
.sc ienced i rec t .com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Queensland ePrints
Avai lab le a t www
INFORMATION PROCESSING IN AGRICULTURE 4 (2017) 1–17

journal homepage: www.elsev ier .com/ locate / inpa
Wireless data management system for
environmental monitoring in livestock buildings
http://dx.doi.org/10.1016/j.inpa.2016.12.001
2214-3173 � 2017 China Agricultural University. Publishing services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author at: National Centre for Engineering in
Agriculture (NCEA), University of Southern Queensland (USQ),
West Street, Toowoomba, QLD 4350, Australia.

E-mail address: thomas.banhazi@usq.edu.au (T.M. Banhazi).

Peer review under responsibility of China Agricultural University.
James Gray a, Thomas M. Banhazi a,b,*, Alexander A. Kist a

a Faculty of Health, Engineering and Sciences, University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350, Australia
bNational Centre for Engineering in Agriculture (NCEA), University of Southern Queensland (USQ), West Street, Toowoomba, QLD 4350,

Australia
A R T I C L E I N F O

Article history:

Received 18 April 2016

Received in revised form

19 October 2016

Accepted 5 December 2016

Available online 12 December 2016

Keywords:

Sensors

Environmental monitoring

Networking

Software engineering
A B S T R A C T

The impact of air quality on the health, welfare and productivity of livestock needs to be

considered, especially when livestock are kept in enclosed buildings. The monitoring of

such environmental factors allows for the development of appropriate strategies to reduce

detrimental effects of sub-optimal air quality on the respiratory health of both livestock

and farmers. In 2009, an environmental monitoring system was designed, developed and

tested that allowed for the monitoring of a number of airborne pollutants. One limitation

of the system was the manual collection of logged data from each unit. This paper identi-

fies limitations of the current environmental monitoring system and suggests a range of

networking technologies that can be used to increase usability. Consideration is taken

for the networking of environmental monitoring units, as well as the collection of recorded

data. Furthermore, the design and development of a software system that is used to collate

and store recorded environmental data from multiple farms is explored. In order to design

such a system, simplified software engineering processes and methodologies have been

utilised. The main steps taken in order to complete the project were requirements elicita-

tion with clients, requirements analysis, system design, implementation and finally test-

ing. The outcome of the project provided a potential prototype for improving the

environmental monitoring system and analysis informing the benefit of the

implementation.

� 2017 China Agricultural University. Publishing services by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Air quality is an important factor that needs to be considered

in livestock production, especially when livestock is kept in
enclosed buildings. There are a number of airborne pollutants

found in piggery buildings that are of concern. Themost nota-

ble of which are ammonia (NH3), carbon dioxide (CO2),

airborne particles, andmicroorganisms [1]. When these pollu-

tants are above certain levels, they can have detrimental

effects on the health and welfare of exposed humans and

livestock, can reduce the production efficiency of livestock,

and can have a negative impact on the external environment

[2]. In order to determine if air pollution is an issue, as well as

what actions need to be taken, the air quality within a

https://core.ac.uk/display/211500651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inpa.2016.12.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.inpa.2016.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.banhazi@usq.edu.au
www.sciencedirect.com
http://www.elsevier.com/locate/inpa

EMS

Data Logging
Subsystem

Power Distribution
Subsystem

Air Monitoring
Subsystem

Structural
Subsystem

Gas Monitoring
Subsystem

Ammonia Gas
Sensor

Temp & Humid
Sensor Data Logger

Sampling
Control

Carbon Dioxide
Gas Sensor

Dust Particle
Sensor

Gas Sampling
System

Air Sampling
System

Power Supply Case

Fig. 1 – Physical architecture of the EMS (Clements et al.,

2011).

2 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
livestock buildings need to be monitored. In 2009, an Environ-

mental Monitoring System (EMS) was designed, developed and

tested in Australia. The development of the EMS was born

from the need for an accurate, low-cost user friendly kit for

monitoring airborne pollutants, which would allow for air

quality improvement strategies to be implemented [3]. The

routine use of the EMS has the potential to improve building

environments and reduce pollutant emissions by creating

awareness of air quality issues amongst livestock farmers

[2]. The EMS was developed with the key airborne pollutant

found in piggery buildings in mind. Sensors allowed the

recording of air quality components and portability was

maintained in order for the unit to be taken to different live-

stock buildings. The unit was also field tested in working pig-

gery buildings, which allowed for the assessment of

operational/labour requirements as well as the capabilities

of the system. Improvements in effectiveness and efficiency

and reduced cost of the system gave it the potential to

become a routinely used tool for the monitoring of air quality

in the future.

However, there are a number of key limitations of the cur-

rent EMS implementation. The main problem is the labour

and time required to collect, collate and store data recorded

by EMS units. An increase in ease and efficiency of these pro-

cesses will increase usability of the system and therefore the

potential for deployment and widespread use. In order to

resolve the problem, telecommunication technology can be

used to create a system that will automate the data collection

and management process. This study investigates how the

current EMS can be improved using telecommunication tech-

nologies. In the first part current networking technologies are

discusses and their suitability in livestock buildings is inves-

tigated. In the second part a specific prototype implementa-

tion for the existing EMS are discussed and evaluated. The

key contributions of this work include an overview of avail-

able networking and data management technologies that

can be used to build could-based environmental monitoring

systems. In particular their application in the context of agri-

cultural engineering is evaluated and practical implications

for the design of could-based systems in this context are dis-

cussed. The paper also introduces a case study that demon-

strates how such a system can be designed and build in

practical terms. The discussions and the conclusions that

are drawn are generic and apply to other systems in similar

environments as well. The remainder of the paper is organ-

ised as follows: Section 2 discusses an example of an environ-

mental monitoring system to provide the necessary

background to provide constraint that inform the selection

of suitable communication technology. Section 3 provides a

tutorial style overview of technologies that can be used to

provide network connectivity for environmental monitoring

systems. Section 4 address alternative approaches to data

management and Section 5 highlight implications for the

overall system design. Section 6 introduces a requirements

analysis and the system design. The prototype and testing

are discussed in Sections 7 and 8. The paper concludes with

results in Section 9.
2. Background and literature review

This section introduces current environmental monitoring

system in more detail. The system has evolved over time

undertaken a variety of upgrades and modifications since its

origins as the BASE-Q system, such as those described in

Clements et al. [4] and Saha et al. [5] The latest working

EMS is discussed and its requirements and limitations are

highlighted.

The hardware configuration of the current EMS unit is

depicted in Fig. 1 and in detail described in Clements et al.

[4]. The EMS unit is all contained within a small plastic hard

case, which allows for ease of portability during transport

and mounting when in use, as well as protecting the internal

components from the operating environment. The gas moni-

toring subsystem allows for the monitoring of ammonia and

carbon dioxide both inside and outside the livestock shed.

The small size of the gas sensor modules allows for them

both to be contained in a single air-tight chamber, which is

supplied air by the single vacuum pump. Because the cham-

ber has a transparent lid, it also allows for easy inspection

of cleanliness or other physical issues.

The air monitoring subsystem allows for the monitoring of

temperature, humidity and particle concentration within the

livestock shed. The air sampling system requires a continu-

ous flow of air, which is achieved using a small fan within a

straight-through vent from one side of the case to the other.

Within the vent are two sensor modules, a temperature and

humidity sensor, and a dust particle sensor. As with the

gas monitoring subsystem, the vent is mainly transparent,

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 3
allowing for visual inspection. The power distribution subsys-

tem provides power to all the other subcomponents of the

unit. The data logging subsystem records sensor data, con-

trols the fan and vacuum pump, and provides a user interface

for the unit. The custom circuit board includes a micro-

controller, real-time clock, LCD screen, SD card interface

and three push buttons. The LCD and push buttons provide

basic user I/O for configuring, starting and stopping the sys-

tem. The real-time clock is used to time-stamp records

obtained from sensor modules, which are saved locally to

the non-volatile memory.

The BASE-Q software is a database application used to

capture, store and retrieve air and environment quality

data. It was designed for use on a Windows 2000 operating

system and has a desktop and pocket-based version. The

desktop BASE-Q software maintains data records, provides

data security, accepts data from external sources and from

manual input and provides search and reporting functions.

