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Abstract

This paper introduces a new weighted geometric mean (WG) estimator to fit regression line

when both the response and explanatory variables are subject to measurement errors. The pro-

posed estimator is based on the mathematical relationship between the vertical and orthogonal

distances of the observed points and the regression line (cf. Saqr and Khan, 2012). It minimizes

the orthogonal distance of the observed points from the unfitted line. The WG estimator is less

sensitive to the ratio of error variances (λ). It is a better alternative than the currently used

geometric mean (GM) and OLS-bisector estimators. Extensive simulation results show that the

proposed WG estimator is much more stable than the geometric mean and OLS-bisector estima-

tors. The mean absolute error of the WG estimator is consistently smaller than the geometric

mean and OLS-bisector estimators.

Key Words: Linear regression models, Measurement error models, Reflection of points; Ratio of error

variances; Geometric mean estimator, OLS-bisector.

2010 Mathematical Subject Classification: Primary 62J05, Secondary 62F10.

1 Introduction

The geometric mean estimator is applied in many disciplines to estimate regression parameters when

both variables are subject to errors. This technique has been introduced many times under different
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name such as reduced major axis, or least products regression (cf Ludbrook, 2010). In spite of its

popular use there are criticisms about its over sensitively on the ratio of error variances λ.

Dent (1935) suggested the geometric mean functional relationship estimator to be a solution of

the likelihood equations when there is no additional information in the case of the normal functional

model (cf Cheng and Ness, 1999, p. 43). This estimator is called geometric mean (GM) estimator,

because it is the geometric mean of the least squares coefficients for the regression of the observed

(manifest) response (y) variable on the observed explanatory variable (m) and the reciprocal of that

for m on y.

Halfon (1985) and Draper and Yang (1997) pointed out that the geometric mean estimator

minimizes the vertical and horizontal distances between the observed points and the regression line.

Jolicoeur (1975) stated that it is difficult to interpret the meaning of the slope of the geometric

mean regression. Isobe et al. (1990) examined five different methods, and pointed out that the OLS

bisector (OLS-b) estimator is the best method to use, when there is no basis to distinguish between

the explanatory and response variables.

The problem of measurement error or error-in-variable has a long history in statistics (see Adcock,

1877; Fuller, 2006; and Cheng and Ness, 1999, and the references therein) and has received growing

attention from many statisticians and econometricians (see Johnston, 1972; and Maddala, 2001).

Measurement error (ME), as its name implies, is the result of recording values that are randomly

different from the actual values. The basic theory of regression analysis assumes that the explanatory

variable is measured without error. Unfortunately, real data are seldom observed directly, especially

in economics, finance, agriculture, medical and physical sciences, and social sciences without any

errors. It is well known that the presence of measurement error in the explanatory variable makes the

ordinary least squares (OLS) method inappropriate in large as well as small samples. Measurement

error can seriously distort inference when they are not taken into account explicitly. Simple OLS

estimates indicate substantial decreasing returns to scale, but are subject to the usual attenuation

bias. In general, presence of measurement error produces biased and inconsistent OLS estimators (cf

Cheng and Ness, 1999, p. 3).

There are many researchers such as Wald (1940), Bartlett (1949), Durbin (1954), Riggs et al.,

(1978) and Saqr and Khan (2011, 2012) considered fitting regression line when both variables are

subject to error. Burr (1988) considered error in explanatory variable for the binary responses

model. Freedman et al. (2004) suggested a reconstructed moment base method to deal with error

in the explanatory variable. The problem of error in both explanatory and response variables was

considered by Geary (1942), Madansky (1959) and Halperin (1961). Geary (1942, 1943, 1948 and

1949) wrote a series of papers on the method of moments. The method of moments has been done by

Pal (1980), van Montfort et al., (1987), van Montfort (1989) and Cragg (1997). Their work centres

on how to find the optimal estimators based on higher moments. Reiersol (1950) pointed out that

the parameters of the measurement error model are identifiable if the cumulant k(r, s) of the joint
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distribution function of the manifest response variable y and the manifest explanatory variable m is

exist a nonzero, and finite or infinite with r = 1 and s > 1 or opposite.

