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Abstract

Agricultural mobile robots have great potential to effectively implement different

agricultural tasks. They can save human labour costs, avoid the need for people

having to perform risky operations and increase productivity. Automation and ad-

vanced sensing technologies can provide up-to-date information that helps farmers

in orchard management. Data collected from on-board sensors on a mobile robot

provide information that can help the farmer detect tree or fruit diseases or dam-

age, measure tree canopy volume and monitor fruit development. In orchards, trees

are natural landmarks providing suitable cues for mobile robot localisation and

navigation as trees are nominally planted in straight and parallel rows.

This thesis presents a novel tree trunk detection algorithm that detects trees and

discriminates between trees and non-tree objects in the orchard using a camera

and 2D laser scanner data fusion. A local orchard map of the individual trees was

developed allowing the mobile robot to navigate to a specific tree in the orchard to

perform a specific task such as tree inspection. Furthermore, this thesis presents

a localisation algorithm that does not rely on GPS positions and depends only on

the on-board sensors of the mobile robot without adding any artificial landmarks,

reflective tapes or tags to the trees.

The novel tree trunk detection algorithm combined the features extracted from a

low cost camera’s images and 2D laser scanner data to increase the robustness of the

detection. The developed algorithm used a new method to detect the edge points

and determine the width of the tree trunks and non-tree objects from the laser scan



ii

data. Then a projection of the edge points from the laser scanner coordinates to

the image plane was implemented to construct a region of interest with the required

features for tree trunk colour and edge detection. The camera images were used

to verify the colour and the parallel edges of the tree trunks and non-tree objects.

The algorithm automatically adjusted the colour detection parameters after each

test which was shown to increase the detection accuracy. The orchard map was

constructed based on tree trunk detection and consisted of the 2D positions of the

individual trees and non-tree objects. The map of the individual trees was used as

an a priori map for mobile robot localisation. A data fusion algorithm based on an

Extended Kalman filter was used for pose estimation of the mobile robot in different

paths (midway between rows, close to the rows and moving around trees in the row)

and different turns (semi-circle and right angle turns) required for tree inspection

tasks. The 2D positions of the individual trees were used in the correction step of

the Extended Kalman filter to enhance localisation accuracy.

Experimental tests were conducted in a simulated environment and a real orchard

to evaluate the performance of the developed algorithms. The tree trunk detec-

tion algorithm was evaluated under two broad illumination conditions (sunny and

cloudy). The algorithm was able to detect the tree trunks (regular and thin tree

trunks) and discriminate between trees and non-tree objects with a detection accu-

racy of 97% showing that the fusion of both vision and 2D laser scanner technologies

produced robust tree trunk detection. The mapping method successfully localised

all the trees and non-tree objects of the tested tree rows in the orchard environment.

The mapping results indicated that the constructed map can be reliably used for

mobile robot localisation and navigation. The localisation algorithm was evaluated

against the logged RTK-GPS positions for different paths and headland turns. The

average of the RMS of the position error in x, y coordinates and Euclidean distance

were 0.08 m, 0.07 m and 0.103 m respectively, whilst the average of the RMS of

the heading error was 3.32◦. These results were considered acceptable while driving

along the rows and when executing headland turns for the target application of

autonomous mobile robot navigation and tree inspection tasks in orchards.
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N Number of the image-laser scan pairs

P1,2,3 Projection points of start, end and centre of object on image plane

Pc Camera Cartesian coordinates

pdf(d) Probability of the object width being a tree trunk width

pdf(µd) Probability of the width distribution around the mean

pdf(Hd) Probability of the object Hue being a tree trunk Hue

pdf(µHd) Probability of the dominant value of Hue distribution around the mean

Pl Laser Cartesian coordinates

P−t Error covariance matrix

Pt Corrected error covariance matrix

Qt Process noise covariance matrix

r1,2 Laser range from the start and end edges of the tree trunk

R2 Measure of the goodness of the line fitting

rc Laser range from the centre of the tree trunk

ROCC,E,L Rate of confidence from tree trunk colour, edges, laser

ROCTree Final rate of confidence of the tree trunk

Rt Measurement noise covariance matrix

SEx,y Standard errors in x and y positions

T1,2,...,12 Simulated tree trunk number

THC,E,L Threshold value of the rate of confidence from colour, edges, laser

THTree Threshold value of the rate of confidence of simulated tree trunk

ut Control input vector

v Linear velocity of the mobile robot

Vt Measurement model Jacobian matrix for noise

Wt Motion model Jacobian matrix for noise

xd Normalised point coordinates after lens distortion

Xgt Ground truth position in x-coordinate

xn Normalised pinhole image projection

xp Pixel x-coordinate on the image plane

x̂−t Estimated pose at time t
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x̂t Corrected pose estimate

x̂t−1 Estimated pose at time t− 1

Xtree Tree trunk x-coordinate

Ygt Ground truth position in y-coordinate

yp Pixel y-coordinate on the image plane

Ytree Tree trunk y-coordinate

zt Actual measurement

Greek symbols

αc Skew coefficient of the camera

β1,2 Angle of the right and left edge lines of the object

∆ Translation offset vector between the laser and camera frames

∆t Time difference between time steps t and (t− 1)

∆x,y Position change in x and y directions

∆φ Difference between bearing angles of the tree trunk

δx,y,z Translation in x, y, z axes

θ Heading angle of the mobile robot

µd Mean of tree trunk width distribution

µHd Mean of the most dominant value of the Hue distribution

σd Standard deviation of tree trunk width distribution

σHd Standard deviation of the most dominant value of the Hue distribution

σx,y Standard deviation of the position data in x, y

σv,ω Standard deviation of the linear and angular velocities

σr,φ Standard deviation of the range and bearing angle

Φ Rotation matrix between the laser and camera frames

φ1,2 Bearing angle of the start and end edges of the tree trunk

φc Bearing angle of the centre of the tree trunk

ψx,y,z Rotation angle about the x, y, z axes

ω Angular velocity of the mobile robot
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2D Two dimensional

3D Three dimensional

CPR Clocks per revolution

DGPS Differential Global Positioning System

EIF Extended information filter

EKF Extended Kalman filter

FIR Finite impulse response

FN False negative

FOG Fiber optic gyroscope

FP False positive

GPS Global Positioning System

HSV Hue, Saturation, Value

IMU Inertial measurement unit

KF Kalman filter

LIDAR Light detection and Ranging

NIR Near-infrared

PF Particle filter

RANSAC RANdom SAmple Consensus

RFID Radio frequency identification

RGB Red, Green, Blue
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RMS Root mean square

ROI Region of interest

ROS Robot Operating System

RTK-GPS Real time kinematic Global Positioning System

SLAM Simultaneous localisation and mapping

TN True negative

TP True positive

UAV Unmanned aerial vehicle

UTM Universal Transverse Mercator

UWB Ultra-Wide-Band



Chapter 1

Introduction

1.1 Robotics in Agriculture

Agriculture is a most promising sector that provides human with the basic life

requirements as well as supporting the economic growth of most industrialised and

developed countries. The advancement in automation is highly required in the

agriculture sector to help with reducing the costs of production and increasing the

quality of crops for greater income (Thamrin et al., 2013).

The cost of manual labour and the availability of skilled workers doing hard physical,

repetitive and intensive agricultural tasks have become concerns for many farmers.

With the development of technology, these agricultural tasks have been subject

to automation. Advanced technology has resulted in the introduction of vehicle

automation at a consumer level and has made it feasible to build systems that are

more economical, efficient and reliable than human labour (Reske-Nielsen et al.,

2006; Rovira-Más, 2009).

Mobile robots operating in real world environment have been a significant subject for

many researchers because of their efficiency and flexibility. In agriculture, research
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on unmanned agricultural robots started in the early 1960s (Fountas et al., 2007).

These agricultural robots have been introduced in different indoor and outdoor

agricultural environments. Agricultural robots play an important role in imple-

menting different agricultural tasks. One mobile robot can perform the work of

two or more people. This can save a significant amount of labour costs for growers.

Furthermore, robots reduce the risk of human errors and can be used in a variety of

applications and locations (Griepentrog et al., 2009). The autonomous performance

of these vehicles provides continuous supervision of the agricultural environments

as information regarding the environment can be autonomously acquired. This pro-

vides the farmer with up-to-date and precise information to assist with management

decisions (Auat Cheein and Carelli, 2013).

In recent years, advanced technology has encouraged many researchers to develop

more intelligent and adaptable vehicles. These vehicles should have a sufficient

amount of intelligence in order to sense the environment for long periods of time,

whilst achieving specific tasks (Blackmore et al., 2005; Tabile et al., 2011). The need

for autonomous navigation systems of agricultural robots has been recognised as a

key component to achieve autonomous farming. This is because the autonomous

navigation system is an important component in achieving different agricultural

tasks such as planting, spraying, fertilizing, cultivating, harvesting, thinning, weed-

ing, and inspection. The rapid advancement in communication, sensors, data ac-

quisition, processing methods and computing technologies has provided important

progress in the field of agricultural autonomous robot systems.

The design of mobile robots operating in outdoor environments such as agricultural

applications is still a challenging subject. The autonomy of the mobile robot is

obtained by means of sensing the environment and employing appropriate control

algorithms for specified tasks. These tasks are complex and many repetitive tasks

are not exactly the same for each repetition (Christiansen, 2011). The design of

efficient and robust sensing and control systems for agricultural mobile robots needs

to be planned and optimised before the robot can execute the task. It is also
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required that difficulties due to the weather conditions, dynamic environments,

unexpected obstacles, terrain nature variations and vegetation be overcome (Ayala

et al., 2008). A comprehensive knowledge of the robot’s facilities and limitations,

the environment characteristics and the task requirements are necessary to obtain

good outcomes (Vougioukas et al., 2005).

1.2 Autonomous mobile robot navigation in agri-

cultural environments

Autonomous navigation is one of the important issues in mobile robot applications.

The task of navigation is to guide the mobile robot safely and autonomously within

different environments. The mobile robot’s navigation ability relies on complex

sensor systems and intelligent control algorithms. The mobile robot must be capa-

ble of sensing and detecting the environment firstly, then analysing and modeling

it. A navigation algorithm uses the sensed information to allow the mobile robot

to determine a suitable trajectory, make a decision and move correctly within its

environment (Parhi and Singh, 2009).

Navigation of the mobile robot in agricultural environments requires the consider-

ation of the position of the mobile robot and the detection of the surrounding area

and obstacles. The mobile robot should be able to avoid occasional unexpected

obstacles such as animals (dead or alive), fallen tree branches and fence posts.

1.2.1 Autonomous mobile robot navigation components

The successful navigation of mobile robot in agricultural environments consists of

feature extraction, mapping, localisation, path planning and obstacle avoidance as

shown in Figure 1.1.
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Figure 1.1: The block diagram of the autonomous navigation in agricultural environ-

ments.

.

The task of detection and feature extraction is more challenging in outdoor en-

vironments. The major problem is finding the suitable natural features that are

stable under different environmental conditions. The detection of these agricultural

features is directly related to the task of the agricultural robot and the sensors incor-

porated on it. The robot’s on-board sensors acquire the environmental information

to extract the useful features to be used for mapping, localisation and navigation

(Auat Cheein and Carelli, 2013).

The agricultural robot, with its on-board sensors, can sense the surroundings and

build a map or a model of the environment with the most relevant features. The

combination of different sensors has been employed to increase the robustness and

reliability of the map (Bonin-Font et al., 2008). If the map of the environment is

perfect, the robot can easily determine its position and orientation at each time.

An agricultural robot may not be able to perform its task successfully if the ele-
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ments from the environment are not properly located within the map. Moreover,

an incomplete map cannot be used for autonomous navigation due to the risk of

collision (Auat Cheein and Carelli, 2013).

Localisation is the process of accurately determining the mobile robot’s pose (po-

sition and orientation) relative to a given map of the environment using the data

acquired from the mobile robot sensors (Dudek and Jenkin, 2010). The core of the

localisation problem is the reliable acquisition or extraction of sensor information

and the automatic correlation or correspondence of this information with the envi-

ronment map (Zhang et al., 2008). Localisation is a critical issue in mobile robot

navigation and particularly in an agricultural environment where, unlike a factory

environment, a level ground surface cannot be presumed. The mobile robot cannot

effectively plan its path, locate objects and navigate to the target unless it knows

its position in the environment (Bloss, 2008).

Simultaneous localisation and mapping (SLAM) is the technique used by mobile

robots and autonomous vehicles to build up a map within an unknown environment,

while at the same time using this map to estimate their current pose. In SLAM both

the trajectory of the mobile robot and the location of all landmarks are estimated

without the need for any a priori knowledge of location (Durrant-Whyte and Bailey,

2006; Williams et al., 2002).

Path planning is needed for the automatic operation of autonomous field robots.

Typically, a path planning algorithm has to find an optimal path from starting

point to the goal position so that no collisions with obstacles occur. The path is

also required to be optimal with respect to a certain measure, for example traveling

in minimum time or using minimum energy (Oksanen et al., 2005).
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1.2.2 Limitations and benefits of agricultural environments

Agricultural environments consist of various elements such as plants, trees, weed,

soil, objects, and landmarks (e.g. posts, fences). This diversity creates some diffi-

culties and complications in the mobile robot navigation process. For example, the

cultivated areas are large and the ground surfaces are usually uneven. Weather con-

ditions such as rain, dust, fog, and sunlight may affect the data acquired by mobile

robot sensors. Plant colour may change during different growth stages and the qual-

ity of soil may vary from one place to another (Li et al., 2009; Mousazadeh, 2013).

However, agricultural environments also provide some simplicity. For example, most

crops or trees from the same kind are planted in straight rows and the intervals

between the rows are almost equal as shown in Figure 1.2. The landmarks that

already exist in the field can be used as stationary landmarks for localization and

navigation algorithms.

1.2.3 Mobile robot sensors

The use of sensors in agricultural vehicles has increased rapidly in recent years.

There have been substantial advances in the development of new and more powerful

perception systems for agriculture, providing the automation of agricultural applica-

tions with important stimulus. These autonomous agricultural systems incorporate

and integrate perception systems to acquire information from the surroundings,

decision-making systems for interpreting and analysing such information, and ac-

tuation systems to perform various agricultural tasks. These systems consist of

different sensors, actuators and computers that work together to perform a specific

agricultural task (Emmi et al., 2014).

Navigation sensors provide information about the vehicle states (position, orienta-

tion, speed, etc.) and the objects in the surrounding environment. Some guidance

sensors provide information for absolute positioning and others only provide relative
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(a) Tree rows for persimmon orchard in Gatton, Queensland, Australia.

(b) Crop rows for cauliflower farm in Gatton, Queensland, Australia.

Figure 1.2: Examples of tree rows and crop rows.

positioning. Selection of the optimal sensors to provide the basic information for

mobile robot navigation is a critical process. Different sensors such as vision, laser

range scanner and Global Positioning System (GPS) are used in autonomous agri-

cultural robot systems as primary sensing systems. Other sensors such as odometer

and inertial measurement unit (IMU) are typically used as secondary sensors to

complement the primary sensing systems. Table 1.1 illustrates the sensors and the

information derived from these sensors using the required algorithms and manipu-

lations for mapping, localisation and navigation in agricultural environment.
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Table 1.1: Common mobile robot sensors and the information derived from them in

agricultural environment using the required algorithms and manipulations.

Sensor type Derived information

Camera -Provide colour and intensity images of the agricultural environments.

-Extract different features from trees and crops (e.g. colour, edge,

texture, shapes, etc.).

-Measure the relative position and heading of the mobile robot.

Laser scanner -Provide precise range and angle measurements.

-Detect objects in the surroundings and extract features such as

edges, width, etc.

GPS -Provide position measurements and guidance information.

IMU -Measure the acceleration, angular velocity and orientation of the robot.

Odometer -Measure the position and velocity of the robot.

1.3 Orchard environment

Orchards are usually semi-structured environments, since trees of the same type are

planted in nominally straight and parallel rows and the distances between the rows

are almost equal as shown in Figure 1.2a. In addition, the headland is available to

drive the mobile robot to consecutive rows. The organised layout of the orchard

makes it a suitable and promising environment for autonomous mobile robot nav-

igation. However, the environment is only ‘semi-structured’ because the regularity

of tree and non-tree object placement is neither precise nor reliable as the orchard

grows, branches fall, etc.

1.3.1 Tree detection using mobile robots

Trees in orchards and groves are common natural landmarks providing suitable

cues for mobile robot localisation and navigation. To navigate the mobile robot

between the tree rows, the mobile robot must first detect the trees then determine
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its position related to the trees’ positions. Therefore, individual tree detection

is crucial in facilitating the localisation and navigation of the agricultural robots

between the tree rows in the orchard.

Detecting trees robustly from a ground-level perspective is a challenging problem

for several mobile robot applications. Different parts of the trees can be detected

using the mobile robot on-board sensors such as trunk, stem and canopy. This

detection depends on the type of the trees and the specific agricultural task. Several

features can be extracted from the tree trunk and canopy such as colour, texture,

edges, height and width to be used for mapping, localisation, navigation and tree

inspection tasks.

1.3.2 Row detection and following using mobile robots

Since most of the trees in commercial farms, orchards and groves are planted sys-

tematically with a uniform row arrangement, many paths or inter-row spaces with

a uniform width between the trees facilitate the movement of farmers between the

rows. Hence, one of the main tasks of a mobile robot in an agricultural structured

field, is to keep track of the rows so it can perform the plantation activities au-

tonomously (Thamrin et al., 2012). For this, an important step is to develop a row

detection system, which allows the mobile robot to accurately navigate along the

row.

In the row recognition process, the problem is identifying the accurate features that

are stable under different environmental conditions. In addition, the row detec-

tion process is accompanied with some difficulties such as incomplete rows, missing

plants, and the irregular shape and size of the plants along the row. In addition,

the presence of weeds along the row might distort the process of row recognition by

adding some noise to the row structure which makes the row recognition task more

difficult (Åstrand and Baerveldt, 2005).
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1.3.3 Tree inspection tasks

Recent sensor developments allow growers to closely monitor and control many

aspects of crop production. Robots are widely used for inspection tasks using diverse

types of sensors. The robot with on-board sensing technologies can provide up-to-

date information that helps the farmers with orchard management. Mobile robots

with vision systems can be used to locate and differentiate between ripe and unripe

fruits. Other applications include the development of robotic vehicles which can

perform a range of tasks such as collecting information on plant health, monitoring

plants growth and crop damage (Yang et al., 2011). With the advance of optical

sensing technologies in agriculture, researchers have attempted different approaches

to detect crop diseases and infections at an early stage (Grift et al., 2008). The

inspection task is also needed for precision crop management including crop yield,

soil properties, crop nutrients, crop canopy volume, and pest conditions (disease,

weeds, and insects) (Lee et al., 2010).

1.4 Research problem

Studies in the literature have typically developed autonomous navigation systems

for tractors or large agricultural vehicles (Barawid et al., 2007; Andersen et al.,

2010; Hansen et al., 2011). In this study, a small robot platform is used rather than

traditional (manually-driven) agricultural vehicles. A robot of small size operating

autonomously has the potential to meet the major requirements of routine orchard

inspection tasks which are labour intensive, especially in large orchards. The small

size and light weight are important as they imply easy accessibility between tree

rows and higher maneuverability when moving close to the tree rows and between

trees in the row. Similar to traditional agricultural vehicles, small robot platforms

are expected to have the potential to work in most weather conditions and behave

sensibly in a semi-natural environments. They may have less energy requirements,
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are more cost effective, create less soil compaction and produce potentially less

damage for trees and other objects in the orchard (such as irrigation infrastruc-

ture) compared to traditional agricultural vehicles (Pedersen et al., 2005; English

et al., 2013; Blackmore and Griepentrog, 2002). In recent years, unmanned aerial

vehicles (UAVs) have developed obvious potential for orchard aerial mapping and

surveying. However, a small mobile robot is more convenient for collecting map-

ping and inspection information of the lower parts of the trees (such as trunks)

which typically cannot be accessed easily by a UAV. Furthermore, UAVs require

full manual control in such situations.

An orchard environment was selected in this study because of its semi-structured

nature. However, the orchard environment presents some challenges especially in

the robust detection of trees. This is mainly because of the non-tree objects that

might be present between the trees in the tree rows such as posts and tree supports

and animals. Thus, the development of a robust algorithm to detect trees and

discriminate between trees and non-tree objects is necessary. It is hard to achieve

this using single sensor such as vision only or laser scanner only since trees and non-

tree objects might have some common features such as width, colour and parallel

edges. Fusion of data from a camera and laser scanner was found to improve the

tree detection accuracy because the laser scanner can provide reliable ranges, angles

and widths of the tree trunks and non-tree objects, whilst the vision system can

distinguish between tree trunks and other non-tree objects from different features

(e.g. colour, edges, texture, etc.).

In some orchards, GPS cannot be used effectively for localisation and navigation as

the agricultural robots frequently move under the tree canopy blocking the satellite

signals from the GPS receiver (Li et al., 2009). In addition, using a precise GPS

system such as Real Time Kinematic RTK-GPS is an expensive solution for position

estimation. For these reasons, this study aims to develop a localisation system for

mobile robot in an orchard without using GPS as the primary sensor for localisation.

Furthermore, odometer is a very common sensor for position measurement that has
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been widely used due to its simplicity and low cost. However, this assumption

is not always correct because of the wheel slippage on different surfaces which

generate errors that accumulate over distance especially in outdoor environments

(Mousazadeh, 2013). As a result, the mobile robot cannot rely only on the odometer

to determine its position. All these challenges have motivated the development of a

localisation system based on data fusion from different on-board sensors to provide

accurate pose estimation of the mobile robot using the natural landmarks (i.e.,

trees) rather than using artificial landmarks.

The tree inspection and individual tree growth monitoring tasks require the mobile

robot to have a map of the individual trees in the orchard. This facilitates the mobile

robot’s navigation to a specific tree to undertake these tasks. Hence, this arises the

need for constructing a local map of the individual trees in the orchard rather than

using the map of the tree rows as lines. The constructed map is essential for robust

mobile robot localisation since the mobile robot needs to know its position relative

to these trees in the row.

The mobile robot needs to execute different paths such as moving midway between

tree rows, close to the row and between trees in the row to implement different tree

inspection tasks. In addition, the movement of the mobile robot from one row to

another requires executing either semi-circle turns or right angle turns. Therefore,

the developed localisation algorithm is required to be capable of determining the

mobile robot position for all these paths and turns.

The above challenges give rise to the following research questions:

1. Can a camera and laser scanner combination be used in a commercial orchard

environment and consistently detect trees with natural variation present in the

orchard?

2. Is a small mobile robot with its on-board sensors capable of achieving suf-

ficient maneuverability and localisation accuracy to move between tree rows
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and around individual trees?