Using the software, farms and sheds can be added/

removed, as well as details provided such as address, etc.

The desktop BASE-Q software is the main repository for

data obtained from EMS units, and provides functions to

manage, store and view the recorded data. The pocket-

based BASE-Q software (PBQ) can be run on portable PC’s

running Windows CE. PBQ allows for information to be

easily retrieved/supplied in the field, such as from SD cards

out of EMS units, before being returned to the desktop

BASE-Q for synchronization.

In comparison to the earlier BASE-Q units, for latest revi-

sion of the EMS, the cost was reduced by approximately

80%, the size reduced by approximately 75%, the weight

reduced by 85% and the lifespan of the ammonia sensor

was increased by approximately 200% [4]. The main opera-

tional/labour requirements for the system can be broken into

three categories: pre-farm, which includes preparation and

calibration; on-farm, which includes deployment of equip-

ment and sampling procedures; and post-farm, which

includes cleaning of equipment and downloading. According

to results obtained whilst testing the BASE-Q unit, both pre-

and on-farm operational/labour requirements were within

approximately 1 and 2 h, whereas post-farm was between

approximately 2 and 4 h [3]. Due to the improvements made

in the EMS unit, and without extensive testing, an all-round

improvement can be assumed. For instance, calibration

requirements (pre-farm) have been reduced, deployment

effort has been reduced (on-farm), and cleaning requirements

have been reduced (post-farm).

Taking this into account, the greatest amount of oper-

ational/labour requirement remains in the post-farm pro-

cesses, which predominantly consists of downloading

and managing recorded data. Two main limitations of

the EMS system are that it does not incorporate an air-

borne bacteria monitoring system, and that data needs

to be manually acquired from each sensor. Difficulties

such as techniques for measuring and accuracy have been

discussed with regard to monitoring airborne bacteria [3].

The automation of record downloading has often been

considered as a future possibility in the development of

the EMS system, and the development of such automation
was commenced, as documented by Saha et al. [5], how-

ever, the design was not implemented. In order to reduce

the limitations identified, a solution should ideally provide

the following:

� Automatic data retrieval from EMS units on a farm.

� The ability to easily increase/decrease the number of EMS

units logging on a farm.

� Automatic collaboration of data from different farms to a

central location.

� Data analysis and viewing from the central repository.

� Security features for privacy and protection.

There are two main sections of networking technology

that will be considered: sensor networking implementation

and data collaboration and storage. In the following two sec-

tions, a review of literature will establish technologies and

methods that will be most appropriate to solve the problem

previously outlined.
3. Alternative technologies to network
environmental sensors

As stated by the requirements, a means of automatically

retrieving records from the EMS units must be designed using

wireless communication technology for greatest effectiveness

and ease of use. Wireless communication has been used suc-

cessfully for a multitude of agricultural monitoring situations

such as in greenhouses and fields to monitor conditions and

plant growth [6].
3.1. Wireless technologies

Four networking technologies are widely used. This section

provides a comparison and most efficient uses, determined

from the literature. The discussion focuses on technologies

that use high frequency radio as communication. Other alter-

natives such as microwave communication and infrared (IR)

have been omitted as these do not work well in a farm shed

environment.

Wi-Fi is a popular name for Wireless Fidelity, which is

standardized as IEEE 802.11a/b/g/n. Wi-Fi is used mainly for

Wireless Local Area networks (WLAN) such as providing inter-

net access to devices throughout an entire household. The

transmission range of Wi-Fi is nominally 100 m, with a max-

imum signal rate of 54 Mb/s and bandwidth of 22 MHz. This

makes it an ideal wireless technology for general networks

which provide communication between personal computers,

laptops and routers. The transmission time of Wi-Fi is rela-

tively high and the data coding efficiency is high with large

data payload sizes. Ultra-wideband, or UWB, is standardized

by IEEE 802.15.3 and is becoming a popular technology for

short-range high-speed communication, such as in multime-

dia applications [7]. This is due to the very high signal rate

and channel bandwidth. These characteristics mean that

UWB has a very fast transmission time; however, out of the

four discussed wireless technologies it has the greatest power

consumption.

4 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
ZigBee, as standardized by IEEE 802.15.4, is used to support

simple devices that consume minimal power and operate

within a 10 m range [8]. It provides self-organized,

multi-hop mesh networking with low power consumption

[9]. Of the discussed technologies, ZigBee has the lowest sig-

nal rate and channel bandwidth, which also gives it the high-

est transmission time and makes it inefficient when

transferring large data payloads. On the other hand, ZigBee

is second in efficiency only to Bluetooth when transferring

small data payloads, has the least complex protocol stack

and consumes the least amount of power. ZigBee has been

implemented successfully in customized wireless sensor net-

works, an example of which is shown in Zhang et al. [6],

where ZigBee was used to communicate from wireless sen-

sors from within greenhouses. The results of the implemen-

tation determined that the ZigBee technology provided the

capabilities of self-organization, self-configuration, self-

diagnostics and self-healing.

Bluetooth, standardized as IEEE 802.15.1, is designed for

short range and cheap devices such as keyboards and head-

sets. The wireless range reaches a maximum of 10 m, known

as the wireless personal area. Bluetooth communication

occurs as a master and slave relationship between devices,

where a master can communicate with multiple slaves but

a slave can only communicate with one master. Bluetooth

also has small bandwidth, a small signal rate and a complex

protocol stack, meaning that it has a relatively high transmis-

sion time. On the other hand, Bluetooth has a very low power

consumption, which makes it ideal for small battery powered

devices. As discussed in Lee et al. [8], Bluetooth is the most

efficient technology for transmitting small data payloads (less

than 339 bytes).

Table 1 shows a comparison of the wireless technologies.

This includes test results reported in Jin-Shyan et al. [8].

The key conclusions of this study are that Bluetooth and Zig-

Bee are suitable for low data rate applications with limited

battery power, such as mobile devices and sensor networks,

whereas UWB and Wi-Fi should be used for high data rate

applications such as audio/video surveillance.

3.2. Ad-hoc networks

Ad hoc wireless networking is a technology that allows wire-

less networking in environments where there is limited or no

wired or cellular infrastructure. Typically, ad hoc networks are

set up for a limited amount of time and established for a

specific service or application. This kind of networking allows
Table 1 – Comparison of specifications between Wi-Fi, UWB, Zi

Specification Wi-Fi UWB

Max signal rate 54 Mb/s 110 Mb
Nominal range 100 m 10 m
Channel bandwidth 22 MHz 500 MH
Number of cell nodes 2007 >65,00
Coding efficiency 97.18% 97.94%
Power consumption (in test) 700 mW 750 mW
for continued network communication whilst still allowing

mobility of nodes. There are a number of design requirements

that must be considered due to the mobile, non-

infrastructure nature of wireless ad hoc networks, which

includes self-configuration, multicasting and mobility. Ad

hoc networks have had difficulty emerging as generalized

standards; however they are becoming increasingly more suc-

cessful when designed for specific purposes or applications

[10].

There are a number of key characteristics that define an ad

hoc network. One of the main characteristics is mobility.

Because nodes can have random mobility, the network must

be able to cater for nodes that enter and exit the network

area. Multi-hopping is a term used when a path from a desti-

nation node traverses one or more other devices before reach-

ing the source device. Multi-hopping requires routing

protocols and technologies to be used, which may either

require each node to be a router as well, or some form of des-

ignated infrastructure. Self-organization and scalability are

also important characteristics, meaning that nodes should

be automatically configured when added to a network.

Finally, energy conservation is often a characteristic required

of ad hoc networks, due to nodes most commonly being com-

pletely wireless and therefore relying on batteries for power.

There are a number of different classes of ad hoc network

[11], the most relevant of which are explained below.

