

sharks taken from helicopters and drones, and analysing the reliability of the algorithm.

Initially this research project involved analysing aerial photography of sharks, dissecting

the images into the individual colour channels that made up the RGB and HSV colour

spaces and identifying methods to detect the shark blobs. Once an adaptive threshold

of the brightness channel was designed, filters were curated specific to the environments

presented in the obtained aerial footage to reject false positives. These methods were

considerably successful in both rejecting false positives and consistently detecting the

sharks in the video feed.

The methods produced in this dissertation leave room for future work in the shark detec-

tion field. By acquiring more reliable data, improvements such as using a kalman filter to

detect and track moving blobs could be implemented to produce a robust shark detection

and tracking system.
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Chapter 1

Introduction

1.1 Background

Shark attacks have haunted every swimmer at some point in their life. The ominous

shadows of the deep lurking below them, the object that brushed past their feet or the

cool chill of something not being right has often reminded people of the horror of being a

big fish’s lunch. In the last 100 years in Australia alone there have been 543 unprovoked

shark attacks, with 135 of those people losing their lives (Taronga 2016). Although for a

statistician those aren’t overwhelming odds, the long-term trend indicates an increasing

number of shark attacks which is most likely due to an increasing number of people

swimming at the beach. To try and reduce the frequency of shark attacks there have

been a few control methods put in place such as:

• Shark nets

– These are used to entangle sharks and prevent them from reaching swimmers

and surfers. The nets are typically placed 500 metres o↵shore and are 150m

wide and 6m tall (Sealifetrust 2015) and submerged in water of depths around

10m. Shark nets have been known to kill marine life such as dolphins and

turtles (Sumpton, Taylor, Gribble, Mcpherson & Ham 2011)
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Figure 1.1: Diagram of shark net.

• Drumline

– Consists of baited hooks that are set in waters 6m to 12m deep and approx-

imately 600m o↵shore (Sumpton et al. 2011). The hooks are checked and

re-baited every 15-20 days by contracted fisherman, who thoroughly record

each catch.

Figure 1.2: Diagram of shark drumline.

• Aerial Patrol

– These have been used to monitor the beaches from small planes and helicopters.

A recent study in 2014 recorded the success rate of identifying artificial shark

analogues placed at an average 2.5m below the surface of the ocean was 12.5%

for fixed-wing and 17.1% for helicopters (Robbins, Peddemors, Kennelly &

Ives 2014). A typical aerial patrol can involve a sweep of nearly 300km of

coastline, where the plane or helicopter is only o↵ering a couple minutes of

real-time security for popular beaches(Robbins et al. 2014).
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Figure 1.3: Shark seen o↵ Boudlers beach near Ballina from a helicopter.

• Tagging

– Sharks are tagged and monitored over a certain time period, where the data

obtained is typically used to determine migration patterns. Other useful data

can be the depth at what the shark dives to for a given time period and

the temperature of the water (Holmes, Pepperell, Gri�ths, Jaine, Tibbetts &

Bennett 2014). Tagged sharks can o↵er real-time tracking (News.com.au 2015)

but it is not feasible to track down every shark and install a tag on them.

Figure 1.4: A great white shark tagged with both acoustic (front) and pop-up satellite (rear)

tags. The acoustic tag is detected when the shark swims within 250m of a listening station,

while the pop-up satellite tag records information about location, temperature and depth -

and relays it to the laboratory when the tag releases itself from the shark.

• Spotters

– Professional spotters that scan the water from a high point such as a cli↵ or

tower and radio back to the control station if a shark is spotted.
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In light of these expensive control methods in place, shark attacks are still occurring. To

combat this the author is proposing a shark detection system based on aerial photography,

which could greatly reduce funding needed for shark control methods and o↵er real-time

surveillance and alerts of sharks in dangerous or threatening positions.

1.2 Computer Vision

Computer vision is a broad topic that involves many areas and is apart of everyday life.

Medical professionals use computer vision for x-rays and MRI’s to better diagnose their

patients. Architects and engineers use computer vision for 3D modelling. Toll points

and parking lots use computer vision to recognise license plates on vehicles. Production

plants use computer vision for automatic inspection of goods on assembly lines to check

for imperfections, and the list goes on. As science and engineering progress, computer

vision is establishing a greater impact on society.

Computer vision can be a very complex area, and in the words of Richard Szeliski, ”despite

all advances in computer vision, the dream of having a computer interpret an image at the

same level as a two-year old (for example, counting all the animals in a picture) remains

elusive”. This is because vision is an inverse problem (Szeliski 2010), in which we seek

to recover some unknowns given insu�cient information to fully specify the problem. We

must therefore resort to physics-based models and probabilistic models to disambiguate

between potential solutions.

Computers interpret images as arrays of numbers and cannot be taught to identify objects

by what shape they are. Instead di↵erent mathematical techniques are used to determine

how the relative pixel of varying densities are arranged to each other. An edge might be

detected by a sharp sudden change in pixel density, whilst a shape may be detected by

an arrangement of such edges in a circular, mathematical fashion.

Dr Adrian Rosebrock, author of Practical Python and OpenCV, defines a pixel as ”a

colour or the intensity of light that appears in a given place in an image”. Digital cameras

are quite often ranked for their resolution, or by how many pixels are in the photos that

the camera produces. The resolution is the product of the rows of pixels multiplied by the

columns, because images are digitally stored as arrays of pixel intensities that represent

the colour or the brightness of the details of the image. For 8-bit images, pixel values are
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ranked from 0 to 255 with 0 being no colour at all (black) and 255 being the maximum

(white). In RGB (colour) images there are three layers of arrays, each relating to the 3

di↵erent colour channels red, green and blue. Every pixel in the arrays are given a value

of intensity (or how much of that colour the pixel is trying to represent) out of 0 to 255.

For example, a bluish almost purple might have pixel values of 200 for blue, 100 for red

and 50 for green.

Figure 1.5: Example of di↵erent colour channels compiled together.

1.3 Colour Spaces

A colour space or model is a way to mathematically represent the formulation of colours

from the combination of primary colours. Additive colour models are primarily designed

for electronic systems such as televisions, computers and digital photography. There are

3 dominant models that are typically used in computer vision.

RGB colour space is the most commonly used colour space and is based on the addition
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of 3 primary colours, red, green and blue. In order to create a colour with RGB, three

light coloured beams (red, green and blue) must be superimposed (Insights 2016). With

no intensity, each of the 3 colours is perceived as black, while full intensity is perceived

as white. Varying the intensities varies the output colour.

Figure 1.6: An example of the RGB colour space.

HSV (hue, saturation and value) colour space depicts 3D colour. HSV seeks to describe

relationships between colours, and improve on the RGB colour model. HSV can be

illustrated as a wheel where the centre axis goes from white at the top to black at the

bottom, with other neutral colours in between. The angle from the axis represents the

hue, the distance from the axis depicts the saturation, and the distance along the axis

represents the value (Insights 2016).
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Figure 1.7: An example of the HSV colour space.

LAB colourspace is designed to approximate human vision. Unlike RGB, LAB is not

device-dependant. In this 3D model, the ’L’ stands for the lightness of the colour, with 0

producing black and 100 producing a di↵used white. The ’A’ is the redness vs. greenness

and the ’B; is the yellowness vs. blueness (Insights 2016).

Figure 1.8: An example of the LAB colour space.
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1.4 Image Processing

Image processing involves editing and manipulating digital images to enhance its visual

e↵ects or to make it more user-friendly for complex computer vision applications. A

common use of image processing is in advertising or media, where models can be digitally

enhanced to improve their attractiveness or for products to seem more appealing. Image

processing is typically the first step in a computer vision algorithm, where features can be

transformed, enhanced, blurred and more to make the image more user-friendly for the

algorithm to process. For example, a colour recognition algorithm might begin with an

image being blurred so that insu�cient details are removed, making the probability of a

blob of a certain predetermined colour being detected higher. Filters used for smartphone

applications such as ’Snapchat’ and ’Instagram’ are good examples of image processing

as they enhance or warp images when applied.

Figure 1.9: An example of image processing being used to enhance the beauty of a model.

1.5 Edge Detection

Edge detection is a process which involves the computer automatically highlighting all

the edges in the image through a series of operations. These operations typically involve

filtering, di↵erentiation and detection. One of the most successful and commonly used

edge detectors is the Canny edge detector, developed by John F. Canny in 1986. Canny

had specified performance criteria for the detector to meet (Shah 1997) such as:

1. Good Detection. The optimal detector must minimise the probability of false posi-

tives as well as false negatives.

2. Good Localisation. The edges detected must be as close as possible to the true
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edges

3. Single Response Constraint. The detector must return one point only for each edge

point.

The reason for this criteria was to help minimise unwanted noise that was apparent in

other detectors such as the Marr-Hildreth detector where the Laplacian of the Gaussian

was used to locate zero crossings which indicated an edge. The steps in the Canny edge

detector are:

1. Smooth image with Gaussian filter g(x, y)

g(x, y) =
1p
2⇡�
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2+y
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(S
x

, S

y

) Gradient Vector

magnitude =
q
(S2

x

+ S

2
y

)

direction = ✓ = tan�1 S

y

S

x

4. Apply ”non-maximum suppression”

The pixels that are perpendicular to the identified edge must be suppressed so that

thick edges are minimised. This is done by locating a point (x, y) and determining

whether the points either side have a steeper gradient.
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Figure 1.10: Illustration of finding the local maxima for an edge

M(x, y) =

8
>>>>><

>>>>>:

|rS|(x, y) if |rS|(x, y) > |rS|(x0, y0)

& |rS|(x, y) > |rS|(x00, y00)

0 otherwise

(1.4)

5. Apply ”hysteresis threshold”

If the gradient at a pixel is

-above ’high’, declare it as an edge pixel

-below ’low’, declare it as a non-edge pixel

-between ’low’ and ’high’, consider its neighbours iteratively then declare it an edge

pixel if it is connected to an edge pixel directly or via pixels between ’low’ and

’high’.

Figure 1.11: Illustration of neighbouring pixels
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Scan the image from left to right, top to bottom. If the gradient magnitude at the

pixel is above the high threshold, declare that as an edge point. Then recursively

look at its neighbours. If the gradient magnitude is above the low threshold, declare

that as an edge point.

Figure 1.12: Illustration of detected edge points within the predetermined thresholds. As

shown, edges remain consistent within the low to high boundary if they are connected to edge

points that eventually go above the high threshold level. The line below the low threshold

represents noise in the data.

Edge detection is quite often used as the first step in blob detection, where the

outlines of objects are detected. Further image processing techniques involving

dilation, fill and erosion help to isolate the object. An example of edge detection

can be seen in Figure 1.14 where canny edge detection has been applied to a photo of

a figurine holding a computer. The edges were then dilated for illustration purposes.

Figure 1.13: Image of figurine imported into

Matlab and converted to grayscale.

Figure 1.14: Canny edge detection applied

to the figurine and edges dilated.
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1.6 Image segmentation

Image segmentation has been widely applied in image analysis for various areas such

as biomedical imaging, intelligent transportation systems and satellite imaging (Choong,

Kow, Chin, Angeline, Tze & Teo 2012). The main goal of image segmentation is to cluster

pixels into salient image regions, i.e. regions corresponding to individual surfaces, objects

or natural parts of objects (Bodhe 2013). After regions are successfully segmented into

individual regions they can then be identified automatically as seen in pest detection

systems for horticulture (Bodhe 2013).

Mathworks have o↵ered several examples that explain the basics of image segmentation.

Detecting a shark in the water, which in theory should be a controlled environment

depending on the amount of light available, could be formulated using edge detection and

basic morphology. The example as published by Mathworks (Mathworks 2016h) for cell

detection could prove to be a good starting point in developing a algorithm for identifying

sharks. The example works in six steps:

Figure 1.15: Original image of cell. Figure 1.16: Edge detection applied to im-

age.

Figure 1.17: Edges dilated with ’imdilate’

function in Matlab.

Figure 1.18: Images filled with ’imfill’

function.
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Figure 1.19: Images connected to border

are removed.

Figure 1.20: Blobs not connected to the

main blob are ’eroded’.

Figure 1.21: The perimeter of the seg-

mented image is overlayed on the original

image.

This is a very good example of how the blob of the shark might be obtained. Further

analysis could determine whether the blob is of a ’shark’ size by identifying how many

pixels make up the blob. Although the depth of image is unknown, if an assumed operating

height of the drone is known then relative blob sizes can be calculated.