1.5 Research aim and objectives

The aim of this research is to develop an orchard mapping and localisation system

for a small mobile robot platform. This system is required to be capable of localising

the mobile robot in different paths and turns in the orchard using the constructed

orchard map of the individual trees based on tree trunk detection using camera and

laser scanner data fusion.

The objectives of this study are:

1. To develop a tree trunk detection algorithm that can detect trees and dis-

criminate between trees and non-tree objects using camera and laser scanner

data fusion.

2. To develop a method for constructing a local orchard map of the individual

trees and non-tree objects using the on-board mobile robot sensors to localise

the mobile robot in the orchard and to enable the individual tree monitoring

and inspection.

3. To develop a data fusion algorithm to estimate the pose (position and orien-

tation) of the mobile robot for different paths and turns in the orchard.

4. To evaluate the performance of the developed algorithms through extensive

experimental tests using a small mobile robot platform under different illumi-

nation conditions.

A low cost camera and 2D laser scanner are used as primary sensors in this study.

Vision systems and laser scanners are becoming more common in outdoor agricul-

tural applications such as tree detection, map construction, mobile robot localisa-

tion and navigation because of their ability to provide instantaneous information
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that can be used for feature extraction and object detection. Vision systems are low

cost solutions for extracting different features (e.g. colour, edge, texture). Laser

scanners are popular sensors in outdoor applications as they provide precise range

and angle measurements in large angular fields under different illumination con-

ditions. Fusing images from cameras with range data from laser scanners enables

mobile robots and vehicles to more confidently perform a variety of tasks in outdoor

environments (Garcia-Alegre et al., 2011).

1.6 Research contributions

The contributions of this research are as follows:

1. Development of a novel tree trunk detection algorithm that detects the tree

trunks and discriminates between trees and non-tree objects using the fusion

of low cost camera and 2D laser scanner data to enhance detection capability.

2. Development of a new method to detect and measure the width of the tree

trunks and non-tree objects from laser scan data depending on the derivative

data of the scan ranges.

3. The sequence of the projection of the edge points of the tree trunk and non-

tree objects from the laser scanner coordinates to the image plane to construct

a region of interest (ROI) with the required features for colour and edge

detection. This was effective because the ROI is a small part of the image

and required less processing time than processing the whole image. In addition

it minimises the effect of the noise in the other parts of the image.

4. Automatic adjustment of the colour detection parameters after each test which

was shown to increase the detection accuracy.

5. A local orchard map of the individual trees and non-tree objects of the rows

was constructed rather than the whole row as line in the orchard. This allows



1.7 Thesis outline 15

the mobile robot to navigate to a specific tree in the orchard to perform

specific tasks such as tree inspection, pruning and harvesting.

6. The developed mobile robot localisation algorithm uses the positions of the in-

dividual trees in the correction step rather than correcting with the whole row

as line. This will potentially contribute to the enhancement of the precision

of in-row localisation.

7. The localisation algorithm was capable of localising the mobile robot in differ-

ent paths (midway between rows, close to the rows and moving around trees

in the row) and different turns (semi-circle turns and right angle turns).

8. The developed algorithms depend only on the on-board sensors of the mobile

robot without adding any artificial landmarks, reflective tapes or tags to the

trees.

1.7 Thesis outline

This dissertation is organised as follows:

• Chapter 2 presents the literature review of the related studies published in the

field of this work. The key elements of the related work are tree detection and

row following, orchard mapping, mobile robot localisation and tree inspection.

• The robot platform architecture used in this study is described in Chapter

3. This chapter also provides details of the sensors (laser scanner, camera,

odometers, IMU and RTK-GPS) and the role of each sensor used in this

study. In addition, a detailed description of the simulated environment used

for preliminary tests is presented. Chapter 3 also describes the layout of the

real orchard used for experimental tests.

• The design of the tree trunk detection algorithm using camera and laser scan-

ner data fusion is explained in Chapter 4. This chapter describes in details
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the main detection steps of the developed algorithm. Chapter 4 also presents

the experimental tests and the evaluation of the performance of the tree trunk

detection algorithm in the simulated environment and the real orchard.

• Chapter 5 demonstrates the method used for orchard map construction. The

constructed map consists of the position of the individual trees and non-tree

objects. Experimental tests and results for mapping the trees and non-tree

objects in the simulated environment and the real orchard are also presented

in this chapter.

• Chapter 6 deals with the mobile robot localisation algorithm using extended

Kalman filter (EKF) to estimate the pose of the mobile robot in the orchard.

This chapter also illustrates the experimental tests used to verify the perfor-

mance of the developed localisation algorithm in the simulated environment

and real orchard for different paths (midway between rows, close to the rows

and moving around trees in the row) and different turns (semi-circle turns

and right angle turns).

• Chapter 7 reports the overall conclusions with respect to the achievement of

the objectives of this study. It also presents recommendations for potential

applications of this research and future work.



Chapter 2

Literature review

Mobile robots in agricultural environments use perception sensors such as laser

scanners and cameras to acquire information from the environment and detect po-

tential trees, crops and objects. The data acquired by these sensors are primarily

used to create maps of the environment, which allow localisation, path planning

and navigation. Tree detection, feature extraction, mapping the robot’s environ-

ment and mobile robot localisation have been central research topics in the field of

developing robust and reliable navigation approaches for autonomous mobile robots

in orchards and outdoor agricultural environments.

This chapter provides an overview of the studies reported in the literature related to

the field of this PhD research. The main key topics are tree detection, row detection

and following, orchard map construction and mobile robot localisation and navi-

gation in orchards and other agricultural environments as shown in Figure 2.1. A

summary of the significant conclusions is also presented along with the formulation

of this research work.
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Figure 2.1: The main topics of the literature review (the dashed blocks represent the

future work and the potential applications of this research work).

.

2.1 Tree detection and row following using mo-

bile robots

Natural landmarks such as trees are important in providing adequate information

to localise the mobile robots in structured agricultural environments. In orchards

and groves, one of the important tasks for an autonomous mobile robot is to de-

tect the trees or tree rows and keep tracking between them in order to perform

different agricultural tasks. Therefore, several methods have been implemented by

researchers for tree detection, row detection and following in orchards and other



2.1 Tree detection and row following using mobile robots 19

similar agricultural settings. Laser scanner and machine vision have been used by

many authors as the main sensors to detect various parts of the trees such as trunk,

stem and canopy as described in the following sections.

2.1.1 Vision based tree detection and row following

Vision sensors have been widely used in mobile robot applications because of their

cost effectiveness and their capability to provide information that can be utilised to

generate steering control signals for the agricultural mobile robots. Vision systems

are becoming more common in outdoor agricultural applications. The limiting

disadvantages of using vision sensors are the influence of varying ambient lightening

conditions (especially in outdoor environments) and the amount of computation

required to extract useful features.

The use of vision only sensors allows the extraction of different features from the

environment such as colour, texture, shape, and edges of the trees. For example,

Ali et al. (2008) presented a classification based tree trunk detection method for

the autonomous navigation of a forest vehicle using the integration of colour and

texture cues to segment the images into tree trunks and background objects. They

also proposed a distance estimation method that estimates the distance between the

vehicle and the base of the detected trees. The tree detection performed well with an

accuracy of 94.7%. However, their segmentation and distance estimation procedure

assumed that the ground was relatively flat and there were no overhanging other

objects in scene image.

Another related algorithm proposed by He et al. (2011) was designed to generate

a navigation path in an orchard for a harvesting robot based on machine vision.

A horizontal projection method was adopted to dynamically recognise the main

tree trunk’s area from orchard images. Border crossing points between the tree

trunks and the ground were detected by scanning the trunks’ areas, and these

points were divided into two clusters on both sides. Their algorithm achieved a
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correct recognition rate of 91.7%. The authors concluded that this algorithm was

extremely affected by the presence of the weeds in the orchard.

Autonomous navigation of mobile robots using vision sensors for tree row detection

and following in orchards and groves is seldom used. It is difficult to find a possible

path between rows because of the discrete planting of trees which breaks the visual

continuity of a row and adds complexity to the segmentation methods. A few vision-

based autonomous navigation systems have been developed for tree row following

(Ayala et al., 2008; Gao et al., 2010; Torres-Sospedra and Nebot, 2011; Zhang

et al., 2012). These systems used different image segmentation and classification

methods to extract the useful information for navigation and focused on optimising

the classification methods. They typically used line detection methods to detect

the tree rows as lines to locate guidance paths.

In the work developed by Ayala et al. (2008), a robust system based on artificial

vision for navigation of an autonomous mobile robot in olive groves, vineyards, and

fruit plantations was proposed. The typical structure of olive groves cultivations

provided visual information that can be used for navigation. This information

consisted of perspective lines defined by the tree rows which motivated the use

of visual sensors in these kinds of environments and image processing based on

a statistical segmentation and Hough transform. Similarly, Hough transform was

used by Gao et al. (2010), Torres-Sospedra and Nebot (2011) and Sharifi and Chen

(2015) to detect tree rows as lines to determine the desired path between the tree

rows. Figure 2.2 shows the tree rows where the borders between the land and the

tree trunks are presented in blue lines and the centre of the path is presented by

the green line (Torres-Sospedra and Nebot, 2011). Detecting tree rows as lines

using a vision sensor was also implemented by Zhang et al. (2012). However, Zhang

et al. (2012) used the RANdom SAmple Consensus (RANSAC) method to fit the

3D points corresponding to the trees into straight lines.
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Figure 2.2: Detecting tree rows as lines using Hough transform, (Torres-Sospedra and

Nebot, 2011)

.

2.1.2 Laser scanner based tree detection and row following

Tree detection and row following using laser scanners has been the source of many

research contributions. This is mainly because laser scanners provide the benefits of

high resolution and a large field of view. The laser scanner is one of the most popular

devices in outdoor applications. It determines the relative distance of objects in

the surrounding area by measuring the time of flight of laser pulses. One important

advantage of laser sensors over visual systems is its ability to provide more robust

ranging data for object detection under different weather and ambient illumination

conditions.

2.1.2.1 Tree detection using 2D laser scanner

Studies have been reported on the utilisation of 2D laser scanners for tree detection

and row following in orchards. Hansen et al. (2011) and Libby and Kantor (2011)
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used a 2D laser scanner to detect the dense canopy of tree rows. In this situation, the

tree trunks were narrow and often occluded by leaves, and the canopies were closed

such that the canopies of individual trees could not be distinguished. In addition,

the dense vegetation of the tree rows provided a surface that is suitable for laser

scanner measurements. Therefore, lines were fitted to the detected canopies in the

tree rows using Hough transform and individual trees were not detected. Libby and

Kantor (2011) enhanced the tree row detection by using reflective tapes to mark

the start and the end of each row as shown in Figure 2.3. In a study presented by

Bergerman et al. (2015), the authors developed a method to fit the laser points into

two parallel straight lines representing the tree rows on both sides of the agricultural

vehicle using RANSAC and least-square fitting methods.

Figure 2.3: Reflective tape placed around posts at the ends of the rows (Libby and

Kantor, 2011)

Hamner et al. (2010) suggested a method to detect the trunk and/or canopy of

the trees for tree row recognition using a 2D laser scanner. Hough transform was

then applied to extract point and line features to navigate the agricultural vehicle

between the rows as shown in Figure 2.4. The 2D laser scanner was also used in the

study reported by Guivant et al. (2002) to detect the trunks of the trees as point

features, and the trees were used as landmarks to implement a SLAM algorithm.
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Figure 2.4: Hough transform for detecting tree rows using 2D laser scanner (Hamner

et al., 2010)

Some studies focused on the use of terrestrial 2D laser scanners for the detection

of trees and the estimation of tree trunk diameter in forests. Such laser scanners

provide scan lines in a typically horizontal plane, and have been used to estimate the

diameter and also the location of the centrepoint of trees (Jutila et al., 2007; Zheng

et al., 2012; Ringdahl et al., 2013; Brunner and Gizachew, 2014; Kong et al., 2015).

Jutila et al. (2007) estimated tree trunk diameters using the angle between the

edges and the shortest distance to a laser point cluster. They found that the circle

fit method is significantly less accurate. Usually, 2D laser scanners have large beam

divergence for long distances. Therefore, Ringdahl et al. (2013) investigated the

possibility of enhancing existing algorithms for tree detection and trunk diameter

estimation to compensate for laser beam width. They also improved the algorithms

with the fusion of several consecutive scans. They concluded that the estimation

error grows with increasing distance, in particular for trees with a small diameter.

A 2D laser scanner was used by Zheng et al. (2012) and Kong et al. (2015) to

collect point clouds for standing trees, then a cluster extracting algorithm and

filtering algorithm were used to classify each trunk from the point cloud. Ringdahl

et al. (2013) suggested combining the laser scanner with a camera in future work to
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improve the detection and estimation capability; whilst Kong et al. (2015) suggested

further work for dynamic diameter estimation combining a laser scanner with a

camera to achieve real-time and rapid measuring results in the forest environment.

2.1.2.2 Tree detection using 3D laser scanner

Researchers have also investigated the use of 3D laser scanners for tree detection

and row following. Zhang et al. (2013) developed a 3D perception method to extract

tree row and trunk information from a 3D LIDAR point cloud that can be used by

an autonomous vehicle to follow the tree rows in an orchard. They concluded that

3D laser scanners provided much better row information than 2D laser scanners in

environments characterised by canopies with large volumes, branches sticking out

into the row and objects such as pipes and rocks that make 2D sensing infeasible

for row following. However, 3D laser scanners are expensive and require intense

computing compared to 2D scanners.

Some recent studies developed algorithms using 3D terrestrial laser scanners to

detect and estimate tree trunk geometry in orchards and forests (Olofsson et al.,

2014; Lindberg et al., 2012; Raumonen et al., 2013; Méndez et al., 2014). These

studies are based on different techniques such as the RANSAC algorithm (Olofsson

et al., 2014), Hough transform (Schilling et al., 2011; Lindberg et al., 2012) or

least square adjustments (Raumonen et al., 2013) to fit circles or cylinders to the

data points belonging to the tree trunks in the scan data. They used algorithms

which often require a high resolution 3D point cloud and focused on tree detection

and measurement, but not specifically for mobile robot localisation and navigation.

Range imagery (Bienert and Schneider, 2013) and full-waveform (Yang et al., 2013)

data were also used in tree stem detection. However, these data need special in-

struments that are not widely used nowadays and more pre-processing is required

.
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Alternatively, techniques such as LIDAR can provide more comprehensive canopy

geometrical information and Rosell-Polo et al. (2009) have demonstrated its use for

the measurement of tree-row structure in orchards, but not specifically for local

mapping.

2.1.3 Combined vision and laser scanner based tree detec-

tion

Some research studies in the literature used both camera and laser scanner for tree

detection in orchards. Their objective was to improve tree detection capability over

the individual use of either a camera or a laser scanner. In the study presented

by Auat Cheein et al. (2011), a camera and a laser scanner were used together

for tree stem detection in an olive grove in which individual tree stems could be

distinguished. The algorithm first detected the stems from the acquired image and

returned the angle of the stem with respect to the mobile robot. The laser scanner

was then used to confirm the presence of the stem in the neighborhood of the

detected angle. Moorehead et al. (2012) and Subramanian et al. (2006) developed

autonomous vehicle guidance in orchards and groves. They used a combination of

visual and laser sensors to detect trees and map the environment. However, they

did not target individual trees.

2.2 Crop row detection and following using mo-

bile robots

Crops in farms are usually planted in approximately straight lines and parallel rows.

The uniform layout of the crop rows and the ability to discriminate the crops from

other objects or features (such as soil colour and row tilts) enable robot imple-

mentation in agriculture fields. These crop row features are used as the baseline
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for row detection and following, mobile robot tracking and navigation (Zhao and

Jiang, 2010).

Researchers have explored the use of different vision sensors to find guidance paths

on crop rows; for instance, detecting the position and orientation of crop rows

relative to the vehicle and detecting the edges along harvested crops. These methods

typically identified crop rows based on the crop colour and intensity difference to

the soil. They mainly focused on the development of different image segmentation

techniques and line fitting methods to extract the guidance information for crop

rows applications (Billingsley and Schoenfisch, 1997; Okamoto et al., 2002; Benson

et al., 2003; Han et al., 2004; Ortiz and Olivares, 2006; Gottschalk et al., 2010; Jinlin

and Weiping, 2010; Ericson and Astrand, 2010; Ding et al., 2011; Lulio et al., 2012;

English et al., 2013; Tian et al., 2014).

Various methods of image segmentation have been investigated to extract different

features for crop row detection and following. Studies often combined two or more

image segmentation techniques to detect the crop rows accurately. For example,

Benson et al. (2003) studied the use of histogram based segmentation and edge

detection to detect the crop rows, whilst Ericson and Astrand (2010) described a

method of detecting parallel rows using a combination of an edge-based method

and a Hough transform. In the paper presented by Gottschalk et al. (2010), a

combination of histogram-based method, threshold function, and morphological

imaging functions was used for extracting geometrical lines corresponding to the

crop rows.

As most crops are cultivated in nominally straight rows, most of the image pro-

cessing algorithms for crop row detection are based on line fitting methods such

as Hough transform (Leemans and Destain, 2006; Bakker et al., 2008; Jiang et al.,

2010; Ji and Qi, 2011; Behfar et al., 2014; Choi et al., 2015), linear regression method

(Billingsley and Schoenfisch, 1997; Han et al., 2004; Montalvo et al., 2012; Jiang

et al., 2015) or fixed template matching (Tillett et al., 2002).
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Researchers reported the use of spectral filters to enhance the detection of vision-

based guidance systems for row crop following application (Åstrand and Baerveldt,

2005; Kaizu and Imou, 2008). These systems achieved good performance in detect-

ing plants with near-infrared (NIR) images. Stereo vision systems have also been re-

searched for crop row detection systems and 3D field maps (Kise et al., 2005; Hanawa

et al., 2012). These methods require a distinct height difference between the crop

and ground and cannot be used on very young crops.

The common denominator among the crop row detection and following studies is

the use of a fixed forward field-of-view camera arrangement, which works adequately

in the case of tall, mature plants, but has limitations when the plants are small and

when the robot turns at the end of the row (Xue et al., 2012). This problem was

considered in the work presented by Xue et al. (2012) by developing a novel vari-

able field-of-view machine vision method allowing an agricultural robot to navigate

accurately between rows in cornfields. The machine vision hardware consisted of a

camera with pitch and yaw motion control.

Studies have also reported crop row detection using a laser scanner (Satow et al.,

2004; Weiss and Biber, 2011; Hiremath et al., 2014). However, laser scanners are less

convenient for crop row detection and following because the laser scanner cannot

effectively detect the crops, especially low or short crops.

As crops mature, more canopies grow together and rows overlaps. This can narrow

the inter-row spaces and cause difficulties in detecting and discriminating the crop

rows in view. Under these circumstances, the crops could not be detected accurately

(Thamrin et al., 2012).

2.3 Orchard map construction

Tree rows in well-organised agriculture fields such as orchards provide sufficient

information for the mobile robot to navigate and track its location. Therefore, it is
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essential for the mobile robot to detect the trees and tree rows in order to construct a

substantive map that is useful for mobile robot localisation and navigation (Thamrin

et al., 2014).

The literature offers several methods for the construction of a map of the orchard

to be used later as an a priori map for mobile robot localisation and navigation.

In some orchards, the trees are closely spaced in rows with branches spanning the

area between the trees in the row, or the tree trunks have small diameters with

branches hanging low to the ground. Therefore, the best option is to estimate the

position of the tree rows rather than the individual trees (Andersen et al., 2010).

Hansen et al. (2011) and Andersen et al. (2010) developed a simple map of the

orchard containing the starting and ending points of the rows in the orchard. The

map was formed in the Universal Transverse Mercator (UTM) coordinate system.

From this map, straight line representation of the orchard rows can be obtained for

localisation and navigation.

In the work reported by Libby and Kantor (2011), an a priori map was developed

consisting of line features formed by rows of trees in the orchard and point features

consisting of reflective tape placed at the ends of the rows. This map was used

for localisation by detecting both the row line and the row ends. Similarly, Zhang

et al. (2014) presented a method to create a local map for autonomous orchard

navigation that relies on the placement of strips of retro-reflective tape on the posts

at the end of the rows, which are easily detected by the LIDAR on the vehicle.

These artificial landmarks increased the probability of finding the next row and

entering it successfully.

In some orchard applications, it is important to map the individual trees to imple-

ment tree inspection tasks or yield maps. Creating a map of individual trees in the

orchard using GPS introduce challenges since accurate tree position data cannot

be obtained by the use of the GPS due to outages under the tree canopy. Tree

recognition and counting alone are not sufficient for obtaining tree position because

of the occurrence of missing trees in the row or false positive sensing caused by
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fallen branches (Heidman and Rosa, 2008).

The use of radio frequency identification (RFID) tags is another method to localise

the trees in the orchard. Potentially, one tag per tree could help localise the tree.

Such tags enable RFID readers to detect trees, even without the requirement of

line-of-sight. Moreover, a mobile robot with an on-board RFID reader is able to

detect and localise trees and objects without a computationally expensive vision

system (Rohweder et al., 2009). In the paper presented by Ampatzidis et al. (2009),

a novel location technology based on RFID has been proposed to establish each

tree’s position and the associations between trees and the bins for a yield mapping

system. Special passive RFID tags attached to the trees and bins and a RFID reader

located on the harvesting platform were utilised to identify the trees and the bins.

However, there are concerns from farmers in implementing this technology due to

tag acquisition costs and high labour maintenance issues which involve replacing

missing tags and tracking of the tags. In addition, passive tags have a limited

reading range and active tags have the issue of battery replacement after few years

of use (Heidman and Rosa, 2008).

In the study presented by Heidman and Rosa (2008), tree localisation under the

canopy was obtained from the combined information of the partially known a priori

tree plot characteristics and real-time sensed odometric information. The method

developed based on the interpoint distance method which successfully localised the

trees in the orchard. However, their method assumed that the orchard tree grid

spacing was nearly perfect, i.e., the trees were accurately placed with constant

distances between them in the row. This method might produce some errors in

orchards with tree placement errors (deviations from the planted positions) and

missing trees. Estimation of tree positions in an orchard to create a graph map

that can be used for mission planning and localisation for an autonomous robot

was also presented by Jæger-Hansen et al. (2012). The authors used LIDAR to

estimate the positions and foliage radius of the trees using ellipse fitting on point

cloud.
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2.4 Mobile robot localisation in orchards

Mobile robot localisation in orchard environments has motivated several works due

to its importance to the autonomous navigation of mobile robots in orchards. Po-

sition data collected from the mobile robot can be used to relate its position to the

orchard map. This allows the same robot to return to specific locations and perform

tasks such as tree inspection, thereby saving valuable resources. Localisation is also

critical for automated or semi-automated robots that can improve productivity for

agricultural applications and fulfill the growing demand for labour.