Mesh Networks can be defined as a short-term evolution of

multi-hop ad hoc networks [10]. They use a form of infras-

tructure which defines it as a hybrid ad hoc wireless network-

ing style. As opposed to pure ad hoc networking, mesh

networks use fixed routers (mesh routers), which reduces

node mobility but also simplifies the communication proto-

cols and configuration required. A wireless ‘‘backbone” is

formed by the mesh routers. In a typical mesh network, all

routing is undertaken by the mesh routers; therefore commu-

nication is only maintained in their coverage range. Mesh net-

works can be usedwith traditional wireless technologies such

as 802.11 (Wi-Fi) and are therefore capable of general purpose

use. A major use of mesh networks currently operating is in

public internet access, where internet connectivity is pro-

vided in a populated area via a wireless backbone.

Opportunistic Networks differ from pure ad hoc networks by

removing the notion of communication failure when a node

moves out of range of another node/provider. This is a bene-

ficial characteristic when the number of nodes is small. The

concept of opportunistic networking is that a node will trans-

mit packages whenever an opportunity arises, and when it
gBee and Bluetooth [1].

Zigbee Bluetooth

/s 250 kb/s 1 Mb/s
10–100 m 10 m

z–7.5 GHz 0.3/0.6 MHz; 2 MHz 1 MHz
0 8 8

76.52% 94.41%
80 mW 90 mW

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 5
loses connectivity it simply waits until it returns, as opposed

to failing. This method of transfer can be used for low priority

applications such as email and messaging. Multi-hopping,

and therefore routing protocols, are an important characteris-

tic in opportunistic networks, as the node will need to quickly

determine if another node it comes in contact with can reach

the required destination. An example of general purpose

opportunistic networks being developed is in villages in India.

There are plans to use mobile relays such as buses andmotor-

cycles that pass through the village to wirelessly exchange

data with local nodes [10].

Wireless Sensor Networks (WSNs) are a type of ad hoc net-

work that has evolved for the specific use ofmonitoring a large

number of sensors. In a WSN, the sensors contain integrated

computing and networking capabilities and are themselves

the nodes. A sink is a wireless routing device that the sensors

relay data to, which routes it to the final destination. Sensor

nodes can either communicate only with a sink, or multi-

hop through other sensor nodes, depending on the category

of WSN used. WSNs typically have a large number of sensor

nodes (possibly thousands) that are densely located. There

are also a number of other significant differences between

other ad hoc networks and WSNs [12]: Sensor nodes are nor-

mally not mobile, therefore protocols do not need to compen-

sate for this. Sensor nodes are often monitoring common

phenomena; therefore data redundancy can be a significant

factor. Sink devices can process data in order to remove redun-

dancies and reduce transmissions, at the cost of processing

power. And most sensors are small and run on batteries,

therefore power consumption is evenmore important to limit.

Wireless Sensor Networks moved away from general pur-

pose networking and their focus has shifted from node-

oriented to data-oriented. WSNs have been successfully

applied in many areas, including scientific research (habitat/

environment monitoring) and battlefield scenarios (battlefield

surveillance, attack detection). It can be seen from the num-

ber of successes, as well as current commercial usage, that

while general ad hoc networks are becoming more popular,

WSN are most prolific in their diversity. According to Conti

& Giordano [10], the success of the WSN can be accredited

to the specificity in which each network is designed. Because

they are tailored to a specific need as opposed to providing

general networking communication, they are currently more

reliable.

4. Alternative approaches to data
management

Use of a file-based approach to storing large amounts of data

has many detriments, including separation and duplication of

data, data dependence and fixed accessibility. In order to

overcome these issues databases are commonly used. A data-

base is a shared collection of logically related data and its

description, designed to meet the information needs of an

organisation [13]. Because of the large amounts and varying

nature of the information recorded by EMS units, a database

system is more appropriate than implementing flat-files.

Before integrating a database with a system in development,

there are a number of factors that must be considered. Four
important factors to consider are the data model, architec-

ture, distribution, and languages used.

4.1. Data models

A data model determines how data is stored, organized and

manipulated in a database system. Data models are used to

describe data at different levels of the system. The conceptual

level represents how the information is stored and related

logically, as opposed to the external level representing how

the users see the data, and the physical level representing

how the data is physically stored. Hierarchical and network

data models are earlier developments of data models than

the relational model and are often replaced by relational

models. In these models data is represented as a collection

of records. Sets are used to define relationships between

records. In the hierarchical model, a record may be an owner

of any number of sets but a member in only one. In other

words, records can have only one parent. The network model,

on the other hand, allows for records to be members in any

number of sets. Due to the surpassing of these data models

with more current systems they are not considered to be

viable options for EMS data storage.

Relational data models use tables to represent both data

and relationships. Each table has a number of columns that

hold data for a specific field. Entries are added to the table

as new rows. Every table must have at least one column (or

combination of columns) that has a unique entry for every

row, to allow for individual identification. Relationships are

not explicit in this data model and are defined by relating col-

umns in multiple tables. The relational model is currently

well used and has had innumerable implementations with

satisfactory degrees of success. Two successful implementa-

tions of relational databases used to record environmental

data can be found in Peacock et al. and Wösten et al. [14,15].

In Wösten et al. [15], a relational database was developed in

order to store various soil properties from different sources

in a central area for ease of use. A relational data model

was selected in order to provide flexibility in data extraction

with the diverse range of data being collected. This successful

implementation relates to this project both in aim and in

requirements. Peacock et al. [14] documents a database devel-

opment for the storage of large amounts of data relating to

trees in the Amazon forest. A user interface was provided to

both view and manually add data to the system. The success-

ful implementation of this system provides further encour-

agement that a relational database is an appropriate option

for the proposed system.

Object-oriented data model approaches to software con-

struction have shown considerable promise for solving some

of the classic problems of software development. The under-

lying concept behind object technology is that all software

should be constructed out of standard, reusable components

wherever possible [13]. The object-oriented paradigm has

been applied to database technology and created models that

attempt to bring the database and application worlds

together. Object-oriented database models aim to avoid over-

head required to convert information stored in the database

to the application form. The object-oriented data model uses

6 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
the concept of classes and objects in a similar fashion to

object-oriented programming languages. Object-oriented

databases have been used successfully to record data from

sensor networks, providing benefits over other data models

due to the use of abstract data types. These databases, such

as the one developed in Bonnet et al. [16], are designed for

large sensor networks and vast expansion. In order to achieve

this, the complexity of the database design, development and

use is increased.

4.2. Multi-user database architectures

There are three common database architectures that allow

multi-user system use: teleprocessing, file-server and client-

server [13]. Teleprocessing is a traditional form of multi-user

system where lightweight terminal computers connect to a

central computer for database access. This architecture

causes a large burden on the central computer because it is

required to do all of the processing. Because of this, the other

two architectures will be discussed in greater detail. File-server

architecture implements a database on a computer which is

used solely as a repository for raw data. Other computers that

have access to the repository run a database system locally,

which obtains required data from the database and returns

it via a network connection. This architecture can be related

to a simple shared network drive or folder. All of the process-

ing is undertaken by the client computer and the file-server

database is used only for storage. This has various detri-

ments, the most notable of which are the large amounts of

network traffic and the need to have a complete database sys-

tem running on each client machine.

Client-server architecture is an implementation that sepa-

rates software components into client processes that require

a resource, and servers which provide the resource. Using

such modulation allows for clients and servers to be on differ-

ent machines, providing remote and multi-user functionality.

The traditional client-server, known as two-tier, architecture

consists of two machines, the client and the server. The data-

base management tasks are split between the two machines;

the client machine is responsible for user interface and the

main data processing logic, whereas the server is responsible

for validation and database access. Splitting the tasks

between the two systems means that the server has a greater

burden than in the file-server architecture, but less than a

teleprocessing architecture. Likewise, client computers still

require instances of the database system, however the

amount of tasks it is required to undertake means a reduction

in resources used. The traditional client-server architecture

can be expanded into three-tier, and sometimes even more,

architectures. The concept of increasing the tiers is that addi-

tional machines are added in order to undertake part of the

processing required. For example, in a three-tier architecture,

the client machine is responsible only for user interface, a

second tier machine is used as an application server which

is responsible for main data processing and the server has

the same responsibilities as in the two-tier. As expected, as

the tiers are increased, the tasks undertaken are distributed

in order to reduce burden on each machine, allowing for a lar-

ger number of users.
Within the client-server architecture, there are a number

of models that differ by the functionality assigned to each

component [17]. Three models are the object server, page ser-

ver and database server. In each model the server is on the

same machine as the database and the client can be on the

same or a different machine. In an object server architecture,

the processing is distributed evenly (approximately) between

the client and server. In a page server architecture, most of

the database processing is performed by the client. On the

other hand, the server is responsible for most of the data pro-

cessing in a database server architecture, and the client sim-

ply passes requests to the server and receives results. The

object architecture is more appropriate for object-oriented

uses, whereas the database architecture is more commonly

used for relational databases [13]. A further factor to consider

in database design is distributing the system. In a distributed

database system, there are multiple servers each with their

own database and network of clients. Clients access data

from the servers database, as well as from the other dis-

tributed database systems. The entire database is a logical

collection of all of the databases in the distributed system.