The purpose of this paper is provide a new estimator to fit regression line when both variables

are subject to measurement errors. The proposed weighted geometric mean estimator is a better

alternative than the geometric mean estimator and OLS-bisector estimator. The WG estimator is

based on the mathematical relationship between the vertical and orthogonal distances of the observed

points and the regression line. It minimizes the orthogonal distance from unfitted line, and is less

sensitive to the ratio of error variances (λ). The simulation results show that the proposed estimator

is much closer to the true slope than the geometric mean and OLS-bisector estimators. Here we use

the mean absolute error (MAE) instead of the root mean squared error (RMSE) because MAE is

regularly employed in model evaluation studies. Willmott and Matsuura (2005) pointed out that the

RMSE is not a good indicator of average model performance and might be a misleading indicator of

average error, whereas the MAE is a better indicator to describe average model-performance error

and inter-comparisons of average model performance error should be based on MAE.

In the next section the measurement error regression model is introduced. Section 3 presents the

mathematical relationship between the vertical and orthogonal distances of the observed points from

both fitted and unfitted regression line. The geometric mean estimator and deriving this estimator

are provided in Sections 4. The proposed weighted geometric mean estimator is introduced in Section

5. The simulation studies, and the concluding remarks are included in Sections 6 and 7.

2 Measurement error models

In the conventional notation, let x be the true measurement on the explanatory variable which is

otherwise known as the latent variable. In the presence of measurement error the observed value of

the latent variable is different from x. Letm be the observable or manifest variable of the explanatory

variable. Similarly let η be the true value of the response variable and y be the manifest response

variable.

If the latent variables xj and ηj are measured without error then their linear relationship without

the equation error is expressed as

ηj = β0 + β1xj , j = 1, 2, . . . , n. (2.1)

If there is error in both response and explanatory variables, the actual observed values of m and y

are not the true values, and we define

mj = xj + uj , and yj = ηj + ej j = 1, 2, . . . , n, (2.2)

where ηj is the jth realisation of the latent response variable, xj is the jth value of the latent

explanatory variable, ej is the measurement error in the response variable and uj is the measurement
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error in the explanatory variable. It is assumed that,

ej ∼ N(0, σ2e), uj ∼ N(0, σ2u), and cov(u, e) = 0. (2.3)

Note that mj is a random variable which is assumed to be distributed as N(µm, σmm). The model

with the fixed x is called the functional model, whereas, the model with independent and identically

distributed random variable x is called structural model. The later is considered in this paper.

The simple regression model with measurement error in both variables and without equation

error is known as the standard measurement error model, which can be expressed as

yj = β0 + β1mj + vj , j = 1, 2, . . . , n, (2.4)

where vj = ej − β1uj , and

σ2v = σ2e + β21σ
2
u. (2.5)

Note in equation (2.4) mj and vj are not independent, and hence least squares method is not valid

for the above model. The ordinary least squares (OLS) estimator of the regression parameters is

inappropriate (biased and inconsistent) in the presence of measurement error (see Johnston, 1972,

p. 284).

3 Relationship between the vertical and orthogonal distances

It is well known that there are different approaches to minimize the vertical, horizontal, orthogonal,

or both orthogonal and horizontal distances in regression analysis. The ordinary least squares method

works on the basis of minimizing the vertical distance when there are no measurement errors. Inverse

least squares method minimizes the horizontal distance when there is measurement error only in

the explanatory variable. The orthogonal regression approach suggests to minimize the orthogonal

distance under the assumption that the ratio of error variances is equal to one, that is, λ = σ2eσ
−2
u = 1.

The maximum likelihood estimator minimizes both the horizontal and orthogonal distances when λ

is known.

It is crucial to note the difference between the distance of the observed point from the fitted line,

unfitted line, and unobserved point. Although, many authors use distance between the observed

point and regression line without being specific. This issue is crucial when there are measurement

errors in both variables. This section introduces the mathematical relationship between the vertical

and orthogonal distances of the observed points and the fitted regression line.

Let (mj , yj) be the observed point and (xj , ηj) be the corresponding unobserved point. Then the

fitted line is given by

ηj = β0 + β1xj , j = 1, 2, . . . , n. (3.1)

Note that all the true points (xj , ηj) are on the fitted line (3.1), because there is no equation error

in the model.