1.7 Object Tracking

Object tracking involves the detection of objects and tracking their movement over mul-

tiple frames. It is typically used in surveillance type systems and can be broken down

into 3 main steps:

• Object detection

• Object classification
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• Object tracking

1.7.1 Object Detection

Object detection is the process of finding instances of real-world objects such as faces,

bicycles and buildings in images or videos (Mathworks 2016i). Object detection is still

very limited in everyday use in society as it is extremely di�cult for a computer to

automatically detect objects, as explained earlier, a computer can only define an object

by the arrangement and intensities of the pixels in the image. However, face detection

and people tracking systems are becoming more popular and plenty of research is being

undertaken to develop more complex surveillance systems.

To locate a moving object in consecutive video frames the following 3 methods can be

applied:

• Frame Di↵erencing

– Frame di↵erencing works by checking the di↵erence between 2 consecutive

frames. It employs the input as 2 image frames of video and produces the

output as the di↵erence of the pixel values. This is obtained by subtracting

pixel values of the second frame from the first frame (Kothiya 2015). As a

result, moving objects can be easily detected in videos with static backgrounds.

• Optical Flow

– Optical flow is a technique that presents an apparent change in the moving

object’s location between consecutive frames of the video (Kothiya 2015). It

employs the motion field that represents the direction and velocity of each

point in every frame. It is a computationally expensive method that is more

suitable for multiple moving object detection.

• Background Subtraction

– The background subtraction method involves removing the background so that

only the foreground moving objects are left. Consecutive images are compared

to find the di↵erence in pixel values so that moving objects can be identified.

This method is ideal for static backgrounds and can deal with multiple moving

objects.
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1.7.2 Object Classification

Once a moving object has been detected it must be classified to identify what the object

is. The following methods are typically used for object classification:

• Shape based classification

– The shape information of a moving object can be retrieved from the repre-

sentation of the blob. It can then be compared through matching techniques

using complex SIFT or SURF features, or by testing for a certain size or shape.

Matching techniques generally require a large database with thousands of test

images, both positive and negative to compare against.

• Motion based classification

– This involves analysing the velocity of the pixels related to an object and

classifying them with respect to their known speed. Such applications could

involve tra�c cameras detecting cars travelling faster than the speed limit.

• Colour based classification

– Objects can easily be identified that are of a known consistent colour. This

method works best when the object of interest is a considerably di↵erent colour

to the background.

• Texture based classification

– Texture can be used as a feature by identifying the variation in pixel intensities

for a given region of interest. Texture classification involves learning and recog-

nition. Learning consists of identifying the texture features for a given object

and recognition attempts to match the texture features with the subsequent

frames.

1.7.3 Object Tracking

The typical methods of object tracking are:

• Point based tracking
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– Point based tracking is a complex problem as it can result in false detections

and the occlusion of objects in frames (Kothiya 2015). The various methods

of point based tracking are:

∗ Kalman filter

· The Kalman filter is based on the probability density function. It is

a relatively complex method that is designed to return the optimal

solution.

∗ Particle filter

· Particle filtering generates all models for one state variable before it

moves to the next state variable. The trajectory of the tracked object

can be determined by taking the particle with the highest weight of

the particle set at each time step (Hess 2009).

∗ Multiple hypothesis tracking

· This process is also known as an iterative algorithm that begins with a

set of existing track hypothesis (Kothiya 2015). The object’s position

in every frame is made for each hypothesis. Cham and Rehg’s (Cham

& Rehg 1999) study of tracking people dancing demonstrates that this

method is capable of handling occlusion and can track multiple objects.

• Kernel based tracking

– Kernel based tracking relates to the appearance of an objects shape. The

kernel can be elliptical or rectangular and is able to track objects in translation

and rotation. Simple template matching, mean shift method, support vector

matching and layered based matching are all examples of kernel based tracking

(Kothiya 2015).

• Silhouette based tracking

– Silhouette based tracking involves using the information encoded inside an

object region for tracking. This is ideal for objects that have complex shapes

such as shoulders, fingers and hands that cannot be described adequately by

simple geometric shapes. Silhouette tracking is typically achieved by contour

and shape matching.
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1.8 Project Aim

This dissertation aims to research object classification by means of computer vision and

determine whether an automated shark detection system can be established. The ap-

proach taken to design the shark detection algorithm will be from an aerial perspective,

with the end goal being an Unmanned Aerial Vehicle (UAV) patrolling the coastal waters

and alerting a control station or lifeguards if a shark is detected.

On the 29th of February 2016, the NSW premier Mike Baird unveiled a $250,000 military

grade shark-spotting drone called the ”Little Ripper” (Chang 2016) which states that it

uses real-time sensor and pattern recognition algorithms. Although it is still in the testing

phase, the drone is said to be able to identify sharks better than the naked eye.

The proposal of drones policing the coastal waters for sharks o↵ers an inexpensive early

shark detection method in comparison to having helicopter and fixed-wing surveillance.

If the shark detection algorithm can be taught to identify sharks with minimal error, such

as false positives or missing targets, it may pave the way for a foolproof shark surveillance

system that eradicates the need for expensive piloted aerial patrols.

1.9 Research Objectives

For the system to be feasible, it needs to show that it can identify sharks and have minimal

false positives. To reach this state, the following research objectives must be met:

• Carry out a literature review that is relevant to image segmentation, object recog-

nition, object classification and object tracking.

• Obtain aerial videos of sharks in coastal waters to begin designing the algorithm

with.

• Write a basic computer vision program that can detect the ’blob’.

• Expand on the basic blob detection algorithm by trying to filter out all of the blobs

that aren’t relative to a shark.

• If the algorithm is unsuccessful across the dataset, tune it for each individual pho-

to/video and record what changes made it successful (if any).



Chapter 2

Literature Review

The areas that have been researched for this project are computer vision and techniques

relevant to object classification, object recognition and tracking.

2.1 Segmentation methods of marine wildlife from UAV’s

Recent studies have proved limited success in detecting wildlife from UAV’s. In 2013

a study was conducted by students from QUT (Queensland University of Technology)

titled ’Detection of Dugongs from Unmanned Aerial Vehicles’ (Maire, Mejias, Hodgson &

Duclos 2013). The dugongs were segmented by identifying them by colour thresholding

and determining the red-ratio of pixels. To limit false positives ’whitecaps’ were identified

and ’inpainted’ to reduce the confusion of similar shaped bright pixels. The whitecaps

were detected by identifying a relationship between the mean of the colour channel ’c’ in

the image and determining whether the a pixel was greater than that scaled mean.

To further classify the dugongs and limit false positives, a binary map was made of the

detected blob and overlayed on a template to determine the similarity. It was discovered

that a blob was more likely to relate to a dugong if its shape was elliptical, so by extracting

information such as the ’MajorAxisLength’ and ’MinorAxisLength’ of the detected blob

and calculating its elliptical area, it could be compared to the area of the blob template.

The closer to 1 this relationship was the higher the probability of the detected blob being

a dugong.

The study concluded that the performance of the algorithm was very sensitive to sea
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conditions as ever-changing waves and reflections would result in a lot of false positives.

Figure 2.1: Results of dugong detection study illustrating 7 out of 13 dugongs detected, no

false positives.

2.1.1 Dugongs and Machine Learning

Machine learning has been another method researchers have investigated to perform au-

tomatic analysis of aerial video footage. CNNs (Convolutional Neural Networks) have

been the key component in pattern recognition systems, and are predominantly used in

face detection and OCR (Optical Character Recognition) systems. Research from the

University of Queensland investigated whether a CNN could be used to apply automatic

detection to dugongs (Maire, Mejias & Hodgson 2014). By compiling two LeNet convo-

lutional layers, a hidden layer and then a logistic regression layer, (Maire et al. 2014) was

able to predict whether there were any dugongs in a given frame.

Figure 2.2: Layers of CNN used to detect dugongs.

The success rate of the CNN was found to be feasible, but was limited to lower resolution

images as the classifier had been trained on 28 x 28 input windows due to a small training

set. It was concluded that it was di�cult to compare to methods previously used because

the bounding boxes of dugongs were typically 100 x 100 (Maire et al. 2013). A larger

training set would need to be obtained to e↵ectively train a CNN with a larger input
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window.

Figure 2.3: Blob analysis using a CNN filtering out blobs based on confidence scores.

2.2 Underwater Fish Detection

The estimation of fish population and species classification has been an interesting ap-

plication of blob analysis (Fabic, Turla, Capacillo, David & Naval 2013). The study,

conducted by the University of the Philippines, utilised an underwater camera to capture

local schools of fish inhabiting coral. The basis of this study was to determine a method

using computer vision to count and determine the species of fish. Such information would

be helpful to marine biologists to track and monitor fish species and their habitats.

Figure 2.4: Blobs detected after edge detection, coral blackening and blob filling.

The algorithm first used histogram comparison to identify coral and ’blacken’ it out. Once

the coral had been removed, edge detection was applied to the frame to identify contours

related to fish. These contours were then filled to represent ’blobs’, and then filtered and

categorised by size. This allowed the vision system to di↵erentiate between the two fish

species within the frame, the parrot fish and the sturgeon fish. The system proved to be

relatively successful, producing little to no false negatives and very few false positives.
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Figure 2.5: Success rate of vision system.

2.3 Marine object detection

Other algorithms, such as jellyfish and sea snake detection, use what is known as a hybrid

detection method to correctly identify objects of interest (Zhou, Llewellyn, Wei, Creighton

& Nahavandi 2015). This hybrid method is composed of statistical learning techniques,

such as Gaussian mixture modelling, and feature based approaches.

One of the main problems with dealing with marine object detection is being able to

remove all the pixels related to the water, and just leave the objects of interest. To achieve

this in the jellyfish and snake detection, a Gaussian mixture model which could be trained

automatically to recognise background pixels (water) (Zhou et al. 2015). Automatic

collection of training pixels was segregated into di↵erent areas of the training frame, due

to the lighting distribution. Histogram models were made of each area of the frame, and

bin thresholding was applied to determine which pixels were related to the background.

Figure 2.6: Frame divided into di↵erent areas and histogram bin thresholding applied.

The GMM was then trained on these background pixels, after being partitioned into



2.3 Marine object detection 22

K clusters using the Orchard-Bouman algorithm (Orchard & Bouman 1991). Image seg-

mentation is then applied to di↵erentiate between the foreground and background groups,

based on the Otsu algorithm (Yu, Dian-ren, Yang & Lei 2010). Standard morphology op-

erations such as fill holes, eroding and dilating help remove any noise and leave the blobs

of the sea life defined.

Figure 2.7: E↵ects of GMM and background subtraction.

Blob analysis was then performed to classify the snakes and jellyfish. Blob selection cri-

teria such as blob height to width ratio, area to bounding box ratio and circularity (using

Heywood’s circularity factor) allowed the snakes and jellyfish to be correctly classified.

The disclosed results determined a detection rate of over 90% over a sample size of 243

images (frames with snakes or jellyfish in them) collected over two years.

Figure 2.8: Frame showing

snake detection.

Figure 2.9: Frame showing

jellyfish detection.

2.3.1 LiDAR Detection and Classification of Subsurface Objects

LiDAR detection systems have also been investigated for marine object detection (Cianciotto

1997), due to their resilience to weather conditions as opposed to traditional computer

vision techniques. Airborne LiDAR systems have been used for research in:

• Detection of submerged objects

• Oil spill detection and identification

• Marine biology and biomass estimation
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• Atmospheric pollution surveillance

• Stratospheric dust measurements

• Subsurface ocean temperature measurements

The advantages of these LiDAR systems is that LiDAR is typically able to see objects

3-5 times deeper than conventional computer vision systems, which would be ideal for

locating sharks that are too submerged for a camera to identify. LiDAR systems are

however quite expensive, leaving this possible avenue unavailable for the author.

2.4 Blob Analysis

Blob analysis has also been widely used in vehicle counting, pedestrian tracking and tra�c

sign recognition. By identifying what makes an image unique, pixel thresholding can be

performed to remove pixels that are unrelated to the region of interest. This can involve

manipulating colour spaces such as RGB, HSV and LAB. Research from the University

of Ostrava demonstrated pixel thresholding in the HSV colour space when attempting to

detect and classify tra�c signs (Zavadil & Tuma 2012). By ’ANDing’ pixel conditions

for all three channels (hue, saturation and value), he was successful in identifying the

pixels most likely related to the tra�c signs. From there, analysis of the blob properties

was performed to determine the geometry of the blob, and the Mahalanobis distance

was computed to determine the similarity score against a reference set of images. The

testing was performed on a robot race track, and images were captured within 2m of the

upcoming tra�c symbol. Of the 321 positive frames, only 15 false negatives were obtained

and 0 false positives. The following graph illustrates the results:

Figure 2.10: Success rate of recognition within 2m of sign.
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Vehicle counting is another good demonstration of blob analysis, where background sub-

traction is utilised to remove all stationary pixels. Therefore stationary cameras can be

set up at busy intersections, and be programmed to count each car (blob) that is moving.

