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Abstract

Future climate change is likely to affect distributions of species, disrupt biotic

interactions, and cause spatial incongruity of predator–prey habitats. Under-

standing the impacts of future climate change on species distribution will help

in the formulation of conservation policies to reduce the risks of future biodi-

versity losses. Using a species distribution modeling approach by MaxEnt, we

modeled current and future distributions of snow leopard (Panthera uncia) and

its common prey, blue sheep (Pseudois nayaur), and observed the changes in

niche overlap in the Nepal Himalaya. Annual mean temperature is the major

climatic factor responsible for the snow leopard and blue sheep distributions in

the energy-deficient environments of high altitudes. Currently, about 15.32%

and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue

sheep habitats, respectively. The bioclimatic models show that the current suit-

able habitats of both snow leopard and blue sheep will be reduced under future

climate change. The predicted suitable habitat of the snow leopard is decreased

when blue sheep habitats is incorporated in the model. Our climate-only model

shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow

leopard under current climate and the suitable habitat reduces to 5,435 km2

(reduced by 24.02%) after incorporating the predicted distribution of blue

sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030

and by 21.57% in 2050 when the predicted distribution of blue sheep is

included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050

based on the climate-only model. It is predicted that future climate may alter

the predator–prey spatial interaction inducing a lower degree of overlap and a

higher degree of mismatch between snow leopard and blue sheep niches. This

suggests increased energetic costs of finding preferred prey for snow leopards –
a species already facing energetic constraints due to the limited dietary

resources in its alpine habitat. Our findings provide valuable information for

extension of protected areas in future.
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Introduction

Climate change is recognized as one of the biggest chal-

lenges to biodiversity worldwide (Garcia et al. 2014). It

has already affected species distribution, community com-

position (Parmesan and Yohe 2003), and the population

dynamics of predator–prey species (Gilg et al. 2009) and

caused spatial incongruity of predator–prey habitats (Sch-

weiger et al. 2012). Future climate change is likely to

impact species demography and distribution and disrupt

biotic interactions (Garcia et al. 2014). Understanding

this is particularly useful in the formulation of conserva-

tion policy, adaptation planning, and assessing the extent

of vulnerability and reducing the risk of future biodiver-

sity losses (Nazeri et al. 2012, 2014; Kujala et al. 2013;

Shrestha and Bawa 2014).

The Himalayan region is considered to be one of the

most vulnerable regions to climate change (Shrestha et al.

2012). Impacts have been seen in glaciers, hydrology, agri-

culture, biodiversity, ecosystems, human health, and

livelihoods (Xu et al. 2009). Studies, albeit limited and

localized, have shown that climate change has shifted alti-

tudinal ranges of plants (Telwala et al. 2013) and changed

the distribution and breeding behaviors of birds, reptiles,

amphibians, and butterflies (Acharya and Chettri 2012) in

the Himalayan region. It is predicted that current suitable

habitats of species (Kumar 2012; Shrestha and Bawa

2014) will be further altered.

The endangered snow leopard (Panthera uncia) inhabit-

ing the rugged and fragile landscape of the Himalaya

(Jackson and Ahlborn 1984) is one of the large predators

in the energy-deficient environments of high altitudes.

Therefore, they are critical for maintaining ecosystem pro-

cess, function, and resilience (Ripple et al. 2014). Further-

more, understanding the current and future distributions

of snow leopard and its one of the major preys, blue sheep

(Pseudois nayaur), is important not only for their protec-

tion but also for maintaining the health of mountain

ecosystems where they reside (Lyngdoh et al. 2014).