2.4.1 Mobile robot localisation using GPS

The localisation system using GPS guidance technology has been widely used in

many agricultural tasks. GPS navigation systems provide absolute position mea-

surements which are used to navigate the mobile robot to perform many field ap-

plications. To increase the accuracy of the conventional GPS navigation system,

additional technologies have been developed by many institutions. The more re-

cently developed systems are the Differential Global Positioning System (DGPS)

and the Real-Time Kinematic Global Positioning System (RTK-GPS).

Research has been reported using the RTK-GPS as the only positioning sensor for

the automatic steering system of agricultural vehicles (Stoll and Dieter Kutzbach,

2000; Thuilot et al., 2001). Regardless of the type of GPS, this navigational technol-

ogy has some limitations when the GPS system is used as the single position sensor

for the localisation of mobile robots. Therefore, a GPS is often combined with

other sensors to provide more accurate navigation information (Hellström, 2002).

Examples of combining RTK-GPS with IMU can be found in Kise et al. (2002)

and Eaton et al. (2010). Research has also been developed using RTK-GPS and

fibre optic gyroscope (FOG) sensors for autonomous agricultural vehicles (Noguchi

et al., 2002; Nagasaka et al., 2004). The work of Nagasaka et al. (2004) proposed



2.4 Mobile robot localisation in orchards 31

the use of RTK-GPS with tilt sensor to develop an autonomous system for intra-row

weed control.

The most common problems associated with the use of GPS for localisation and

navigation involve the obstruction of line-of-sight to satellites, multi-path issues and

interference from other RF sources (Hellström, 2002). In some orchards, GPS can-

not be effectively used for localisation and navigation since the agricultural robots

frequently move under the tree canopy, which blocks the satellite signals to the GPS

receiver (Li et al., 2009). For this, many researchers are developing autonomous nav-

igation systems for mobile robots in agricultural environments without using GPS

as a primary sensor for navigation.

2.4.2 Mobile robot localisation using sensor data fusion meth-

ods

The literature demonstrates the effective use of sensor data fusion methods to

estimate the pose of agricultural robots in orchards. For example, EKF pro-

vides a theoretical framework for multi-sensor data fusion to estimate the pose

of agricultural robots once appropriate models of the robot and the sensors are

defined. EKF is commonly used to combine laser scanner data with the data from

other sensors for mobile robot localisation in orchards (Hansen et al., 2009; Mo-

gensen et al., 2009; Subramanian et al., 2009; Libby and Kantor, 2011; Bergerman

et al., 2015). In the study presented by Libby and Kantor (2011), the EKF used two

types of laser-based correction steps. The first used point features (ends of rows),

whilst the second used line features (tree rows). Similarly, Bergerman et al. (2015)

developed navigation system that used the vehicle’s current location and guidance

commands as inputs for tree row following and turning in orchards. The localisa-

tion system was based on range data acquired by a 2D laser scanner to premapped

landmarks at the beginning and the end of each tree row. The landmarks consisted

of posts with reflective tape installed on each post. EKF with one prediction step
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and two update steps (row update and landmark update) was used to estimate the

pose of the agricultural vehicle as shown in Figure 2.5. The row update step used

the tree rows detected as lines, whilst the landmark update step used the position

of the mapped landmarks.

Figure 2.5: A block diagram of the localisation system using EKF using two update

steps (Bergerman et al., 2015)

To improve the performance of EKF, it is often combined with different optimisation

techniques and control strategies. Subramanian et al. (2009) developed a fuzzy logic

enhanced KF for sensor data fusion to guide an autonomous vehicle in the orchard.

The guidance system was then tested in citrus grove alleyways, and average errors

of 7.6 cm at 3.1 m/s speed and 9.1 cm at 1.8 m/s speed were observed. In the

work reported by Hansen et al. (2011), the performance of EKF was compared with

derivative free filters for mobile robot localisation and navigation in an orchard using

a 2D laser scanner. The localisation solution used the tree rows as measurements

to correct the pose estimated by the filters. The authors concluded that EKF

performed better; however, the difference between EKF and derivative free solutions

was within an acceptable boundary.

Another localisation algorithm was developed by Andersen et al. (2010) which

utilised an a priori map with rows mapped as lines. The localisation algorithm

detected tree rows as well as the row ends based on laser scanner measurements.

The localisation error, laterally, when driving between rows had a standard devia-

tion of 10.3 cm, and at the row ends a standard deviation of 16.7 cm longitudinally.

A 2D laser scanner was also used by Barawid et al. (2007) to develop an auto-

matic guidance system capable of navigating an autonomous vehicle between tree
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rows. Hough transform was used to recognise the tree rows. The auto-regression

method was used to obtain the minimum lateral and heading mean error. Figure 2.6

shows an outline of the orchard rows recognition using Hough transform (Barawid

et al., 2007).

Figure 2.6: Outline of the orchard rows recognition using Hough transform (Barawid

et al., 2007)

Particle filters (PF) are also used to solve the localisation problem. Unlike the

EKF, the PF is not restricted to Gaussian processes and it better manages the

non-linearities associated with the estimation process (Auat Cheein et al., 2011).

González et al. (2009) developed a mobile robot localisation using Ultra-Wide-

Band (UWB) range measurements and PF. The position of a mobile transceiver

was determined from the distances to a set of fixed, well-localised beacons. The

overall positioning errors (x, y) were 0.2 m, while the mean heading error was 10◦.

However, this method was only tested in an indoor environment. In the study

presented by Kurashiki et al. (2010), a self-localisation algorithm consisting of a

2D laser sensor and a PF to handle the sensing uncertainties caused by unexpected

objects was developed. Experimental results were obtained to travel through a
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real orchard and the standard deviation of the control error in the lateral direction

was less than 15 cm. Hiremath et al. (2014) presented a PF based navigation

algorithm for autonomous navigation in a maize field using a 2D rangefinder. The

algorithm was designed and tested in various field conditions with crop rows, but

not specifically with tree rows.

2.4.3 Mobile robot simultaneous localisation and mapping

(SLAM)

SLAM algorithm is used to build up a map within an unknown environment, while at

the same time using this map to localise the mobile robot’s current location. SLAM

can be implemented using different types of filters reported in the literature. For

example, the Extended Information filter EIF-SLAM implemented by Auat Cheein

et al. (2011) using vision system and laser sensor and based on detecting the tree

stems. The error in the x or y coordinates of the robot’s position did not exceed

0.5 m.

EKF can be considered as the most widely used algorithm to solve the SLAM

problem and has been introduced in some studies. Guivant et al. (2002) and Chris-

tiansen (2011) implemented EKF-SLAM using a 2D laser scanner. EKF-SLAM has

disadvantages in processing time and computational requirements. The complexity

of EKF-SLAM increases with the number of landmarks and features in the map

(Bailey and Durrant-Whyte, 2006). However, recent studies are seeking to address

these issues (Christiansen, 2011). Christiansen (2011) suggested a method for con-

trolling the size of the map in the SLAM algorithm by adding the new landmarks

and removing the old landmarks to keep a fixed number of landmarks to be logged.
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2.5 Agricultural inspection tasks

Agricultural robots for orchard applications have been introduced for inspection

and supervision tasks. With the advance of electronic and information technologies,

various sensing systems have been developed to provide increased information to

farmers. Accurate information concerning the spatial variability within fields is

very important for precision farming of specialty crops and has great potential to

improve overall operational efficiency (Lee et al., 2010).

Canopy height, width and volume of trees have a key role in assessing the ef-

ficiency and effectiveness of the main operations performed in orchards such as

precise fertilizers, irrigation, chemical applications and health assessment. Several

studies have shown the existence of a relationship between the canopy geometri-

cal parameters and yield (Pascual et al., 2011) and pruning and harvesting (Sanz

et al., 2011; Rosell-Polo and Sanz, 2012).

There have been several attempts to achieve canopy detection, using different sen-

sors such as vision, ultrasonic, and laser sensors. Wei and Salyani (2005) applied a

laser scanning system to measure the foliage density of a citrus canopy, whilst Cam-

poy et al. (2010) presented a canopy sensing system for modeling the tree canopy.

They used a laser range finder to generate a 3D grid map of the canopy. Tumbo et al.

(2002) reported a comparison between a laser scanner and ultrasonic transducers

to measure the canopy volume of citrus trees while Schumann and Zaman (2005)

developed a real-time software system to map citrus tree canopy volume and height

using ultrasonic sensors. In the study presented by Han and Burks (2009), a 3D

reconstruction of a citrus canopy was studied using vision system, whilst Grochol-

sky et al. (2011) demonstrated that laser sensing and computer vision can provide

high resolution automated canopy volume and crop yield estimates for vineyard

management. Moreover, multi-spectral imaging was used to detect disease in citrus

trees (Gonzalez-Mora et al., 2010).
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In the study reported by Changyi et al. (2015), a robust vision-based algorithm

for detecting and counting apples based on their color and shape modes was pro-

posed. The work presented by Cubero et al. (2015) shows the development of an

efficient computer vision system to be mounted on agricultural vehicles with the aim

of monitoring the yield and inspecting individually the quality of the production

during harvesting. The use of 3D cameras have been investigated in agricultural au-

tonomous inspection such as 3D reconstruction of apple trees (Karkee et al., 2014)

and localisation of fruit in trees for crop-load estimation and harvesting (Gongal

et al., 2016).

2.6 Conclusion

The autonomous navigation of mobile robots is having an increasing presence in

agriculture. However, more research must be undertaken to improve technology,

overcome limitations and decrease cost. The selection of sensors for row detec-

tion and following, mapping, localisation and navigation depends on the specific

agriculture applications, the existing natural landmarks and objects in the selected

environment, and the features required for these applications. From the reviewed

literature, the use of sensors for mobile robot applications in orchards and crop rows

can be summarised as follows:

• Camera and laser scanner can be considered as the most promising sensors

used as primary sensors for feature extraction, mapping, localisation and navi-

gation of mobile robots. Each one can be used individually or they can be used

together with other secondary sensors such as odometer and IMU (Hansen

et al., 2011).

• The majority of the research using vision sensors has been implemented in

crop rows rather than tree rows. Vision sensors are more suitable for detecting

navigation paths in crop rows because of the continuous plantation of crops
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which provides simplicity in detecting a line though the rows using suitable

image segmentation methods (Jinlin and Weiping, 2010; Jiang et al., 2015).

On the other hand, the discrete planting of trees provides difficulty in finding

a possible path between rows using vision sensors and adds complexity to the

image segmentation methods.

• Laser scanners are more convenient for tree row detection and following than

crop rows because the laser scanner cannot effectively detect the crops espe-

cially the low or short crops, while they can effectively detect trees and provide

accurate ranges and bearing angles of the surrounding trees in orchards (Libby

and Kantor, 2011; Christiansen, 2011).

Trees in orchards and groves are usually planted in nominally straight and parallel

lines. Tree and tree row detection depend on the type of the trees in the orchards,

the spacing between the trees in the row, the available features that can be extracted

from the trees and the other objects existing between the trees in the rows. The

main aspects regarding the studies in the literature for tree detection, row detection

and following and orchard mapping can be summarised as follows:

• Most of the studies in the literature focused on detecting tree rows and map-

ping them as lines rather than detecting and mapping the individual trees

in the row (Hansen et al., 2011). For example, when the trees are closely

spaced and the trunks are thin and often occluded by leaves, or the tree

rows are very noisy because of the irregular shape of the tree canopies. This

makes the detection and mapping of the individual trees a challenge (Andersen

et al., 2010). However, some algorithm detected and mapped the end of the

rows as point features as well as the tree rows as lines between the row ends

(Libby and Kantor, 2011). Other studies detected the individual trees based

on tree trunk, stem or canopy detection then line fitting methods such as

Hough transform, RANSAC method and least square method were often used

to fit lines through these detected trees (Hamner et al., 2010).
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• Few studies in the literature detected and mapped the individual trees in

the orchards based on tree trunk, stem or canopy (Guivant et al., 2002;

Auat Cheein et al., 2011). However, the prior work (cited in this chapter)

paid considerably less attention to the need to discriminate between trees and

non-tree objects in the tree rows of the orchard.

• Some of the studies of tree row detection and mapping used artificial land-

marks such as tags or reflective tapes placed on the trees or at the end of the

tree rows to detect and map the tree rows (Libby and Kantor, 2011).

• Most of the studies reported for tree trunk detection using a 2D or 3D laser

scanner were based on circle or cylinder fitting methods (Olofsson et al., 2014;

Lindberg et al., 2012). However, algorithms based on circle fitting are sensitive

to noise in the laser scans and often provide large estimation errors (Ringdahl

et al., 2013).

Localisation systems of mobile robots in orchards are mainly based on sensor data

fusion methods, the natural landmarks (i.e., trees) and other landmarks in the or-

chard to associate the position of the mobile robot to these trees or landmarks.

Localisation of the mobile robot in orchards reported in the literature can be sum-

marised as follows:

• GPS is more reliable for localisation and navigation of the mobile robot in

crop rows rather than tree rows in orchards. This is mainly because of the

closed canopy which frequently blocks the satellite signal to the GPS receiver

when the robot moves under the tree canopies (Li et al., 2009). However,

GPS can be used in the headland area where there are no trees.

• The majority of the studies reported in the literature focused on developing

localisation and navigation systems to localise and navigate the mobile robot

in midway along tree rows and perform a semi-circle turn at the end of the

row to enter the next row (Christiansen, 2011; Hansen et al., 2011; Mogensen

et al., 2009).
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• Most of the studies in the literature paid considerably less attention to han-

dling the problems with headland turning efficiently. In addition, localisation

and navigation might often fail when a clear row signal is missing, such as

an incomplete row or missing trees in the rows. This often happens at the

headland area where the agricultural vehicle cannot detect the trees.

• From the literature, it can be seen that EKF can be considered as the most

promising techniques for localisation and SLAM (Mogensen et al., 2009; Sub-

ramanian et al., 2009; Bergerman et al., 2015). It is an effective tool that is

applicable to non-linear robotic systems and allows the integration of mea-

surements from the complementary sensors to estimate the pose of the mobile

robot.

• From the studies presented in the literature, it is obvious that most of these

studies update the position estimation of the mobile robot with the tree rows

as lines in the correction step of the EKF. Some studies used two correction

steps such as tree rows update step as line features and end of rows update

step as point features (Libby and Kantor, 2011; Bergerman et al., 2015).

2.7 Formulation of research work

From reviewing the related studies in the literature, the following points identify

and highlight the research gap and the formulation of the research work as the

starting points for further analysis:

• The focus of this research is to detect the individual trees in the orchard rather

than detecting the tree rows as lines.

• Combining the feature extracted from the camera images and 2D laser scanner

data may enhance the detection capability and facilitate the discrimination

between trees and non-tree objects in the orchard.
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• It is important to map the position of the individual trees in the row rather

than the whole row as a line in the orchard. This helps the mobile robot to

potentially navigate to a certain tree in the orchard to perform tree inspection

and monitoring tasks.

• The focus on using the natural landmarks (i.e., trees) and the objects that

already exist in the orchard to develop the tree detection, mapping and lo-

calisation algorithms rather than using artificial landmarks which add cost to

the farmers.

• The information gained from the recent literature indicated that EKF method

could provide good promises and results for localisation of mobile robot in

orchards. However, the EKF correction step in this study will depend on the

positions of the individual trees rather than correcting with the whole rows

as line features and the end of rows as point features. This will potentially

contribute to enhance the precision of in-row localisation.

• Multiple paths will be investigated as the studies in the literature did not

investigate the localisation of the mobile robot in different paths. For example,

in some harvesting, pruning, thinning and tree inspection tasks, the mobile

robot is required to move close to the tree row and follow a line with a constant

distance to one side. In addition, turning around the trees in the row to inspect

the trees from different angles is required. Moreover, the right angle turn in

the headland has not been explored in the literature. The right angle turn

is attractive as it requires less space than the semi-circle turn and can be

executed by a small mobile robot with less soil damage compared to large

agricultural vehicles.



Chapter 3

Orchard robot equipment and

environment

In recent years, the use of sensors with agricultural robots has increased as their

costs decline. The mobile robot, with its on-board sensors, can accomplish differ-

ent tasks in outdoor agricultural environments. The selection, coordination and

combination of sensors to provide the information required for specific tasks is a

critical process. The placement of the sensors on the mobile robot platform plays a

vital role in sensors’ data fusion and relies on the type of the agricultural task and

the feature of interest from the environment. Data fusion from different sensors

provides a good estimate of the mobile robot states.

This chapter illustrates the mobile robot architecture and demonstrates the role of

each sensor in this study. It also explains the main errors in the sensor measurements

and their influence on the accuracy and performance of the designed algorithms.

This chapter also focus on methods of pre-processing the data by means of filtering

and rectifying before sensor data fusion. In addition, the simulated environment

constructed from artificial trees and used for preliminary evaluation of the devel-

oped algorithms is presented. The orchard layout and the major components of the

orchard that might affect this study, and their influence on the sensor’s measure-
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ments, are also discussed.

3.1 Mobile robot architecture

The platform used in this research is a CoroWare Explorer (CoroWare Inc., USA)

which is designed to operate in outdoor environment conditions. It can withstand

environmental elements such as dirt, dust, leaf trash, sand, gravel, and shallow

puddles. It has a rugged 4 wheel drive chassis with skid steering. The robot has

the ability to climb over 150 mm obstacles allowing it to move over places difficult

for other robot platforms with lower clearance to access. It is equipped with an

on-board computer running the Ubuntu Linux operating system with the Robot

Operating System (ROS) for building and running generated C++ and Matlab

codes. Whilst this robot was used principally as a convenient sensor platform, a

robot of this size, operating autonomously, could meet a major requirement in or-

chard management, namely simple inspection, e.g. to observe the state of flowering,

crop development, or damage following a storm event carrying little more than a

camera mounted on a suitable height and communications systems to capture the

required images for tree inspection task. Currently this is a labour intensive task,

especially in large orchards. A small robot with such size can also maneuver around

trees with ease.

Figure 3.1 shows the CoroWare Explorer platform with the on-board sensors. A

camera-laser scanner combination shown in Figure 3.2 is mounted on the robot

platform. The laser scanner is mounted on top of the camera and the camera-laser

scanner combination is positioned at the front of the robot. The robot platform

is also equipped with an IMU, two odometers attached to the right and left front

wheels and the RTK-GPS used for measuring the ground truth.

The on-board computer of the mobile robot is equipped with an external hard drive

used for on-board sensor data logging. The data from each sensor is logged with
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Figure 3.1: CoroWare Explorer platform with on-board sensors.
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Figure 3.2: The camera-laser combination.

a time-stamp which represents the moment the data was received and stored. The

acquired data is then easily used for later sensor data fusion implementation.

3.2 Mobile robot sensors

In this study, vision and laser scanner are used as the primary sensing systems for

feature extraction, tree detection, orchard mapping and mobile robot localisation.

Other sensors, such as odometer and IMU, are used as secondary sensors to comple-

ment the primary sensing systems. The RTK-GPS is used to measure the ground

truth of the mobile robot positions that are used as reference positions to evaluate

the estimated positions.

3.2.1 Laser scanner

The 2D laser scanner generates a single horizontal scan of the environment. Each

scan produces a polar map of the surrounding by combining the distances with the
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angle of each object. This polar map can be converted to a 2D Cartesian map of

the environment.

The 2D laser scanner is used in this study as the primary sensor because of its

benefits of high resolution and large field of view. In addition, it provides accurate

relative distances and bearing angles of objects in the surrounding area by measur-

ing the time of flight of the laser pulses. One important advantage of laser sensors

over visual systems is the ability to provide robust ranging data for object detec-

tion and localisation under ambient illumination conditions in outdoor agricultural

environments (Weiss and Biber, 2011). In this study, the laser scanner is used to

detect the surrounding trees in the orchard. The trees planted in rows provide

nearly continuous data for the mobile robot traveling between rows to be used for

mapping, localisation and navigation.

The laser scanner used in this research is a Hokuyo UTM-30LX/LN scanning laser

range finder as shown in Figure 3.2. It is a small, affordable and accurate laser

scanner that is perfect for small robotic applications. It operates with a scanning

angle of 270◦, angular resolution of 0.25◦ and maximum detectable range equal to

30 m as shown in Figure 3.3. The supply voltage of the laser scanner is 12V and

the current consumption is 700mA which allows it to be used on battery operated

platforms. More information about the laser scanner specifications can be found in

Appendix A.

The height of the laser scanner from the ground is 450 mm. The laser scanner is

placed at this height because it provides the best view of the tree trunks. Any lower

position will be affected by weeds, high grass, piles of fallen leaves and irrigation

fittings. Any higher position will detect the tree branches which might affect the

laser scanner measurements.

Some external parameters are expected to produce errors on both angle and distance

measurements of the laser scanner:
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Figure 3.3: The Hokuyo UTM-30LX/LN laser scanner detection angle and distance

(Hokuyo, 2008).

• The velocity of the mobile robot affects the number of the scans of each tree

or object.

• The vibration produced by the driving motors of the platform affects the

projection position of the laser scan on the trees and objects.

• The terrain roughness might introduce more vibration that affects the laser

scanner measurements.

3.2.2 Camera

Cameras are low cost sensors providing spatial and spectral information about the

scene making it a good candidate for the main detection sensors (Subramanian

et al., 2009). The acquired images allow the extraction of different features from

the environments such as colour, texture, shape, and edges of the objects. The

camera was used in this study to verify the colour and the edges of tree trunks and

the non-tree objects in the tree rows of the orchard.

The camera used in this study is a Logitech webcam Pro 9000 (see Figure 3.2)
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with 75◦ view angle. It has a high performance CMOS sensors with resolution of

2 megapixel. The image resolution has been set to 640 × 480 pixels, as higher

resolutions imply greater computing time. The height of the camera from the

ground is 330 mm. To achieve the laser and vision data fusion, camera calibration

and camera laser calibration are required. These are described in Sections 3.2.2.2

and 3.2.2.3 respectively.

3.2.2.1 Pinhole camera model

The pinhole camera model defines the geometric relationship between a 3D point

in the world (P ) and its 2D corresponding projection (p) onto the image plane.

When using a pinhole camera model, this geometric mapping from 3D to 2D is

called a perspective projection. The center of the perspective projection (the point

at which all the rays intersect) is known as the optical center or camera center, and

the line perpendicular to the image plane passing through the optical center as the

optical axis. The intersection point of the image plane with the optical axis is called

the principal point (cc). The focal length (fc) is defined as the distance between

the optical centre and the image plane (Cyganek and Siebert, 2011). The pinhole

camera that models a perspective projection of 3D points onto the image plane is

shown in Figure 3.4

3.2.2.2 Camera calibration

Camera calibration is one of the most fundamental problems in robot applications

that deal with vision systems. It is the process of determining the intrinsic and/or

extrinsic parameters of the camera with respect to known world coordinates. In-

trinsic parameters are the internal parameters of the camera which include the focal

length fc, the principal point coordinates cc, skew coefficient αc, and the distortion

coefficients kc. Extrinsic parameters represent the camera position and orienta-

tion relative to the world coordinates. Calibration is also an essential first step for
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Figure 3.4: The pinhole camera model.

minimizing lens distortion and improving the accuracy of object detection.

