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10:35 Extension of Koiter's Linear Shell Theory to Materials Exhibiting Arbitrary Symmetry 
David J. Steigmann  

10:55 A One-Field Formulation of Elasto-Plastic Shells with Fracture Applications 
Gauthier Becker, Ludovic Noels  

11:15 Deformations of Transversely Accreted Plates 
Sergey Alexandrovich Lychev  

11:35 A Vekua-Type Thick Shells' Theory 
Sergey Igorevich Zhavoronok  

11:55 C1 Continuous Finite Element Approximation for Modeling Finite Deformations of.
Kirchhoff-Love Shells as Material 
Yury M. Vetyukov  

 

MS-36.3 Refined Theories of Plates and Shells   Thursday, 14:15 - 15:45 
Casineum Chair: H. Altenbach, E. Ivanova 

14:15 A Modified Energy Method for the Buckling of Thin Plates in Tension 
Xiang Liu, Ciprian Coman  

14:33 Effect of ‘Static Resonance’ in Cylindrical Shells with Periodical Geometrical.
Imperfections 
Maksym Kolesnikov, Vasily L. Krasovsky, Ruediger Schmidt 

14:51 On the Unsymmetrical Wrinkling of Heterogeneous Circular and Annular Plates 
Eva Voronkova, Svetlana Bauer, Anders Eriksson 

15:09 On the Stability of the Cylindrical Shell under the Axial Compression with Use of Non-
Classical Theories of Shells 
Andrei Ermakov  

15:27 Theory of Micropolar Orthotropic Elastic Thin Shells 
A.J. Farmanyan, Samvel Hovhannes Sargsyan  

 

MS-36.4 Refined Theories of Plates and Shells   Thursday, 16:00 - 18:00 
Casineum Chair: G. Dhondt, E. Pruchnicki 

16:00 
Efficient High-Fidelity Multiphysics Modeling of Composite Plates Using the Variational.
Asymptotic Method (Keynote) 
Wenbin Yu, Chang-Yong Lee, Dewey H. Hodges 

16:35 Automatic Expansion of Shell Elements into 3D by Use of Expandable Rigid Bodies 
Guido Dominique Dhondt  

16:52 Nonlinear Stability Analysis of Functionally Graded Shells Using the Invariant-Based.
Triangular Finite Element 
Stanislav Levyakov, V.V. Kuznetsov 

17:09 Enhanced FGM Shell Finite Elements 
Stephan Kugler, Peter Fotiu, Justin Murin 
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On the stability of the cylindrical shell under the axial compression with
use of nonclassical theories of shells

A.M. Ermakov†

†Department of Theoretical and Applied Mechanics, Saint Petersburg State University,
Universitetsky prospekt 28, 198504 Peterhof, Sankt Petersburg, Russia

Khopesh ra@mail.ru

ABSTRACT

The problem of stability of the cylindrical shell under the axial compression by means of new
nonclassical shell theories is studied. To solve it the local approach [1] is used. According to
it the buckling deflection is sought in the form of a doubly periodic function of curvilinear
coordinates. The comparison of well-known solutions obtained with the use of classical shell
theories of Kirchhoff-Love (KL) and Timoshenko-Reissner (TR) with the results of improved
nonclassical shell theories of Rodionova-Titaev-Chernykh (RTCH) [3] and Paliy-Spiro (PS)[4]
is done.

The improved iterative RTCH theory is based on the following hypotheses: 1) transverse tan-
gential and normal stresses are distributed on shell’s thickness according to quadratic and
cubic laws respectively; 2) tangential and normal components of the displacement vector are
distributed on the shell thickness according to quadratic and cubic laws respectively. This
theory allows taking into account turns of fibers, their deviation and change of their length.

The Paliy-Spiro shells theory is a theory of shells of moderate thickness which assumes the
following hypotheses: 1) straight fibers of the shell which are perpendicular to its middle
surface before deformation remain also straight after deformation; 2) cosine of the slope angle
of these fibers to the middle surface of the deformed shell is equal to the averaged angle of
transverse shear.

For the PS and RTCH theory of anisotropic shells of moderate thickness the stability equations
were developed with linearization of nonlinear equilibrium equations.

Thus the results obtained with the use of PS theory are similar to the TR theory results. This
is only the factor of the second coefficient of asymptotical expansion by small parameter h/R
makes the results different. And the results which were obtained with the use of RTCH theory
include the members of asymptotical expansion of higher order.
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The comparison of analytical results with numerical results which were obtained with the
use of three–dimensional theory by the FEM code Ansys 11 is also done. As an example,
the model of a steel tube under the influence of the axial compression is studied. The three–
dimensional 20–nodes elements Solid186 were used. During mesh contraction the splitting
of the thickness which consisted of five elements was applied. The value of critical load for
tubes studied which length ranged from 1.5 to 3 diameters of medial surface was practically
consistent. The modulus of cross section shear was equal to G = E/(2(1 + ν)).

h/R 0.025 0.05 0.1 0.133 0.162
KL 0.01532 0.03103 0.0637 0.08069 0.09814
TR 0.01513 0.03028 0.06054 0.07561 0.09063
PS 0.01516 0.03041 0.06107 0.07646 0.09188

RTCH 0.01519 0.03053 0.06155 0.07722 0.09297
Ansys 0.01445 0.02875 0.055 0.0595 0.0635

Table 1: Specified coefficients for the elasticity tensors of some materials in a decoupled form.

Table 1 shows dimensionless values of critical load σ0/E for different ratios of tube thickness
to the radius of its medial surface. As one can see in the table, as shell thickness increases the
values if critical load obtained with the use of shell theories differ more from the results of
three-dimensional theory.
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