Previous studies (e.g., Forrest et al. 2012) based on abi-

otic factors ignored biotic (prey) influences on the pre-

dicted changes on snow leopard distribution in the

Himalayan region. Wegge et al. (2012) analyzed the diet

of snow leopard from Manang, Nepal, and discovered

that blue sheep was the most common diet (~92% of

dietary composition). Therefore, the inclusion of biotic

information including prey distribution in bioclimatic

models will certainly improve current and future predic-

tions of predator distribution and thereby also reduce

uncertainty (Peers et al. 2014). While the distribution of

snow leopard (predator) influences the distribution of

blue sheep (prey) and vice versa (Aryal et al. 2013,

2014a), modeling snow leopard habitat together with that

of its preferred, blue sheep, will produce a plausible pre-

diction of current and future distributions. It should be

noted that the dietary diversity of the snow leopard varies

with the locations and the Himalayan region has the

highest dietary diversity of snow leopard’s preys ranging

from Himalayan tahr (Hemitragus jemlahicus), blue sheep,

argali (Ovis ammon), serow (Capricornis thar), goral

(Naemorhedus goral), musk dear (Moschus spp.), marmots

(Marmota spp.), pikas (Ochotona spp.), large gallinaceous

birds, and also domesticated animals (Lovari et al. 2009;

Lyngdoh et al. 2014). However, blue sheep and Himala-

yan thar are the commonest prey species, the former one

is the most represented prey species while later one is

more abundant in Sagarmatha National Park of Nepal

(Lovari et al. 2009, 2013).

Our objective in this study was to map current habitats

of snow leopard and blue sheep and investigate the extent

of niche overlap between them by including biotic inter-

actions combined with environmental, bioclimatic, and

topographic features and occurrence information in bio-

climatic models. We then predicted changes in the distri-

bution of snow leopard and blue sheep under future

climate conditions to 2030 and 2050 and examined

whether there was any current and future spatial matches

and mismatches between the predicted distributions of

snow leopard and blue sheep in Nepal Himalaya. Finally,

we assessed the effectiveness of protected areas to encom-

pass current distributions of snow leopard and blue sheep

habitats and analyzed the relevance of protected areas vis-

�a-vis snow leopard distribution under climate change.

Materials and Methods

Study area and species

This study covers the entire area of snow leopard and

blue sheep distribution in Nepal including all their pres-

ence protected areas and outside the protected areas of

Nepal (for details about snow leopard distribution map

of Nepal, see Aryal et al. 2014b; and for blue sheep, see

Aryal et al. 2013). About 86% of Nepal is covered by hills

and high mountains and rugged terrain covered by snow

in winter (Bhuju et al. 2007) that offers ecological niche

for the snow leopard and blue sheep. The Himalayan

region of Nepal comprises 10% of the total habitat glob-

ally for snow leopard with an estimated population of

300–350 individuals (Aryal et al. 2013, 2014a). Snow

leopards and blue sheep are normally found between

2500 and 5500 m altitude in alpine and subalpine grass-

lands. Blue sheep, also called “bharal” and “naur,” is a

major prey species of the snow leopard distributed

throughout the Himalayan region (Jackson and Ahlborn

1984; Wegge et al. 2012; Lyngdoh et al. 2014).
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Species occurrence data

The data on species occurrences were compiled from field

surveys conducted at different times between 2007 and

2014 in various localities of Nepal. Presence points of

snow leopards were collected using standard sampling

techniques of scats collection, pugmarks and camera traps

(Ale 2007; Ale and Brown 2009), and were later validated

using molecular techniques (Aryal et al. 2014a,b,c). Pres-

ence points of blue sheep were collected by direct obser-

vation during field surveys carried out as part of other

research projects (Aryal et al. 2010, 2013, 2014a,b,c).

Presence localities of each species were binned into 1-km2

grid cell by removing multiple presence points retaining

only one presence point per grid cell. The remaining 364

presence points for snow leopard and 201 for blue sheep

were used for modeling.

Environmental variables

We used 19 bioclimatic data obtained from WorldClim

(www.worldclim.org) (Hijmans et al. 2005), land cover

data acquired from global land cover share (http://

www.glcn.org) (Latham et al. 2014), and altitude from

global multiresolution terrain elevation data 2010 (https://

lta.cr.usgs.gov/GMTED2010) (Danielson and Gesch 2011).

Slope, aspect, and ruggedness were calculated from the ele-

vation layer in ArcGIS 10.3 (ESRI , Redlands, CA, USA).