This is a much more e↵ective way to record tra�c flow information than to have people

continually noting down the cars driving past. Research from the GMR Institute of Tech-

nology, India, illustrated how background subtraction can be utilised, and blob analysis

can be performed to allow the vision system to identify light coloured cars driving past

(Telagarapu 2012).

Figure 2.11: Sample frame of traf-

fic.

Figure 2.12: Background subtrac-

tion and blob analysis performed

to identify white cars.

Background subtraction has also been widely used in people detection and counting

systems. Research from the Pozna University of Technology demonstrated that peo-

ple entering a building could be identified, counted and tracked, by removing the back-

ground and applying blob analysis to the detected moving pixels (Tchn, Kfnqhsglr, Mc,

Shnmr, Marciniak, Da̧browski, Chmielewska, Nowakowski, Wkh, Ri, Lq, Uhvhdufk &

Uhvxowlqj 2012) . Although background subtraction can be a useful tool in elementary

object detection solutions, it is certainly not feasible for a shark detection system where

the waves are constantly moving and changing.

2.5 Project Area of Research

Based on the findings of the literature review this project will be focused on determining

an appropriate pixel thresholding method to identify the shark blobs within the frame

and use extensive blob analysis techniques to classify the detected blobs as sharks.
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These methods will involve converting the image to alternate colour spaces for analysis

(Zavadil & Tuma 2012), applying pixel thresholding techniques and determining blob at-

tributes such as elliptic ratio (Maire et al. 2013), and investigating other unique properties

of the shark blobs to enable the shark detection algorithm to filter out false positives with

blob analysis techniques (Fabic et al. 2013).



Chapter 3

Methodology

This chapter discusses the approach that will be taken to design, develop and evaluate

the shark detection algorithm on its feasibility.

3.1 Project Methodology

Computer vision can be an elusive task that is prone to error, and unfortunately the

solution to one object detection problem can not simply be applied to another. That is

why the methodology for this project will involve many alterations. The development

stage of the algorithm will involve countless changes and tweaking to first, attempt to

isolate the shark from the image and then optimise the isolation and tracking process.

To further discuss the methodology of the project, the project has been segregated into

tasks:

1. Determine the tools required such as software packages and electronics

2. Obtain useful videos of sharks in coastal waters

3. Determine trends in pixel variations and colour spaces

4. Develop an adaptive thresholding method for identifying regions of interest

5. Morphological operations

6. Filtering of false positives
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7. Develop tracking methods

8. Determine feasibility and highlight why the algorithm is successful or not

3.2 Task Analysis

The following sections highlight the key components of the designated tasks.

3.2.1 Determine the tools required such as software packages and elec-

tronics

The programming environment for the development of the shark detection algorithm

has been chosen to be MATLAB. This software o↵ers some very useful computer vision

and image processing functions and its matrix representation makes it incredibly easy to

analyse images. The MATLAB suite combined with the computer vision toolbox is $155.

All other necessary equipment such as a laptop with Microsoft o�ce are already owned

by the author.

3.2.2 Obtain useful videos of sharks in coastal waters

The author has already reached out to sharkspotting groups on facebook and marine

biologists but has been unable to acquire any aerial videos of sharks. However, there are

some videos on youtube that may be suitable for image processing. The following images

are snapshots from two of the videos:

Figure 3.1: Screenshot from drone footage

of shark in coastal waters

Figure 3.2: Screenshot from drone footage

of shark in coastal waters
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Videos where the drone is ’sweeping’ the coast may prove di�cult to work with, so only

necessary snippets of the videos where the drone is hovering above a shark will be used.

3.2.3 Determine trends in pixel variations and colour spaces

The first step of the algorithm will be blob analysis. Colour thresholding can be performed

to remove unwanted objects in an image such as removing dark objects such as roads and

converting the resulting image to a binary map (Telagarapu & Suresh 2012). To identify

what colour thresholds to implement to localise the sharks, RGB and HSV colour channels

will analysed to determine reliable trends in the pixel representation of the sharks. If a

reliable trend can be identified, a threshold will be applied that sets all pixels outside the

desired range of the pixel to zero. The result of this will be transformed into a binary

map which shows the blobs of interest.

3.2.4 Develop an adaptive thresholding method for identifying regions

of interest

The problem with computer vision in an uncontrolled environment is how sensitive the

system can become due to changes in illumination. To actively set a threshold to locate

the regions of interest, a relationship will have to be determined between lighting variation

from the sun’s exposure. The colour of the ocean can quite often change, so setting a

fixed threshold for pixel values will be inadequate. Instead, an adaptive threshold will be

put in place that determines the threshold value due to average pixel values in the frame.

It can be assumed that the vast majority of the frame will be the ocean colour.

3.2.5 Morphological Operations

Morphology is basically the manipulation of blobs. These methods include:

1. Smoothing of blobs

2. Removing any blobs under a determined pixel area

3. Filling holes in blobs

4. Removing blobs connected to the border of the frame
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5. Dilating the blobs

6. Retrieving data such as area, perimeter, major and minor axis lengths and orienta-

tion of the blobs

Using the above tools the identified blobs can be operated on to further filter out any

unwanted objects. This is necessary when dealing with a dynamic environment such as

the ocean where the constant change of waves and shadows could easily fool a computer

vision system.

3.2.6 Filtering of false positives

False positives are undoubtedly going to make their way through the system. To help

prevent the false classification of sharks, filters will be put in place that test the attributes

of each detected blob to determine whether it is actually a shark. These filters will involve

methods such as:

1. Calculating the brightness ratio of pixels to the area of the bounding box. Blobs

associated with too many bright pixels will be rejected. This is to eliminate false

detections such as surfers, who typically where black wetsuits and ride bright surf-

boards.

2. Calculating the variance of the brightness values in the bounding box. A minimum

threshold will be determined to prevent dark patches of water from being classified

as a shark.

3. Calculating the elliptic ratio. Shark blobs tend to have an elliptic shape. A maxi-

mum threshold will be determined to prevent false positives.

3.2.7 Develop tracking methods

Tracking of the identified blobs will help filter out false positives that have made it past

all the previous steps. Assuming a constant operating height of a UAV, when a blob is

detected the UAV can hover and track the movement of the blob using its centroid. If

the detected blob remains stationary (such as driftwood floating with the current), or the

detected blob is travelling at a speed impossible of sharks, the blob can be ignored.
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This will be di�cult to e↵ectively implement for the footage obtained, as the shark footage

has been sourced from the internet and rarely has moments where the UAV is hovering

above the shark. For the purpose of this project, a dynamic array will be created that will

record the binary maps of the last five frames. Using this dynamic array the detected blob

will be compared to the last five frames to determine if it has been consistently detected

and allowing it to pass a ’reliability threshold’. This should further filter out any sudden

changes in the wave formations that may trick the system. If time permits the movement

of the centroids can be calculated relative to the UAV movement.

3.2.8 Determine feasibility and highlight why the algorithm is successful

or not

This task involves critically reviewing the work accomplished in the previous tasks and

determining feasibility of a shark detection algorithm. Areas such as why the algorithm

performed the way it did should be reviewed in depth to gain understanding what could

have made it better or what kind of data would produce optimum results. If the algorithm

has failed to detect sharks on all accounts, the author should attempt to explain why it

may have failed and what needs to change for it to produce better results next time.

3.3 Resource Analysis

To understand the financial requirements of the project all the required resources men-

tioned in the methodology section must be tabulated and calculated so that necessary

funds are available.

Table 3.1: Project Resource Requirements

Resource Quantity Cost Source

Laptop 1 Owned N/A

LaTeX Package 1 Free Online

MATLAB with Computer Vision Toolbox 1 $155 Mathworks Website

Total $155

The total cost for the project has been calculated at $155. The total for this project is
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considered reasonably a↵ordable and some of the resources will have other uses outside

of the project such as MATLAB.

The critical items of the project that would threaten the viability of the whole project

are the Laptop and the MATLAB package. For these reasons all project documents and

MATLAB scripts are backed up to a personal cloud which then syncs with Google Drive.

If the laptop was to breakdown or be stolen all the project work to date would still be

accessible from another computer and MATLAB could be re-downloaded through the

Mathworks account page.

3.4 Project Consequential E↵ects

For the project to be undertaken in conjunction with the standards set by Engineers

Australia, the sustainability, safety issues, ethics and risks involved must be highlighted

and discussed.

3.4.1 Sustainability

If the project is to be successful and the shark detection system a↵ordably rolled out

across popular beaches in Australia, it holds the potential to rethink current shark control

methods. Shark nets could potentially be discontinued, which would sharply reduce the

unnecessary deaths of marine life such as dolphins and turtles.

3.4.2 Ethics

For the project to maintain its integrity the Code of Ethics (Australia 2010) published

by Engineers Australia must be closely adhered to. The key aspect highlighted is all the

work published by the author must be truthful and not fabricated to proclaim success.

At all times the author must clearly define how the code is preforming its analysis of the

shark video and why it was either successful or unsuccessful. The author shall not alter

the code to detect a shark under false pretences.



3.5 Risk Assessment 32

3.5 Risk Assessment

As with any project, the risks involved must be identified so that they may be minimised

or eliminated all together. The following risk matrix ranks the likelihood of an incident

occurring against the possible consequences involved.

Figure 3.3: Risk Assessment Matrix.

3.5.1 Risks Identified

Due to the nature of the project there are very limited risks involved. This project consists

of post processing data obtained from the internet, so the only risks associated are the

preservation of work and equipment. The following risks were identified and scored on

the matrix:

1. Failing to back up data: Risk Sore - 9

• If the computer had a breakdown and the progress made on the algorithm

had not been saved to an external hard drive or cloud storage, a considerable

amount of time would be lost. Therefore the directory containing all the Matlab

source files will be synced to a cloud storage to avoid this possible catastrophe.

1. Incorrect Seating: Risk Sore - 6

• Hours are going to be spent sitting at a desk attempting to write the shark de-

tection algorithm. To avoid back problems the author will sit in an ergonomic

chair that promotes good back posture. Back problems are a common occur-

rence for the author.



Chapter 4

Pixel Trends, Colour Spaces and

Thresholds

4.1 Initial test and data display

To determine how to segment the image the pixel values related to sharks need to be

identified. To begin with, a test image was used that portrayed only the shark surrounded

by water. The red, green and blue arrays were individually extracted from the RGB image,

and then the image was converted to HSV and the hue, saturation and value arrays were

saved to separate variables. This is essentially the control for the experiment as there are

not other objects in the frame that could skew the data.
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Figure 4.1: Test image.

The image was imported into MATLAB using the ’imread’ function and the pixel inten-

sities were displayed as a 3D surface model to better illustrate the pixel densities. The

plots were viewed from an angle of 0 degrees and 90 degrees. The following pseudo-code

represents how the pixel densities are extracted and plotted:

Algorithm 1 Display Surf Models of Pixel Densities

1: procedure Imread(frame)

2: Red (:,:,1) frame

3: Green (:,:,2) frame

4: Blue (:,:,3) frame

5: framehsv rgb2hsv frame

6: Hue (:,:,1) framehsv

7: Saturation (:,:,2) framehsv

8: Value (:,:,3) framehsv

9: Display Surface Models Side View and Aerial View

The original code to the above algorithm can be found in the Appendix.
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Figure 4.2: RGB representation of current test image. The red, green and blue data arrays

are saved to individual variables and displayed as a surface model. This will help identify

methods for pixel thresholding.

As illustrated above, the shark can be located by its red and green pixel values. There

is a considerable peak which clearly represents the shark when looking at the colourmap

from an aerial view. It is easier to determine from the green pixel density with the human

eye, but from the side view it is clear that the red and green values have similar peaks.
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Figure 4.3: HSV representation of current test image. The hue, saturation and value data

arrays are saved to individual variables and displayed as a surface model. This will help

identify methods for pixel thresholding.

As illustrated above, the shark can only be determined from the ’value’ pixel density which

represents the brightness of the pixel. If it can be assumed that the shark will always be

darker than the water around it, theoretically because of the shadow it would cast under

the water, this may be a suitable way to analyse the data and apply a threshold. The

value pixel density distribution is very similar to the green pixel density distribution.

4.2 Identifying strong trends

It can be determined that the pixel values representing the shark in the test image are

of a lower value in the Red, Green and Value arrays. More complex frames were tested

to determine if this relationship was consistent across di↵erent water colour conditions to

decide on which colour space to apply thresholding to. The following four images were

compared:
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Figure 4.4: Frames used to test the relationship of lower pixel values for identified sharks in

the Red, Green and Value arrays.