The intrinsic parameters are:

• Focal length: The focal length in pixels is stored in the 2× 1 vector fc.

• Principle point: The principle point coordinates are stored in the 2×1 vector

cc.

• Skew coefficient: The skew coefficient defining the angle between the x and y

pixel axes is stored in the scalar αc.

• Distortion coefficients: The image radial and tangential distortion coefficients

are stored in the 5× 1 vector kc.
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The extrinsic parameters are:

• Rotations Rc: A set of n (3×3) rotation matrices Rc1, Rc2, ..., Rcn (n=number

of images used in the calibration).

• Translations Tc: A set of n (3 × 1) vectors Tc1, Tc2, ..., Tcn (n=number of

images used in the calibration).

The camera calibration process is achieved by taking a diverse set of sharp images

for the calibration target. The chessboard pattern is recommended as a calibration

target as it is easy to detect its corners and it produces more accurate results. In this

study, the Matlab Camera Calibration Toolbox developed by Bouguet (2009) was

used to perform the camera calibration process. Camera calibration was performed

using 50 images with 640 × 480 pixels image resolution taken for the chessboard.

The chessboard was viewed from various distances, locations, and orientations in

the images as shown in Figure 3.5. The whole calibration target needs to be visible

in each image. The size of the squares in the chessboard must be measured correctly

to accurately extract the corners of the chessboard squares from the images using

the Matlab Camera Calibration Toolbox.

The results of the camera calibration were saved in a Matlab file to be used later

for camera-laser calibration and projection of the points from the 3D world refer-

ence frame to the image plane. The intrinsic parameters resulted from the camera

calibration were as follows:

• fc = [532.66196 ; 533.22203]

• cc = [310.06442 ; 234.86502]

• αc = 0.00000;

• kc = [0.06036 ; -0.17309 ; -0.00015 ; -0.00122 ; 0.00000]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: The chessboard calibration target viewed in images for camera calibration

process.



3.2 Mobile robot sensors 51

The uncertainty in the intrinsic parameters were as follows:

• fc error = [1.32793 ; 1.31631]

• cc error = [0.99522 ; 0.82969]

• αc error = 0.00000

• kc error = [0.00598 ; 0.03041 ; 0.00053 ; 0.00065 ; 0.00000];

3.2.2.3 Camera-laser calibration

Mobile robots are typically equipped with multi sensors, which require a robust

calibration process to represent the sensed data in a common coordinate system.

In many mobile robot applications, the data from the camera and laser sensors

are fused for better and more accurate detection and perception systems. It is

critical to estimate the precise homogeneous transformation between the coordinate

systems of the camera and the laser scanner to fuse the data acquired from these

two sensors. Therefore, camera-laser calibration was implemented to determine

the position and orientation of the camera relative to the laser scanner and to

obtain a rigid transformation between the camera and the laser scanner under the

assumption of known intrinsic parameters of the laser scanner (Meng et al., 2010;

Kassir and Peynot, 2010).

The camera-laser calibration was performed in this study using the Automatic

Camera-Laser Calibration Matlab Toolbox developed by Kassir and Peynot (2010).

The calibration method relies on the chessboard calibration target to act as a com-

mon dataset between the laser scanner and the camera. This toolbox assumes that

camera calibration has already been achieved. The output of the camera calibration

was a requirement in this step since it provides the orientation and position of the

calibration plane. This toolbox automatically extracted the points in the laser scans

corresponding to the chessboard. The camera-laser calibration utilised the points
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originating from chessboard which were viewed in the laser scans to determine the

camera to laser rigid transformation (Kassir and Peynot, 2010).

A single 2D laser scan provides little information about the location of the chess-

board line. Therefore, chessboard extraction was achieved by using the integration

of information from the entire dataset to estimate the length of the chessboard in

the laser scans. The flowchart of the chessboard extraction algorithm is shown in

Figure 3.6.

Figure 3.6: Automatic chessboard extraction from laser scans (Kassir and Peynot,

2010).
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The algorithm begins with straight line extraction. These extracted straight lines

are then classified into chessboard or background lines. From the classified lines, an

estimate of the camera-laser rigid transformation was obtained. This transforma-

tion was then further used to aid in the classification. Iteratively, the transformation

was refined until the same lines were reselected indicating convergence of the clas-

sification. At this point, the final calculation of the camera-laser transformation

was performed following Kassir and Peynot (2010). The Automatic Camera-Laser

Calibration Matlab Toolbox provided calibration results with uncertainty values

which represented the estimated standard deviation of the errors. The results of

this toolbox were as follows:

• Translation offset ∆ = [δx, δy, δz], which represents the translation in x, y,

and z axes respectively.

• Euler angles R = [ψx, ψy, ψz], which represents the rotation angles about the

x, y, and z axes respectively.

In this study, a set of 50 synchronised pairs of images and laser scans was taken

for the chessboard from different poses. The images used were the same as those

used for camera calibration. The results from the camera calibration were used

as input to the toolbox. The secure mounting of the camera and laser scanner

ensured that their relative positions were maintained during and after the camera-

laser calibration. The results obtained from the camera-laser calibration were as

follows:

• ∆± error (in m) = [−0.00487; 0.191;−0.0483]± [0.0204; 0.0688; 0.00967]

• R± error (in degree) = [10.3; 3.19;−179]± [2.87; 0.379; 0.46]
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3.2.3 Odometer

Odometer is an instrument that indicates distance travelled by a vehicle or a mobile

robot. Odometers are usually rotary encoders attached to the driving wheels to

measure the vehicle motion in straight lines and turns. They are widely used to

measure the position, orientation and velocity of agricultural robots. In this study,

two odometers were attached to the front wheels and used to measure the linear

velocity of the mobile robot.

External factors expected to influence the measurements obtained from the odome-

ters were as follows:

• Wheel slippage which produces significant errors in the odometer measure-

ments that are accumulated over time in real-world applications.

• The nature of the agricultural environments such as rough soil surface and

uneven terrain might produce large errors in the mobile robot position mea-

surements.

The CoroWare Explorer platform used in this study is driven by 4 DC motors

attached to each wheel. The DC motors of the front wheels (GM9236S025 DC Servo

Gearmotors from Pittman Express Inc.) have a built-in encoder with a resolution

of 500 clocks per revolution (CPR) and a gearbox with a reduction ratio of 65.5. A

bi-directional motor controller is used to control the DC motors for the front and

rear wheels for each side together. Further information regarding the DC motors,

encoders and motor controller can be found in Appendix A.
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3.2.3.1 Odometer determination of travelled distance and position of

the mobile robot

The odometer system is based on the assumption that the rotation of the wheel

provides a corresponding linear motion. In principle, odometers can be used to

measure the travelled distance and position of the mobile robot relative to its start

position. This is achieved using known constants such as the circumference of the

wheels and distance between the left and right wheels to measure the x and y

positions as the robot moves. The Coroware Explorer wheel diameter was 203 mm,

whilst the distance between the left and right wheels was 489 mm. The distance

travelled by the wheels of each side was calculated using the following formula:

D =
∆M × C
G× n

(3.1)

where:

D is the distance travelled by each side.

∆M is the change in the odometer count between the current and previous readings

C is the circumference of the wheel.

G is the gear ratio.

n is the number of odometer ticks per wheel revolution.

The forward distance Df travelled by the mobile robot was determined using the

following equation:

Df =
Dr +Dl

2
(3.2)

where Dr and Dl are the distances travelled by the right and left side respectively

and are determined using Equation 3.1.
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Figure 3.7 illustrates the robot movement from previous point A to a new point

B. The change in x and y positions from point A to point B were calculated from

Equation 3.3 and Equation 3.4 respectively.

∆x = Df cos(θ) (3.3)

∆y = Df sin(θ) (3.4)

where θ is the heading angle of the mobile robot. These position changes were

added to the previous positions xA and yA to determine the new positions xB and

yB as follows:

xB = xA + ∆x (3.5)

yB = yA + ∆y (3.6)

Figure 3.7: Determination of the new position of the mobile robot.
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Different tests were conducted to evaluate the efficacy of the travelled distance

data obtained from the odometers. The mobile robot was moved forward from the

same starting position in straight lines for different velocities (0.3 m/s, 0.5 m/s

and 0.8 m/s) on the grass to test the data acquired from the odometer. This was

achieved by setting the same velocity for the left and right wheels. These tests were

repeated three times for each velocity. In each test, the actual distance travelled

by the mobile robot (Dm) was measured manually and compared with the travelled

distance measured by the odometer (Df ) to determine the error in the travelled

distance data. The percentage error in the forward travelled distance (Ed%) was

calculated using the following equation:

Ed% =
|Dm −Df |

Dm

× 100 (3.7)

Table 3.1 shows the percentage error in the forward travelled distance for a straight

line movement for different velocities. From Table 3.1, it can be observed that the

increase in mobile robot velocity caused greater wheel slippage and increased the

error in the odometer measurements. The average of the percentage error in the

travelled distance on the grass for all tests was 10.32%. This error is expected to be

higher when the mobile robot executes different turns (semi-circle turn and right-

angle turn) due to the high wheel slippage caused by the mobile robot turns. Hence,

the mobile robot cannot rely only on the odometer measurements to determine its

position.
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Table 3.1: The results of the percentage error of the forward travelled distance in the

mobile robot on the grass for different velocities.

Linear velocity (m/s) Replicate Dm (m) Df (m) Percentage distance error (%)

0.3 I 10 10.853 8.53

II 10 10.934 9.34

III 10 10.889 8.89

0.5 I 10 10.934 9.34

II 10 10.97 9.70

III 10 11.113 11.13

0.8 I 15 16.878 12.52

II 15 16.761 11.74

III 15 16.748 11.65

Average 10.32

3.2.3.2 Linear velocity determination from the odometer

The odometer was used in this study to determine the linear velocity v of the mobile

robot. The linear velocity is determined as follows:

v =
Df

∆t
(3.8)

where ∆t is the time difference between time steps t and (t− 1).

Figure 3.8 shows the linear velocity measured by the odometer for the straight line

movement.
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Figure 3.8: Linear velocity of the mobile robot measured using the odometer.

3.2.4 Inertial Measurement Unit (IMU)

The IMU comprises an orthogonal configuration of three accelerometers, three gy-

roscopes and three magnetometers permitting direct measurements of the accel-

eration, the angular velocity and the strength of the magnetic field respectively

in x, y, and z axes of the mobile robot. These sensors are rigidly mounted to a

common base to maintain the same relative orientation. The IMU sensor used by

the CoroWare Explorer platform is 1044 0 - PhidgetSpatial Precision 3/3/3, which

combines the functionality of a 3-axis accelerometer, a 3-axis gyroscope, and a 3-

axis magnetometer all in one convenient package. Further information regarding

the IMU can be found in Appendix A.

If the starting position and orientation of the mobile robot are known, the IMU

measurements could be used to estimate the pose (position and orientation) of the

mobile robot by using numeric integration. However, the IMU has the disadvan-

tage of accumulated errors when used for position measurements. Since the IMU
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measurements are integrated to obtain position values, the measurement errors are

accumulated and the accumulated errors can produce a drift or inaccurate estimate

of the actual position. The IMU measurements might be affected by some external

parameters in the orchard. The ground roughness introduces tilt in the IMU af-

fecting its measurement accuracy in yaw as it is assumed that the angular velocity

from the IMU in pitch and roll are equal to zero.

3.2.4.1 Accelerometer data evaluation

The accelerometer data was tested thoroughly to figure out the consistency of its

readings. Figure 3.9 illustrates the inherent bias of the accelerometer data acquired

when the robot was stationary. Ax, Ay and Az represent the acceleration in the

x, y and z axes respectively. The reading of the acceleration Az in Figure 3.9

is approximately (9.8 m/s2) which is due to Earth’s gravity. The accelerometer

data was tested for different straight forward and turns movement of the mobile

robot. For all these tests the accelerometer data was prone to noise. For this, the

accelerometer was not used in this study. Figure 3.10 shows the inherent bias and

noise of the accelerometer for straight line movement of the mobile robot on the

grass.

3.2.4.2 Gyroscope data evaluation

In this study, the gyroscope was used to measure the angular velocity of the mobile

robot. It was observed that the gyroscope readings produced bias values when

the mobile robot was stationary, which require compensation. An experimental

test was carried out to measure the bias value of the angular velocity obtained

from the gyroscope. This was achieved by keeping the mobile robot stationary

and determining the mean value of the angular velocity for specific data samples.

This mean value was used as a constant value to be subtracted from the measured

angular velocity of the mobile robot.
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Figure 3.9: Acceleration data from the accelerometer for stationary test.
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Figure 3.10: Acceleration data from the accelerometer for straight line movement on

the grass.
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The angular velocity from the gyroscope was measured and tested. Figure 3.11

shows the angular velocity obtained from the gyroscope when the robot is moving

in a straight line. The deviations of the movement of the mobile robot from the

theoretical straight line were estimated to be not greater than (± 20) mm.
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Figure 3.11: The angular velocity from the gyroscope for straight line movement on

the grass.

3.2.5 Real Time Kinematic Global Positioning System (RTK-

GPS)

The RTK-GPS is widely used to determine the position of agriculture vehicles

performing different tasks. It provides x and y position data in UTM coordinates

from the latitude and longitude positioning data. The RTK-GPS uses a base station

for position correction. However, the RTK-GPS is not expected to provide perfect

data all the time as data dropout caused by tree canopies might block the signal

from the satellites. In addition the signal from the base station could also be lost and
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thereby the RTK-GPS would provide less accurate positioning data (Christiansen,

2011).

The RTK-GPS used in this study is Trimble R10 GNSS system. It is used to

measure the ground truth to evaluate the estimated position from the developed

localisation algorithm using EKF. The RTK-GPS antenna is placed on the top of the

mobile robot as shown in Figure 3.1. The distance from the RTK-GPS antenna to

the ground is about (780 mm). The offset between the RTK-GPS antenna position

and the laser scanner position on the mobile robot platform in x and y coordinates is

determined when evaluating the position measurements from the EKF localisation

algorithm. The accuracy of the position data from this RTK-GPS is (8 mm-15

mm). Further information regarding the RTK-GPS can be found in Appendix A.

3.3 Simulated environment

A simulated environment was constructed for preliminary data collection and eval-

uation of the developed tree trunk detection, orchard mapping and mobile robot

localisation algorithms. In this study, the simulated environment is not computer

simulation but it is real environment with simulated objects. The tree trunks were

the only simulated objects, whilst the rest are real (e.g. uneven terrain, illumination

conditions, trunk inclinations, mobile robot with on-board sensors, etc). This simu-

lated environment can be considered as a small scale model of the ideal orchard and

consists of simulated tree trunks constructed from mailing tubes (vertical cylinders)

of 900 mm height and 90 mm diameter. The simulated tree trunks were placed in

rows with approximately equal distances between the simulated trees in the row,

and approximately equal distances between the rows as would be expected in an

orchard as shown in Figure 3.12. In this simulated environment, it was assumed

that there was no tall grass and 500 mm of each simulated tree trunk was exposed

above ground level.
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Figure 3.12: The simulated environment with simulated tree trunks.

3.4 Orchard environment layout

In this study, a persimmon orchard, shown in Figure 3.13, was chosen for the

experimental tests. This orchard is located in Gatton, Queensland, Australia. The

distance between the tree rows is approximately 3.5 m, while the trees are planted

at intervals of approximately 2.5 m in each row. In this orchard, 500 − 700 mm

of each tree trunk is exposed above ground level and, for most trees, the branches

start above this level. The age of the trees was 12 years, whilst the height of the

trees was approximately 2.5− 3 m. It was observed that this orchard had ‘regular

tree trunks’ with trunk width ranging from 88 to 145 mm and ‘thin tree trunks’

with trunk width ranging from 54 to 67 mm. Figure 3.14 shows a sample of a thin

tree trunk and a regular tree trunk.

In this orchard, there were also some posts and tree supports placed in different

positions between the trees. These posts and tree supports have a different colour

than the tree trunks. The width of some posts in this orchard was within the range

of the width of the regular tree trunks. These posts were considered in this study
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as ‘small posts’, whilst the width of other posts was greater than the range of the

width of the regular tree trunks (i.e. greater than 145 mm) and these posts were

considered as ‘big posts’. The width of the ‘tree supports’ is less than the range of

the width of the regular tree trunks. Figure 3.13a shows the non-tree object samples

in the tree rows. The mobile robot and the orchard were used in developing the

tree trunk detection, orchard mapping and localisation algorithms.
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(a) Late September 2014.

(b) May 2014.

Figure 3.13: Tree rows in the orchard and typical non-tree objects
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Thin tree 

trunk   

Regular 

tree trunk   

Figure 3.14: Thin and regular tree trunks (May 2014).



Chapter 4

Tree trunk detection

This chapter presents the tree trunk detection algorithm using camera and 2D laser

scanner data fusion. A preliminary tree trunk detection algorithm, denoted here as

‘Detection Algorithm A’ was implemented to detect simulated tree trunks of similar

width as well as non-tree objects. This algorithm was enhanced to become ‘Detec-

tion Algorithm B’ which is capable of detecting tree trunks with different widths as

well as non-tree objects. The three main detection stages of each algorithm are set

out in Sections 4.2.1, 4.2.2 and 4.2.3, whilst Detection Algorithm A and Detection

algorithm B are presented in Sections 4.3.1 and 4.3.2 respectively.

Preliminary tests and results of Detection Algorithm A in the simulated environ-

ment are presented in Section 4.4, whilst the experimental tests and results of

Detection Algorithm B in the real orchard are presented in Section 4.5.

4.1 Tree trunk feature extraction

Feature extraction is the process of defining a set of features which will most effi-

ciently or meaningfully represent the information that is important for analysis and

classification. The detection of the agricultural features is directly related to the
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purpose of the mobile robot design and the sensors incorporated on it. The on-board

sensors of the agricultural mobile robot acquire the environmental information and

the processing of this information allows the extraction of the required biological

features. The detection process raises the following questions (Auat Cheein and

Carelli, 2013):

• What is the biological feature of interest?

• How is such a feature extracted/detected?

In this study, trees already existing in the orchard were selected as the natural

landmarks for mobile robot localisation as they were planted in straight and parallel

rows. In the selected orchard, described in Sections 3.4, it was observed that the

tree trunks could be distinguished from the leaves and other objects. Therefore,

the tree trunk was selected as the part of the tree suited to detection.

There are differences between the data acquired from the 2D laser scanner and

the camera images. The 2D laser scanner generates a single horizontal scan of

the environment, whereas the camera provides an instantaneous image of the local

environment with precise depth information. A laser scanner provides range and

bearing data, while the camera primarily provides intensity and colour information.

There are some common features in both types of data. For example, many corners

and edges correspond to a sudden change in the range along the laser scan data

and a sudden variation in image intensity (Peynot and Kassir, 2010) which enable

the fusion of the data from these sensors.
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4.2 Tree trunk detection algorithm

This work presents a new tree trunk detection algorithm using a low cost colour

camera and 2D laser scanning technologies as a component of fully automated

operation for such small mobile robot. The three main detection stages of the

developed algorithm are:

• Laser-based tree trunk detection.

• Projection of laser points on camera image plane.

• Vision-based tree trunk detection.

4.2.1 Laser-based tree trunk detection

The laser-based tree trunk detection stage starts by reading the laser scan data and

detecting the objects from the laser scan to determine their width (d). The objects

found in the scan represent the trees and non-tree objects. The width d is deter-

mined by detecting the start and the end edges of each object at ranges r1 and r2

respectively. These edges are detected from the derivative data d(ranges)/d(steps)

since the ranges r1 and r2 generate positive and negative spikes respectively in the

derivative data. Figure 4.1a shows the scan ranges plotted against the scan angle

steps for a detected tree trunk with width d. The laser scanner returns a value of

zero when no object is detected. Figure 4.1b shows the d(ranges)/d(steps) data

plotted against the scan angle steps. The algorithm detects each object by search-

ing for two consecutive positive and negative spikes in the derivative data. The

amplitude of the spike depends on the distance between the laser scanner and the

object. The tree trunk width d is represented by the number of angle steps between

the positive and negative spikes in the derivative data.
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(a) Laser scan ranges against angle steps.

(b) Derivative data against angle steps.

Figure 4.1: Tree trunk representation in the laser scan data and the derivative data.

The width d of the object is calculated from the polar representation of a single
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object as shown in Figure 4.2 using the following equation:

d =
√
r2

1 + r2
2 − 2r1r2 cos(∆φ) (4.1)

where φ1 and φ2 are the object angles at r1 and r2 respectively, ∆φ represents the

difference between φ1 and φ2.

Figure 4.2: Object width determination from laser scan data.

Prior to implementing the algorithm, the width of multiple tree trunks selected ran-

domly from the orchard are measured from the laser scan data using Equation 4.1 to

set out the initial tree trunk width distribution. Subsequently, the mean (µd) and

the standard deviation (σd) of the tree trunk width distribution are determined.

These values would vary from one orchard to another depending on the type of

the trees and need to be determined before starting the algorithm. The calculated

µd and σd are used to determine the probability density function of the normal

distribution pdf(µd) which represents the peak value of the probability around the

mean. To implement the tree trunk detection algorithm, the algorithm determines
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the width of each object in each laser scan and calculates its probability density

function pdf(d) which represents the probability of the object width being a tree

trunk width. The pdf(d) is compared with pdf(µd) to determine the rate of con-

fidence of the object from the laser scanner (ROCL). The pdf(d) and ROCL are

calculated using Equation 4.2 and Equation 4.3 respectively:

pdf(d) =
1

σd
√

2π
e
− (d−µd)

2

2σ2
d (4.2)

ROCL =
pdf(d)

pdf(µd)
(4.3)

Figure 4.3 illustrates the procedure of the laser-based tree trunk detection stage.

Figure 4.3: Laser-based tree trunk detection stage.
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4.2.2 Projection of laser points on camera image plane

The projection of any laser point on the image plane of the camera is achieved in

two steps:

• Transformation of the Cartesian coordinates of a point in a 3D space from

laser frame to camera frame.

• Projection from camera frame to the image plane.

Laser-camera transformation requires a priori camera calibration to determine the

intrinsic parameters of the camera, which include the focal length fc, the principal

point coordinates cc, skew coefficient αc, and the distortion coefficients kc. Camera

calibration was achieved using the Matlab Camera Calibration Toolbox developed

by Bouguet (2009). Extrinsic camera-laser calibration is also required to estimate

the parameters of the transformation between the laser frame and the camera frame.

The camera-laser calibration was performed using the Automatic Matlab Camera-

Laser Calibration Toolbox developed by Kassir and Peynot (2010). To achieve

the laser-camera transformation, the 3D coordinates of any point with respect to

the laser frame is first calculated from the range and bearing angle of the point.