Distributing a system has the benefit of reducing server load

and preventing performance bottlenecks or security issues

caused by large amounts of data being stored in a single place.

5. Implications for the wireless data
management system design

The networking technologies that have been introduced

above have different degrees of potential for application with

the environmental monitoring system. By looking at the ben-

efits and detriments of the technologies with respect to their

application, a theoretical basis for selection of technologies

for future improvements to the EMS can be determined.

5.1. Sensor network implementation

For the wireless transfer, a number of options are available

that can be utilised to implement the objective of automatic

data transferal from EMS units. Because each EMS unit would

require an interface to be integrated into it, power consump-

tion is a significant factor that must be minimized. This

makes ZigBee and Bluetooth preferable options, however both

of these have low signal rates compared to Wi-Fi and UWB.

Considering that the data being transferred will only be sen-

sor recordings and that immediate transfer is not crucial,

the lower transfer rates are considered to be sufficient. The

ranges of UWB and Bluetooth would be excessively inconve-

nient in a practical environment, meaning that units would

have to be set up very close to each other or additional infras-

tructure would need to be established, resulting in greater

expense and effort. The number of nodes possible using the

networking technology is also a factor to consider: ZigBee

and Bluetooth only allow for eight nodes, which is minimal

compared to the other two technologies. At this stage of

design, the deployment of eight nodes per farm is considered

satisfactory. For these reasons, ZigBee has been identified

as the first choice of networking technology to establish

data transferal from EMS units. It has the lowest power

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 7
consumption of the technologies discussed while maintain-

ing an effective transferal range. It should also be noted that

Wi-Fi is a very popular networking technology and may be

used for this reason; software development and hardware

interfaces can easily be arranged.

The ad hoc network styles relate to the topology of the net-

work devices and will affect the requirements of routing

capabilities and infrastructure needs. Each of the styles have

benefits and drawbacks in relation to implementation with

the environmental monitoring system. Two important factors

to consider when selecting a network style are cost and ease

of implementation/deployment. The most ideal configuration

would require no additional infrastructure deployed on a sin-

gle farm other than one or more EMS units and a single com-

puter with wireless interface to receive the readings.

Although it will depend on the layout of each individual farm,

the ability for multi-hopping amongst the EMS units is con-

sidered to be beneficial, as it means that the main interface

does not need to be located centrally to all sheds on a farm.

Wireless sensor networking is very appropriate for large and

individual networks, however the increased complexity and

currently limited deployment of the environmental monitor-

ing system means that it is not considered the most advanta-

geous option. Additionally, because each EMS unit would

have to be configured before being deployed on a farm, the

opportunistic network style does not hold any additional ben-

efit. This means that at this stage of development, the mesh

network style would provide the best foundation for design-

ing communication between devices on a farm. Using this

foundation, additions can be made, such as multi-hop capa-

bilities, as required.

5.2. Data collaboration and storage

Data collaboration and storage identified options regarding

the access and storage of recorded data. This comes into play

when developing a central server for storing and viewing data

from all/multiple farms. More specifically, the data models

will determine how the data is stored, organized and manip-

ulated in a database system, while the database architecture

will determine how users will access the data. Of the data

models presented, the relational and object-oriented are

two obvious choices. As shown earlier, the object-oriented

data model has been successfully used to record large

amounts of data recorded from sensor networks, however

the increased complexity would cause detrimental develop-

ment overhead. The relational data model is widely used

and numerous successful databases have been developed

using it to record sensor data. The combination of these

observations concludes that the relational and object-

oriented database models are both satisfactory, the latter

being preferred, and the choice would rely on the effective-

ness of the available design and development team. The nat-

ure of the desired setup for establishing networking

capabilities amongst the environmental monitoring system

means that the client-server architecture is optimal. This

allows for the server maintaining the recorded data can be

accessed by multiple clients, being both users to view data

and farm computers to contribute data. At this stage of

design, a distributed database system is not necessary, how-
ever with expansion, distribution can easily be included if

required.

6. Materials and methods

In order to design and implement the project objectives, soft-

ware engineering processes and methodologies have been

utilised. Due to the limited resources, some simplifications

have been made. The entire software engineering process

undertaken is not documented here; however, major design

decisions and notable milestones are included. The processes

and templates used during the software engineering cycle

have been simplified from the text Bruegge and Dutoit, &

Sommerville [18,19], which contain more detailed

descriptions.

6.1. Requirements elicitation and analysis

Requirements elicitation and analysis is the first step of soft-

ware design and consists of determining and modelling sys-

tem functionality. System requirements are provided in

natural language and refined to with respect to the purpose

of the system. The purpose of the system is to automate the col-

lection and storage of air quality data from EMS units. The

system consists of multiple subsystem components that

allow for measurements from a number of EMS units to be

transferred to a single location, which can be remotely

accessed for visualisation and analysis. Overall, the system

reduces the required effort in obtaining and maintaining

recorded data. The scope of the system extends from the net-

working and transferal of data from the EMS to the storage

and accessibility of that data on an online server. This

includes a number of subsystem components, but most

specifically it requires a web based user interface, networking

and transferal methods and storage methods. Due to the large

scope of the system, and considering that the project was

undertaken by a single student with limited resources, a par-

tial implementation was undertaken. The final design and

implementation considered only the online storage and

receive subsystem, which will be explained in the next sec-

tions. The overall objective of the system was to dramatically

reduce the effort required to collect, store and maintain data

recorded by EMS units. A prototype system was developed to

test the effectiveness of the approach.

In order to eliminate or reduce shortcomings of the cur-

rent system processes, an online data repository and a num-

ber of automations were introduced. In its entirety, the data

logging was automated to the extent that multiple EMS units

can run on a single farm, and the data was made available to

authorised users online. In order to achieve this, the EMS

units required integrated networking functionality that

allowed measurements to be transmitted to a computer for

uploading to an internet server. Fully automating the data col-

lection and collaboration process ensured data consistency

and availability, and prevented any possible human errors.

In addition, a storage server can easily implement data redun-

dancy techniques to prevent data loss. Therefore, the system

consists of an online server that receives data via the internet

from computers located on a number of farms. The comput-

ers local to the farms which transfer data to the online server

Fig. 2 – Basic overview diagram of high-level proposed system.

8 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
receive the data from one or more EMS units via wireless

communication. Finally, the server provides an online inter-

face for authorised users to view and analyse recorded data.

Additionally, data redundancy and fault tolerance, such as

occurs in the loss of a network connection, are also handled.

A basic overview of the system is shown in Fig. 2.

Functional Requirements: Below are a number of functional

requirements for the system. The functional requirements

explain what functionality the system is required to have,

which are the interactions and results of actors using the sys-

tem. Using these, the functionality of the system was deter-

mined, leading to design and development.

EMS Data Transfer
� Each farm has a local computer (henceforth called the Col-

lection Unit) that receives EMS data.

� The Collection Unit has a wireless interface that is used by

the EMS unit(s) to transfer data.

� A farm has to easily be able to add more EMS units, which

after being configured will use the setup interface without

modification.

� If an EMS unit is not within range of a configured network,

it will record data until the local storage is full, or the net-

work becomes available.

� When the network is available an EMS unit periodically

send data to the Collection Unit.

� The Collection Unit maintains records of all data received

from the local EMS units.

� When configured to do so, the Collection Unit periodically

send new data to the online Server Computer.
Server Functionality
� The Server Computer maintains a database of recorded

data from multiple farms.