The first comparison was for ’Test Image 1’ which illustrated the 3D surface model for

the Red, Green and Value arrays. It can be seen in this image that the frame is from a

camera with a wide angle lens. The shark can be seen clearly in the middle of the frame

and is the darkest object in the frame. The upper sides of the image contain some glare

and there is reflection on the water due to the angle the camera is making with the water

and the sky above. The water is a much darker green than the original test image and

the contrast between the shark and the surrounding water is less vivid.
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Figure 4.5: 3D surface model for Red, Green and Value arrays for test image 1 at side and

aerial views.

As illustrated above the Red model does not display the peak where the shark is located

in the image. However the Green and Value display similar results and illustrate where

the peak for the shark is. There are also narrower peaks in the Green and Value plots

that represent the shadows in the waves.

’Test Image 2’ contains nine sharks swimming in a light blue coloured ocean. There is

some whitewash to the left of the frame and the water has a darker shade of blue towards

the right side of the frame.
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Figure 4.6: 3D surface model for Red, Green and Value arrays for test image 2 at side and

aerial views.

Once again the Red model has failed to display the peaks where the sharks are, whereas

the Green and Value models depict the sharks location by the lighter shades of blue in

the colour map. The Value model appears to depict the sharks more clearly than the

Green model.

’Test Image 3’ contains one shark in the top left corner. The water is a greeney-blue

colour and there is some reflection from the sun on the tops of the waves. There is also

some overlaying writing which needs to be ignored.
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Figure 4.7: 3D surface model for Red, Green and Value arrays for test image 3 at side and

aerial views.

The Red model once again proves to be not of any use. The Green and Value models

both clearly depict the shark.

’Test Image 4’ contains seven sharks scattered throughout the frame. The water is a dark

green colour and there is some reflection from the sun on the tops of the waves
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Figure 4.8: 3D surface model for Red, Green and Value arrays for test image 4 at side and

aerial views.

The Red model is clearly inadequate for using as a thresholding condition to detect the

shark blobs. The Green and Value channels appear to be the most reliable channels

suitable for pixel thresholding.

4.3 Colour Space Thresholding

From the tests performed in the previous section it can be assumed that Value pixel

density thresholding can be implemented to segment the shark blobs. Although this

might allow for some unwanted blobs, further blob analysis techniques can be utilised

to reject the false detections. To test the colour space thresholding for the test images,

threshold values were chosen after analysing the 3D surface models. The thresholds di↵er

for each image because of the di↵erent environments and colouring of the water. The

threshold values used were:

1. Test Image 1 = 0.387
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2. Test Image 2 = 0.551

3. Test Image 3 = 0.543

4. Test Image 4 = 0.504

The following pseudo code shows how anything over the cut-o↵ pixel value in the Value

array is set to 0. It then converts the image to a binary map, performs some basic

morphology operations and then overlays the outline of the detected blobs over the original

image:

Algorithm 2 Display Blob Outlines on Original Image

procedure Imread(frame)

2: framehsv rgb2hsv frame

Value (:,:,3) framehsv

4: for i = 1:size(Value,1) do

for j = 1:size(Value,2) do

6: if Value(i,j)>threshold then Value(i,j) = 0

BW imbinarize(Value)

8: BW imdilate(BW)

BW imfill(BW)

10: BW bwperim(BW)

BW imdilate(BW)

12: frame(BW) 255

Display Test Images with detected blob outlines

The original code to the above algorithm can be found in the Appendix.
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Figure 4.9: Detected blob outlines overlaid on original image using Value pixel thresholding.

By determining an appropriate threshold for the Value pixel value, the majority of the

image can be ignored and only dark coloured blobs are left. The Value pixel is a number

between zero and one, where the closer to the zero the value is the darker the pixel is.

So everything above the threshold is therefore set to zero, and when the resulting image

is ’binarized’, all pixels with a value greater than zero are set to one. This is very basic

blob analysis and can be e↵ectively used in a controlled environment where the object of

interest is a unique colour to that environment.

However, there are plenty of blobs that have been detected that fell below the desired

threshold that are not sharks. This can be because of shadows in the waves or rocks in

the water. To help filter out all the unwanted blobs, further morphological operations can

be put in place to discard the false positives. Functions such as determining the minimum

blob area size and maximum area size are particularly useful for clearing up noisy data.

The above demonstrations illustrate that by applying a threshold to the Value array from

the HSV colour model of the frame, sharks can be detected and their blobs parsed to the

next stage of the algorithm for further filtering of false positives. The remainder of the
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project will concentrate on first detecting all the blobs under a given threshold for each

frame.

4.4 Adaptive Thresholding

The problem with applying a constant threshold to the data is that with each frame of

the video the environment can change. An adaptive threshold method was determined

and applied to automatically calculate the appropriate threshold for each frame. This was

achieved by representing the data from the Value array as a histogram and calculating

when the derivative was greater than a certain value starting from 0 and determining the

forward di↵erence. Because this method was tested with di↵erent pictures and videos

with di↵erent resolutions, an adaptive derivative formula was determined to calculate the

derivative threshold for each frame:

DerivativeThreshold =
framewidth ⇤ frameheight

�1500 (4.1)

The pseudo code for this loop can be represented as follows:

Algorithm 3 Calculate Threshold for Regions of Interest

procedure H = imhist(V alue)

D zeros length(H,1)

3: for i = 1:length(H) do

D(i) H(i)-H(i+1)

if i == 255 then

6: break

if D(i)<(size(Value,1)*size(Value,2))/-1500 then

Threshold i/256

This method was used because it isolates the darker objects in the image. From the

data obtained, it was noticed that sharks were consistently a darker colour than the

surrounding water. This threshold calculation works well when the frame is made up of

bright scenes such as water, whitewash and sand. Due to the lack of data this method was

unable to be tested when there were cli↵s or rocks in the scene. The calculated threshold

for the above test images can be visualised with the following histograms:
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Figure 4.10: Histograms of Test Images displaying cut-o↵ threshold. Most populated bins

represent pixels related to the water. Everything to the right of the cut-o↵ is ignored.

Once the threshold is applied, all values in the array above the threshold are set to zero

and the array is converted to a binary representation. The clusters of one’s in the image

that represent the pixels under the threshold are referred to as ’blobs’. This is where the

blob analysis begins.
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Blob Analysis

5.1 Morphology

Image segmentation is the process of identifying and segregating regions of interest for

further processing and decision making. After pixel thresholding has been applied and

the leftover scene has been converted to binary, there is often a lot of noise and unwanted

data that needs to be filtered out. By using some basic morphological functions, the

binary map can be filtered to remove blobs under a certain area, remove blobs connected

to the border and erode or dilate blobs. The following plots are what is left when the

Value array is first converted to binary after thresholding:



5.1 Morphology 47

Figure 5.1: Binary maps of test images after thresholding. No morphology performed yet.

As illustrated above, there is some considerable noise in the binary maps. For the vision

system to automatically detect sharks the images need to be filtered as much as possible

to remove any objects that might confuse the system. By implementing these filters the

system’s false positive rate will be greatly reduced.

To begin filtering the image an analysis must be performed on the above plots to determine

the regions of interest that the system will want to ignore. The outline of the shark is

clearly visible to the human eye, but to a computer it looks like this:

Figure 5.2: How a computer ’sees’ a shark. Figure 5.3: Binary map

of shark.
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To remove unwanted noise the first step was remove any blob that was under a certain pixel

area size. Using the function ’bwareaopen’ in Matlab, the program is able to calculate

the area of each individual blob and if it does not meet the minimum area the blob

is removed. Because the test images have di↵erent frame sizes, the minimum area was

determined by a ratio dependant on the frame area. The following before and after plots

illustrate removing blobs under the minimum area and any blobs that are connected to

the border:

Figure 5.4: Binary maps of test images before and after morphology to remove noise.

As illustrated above, the basic morphology steps to clear the image work e↵ectively.

However, it can be seen in ’Test Image 4’ that the minimum area was too large and has

consequently removed most of the shark blobs. Although this factor can be easily tuned,

it would be more desirable to assume a constant operating height of the UAV when it is

on patrol. This way the blob area size can nearly be predicted to help narrow down false

positives.

It would appear that by applying these simple filters that the vision system would perform

quite well in recognising sharks in coastal waters. However, in its current state the system
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will detect any dark object over a certain pixel area size. The following figure depicts a

shark swimming near a surfer. The surfer is wearing a black wetsuit, and by analysing the

Value array the pixel values are below the sharks. After performing the same morphology

process as above, the binary map of the frame looks like:

Figure 5.5: Morphology applied to frame with a surfer in the field of view.

To help filter out false positives such as surfers an analysis was performed on the detected

blob region. By making the assumption that surfers always ride a bright coloured surf-

board, additional conditions can be implemented to exclude blobs that contain a certain

ratio of bright pixels. This type of exclusion would also remove objects such as:

1. Dark shapes creating a wake. The brightness of the white-caps could be tested and

used to disregard such blobs. This could also be useful for ignoring false positives

such as dolphins and whales jumping out of the water.

2. Boats that have large dark patches on them are more than likely to have some bright

coloured components.

3. Rocks that have water crashing over them.

5.2 Region of Interest Filtering

5.2.1 Removing Bright Detections

As illustrated in the above sections, sharks tend to be the darkest object in the water

when spotted swimming just below the surface. With the current algorithm, all dark

objects over a certain pixel area will be detected and classified as possible sharks. In this

section ’Region of Interest Filtering’ is introduced to further filter out the detected false
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positives. This is achieved by calculating the amount of bright pixels in a ’bounding box’

relative to each blob. A ’bounding box’ is a box that can be plotted over the detected

blob that encases the limits of the blob. To extract bounding box coordinates relative

to each blob the ’regionprops’ function can be called. The following pseudo code depicts

how the blobs are excluded for having a large bright pixel ratio:

Algorithm 4 Region of Interest Filtering

procedure BW = imbinarize(V alue)

rp regionprops (BW,’BoundingBox’)

for i = 1:size(rp,1) do

4: box rp(i).BoundingBox

bright imcrop(Value,box)

threshold min(Value)+(max(Value)-min(Value))*0.75

[x,y] find(bright>threshold)

8: brightest size(x,1)/(area of bounding box)

if brightest > 0.01 then

BW(box) 0

By applying this filter after the morphological operations the algorithm is able to remove

surfers that would otherwise result in a false positive. The following figure is the output

from the above filter:

Figure 5.6: Morphology applied to frame with a surfer in the field of view.

It can be assumed that sharks swimming in the area are not going to be leaving any kind

of wake or white water in their trail. By removing all the objects that are closely related

to bright pixels the system will be able to reduce false positives.
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5.2.2 Removing Dark Patches of Water

Throughout the simulations it was noticed that dark patches of water that fell below the

pixel value threshold, were greater than the minimum area and were not connected to

any bright pixels that were being detected. To filter these false positives a simple test was

used to determine the change in pixel values within the bounding box of the blob. This

is because when the bounding box is plotted over the blob, it encases the blob area in the

smallest possible rectangle. This is relevant because there will be some pixels belonging

to the surrounding water within the bounding box. If the blob detection happens to

be a shark, there will be a considerable di↵erence between the brightness values of the

bounding box. However, if the detection is just simply a darker patch of water that has

just made it through the pixel thresholding, there will be relatively no change in the pixel

values. The following plot illustrates an example of this:

Figure 5.7: 3D surface model depicting dark patches of water being falsely detected.

In figure 5.7 the pixel threshold has been plotted over the ’Value’ array to help illustrate

which regions of the image fall below the threshold. There are three distinct objects:

1. A surfer who’s black wetsuit and white surfboard cause a large spike in the data.

2. The first shark which can distinctly be made out and causes a considerable change

in pixel values.

3. The second shark whose shadow can just visualised.
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To the left of these objects are some dark patches of water that are just below the pixel

threshold. The following pseudo code represents how these unwanted regions of interests

are removed:

Algorithm 5 Remove Dark Patches of Water

procedure BW = imbinarize(V alue)

rp regionprops (BW,’BoundingBox’)

for i = 1:size(rp,1) do

box rp(i).BoundingBox

5: DW imcrop(Value,box)

di↵erence max(DW)-min(DW)

if di↵erence < 0.1*max(DW) then

BW(box) 0

The following figure illustrates the dark water being filtered out:

Figure 5.8: Original Image and stages in filtering out unwanted regions of interest.