Then the transformation from laser frame Pl = [Xl;Yl;Zl] to the camera frame

Pc = [Xc;Yc;Zc] is performed using Equation 4.4:

Pc =
Pl
Φ

+ ∆ (4.4)

where ∆ = [δx, δy, δz] is the translation offset vector and Φ is the rotation matrix

between the laser frame and camera frame about x, y and z axes and is defined by

a set of three Euler angles R = [ψx, ψy, ψz] which were obtained from camera-laser

calibration. The rotation matrix is determined using the following equation (Peynot
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and Kassir, 2010):

Φ =


cycz cxsz + sxczsy sxsz − cxsycz
−cysz cxcz − sxsysz sxcz + cxsysz

sy −sxcy cxcy

 (4.5)

where si and ci stand for sin(ψi) and cos(ψi) respectively. After that, the point

in the camera frame Pc is projected to the image plane according to the method

implemented in the Matlab Camera Calibration Toolbox by Bouguet (2009) as

described in Equations 4.6 to 4.7 below.

To project a point in space P of coordinate vector [Xc;Yc;Zc] in the camera reference

frame onto the image plane, the normalised pinhole image projection is given by:

xn =

Xc/Zc

Yc/Zc

 =

x
y

 (4.6)

Let r2 = x2 + y2. After including lens distortion kc, the new normalised point

coordinates xd is defined as follows:

xd =

xd(1)

xd(2)

 = (1 + kc(1)r2 + kc(2)r4 + kc(5)r6)xn + dx (4.7)

where dx is the tangential distortion vector which is due to imperfect centering of

the lens components and other manufacturing defects in a compound lens:

dx =

2kc(3)xy + kc(4)(r2 + 2x2)

kc(3)(r2 + 2y2) + 2kc(4)xy

 (4.8)

Once the distortion is applied and using the intrinsic parameter of the camera (fc,

cc, αc, kc), the final pixel coordinates [xp; yp] of the projection of point P on the
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image plane is determined as follows:

xp = fc(1)(xd(1) + αc ∗ xd(2)) + cc(1)

yp = fc(2)xd(2) + cc(2)

(4.9)

Therefore, the pixel coordinate vector [xp; yp] and the normalised (distorted) coor-

dinate vector xd are related to each other by:


xp

yp

1

 = K


xd(1)

xd(2)

1

 (4.10)

where K is the camera matrix and is defined as follows :

K =


fc(1) αc ∗ fc(1) cc(1)

0 fc(2) cc(2)

0 0 1

 (4.11)

The above procedure is used for camera and laser scanner data fusion. To perform

the fusion, the φ1, r1 and φ2, r2 are converted from laser polar coordinates to laser

Cartesian coordinates Pl then transformed to camera Cartesian coordinates Pc and

projected into the image plane as P1 and P2 respectively to be used for tree trunk

edge detection. The centre point P3 of the object is determined for tree trunk colour

detection as follows:

P3 = P2 +
P1 − P2

2
(4.12)

A rectangular region of interest (ROI) window is selected around P1, P2 and P3

as it is assumed that the required features are located in the ROI as shown in

Figure 4.4. This will reduce the processing time and minimise the effect of unused
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information and noise in the other parts of the image. The size of the ROI is directly

proportional to the object’s width and inversely proportional to the range of the

object determined by the laser scanner. The width of the ROI is approximately half

the width of the tree trunk measured by the laser scanner. Figure 4.4a demonstrates

the P3 of the tree trunk and the ROI selected around this point, while Figure 4.4b

shows the projected points P1 and P2 and the selected ROI around each tree trunk

edge.

 

ROI  

P3 

(a) ROI for colour detection.

 

ROI  

P1  P2 

(b) ROI for edge detection.

Figure 4.4: Samples of the ROI for colour and edge detection respectively.

4.2.3 Vision-based tree trunk detection

The vision-based tree trunk detection stage consists of both the colour and edge

detection methods, since colour only can not work well in different illumination

conditions. Edges alone also can not provide enough information for use in tree

trunk detection because there might be other vertical edges in the image such as
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posts and tree supports.

4.2.3.1 Tree trunk colour detection

The vision-based tree trunk detection algorithm first implements tree trunk colour

detection for the selected ROI since the tree trunks were observed to have visually

discernible colour from other scene elements (e.g. grass, sky, foliage). The HSV

(Hue, Saturation, Value) colour space was chosen for colour detection where the Hue

dimension represents the colour, the Saturation dimension represents the dominance

of that colour and the Value dimension represents the brightness. This colour space

is less affected by the illumination conditions compared to the RGB colour space.

The ROI pixels are converted from RGB space to HSV space. The most dominant

value of the Hue (Hd) in the ROI was used for colour detection because it provides

the information about the colour, whilst Saturation and Value focus on illumination

conditions.

Before starting the algorithm, a study was performed to determine the Hd of multi-

ple tree trunks selected randomly in the orchard to set out the initial tree trunk Hd

distribution under different illumination conditions. Subsequently, the mean µHd ,

the standard deviation σHd and the probability density function pdf(µHd) of the Hd

distribution are calculated. The pdf(µHd) represents the peak value of the probabil-

ity around the mean. To implement colour detection, the algorithm determines the

Hd in the ROI selected around P3 and calculates its probability density function

pdf(Hd) which represents the probability of the object Hd being a tree trunk Hd

and is determined from Equation 4.13. The rate of confidence of the tree trunk

colour (ROCC) is then determined from Equation 4.14:

pdf(Hd) =
1

σHd
√

2π
e
−

(Hd−µHd
)2

2σ2
Hd (4.13)
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ROCC =
pdf(Hd)

pdf(µHd)
(4.14)

Figure 4.5 illustrates the procedure for tree trunk colour detection from images.

Figure 4.5: Tree trunk colour detection.

4.2.3.2 Tree trunk edge detection

Tree trunk edges are the other features used (in this study) to detect the tree

trunk from images. Tree trunk edge detection is implemented for each ROI win-

dow around P1 and P2. The ROIs constructed at these points are converted from

RGB images to gray-scale images, where the gray-scale value is calculated as the

weighted sum of the R, G, and B components. The gray-scale images are filtered

to remove the noise prior to the edge detection using a Median filter because of

its capability to simultaneously reduce noise and preserve edges. Edge detection

is then implemented for each ROI window using the Canny method (Canny, 1986)

yielding binary windows. The algorithm searches for a possible straight edge in
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each window using the least-squares linear regression method. This is achieved by

fitting a linear model to the edge data in each ROI and calculating the measure

of the goodness of the fit R2 for each edge which has a value ranging from 0 to 1.

The angle of each line (β) for each edge is determined to test if the two edges are

parallel (Ep) as follows:

Ep =

 1 if 0 ≤ |β1 − β2| ≤ ∆βmax

0 if |β1 − β2| > ∆βmax
(4.15)

where, β1 and β2 are the angles of the right and left edge lines respectively and

∆βmax is the maximum allowable angle difference for the two lines being parallel

which was estimated from a set of tree trunk images. The rate of confidence from

edge detection for each tree trunk (ROCE) is determined from Equation 4.16.

ROCE = w1R
2
1 + w2R

2
2 + w3Ep (4.16)

where R2
1 and R2

2 are the measure of the goodness of the fit for the right and left

edge lines respectively. The wights w1, w2 and w3 are the weights for R2
1, R2

2 and

Ep respectively and were determined empirically. Figure 4.6 explains the procedure

for tree edge detection.

Figure 4.7 shows an example of the ROI images in RGB, gray-scale and Canny edge

detection, whilst Figure 4.8 depicts the fitting of a linear model to the edge data in

the same ROI of Figure 4.7 using least-squares linear regression method.
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Figure 4.6: Tree trunk edges detection procedure.

4.3 Combination of laser and vision based tree

trunk detection

In this study, a combination of laser and vision based tree trunk detection was

achieved to improve the tree trunk detection method. Early work, Detection Algo-

rithm A (Shalal et al., 2013), was implemented to detect simulated tree trunks and

trees of similar trunk size using vision and laser scanner data fusion. This algorithm

was tested in the persimmon orchard considered in this study. This algorithm faced
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Figure 4.7: The ROI images in RGB, gray-scale and Canny edge detection.

Figure 4.8: Least-squares linear regression method of tree trunk edge detection.
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some difficulties, especially in detecting the thin tree trunks and discriminating

between trees and different non-tree objects found in the tree rows. As a result,

Detection Algorithm A was revised and modified to become Detection Algorithm

B to overcome these limitations.

4.3.1 Tree trunk detection for trees of similar trunk size −

Detection Algorithm A

Detection Algorithm A developed in this study calculates the ‘rate of confidence’

for each object in the scene and determines whether it is a tree trunk or non-tree

object. The rate of confidence is a value between 0 (definite non-tree) and 1 (definite

tree) that is assigned to each tree trunk and non-tree object. In the first stage of

the Detection Algorithm A, laser scanner data was used to distinguish between the

candidate tree trunk and the non-tree objects based on width only. The candidate

tree trunk was further tested by the vision to decide if it was a tree trunk or a

non-tree object as illustrated in Figure 4.10a.

The ROCL for each object was determined and used to decide whether the object

is a candidate tree trunk or non-tree object depending on its value. A threshold

value THL for the ROCL that distinguishes between candidate tree trunks and non-

tree objects was determined empirically. The ROCL of each object was compared

with the preset THL. If ROCL of the object is greater or equal to THL, then

the algorithm considers this object as a candidate tree trunk and projects its edge

points and centre point onto the image plane, otherwise the object is considered as

a non-tree object. For the candidate tree trunk, vision-based tree trunk detection

was implemented and the final rate of confidence for the tree trunk (ROCTree) was

obtained from laser, colour and edge detection stages as follows:

ROCTree = ROCLWL +ROCCWC +ROCEWE (4.17)



4.3 Combination of laser and vision based tree trunk detection 84

where WL, WC and WE represent the weight of the laser scanner, colour and edge

detection respectively which need to be determined empirically prior to the algo-

rithm implementation. The ROCTree was compared with a preset threshold value

(THTree) to decide whether the candidate tree trunk is a tree trunk or non-tree

object. Figure 4.9 shows the flowchart of Detection Algorithm A.

Figure 4.9: Detection Algorithm A for trees of similar trunk size.
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(a) Detection Algorithm A

(b) Detection Algorithm B.

Figure 4.10: The block diagram of the two tree trunk detection algorithms.
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4.3.2 Non-uniformly sized tree trunk detection − Detection

Algorithm B

The Detection Algorithm B was designed to detect trees with non-uniformly sized

tree trunks using vision and laser scanner data fusion. This algorithm used the same

laser scanner and vision detection routines, but in a different sequence to discrimi-

nate between different types of trees and non-tree objects as shown in Figure 4.10b.

The Detection Algorithm B evaluates object width and colour concurrently instead

of using width as the primary discriminator of trees and non-tree objects. It was

observed that the tree trunks, posts and tree supports have vertical edges. There-

fore, the vision-based edge detection was only used to distinguish between the big

posts and the unknown objects that might have non vertical edges (e.g. animals,

big rocks).

In Detection Algorithm B, the ROCL, ROCC and ROCE are determined for each

tree and non-tree object. Threshold values THL, THC and THE for ROCL, ROCC

and ROCE respectively were estimated prior to the algorithm implementation. De-

tailed information regarding the setting of these thresholds can be found in Sec-

tion 4.5.1. The ROCL, ROCC and ROCE are compared with these threshold values

as shown in Figure 4.11 to distinguish between all the types of trees and non-tree

objects in the orchard.

The algorithm’s colour classification of the tree trunks using theHd distribution, was

made adjustable. This was achieved by accumulating the new tree trunk Hd values

from subsequent data collection events that were not included in the previous Hd

distribution into the previous Hd distribution. This process provides a recalibration

of the colour parameters which will enhance Detection Algorithm B accuracy.
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Figure 4.11: Detection Algorithm B to detect non-uniformly sized tree trunks in the

orchard.
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4.4 Preliminary test of Detection Algorithm A in

the simulated environment

Detection Algorithm A was tested using two rows of simulated tree trunks (T1-T12).

Each row consists of 6 simulated tree trunks as shown in Figure 4.12. The mobile

robot was moved from a known starting position midway between the two rows

to collect the image-laser scan pairs. The mobile robot movement was remotely

controlled to follow midway between the simulated rows. For each image-laser scan

pair, Detection Algorithm A was implemented. Figure 4.12 shows the simulated

tree trunks with the selected ROI around the centre and edges of the simulated tree

trunks.

Four objects (B1-B4) were inserted in the simulated environment at different loca-

tions between the rows and outside the rows to test Detection Algorithm A ability

to distinguish between the simulated tree trunks and the objects. The objects were

additional mailing tubes that were modified to be either different in geometry or

different in colour. Three of these objects (B1,B3, and B4) had a width of 170mm.

The fourth object (B2) had the same dimensions of the simulated tree trunks but

was a different colour.

Table 4.1 shows the results of the mean of the ROCTree of each individual simulated

tree trunk for N number of image-laser scan pairs. From the results, it can be seen

that the range of the mean of the ROCTree for the simulated tree trunks was between

0.786 to 0.903 which is acceptable for identifying tree trunks.
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(a) ROI for colour detection.

(b) ROI for edge detection.

Figure 4.12: The simulated tree trunks with the ROI around the centre and edges.

Table 4.2 shows the results of each non-tree object. The objects B1, B3, and B4

have low ROCTree because they have a different width than the simulated tree

trunks. The algorithm was capable of distinguishing them from the laser scanner
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Table 4.1: The results of the Detection Algorithm A using the simulated tree trunks.

Simulated tree trunk N Mean of ROCTree

T1 5 0.903

T2 5 0.888

T3 6 0.867

T4 8 0.890

T5 6 0.883

T6 8 0.854

T7 7 0.885

T8 6 0.875

T9 6 0.860

T10 6 0.877

T11 5 0.786

T12 5 0.878

data by determining their width and ROCL. These objects had ROCL less than

the THL and were considered as non-tree objects. The ROCTree of B2 was higher

than the other objects since B2 had the same width as the simulated trees but a

different colour. This object was detected by the laser scanner as candidate tree

trunk and the colour of this object was compared with the range of simulated tree

trunk colour. The algorithm detected it as a non-tree object because its colour was

not within the simulated tree trunk colour range.

Table 4.2: Simulated environment results for non-tree objects.

Non-tree object N Mean of ROCTree

B1 5 0.0009

B2 5 0.461

B3 5 0.0012

B4 5 0.0008
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4.5 Experimental results and discussion for real

orchard

Orchard tests were conducted using the CoroWare Explorer platform to extract

the tree trunk detection features and to evaluate the performance of the Detection

Algorithm B.

4.5.1 Tree trunk features extraction

The tree trunk feature extraction was achieved by moving the mobile robot between

multiple tree rows in the orchard to collect the required image-laser scan pairs for

each tree trunk. A set of 100 regular tree trunks selected randomly from the orchard

was used to extract the initial distribution of the regular tree trunk width. The

sampling frequency of the data collection from the on-board sensors was 7 Hz. It

was observed that each tree trunk was detected in a number of image-laser scan

pairs (N) ranging from 22 to 26. The following parameters were determined from

the laser scanner data set prior to implementing the Detection Algorithm B:

• The mean of the width d of each tree trunk for N image-laser scan pairs to

generate the initial tree trunk width distribution.

• The µd and σd for the initial tree trunk distribution.

• The ROCL using Equation 4.3 for all the tree trunks and the THL.

Figure 4.13 shows the histogram of the width distribution of the 100 selected regular

tree trunks. The resulting values of the µd and σd were 117.7 mm and 15.6 mm

respectively.

Figure 4.14 shows the histogram of the ROCL distribution of the same 100 regular

tree trunks. The lowest value of ROCL of the regular tree trunks was selected as

THL.
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Figure 4.13: Histogram of the regular tree trunk width distribution.
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Figure 4.14: Histogram of the ROCL distribution of the regular tree trunks.

Two sets of images were collected for 100 tree trunks selected randomly from the

orchard under different illumination conditions to study the effect on Hd values.

These were labelled either ‘sunny’ in which there was either clear sky (zero oktas) or

less than 1 okta of patchy cloud cover; or ‘cloudy’ in which the cloud cover was either

completely overcast (8 oktas) or very extensive (at least 6 oktas). These were chosen

because they represent the extremes of illumination and are also the two main



4.5 Experimental results and discussion for real orchard 93

illumination conditions observed at this orchard location. The normalised values

of Hd, described as values between 0 and 1 are used in this study. The following

parameters were determined from each image data set prior to implementing the

Detection Algorithm B:

• The mean of the Hd of each tree trunk for N image-laser scan pairs to generate

the initial tree trunk Hd distribution.

• The µHd and σHd for the initial tree trunk Hd distribution.

• The ROCC using Equation 4.14 for all the tree trunks and the THC .

Figure 4.15 shows the histogram of the initial Hd distribution of the 100 tree

trunks in typical sunny and cloudy days obtained in May 2014. A two-sample

Kolmogorov−Smirnov test was conducted to see if the two distributions of Hd of

the tree trunks in sunny condition versus cloudy condition are significantly different.

The null hypothesis, that the two distributions of Hd are not significantly different

from each other, was accepted at a significance level of 5%.
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(a) Typical sunny day distribution.
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(b) Typical cloudy day distribution.

Figure 4.15: The histogram of the initial Hd distribution of the tree trunks.
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The Hd distributions for both sunny and cloudy illumination conditions were com-

bined by adding the sunny and cloudy measurements together to include the full

range of the tree trunk Hd. Figure 4.16 shows the histogram of the Hd distribution

for the combined sunny and cloudy illumination conditions. Table 4.3 illustrates

the tree trunk Hd range, µHd and σHd for the initial sunny, cloudy and combined

distribution collected in May 2014.
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Figure 4.16: Histogram of the tree trunk Hd distribution for the combined sunny and

cloudy illumination conditions.

Table 4.3: The results of the initial sunny, cloudy and combined tree trunk Hd

distributions.

Distribution type Hd range µHd σHd

Sunny (May 10, 10-11 am) 0.1168-0.1882 0.1525 0.0201

Cloudy (May 18, 9-10 am) 0.1118-0.1795 0.1476 0.0183

Combined sunny and cloudy 0.1118-0.1882 0.15 0.0193

The tree trunk width distribution in Figure 4.13 and the Hd distributions in Fig-

ure 4.15 and Figure 4.16 were tested using z-test which is a statistical test used to

determine whether a sample data set comes from a population with a normal distri-

bution. The null hypothesis that these distributions were normally distributed was

accepted at a significant level of 5%. Therefore, these distributions were considered
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as approximately normally distributed.

Figure 4.17 shows the histogram of the ROCC distribution of the tree trunks for the

sunny, cloudy and combined distributions. The lowest value of the ROCC for each

distribution was chosen as THC to distinguish between tree trunks and non-tree

objects. The values of THC of the sunny, cloudy and combined distributions were

0.2048, 0.1469 and 0.1406 respectively.

(a) Typical sunny day distribution. (b) Typical cloudy day distribution.

(c) Combined distribution.

Figure 4.17: The histogram of the ROCC distribution of the tree trunks.

Figure 4.18 shows the histogram of the ROCE distribution of the same 100 tree

trunks. The lowest value ofROCE was chosen as THE which is used in the Detection

Algorithm B to distinguish between big posts and unknown objects (e.g. animals,

big stones) since the big posts were observed to have similar edges as the tree trunks.
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Figure 4.18: Histogram of the ROCE distribution of the tree trunks.

4.5.2 Detection Algorithm B test results and discussion

An area of approximately 50 m by 20 m in length and width from the persimmon

orchard, which contained five tree rows, was selected for experimental tests and

evaluation of the developed tree trunk detection algorithm. These rows contain 96

trees (90 regular trees and 6 thin trees) and 23 non-tree objects (10 big posts, 5

small posts and 8 tree supports). The experimental tests were carried out on four

days in 2014 as follows:

1. Sunny day on May 20 from 1:30 pm to 2 pm.

2. Cloudy day on June 28 from 10 am to 10:30 am.

3. Cloudy day on July 26 from 2:30 pm to 3 pm.

4. Sunny day on September 27 from 9 am to 9:30 am.

These four tests covered the autumn, winter and spring seasons, where the leaf trash

on the ground varied in amount but was not observed to affect laser scanner readings

and image projection. The growth of the tree trunk width over the experimental
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test periods was very small with a median variation of 0.28% from the initial tree

trunk width distribution. From the colour data collected, it was observed that the

tree trunks were separable from non-tree objects based on Hd values for all days.

4.5.2.1 Results using the initial Hd distributions

Four tests (Test 1−Test 4) were carried out to evaluate the performance of the

Detection Algorithm B using the initial sunny, cloudy and combined tree trunk

Hd distributions from Table 4.3. The algorithm was able to detect the tree trunks

and distinguish between tree trunks and non-tree objects in the orchard. Each tree

trunk or non-tree object may considered as one of the following definitions:

• True positive (TP): Tree trunks correctly identified as tree trunks.

• False positive (FP): Non-tree objects incorrectly identified as tree trunks.

• True negative (TN): Non-tree objects correctly identified as non-tree objects.

• False negative (FN): Tree trunks incorrectly identified as non-tree objects.

For each test the sensitivity (recall), precision and accuracy were calculated using

Equation 4.18, Equation 4.19 and Equation 4.20 respectively. Table 4.4 summarises

the results of the Detection Algorithm B.

Sensitivity =
TP

TP + FN
(4.18)

Precision =
TP

TP + FP
(4.19)

Accuracy =
TP + TN

TP + TN + FP + FN
(4.20)
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Table 4.4: Detection Algorithm B results for Test 1-Test 4 using the initial sunny,

cloudy and combined distributions from Table 4.3.

Test Illumination Hd TP FN TN FP Sensitivity Precision Accuracy

condition distribution (%) (%) (%)

Test 1 Sunny Sunny 87 9 21 2 91 98 91

(May 20, Cloudy 86 10 21 2 90 98 90

1:30-2 pm) Combined 90 6 21 2 94 98 93

Test 2 Cloudy Sunny 86 10 21 2 90 98 90

(June 28, Cloudy 86 10 20 3 90 97 89

10-10:30 am) Combined 88 8 20 3 92 97 91

Test 3 Cloudy Sunny 85 11 21 2 89 98 89

(July 26, Cloudy 87 9 21 2 91 98 91

2:30-3 pm) Combined 88 8 21 2 92 98 92

Test 4 Sunny Sunny 85 11 22 1 89 99 90

(September 27, Cloudy 84 12 22 1 88 99 90

9-9:30 am) Combined 87 9 22 1 91 99 92

From Table 4.4, the results indicate that there is no significant difference between

the detection accuracy of the algorithm using the initial sunny and cloudy distribu-

tions over the four tests. However, Detection Algorithm B produced better results

when using the combined distribution. Therefore, the combined distribution was

used for later tests, since it covers the range of both sunny and cloudy distributions.