� The server is updateable only via remote Collection Units,

or via manual input by a user.

� A web interface is provided to users with the ability to

remotely view and analyse data.

� The web interface provides, at a minimum, the functional-

ity of the current BASE-Q system.
Table 2 outlines the non-functional requirements determined

for the system. Non-functional requirements affect design

decisions such as architectural styles and implementation

languages. They do not alter the functionality of the system.

Using the functional requirements defined above, a system

model was defined.

6.2. System design

System design is the final step before implementation, where

architectural design decisions such as hardware/software

mapping, data management and access control are made.

The purpose of the system, as stated in the previous section,

is to provide a user-friendly and effective way to collect and

store data obtained from EMS units. The Collaboration Sys-

tem has focused on functionality of the farm and server

machines. The system was developed for the purposed of

undertaking research. Therefore the complete functionality

was not implemented. Design goals were obtained from the

non-functional requirements and were used to make impor-

tant decisions throughout the system design process. The

main design goals for the Collaboration System, including

reasoning for each, are listed below.
� Lowoperating and development cost – This is required due to

the limited resources involved in the project. This design goal

leads to the selection of free or open-source components.

� Scalability – The number of farm machines supported by

the system must easily be increased without degradation

to system performance.

� High usability – The interface must be easy to use in order

to accommodate users unfamiliar with the system.
� Rapid delivery time – The system is being developed for

research purposes and delivery time is more important

than full functionality.

� Security – As the system will be utilised online, security

measures must be taken in order to prevent malicious

and unauthorised access or modification.

Table 2 – Non-functional requirements for the system.

Usability Users have to be able to understand the layout and options of the user
interface
The user interface shall be comparable to that of the current systems

Reliability The Server Computer shall implement data redundancy procedures in order
to prevent loss of data and increase availability

Performance The performance must be better, if not similar, to that of the current system
Maintainability The storage capacity of the Server Computer must be easily increased if

required
Adaptability The system must have the ability to easily integrate future additions such as

off-the-shelf analysis tools, etc
Security Only authorised users are able to access or modify the data on the server

machine
Security should be used to ensure that only registered farm machines are
used to update the server machine

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 9
6.3. Proposed software architecture

There is currently no software system in use to adapt or mod-

ify in order to meet the requirements. A new system is being

designed and developed, using previously undertaken

research and the authors experience and knowledge in order

to make design decisions. The main task in system design is

decomposing the whole system into a number of manageable

subsystems. The subsystems are determined by grouping

classes together, ideally in a way that maximises cohesion

while minimising coupling. This process allows for the iden-

tified subsystems to be developed independently of one

another, improving maintainability through modularity. Con-

sidering the design goals, the system is decomposed into a

number of subsystems. Additionally, these systems have been

arranged into a layered architecture. Fig. 3 shows the subsys-

tem decomposition using a UML component diagram.

The system has a number of persistent data objects that

must be recorded. The main persistent objects are the

recorded data that must be saved on both server and farm

machines, the remote user login details, and the general set-

tings required by various subsystems. Different storage

strategies are used for the different objects. The general set-

tings are stored in flat files using the configuration files sup-

ported by the selected framework. The user login details are

managed by the chosen pre-developed system, and imple-

mentation details need not be considered. When determining

the storage style of recorded data, it is important to consider

applications provided in available literature. Due to the avail-

ability of successful examples and appropriateness of the

relational data model, it is used to store the recorded EMS

data. MySQL is used due to the free availability and the ease

of integration with the chosen framework. A MySQL JDBC dri-

ver provides an interface between the database and the appli-

cation. Microsoft’s SQL Server has a multitude of tools that

provide powerful functionality that would be beneficial for

this system; however it has not been used due to the commer-

cial nature of the product and the large amount of resources it

would require.

Hardware/software mapping: The system is inherently dis-

tributed as users remotely access server data from their

own machines, and the collaboration of data occurs in stages.

Therefore there are three nodes identified, and a distinctive

client–server style is adopted. Fig. 4 shows the hardware/soft-
ware mapping for the system. Using a client-server architec-

tural style assists in the scalability goal by making it easy to

add farm machines. A specific architectural style for interac-

tion with the database systemmust be considered. Due to the

nature of the system, as stated earlier, the client–server archi-

tectural scheme is most appropriate to be used for the devel-

opment of this system.

The specific architectural model used is the database

model, meaning that the server undertakes most data pro-

cessing. Again, this has been chosen in order to reduce the

resources required by the client machines. Due to the current

experimental use of the system, overloading the server by

having too many client machines is not considered an issue.

For the realization of the system on each node, there are a

number of viable frameworks available to choose from. In

order to allow for effective web interfacing as well as provide

system functionality, a web application framework is used.

Additionally, considering the vast use of the internet in

today’s society, providing a web interface increases the usabil-

ity of the system. Three popular web application frameworks

are PHP, ASP.NET and JavaServer Pages (JSP).

For the Collaboration System, JSP is used to provide web

based services founded on a Java framework. This allows for

effective web interfaces and services to be developed in order

to implement the client-server nature of the system. In order

to host the application, a server system is required. A popular

web server for Java applications is Apache Tomcat

(http://tomcat.apache.org/), however because this project

includes a web service that is used by an application client,

an application server is required. Oracle Glassfish Server

(https://glassfish.java.net/) is an open-source application ser-

ver that supports all the required functionality, some of which

is achieved using a version of Apache Tomcat, therefore it has

been used on the server machine to host the application.

Communication between all nodes uses HTTP or XML. The

framework and protocols chosen are free to use and readily

available, which meets the criteria set by the rapid delivery

time and low cost design goals.

Access control and security: The system allows for multiple

users to remotely view or modify data. As specified in the

design goals, although the data is not specifically confidential

or sensitive, security is still be used to monitor the access and

activities. This means that access control must be included

on the server machine in order to prevent unauthorised

http://tomcat.apache.org/
https://glassfish.java.net/

Applica�on Logic

Interface

Farm System Server System

Storage

AdminInteface RemoteUser

SensorManagement

SyncManagement SyncManagement

Viewing&Analysis

AdminConfigura�on

LocalStorage ServerStorage

Fig. 3 – Subsystem decomposition, shown using a UML component diagram.

10 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
actions. Access control is implemented primarily by the pre-

developed user management system chosen. Global control

flow is event-driven, allowing for simpler system structure,

which therefore reduces the development time required.

Thread-driven control is used by the web-hosting system cho-

sen, however implementation does not need to be considered

in the development of the server functionality. Simple

threads are utilised in the FarmSystem subsystem in order to

‘‘simultaneously” record readings and update them.

7. Prototype development

This section documents the process of creating a system

implementation from the design. There are a large number

of integrated development environments (IDEs) for use in

developing applications in the provided framework. NetBeans

is a free, open source, multi-platform IDE for developing desk-

top, mobile and web applications in Java, PHP, C and more.

The Collaboration System was developed on a computer run-

ning Microsoft Windows 7 using the NetBeans IDE 7.2. Oracle

GlassFish Server 3.1.2.2 was setup and used on the local

machine, which was integrated with NetBeans in order to
automate testing and deployment. MySQL 5.5.28 for Microsoft

Windows was used to provide database functionality to both

the farm and server systems. After installation on the devel-

opment machine, the databases to be used by the systems

were created and authorization options specified. This was

achieved via the MySQL command line client. The FarmSys-

tem is responsible for maintaining a database of readings that

are used for redundancy while updating the server and not for

viewing or analysing data. Because of this, a single relational

table is be used to maintain readings at a given farm. The

FarmSystem is given access to a database and use the config-

ured farm identification to create a new relational table, or

append to the relational table if it already exists. The rela-

tional table looks as follows: FarmId (ReadingId, Timestamp, She-

dId, SensorType, Reading, IsSynched). It uses the following

definitions:

� FarmId – Table name. A new relational table will be created

by the application for each farm it is configured to record

on. A unique farm identification string will be used as

the name of the relational table.