All raster layers were resampled to 30 arc-sec (~1 km) res-

olution to correspond to the original resolution of the

WorldClim data. Altogether, we used 19 bioclimatic, four

topographic, and one environmental variable (see Table S1

in Appendix S1). We extracted each bioclimatic, topo-

graphic, and environmental variable corresponding to the

occurrence location of each species to observe multi-

collinearity between those variables, dropped highly corre-

lated variables (Pearson’s correlation coefficient,

r2 ≥ 0.75), and included the remaining nine variables [an-

nual mean temperature, mean diurnal range, isothermal-

ity, temperature seasonality, annual precipitation, aspect,

slope, roughness, land use/land cover (LULC)] for snow

leopard and eight variables (annual mean temperature,

mean diurnal range, isothermality, temperature seasonal-

ity, aspect, slope, roughness, and LULC) for blue sheep in

the final model. We used the feature dataset of World

Database on Protected Areas (WDPA) as a boundary layer

for protected areas including buffer zones of Nepal

(http://www.protectedplanet.net).

We used MIROC5, the latest version of a global climate

model (GCM), MIROC (Model for Interdisciplinary

Research on Climate) (Watanabe et al. 2010) to predict dis-

tributions of snow leopard and blue sheep under future cli-

mate scenarios. MIROC5 is able to capture various observed

features of future climate for the South Asian region very

well (Mishra et al. 2014; Sharmila et al. 2015). We down-

loaded MIROC5 data for RCP4.5 scenarios for two different

time periods (2030 and 2050) from www.ccafs-climate.org

(Ramirez–Villegas and Jarvis 2010). We assume that RCP4.5

is a reasonable carbon emission scenario in which the total

radiative forcing reaches 4.5 W/m2 (approximately

650 ppm CO2 equivalent) by the end of the 21st century

and stabilizes thereafter due to the employment of a range of

technologies and policies for reducing greenhouse gas

emissions and radiative forcing (Thomson et al. 2011).

Modeling

We used a maximum entropy (MaxEnt) species distribution

model based on the principle of maximum entropy to

model potential distribution of species (Phillips et al. 2006).

It is the most widely used species distribution tool (Kramer-

Schadt et al. 2013) and is superior to other species distribu-

tion models in terms of performance (Elith et al. 2006; Wisz

et al. 2008). Our data (presence only) fit best with MaxEnt

as it uses presence-only data and uses background environ-

mental data of the study area. Nevertheless, MaxEnt has a

few limitations that have been well discussed in the recent

literature such as sampling bias of occurrence points, region

used for background sampling, selection of features, and

selection of regularization multiplier in the model (Elith

et al. 2011; Kramer-Schadt et al. 2013; Radosavljevic and

Anderson 2014). The data collected from surveys during

field trips may possess sampling biases, and sampling biases

increase the spatial autocorrelation of localities (Boria et al.

2014) influencing the performance of the model and caus-

ing the model to overfit to the environmental biases (Reddy

and D�avalos 2003; Phillips et al. 2009; Radosavljevic and

Anderson 2014). We used two approaches to address the

potential bias present in species occurrence records by

applying a spatial filter (Kramer-Schadt et al. 2013; Boria

et al. 2014; Radosavljevic and Anderson 2014) and creating

a bias grid to manipulate background selection while

running the model (Kramer-Schadt et al. 2013; Peers et al.

2014). Therefore, we ran MaxEnt models in three different

scenarios: spatial filtering; bias grid; and base data (without

spatial filtering and bias grid).

Spatial filtering

Spatial filtering, which is performed by removing spatially

autocorrelated points from the data, makes location data

better for calibration and evaluation (Boria et al. 2014;

Radosavljevic and Anderson 2014). We filtered localities

with a minimum of 5 km distance and removed autocor-

related occurrence points located within 5 km of each

other using SDMtoolbox, a python-based GIS toolkit
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(Brown 2014). The spatial filter was limited to 5 km

because of the high level of topographic heterogeneity in

the study area (Anderson and Raza 2010; Boria et al.

2014). We used the remaining 172 and 136 spatially fil-

tered occurrence points for snow leopards and blue sheep,

respectively, for the modeling.