4.5.2.2 Results using the adjusted Hd distributions

To enhance Detection Algorithm B accuracy, the tree trunk Hd distribution was

automatically recalibrated after each test. This was achieved by adding the Hd

values of the tree trunks that were incorrectly identified in the current test to be

included in the new Hd distribution used in the next test. Table 4.5 shows the tree

trunk Hd range, µHd , σHd and THC for the initial combined distribution and the

adjusted distribution after each test. From Table 4.5, there is no significant logical

seasonal shift in µHd .

Table 4.6 illustrates the results of Detection Algorithm B for the same four tests

using the adjusted Hd distributions. These results indicate that the adjusted Hd
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Table 4.5: The parameters of the initial combined distribution and the adjusted

combined distribution after each test.

Hd distribution Hd range µHd σHd THC

Initial distribution 0.1118-0.1882 0.15 0.0193 0.1406

Distribution after Test 1 0.1086-0.1908 0.1497 0.0202 0.1253

Distribution after Test 2 0.1063-0.1925 0.1504 0.0211 0.1176

Distribution after Test 3 0.1042-0.1925 0.1492 0.0218 0.1186

distributions significantly improved the detection accuracy for all tests. For exam-

ple, the accuracy in Test 4 was increased from 92% using the initial distributions

to 97% using the adjusted distribution after Test 3.

Table 4.6: Detection Algorithm B results using the adjusted Hd distribution.

Test TP FN TN FP Sensitivity (%) Precision (%) Accuracy (%)

Test 1 90 6 21 2 94 98 93

Test 2 90 6 20 3 94 97 92

Test 3 92 4 21 2 96 98 95

Test 4 93 3 22 1 97 99 97

4.5.2.3 Test 4 results and discussion

Test 4 has been used in this discussion because it had the full benefit of adjusted

colour parameters and achieved greatest detection accuracy because the distribution

of Hd used in Test 4 was adjusted three times (after Test 1, Test 2 and Test 3).

This means it includes wider range of Hd values. Figure 4.19 shows the width of

the tested tree trunks determined from the laser data of Test 4. In this figure, there

are six thin tree trunks. The algorithm assigns these thin tree trunks a very low

ROCL value less than the THL as shown in Figure 4.20.
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Figure 4.19: The distribution of the width of the tested tree trunks for Test 4.

Figure 4.20: The distribution of the ROCL of the tested tree trunks for Test 4.

Figure 4.21 illustrates the Hd values of the same tree trunks in Test 4, whilst Fig-

ure 4.22 shows the ROCC of the same tree trunks using the adjusted Hd distribution
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after Test 3. Three tree trunks (two regular tree trunks and one thin tree trunk)

were incorrectly identified as they had Hd values out of the adjusted Hd range by

2− 3% as shown in Figure 4.21. The algorithm assigns a low ROCC for these three

tree trunks which is less than the THC as depicted in Figure 4.22.

Figure 4.21: The Hd distribution of the tested tree trunks for Test 4.
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Figure 4.22: The distribution of the ROCC of the tested tree trunks for Test 4.

Table 4.7 illustrates the detailed results of the tested tree trunks and the non-

tree objects of Test 4 using Detection Algorithm B. From Table 4.7, Detection

Algorithm B failed in detecting two regular tree trunks and considered them as

small posts. These two regular tree trunks passed the laser detection but failed

the colour detection because their Hd values were 0.1962 and 0.1015 which are out

of the tree trunk Hd range presented in Table 4.5. The algorithm also failed in

detecting one thin tree trunk and considered it as tree support since its Hd value

was 0.1954 which is out of the tree trunk Hd range. In addition, one small post was

considered as a regular tree trunk because its Hd value was 0.1125 which is within

the tree trunk Hd range. However, the algorithm detected all the big posts and the

tree supports correctly.
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Table 4.7: The detailed results of the tree trunks and the non-tree objects of Test 4.

Object type Tested objects Correctly identified Incorrectly identified

Regular tree trunks 90 88 2

Thin tree trunks 6 5 1

Big posts 10 10 0

Small posts 5 4 1

Tree supports 8 8 0

4.6 General discussion

The developed tree trunk detection algorithm performed successfully in a real or-

chard environment. The variety of the trees and non-tree objects in the selected

orchard helped to make the algorithm more general and potentially applicable to

any well-maintained orchard in which the tree trunks and the non-tree objects are

separable in colour. The Detection Algorithm B can be used in another orchard

with the same type of trees without repeating the procedure for the initial distri-

butions of Hd and tree trunk width. The algorithm can use the same distributions

and thresholds that were already determined from previous tests as initial distri-

butions and thresholds in the new orchard. Then the algorithm will automatically

adjust the distributions and the thresholds after the first test in the new orchard.

However, when implementing this algorithm in another orchard with different type

of trees, an initial tree trunk width and Hd distributions would need to be deter-

mined since they vary from one orchard to another depending on the type of the

trees. Subsequently, the system will perform automatic recalibration after each test.

The developed algorithm can be modified to be used in other orchards which have

more classes of trees and non-tree objects by including a separate distribution for

each type of the trees and non-tree objects and adding extra features to distinguish

between them.

If the tree trunks and non-tree objects cannot be separated by colour the algorithm
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would need to be modified to extract another feature from the images such as

texture. Another situation that might affect the performance of the algorithm is

when the tree trunk is occluded by many leaves e.g. on a broken branch hanging

low to the ground, such that the individual tree trunks cannot be recognised. This

could be a problem for other types of trees that their trunks are occluded by leaves.

The algorithm used the fusion of the laser scanner and camera data to enhance

the detection capability in different illumination conditions and more object types.

It was observed that the tree trunk width measured by the laser scanner was not

affected by the illumination conditions. In addition, the use of HSV colour space was

effective since the Hue dimension of the colour is less affected by the illumination

conditions and it is a robust indicator for identifying the same colour and separating

objects with different colours.

The processing time of the image depends on the number of pixels of the image. As

the selected ROIs for colour and edge detection are small parts of the whole image,

then these ROIs required less processing time than processing the whole image. This

helped reducing the processing time and minimising the effect of unused information

in the image. The tree detection algorithm suggested in this study was successfully

used for mapping the individual trees in the orchard and mobile robot localisation.

The accuracy achieved by the developed tree trunk detection algorithm was 97%

which is higher than the accuracy of 94.7% obtained by Ali et al. (2008) and the

accuracy of 91.7% achieved by He et al. (2011). The developed algorithm requires

less image processing time than the algorithm presented by Auat Cheein et al.

(2011). This is mainly because the projection sequence from the laser scanner

coordinates to the image plane and constructing the ROI reduced the size of the

processed images, whilst Auat Cheein et al. (2011) processed the whole images to

detect the angle of the tree stem with respect to the mobile robot which required

longer processing time. The tree trunk detection algorithm developed in this study

was capable of detecting the tree trunks and discriminating between different tree

trunks and non tree objects. However, the prior work (cited in Sections 2.1) paid
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considerably less attention to the discrimination between trees and non-tree objects

in the rows of the orchard.

4.7 Conclusion

This chapter demonstrated a new method for detecting trees and non-tree objects

such as posts and tree supports using a camera and laser scanner data fusion. The

utilisation of both camera and laser scanner data enhanced the tree trunk detection.

Projection from the laser scanner to the image plane and selecting the region of

interest with the required features was effective since it reduced the processing time

and minimised the effect of the noise in the other parts of the image. The developed

algorithm relies only on the on-board sensors of the mobile robot without adding

any artificial landmarks such as tags or reflective tapes on the trees in the orchard.

The algorithm automatically adjusts the colour detection parameters after each test

which was observed to improve the detection accuracy.

A small robot platform was used to collect the data required to implement the

developed tree trunk detection algorithm. The algorithm was tested and evaluated

through extensive experimental tests in a real orchard environment under different

illumination conditions. At the end of Test 4, the algorithm was successful in

detecting the tree trunks and discriminating between different tree trunks and non-

tree objects with a detection accuracy of 97%.



Chapter 5

Orchard Map Construction

5.1 Introduction

Autonomous mobile robots are required to explore their environment without collid-

ing with any stationary or moving obstacles to successfully perform the desired task.

To efficiently carry out complex missions, autonomous robots need to maintain a

map of their environment. Robotic mapping addresses the problem of acquiring

spatial models of physical environments through the mobile robot’s sensors. The

availability of efficient mapping systems to produce accurate representations of the

environment is one of the main requirements for successful autonomous mobile robot

systems (Habib, 2007).

In agricultural environments, mapping is the process of constructing a map of the

agricultural field with its most relevant features (e.g. trees, crops and objects). The

knowledge of the location of the elements and the agricultural robots in agricultural

environments plays a crucial role in the design of automatic agricultural robot

(Auat Cheein and Carelli, 2013).
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During the mapping process, a map of the surrounding environment is built and

maintained to aid the navigation process or to perform a given task. Bad detection

can lead to an incomplete or unreliable map which affects the navigation process

(Auat Cheein and Carelli, 2013). A mobile robot can continuously update the map

to incorporate, for example, fallen branches or other new obstacles. Precise orchard

maps are essential for agricultural robots’ path planning, localisation and navigation

when detailed inspection (e.g. flowers, fruit, diseases) is to be undertaken.

This chapter starts with an explanation of the orchard map construction procedure

using the mobile robot’s on-board sensors in Section 5.2. Map construction of

the simulated environment is presented in Section 5.3, whilst real orchard map

construction is presented in Section 5.4.

5.2 Orchard map construction procedure

The map construction process is achieved by moving the mobile robot from a known

starting position midway between each two tree rows in the orchard. The mobile

robot is manually driven between the tree rows to collect the required data. The

image-laser scan pairs are acquired at different predetermined positions measured

by the RTK-GPS along the way between the two rows to implement tree trunk

detection and mapping algorithm.

The mapping algorithm typically requires accurate detection of the tree trunks and

estimation of trunk centre positions Oc in laser data. The tree trunks are detected

using the combination of laser and vision based tree trunk detection algorithm

presented in Section 4.3. Subsequently, the range rc and angle φc, which represent

the laser range and bearing angle respectively between the laser position on the

mobile robot and the tree trunk centres, are determined from Figure 5.1 using the
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following equations:

rc =
r1

cos(∆φ
2

)
(5.1)

φc = φ1 −
∆φ

2
(5.2)

where r1 and r2 are the ranges at the edge points of the object, φ1 and φ2 are the

object angles at r1 and r2 respectively and ∆φ represents the difference between φ1

and φ2.

Figure 5.1: Principle of the determination of the range and the angle of the tree’s

centre position.
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The tree trunk coordinates Xtree, Ytree for each image-laser scan pair are determined

from Figure 5.2 as follows:

Xtree = x+ rc cos(φc + θ) (5.3)

Ytree = y + rc sin(φc + θ) (5.4)

Figure 5.2: Graphical representation of the positions of the trees with respect to the

mobile robot in the orchard environment.

where θ is the heading angle of the mobile robot platform and (x, y) represent

the mobile robot coordinates in the orchard environment. The position of the

mobile robot in the orchard is determined with respect to a selected reference point

(Xorchard, Yorchard) = (0,0) as shown in Figure 5.2. The position of the mobile robot
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in the orchard is obtained from the RTK-GPS data. The RTK-GPS provides x and

y position data in UTM coordinates which must be converted to the orchard map

reference coordinates (Xorchard, Yorchard). Therefore, the x and y position data in

UTM coordinates have been compensated for the starting position of the mobile

robot to match the orchard map reference coordinates. The heading angle of the

mobile robot is obtained from the IMU. Figure 5.3 shows the flowchart of the orchard

mapping procedure.

Figure 5.3: The developed orchard mapping algorithm.
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The coordinates of each individual tree trunk (Xmean, Ymean) are determined by

calculating the mean of Xtree and Ytree for all the image-laser scan pairs of the same

tree trunk. The same procedure is used to determine the position of the non-tree

objects found in the tree rows.

The final map consists of the 2D coordinates of the trees and non-tree objects in

the orchard. Another map m, which contains the 2D coordinates of the individual

trees only, was extracted from the final map and stored in the on-board computer

of the mobile robot to be used for mobile robot localisation and navigation.

The estimated map accuracy required in this research was considered to be 2-3%

of the distance between the trees in the row. This accuracy was considered to

be sufficient for mobile robot localisation and navigation in the orchard for tree

inspection task.

5.3 Map construction of the simulated environ-

ment

The map construction algorithm was preliminary tested in the simulated environ-

ment described in Section 4.4. This was achieved by moving the mobile robot with

its on-board sensors from a known starting position in straight line in the mid-

way between the two simulated tree rows in equal steps. The position of the mobile

robot in the simulated environment was determined manually using measuring tape

with respect to the reference point (Xenvironment, Yenvironment) = (0,0) shown in Fig-

ure 5.4. This was considered acceptable for a small scale simulated environment

(8m × 3m). The image-laser scan pair was acquired at each step to implement tree

trunk detection and mapping algorithms to detect the simulated tree trunks and

non-tree objects and determine their x and y positions.

Figure 5.4 shows the final map of the simulated environment which contains the
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simulated tree trunks (T1-T12) and the non-tree objects (B1-B4). Each tree trunk in

this map is represented by a green circle, while each non-tree object is represented

by a red circle.

Figure 5.4: The map of the simulated environment.

The standard errors in x and y positions (SEx, SEy) of the simulated tree trunk and

non-tree objects were calculated using Equation 5.5 and Equation 5.6 respectively:

SEx =
σx√
N

(5.5)

SEy =
σy√
N

(5.6)
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where σx and σy are the standard deviation of the position data in x and y coor-

dinates respectively. N is the number of image-laser scan pairs for each simulated

tree trunk or non-tree object.

Table 5.1 shows the standard error results of each individual simulated tree trunk

depicted in Figure 5.4. From the results, it can be seen that there is small variation

in SEx and SEy results for the simulated tree trunks. This variation is due to the

range measurement errors determined by the laser scanner. The angular resolution

of the laser scanner also affects the standard error because the number of laser point

data decreases with the range for the same object. This affects the bearing angle

measurements and errors in SEx and SEy. Table 5.2 shows the standard error

results of each non-tree object presented in Figure 5.4.

Table 5.1: The results of the standard errors for the simulated tree trunks (T1-T12)

in the simulated environment depicted in Figure 5.4.

Simulated tree trunk N σx(mm) SEx(mm) σy(mm) SEy(mm)

T1 5 14.32 6.40 18.63 8.33

T2 5 13.63 6.09 21.84 9.76

T3 6 8.15 3.32 18.49 7.54

T4 8 16.34 5.77 24.24 8.57

T5 6 20.11 8.20 24.27 9.91

T6 8 24.20 8.55 23.12 8.17

T7 7 13.32 5.03 18.77 7.09

T8 6 10.56 4.31 19.35 7.90

T9 6 9.12 3.72 9.21 3.75

T10 6 10.55 4.31 19.35 7.90

T11 5 18.30 8.18 11.37 5.08

T12 5 19.46 8.70 6.38 2.85
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Table 5.2: The results of the standard errors for the non-tree objects (B1-B4) in the

simulated environment shown in Figure 5.4.

Non-tree object N σx(mm) SEx(mm) σy(mm) SEy(mm)

B1 5 6.61 2.95 12.11 5.41

B2 5 7.60 3.40 12.67 5.66

B3 5 12.59 5.63 9.42 4.21

B4 5 12.33 5.51 13.22 5.91

To verify the performance of the mapping algorithm, the accuracy of the constructed

map of the simulated environment was determined using the root mean square

(RMS) of the position error of the simulated tree trunks and non-tree objects.

The RMS of the x and y position errors are calculated using Equation 5.7 and

Equation 5.8 respectively:

Exrms =

√√√√ 1

n

n∑
i=1

(Xgt(i)−Xmean(i))2 (5.7)

Eyrms =

√√√√ 1

n

n∑
i=1

(Ygt(i)− Ymean(i))2 (5.8)

where Xgt(i) and Ygt(i) are the ground truth position values in x and y coordinates

of the i−th simulated tree trunk and non-tree object which were measured manually

using measuring tape. n is the number of tree trunks and non-tree objects of the

simulated environment.

The accuracy of the constructed map of the simulated environment was also cal-

culated using the RMS of the Euclidean distance (DE) between the ground truth

positions (Xgt,Ygt) and the calculated positions (Xmean,Ymean). The DE of the i−th
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simulated tree trunk and non-tree object is calculated from Equation 5.9, whilst the

RMS of DE is determined using Equation 5.10:

DE(i) =
√

(Xgt(i)−Xmean(i))2 + (Ygt(i)− Ymean(i))2 (5.9)

DErms =

√√√√ 1

n

n∑
i=1

(DE(i))2 (5.10)

Table 5.3 summarises the calculated position, the ground truth measurement and

the position error of each simulated tree trunk and non-tree object of the simulated

environment. The Exrms , Eyrms and DErms were also determined from Table 5.3 and

their values were 20 mm, 18 mm and 27 mm respectively. These values indicate

that the developed mapping algorithm was capable of providing the necessary map

accuracy for both localisation and navigation of the mobile robot in the orchard

presented in Section 5.2.
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Table 5.3: The results of the calculated position (Xmean, Ymean), ground truth mea-

surement (Xgt,Ygt), absolute value of the position error between the ground truth

and the calculated position and DE of each simulated tree trunk and non-tree object

of the simulated environment shown in Figure 5.4.

Simulated trunk Xmean Ymean Xgt Ygt |Xgt −Xmean| |Ygt − Ymean| DE

and object (mm) (mm) (mm) (mm) (mm) (mm) (mm)

T1 2272 2271 2290 2285 18 14 23

T2 750 2296 730 2280 20 19 28

T3 2282 3275 2265 3260 17 15 23

T4 754 3262 770 3280 16 18 24

T5 2231 4297 2250 4275 19 22 29

T6 742 4209 760 4195 18 14 23

T7 2202 5236 2225 5220 23 16 28

T8 725 5163 747 5180 22 17 28

T9 2212 6160 2195 6140 17 20 26

T10 715 6096 735 6115 20 19 28

T11 2204 7171 2220 7155 16 16 23

T12 720 7042 745 7065 25 23 34

B1 1857 2383 1875 2400 18 17 25

B2 1309 4680 1330 4695 21 15 26

B3 2614 4950 2630 4970 16 20 26

B4 1124 7578 1100 7560 24 18 30

5.4 Map construction of the real orchard

Experimental test was conducted on September 27, 2014 at 9 am to construct the

map of the selected area of the orchard. The orchard map construction was achieved

using the procedure described in Section 5.2. The tree trunks and non-tree objects

in the selected area of the orchard were detected using Detection Algorithm B

based on camera and laser scanner data fusion presented in Section 4.3.2. It was

observed that each tree trunk was detected in a number of image-laser scan pairs

ranging from 22 to 26. The detailed results of the correctly identified and incorrectly

identified tree trunks and non-tree objects are summarised in Table 5.4 and their
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2D coordinates are calculated.

Figure 5.5 shows the constructed map of the positions of the trees and non-tree

objects in the selected area of the orchard. From this map, it can be seen that the

tree supports were always located on the right side of the tree trunk. In addition,

the posts in each row were located after every eight trees and were lined up for the

five rows. There were small deviations in x−direction between the tree positions

along the row, whilst the deviations in y−direction were larger. The constructed

map was shown to be consistent with the visual verification of the selected area of

the real orchard environment. The 2D coordinates of the tree trunks in the orchard

map were extracted and saved in a map file to be used by the localisation algorithm

using EKF.

Table 5.4: The detailed results of the correctly identified and incorrectly identified tree

trunks and non-tree objects in the selected area of the orchard depicted in Figure 5.5.

Object type Tested objects Correctly identified Incorrectly identified

Regular tree trunks 90 88 2

Thin tree trunks 6 5 1

Big posts 10 10 0

Small posts 5 4 1

Tree supports 8 8 0

5.5 General discussion

For the selected area of the orchard, it was not feasible to measure the ground

truth of the tree trunk and non-tree object positions manually or by using RTK-

GPS. The manual measurement is impractical in such a large area with uneven

ground. In addition, RTK-GPS is not an absolute measure of tree trunk position

because the RTK-GPS cannot be held over the centre of the tree trunk, and the tree

canopy might block the signal from the satellites. Therefore, RTK-GPS was not
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Figure 5.5: The map of the selected area of the orchard.
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used to measure the ground truth position of the tree trunks and non-tree objects.

Moreover, expensive surveying equipment was not available for this study.

The RTK-GPS and on-board sensors (camera, laser scanner and IMU) have been

used to generate the map; and the map is subsequently used as a ground truth

to evaluate the accuracy of the mobile robot localisation. In the absence of other

ground truth methods (e.g. measuring of tree position using surveying methods),

the map generated by RTK-GPS and on-board sensors is assumed to be an accurate

representation of the orchard and suitable as a ground truth.

The uneven ground of the orchard produces some errors in the laser scanner mea-

surements. This is because the laser scanner is not always perfectly perpendicular

to each individual tree trunk when the robot is moving on uneven ground. The

estimated error of tree trunk centre position using laser scanner data grows with

increasing distance to the tree trunk. However, the developed algorithm consid-

ered only the closest tree trunks and objects to the mobile robot. In addition, not

all the trees have perfect circular cross-section. This might produce some error in

estimating the tree trunk centre position in the orchard.

An algorithm to construct a local orchard map of the individual trees and non-tree

objects of the rows was presented in this study rather than mapping the whole

tree row as a line (Hansen et al., 2011; Andersen et al., 2010). This allows the

mobile robot to navigate to a specific tree in the orchard to implement different

tree inspection tasks. The developed mapping algorithm relied only on the natural

landmarks (i.e., trees) and the objects that already exist in the orchard rather than

using artificial landmarks and reflective tapes (Libby and Kantor, 2011; Bergerman

et al., 2015) which add extra cost to the farmers.
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5.6 Conclusion

In this chapter, a method to generate a local map of the orchard was presented. This

method mainly detects the tree trunks and the non-tree objects using camera and

laser scanner data fusion and determines their 2D positions. The orchard map was

constructed using the RTK-GPS, IMU, camera and laser scanner. This map was

constructed only once and was saved on the mobile robot’s on-board computer to be

used as an a priori map for localisation and navigation. The integration of different

sensors for feature extraction and orchard mapping improved the robustness of the

map.

The constructed orchard map has shown to be consistent with the real orchard

environment and can be reliably used for mobile robot localisation and navigation.

Mapping each individual tree in the row, rather than the whole tree row as a line,

allows the mobile robot to navigate to a specific tree in the orchard to perform tree

inspection, pruning and harvesting tasks.