Server System

<<device>>
:Webhost

<<webserver>>
:GlassFish

<<device>>
:FarmMachine

AdminInterface

FarmSystem

LocalStorage

<<device>>
:RemoteUserMachine

RemoteUser

SyncManager

AdminConfigura�on

ServerStorage

<<database>>
:MySQL

Recorded Data

Viewing&Analysis

<<h�pd>>

<<h�pd>>

<<jdbc>>

Fig. 4 – Hardware/software mapping of the system, shown using a UML deployment diagram.

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 11
� ReadingId – Integer column. Automatically incremented

unique identification number for each reading. This value

will be used in the synchronising process. It is also used as

the primary key of the relational table.

� Timestamp – Date-time column. Timestamp indicating

when the reading was taken.

� ShedId – Integer column. Unique identification number of

shed on a particular farm.

� SensorType – String column. Type of sensor the reading was

taken by (e.g. CO2, Temperature, etc).

� Reading – Decimal column. The reading taken by the sen-

sor. This will have varying magnitudes for different sensor

types.

� IsSynched – Boolean column. Flag used to indicate whether

the entry has been synchronised with the server. This

value will be used in the synchronising process.

Unlike the FarmSystem, the ServerSystem requires rela-

tional tables for maintaining the details of sheds and farms

as well as the readings. This database consist of the follow-

ing tables: Farms (Id, Name, Owner, Contact, Address), Sheds

(Id, FarmId, Description, Location) and Readings (Id, Timestamp,

ShedId, FarmId, SensorType, Reading). These tables allow the

addition, deletion and modification of farms and sheds,

and their respective details. The relations between these

tables (foreign keys) are easily identified: Readings.ShedId?
Sheds.Id, Readings.FarmId? Farms.Id and Sheds.FarmId?
Farms.Id.
The creation of the databases required the use of basic

MySQL commands. During implementation, it became appar-

ent that upon further development the database would be

required to maintain further persistent data such as authori-

sation details for remote users and service clients. These

additions can easily be made via the creation of more tables

within the database as required.

7.1. Overview of implemented functionality

The developed system prototype does not provide complete

functionality as defined in the requirements; however, it pro-

vides the main functionality and demonstrates how the com-

pleted product works. This section provides an overview of

what functionality the prototype demonstrates for each pro-

ject, followed by what functionality it is lacking and how it

has to be extended for a production environment.

Collaboration System Server: The web pages provided by the

web application are not styled within the prototype and are

solely for the demonstration of functionality. Within the

administration subdirectory the user is provided the options

to manage farms or configure the database details. These

actions are undertaken by the JSP pages with the aid from

the java classes. This process is very similar for the Sheds

and Readings management UI. Therefore only the farm man-

agement has been implemented for the prototype, as it will

provide sufficient demonstration. For testing, entries can be

added to the other database tables via the MySQL client if

required.

Table 3 – Command line arguments.

�c Configuration mode – Allows the user to configure details such as database
connection, farm ID and sheds/ems relationships. Multiple interfaces can be
produced for the system, such as console and GUI, however neither have
been implemented in the prototype. Currently, when this command-line
argument is provided, a hard-coded configuration is set

�r�tXX Read mode – The application will record readings from configured sensors
for XX seconds, then terminate. Currently, as the application does not
actually interact with any EMS units, the read function adds random entries
to the database until the time expires

�w Write mode – Update all unsynchronised records. The application will
synchronise readings with the server until they have all been synchronised,
then terminate

�r�w�tXX Read-Write mode. The application will both read andwrite. Reading will stop
after XX seconds, and the application will terminate when all records have
been synchronised

12 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
The SynchManager java class provides a web service for

updating the server’s database. The service methods argu-

ments are all lists of values, each of which is a column within

the Readings database table. These arguments are cast into

ReadingsEntry objects and added to the server database. The

web service returns a value to the client indicating the suc-

cess or failure of the synchronisation. During implementation

it became apparent that there were two distinct ways to add a

collection of entries to a database table. The first method cre-

ates a loop that executes an INSERT database command for

each entry until they were all added. The second method exe-

cutes a single large database command to insert all entries in

a single attempt. Both methods were implemented for

analysis.

Collaboration System Farm: The main functionality of this

system is the use of the web service provided by the server

system to update entries within the local database. The com-

mand line arguments of the application are shown in Table 3.

The developed prototype can be executed in the read-write

mode described above and it will successfully synchronise

data with the configured server system. This will continue

until execution is manually terminated or the time provided

expires.

A working prototype has been developed for initial testing

and analysis. However, if the system is to be deployed and

released for further testing and approval, there is still a con-

siderable amount of functionality that needs to be added,

including:

� User management for accessing online resources. This

security requirement encompasses both the web page UI

and the web service. In order to prevent unauthorized

access, modification or deletion of data a user manage-

ment system must be developed to manage users who

are able to use the website. This would require the inclu-

sion of a username/password authorization scheme,

which could be implemented via an external library as

planned. During implementation however, it was deter-

mined that user access could be managed relatively easily

with the addition of another database table and the use of

JSP functionality. Security should also be considered with

respect to the web service that the server provides.

Although it is unlikely that an external party would
attempt to use the service, it should be prevented, regard-

less of their intent. There are methods available for this,

however further research would be required to implement

it.

� Model-View-Control (MVC) design pattern should be

adhered to throughout the entire server project. The

MVC pattern separates the representation of information

from the user’s interaction with it (Reenskaug & Coplien,

2009), which allows for greater maintainability of program

code. The prototype was designed with production time in

highest regard and therefore the MVC was not fully

adhered to. This would need to be changed if the applica-

tion was to continue development, which would not

require considerable work.

� Develop web interfaces for configuring Shed and Readings

entries on the server machine. These interfaces would be

very similar to the Farm management interface already

implemented. Additionally, the web pages’ content should

be completed to include efficient navigation, etc.

� Develop GUI and/or console interface for the farm system

in order to allow users to configure it.

� Develop and integrate more viewing and analysis inter-

faces for displaying recorded data.

� Overall improved error handling and gracious failure. This

is required especially to support users unfamiliar with the

system.

� Comment code and supply complete javadoc for all

classes. Commenting is an important aspect of program-

ming and if the systems are to continue development it

must be included.

The research design and methodology stage of the project

has produced a functioning prototype as proof of concept

which can be used for testing.
8. Deployment and system testing

This section demonstrates how the prototypes were deployed

to environments for testing. The procedures undertaken for

this project were done using a single local machine, in order

to reduce the amount of time required. Although the process

is very similar to how a release version could be deployed to

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 13
real hosting environments, actual deployment would have

some minor differences which will be explained.

In order to deploy the Collaboration System_Server, a host

machine is required that is running both GlassFish 3+ and

MySQL. An easy method of deploying to a server host is

through the NetBeans IDE, which allows for remote deploy-

ment to a configured server. Therefore the first step is to con-

figure the server in the NetBeans IDE. This requires details

such as the URL of the GlassFish server and administrative

authorisation details in order to grant permissions to make

updates. The application can then be configured to deploy

to the selected server. The configurations required for this

are simple GUI interfaces, and the details will not be dis-

cussed here. After successful configuration, the project can

be deployed at any time from within the NetBeans IDE. In

order to access the server, the URL of the server followed by

the project name can be typed into a browser. This will dis-

play the default (index.html) page of the application within

the browser.

The CollaborationSystem_Farm is a java application. When

the project is built, the appropriate files are produced in the

required format. In order to distribute the application to

another host, the directory named dist in the project folder

can be compressed and copied. Once extracted, the applica-

tion can be run by executing the .jar file that is named after

the project. Because the prototype requires command-line

arguments, the application will be executed through the con-

sole by running the following: >java -jar fileName.jar arg1 arg2.

A number of tests have been undertaken with the devel-

oped prototype in order to determine if the implementation

meets the requirements of the project. One of the main aims

of the software project is to reliably reduce the amount of

effort required to collect and collate recorded sensor data. A

factor in reaching this goal requires determining quantitative

performance values. The following tests used java logging

and time objects to obtain such measurements. Below is a

typical example of how the time required for a process can

be determined and displayed.

long start = System.currentTimeMillis ();

// Do operation (s)

long finish = System.currentTimeMillis ();

System.out.println (‘‘Time taken: ” +

Long.toString (finish-start) + ‘‘ milliseconds”);

These values can then be used for analysis of the prototype.