Bias grid

We produced a bias grid to down-weight highly clustered

presence records from areas with highly intensive sampling

(Elith et al. 2010; Peers et al. 2014). We created a Gaussian

kernel density map of the occurrence locations using sam-

pling bias distance of 100 km for snow leopard and 50 km

for blue sheep to represent an approximate habitat range

for each species. The density map was then rescaled to 1–20
value classes to prevent extreme down-weighting of highly

sampled cells (Elith et al. 2010; Peers et al. 2014).

We set the random test percentage to 25% (25% of pres-

ence points were assigned randomly to test the model per-

formance), with 10 times cross-validation and varying the

values of the regularization multiplier. Warren and Seifert

(2011) examined the effects of regularization on model per-

formance and suggested evaluating the effects of regulariza-

tion on model performance and structure. While change in

regularization parameters substantially lowers overfitting of

the model (Anderson and Gonzalez 2011; Radosavljevic and

Anderson 2014), we manipulated regularization multiplier

values (0.5, 1 (default), 1.5, 2, 3, 4, and 5) following the rec-

ommendations of Anderson and Gonzalez (2011),

Radosavljevic and Anderson (2014), and Muscarella et al.

(2014). We averaged the results of replicate runs from the

models that were run in three different scenarios and with

seven regularization multipliers. To avoid overfitting, we

selected linear, quadratic, and hinge features (Phillips and

Dud�ık 2008; Merow et al. 2013).

Model evaluation

The most common model evaluation metrics are as follows:

maximum training AUC (area under curve) value, maxi-

mum test AUC value (AUCtest), minimum difference

between training and test data (AUCdiff), and information

criteria such as Akaike information criteria (AIC) and

Bayesian information criteria (BIC) (Muscarella et al.

2014). However, usage of the standard method of using

receiver operating characteristic (ROC) curve or AUC value

for model selection is not recommended in the literature

(see Lobo et al. 2008; Peterson et al. 2008). Warren and

Seifert (2011) also compared different evaluation methods

and found that Akaike information criterion corrected for

small sample sizes (AICc) outperformed all other AUC-

based methods. Furthermore, models selected based on

AICc have lower omission rates and reduce overfitting

(Muscarella et al. 2014). Therefore, we used the AICc based

evaluation method for selecting the best performing Max-

Ent model and designated the model with the lowest AICc

values for further analysis. The statistical analysis was per-

formed in R software.

Niche overlap

To change the continuous value of the predicted distribu-

tion of MaxEnt into a binary (presence and absence)

value, we used the equal training sensitivity and specificity

threshold value as it provides the most accurate estimates

(Cao et al. 2013). Assuming snow leopard can exist only

in those areas where prey is available, we discounted snow

leopard distributions derived from the models based on

bioclimatic variables (climate-only models) by incorporat-

ing the predicted distribution of blue sheep. We also cal-

culated niche overlap between the predicted habitats of

snow leopard and blue sheep using ENMTools (Warren

et al. 2008) and compared the changes in niche overlap

under future climate change scenarios. ENMTools mea-

sure niche overlap using D and I values calculated by

comparing two normalized predicted distribution models

produced by MaxEnt using estimated values of habitat

suitability for each grid (Warren et al. 2010). The niche

overlap between snow leopard and blue sheep is calcu-

lated using Schoener’s D using the following formula.

Dðpx; pyÞ ¼ 1� 1

2

X
n¼i

jpx;i � py;ij

where px,i and py,i represent the probability assigned by

distribution model to grid cell i for species x and y,

respectively. Schoener’s D is typically applied with values

of pxi that reflect relative use of particular microhabitats

and/or prey items and quantifies the degree of geographi-

cal overlap between two probability distributions with

values ranges from 0 (distribution models have no over-

lap) to 1 (identical distribution models) (Warren et al.

2008). I-statistic in ENMTools is based on Hellinger dis-

tance and measures the ability of the model to estimate

true suitability of the habitat without biological assump-

tions to define the meaning of the px,i (Warren et al.