4



Now we define the reflection point (m∗
j , y

∗
j ) of the observed point (mj , yj) about the fitted line

(3.1) as follows:

m∗
j = mj cos 2ψ + (yj − β0) sin 2ψ, (3.2)

y∗j = mj sin 2ψ − (yj − β0) cos 2ψ + β0, (3.3)

where ψ = tan−1β1, and β0, and β1 are the regression parameters. For details on reflection of points

please see Vaisman (1997, p. 164-169). Details on the reflection method is found in Saqr and Khan

(2012a, 2016). However, the formulas (3.2) and (3.3) can be rewritten for sample statistics as follows:

m∗
j = mj cos 2ψ̂ + (yj − β̂0) sin 2ψ̂, (3.4)

y∗j = mj sin 2ψ̂ − (yj − β̂0) cos 2ψ + β̂0, (3.5)

where ψ̂ = tan−1β̂1, and β̂0, and β̂1 are the coefficients of estimated regression model without

measurement error i.e η̂j = β̂0 + β̂1xj , j = 1, 2, . . . , n.

Theorem 3.1 The reflection variable m∗
j is an unbiased measure of both manifest mj and latent xj

explanatory variables, that is, under expectation

m̄∗ = m̄ = x̄.

Proof : From (3.4) taking sum over j, we get
n∑

j=1

m∗
j =

n∑
j=1

mj cos 2ψ̂ +
n∑

j=1

yj sin 2ψ̂ − nβ̂0 sin 2ψ̂

=
n∑

j=1

mj cos 2ψ̂ +
n∑

j=1

yj sin 2ψ̂ −
n∑

j=1

yj sin 2ψ̂ + β̂1

n∑
j=1

mj sin 2ψ̂

=
n∑

j=1

mj cos 2ψ̂ + β̂1

n∑
j=1

mj sin 2ψ̂ =
n∑

j=1

mj(cos 2ψ̂ + β̂1 sin 2ψ̂)

=
n∑

j=1

mj(cos
2 ψ̂ − sin2 ψ̂ +

sin ψ̂

cos ψ̂
(sin ψ̂ cos ψ̂)) =

n∑
j=1

mj(cos
2 ψ̂ + sin2 ψ̂)

=
n∑

j=1

mj .

Multiplying both sides by 1
n , we get

n∑
j=1

m∗
j

n
=

n∑
j=1

mj

n
,

where mj = xj + uj , and uj ∼ N(0, σ2u), hence

m̄∗ = m̄ = x̄. (3.6)

Finally E(m̄∗) = E(m̄) = E(x̄). Similarly, it can be shown that E(ȳ∗) = E(ȳ) = E(η̄).

For simplicity, we consider that the relationships between the orthogonal and vertical distance

of the observed point (mj , yj) and the fitted line (ηj = β0 + β1xj) as a first case. While the second

case is related to the relationship between the orthogonal and vertical distance of the observed point

(mj , yj) and unfitted line (ŷj = β̂0m + β̂1mmj).
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3.1 Fitted line case (True model)

It is well known from the properties of the reflection process that the reflection line (i.e. the fitted line)

is a bisector and orthogonal on the distance between the observed point (mj , yj) and its reflection

point (m∗
j , y

∗
j ). Then the half of the square distance between the observed point (mj , yj) and its

reflection point (m∗
j , y

∗
j ) will equal the orthogonal distance square (Od2j ) between the observed point

(mj , yj) and the fitted line. It is given by

Odj =
1

2

√
(m ∗j −mj)2 + (y∗j − yj)2. (3.7)

Then from (3.2) and (3.3) the orthogonal distance square (Od2j ) is given by

Od2j =
1

4

[
(2mjsin

2ψ + yjsin2ψ − β0sin2ψ)
2 + (mjsin2ψ − 2yjcos

2ψ + 2β0cos
2ψ)2

]
,

from (2.1) and (2.2) we get mj = xj + uj , yj = ηj + ej = β0 + β1xj + ej , and β1 =
sinψ

cosψ
so

Od2j =
1

4

[
(2(xj + uj)sin

2ψ + (β0 + β1xj + ej)sin2ψ − β0sin2ψ)
2
]

+
1

4

[
((xj + uj)sin2ψ − 2(β0 + β1xj + ej)cos

2ψ + 2β0cos
2ψ)2

]
=

1

4

[
(−2mjsin

2ψ + β1xjsin2ψ + ejsin2ψ)
2 + (mjsin2ψ − 2β1xjcos

2ψ − 2ejcos
2ψ)2

]
=

1

4

[
(2ujsin

2ψ − ejsin2ψ)
2 + (ujsin2ψ − 2ejcos

2ψ)2
]

=
1

4

[
u2j (4sin

4ψ + sin22ψ)− 4ujej(sin2ψsin
2ψ + sin2ψcos2ψ) + e2j (4cos

4ψ + sin22ψ)
]

= u2jsin
2ψ − ujejsin2ψ + e2jcos

2ψ.