Following are descriptions of the tests undertaken and their

motivation.

8.1. Test 1: Database capacity and entry retrieval

This test aims to determine if the performance of the applica-

tion reduces significantly as the number of entries within a

database table increase. The EMS units log data at a consider-

ably fast rate and therefore, after a period of recording, the

number of data entries in a FarmSystem database can

become very large. In addition to this, a farm can be logging

from multiple EMS units Therefore it is evident that perfor-

mance must be maintained as database entries increase. This
test determines if the number of entries within a database

has a significant effect on the extraction rate of entries.

Method: The CollaborationSystem_Farm project was run a

number of times with an increasing number of database

entries. A number of entries that are required to be syn-

chronised with the server were added to the farm system

database. The application was executed (in synchronise

mode), and the times taken for the fixed number of entries

to be extracted from the database was recorded. This was

repeated with larger numbers of entries in the database.

The values contained in the entries of the farm system

database are not considered in this test. In order to popu-

late the database with the required number of entries, the

CollaborationSystem_Farm in read mode has been used. A

loop was written in the SensorManager class that adds

the defined number of entries to the table. Table 4 shows

the test repetitions.

8.2. Test 2: Database capacity and entry insertion

The second test is also concerned with the performance of

the application as the number of entries within a database

table increase. This test aims to determine if the number of

entries within the server system database affects the perfor-

mance with respect to adding new entries.

Method: This test is similar to Test 1, however, as opposed

to timing the retrieval of entries from the local database, the

time taken to receive a response from the servers synchroni-

sation web method is recorded. Although this value includes

the overhead produced by the transfer protocol as well as the

server system application logic, the values remain valid if the

other test parameters are kept consistent. The test was exe-

cuted with both systems on the local machine, meaning that

external network traffic did not interfere with results. This

test can be performed by clearing all entries from the server

database and filling the farm database with a large number

of entries. The farm system is then run in synchronise mode

and the time taken for each update is recorded. The time

taken as the server database increases in size is incrementally

recorded.

8.3. Test 3: Synchronisation entry argument count

Within the developed farm system, there is a hard-coded vari-

able that defines the number of entries per iteration that are

extracted from the database and sent to the server for updat-

ing. If this value is small, there is more overhead required for

iterations and transfer protocols, but the small data sizes

makes it more reliable and easier to monitor. In contrast, if

this value is large, less overhead is required, but reliability is

also reduced. This test aims to determine the performance

trends relating to this variable.

Method: A consistent set of updates have been made from

the farm system to the server system with varying entry col-

lection sizes. This was achieved by clearing and repopulating

both farm and server databases before running each test. The

total time that the farm system took to extract the entries,

sent them to the server, and update the local database, was

recorded. Table 5 shows the parameters for Test 3.

Table 5 – Parameters for test 3.

Subtest Entries in
farm database

Number of
extracts

Entries/extract

1 0 320 1
2 0 320 5
3 0 320 10
4 0 320 20
5 0 320 40
6 0 320 80
7 0 320 160

Table 4 – Parameters for test 1.

Subtest Entries in
farm database

Number of
extracts

Entries/extract

1 100 10 10
2 550 10 10
3 1000 10 10
4 5500 10 10
5 10,000 10 10
6 1,000,000 10 10

14 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
8.4. Test 4: Increased number of clients

The purpose of this test was to determine the performance

effects of communicating to the server application from mul-

tiple farm systems (clients). A requirement of the software

project was the ability to synchronise data from a number

of farms simultaneously, therefore performance must not be

hindered as a result of multiple client connections.

Method: This test was undertaken on a single machine;

however, it would have been ideal to undertake this test with

clients running on separate machines. This is because perfor-

mance may be reduced due to multiple applications waiting

for database requests on the same machine. Due to limited

resources, this has not been possible; however the results of

testing on a single machine still provide beneficial informa-

tion. In order to undertake this test, a varying number of farm

systems were provided with a database of entries and simul-

taneously updated the server. The amount of time taken for

each update on each farm system was recorded and an aver-

age was calculated. For initial testing, a range from one to five

clients was tested on the single server.

8.5. Test 5: Synchronisation speed

In order to determine the benefit of the system, the rate at

which it can update data is required. This test aimed to mea-

sure this rate.

Method: This was a simple test which times how long it

takes to synchronise a number of recordings. It was under-

taken from a single machine, using a single farm system.

8.6. Further test options

The tests described in this section have provided information

regarding the performance of the system, which can be used

to determine whether the system should be further pursued.

However, before significant further progress is made there

are a number of tests that should be undertaken. These tests

relatemainly to theperformanceof theapplicationswhen they

are on separate physical machines. Tests 3 and 4 described

above are both tests that should be undertaken in thismanner,

as transfer protocols will have the most effect on them. It is

important to test the prototypes before significant further

development in order to prevent major design modifications.

9. Results and discussion

The test procedures described were undertaken on the same

machine that was used to develop the prototype. The
machine is running Windows 7 Professional 32-bit and has

an Intel Core i5-2500 CPU.

The first test was undertaken to determine if the perfor-

mance of the farm application would degrade as the number

of sensor readings in the local database increased. Fig. 5

shows a graph displaying the average time taken to extract

10 database entries with respect to the number of entries

within the database. There is a clear linear relationship

between the number of entries within the database and the

time required to extract entries. In order to remedy this issue,

methods such as deleting synchronised data or archiving

should be considered. Because of the current nature of the

application, this issue needs to be addressed before deploy-

ment for operation.

Test 2 involved determining if an issue such as was found

in Test 1 would also arise in relation to the insertion of data

into the databases. That is, the test was undertaken to deter-

mine if the data insertion performance would degrade signif-

icantly as the number of entries within the database

increased. Results from the tests were concluded to have no

significant trends or relations; the time required to insert

entries did not vary consistently with the increase of entries

within the database. This has only been concluded with a

table of up to 10,000 entries however, which is a relatively

small table in database terms. As with the previous test,

archiving could be considered to prevent the database from

growing too large and causing any potential performance

decreases.

The third test involved the modification of an internal

variable to determine the relation between performance and

the number of database entries extracted and sent to the ser-

ver at one time. The values tested ranged between 1 and 160,

while all other parameters remained consistent for all tests.

Figs. 6 and 7 show the results obtained from testing the pro-

totype. From the two graphs it can be seen that the time taken

for each upload increases linearly with the number of entries

per update, however the total time taken for the update

decays exponentially. The choice to continue increasing the

number of entries per update beyond that which was tested

is not recommended. The test results in this case may be mis-

leading as the test was undertaken on a single machine; the

size of the payloadmay havemore effect when it needs to tra-

verse large distances such as when the server is hosted by an

ISP. The results conclude that currently a larger number of

entries will provide performance benefits, however these con-

clusions must be re-evaluated if remote deployment is

considered.

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 20 40 60 80 100 120 140 160

Av
er

ag
e

up
da

te
 �

m
e

(m
s)

Entries per update

Fig. 6 – Graph showing the average time taken for a single update with respect to database entries per update.

0

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

Av
er

ag
e

ex
tr

ac
t �

m
e

(m
s)

Database per update

Fig. 5 – Graph displaying entry extraction time with respect to the number of entries in the database.

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 15
The fourth test was undertaken to ensure the server syn-

chronisation performance did not degrade with the execution

ofmultiple clients simultaneously.Onlyfiveclientswere tested

simultaneously on the single machine, however as the project

is in its infancy, a large number of clients is not expected. After

viewing the results it was apparent that no significant perfor-

mance change occurred with the addition of more clients. As

with the previous test however, this should also be re-

evaluated using actual remote calls when possible.
The final test determined that the system can synchronize

database entries at an average rate of approximately

420 entries/min. This was determined using the standard

configuration used in the other tests. This value is not an

exceptionally accurate representation of the time it would

take to update the server because there would traditionally

be overhead from the long distance package transfer. How-

ever, at this point the result is reliable enough to use as an

indication of the potential benefits of the system.

0

100000

200000

300000

400000

500000

600000

700000

0 20 40 60 80 100 120 140 160

Ti
m

e
(m

s)

Entries per update

Fig. 7 – Graph showing the total time taken to synchronise with respect to database entries per update.