Chapter 6

Mobile Robot Localisation

6.1 Introduction

Localisation refers to the determination of the position and orientation of the mo-

bile robot with respect to a fixed coordinate system. The problem of robot lo-

calisation consists of answering the question Where am I? from a robot’s point of

view (Negenborn, 2003). An accurate and reliable positioning system is an impor-

tant component in autonomous mobile robots. For safe and successful navigation,

the mobile robot has to know its pose within the field and the elements from the

surrounding environment (Auat Cheein and Carelli, 2013).

The robot’s knowledge of its pose within the environment is not reliable if the

mobile robot has a bad localisation system. Thus, it would not be able to perform

path following and tracking activities. Autonomous navigation without a precise

knowledge of the actual pose in the agricultural field is dangerous for the robot’s

integrity and, more importantly, could represent a risk for field workers and the

possibility of the failure of an agricultural task. Additionally, the agricultural mobile

robot will not be able to perform any action associated with the agricultural task.

For example, it will not be able to supervise a specific portion of an orchard or
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grove (Auat Cheein and Carelli, 2013).

The mobile robot needs to acquire relative and absolute measurements from on-

board sensors giving the robot feedback about its driving actions and the situation of

the environment around the robot in order to localise itself. Given this information,

the mobile robot has to determine its pose as accurately as possible. What makes

this difficult, is the existence of noise and errors in both the sensing and driving of

the mobile robot. The uncertain information needs to be combined in an optimal

way (Negenborn, 2003). In addition, mobile robots need to recognise structures

like objects and natural landmarks from on-board sensor data. Once these natural

landmarks are detected, they are matched with a priori known information of the

environment to determine the pose of the mobile robots in order to perform their

tasks.

A mobile robot localisation system based on EKF data fusion to localise the mobile

robot in the orchard is presented in Section 6.5. Preliminary tests to verify the per-

formance of the localisation algorithm in the simulated environment are presented

in Section 6.7. In addition, Section 6.8 presents the experimental results of the

localisation algorithm evaluation in the real orchard.

6.2 Mobile robot localisation types

According to Christiansen (2011), localisation problem can be identified in different

cases as following:

• Local localisation: The case when the initial position of the mobile robot is

known. The task is to keep tracking of the mobile robot position while the

mobile robot is moving in the environment.

• Global positioning: The case when the initial position of the mobile robot

is unknown. The mobile robot position is determined without any initial
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reference. Hence, there can be multiple beliefs about the current position.

• Kidnapped robot: The case when the mobile robot is stolen from its current

position and placed in other position rather than its last known position.

In this case, the robot needs to recognise that it has been kidnapped and

determine its new position.

In this study, local localisation will be implemented since the initial position of the

mobile robot is known.

6.3 Sensor data fusion using Kalman filter

A key issue arises from the fact that a single sensor is usually insufficient to measure

the robot pose. Therefore, the robot has to gather data from different sensors over

time to determine its position and orientation. Sensor fusion methods are used

to combine data measured from different sensors such that the resulting estimated

position is more accurate and dependable than it would be when using each sensor

individually. In practice, many sensors are used simultaneously to compute the best

estimate of the robot’s pose (Hellström, 2002).

The Kalman filter (KF) provides a robust mathematical method for multi-sensor

data fusion in real time. It fuses the data from multiple sensors to generate the

system’s state estimates. This method not only estimates the past or the present

state, but also can predict the future status. The standard version of the KF is

designed to be used on processes that can be described by linear stochastic differen-

tial equations (Welch and Bishop, 2006). In most cases, complicated systems have

nonlinear characteristics. To account for this problem, extensions to the filter have

been developed. The extended Kalman filter (EKF) has been adopted to settle the

problem of nonlinear filtering. EKF is a linear estimate of nonlinear systems.

There are many techniques for linearizing nonlinear functions. EKF utilises a
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method called the (first order) Taylor expansion. The Taylor expansion constructs

a linear approximation to a nonlinear function from its value and slope. The slope

is given by the partial derivative. EKF linearizes the current mean and covari-

ance. The Taylor series is used to linearize the estimation around the current

estimate using the partial derivatives of the process and measurement functions

(Thrun et al., 2005).

6.4 Localisation using EKF

Along with the progress of digital computing technology, EKF has become the

subject of much research and associated applications, especially in autonomous

navigation research. In the mobile robot application, EKF is used to moderate

the sensor noise and estimate the pose of nonlinear mobile robot systems. It can

be used with different kinds of sensors under different environments as well as the

combinations (Yan et al., 2009).

The implementation of EKF for mobile robot pose estimation requires the identifi-

cation of two important models:

• Mobile robot motion model, f .

• Measurement model, h.

These two models are described in the following sections.

6.4.1 Mobile robot motion model

The mobile robot motion model describes the general movement of the mobile robot

platform to predict the next pose of the robot using the current pose and control

inputs. The motion model plays an essential role in the prediction step of the EKF.
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The pose of the mobile robot operating in planner environments such as orchard

environment comprises its x and y coordinates relative to the environment coor-

dinates, along with its heading angle θ. Therefore, the pose estimate vector is

represented by:

xt =


x

y

θ

 (6.1)

The motion model used in this study assumes that the robot can be controlled

through two variables, a linear velocity v and a angular velocity ω. The positive

angular velocities ω induce a counterclockwise rotation (left turns) while positive

linear velocities v correspond to forward motion as shown in Figure 6.1. Hence, the

control input vector is represented by:

ut =

v
ω

 (6.2)

Figure 6.1: Graphic representation of the mobile robot used in this work.



6.4 Localisation using EKF 126

The discrete time motion model used in this study is based on Dudek and Jenkin

(2010) and it is represented in Equation 6.3:


xt

yt

θt

 =


xt−1

yt−1

θt−1

 +


vt cos(θt−1)∆t

vt sin(θt−1)∆t

ωt∆t

 (6.3)

where ∆t is the time difference between time steps t and (t− 1).

6.4.2 Measurement model

The measurement model describes the formation process by which sensor measure-

ments are generated in the physical world. The specifics of the model depends on

the sensor measurements. In many robotics applications, features extracted from

range sensors correspond to distinct objects in the environment. For example, in

outdoor applications, they may correspond to tree trunks or other non-tree objects.

In robotics, these physical objects are called landmarks to indicate that they are

being used for robot navigation. The most common model for processing landmarks

assumes that the sensor can measure the range r and the bearing angle φ of the

landmark relative to the mobile robot’s local coordinate frame (Thrun et al., 2005).

The measurement model h used in this study is based on Thrun et al. (2005) and

it is described in Equation 6.4:

h(xt, yt, θt,mj,x,mj,y) =

rit
φit

 =

 √
(mj,x − xt)2 + (mj,y − yt)2

atan2(mj,y − yt,mj,x − xt)− θt

 (6.4)

where mj,x and mj,y are the coordinates of the j-th tree in the local map m and

(xt, yt, θt) represent the estimated position of the mobile robot. This equation
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matches the i-th detected tree from the laser scan to the j-th tree in the map at

time t (Thrun et al., 2005). The measurement model is essential for the correction

step in the EKF.

6.5 The developed mobile robot localisation al-

gorithm

This study presents a mobile robot localisation solution that does not rely on GPS.

The movement of the mobile robot in the orchard includes moving in straight lines

along the tree rows and turning from one row to another in the headland. As the

feature based EKF provides an effective method for mobile robot pose estimation,

it was adopted in this study for mobile robot localisation in the orchard. The

multiple measurements gathered from the robot’s sensors, containing random noise

are combined mathematically to generate the robot’s pose estimates at that time

instant.

The localisation solution uses the trees, which naturally exist in the orchard, as

landmarks to correct the pose estimated by the EKF. This localisation algorithm

will be used later as an input for the autonomous navigation of the mobile robot in

the orchard. The two main steps of EKF used in this study are described in detail

in Sections 6.5.1 and 6.5.2

6.5.1 Prediction step of EKF

This step starts by placing the mobile robot in a known starting pose in the orchard

which is used as an initial pose in the prediction step of EKF. This step relies on

the motion model of the mobile robot and the control inputs (linear velocity and

angular velocity). In this study, the linear velocity is computed using the odometer

data, while the angular velocity is obtained from the IMU measurements. Only
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the angular velocity in yaw from IMU was used in implementing the localisation

algorithm.

The prediction step is responsible for projecting the current pose and error covari-

ance estimates ahead in time from time step t − 1 to step t. It predicts the pose

forward in time (x̂−t ) using the estimated pose x̂t−1 and the control input ut−1 in the

motion model f . The pose prediction step is presented in Equation 6.5. Equations

(6.5) and (6.6) are based on Welch and Bishop (2006):

x̂−t = f(x̂t−1, ut−1) (6.5)

The error covariance matrix P−t in the prediction step is calculated using Equa-

tion 6.6:

P−t = AtPt−1A
T
t +WtQtW

T
t (6.6)

where At is the motion model Jacobian matrix for states and it is derived by partial

differentiation of the process model with respect to the state vector as follows:

At =
∂f

∂x
=


∂fx
∂x

∂fx
∂y

∂fx
∂θ

∂fy
∂x

∂fy
∂y

∂fy
∂θ

∂fθ
∂x

∂fθ
∂y

∂fθ
∂θ

 (6.7)

Based on the mobile robot motion model presented in Equation 6.3, the motion

model Jacobian matrix for states can be calculated from Equation 6.8. The Jacobian
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matrix At was evaluated using the predicted values of the state variables.

At =


1 0 −vt sin(θt−1)∆t

0 1 vt cos(θt−1)∆t

0 0 1

 (6.8)

The Wt in Equation 6.6 represents the motion model Jacobian matrix for noise,

and it is obtained by computing the partial derivatives of the process model with

respect to the control inputs as in the following equation:

Wt =
∂f

∂u
=


∂fx
∂v

∂fx
∂ω

∂fy
∂v

∂fy
∂ω

∂fθ
∂v

∂fθ
∂ω

 (6.9)

The result of determining the derivatives of Wt in Equation 6.9 is shown in Equa-

tion 6.10. The Jacobian matrix Wt was evaluated using the predicted values of the

state variables.

Wt =


cos(θt−1)∆t 0

sin(θt−1)∆t 0

0 ∆t

 (6.10)

The Qt is the process noise covariance matrix that describes the noise in the linear

velocity and angular velocity. Qt was determined prior to the implementation of

the algorithm and kept the same for all tests. Qt is determined as follows:

Qt =

σ2
v 0

0 σ2
ω

 (6.11)
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where σv and σω are the standard deviation of the linear and angular velocities

respectively.

6.5.2 Correction step of EKF

This step depends on an a priori map, measurement model and the measurement

inputs (range and bearing angle) measured by the laser scanner. The correction

step is responsible for correcting the projected pose and error covariance estimates.

The localisation algorithm uses the trees, which naturally exist in the orchard, as

landmarks to correct the estimated pose. The Kalman gain Kt is first calculated

from Equation 6.12. Equations (6.12), (6.17) and (6.18) are based on Welch and

Bishop (2006).

Kt = P−t H
T
t (HtP

−
t H

T
t + VtRtV

T
t )−1 (6.12)

where Ht is the measurement model Jacobian matrix for states. It relates the states

to the measurements and it represents the partial derivatives of the measurement

vector with respect to state vector as in Equation 6.13:

Ht =
∂h

∂x
=

 ∂rit
∂x

∂rit
∂y

∂rit
∂θ

∂φit
∂x

∂φit
∂y

∂φit
∂θ

 (6.13)

The result of determining the derivatives of Ht in Equation 6.13 is shown in Equa-

tion 6.14. The Jacobian matrix Ht was evaluated using the predicted values of the

state variables.

Ht =

−mj,x−xt√
q

−mj,y−yt√
q

0

mj,y−yt
q

−mj,x−xt
q

−1

 (6.14)
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where q = (mj,x − xt)2 + (mj,y − yt)2. The states xt and yt represent the mobile

robot position coordinates where the laser scanner was located and installed.

The Vt in Equation 6.12 is the measurement model Jacobian matrix for noise, and

it is obtained by computing the partial derivatives of the measurement model with

respect to the measurement inputs as in the following equation:

Vt =
∂h

∂u

 ∂rit
∂r

∂rit
∂φ

∂φit
∂r

∂φit
∂φ

 =

1 0

0 1

 (6.15)

Rt is the measurement noise covariance matrix that describes the noise in the ranges

and the bearing angles measured by the laser scanner. Rt was determined prior to

the implementation of the algorithm and kept the same for all tests. Rt is described

in Equation 6.16:

Rt =

σ2
r 0

0 σ2
φ

 (6.16)

where σr and σφ are the standard deviation of the range and bearing angle re-

spectively. In this study, the values used for σr and σφ were 0.03 m and 0.25◦

respectively.

The next step is to detect the tree trunks in the mobile robot’s path and search

for the closest tree trunk detected by both camera and laser scanner. The range r

and the bearing angle φ of this tree represent the actual measurements zt = [r, φ]T

that will be used in the correction step. In order to relate these measurements to

an actual tree in the orchard, the map m of the tree coordinates was used from

which the robot can look up tree positions when this is needed in the localisation

procedure. The algorithm will then associate the detected tree to the closest tree in

the orchard map and return its coordinates to be used in the measurement model

h to determine the estimated range and bearing angle between the tree and the
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mobile robot.

The corrected pose estimate x̂t is determined based on the difference between the

collected actual measurement zt and the estimated measurements that are computed

through the measurement model h as follows:

x̂t = x̂−t +Kt(zt − h(x̂−t )) (6.17)

The final step is to obtain the corrected error covariance estimate Pt matrix from

Equation 6.18:

Pt = (I −KtHt)P
−
t (6.18)

The EKF is a recursive estimation process. The updated pose and error covariance

matrix are used to predict the new estimates in the next time step. This recursive

nature is one of the very appealing features of the EKF. Figure 6.2 represents the

flowchart of the localisation algorithm developed in this study.
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Figure 6.2: The developed localisation algorithm using EKF.

6.6 Determination of position accuracy

To evaluate the performance of the developed localisation algorithm, the error be-

tween the ground truth positions and the estimated positions from EKF in x and

y coordinates were computed at each time step t using Equation 6.19 and Equa-

tion 6.20 respectively. The ground truth positions (xgt, ygt) were determined using

the RTK-GPS.

Ex(t) = xgt(t)− x(t) (6.19)
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Ey(t) = ygt(t)− y(t) (6.20)

The position error was also calculated through the Euclidean distance (DE) between

the ground truth position (xgt, ygt) and the estimated position (x, y) as follows:

DE =
√

(xgt − x)2 + (ygt − y)2 (6.21)

The estimated position accuracy required for the mobile robot when moving along

the row to implement tree inspection tasks is approximately ±0.15 m in x and

y coordinates and 0.2 m Euclidean distance. For headland turns, the estimated

position accuracy is ±0.25 m in x and y coordinates and 0.3 m Euclidean distance.

The estimated heading of the mobile robot was also compared with the heading

determined from the RTK-GPS ground truth position (xgt, ygt) to determine the

heading error.

6.7 Preliminary tests of the localisation algorithm

in the simulated environment

Preliminary tests were conducted using the CoroWare Explorer platform with its

on-board sensors in the simulated environment to evaluate the performance of the

localisation algorithm. The simulated environment in this test consisted of four

simulated tree rows with each row having five simulated tree trunks. The mobile

robot was remotely controlled to follow the midway between the simulated tree rows

with semi-circle headland turns. This test was repeated three times from the same

starting position. Table 6.1 summarises the results of the position and heading

errors of the three replicates of this path. From Table 6.1, the average of the RMS

of the Ex, Ey and DE between the ground truth and the estimated positions for the
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three replicates were 0.067 m, 0.053 m and 0.086 m respectively, whilst the average

of the RMS of the heading error was 2.86◦.

Table 6.1: The results of the RMS of the DE and the heading error of the three

replicates in the simulated environment.

Whole path RMS error

Replicate Ex (m) Ey (m) DE (m) Heading error (degree)

I 0.063 0.052 0.017 2.75

II 0.071 0.057 0.091 3.16

III 0.068 0.049 0.084 2.68

6.8 Experimental tests of the localisation algo-

rithm in the orchard

The localisation algorithm using EKF was also tested in the selected area of the

orchard by moving the mobile robot in different paths between the tree rows with

different headland turns. The movement of the mobile robot was remotely con-

trolled between the tree rows to collect the required data. In this study, the mobile

robot must have the capability to execute different paths as this is necessary for

undertaking different tree inspection tasks. The following are the main executed

paths:

• Moving midway between tree rows.

• Moving close to a row.

• Moving between trees in a row.
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The mobile robot was placed in a known starting pose which is used as the initial

pose for the EKF algorithm. The starting position of the mobile robot is known by

relating the robot position to the developed orchard map. The linear velocity of the

mobile robot was set to approximately 0.6 m/s for straight line movement along the

row and 0.3 m/s for the headland turn. The mobile robot knows its position in the

orchard while moving, by relating its estimated x and y positions to the map. Extra

information regarding the row number and the closest tree to the robot position

could be obtained from the x and y positions of the mobile robot. The x-coordinate

of the robot position relates to the row number, whilst the y-coordinate relates the

robot position to the closest tree in the row. Each of the above three paths were

repeated using either semi-circle or right angle headland turns. To determine the

accuracy of the localisation algorithm, the estimated positions of the three main

paths were determined and compared with the ground truth positions acquired from

the RTK-GPS.

Heavy tree canopies might weaken and attenuate the RTK-GPS signal over the

travel paths. This attenuation can make it difficult for the RTK-GPS receiver to

track the signal from the satellites. Although the selected orchard does not have

trees with a heavy canopy, there were RTK-GPS signal dropouts in several locations

during the tests which may negatively affect the collection of complete path data.

Hence, multiple replicates for each path were carried out on several days to increase

the number of paths available for analysis and to overcome data loss due to the

RTK-GPS signal dropout. Several path replicates were discarded due to the signal

dropout and only paths with complete RTK-GPS position data were utilised to

evaluate the performance of the localisation algorithm.
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6.8.1 Estimated position and heading for different paths

with semi-circle turn

The first test was achieved by moving the mobile robot from a known starting

location midway between tree rows and performing a semi-circle turn from one row

to another. This path is suited to tree inspection tasks for the trees in the left

and right sides of the mobile robot at the same time. The robot can recognise the

end of the row by comparing its y-coordinate with the y-coordinate of the last tree

in that row. When the mobile robot approaches from the last tree in the row, no

more trees are viewed by the camera. Therefore, the last tree in the row is used

in the correction step until reaching the end of the row and during the semi-circle

turn since this tree is still detected by the laser scanner. Figure 6.3a shows the

estimated path and the ground truth logged using RTK-GPS. The red path shows

the EKF localisation estimate of the robot positions, while the blue path shows the

corresponding ground truth values. The green dots show the positions of the trees

in the orchard map. Figure 6.3b shows the estimated heading of the mobile robot

for the same path.
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(a) The estimated path with ground truth values.
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(b) The estimated heading of the mobile robot.

Figure 6.3: The estimated path and heading of the mobile robot for the midway

movement between tree rows with semi-circle headland turns.
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In the second test, the mobile robot was moved approximately 1 m laterally from

the trees in the row. One advantage of using a small robot platform is that it can

navigate close to the row without damaging anything. In addition, moving close

to the row is more helpful for some inspection, pruning and harvesting tasks that

need the mobile robot to move close to the row. Figure 6.4 shows the estimated

path and heading angle of the mobile robot for this path.

(a) Estimated path.

0 50 100 150 200 250 300
−200

−150

−100

−50

0

50

100

150

200

H
ea

di
ng

 (
de

gr
ee

)

Time (s)

Up the row

Right
turn

Left
turn

Down the row Down the row

Right
turn

Up the row

(b) Estimated heading angle.

Figure 6.4: Estimated path and heading angle of the mobile robot when moving close

to the rows with semi-circle headland turns.
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The third test was achieved by moving the mobile robot in semi-circles between

trees in the row. Another benefit of using a small robot platform is that its small

size provides easy maneuverability around trees in the row. This path is useful for

inspecting the whole tree from different angles and also for pruning and harvesting

tasks. Figure 6.5 shows the estimated path and heading angle of the robot for this

path.
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Figure 6.5: Estimated path and heading angle when moving the mobile robot in

semi-circles between trees in the row.
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6.8.2 Estimated position and heading for different paths

with right angle turn

A further advantage of using a small mobile robot is that it can execute a sharp

right turn easily with less soil damage compared to large agricultural vehicles. In

addition, the right angle turn requires less space than the semi-circle turn. When

the mobile robot reaches the end of the row, it starts executing the right angle

turn (i.e. the headland turning) by moving forward with the current heading for

a certain distance such that the last tree in the row is still covered by the 270◦

scanning angle of the laser scanner. Then the robot executes the first sharp right

angle turn and moves forward with a heading perpendicular to the row heading

for a certain distance depending on the inter-row distance. After that, the robot

performs the second sharp right angle turn and continues moving forward until

entering the next row.

The previous three tests were repeated with right angle turns. The estimated path

and heading angle of the mobile robot when moving in the midway between the tree

rows and when turning around trees in the row with right angle turns are depicted

in Figure 6.6 and Figure 6.7 respectively. From Figure 6.7a, the triangles shapes

when the platform turns +90 or −90 degrees are expected to be due to the high

slippage of the wheels when the mobile robot (with skid steering) executes a sharp

right angle turn.
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(a) Estimated path.
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Figure 6.6: Estimated path and heading angle of the mobile robot when moving

between rows with right angle headland turns.

6.8.3 Position and heading errors for different paths

The localisation algorithm was evaluated against the logged RTK-GPS positions.

Figure 6.8 illustrates the Ex, Ey andDE when the mobile robot moves in the midway

between tree rows with semi-circle turns, whilst Figure 6.9 depicts the heading error

for the same path. From Figure 6.8, it can be seen that there is no significant

difference between the amplitude of the error in x direction and y direction with

maximum of ±0.12 m when moving along the row and ±0.15 m during the headland

turns. The maximum value of DE was 0.16 m when moving along the row and 0.2 m

during the headland turns. This proves that the localisation algorithm was capable

of achieving the necessary accuracy presented in Section 6.6.
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Figure 6.7: Estimated path and heading angle of the mobile robot when turning

around trees with right angle turn.

Table 6.2 summarises the RMS of position error based on DE for one run of the

three different paths using semi-circle headland turns. From this table, the position

error when moving along the rows is less than the error in the headland turns, which

is expected to be due to the high slippage of the wheels in the headland turns. From

the results obtained, it can be observed that the error is inversely proportional to

the turn radius.
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(a) Position error in x coordinate.
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(b) Position error in y coordinate.
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Figure 6.8: The position errors when the robot moves midway between rows with

semi-circle headland turns.
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Figure 6.9: The heading error when the robot moves midway between rows with

semi-circle headland turns.

Table 6.2: The results of the RMS of DE for one run of the three different paths with

semi-circle headland turns.