From (2.3) E(uj) = E(ej) = 0 and E(ujej) = 0 then

E(Od2j ) = E(u2j )sin
2ψ + E(e2j )cos

2ψ.

From (4.1) that E(m∗
j −mj) = E(y∗j − y) = 0 then the variance of Odj is

σ2Od = σ2usin
2ψ + σ2ecos

2ψ.

From (2.5), and β21 = sin2 ψ cos−2ψ, the above variance becomes

σ2Od = (σ2e + σ2u
sin2ψ

cos2ψ
)cos2ψ = (σ2e + β21σ

2
u)cos

2ψ.

Then the relationship between the variance of the orthogonal distance and the variance of vertical

distance is given by

σ2Od = σ2vcos
2ψ =

σ2v
1 + β21

, (3.8)

where σ2v = σ2e + β21σ
2
u, and cos

2ψ = 1
1

cos2ψ

= 1
cos2ψ+sin2ψ

cos2ψ

= 1

1+ sin2ψ

cos2ψ

= 1
1+β2

1
.
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Note that both vertical and orthogonal distances are measured as the distance between the

observed point (mj , yj) and the fitted line, but it does not measure the distance between the observed

point (mj , yj) and the unobserved point (xj , ηj). Under certain assumptions such as λ = 1 or β1 = 1

the distance between the observed point and the unobserved point is equal to the double of the

orthogonal distance, where the distance between the observed point and the unobserved point is

given by

Pd =
√
(mj − xj)2 + (yj − ηj)2 =

√
u2j + e2j ,

where uj , and ej are the measurement errors in the explanatory and response variables respectively.

From (2.3) the variance of the (Pd) distance is

σ2Pd = σ2e + σ2u.

From (2.5) and when λ = 1,

σ2Pd = 2σ2e .

3.2 Unfitted line case (ME model)

In order to find the relationship between the orthogonal (Om) and vertical (v) distances of the

observed point (mj , yj) and the unfitted line (ŷj = β̂0m + β̂1mmj) for the model (2.4), let (m∗∗
j , y

∗∗
j )

be the reflection point of (mj , yj) about the unfitted line as following:

m∗∗
j = mjcos2θ̂ + (yj − β̂0m)sin2θ̂, (3.9)

y∗∗j = mjsin2θ̂ − (yj − β̂0m)cos2θ̂ + β̂0m, (3.10)

where θ̂ = tan−1β̂1m, β̂0m, and β̂1m. The relationship between the sample variance of the orthogonal

distance (Om) and vertical distance (v), as similar to the first case it is given by

Omj =
1

2

√
(m∗∗

j −mj)2 + (y∗∗j − yj)2. (3.11)

Then from (3.9), (3.10) and (3.11) the orthogonal distance square (Om2
j ) is given by

Om2
j =

1

4

[
(mjcos2θ̂ + (yj − β̂0m)sin2θ̂ −mj)

2 + (mjsin2θ̂ − (yj − β̂0m)cos2θ̂ + β̂0m − yj)
2
]

=
1

4

[
(−2mjsin

2θ̂ + yjsin2θ̂ − β̂0msin2θ̂)
2 + (mjsin2θ̂ − 2yjcos

2θ̂ − 2β̂0mcos
2θ̂)2,

]
where β̂0m = ȳ − β̂1mm̄, then

Om2
j =

1

4

[(
(yj − ȳ)sin2θ̂ − 2(mj − m̄)sin2θ̂

)2
+
(
(mj − m̄)sin2θ̂ − 2(yj − ȳ)cos2θ̂

)2]
=

1

4

[
(yj − ȳ)2sin22θ̂ − 4(yj − ȳ)(mj − m̄)sin2θ̂sin2θ̂ + 4(mj − m̄)2sin4θ̂

]
+

1

4

[
(mj − m̄)2sin22θ̂ − 4(yj − ȳ)(mj − m̄)sin2θ̂cos2θ̂ + 4(yj − ȳ)2cos4θ̂

]
=

1

4

[
4(mj − m̄)2sin2θ̂ − 4(yj − ȳ)(mj − m̄)sin2θ̂ + 4(yj − ȳ)2cos2θ̂

]
.
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By taking sum over j, we get
n∑