2008). I-statistic is calculated as

I px; py
� � ¼ 1� 1

2
Hðpx; pyÞ

where H is the Hellinger distance and is defined as

Hðpx; pyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

� ffiffiffiffiffiffi
px;i

p � ffiffiffiffiffiffi
py;i

p �s

where px and py are as probability distributions.
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Results

The model performance of 21 different models for each

species evaluated on the basis of AICc values is given in

Table 1. The model with spatial filtering and regulariza-

tion parameter 5 for snow leopards and spatial filtering

and regularization parameter 2 for blue sheep exhibited

the best performance. Based on the Jackknife estimates,

annual mean temperature influences potential habitats of

snow leopard contributing 85.95% to the model (Fig. 1).

Likewise, annual precipitation and land cover have the

second (6.47%) and third (5.54%) highest contributions

to the niche of snow leopard. Similarly, the blue sheep

niche is highly influenced by annual mean temperature

with a major contribution of 76.68%, followed by land

cover (15.39%) and isothermality (4.40%).

Current distribution of snow leopard and
blue sheep

The estimated areas of predicted habitats of snow leopard

and blue sheep based on the climate-only models are given

in the Table 2. The predicted distribution of snow leopard

habitat covers 22,625.34 km2 (15.32%) of Nepal. Currently,

about 65.98% (14,927.25 km2) of the total suitable habitat

of the snow leopard falls inside the protected areas with the

largest suitable habitat for snow leopard occurring in

Annapurna Conservation Area (5183.65 km2), followed by

Shey Phoksundo National Park including the buffer zone

(3235.53 km2) and Kanchenjunga Conservation Area

(1344.05 km2) (Fig. 2).

Similarly, predicted habitats of blue sheep cover

23,529.17 km2 (15.93%) of Nepal primarily in the Anna-

purna Conservation Area (4945.80 km2), Shey Phoksundo

National Park including the buffer zone (3909.07 km2),

Kanchenjunga Conservation Area (1205.87 km2), and

Manaslu Conservation Area (869.10 km2). Altogether,

59.11% (13,909.40 km2) of blue sheep predicted habitat

falls inside protected areas in Nepal (Fig. 2).

Change in the predicted habitats of snow
leopard and blue sheep

The potential area of suitable habitat for the snow leop-

ard is projected to continuously decline with future cli-

mate change from its current distribution by 2030 and

2050 under the RCP4.5 scenario. Model predicts that

about 448 km2 (1.98%) and 860.04 km2 (3.80%) of the

potential habitat of snow leopard will be lost by 2030

and 2050, respectively (Table 2). Geographically, the

maximum reduction occurs in the Humla District, fol-

lowed by the Gorkha and Rasuwa districts, whereas suit-

able habitat is predicted to increase in Dolpa, Mustang,

and Manang districts. Fortunately, Snow leopard habitat

Table 1. Comparative performance of MaxEnt models in predicting species distribution of snow leopard and blue sheep.

Modeling

scenarios

Regularization

multiplier

Snow leopard Blue sheep

Mean AIC

(SD)

Mean AICc

(SD)

Mean BIC

(SD)

Training

AUC

Test

AUC

Mean AIC

(SD)

Mean AICc

(SD)

Mean BIC

(SD)

Training

AUC

Test

AUC

Normal 0.5 7710 (12) 7768 (20) 8054 (35) 0.94 0.94 4327 (19) 4414 (48) 4566 (53) 0.95 0.93

1 7720 (16) 7750 (21) 7978 (39) 0.94 0.93 4311 (11) 4341 (16) 4466 (23) 0.94 0.93

1.5 7732 (14) 7750 (19) 7931 (42) 0.93 0.93 4313 (7) 4330 (10) 4433 (16) 0.94 0.93

2 7720 (12) 7727 (14) 7853 (30) 0.93 0.93 4320 (12) 4331 (15) 4419 (24) 0.94 0.92