16 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7
10. Conclusions

The developed prototype has demonstrated sufficient require-

ments to be considered a success within the scope of the soft-

waredesignand theprototype is thereforea successful proof of

concept for the design of a software system that implements

networking technologies to reduce the labour requirements

of the current EMS system. The design and implementation

can be used as a foundation for the further development of

automating the Environmental Monitoring System. Increased

automation of the EMS systemwill improve usability and reli-

ability,whichhas thepotential to increase its overall use.Addi-

tionally, the steps taken in this project can provide lessons for

similar networking technology ventures. The collection of

information into a single location is a common task and

automation has the potential to reduce labour requirements.

The design process for the software system required many

decisions tobemadebasedonexperience andknowledge. This

is one of the main reasons why there are many different ways

to implement a required functionality with software, each

implementation having certain benefits and drawbacks. It

should be noted that there are a myriad of ways to implement

a software application, however if the requirements of the pro-

ject are fully met they are all equally valid.

As concluded by this project, networking technologies are

a feasible option for reducing labour requirements and

increasing usability and reliability, through the use of net-

working, programming and database technologies. In order

to achieve these benefits for the EMS system, further research

is required. Firstly, this project should be revised and the pro-

totype completed to produce a fully-functioning system. The

system must also be integrated with the physical EMS units,

which was not possible in this project due to resource limita-

tions, therefore the low-level integration of wireless commu-

nication with EMS units, and the interfacing with the farm

system must be pursued. This would require further research

and design, specifically relating to wireless technologies, pro-

tocols and interfaces.
Another area that requiring further work for an opera-

tional system is the ability to maintain the system with a

low level of onsite support. This also includes the recovery

of major power failure events, hardware failures and data cor-

ruption. One of the biggest challenges will be to narrow down

the type of failure remotely. This will also include safe recov-

ery options and accounting for intermittent internet access

problems. These important issues are tightly integrated with

the operationalisation of the system and as such left for fur-

ther study.

Disclaimer

Mention of a commercial product is solely for the purpose of

providing specific information and should not be construed as

a product endorsement by the authors or the institutionswith

which the authors are affiliated.

Acknowledgements

The authors would like to thank a number of NCEA staff for

providing advice and assistance during the design processes.

The authors also gratefully acknowledge the assistance of the

European Community via the Collaborative Project EU-PLF

KBBE Grant Agreement No. 311825 under the Seventh Frame-

work Programme.
R E F E R E N C E S
[1] Wathes CM, Phillips VR, Holden MR, Sneath RW, Short JL,
White RPP, et al. Emissions of aerial pollutants in livestock
buildings in northern Europe: overview of a multinational
project. J Agric Eng Res 1998;70(1):3–9.

[2] Banhazi TM, Seedorf J, Rutley DL, Pitchford WS. Identification
of risk factors for sub-optimal housing conditions in
Australian piggeries: Part 1. Study justification and design. J
Agric Saf Health 2008;14(1):5–20. Epub 2008/04/02.

http://refhub.elsevier.com/S2214-3173(16)30034-8/h0005
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0005
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0005
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0005
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0010
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0010
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0010
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0010

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 4 (2 0 1 7) 1 –1 7 17
[3] Banhazi T. User-friendly air quality monitoring system. Appl
Eng Agric 2009;25(2):281–90.

[4] Clements MS, Watt AC, Debono AP, Aziz SM, Banhazi TM. A
low cost portable environmental monitoring system for
livestock buildings. In: Banhazi T, Saunders C, Hegarty R,
editors. SEAg 2011: diverse challenges, innovative
solutions. Gold Coast, Australia: Engineers Australia; 2011. p.
141–58.

[5] Parkin BJ, Saha PP, Nguyen HT, Göl Ö, Nafalski A, Banhazi TM.
A cost-effective monitoring module for the assessment of
environmental quality in livestock buildings. In: Banhazi T,
Saunders C, editors. The Bi-annual Conference of the
Australian Society of Engineering in Agriculture (SEAg 2007) -
Challenge Today, Technology Tomorrow. Adelaide,
Australia: Australian Society of Engineering in Agriculture;
2007. p. 212–20.

[6] Zhang Q, Yang X-l, Zhou Y-m, Wang L-r, Guo X-s. A wireless
solution for greenhouse monitoring and control system
based on ZigBee technology. J Zhejiang Univ Sci A 2007;8
(10):1584–7.

[7] Porcino D, Hirt W. Ultra-wideband radio technology: potential
and challenges ahead. IEEE Commun Mag 2003;41(7):66–74.

[8] Jin-Shyan L, Yu-Wei S, Chung-Chou S, editors. A comparative
study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-
Fi. Industrial Electronics Society; 2007. IECON 2007 33rd
Annual Conference of the IEEE; 2007 5–8 Nov.

[9] Lu G, Krishnamachari B, Raghavendra CS, editors.
Performance evaluation of the IEEE 802.15.4 MAC for low-rate
low-power wireless networks. Performance, Computing, and
Communications, 2004 IEEE International Conference on;
2004.

[10] Conti M, Giordano S. Multihop ad hoc networking: the reality.
IEEE Commun Mag 2007;45(4):88–95.

[11] Danielyan E. IEEE 802.11. Internet Protoc. J. 2002;5(1).
[12] Sohraby K, Minoli D, Znati T. Wireless sensor networks:

technology, protocols, and applications. John Wiley & Sons;
2007.

[13] Connolly TM, Begg CE. Database systems: a practical
approach to design, implementation and management:
international edition. 5th ed. USA: Pearson Higher Ed; 2009.

[14] Peacock J, Baker TR, Lewis SL, Lopez-Gonzalez G, Phillips OL.
The RAINFOR database: monitoring forest biomass and
dynamics. J Veg Sci 2007;18(4):535–42.

[15] Wösten JHM, Lilly A, Nemes A, Le Bas C. Development and
use of a database of hydraulic properties of European soils.
Geoderma 1999;90(3–4):169–85.

[16] Bonnet P, Gehrke J, Seshadri P. Towards sensor database
systems. In: Tan K-L, Franklin M, Lui J-S, editors. Mobile data
management. Berlin Heidelberg: Springer; 2001. p. 3–14.

[17] Loomis M. Client-server architecture. J Object-Oriented
Program 1992.

[18] Bruegge B, Dutoit AH. Object-oriented software engineering
using UML, patterns, and Java. 3rd ed. Prentice Hall; 2010.

[19] Sommerville I. Software engineering. Addison-Wesley 2007.

http://refhub.elsevier.com/S2214-3173(16)30034-8/h0015
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0015
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0020
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0020
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0020
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0020
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0020
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0020
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0025
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0030
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0030
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0030
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0030
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0035
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0035
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0040
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0040
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0040
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0040
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0055
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0055
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0060
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0065
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0065
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0065
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0070
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0070
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0070
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0075
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0075
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0075
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0080
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0080
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0080
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0085
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0085
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0085
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0090
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0090
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0095
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0095
http://refhub.elsevier.com/S2214-3173(16)30034-8/h0100

	Wireless data management system for environmental monitoring in livestock buildings
	1 Introduction
	2 Background and literature review
	3 Alternative technologies to network environmental sensors
	3.1 Wireless technologies
	3.2 Ad-hoc networks

	4 Alternative approaches to data management
	4.1 Data models
	4.2 Multi-user database architectures

	5 Implications for the wireless data management system design
	5.1 Sensor network implementation
	5.2 Data collaboration and storage

	6 Materials and methods
	6.1 Requirements elicitation and analysis
	6.2 System design
	6.3 Proposed software architecture

	7 Prototype development
	7.1 Overview of implemented functionality

	8 Deployment and system testing
	8.1 Test 1: Database capacity and entry retrieval
	8.2 Test 2: Database capacity and entry insertion
	8.3 Test 3: Synchronisation entry argument count
	8.4 Test 4: Increased number of clients
	8.5 Test 5: Synchronisation speed
	8.6 Further test options

	9 Results and discussion
	10 Conclusions
	Disclaimer
	Acknowledgements
	References