j=1

Om2
j =

n∑
j=1

(mj − m̄)2sin2θ̂ −
n∑

j=1

(yj − ȳ)(mj − m̄)sin2θ̂ +
n∑

j=1

(yj − ȳ)2cos2θ̂,

Then from Theorem 3.1 and (3.11) the mean of Om equals zero, and hence

S2
Om

cos2θ̂
= β̂21mS

2
m − 2β̂1mSxy + S2

y = S2
y − β̂1mSxy = S2

v ,

S2
Om = S2

vcos
2θ̂ =

S2
v

1 + β̂21m
, (3.12)

where S2
v is estimator of σ2v = σ2e + β21σ

2
u. So in general (3.12) could be rewritten as

σ2Om = σ2vcos
2θ =

σ2v
1 + β21m

. (3.13)

From (3.8) and (3.13) the relationship between the orthogonal distances for the two cases becomes

σ2Od = σ2Om

cos2ψ

cos2θ
= σ2Om

(
1 + β21m
1 + β21

)
. (3.14)

Note that in general, σ2Od < σ2Om, and they are equal if and only if there is no measurement error.

Therefore, any method to minimize σ2Om, will not work well, and that is what is happening with the

geometric mean method. The next section will show that the GM method is minimizing σ2Om, rather

than σ2Od.

4 The geometric mean estimator

One of the simple approaches to handle the measurement error in the regression analysis is the

geometric mean (GM) functional relationship, initially proposed by Teissier (1948) and later by

Barker et al. (1988) (cf Draper and Yang, 1997). This estimator has frequently been mentioned in

the literature for two reasons. First, when there is no basis for distinguishing between the response

and explanatory variables. Second, to handle the measurement error when no prior information is

available. The geometric mean method has received much attention from the experts, and some

have suggested that it is more useful than the ordinary least squares method (see Sprent and Dolby,

1980).

The geometric mean estimator of the slope is the geometric mean of the slope of y onm regression

line, and the reciprocal of the slope of m on y regression line, where m and y both are random (see

Leng et al. 2007). It is given by

β̂1G = sgn(SPmy)

√
SSy
SSm

= sgn(Spmy)

(
Sy
Sm

)
,

where SSm =
∑n

j=1(mj − m̄)2, SSy =
∑n

j=1(yj − ȳ)2, SPmy =
∑n

j=1(mj − m̄)(yj − ȳ), and Sy and

Sm are the standard deviation of y and m respectively.
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In the literature, the geometric mean regression is also known as the standardized major axis

(MA) (cf. Warton et al., (2006)). It is also known as reduced major axis (RMA), or the line of organic

correlation (cf Tessier, 1948, Kermack and Haldane, 1950, Ricker, 1973). In physics it is known as a

type of standard weighting model (Machonald and Thompson, 1992), while the astronomers call it

Strömberg’s impartial line (Feigelson and Babu, 1992).

A host of recent publications indicate that using the GM or RMA is necessary and sufficient

to fit the straight line when both the response and explanatory variables are subject to errors (see

Levinton and Allen, 2005, Zimmerman et al. 2005, Sladek et al. 2006, and Vincent and Lailvaux,

2006). While Jolicoeur (1975) and Spernt and Dolby (1980) pointed out that the GM estimator is

unbiased if and only if

λ =
σ2y
σ2m

or λ = β21 .

But several other studies indicate that this assumption is unrealistic (cf Sprent and Dolby, 1980).

It is commonly recommended to use the geometric mean estimator without mentioning the jus-

tifications (Smith, 2009). Jolicoeur (1975) stated that it is difficult to interpret the meaning of the

slope of the geometric mean regression. However, the common believe is the geometric mean regres-

sion minimizes the vertical and horizontal distances between the observed points and the fitted line

[Halfon (1985) and Draper and Yang (1997)].