3 7717 (10) 7720 (10) 7801 (13) 0.93 0.93 4333 (9) 4337 (11) 4399 (19) 0.93 0.92

4 7730 (11) 7732 (11) 7802 (15) 0.93 0.93 4353 (9) 4356 (10) 4406 (17) 0.92 0.91

5 7742 (11) 7744 (12) 7808 (15) 0.93 0.93 4361 (6) 4362 (6) 4398 (8) 0.91 0.91

Bias 0.5 7860 (17) 7918 (22) 8206 (33) 0.93 0.92 4457 (22) 4548 (48) 4702 (49) 0.93 0.91

1 7851 (20) 7876 (23) 8086 (35) 0.93 0.92 4425 (18) 4444 (22) 4552 (29) 0.92 0.90

1.5 7847 (20) 7859 (23) 8017 (39) 0.92 0.91 4428 (19) 4439 (24) 4524 (40) 0.91 0.90

2 7852 (21) 7860 (22) 7994 (33) 0.92 0.91 4433 (14) 4440 (16) 4513 (26) 0.90 0.89

3 7855 (19) 7859 (20) 7951 (27) 0.92 0.91 4431 (15) 4435 (17) 4489 (29) 0.90 0.88

4 7860 (17) 7862 (17) 7929 (19) 0.92 0.91 4424 (12) 4426 (13) 4460 (17) 0.89 0.88

5 7873 (15) 7874 (15) 7932 (17) 0.91 0.91 4425 (12) 4426 (12) 4455 (15) 0.89 0.88

Spatial filtering 0.5 3778 (18) 3906 (58) 4017 (45) 0.94 0.91 2955 (12) 3054 (33) 3130 (24) 0.95 0.92

1 3735 (9) 3763 (14) 3867 (19) 0.93 0.91 2933 (11) 2963 (21) 3041 (28) 0.94 0.92

1.5 3724 (7) 3738 (11) 3820 (18) 0.92 0.91 2934 (8) 2951 (13) 3019 (20) 0.94 0.92

2 3716 (9) 3723 (11) 3787 (20) 0.92 0.91 2934 (8) 2943 (11) 2998 (18) 0.94 0.92

3 3709 (5) 3713 (6) 3758 (10) 0.92 0.91 2943 (4) 2947 (4) 2985 (8) 0.92 0.91

4 3708 (4) 3710 (4) 3747 (9) 0.92 0.91 2950 (5) 2952 (5) 2982 (7) 0.92 0.90

5 3706 (3) 3708 (4) 3739 (9) 0.92 0.91 2957 (5) 2959 (5) 2988 (6) 0.91 0.90

MaxEnt models were run after 10-fold cross-validation, and AUC value shown is the average. Models were evaluated using AICc.
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seems to increase inside the protected areas but decrease

outside.

Our model shows that the potential habitat of blue sheep

is also reduced with future climate change. The total suit-

able habitat of blue sheep is restricted to 13.41% in 2030

and 11.83% in 2050 from current potential habitat area of

15.93% of the total area of Nepal which means reductions

of 15.8% of current blue sheep habitat by 2030 and 25.72%

by 2050 (Table 2). Blue sheep’s potential habitat inside pro-

tected areas will be reduced under future climate change.

About 40.08% of the current protected areas is suitable for

blue sheep, and the suitability inside protected areas will be

reduced to 36.24% by 2030 and 35.37% by 2050.

Niche overlap

When we incorporate distribution information of prey in

the model, the predicted suitable areas for snow leopard

is reduced from the snow leopard climate-only model

under all climatic scenarios: present conditions, 2030, and

2050. Currently, only 11.64% (17,190.24 km2) of Nepal

remains suitable for the snow leopard, a loss of 24.02%

(5435.09 km2) in snow leopard habitat after incorporating

the predicted distribution of blue sheep. The predicted

habitat of snow leopard reduces by 14.57% in 2030 and

by 21.57% in 2050 when blue sheep habitat is included

compared to 1.98% reduction in 2030 and 3.80% reduc-

tion in 2050 based on the climate-only model.

Future climate change may lead to a mismatch in the

niche of predator (snow leopard) and prey (blue sheep).