5.3 Elliptic Ratio

Elliptic ratio thresholds have been used for dugong detection filters because ”a blob is

more likely to relate to a dugong if its shape is elliptical” (Maire et al. 2013). Reviewing

the blobs that were used to make the database, it was noticed that the mean elliptic ratio

was 1.18 with a standard deviation of 0.085. The elliptic ratio of the sharks was relatively

close to one (perfect ellipse) and determined an accurate method to help identify sharks.

The elliptic ratio threshold was therefore adopted as a filter to help further reduce false

positives.

To determine a suitable threshold for the elliptic ratio, the elliptic ratios for the blob

database were calculated and plotted as a histogram:
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Figure 5.9: Histogram of Elliptic Ratios of Blob Database.

As illustrated, there are a few outliers that don’t have a strong elliptic ratio. These

outliers resemble blobs where the shark has been rotated in the out of plane direction and

only one pectoral fin has been picked up. The elliptic ratios were calculated by:

EllipticRatio =
⇡ ⇤MajorAxisLength ⇤MinorAxisLength

4 ⇤Area (5.1)

A suitable threshold for the elliptic ratio was determined to be one standard deviation

from the mean. This threshold will help further reduce false positives. It was noticed in

the testing stages that the elliptic ratio for swimmers and surfers was typically around

1.6. With this method and the previous blob comparison ratio, the false positive rate

should be adequately reduced.

5.4 Noise Filtering

With all these filters in place, it is still possible for false positives to occur. The variability

of the current frame, due to the lighting and continuous wave motion, is infinite. Object

tracking can be an e↵ective method, where the consistency and trajectory of the object
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detected is considered and classified accordingly. However, object tracking using computer

vision has had the best results when the camera has been stationary. By using a kalman

filter, an object’s movement can be predicted by the recorded velocity or acceleration of

the object, so that if occlusion happens or if the object is unable to be detected in the

current frame, its location can still be tracked. Due to the nature of this project, where

the data has been taken from a UAV that is constantly moving, the kalman filter has

been unable to be investigated for its e↵ectiveness in detecting and tracking of sharks.

A method for noise filtering, which compares the last five frames for the object detected,

has been introduced to further reduce false positives. This filter serves two purposes:

1. The object must have been detected for a minimum of four consecutive frames before

the system classifies the object as a shark.

2. If the object has been consistently detected and then the system fails to detect it

for one frame, the system will still identify the shark.

This method is achieved by initialising a structure that contains five empty binary maps,

equal to the size of the video frames. For each frame, each binary map in the structure

is shifted upwards to replace the previous recorded binary maps. For example, the 5th

map becomes the 4th, the 2nd map becomes the 1st and so on. With the last five binary

maps saved, the current blob detected is put through a loop to test whether it has been

detected in the last five frames. This is achieved by testing whether the centroid of the

blob is equal to 1 in each frame. For each successful detection, a variable is incremented

which flags the system to classify the shark once it reaches a certain value. If the system

fails to detect the object for a couple frames but then detects the object again, a di↵erent

variable is incremented which will eventually flag the system to ignore the classification.

The following pseudo-code represents how random blobs are filtered out. It begins by

initialising the variables needed to store the last five binary maps, and demonstrates how

the structure is updated and used to determine whether to classify the object or not.
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Algorithm 6 Noise Filtering
for i = 1:5 do

noise(i) = zeros(700,1260)

procedure Main Loop(currentframe)

BW BlobAnalysis(frame)

maps = [ ]

6: field = ’maps’

for j = 1:4 do

noise(j) = noise(j+1)

noise(5) = BW

maps = struct(field,noise)

rp regionprops (BW,’Centroid’,’BoundingBox’)

12: for i = 1:size(rp,1) do

centroid rp(i).Centroid

for j = 1:5 do

if BW(centroid(2),centroid(1))==1 &&maps(j).maps(centroid(2),centroid(1))==1

then

OnFlag = OnFlag+1

elseO↵Flag = O↵Flag+1

18: if OnFlag>4 then

On = 1

if O↵Flag>3 then

On = 0

if On == 1 then

box rp(i).BoundingBox

24: rectangle(’Position’,box,’EdgeColor’,’y’)

text(box(1),box(2)-10,’SHARK’,’FontSize’,16,’BackgroundColor’,’y’)

This method proves to be an e↵ective way to filter out momentary shadows that have

passed through the other thresholds in place.



Chapter 6

Testing and Results

Three videos were sourced from Youtube to test the sensitivity of the algorithm. These

three videos were ideal because they were aerial footage of sharks, taken at di↵erent

locations under di↵erent conditions. A simulation was set up in MATLAB where the

algorithm iteratively processed each frame. Red outlines have been placed over the blobs

that have been detected in each frame, and if a shark was detected, a yellow box was also

placed over the blob.

6.1 Analysis of performance on Testing Video 1

Testing video 1 had the most reliable footage of the shark, and also introduced other

objects that could possibly give false positives. The footage was smooth and followed the

shark at a consistent height. Di↵erent angles of the camera in relation to the water proved

to be the biggest problem, where the reflection of the horizon would disrupt the variance

of the pixel intensity distribution leading to the cut-o↵ threshold being premature. The

video was shot at 30 frames per second.

6.1.1 Detecting the shark

The opening frame of the test video shows the shark swimming towards the south-east of

the frame. There are two surfers that are relatively close to the shark, with other surfers

further back in the frame. The algorithm is able to identify the shark, by utilising the

thresholding methods and filters mentioned in the previous section.
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Figure 6.1: Frame 33: Shark detected in

frame.

Figure 6.2: 3D surface model of frame

33.

Table 6.1: Frame 33: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Surfer 0.0417 0.139 1.12

Shark 0.00 0.034 1.02

As illustrated, the shark has been correctly labelled. The 3D surface model portrays the

brightness values for each pixel. The calculated threshold, using the adaptive threshold

model, is represented by the black plane. All pixels above this black plane are ignored after

the pixel thresholding step, and all remaining blobs are filtered to reject false positives.

In this particular frame, there is one other blob that could potentially register as a shark.

This blob represents the surfer in the left of the frame, whose dark wetsuit tricks the

system into identifying the object as a region of interest. However, the brightness ratio

filter prevents the false positive.

The following frame shows where the detection has failed. A combination of the angle

that the camera makes with the water and a wave rolling in disrupts the brightness pixel

distribution and leaves the shark too submerged for the system to detect it.

Figure 6.3: Frame 84: False negative. Figure 6.4: 3D surface model of frame

84.
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Table 6.2: Frame 84: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.017 1.02

As illustrated in the 3D surface model, there are two small blobs that are just below the

brightness threshold. The first blob has an area that is calculated to be too small to be

a shark. The second blob, which represents the shark, has a variance of 0.017 which does

not meet the threshold used to determine dark water patches . This prevents the shark

from being detected.

From the shark’s first detection, in frame 33, until the second shark comes into view in

frame 369, the system has consistently detected the shark. It only fails to classify the

shark from frames 78 to 90. With a rate of 30 frames per second, the shark has been

correctly detected for 11 seconds.

Figure 6.5: Frame 369: Two sharks detected

in frame.

Figure 6.6: 3D surface model of frame

369.

Table 6.3: Frame 369: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.027 1.05

Shark 0.0073 0.063 1.06

Shadow 0.00 0.007 1.19

In this frame the first shark is well defined, with its brightness values well beneath the

threshold. Looking closely at the 3D surface model, it can be noted that the second shark

(smaller peak to the left of the dominant peak) is barely below the cut-o↵ value. This

is because the second shark is still quite submerged, and therefore it is di�cult for the

system to detect. The variance for the second shark is 0.027, which is just above the
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threshold of 0.02. It can be observed that the angle the camera makes with the water is

favourable as there is little to no reflection. Also the brightness of the water allows for a

strong contrast so that the shark can be detected.

Although the shark detection algorithm appears to be strongly identifying the shark, it

can exhibit false negatives where the filters in place are potentially too sensitive. In the

following frame the system has failed to detect both sharks. It is clear from the 3D surface

model that the pixels relative to the shark are beneath the cut-o↵ threshold.

Figure 6.7: Frame 498: Missed detection of

two sharks.

Figure 6.8: 3D surface model of frame

498.

Table 6.4: Frame 498: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shadow 0.00 0.008 1.02

Shark 0.04 0.021 1.03

Shark 0.0573 0.03 1.02

Shadow 0.00 0.008 1.09

Surfer 0.5066 0.097 1.12

The brightness filter appears to be too sensitive. With a cut-o↵ threshold of 0.01, the

calculated values for the brightness ratio’s of the shark blobs is too high. The system

then rejects the blobs as being sharks.

In the following frame, the main shark that was being consistently detected in earlier

frames has been missed whilst the second shark has been correctly detected. This is due

to the variance of the pixel values not being above the threshold. The wave is rolling over

the shark, submerging the shark and making it more di�cult for the system to identify.
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Figure 6.9: Frame 595: One true positive,

One false negative and One true negative.

Figure 6.10: 3D surface model of frame

595.

Table 6.5: Frame 595: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.045 1.02

Shark 0.00 0.019 1.01

Shadow 0.00 0.004 1.26

Although the dark water filter is proving to be a little too sensitive, the sharks are still

being detected the majority of the time. It can be noted that the system has not made

any false detections yet. This is due to the success of the di↵erent filters being applied

to reject any false positives. However it is possible that the system may be too heavily

filtered because of the false negatives. As mentioned earlier, a weighted system may have

more success in identifying the sharks using the last known location.

It can be seen from the 3D surface model that part of the shark is just below the threshold,

but because of the minimal area, it is rejected as being a blob that could represent a shark.

When the shark starts to get too far away from the UAV, and the angle that the camera

makes with the water becomes too shallow, the system has trouble detecting the shark.

In the following frame, the shark can barely be identified by the human eye but because

we know there is a shark in the area an element of bias is put against the system. There

is nothing definitive about the small dark shadow, and if there was no prior knowledge of

a shark in the area, it could be mistaken for seaweed or a rock.
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Figure 6.11: Frame 711: False negative. Figure 6.12: 3D surface model of frame

711.

Table 6.6: Frame 711: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shadow 0.00 0.002 1.05

By analysing the 3D surface model, it is clear why the system failed to identify the shark.

The brightness properties of the pixels have less variance, and the small portion of pixels

dark enough to be below the threshold (a handful at x=200, z=0.53) are ignored because

of the minimum area and dark water filtering.

In frame 883, the value for the elliptic ratio is 1.04. It is clear from the 3D surface

model that the shark blob is well beneath the threshold, and there is plenty of variance of

brightness values within the bounding box. However, the brightness ratio is too sensitive,

and therefore rejects the shark detection.

Figure 6.13: Frame 883 False negative. Figure 6.14: 3D surface model of frame

883.

Table 6.7: Frame 883: Values of blob elements
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Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.0144 0.027 1.04

Surfer 0.3151 0.04 1.30

The algorithm rejects the surfer as being a shark by the high value for the brightness

ratio. Future adjustments and improvements may involve lifting the brightness ratio to

prevent false negatives of the sharks.

Figure 6.15: Frame 1545: Shark successfully

detected.

Figure 6.16: 3D surface model of frame

1545.

Table 6.8: Frame 1545: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.037 1.03

Testing video 1 has provided some good results, proving that the algorithm can adequately

reject false positives and detect sharks in the frame. Factors such as waves rolling in, the

angle the camera makes with the water and the distance of the UAV to the shark have

been noted to negatively influence the detection of the shark.

6.2 Analysis of performance on Testing Video 2

Testing video 2 shows a shark swimming in choppy green water. It has been taken from a

helicopter that is being bu↵eted around by the wind, and has various zoom lengths. The

rolling whitecaps over the shark cause the brightness ratio to be too high in some cases,

which results in the system rejecting the detection. The bu↵eting of the helicopter also

causes a problem which prevents the shark from being detected.
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6.2.1 Detecting the shark

The shark is quickly detected in the video footage. The view of the camera allows the

shark to be of an acceptable area, there are no other objects in the frame and there is no

reflection from the horizon to skew to brightness values. The following figure illustrates

the blob that has been detected and the shark that has been classified.

Figure 6.17: Frame 4: Shark detected in

frame.

Figure 6.18: 3D surface model of frame

4.

Table 6.9: Frame 0004: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.056 1.08

The filter thresholds used seem to be ideal for this environment. The brightness values

are low, there is enough variance and the elliptic ratio value is well within the limits. It

can be noted from the 3D surface model that the shark is the only object dark enough to

be below the cut-o↵, proving that the adaptive threshold is working appropriately.

In frame 297, the shark detection is lost. It can be seen from the 3D surface model that

the pixels relevant to the shark are below the threshold, but because the area is too small

they have been ignored. The shark has been consistently detected up until this point,

which equates to 10 seconds.
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Figure 6.19: Frame 297: False negative. Figure 6.20: 3D surface model of frame

297.