4.1 Derivation of the geometric mean estimator

This section demonstrates that the current geometric mean (GM) estimator is define based on the

principle of minimizing the orthogonal (Om) distance of the observed point (mj , yj) and the unfitted

line (ŷj = β̂0m + β̂1mmj), while it was intended that the GM estimator was derived based on the

minimization of the orthogonal distance (Od) of the observed point (mj , yj) and the fitted line

(ηj = β0 + β1xj). From (3.12) the geometric mean estimator can be derived as

MinSSOm = SSvcos
2θ̂ =

n∑
j=1

(yj − β̂0m − β̂1mmj)
2cos2θ̂,

where SSOm = (n− 1)S2
Om, and SSv = (n− 1)S2

v ,

=
n∑

j=1

((yj − ȳ)− β̂1m(mj − m̄))2cos2θ̂

=
n∑

j=1

((yj − ȳ)cosθ̂ − (mj − m̄)sinθ̂)2. (4.1)

Let L1 = sinθ̂, and L2 = cosθ̂. Then

SSOm =
n∑

j=1

((yj − ȳ)L2 − (mj − m̄)L1)
2.
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                                                                                                     Fitted line                                                                             

                Observed point   (mj , yj) 

                                                                                                                  Unfitted line 

                                                                    (xj, ηj) Unobserved point  

                                                                       

 

 

                                                                 Orthogonal distance between observed point and fitted line. 

                                                                                         Distance between observed point and unobserved point. 

                                                                                         Orthogonal distance between observed point and unfitted line.                         

Figure 1: Graph of distances between the observed point, fitted regression line, unobserved point,

and unfitted regression line

Differentiation of SSOm w.r.t. L1, and L2 and setting them equal to zero, we get

∂SSOm

∂L1
= 2

n∑
j=1

((yj − ȳ)L2 − (mj − m̄)L1)(−(mj − m̄)) = 0,

L1S
2
m = L2Sym, and (4.2)

∂SSOm

∂L2
= 2

n∑
j=1

((yj − ȳ)L2 − (mj − m̄)L1)(yj − ȳ) = 0,

L2S
2
y = L1Sym. (4.3)

From (4.1), (4.2), and β̂1m =
L1

L2
we get two estimators of the slope

β̂1 =
Sym
S2
m

and β̂2 =
S2
y

Sym
(4.4)

Then the geometric mean of the estimators in (4.4) is the GM estimator, that is,

β̂1G = sgn{Sym}

√
S2
y

S2
m

.

Obviously, the above GM estimator is derived by minimizing the orthogonal distance between the

observed point (mj , yj) and unfitted line. Therefore, it does not minimize the distance between the

observed point (mj , yj) and the fitted regression line.
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5 Proposed weighted geometric mean estimator

The proposed weighted geometric mean (WG) estimator minimizes the orthogonal distance between

the observed point (mj , yj) and the unfitted regression line. This estimator is based on the relation-

ship (3.13) between the vertical and orthogonal distances of the observed points and the unfitted

regression line. The WG estimator is derived from equations (4.3) and (4.4).

Multiply equation (4.2) by S2
y , and equation (4.3) by Sym, we get

L1S
2
mS

2
y = L2SymS

2
y (5.1)

L1S
2
ym = L2SymS

2
y , (5.2)

from equation (5.1) plus equation (5.2) we get

L1(S
2
mS

2
y + S2

ym) = L22SymS
2
y

(S2
mS

2
y + S2

ym)sinθ̂ = 2SymS
2
ycosθ̂.

Hence the proposed estimator which considered it as a weighted geometric mean (WG) estimator is

given by

β̂1WG =
sinθ̂

cosθ̂
=

2SymS
2
y

S2
yS

2
m + S2

ym

. (5.3)

This estimator could be simplified as follow

β̂1WG =
2S2

yS
−2
m

S2
yS

−1
ym + SymS

−2
m

=
2β̂21G

(β̂1 + β̂2)
= W β̂1G, (5.4)

where W =
β̂1G

β̂OLS−mean

, β̂OLS−mean is obtained by taking the arithmetic mean of the slopes of

the two ordinary least squares regression lines of OLS(y/m) and OLS(m/y). Note if the geometric

mean estimator (GME) is equal to OLS-mean estimator, then the proposed weighted geometric mean

estimator (WGE) is equal to both the geometric mean and OLS-mean estimators, because W is equal

to one.

The reasons for suggesting weighted geometric mean estimator (WGE) instead of the geometric

mean estimator, and OLS-bisector estimator will be apparent from the results of the next section.

6 Simulation studies

In this section we compare the proposed WG estimator with the GM and OLS-bisector estimators

for a wide range of values of λ (0.08 ≤ λ ≤ 100).
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Figure 2: Graph of the mean slope of estimators, and the mean absolute error when the parameters

β0 = 20, β1 = 0.55 and 0.08 ≤ λ ≤ 100.