RMS of DE (m)

Localisation test type Along the row Headland turns Whole path

Midway between rows 0.089 0.104 0.092

Close to the rows 0.094 0.132 0.102

Turning around trees - 0.116 0.116

Each of the three main paths was repeated three times with the same starting

position with semi-circle turns and right angle turns to verify the performance of

the designed algorithm. Table 6.3 summarises the results of the RMS of position and

heading errors for the whole path of the three replicates. The results in Table 6.3

indicate that the performance of the localisation algorithm was similar for the three

replicates of each path.
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Table 6.3: The results of the RMS of the position and heading errors of the three

replicates of each path.

Whole path RMS error

Ex Ey DE Heading

Localisation test type Replicate Date (m) (m ) (m) (degree)

Midway between rows I September, 27 0.075 0.054 0.092 2.25

with semi-circle turn II October, 18 0.081 0.058 0.101 3.06

III November, 1 0.077 0.06 0.097 2.78

Close to the rows I September, 27 0.081 0.062 0.102 3.16

with semi-circle turn II October, 18 0.081 0.058 0.115 3.65

III November, 1 0.078 0.068 0.104 3.2

Turning around trees I September, 27 0.086 0.078 0.116 3.78

with semi-circle turn II October, 18 0.094 0.085 0.127 4.02

III November, 1 0.082 0.08 0.114 3.8

Midway between rows I September, 28 0.075 0.056 0.096 2.52

with right angle turn II October, 19 0.075 0.056 0.093 2.34

III November, 2 0.083 0.061 0.103 3.25

Close to the rows I September, 28 0.082 0.069 0.107 3.48

with right angle turn II October, 19 0.092 0.075 0.119 3.75

III November, 2 0.088 0.067 0.11 3.28

Turning around trees I September, 28 0.089 0.083 0.122 3.85

with right angle turn II October, 19 0.083 0.08 0.115 3.50

III November, 2 0.094 0.09 0.13 4.21

Average 0.08 0.07 0.103 3.32
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6.9 General discussion

The developed localisation algorithm using EKF has been shown to achieve a maxi-

mum position error of ±0.12 m when moving along the row and ±0.15 m during the

headland turns. The maximum value of DE was 0.16 m when moving along the row

and 0.2 m during the headland turns. This indicates that the localisation algorithm

was able to achieve the required accuracy presented in Section 6.6 for localising the

mobile robot along the rows and when turning from one row to another. The ac-

curacy of the EKF localisation algorithm depends on the accuracy of the position

of the trees in the map, since the EKF algorithm uses the tree positions from the

map in the correction step to correct the estimated position of the mobile robot.

However, in further more extensive trials, the accuracy might be further analysed

if a ground truth method other than the generated map is used to assess the accu-

racy of localisation. Localising the mobile robot in the headland turns produces a

greater error than moving along the row due to the high wheel slippage during the

execution of the turns. The mobile robot was capable of performing the semi-circle

and the right angle turn with acceptable error.

The developed localisation algorithm shows approximately the same behaviour for

all paths with slight differences in RMS errors between straight line and turn move-

ments. According to the results obtained from Table 6.3, it is obvious that there

is no significant difference between the results of the RMS of position and heading

error values of the three paths when using semi-circle turns or right angle turns.

However, the right angle turn is more attractive for the navigation task since the

right angle turn requires less space than the semi-circle turn. The average of the

RMS of Ex, Ey, DE and heading error of the paths in Table 6.3 were 0.08 m, 0.07 m,

0.103 m and 3.32◦ respectively, which are acceptable to achieve localisation along

the rows and the turns in the orchard.

The orchard map of the trees and non-tree objects was constructed prior to the

localisation process using the RTK-GPS, IMU, camera and laser scanner. This
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map was constructed only once to be used as an a priori map for localisation. The

localisation algorithm depends on the tree map and the measurements from on-

board sensors without the use of the RTK-GPS. In the localisation algorithm, the

RTK-GPS was only used for collecting the ground truth positions to evaluate the

performance of the developed localisation algorithm.

RTK-GPS signal dropout may occur due to heavy canopies over travel paths, which

block the signal from satellites. Although the selected orchard does not have trees

with a heavy canopy, there were RTK-GPS signal dropouts in several places in the

conducted paths. For this, multiple replicates were carried out in multiple days to

overcome data loss associated with RTK-GPS signal dropout. Several conducted

paths have been neglected due to signal dropout, whilst only paths with complete

RTK-GPS position data were used for evaluating the performance of the localisation

algorithm.

The irregular distance between the trees in the row does not affect the localisation

algorithm since the localisation algorithm is independent of the distance between

the trees. In addition, missing trees in the rows does not affect the performance of

the algorithm because the algorithm will use the closest detected tree in the row to

correct its pose in the correction step of the EKF.

Comparing with the algorithms that used EKF to localise the mobile robot only

in midway between tree rows (Hansen et al., 2009; Libby and Kantor, 2011; Chris-

tiansen, 2011; Bergerman et al., 2015), the localisation algorithm developed in this

study was capable of localising the mobile robot in different paths (midway be-

tween rows, close to the rows and moving around trees in the row) and different

turns (semi-circle turns and right angle turns). These multiple paths are necessary

to implement different agricultural tasks such as harvesting, pruning, thinning and

tree inspection tasks.
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6.10 Conclusion

This chapter presented a GPS-free mobile robot localisation algorithm using EKF

to localise the position of the CoroWare Explorer platform in a persimmon orchard

using the trees in the orchard as landmarks to correct the pose estimation. The

map of the indivitual trees is used as an a priori map to localise the mobile robot

in the orchard.

The EKF performs well and was able to keep the robot position close to ground

truth. The algorithm was tested and evaluated through extensive tests for different

paths and turns. By accurately modelling the noise on the on-board robot sensors

using the covariance matrices Qt and Rt, it was able to maintain a robust position

without the re-tuning of any parameters between tests.

The average of the RMS of the position errors in x and y coordinates for different

paths in the orchard were 0.08 m and 0.07 m respectively, whilst the average of

the RMS of the Euclidean distance between the ground truth and the estimated

position for the same paths was 0.103 m. The heading error was also measured

for these paths and the average of the RMS of the heading error was 3.32◦. These

errors are acceptable while driving along the rows and when leaving the rows for

headland maneuvering. The developed algorithms rely on the on-board sensors of

the mobile robot only without adding any artificial landmarks in the orchard.



Chapter 7

Conclusions and Future work

This thesis explored the use of a small mobile robot with on-board sensors to detect

individual trees and non-tree objects in the tree rows of an orchard and determine

the position of these trees and non-tree objects to generate a local map of the

orchard. The constructed map of the individual trees was used as an a priori map

for mobile robot localisation in different paths and turns required for tree inspection

tasks in the orchard.

In this chapter, conclusions with respect to the achievement of the objectives set

out in Section 1.5 are presented. Potential applications and recommendations for

further development of the research are also presented.

7.1 Achievement of objectives

This section provides a brief overview of the achievement of the objectives stated

early in Section 1.5 as follows:

Objective 1. Develop a tree trunk detection algorithm that can detect trees and

discriminate between trees and non-tree objects using camera and laser scanner
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data fusion.

A novel tree trunk detection algorithm that has the capability of detecting trees

and discriminating between trees and non-tree objects in an orchard was developed

and evaluated in this research work (Chapter 4). Attempts have been made in

researching the best method to consistently detect trees with natural variation

present in the orchard environment. It was observed that fusing camera and 2D

laser scanner data provides better detection performance than using each sensor

separately. The tree trunk was selected as the suitable part of the tree to be detected

since the tree trunks in the selected orchard for this study can be distinguished

from the leaves and other non-tree objects. The tree trunk detection algorithm

first detects the tree trunk using the laser scanner to determine its width and then

projects the edge points of the tree trunk to the image plane to construct a region

of interest with the required feature for colour and edge detection. The algorithm

was tested in the simulated environment and real orchard to verify its performance

through experimental tests. Automatic adjustment of the algorithm parameters

was achieved after each test which was shown to improve the detection accuracy by

5%.

Objective 2. Develop a method for constructing a local orchard map of the indi-

vidual trees and non-tree objects using the on-board mobile robot sensors to localise

the mobile robot in the orchard and to enable the individual tree monitoring and

inspection.

The data acquired by the mobile robot sensors was used to determine the 2D posi-

tion of the detected trees and non-tree objects to construct a local-scale map of the

orchard (Chapter 5). This map is used by the mobile robot to efficiently estimate

its position and orientation while moving between tree rows in the orchard. The

mapping results of the simulated environment and the real orchard indicated that

the constructed map can be reliably used for mobile robot localisation. Mapping

the orchard was done prior to the localisation process. This map was then saved to

the mobile robot’s on-board computer to be used for localisation.
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Objective 3. Develop a data fusion algorithm to estimate the pose (position and

orientation) of the mobile robot for different paths and turns in the orchard.

In this study, a data fusion algorithm based on EKF was developed to localise the

mobile robot in different paths (midway between rows, close to the rows and moving

around trees in the row) and different turns (semi-circle turns and right angle turns)

required for tree inspection tasks (Chapter 6). Trees were used as natural landmarks

for mobile robot localisation, together with the constructed map of the individual

trees and the measurements from the mobile robot’s on-board sensors (camera, laser

scanner, odometer and IMU) to enhance in-row localisation accuracy. The results of

the estimated position and heading was evaluated against the data acquired from

the RTK-GPS through extensive tests to determine the position accuracy. The

localisation algorithm was capable of executing the suggested paths and turns with

acceptable accuracy.

Objective 4. Evaluate of the performance of the developed algorithms through ex-

tensive experimental tests using a small mobile robot platform under different illu-

mination conditions.

The developed algorithms were evaluated through a range of outdoor experimental

tests in the simulated environment and real orchard. The final findings obtained

were summarised as follows:

1. The Detection Algorithm A was able to detect all the simulated tree trunks

and objects in the simulated environment. In the real orchard, Detection

Algorithm B was successful in detecting the tree trunks and discriminating

between different tree trunks (regular and thin tree trunks) and different non-

tree objects (small and big posts and tree supports) with a detection accuracy

of 97% at the end of Test 4.

2. The orchard map construction method successfully localised the simulated

tree trunks and the objects in the simulated environment with RMS position
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accuracy of 20 mm and 18 mm in x and y coordinates respectively and RMS

Euclidean distance of 27 mm. These results indicated that the proposed

mapping algorithm provides a map with adequate accuracy to be used for

mobile robot localisation and navigation. For the selected area of the orchard,

the mapping algorithm successfully localised all the trees and non-tree objects.

In the absence of ground truth methods (e.g. measuring of tree position using

surveying methods), the constructed map of the selected area of the orchard

was assumed to be an accurate representation of the orchard and consistent

with the visual verification, and can be reliably used as an a priori map for

localisation and navigation.

3. The localisation algorithm based on EKF was evaluated against the RTK-

GPS positions for different paths and turns. In the simulated environment,

the average of the RMS of the position error in x, y coordinates and Euclidean

distance between the ground truth and the estimated positions were 0.067

m, 0.053 m and 0.086 m respectively, whilst the average of the RMS of the

heading error was 2.86◦. For the paths executed in the real orchard, the

average of the RMS of the position error in x, y coordinates and Euclidean

distance were 0.08 m, 0.07 m and 0.103 m respectively, whilst the average of

the RMS of the heading error was 3.32◦. These errors are acceptable while

driving along the rows and when executing headland turns, and are adequate

for both autonomous mobile robot navigation and for potential inspection

tasks in orchard applications.

From these results, it can be concluded that the proposed algorithms for tree de-

tection, orchard map construction and mobile robot localisation have answered the

research questions presented in Section 1.4, and met the objectives stated in Sec-

tion 1.5.
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7.2 Applications of the research work

In recent years, the potential applications for autonomous mobile robots in agricul-

tural environments have been increasing rapidly. Tree detection, orchard mapping

and mobile robot localisation are fundamental tasks in many potential agricultural

applications. The potential applications of a small mobile robot with the developed

algorithms are presented below.

7.2.1 Tree trunk diameter measurement

Accurate estimation of tree trunk diameter is important in many applications. In

this study, the tree trunk diameter can be determined from the laser scan data from

Figure 7.1 using the following equation:

Diameter = 2R = 2rc sin(
∆φ

2
) (7.1)

where R is the radius of the tree trunk, rc is laser range between the laser position

on the mobile robot and the tree trunk centre determined from Equation 5.1 and

∆φ represents the difference between φ1 and φ2 as explained in Section 5.2.

The developed algorithms for tree trunk detection and individual tree mapping can

be upgraded to estimate and map the tree trunk diameter of the individual trees

and the mean of the tree trunks’ diameter for a specific row or specific area in the

orchard. In addition, these algorithms provide automatic detection of the thin trees

and regular trees and determination of their locations in the orchard. The diameter

of the tree trunk is a good predictor for tree trunk geometry and many other features

of interest (e.g. trunk volume, canopy volume and trunk cross-sectional area).
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Figure 7.1: Determination of the tree trunk diameter from laser scan data.

7.2.2 Yield mapping and estimation

The developed tree trunk detection and the determination of the position of in-

dividual trees in the orchard is essential to numerous horticultural studies and

management practices. Position information of individual trees are essential for

the development of yield and other management maps of the orchard. These tree

positions are also used for surveying tree populations and directing spray practices.

Yield mapping techniques are useful tools for orchard tree production management.

The yield map contains spatial information used to quantify the productivity of spe-

cific areas within the orchard. The main key to creating yield maps in an orchard

lies in the ability to accurately locate the individual position of every tree in the

field (Heidman and Rosa, 2008).

Trees are important crops that can produce for several years and require numerous

amounts of inputs during their lifespan. These inputs have the potential to be

optimised to increase crop production efficiency, reduce costs, and maximise profits.
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Positional and yield data can be gathered per tree for monitoring tree yield over a

number of years (Heidman and Rosa, 2008). A record of tree productivity per tree

over several years provides the opportunity for a farmer to more efficiently manage

inputs and remove trees that are not productive (Rains et al., 2002).

Another useful outcome is that the developed algorithm has the potential capa-

bility to record and map the trunk width and diameter of the individual trees in

the orchard which can be used for yield estimation of the individual trees in the

row, individual rows or a specific area in the orchard. The size of a tree is usually

expressed as trunk cross-sectional area which is the most common surrogate mea-

surement to determine the tree size and indirectly, the capacity of a tree to produce

fruits (Treder et al., 2010).

7.2.3 Tree inspection and growth monitoring

The inspection task in orchards is normally undertaken by the farmer who is sup-

posed to cross every row of the orchard in order to have up-to-date information

about the planted trees. In addition, routine agricultural tasks can result in fatigue

in labour under long hours of repetitive operations. Farmers benefit from mo-

bile inspection robots as they can undertake regular inspection tasks whilst being

more robust to environmental conditions than humans (Ortiz and Olivares, 2006).

Mobile robots have the potential for substituting human inspection routine for in-

dividual trees according to the farmer’s demands. The time and labour saving

that the mobile robot will provide for the farmer will enable the farmer to spend

more resources on other aspects of orchard management (Jeon et al., 2009). Small

autonomous mobile robots are more suited to individual plant care task than con-

ventional agricultural systems, and are ideal when dealing with monitoring tasks as

they are more gentle on the crops and the ground than tractors. This is due to the

lower weight compared to a tractors, causing less soil compaction. The degree of soil

compaction is important to consider, especially when dealing with monitoring and
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mapping as this is often performed multiple times throughout the year (Blackmore

and Griepentrog, 2002; Pedersen et al., 2005).

The mobile robot used in this study with the developed algorithm can survey the

orchard instead of humans, providing the farmer with the required important in-

formation about the trees by relating the position of the mobile robot to the con-

structed map of the individual trees. A mobile robot of such size could meet a

major requirement for commercial orchard inspection tasks such as observing the

state of flowering, crop development or damage following a storm event by carrying

a task-specific camera and communication system. The images captured by the

mobile robot camera will help monitoring plants’ growth and informing the farmer

about the situation of the orchard (plants’ health and diseases). For example, the

data collected from the robot sensors can provide information that helps the farmer

monitor individual trees or a whole tree row. This also helps to identify some prob-

lems related to tree growth (e.g. soil, irrigation problems, fruit diseases and fruit

development).

The capability of the mobile robot (used in this study) to execute different paths

(midway between tree rows, close to the rows and turning around the trees in

the row) helps the mobile robot to implement different tree inspection and growth

monitoring tasks. The mobile robot can capture images and laser scans for different

parts of the trees (in relation to known robot position) from different angles and

positions, and at different growth stages. These images and laser scans can be used

for later analysis (off-line processing) to extract different information such as tree

trunk and canopy geometry (volume, height).
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7.3 Future work

In conducting this research, several areas of further work have been identified. It is

recommended that future work of this research should focus on the following points.

7.3.1 Enhancements for tree trunk detection

Further improvements could be implemented to enhance the tree trunk detection

algorithm as follows:

• The accuracy of the tree trunk detection algorithm could be improved by

selecting several ROI above and below the original ROI for colour detection

to increase the reliability of the tree trunk colour estimation. The ability of

the algorithm to discriminate between the trees and non-tree objects could be

enhanced by detecting the colour of the tree canopy via the setting of another

ROI in the canopy area of the tree. In addition, adding another feature such

as tree trunk texture could also enhance the discrimination capability of the

algorithm.

• Exploring the utility of a fuzzy logic system to distinguish between all types

of trees and non-tree objects.

7.3.2 Enhancements for map construction and mobile robot

localisation

Map construction method and mobile robot localisation algorithm could be further

improved as follows:

• For the map construction process, the heading of the mobile robot could be
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determined from the laser scanner data which is expected to provide more

accurate heading.

• The localisation algorithm can be modified to provide an automatic update

of the orchard map. This is achieved by recording the coordinates of the trees

that were not present in the current map. Then the algorithm can use these

coordinates to update the map.

• Testing the localisation algorithm in different terrains such as hills and uneven

ground to study the effect of the angular velocity in roll and pitch on the

position accuracy.

• Investigating the ability of implementing the SLAM method in such orchard

environments and addressing the challenging problems related to the process-

ing time and the computational requirements of SLAM.

• Other ground truth methods (such as ‘total station’ surveying techniques)

should be considered in future work as these are likely to be more accurate

than RTK-GPS.

7.3.3 Implementation of autonomous navigation and tree

inspection

Likewise future work of this study should also focus on the following points:

• Using the suggested algorithms to develop a path planning and autonomous

navigation systems using a suitable control strategy to control the movement

of the mobile robot in the orchard.

• The tree trunk detection algorithm developed in this study can be modified

and used for the obstacle avoidance system to detect trees and objects and to

estimate the distance between them and the mobile robot in order to achieve

safe navigation.
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• Examining the possibility of using the developed algorithms for potential tree

inspection tasks and automatic diagnosis of plant diseases, as described in

Section 7.2.3.
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ciduous tree reconstruction algorithm based on cylinder fitting from mobile

terrestrial laser scanned point clouds’, Biosystems Engineering 124, 78–88.

Meng, L., Sun, F. and Ge, S. S. (2010), Extrinsic calibration of a camera with

dual 2D laser range sensors for a mobile robot, in ‘2010 IEEE International

Symposium on Intelligent Control (ISIC)’, Yokohama, September 8-10, 2010,

pp. 813–817.

Mogensen, L. V., Hansen, S., Ravn, O. and Poulsen, N. K. (2009), Comparing mo-

bile robot localisation algorithms using kalmtool, in ‘Proceeding of 15th IFAC

Symposium on System Identification’, Saint-Malo, France, July 6-8, 2009.

Montalvo, M., Pajares, G., Guerrero, J. M., Romeo, J., Guijarro, M., Ribeiro, A.,

Ruz, J. J. and Cruz, J. (2012), ‘Automatic detection of crop rows in maize fields

with high weeds pressure’, Expert Systems with Applications 39(15), 11889–

11897.

Moorehead, S. J., Wellington, C. K., Gilmore, B. J. and Vallespi, C. (2012), Au-

tomating orchards: A system of autonomous tractors for orchard maintenance,

in ‘Proceeding of IEEE international conference of Intelligent Robots and Sys-

tems, Workshop on Agricultural Robotics’, Vilamoura, Portugal, October,

2012.

Mousazadeh, H. (2013), ‘A technical review on navigation systems of agricultural

autonomous off-road vehicles’, Journal of Terramechanics 50(3), 211–232.

Nagasaka, Y., Umeda, N., Kanetai, Y., Taniwaki, K. and Sasaki, Y. (2004), ‘Au-

tonomous guidance for rice transplanting using global positioning and gyro-

scopes’, Computers and Electronics in Agriculture 43(3), 223–234.

Negenborn, R. (2003), Robot localization and Kalman filters, Master thesis, Utrecht

University.



REFERENCES 171

Noguchi, N., Kise, M., Ishii, K. and Terao, H. (2002), Field automation using robot

tractor, in ‘Proceedings of Automation Technology for Off-Road Equipment)’,

Chicago, USA, pp. 239–245.

Okamoto, H., Hamada, K., Kataoka, T., Terawaki, M. and Hata, S. (2002), Auto-

matic guidance system with crop row sensor, in ‘Proceedings of the Automation

Technology for Off-road Equipment, Chicago, Illinois, USA’, pp. 307–316.

Oksanen, T., Kosonen, S. and Visala, A. (2005), Path planning algorithm for field

traffic, in ‘2005 ASAE Annual Meeting’, Tampa, FL.

Olofsson, K., Holmgren, J. and Olsson, H. (2014), ‘Tree stem and height mea-

surements using terrestrial laser scanning and the ransac algorithm’, Remote

Sensing 6(5), 4323–4344.

Ortiz, J. and Olivares, M. (2006), A vision based navigation system for an agri-

cultural field robot, in ‘IEEE 3rd Latin American Robotics Symposium, 2006.

LARS’06.’, IEEE, pp. 106–114.

Parhi, D. and Singh, M. (2009), ‘Navigational strategies of mobile robots: a review’,

International Journal of Automation and Control 3(2), 114–134.

Pascual, M., Rufat, J., Villar, J., Rosell, J., Sanz, R. and Arno, J. (2011), ‘Evalu-

ation of peach tree growth characteristics under different irrigation strategies

by lidar system: Preliminary results’, Acta horticulturae pp. 227–232.

Pedersen, S., Fountas, S., Have, H. and Blackmore, B. (2005), ‘Agricultural robots:

an economic feasibility study’, Precision Agriculture 5, 589–595.

Peynot, T. and Kassir, A. (2010), Laser-camera data discrepancies and reliable

perception in outdoor robotics, in ‘2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems’, Taipei, Taiwan, October 18-22, 2010,

pp. 2625–2632.

Rains, G. C., Thomas, D. L. and Perry, C. D. (2002), ‘Pecan mechanical harvesting

parameters for yield monitoring’, Transactions of the ASAE 45(2), 281–285.



REFERENCES 172
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