If this shark detection algorithm was to be installed into UAVs for real time patrolling

of beaches, a maximum operating height would have to be set so that the detected shark

blobs would not be rejected for their minimal size.

In frame 360, the camera has zoomed out further so the beach the shark is swimming

near can be seen. The shark is a small black dot in the middle of the frame, and their are

dark patches of water that may be related to seaweed scattered about the frame.

Figure 6.21: Frame 360: False negative. Figure 6.22: 3D surface model of frame

360.

Table 6.10: Frame 360: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shadow 0.00 0.006 1.19

There has been one blob detected in the upper left corner of the frame that relates to a

dark patch of water. The variance of the blob is very low and therefore the blob has been

rejected as being a shark.

Midway through the video, there are some control features that the original editor was
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using that pop up on the screen. Because these control features are displayed over the

video, and are black in colour, the pixel distribution for the brightness channel is neg-

atively skewed. This results in the shark blob not being detected for the duration that

these control features are displayed.

Figure 6.23: Frame 472: False negative. Figure 6.24: 3D surface model of frame

472.

It can be seen from the 3D surface model why the shark blob has not been detected.

The cut-o↵ threshold is at the bottom of the plot, meaning that every pixel that has a

brightness value lighter than the control bar has been ignored.

The shark unfortunately is not detected for the rest of the video, which is another 12

seconds. The lighting is favourable, there is enough variance in the blobs detected and

the elliptic ratio is below the threshold.

Figure 6.25: Frame 529: False negative. Figure 6.26: 3D surface model of frame

529.

Table 6.11: Frame 529: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.064 1.10

The reason that the shark has not been detected is because the noise filter is rejecting the
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detection. The camera is not steady enough for the centroids to line up over the past five

frames. Therefore the system thinks that the blobs are randomly appearing and are not

related to a consistent object. A closer zoom and less movement would allow the blobs

to overlap, which would then result in the successful detection of the shark.

The following frame shows the blob of the shark being detected, but because of the noise

filter, the detection has been rejected.

Figure 6.27: Frame 800: False negative. Figure 6.28: 3D surface model of frame

800.

Table 6.12: Frame 800: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.054 1.04

Testing video 2 has provided some good results. The filters are working successfully, as

there has not been any false positives. The noise filter however prevented the majority of

the successful shark detections. This means that if a UAV was to be in windy and rough

conditions, it would have problems detecting the shark. Possible remedies to this may

be to reduce the sensitivity of the filter, or to set the operating height of the UAV to a

shorter distance so the shark blob is bigger, and therefore greater disturbance forces are

needed to prevent the overlap of blobs between frames.

6.3 Analysis of performance on Testing Video 3

Testing video 3 is a recent video taken from a helicopter hovering over a beach in

Kingscli↵e, NSW. It is suspected that this particular shark is related to an attack that

occurred at Lighthouse Beach in Ballina, NSW, on the 25th of September 2016. The

footage is somewhat steady, and exhibits some di↵erent zoom lengths.
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6.3.1 Detecting the shark

In the opening frames of the video, the person controlling the camera takes a moment

to zoom in on the shark and hold the camera steady. The shark blob is detected by the

system, but because of the movement of the camera, the noise filter rejects the blob as

being classified as a shark.

Figure 6.29: Frame 65: False negative. Figure 6.30: 3D surface model of frame

65.

Table 6.13: Frame 65: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.053 1.03

It can be seen from the 3D surface model that the adaptive threshold is working properly.

The adaptive threshold was designed so that it could calculate the desired threshold for

the shark blob for any frame size or lighting condition. The three testing videos used

have all been of a di↵erent resolution, and the adaptive threshold has not needed to be

adjusted once.

A few frames later the camera has steadied enough for the noise filter to allow the shark

detection. The contrast between the shark blob and the surrounding water is not the

strongest, but the system is still able to successfully detect the shark. The angle the

camera makes with the water is complimenting the system, as it reduces the amount of

reflection on the water.
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Figure 6.31: Frame 71: Shark detected in

frame.

Figure 6.32: 3D surface model of frame

71.

Table 6.14: Frame 71: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.051 1.03

The variance of the blob is well above the threshold, the elliptic ratio of the blob is well

below the threshold and the brightness ratio is 0. These qualities and thresholds are

proving to be successful descriptors for blobs related to sharks.

The camera is then zoomed in, enabling a close up view of the shark. The shark is quite

submerged in the water, making it di�cult to detect. A wave rolling over the shark

distorts its shadow underneath, separating the blob into two blobs.

Figure 6.33: Frame 184: Two blobs repre-

senting one shark.

Figure 6.34: 3D surface model of frame

184.

Table 6.15: Frame 184: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.012 1.02

Shark 0.00 0.034 1.06
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One of the blobs detected does not have a variance that meets the threshold and is

therefore rejected. If there was in fact two sharks present, the noise filter would need

two consistent centroids over the past five frames to allow a double detection. However,

because there is only one shark, the noise filter would disregard the second blob if its

variance was above the threshold.

The system successfully detects the shark for 10 seconds, demonstrating that the filters

are working properly to reject any blobs that are not related to the shark.

Figure 6.35: Frame 402: Shark detected in

frame.

Figure 6.36: 3D surface model of frame

402.

Table 6.16: Frame 402: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.046 1.05

Shadow 0.00 0.008 1.02

The 3D surface model illustrates that the adaptive threshold is quite low, and only just

detecting the shark. This could be due to the whitewash that is present in the frame.

The following frame shows how the whitewash has skewed the pixel distribution enough

so that no blobs have been detected.

Figure 6.37: Frame 433: Whitewash rejects

shark detection.

Figure 6.38: 3D surface model of frame

433.
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The skewing of the pixel distribution from the whitewash might mean that the camera

view is too close, and to obtain optimum results for the shark detection system the UAV

would have to be zoomed out further or operating at a greater height. Another possible

explanation may be that the whitecaps over the shark have disrupted the dark pixel count,

and therefore the threshold has been lowered.

The presence of whitewash does not automatically mean that the system will not detect

the shark. The following frame shows the shark being detected once the whitecaps over

the shark have disappeared.

Figure 6.39: Frame 453: Shark detected in

frame.

Figure 6.40: 3D surface model of frame

453.

Table 6.17: Frame 453: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.072 1.10

As illustrated by the 3D surface model, the threshold calculation has performed better

after the whitecaps over the shark blob have disappeared.

The following frame shows how the camera has been zoomed out, and the shark blob has

too small of an area to be considered as a shark.
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Figure 6.41: Frame 885: Area of shark too

small for detection.

Figure 6.42: 3D surface model of frame

885.

Table 6.18: Frame 885: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shadow 0.00 0.004 1.18

The 3D surface model shows the small peak of the shark beneath the threshold. This

means that the shark blob has been detected, but the area was too small. A dark patch of

water in the top right corner has also been detected. The dark water filter has successfully

rejected this blob by calculating its variance.

The camera zooms back in, allowing the system to detect the shark as its area is over the

minimum area threshold. The dark water filter continues to reject dark patches of water

as being sharks by calculating their variance.

Figure 6.43: Frame 1103: Shark detected in

frame.

Figure 6.44: 3D surface model of frame

1103.

Table 6.19: Frame 1103: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.00 0.048 1.01

Shadow 0.00 0.012 1.01
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The 3D surface model illustrates the di↵erence between the variance values of the detected

blobs. The blob classified as a shark has a greater negative peak than the blob related to

a dark patch of water.

In the following frame, the camera has been zoomed out leaving the shark unidentifiable.

This leads to the algorithm’s first false positive, where the darks shadows underneath the

water have passed all the criteria to be classified as a shark.

Figure 6.45: Frame 3663: False positive. Figure 6.46: 3D surface model of frame

3663.

Table 6.20: Frame 3663: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shadow 0.00 0.023 1.07

This false positive suggests that the system would detect any dark object in the water that

passes all the thresholds. Due to the nature of the project and the quality of the data,

stationary objects have not been able to be di↵erentiated from moving objects. To help

prevent false positives related to these instances, kalman filters would be used to track

the path of the object. If the object was found to not be moving, it would be rejected as

being a shark.

For the last minute of the video, the camera is zoomed in on the shark as it is swimming

through very shallow waters. The reflection from the sand underneath causes the frame

to be very bright, which results in the brightness filter rejecting the shark detection.
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Figure 6.47: Frame 5000: Brightness ratio

rejects shark.

Figure 6.48: 3D surface model of frame

5000.

Table 6.21: Frame 5000: Values of blob elements

Blob Brightness (<0.01) IQR (>0.02) Elliptic Ratio (<1.27)

Shark 0.4412 0.105 1.07

Logo 0.6139 0.056 1.16

It can be seen from the 3D surface model and the red outline on the frame that the shark

blob was clearly detected. However the brightness filter has not been designed to adapt

to the lighting conditions of the current scene, and is therefore rejecting the shark blob.

The calculated value of 0.4412 for the brightness ratio is excessively high compared to the

cut-o↵ limit of 0.01.

Testing video 3 has provided some good results and identified parts of the algorithm that

could be improved to ensure better detection rates. Key elements such as adding a kalman

filter to track the movement of blobs, and a brightness filter that can adapt to the current

lighting conditions of the frame, could enable the shark detection algorithm to be robust

enough to be used in universal environment conditions.



Chapter 7

Conclusions and Future Work

7.1 Achievement of Project Objectives

The following objectives have been addressed:

• Carry out a literature review that is relevant to image segmentation,

object recognition, object classification and object tracking:

Background information on common computer vision applications has been pre-

sented in Chapter 1. A review of previous research on marine object detection

and tracking using computer vision has been presented in Chapter 2. This also in-

cludes research relevant to object recognition and blob analysis outside the marine

environment.

• Obtain aerial videos of sharks in coastal waters to begin designing the

algorithm with.

Aerial videos were sourced on the internet and downloaded from Youtube. These

aerial videos provided a stable testing method for the shark detection algorithm.

• Write a basic computer vision program that can detect the ’blob’.

Chapter 4 discussed the analysis of the di↵erent colour spaces and channels and how

the shark blobs could be depicted from them. The brightness channel was selected

from the HSV colour space as an initial thresholding technique to reject blobs over a

determined brightness. Chapter 4 also discussed the design of an adaptive threshold

so that the optimum threshold value could be calculated for each frame, leaving the
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blobs of interest for further filtering.

• Expand on the basic blob detection algorithm by trying to filter out all

of the blobs that are not relative to a shark.

Chapter 5 discussed the design of four key filters used to identify false positives.

These filters were:

– Brightness ratio filter

This filter was used to reject blobs that were associated with bright pixels. It

was originally designed to filter out surfers that were being detected because

of their dark wetsuits. The bright pixels associated with surfboards and the

white wash created was used to reject these blobs. This filter was predomi-

nantly successful and only caused problems in the last testing video when the

shark was in very shallow water. The system would benefit from an adaptive

brightness ratio filter to suit the current lighting conditions of the environment.

– Variance filter

This filter was used to reject blobs that were associated with shadows and

dark patches of water. The ever changing reflection on the water caused the

brightness values of the water to fluctuate. This filter calculated the variance

for each blob detected, and rejected the blob if it was not over a determined

threshold. This filter was predominately successful and only caused problems

when the shark became too submerged, or if a wave was rolling over the shark.

– Elliptic ratio filter

This filter was used to reject blobs that did not have an elliptic shape. By

processing the first 10 seconds of testing video 1 and calculating the elliptic

ratio for each shark blob, a relationship was discovered that suggested shark

blobs have a strong elliptic resemblance. A threshold limit was determined from

the data, and each blob detected was tested against this limit to determine if its

shape was elliptic. The filter was successful in rejecting irregular blob shapes

and did not cause any false negatives.

– Noise Filter

This filter was used to reject blobs that were randomly detected from the

changing reflections in the waves. It compared the last five binary maps and

overlapped consistent blobs to determine whether they were random or not.

This allowed random detections that were not related to consistent objects in
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the frame to be rejected. This filter was successful in reducing false positives

and maintaining constant detection of the shark.

• If the algorithm is unsuccessful across the dataset, tune it for each indi-

vidual photo/video and record what changes made it successful (if any).

The adaptive threshold designed in Chapter 4 allowed the algorithm to have a

high detection rate across the di↵erent testing videos. The only adjustment that

might prove beneficial is deriving a formula to calculate an adaptive threshold for

the brightness ratio. Towards the end of testing video 3 it was proven that the

brightness ratio was excessively sensitive for the current lighting conditions.