We perform large scale simulations to illustrate that the proposed estimator is asymptotically

unbiased and consistent compared to the geometric mean estimator, and OLS-bisector estimator.

The latter estimator is given by

β̂1OLS−B = (β̂1 + β̂2)
−1
[
β̂1β̂2 − 1 +

√
(1 + β̂21)(1 + β̂22)

]
,

where β̂1 =
Sym
S2
m

, and β̂2 =
S2
y

Smy
.

For the simulation, the data set is generated based on 1000 replications of samples size 100 of

normal structural model as follows:

1. Generate 100 independent values x1, . . . , x100 of x ∼ N(0, 8).

2. Generate 100 independent values u1, . . . , u100 of u ∼ N(0, 7).

3. Generate 100 independent values e1, . . . , e100 of e ∼ N(0, σe), where 2 ≤ σe ≤ 71, for each 1000
replications it is increased by 1.

4. Specify the values of β0 and β1 for the regression line.

5. Calculate the values of the three estimators and their mean absolute errors.

From Figures 1a-3a and under 0.08 ≤ λ ≤ 100, the values of the OLS-bisector estimator are away

from the true values of β1, but it is much closer than those of the geometric mean estimator. The

values of the geometric mean estimator (GME) are far above the true value of β1. The GME appears

to be an over estimate of the slope, and it is more so far larger values of β1. Clearly the proposed

12
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Figure 3: Graph of the mean slope of estimators, and the mean absolute error when the parameters

β0 = 27, β1 = −0.75 and 0.08 ≤ λ ≤ 100.
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Figure 4: Graph of the mean slope of estimators, and the mean absolute error when the parameters

β0 = −15, β1 = 1.2 and 0.08 ≤ λ ≤ 100.
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Table 1: Simulated mean values of the estimated slope and the mean absolute error for various

selected values of the true intercept and slope when 0.08 ≤ λ ≤ 100.

True slope GM OLS-B WG True model

0.55 3.4981 0.9340 0.5904 ηj = 20 + 0.55xj

(MAE) (2.9527) (0.9989) (0.5341)

−0.75 −3.5299 −1.1455 −0.7857 ηj = 27− 0.75xj

(MAE) (2.7910) (0.8780) (0.5328)

1.2 3.6321 1.5622 1.2213 ηj = −15 + 1.2xj

(MAE) (2.4676) (0.6548) (0.5302)
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Figure 5: Graph of consistency evaluation of the mean slope of estimators, and the mean absolute

error when the true β1 = 0.5 and large λ.
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Figure 6: Graph of consistency evaluation of the mean slope of estimators, and the mean absolute

error when the true β1 = 1 and large λ.

WGE is much closer to the true values of β1 than other two estimators. It is clear, from Figures

1b-3b that the measurement error makes the mean absolute error of the geometric mean estimator

the highest. While the mean absolute error of the OLS-bisector estimator appears to be smaller

than those of the geometric mean estimator, they are not small. Obviously, the mean absolute

error of the WGE is better and the smallest compared to the other estimators, and it seems to be

stable over the range of selected ratio of error variances 0.08 ≤ λ ≤ 100. Table 1 summarizes the

results of the simulation studies which indicate that the proposed estimator is more precise than the

other competing estimators. Sarach and Celik (2011) discussed eight different regression techniques,

and pointed out that the OLS-bisector estimator is near to the real value than all other regression

techniques, and the mean squares error of OLS-bisector is smaller than all other techniques. The

current study reveals that the proposed WGE is consistently better than the OLS-bisector estimator

in term of the closeness of β̂1WG to β1, and the mean absolute error as shown in Figures 5 and 6.

7 Concluding Remarks

This paper proposes a new estimator based on the mathematical relationship between the vertical and

orthogonal distances of the observed points and the regression line. This estimator is appropriate

to fitting a straight line when both variables are subject to measurement errors, especially when

there is no basis for distinguishing between response and explanatory variables. This method is

straightforward, and easy to implement.
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Extensive simulation studies confirm that the values of the proposed WG estimator are always

nearer to the true value of the slope more than the OLS-bisector, and the mean absolute error

of WGE is consistently smaller than that of the OLS-bisector. Therefore, the proposed estimator

possesses better statistical proprieties than the geometric mean and OLS-bisector estimators. The

new method is stable and works well for different sample sizes and for different values of λ.
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