7.2 Future Work

To really test and improve on the shark detection algorithm, a drone would need to be

built capable of withstanding high wind speeds for flying out over the coast and recording

data. Communications would need to be established between the drone and a control

station for the imagery and detections to be relayed back to. On board analysis could be

explored or left to an advanced computer in the control station.

Applications such as a kalman filter cannot be implemented until the drone can be pro-

grammed to first identify a blob of interest, and then hover so the drone can imitate a

stationary platform. This would allow the shark to be tracked relative to the drone, and

then could be identified whether the blob of interest is moving.

This future work could also pave the way for more complicated machine learning algo-

rithms, used to di↵erentiate between marine life such as sharks, whales and dolphins.

By using the kalman filter to track and identify how a shark swims, it could be used to

segment the identified shark blob to extract the tail movements and analyse them.

——————————–
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Appendix A

Matlab Source Files

A.1 Display Pixel Densities

1 \begin{lstlisting}

2 Shark = ...

imread('/Users/kanebyles/Documents/MATLAB/Youtubeimages1/frame 0200.jpg');

3

4 Red = Shark(:,:,1);

5 Green = Shark(:,:,2);

6 Blue = Shark(:,:,3);

7

8 Sharkhsv = rgb2hsv(Shark);

9

10 Hue = Sharkhsv(:,:,1);

11 Sat = Sharkhsv(:,:,2);

12 Val = Sharkhsv(:,:,3);

13

14 figure(1)

15 subplot(3,2,1)

16 h1 = surf(Red);

17 set(h1,'LineStyle','none');

18 caxis([0,256])

19 colorbar

20 colormap hsv

21 view(0,0)

22 title('Red Pixel Densities, Side View')

23 subplot(3,2,2)



A.1 Display Pixel Densities 2

24 h2 = surf(Red);

25 set(h2,'LineStyle','none');

26 caxis([0,256])

27 colorbar

28 colormap hsv

29 view(0,90)

30 title('Red Pixel Densities, Aerial View')

31 subplot(3,2,3)

32 h3 = surf(Green);

33 set(h3,'LineStyle','none');

34 caxis([0,256])

35 colorbar

36 colormap hsv

37 view(0,0)

38 title('Green Pixel Densities, Side View')

39 subplot(3,2,4)

40 h4 = surf(Green);

41 set(h4,'LineStyle','none');

42 caxis([0,256])

43 colorbar

44 colormap hsv

45 view(0,90)

46 title('Green Pixel Densities, Aerial View')

47 subplot(3,2,5)

48 h5 = surf(Blue);

49 set(h5,'LineStyle','none');

50 caxis([0,256])

51 colorbar

52 colormap hsv

53 view(0,0)

54 title('Blue Pixel Densities, Side View')

55 subplot(3,2,6)

56 h6 = surf(Blue);

57 set(h6,'LineStyle','none');

58 caxis([0,256])

59 colorbar

60 colormap hsv

61 view(0,90)

62 title('Blue Pixel Densities, Aerial View')

63

64 figure(2)

65 subplot(3,2,1)

66 h10 = surf(Hue);
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67 set(h10,'LineStyle','none');

68 caxis([0,1])

69 colorbar

70 colormap hsv

71 view(0,0)

72 title('Hue Pixel Densities, Side View')

73 subplot(3,2,2)

74 h20 = surf(Hue);

75 set(h20,'LineStyle','none');

76 caxis([0,1])

77 colorbar

78 colormap hsv

79 view(0,90)

80 title('Hue Pixel Densities, Aerial View')

81 subplot(3,2,3)

82 h30 = surf(Sat);

83 set(h30,'LineStyle','none');

84 caxis([0,1])

85 colorbar

86 colormap hsv

87 view(0,0)

88 title('Saturation Pixel Densities, Side View')

89 subplot(3,2,4)

90 h40 = surf(Sat);

91 set(h40,'LineStyle','none');

92 caxis([0,1])

93 colorbar

94 colormap hsv

95 view(0,90)

96 title('Saturation Pixel Densities, Aerial View')

97 subplot(3,2,5)

98 h50 = surf(Val);

99 set(h50,'LineStyle','none');

100 caxis([0,1])

101 colorbar

102 colormap hsv

103 view(0,0)

104 title('Value Pixel Densities, Side View')

105 subplot(3,2,6)

106 h60 = surf(Val);

107 set(h60,'LineStyle','none');

108 caxis([0,1])

109 colorbar
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110 colormap hsv

111 view(0,90)

112 title('Value Pixel Densities, Aerial View')
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A.2 Compare Test Images Pixel Densities

1 Shark1 = ...

imread('/Users/kanebyles/Documents/MATLAB/Youtubeimages2/frame 1982.jpg');

2 Shark2 = imread('/Users/kanebyles/Documents/MATLAB/shark3.jpg');

3 Shark3 = ...

imread('/Users/kanebyles/Documents/MATLAB/Youtubeimages3/frame 0010.jpg');

4 Shark4 = imread('/Users/kanebyles/Documents/MATLAB/shark2.jpg');

5 Shark1 = imcrop(Shark1, [10 10 (size(Shark1(:,:,3),2))-21 ...

(size(Shark1(:,:,3),1))-21]);

6 Shark2 = imcrop(Shark2, [10 10 (size(Shark2(:,:,3),2))-21 ...

(size(Shark2(:,:,3),1))-21]);

7 Shark3 = imcrop(Shark3, [10 10 (size(Shark3(:,:,3),2))-21 ...

(size(Shark3(:,:,3),1))-21]);

8 Shark4 = imcrop(Shark4, [10 10 (size(Shark4(:,:,3),2))-21 ...

(size(Shark4(:,:,3),1))-21]);

9 Red1 = Shark1(:,:,1);

10 Green1 = Shark1(:,:,2);

11 Sharkhsv1 = rgb2hsv(Shark1);

12 Val1 = Sharkhsv1(:,:,3);

13 Red2 = Shark2(:,:,1);

14 Green2 = Shark2(:,:,2);

15 Sharkhsv2 = rgb2hsv(Shark2);

16 Val2 = Sharkhsv2(:,:,3);

17 Red3 = Shark3(:,:,1);

18 Green3 = Shark3(:,:,2);

19 Sharkhsv3 = rgb2hsv(Shark3);

20 Val3 = Sharkhsv3(:,:,3);

21 Red4 = Shark4(:,:,1);

22 Green4 = Shark4(:,:,2);

23 Sharkhsv4 = rgb2hsv(Shark4);

24 Val4 = Sharkhsv4(:,:,3);

25

26 figure(1)

27 subplot(3,2,1)

28 h1 = surf(Red1);

29 set(h1,'LineStyle','none');

30 caxis([0,256])

31 colorbar

32 colormap hsv

33 view(0,0)
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34 title('Red Pixel Densities, Side View')

35 subplot(3,2,2)

36 h2 = surf(Red1);

37 set(h2,'LineStyle','none');

38 caxis([0,256])

39 colorbar

40 colormap hsv

41 view(0,-90)

42 title('Red Pixel Densities, Aerial View')

43 subplot(3,2,3)

44 h3 = surf(Green1);

45 set(h3,'LineStyle','none');

46 caxis([0,256])

47 colorbar

48 colormap hsv

49 view(0,0)

50 title('Green Pixel Densities, Side View')

51 subplot(3,2,4)

52 h4 = surf(Green1);

53 set(h4,'LineStyle','none');

54 caxis([0,256])

55 colorbar

56 colormap hsv

57 view(0,-90)

58 title('Green Pixel Densities, Aerial View')

59 subplot(3,2,5)

60 h5 = surf(Val1);

61 set(h5,'LineStyle','none');

62 caxis([0,1])

63 colorbar

64 colormap hsv

65 view(0,0)

66 title('Value Pixel Densities, Side View')

67 subplot(3,2,6)

68 h6 = surf(Val1);

69 set(h6,'LineStyle','none');

70 caxis([0,1])

71 colorbar

72 colormap hsv

73 view(0,-90)

74 title('Value Pixel Densities, Aerial View')

75

76 figure(2)
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77 subplot(3,2,1)

78 h1 = surf(Red2);

79 set(h1,'LineStyle','none');

80 caxis([0,256])

81 colorbar

82 colormap hsv

83 view(0,0)

84 title('Red Pixel Densities, Side View')

85 subplot(3,2,2)

86 h2 = surf(Red2);

87 set(h2,'LineStyle','none');

88 caxis([0,256])

89 colorbar

90 colormap hsv

91 view(0,-90)

92 title('Red Pixel Densities, Aerial View')

93 subplot(3,2,3)

94 h3 = surf(Green2);

95 set(h3,'LineStyle','none');

96 caxis([0,256])

97 colorbar

98 colormap hsv

99 view(0,0)

100 title('Green Pixel Densities, Side View')

101 subplot(3,2,4)

102 h4 = surf(Green2);

103 set(h4,'LineStyle','none');

104 caxis([0,256])

105 colorbar

106 colormap hsv

107 view(0,-90)

108 title('Green Pixel Densities, Aerial View')

109 subplot(3,2,5)

110 h5 = surf(Val2);

111 set(h5,'LineStyle','none');

112 caxis([0,1])

113 colorbar

114 colormap hsv

115 view(0,0)

116 title('Value Pixel Densities, Side View')

117 subplot(3,2,6)

118 h6 = surf(Val2);

119 set(h6,'LineStyle','none');
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120 caxis([0,1])

121 colorbar

122 colormap hsv

123 view(0,-90)

124 title('Value Pixel Densities, Aerial View')

125

126 figure(3)

127 subplot(3,2,1)

128 h1 = surf(Red3);

129 set(h1,'LineStyle','none');

130 caxis([0,256])

131 colorbar

132 colormap hsv

133 view(0,0)

134 title('Red Pixel Densities, Side View')

135 subplot(3,2,2)

136 h2 = surf(Red3);

137 set(h2,'LineStyle','none');

138 caxis([0,256])

139 colorbar

140 colormap hsv

141 view(0,-90)

142 title('Red Pixel Densities, Aerial View')

143 subplot(3,2,3)

144 h3 = surf(Green3);

145 set(h3,'LineStyle','none');

146 caxis([0,256])

147 colorbar

148 colormap hsv

149 view(0,0)

150 title('Green Pixel Densities, Side View')

151 subplot(3,2,4)

152 h4 = surf(Green3);

153 set(h4,'LineStyle','none');

154 caxis([0,256])

155 colorbar

156 colormap hsv

157 view(0,-90)

158 title('Green Pixel Densities, Aerial View')

159 subplot(3,2,5)

160 h5 = surf(Val3);

161 set(h5,'LineStyle','none');

162 caxis([0,1])
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163 colorbar

164 colormap hsv

165 view(0,0)

166 title('Value Pixel Densities, Side View')

167 subplot(3,2,6)

168 h6 = surf(Val3);

169 set(h6,'LineStyle','none');

170 caxis([0,1])

171 colorbar

172 colormap hsv

173 view(0,-90)

174 title('Value Pixel Densities, Aerial View')

175

176 figure(4)

177 subplot(3,2,1)

178 h1 = surf(Red4);

179 set(h1,'LineStyle','none');

180 caxis([0,256])

181 colorbar

182 colormap hsv

183 view(0,0)

184 title('Red Pixel Densities, Side View')

185 subplot(3,2,2)

186 h2 = surf(Red4);

187 set(h2,'LineStyle','none');

188 caxis([0,256])

189 colorbar

190 colormap hsv

191 view(0,-90)

192 title('Red Pixel Densities, Aerial View')

193 subplot(3,2,3)

194 h3 = surf(Green4);

195 set(h3,'LineStyle','none');

196 caxis([0,256])

197 colorbar

198 colormap hsv

199 view(0,0)

200 title('Green Pixel Densities, Side View')

201 subplot(3,2,4)

202 h4 = surf(Green4);

203 set(h4,'LineStyle','none');

204 caxis([0,256])

205 colorbar
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206 colormap hsv

207 view(0,-90)

208 title('Green Pixel Densities, Aerial View')

209 subplot(3,2,5)

210 h5 = surf(Val4);

211 set(h5,'LineStyle','none');

212 caxis([0,1])

213 colorbar

214 colormap hsv

215 view(0,0)

216 title('Value Pixel Densities, Side View')

217 subplot(3,2,6)

218 h6 = surf(Val4);

219 set(h6,'LineStyle','none');

220 caxis([0,1])

221 colorbar

222 colormap hsv

223 view(0,-90)

224 title('Value Pixel Densities, Aerial View')

225

226 figure(5)

227 subplot(2,2,1)

228 imshow(Shark1)

229 title('Test Image 1')

230 subplot(2,2,2)

231 imshow(Shark2)

232 title('Test Image 2')

233 subplot(2,2,3)

234 imshow(Shark3)

235 title('Test Image 3')

236 subplot(2,2,4)

237 imshow(Shark4)

238 title('Test Image 4')
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A.3 Show Blob Outline on Original Image

1 clear all

2 close all

3 clc

4

5 Shark1 = ...

imread('/Users/kanebyles/Documents/MATLAB/Youtubeimages2/frame 1982.jpg');

6 Shark2 = imread('/Users/kanebyles/Documents/MATLAB/shark3.jpg');

7 Shark3 = ...

imread('/Users/kanebyles/Documents/MATLAB/Youtubeimages3/frame 0010.jpg');

8 Shark4 = imread('/Users/kanebyles/Documents/MATLAB/shark2.jpg');

9 Shark1 = imcrop(Shark1, [10 10 (size(Shark1(:,:,3),2))-21 ...

(size(Shark1(:,:,3),1))-21]);

10 Shark2 = imcrop(Shark2, [10 10 (size(Shark2(:,:,3),2))-21 ...

(size(Shark2(:,:,3),1))-21]);

11 Shark3 = imcrop(Shark3, [10 10 (size(Shark3(:,:,3),2))-21 ...

(size(Shark3(:,:,3),1))-21]);

12 Shark4 = imcrop(Shark4, [10 10 (size(Shark4(:,:,3),2))-21 ...

(size(Shark4(:,:,3),1))-21]);

13

14 Sharkhsv1 = rgb2hsv(Shark1);

15 Val1 = Sharkhsv1(:,:,3);

16

17 Sharkhsv2 = rgb2hsv(Shark2);

18 Val2 = Sharkhsv2(:,:,3);

19

20 Sharkhsv3 = rgb2hsv(Shark3);

21 Val3 = Sharkhsv3(:,:,3);

22

23 Sharkhsv4 = rgb2hsv(Shark4);

24 Val4 = Sharkhsv4(:,:,3);

25

26 for q = 1:4

27 if q==1

28 B = Val1;

29 Shark = Shark1;

30 elseif q==2

31 B = Val2;

32 Shark = Shark2;

33 elseif q==3
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34 B = Val3;

35 Shark = Shark3;

36 elseif q==4

37 B = Val4;

38 Shark = Shark4;

39 end

40 D = zeros((size(B,1)),(size(B,2)));

41 D1 = zeros((size(B,1)),(size(B,2)));

42 for i = 1:size(B,1);

43 for j = 1:size(B,2);

44 D1(i,j) = B(i,j) * 256;

45 end

46 end

47

48

49 D = uint8(D);

50 D1 = uint8(D1);

51

52 t = imhist(D1);

53 der = zeros(length(t),1);

54 for e = 1:length(t)

55 der(e) = t(e)-t(e+1);

56 if e == 255;

57 break;

58 end

59 if der(e) < ((size(B,1)*size(B,2))/-1500);

60 break;

61 end

62 end

63

64 for i = 1:size(B,1);

65 for j = 1:size(B,2);

66 if B(i,j) > ((e/256)*1) ;

67 B(i,j) = 0;

68 end

69 end

70 end

71

72 for i = 1:size(B,1);

73 for j = 1:size(B,2);

74 D(i,j) = B(i,j) * 256;

75 end

76 end
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77

78 se = strel('diamond',2);

79 BW = imbinarize(D);

80 BW = imdilate(BW,se);

81 BW = bwareaopen(BW,60,4);

82 BW2 = imclearborder(BW,4);

83 BW3 = imfill(BW2,'holes');

84 BW3 = bwperim(BW3);

85 BW3 = imdilate(BW3,se);

86

87

88 if q==1

89 Shark1(BW3) = 255;

90 elseif q==2

91 Shark2(BW3) = 255;

92 elseif q==3

93 Shark3(BW3) = 255;

94 elseif q==4

95 Shark4(BW3) = 255;

96 end

97 fprintf('Threshold Value = %0.3f\n',e/256)

98 end

99 figure(1)

100 subplot(2,2,1)

101 imshow(Shark1)

102 title('Test Image 1 with detected blob outlines')

103 subplot(2,2,2)

104 imshow(Shark2)

105 title('Test Image 2 with detected blob outlines')

106 subplot(2,2,3)

107 imshow(Shark3)

108 title('Test Image 3 with detected blob outlines')

109 subplot(2,2,4)

110 imshow(Shark4)

111 title('Test Image 4 with detected blob outlines')
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A.4 Shark Detection Algorithm

1 % ERP2016 - Automated Shark Detection using Computer Vision

2 %

3 % Author: Kane Byles

4 % Student Number: 0061009769

5 %

6 % This program is used for post processing of aerial shark footage.

7 % It loops through the video, frame by frame, and attempts to identify

8 % all the sharks in the frame. Yellow bounding boxes are placed around

9 % sharks, whilst red blob outlines are placed over all blobs detected

10 % that meet the adaptive threshold conditions. This algorithm then

11 % saves the processed data to a '.avi' format for reviewing and

12 % analysing.

13

14 %******************************************************************%

15 %% Clear all workspace variables and close all figures

16 clear all

17 close all

18 clc

19 %******************************************************************%

20 %% Initalise Variables

21 OffFlag = 0;

22 On = 0;

23 OnFlag = 0;

24

25 for i = 1:5

26 Noise(i) = {zeros(700,1260)};

27

28 end

29 %******************************************************************%

30 %% Initalise video object files

31 v = VideoWriter('Post Processed.avi');

32 open(v)

33 source='/Users/kanebyles/Documents/MATLAB/Shark footage.mp4';

34 vidobj=VideoReader(source);

35 frames=vidobj.Numberofframes;

36 %*****************************************************************%

37 %% Main Loop

38 for f=1:frames

39 %****************************************************************%
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40 % Read Current Frame, crop to remove border and convert to HSV

41 thisframe=read(vidobj,f);

42 fprintf('Frame %d\n',f);

43 Shark = imcrop(thisframe, [10 10 (size(thisframe(:,:,3),2))-21 ...

44 (size(thisframe(:,:,3),1))-21]);

45 Sharkhsv = rgb2hsv(Shark);

46 %***************************************************************%

47 % Extract Value channel, blur Value array and save data to histogram

48 Value = Sharkhsv(:,:,3);

49 Value1=Value;

50 ValueBlur = imgaussfilt(Value,4);

51 HistData = ValueBlur.*256;

52 HistData = uint8(HistData);

53 ValueHistogram = imhist(HistData);

54 %**************************************************************%

55 % Determine adaptive threshold limit for calculating bin derivative

56 BinDerivative = zeros(length(ValueHistogram),1);

57 for e = 1:length(ValueHistogram)

58 BinDerivative(e) = ValueHistogram(e)-ValueHistogram(e+1);

59 if e == 255;

60 break;

61 end

62 if BinDerivative(e) < ((size(ValueBlur,1)*size(ValueBlur,2))/-1500);

63 break;

64 end

65 end

66 %*************************************************************%

67 % Write threshold limit to array for 3D surface model

68 % Set all values of brightness array above limit to zero

69 Limit = zeros(size(ValueBlur,1),size(ValueBlur,2));

70 Limit(:,:) = e/256;

71 ValueBlur(ValueBlur>(e/256))=0;

72 %*************************************************************%

73 % Scale values of brightness array to 0-255

74 % Convert to binary map

75 % Perform morphological operations on binary map

76 ScaledValue = ValueBlur.*255;

77 se = strel('disk',1);

78 de = strel('disk',2);

79 BW = imbinarize(ScaledValue);

80 BW = bwareaopen(BW,round(((size(ValueBlur,1)*...

81 size(ValueBlur,2))/2100)),4);

82 BW = imclearborder(BW,4);
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83 BW = imdilate(BW,se);

84 BW = imfill(BW,'holes');

85 BlobOutline = bwperim(BW);

86 BlobOutline = imdilate(BlobOutline,de);

87 %************************************************************%

88 % Extract blob properties

89 % Move index of noise filter back one

90 BlobProperties = regionprops(BW, 'BoundingBox', 'Area','Centroid',...

91 'MajorAxisLength','MinorAxisLength','Orientation','Perimeter');

92 maps = [];

93 field1 ='maps';

94 for c = 1:4

95 Noise(c) = Noise(c+1) ;

96 end

97 %***********************************************************%

98 % Loop through detected blobs

99 % Brightness ratio filter

100 % Variance filter

101 % Elliptic ratio filter

102 % Set blob elements to zero if they don't pass threshold

103 % Print out values for filters

104 for j = 1:size(BlobProperties,1)

105 box = BlobProperties(j).BoundingBox;

106 EllipticRatio = (pi*BlobProperties(j).MajorAxisLength*...

107 BlobProperties(j).MinorAxisLength)/(4*BlobProperties(j).Area);

108 CropBB = imcrop(Value1,box);

109 BrightLimit = min(min(ValueBlur))+(max(max(ValueBlur))...

110 -min(min(ValueBlur)))*0.60;

111 [x,y] = find(CropBB>BrightLimit);

112 BrightnessRatio = size(x,1)/(size(CropBB,1)*size(CropBB,2));

113 if BrightnessRatio>0.01

114 BW(round(box(2)):round((box(2)+box(4))),round(box(1)):...

115 round((box(1)+box(3)))) =0;

116 end

117 W = imcrop(ValueBlur,box);

118 Wvector = reshape(W,[],1);

119 IQR = iqr(Wvector);

120 if IQR<0.02

121 BW(round(box(2)):round((box(2)+box(4))),round(box(1)):...

122 round((box(1)+box(3)))) =0;

123 end

124 if EllipticRatio > 1.27

125 BW(round(box(2)):round((box(2)+box(4))),round(box(1)):...



A.4 Shark Detection Algorithm 17

126 round((box(1)+box(3)))) =0;

127 end

128 fprintf('Elliptic Ratio is: %0.2f\n',EllipticRatio)

129 fprintf('Diff = %0.3f\n',IQR);

130 fprintf('Brightest = %0.4f\n\n',BrightnessRatio);

131 end

132 %***********************************************************%

133 % Plot outline of detected blobs on original frame

134 Shark(BlobOutline) = 255;

135 figure(1)

136 imshow(Shark)

137 BlobProperties = regionprops(BW, 'Centroid','BoundingBox');

138 %**********************************************************%

139 % Update noise filter memory

140 % Test whether blobs are random occurences (noise)

141 % Plot yellow bounding box labelling shark if noise filter passed

142 Noise(5) = {BW};

143 maps = struct(field1,Noise);

144 for i = 1:size(BlobProperties,1)

145 BlobCentroid = BlobProperties(i).Centroid;

146 BlobCentroid = round(BlobCentroid);

147 for g = 1:5

148 if BW(BlobCentroid(2),BlobCentroid(1)) == 1 &&...

149 maps(g).maps(BlobCentroid(2),BlobCentroid(1)) == 1

150 OnFlag = OnFlag+1;

151 OffFlag = OffFlag-1;

152 if OffFlag<0

153 OffFlag = 0;

154 end

155 else

156 OffFlag = OffFlag+1;

157 end

158 end

159 if OnFlag > 4

160 On = 1;

161 end

162 if OffFlag > 2

163 On = 0;

164 end

165 if On == 1

166 box = [BlobCentroid(1)-50 BlobCentroid(2)-50 100 100];

167 rectangle('Position', box,'Curvature',0.2, 'EdgeColor', 'y');

168 text(box(1),box(2)-10,'SHARK','FontSize',16,'BackgroundColor','y');
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169 OnFlag = 0;

170 OffFlag = 0;

171 end

172 end

173 %**************************************************************%

174 % Get current frame and write to video

175 % Loop back to start of main loop to get new frame

176 F = getframe;

177 writeVideo(v,F);

178 end

179 %**************************************************************%

180 % Close video file

181 close(v)
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ENG 4111/2 Research Project

Project Specification

For: Kane Byles

Title: Automated Shark Detection using Computer Vision

Major: Mechatronic Engineering

Supervisors: Dr Tobias Low

Enrolment: ENG4111 - EXT S1, 2016

ENG4112 - EXT S2, 2016

Project Aim: To develop a computer vision algorithm that is capable of

automatically detecting sharks from aerial video footage

Program:

1. Research the history of computer vision and understand the fundamental principles.

2. Research how computers can be taught to ”see” and define objects.

3. Obtain data useful for constructing a shark detection algorithm.

4. Develop a shark detection algorithm based on the available data.

5. Develop filtering techniques to reject false positives

6. Test the algorithm on aerial shark footage and analyse successful and unsuccessful

detections

Agreed:

Student Name: Kane Byles

Date: 06/03/2016

Supervisor Name: Dr Tobias Low

Date: 30/03/2016
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