The mean Schoener’s D index value of 0.809 for present

climate indicates a high level of overlap between the

niches of snow leopard and blue sheep. However, the

average D value is predicted to decrease to 0.806 in 2030

and 0.764 in 2050 indicating a lower degree of overlap

and higher degree of mismatch (Fig. 3). ANOVA test

shows that the mean of Schoener’s D values of ten repli-

cate models for three time periods are significantly differ-

ent (F (2, 27) = 19.283, P ≤ 0.0005). The I-statistic values

for the niche overlap that is solely based on the probabil-

ity distribution are also significantly different (F (2, 27) =
15.063, P ≤ 0.005) (Fig. 3).

Discussion

We modeled and mapped the distribution of snow leop-

ards and blue sheep under current and future climates by

including biological interactions previously overlooked

and found spatial incongruity between the predicted dis-

tributions of snow leopard and blue sheep. Although

MaxEnt is a very popular species distribution modeling

approach, a number of recent studies have pointed out

the limitations of this approach and suggested species-

specific tuning for the default settings of MaxEnt to

improve model performance (Anderson and Gonzalez

2011; Elith et al. 2011; Warren and Seifert 2011; Merow

et al. 2013; Muscarella et al. 2014; Radosavljevic and

Anderson 2014). Here, we have corrected sampling biases,

calibrated default settings of MaxEnt, and evaluated the

resulting models based on robust evaluation statistics to

overcome these limitations and obtain the best perform-

ing model for the species studied. Our results also con-

firm that spatial filtering of occurrence datasets reduces

overfitting (Kramer-Schadt et al. 2013; Boria et al. 2014)

and that the selection of an intermediate regularization

multiplier produces the best performing model (Anderson

and Gonzalez 2011). Spatial filtering reduced the AICc

value significantly compared to the other two scenarios,

normal (without spatial filtering and bias corrected) and

bias corrected, thus increasing the predictive performance

of the model. Furthermore, the AUC values were greater

Figure 1. Relative importance of predictor variables for predicted

distributions of snow leopard and blue sheep.

Table 2. Estimated areas (km2) of the predicted habitat of snow

leopard and blue sheep.

Climate

scenarios

Area of suitable habitat for snow

leopard (% of the total area of

Nepal)
Area of suitable

habitat for blue

sheep (% of the

total area of Nepal)

Without blue

sheep habitat

With blue

sheep habitat

Current 22625.34 (15.32) 17190.24 (11.64) 23529.17 (15.93)

2030 22177.57 (15.02) 14685.63 (9.94) 19810.38 (13.41)

2050 21765.30 (14.74) 13482.78 (9.13) 17475.66 (11.83)
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than 0.9 in the selected models, which is recognized as an

excellent model (Phillips et al. 2006).

The highest percentage contribution of annual mean

temperature to the model suggests that temperature is the

most important variable for both snow leopard and blue

sheep distributions in Nepal Himalaya. Previous studies

(Jackson and Ahlborn 1984; Forrest et al. 2012; Aryal

et al. 2014a,b) acknowledged altitude as one of the major

limiting factors for snow leopard niche; however, altitude

is a surrogate for temperature in Nepal Himalaya: Tem-

perature decreases by 6.2°C with each increase of 1000 m

in altitude (La Sorte and Jetz 2010). In fact, altitude does

not have a direct impact on habitat suitability, and it

indirectly influences distribution through temperature.

Furthermore, the inclusion of altitude as a predictor vari-

able in species distribution modeling of mammals nega-

tively affects the predictive power of SDMs (Hof et al.

2012). Likewise, land cover is another important contrib-

utor to the predicted habitat of the snow leopard. The

predicted habitat of the snow leopard falls mainly in three

land cover categories: grassland, snow and ice, and sparse

vegetation (Jackson and Ahlborn 1984; Forrest et al. 2012;

Aryal et al. 2014b,c).

Based on our model, the estimated area for snow leop-

ard habitat is 22,625 km2 in Nepal. Forrest et al. (2012)

estimated the area of snow leopard habitat to be

20,000 km2 for Nepal in their study over a greater extent

of the Himalaya. Our model predicted about 13.12%

(2,625 km2) more area than that calculated by Forrest

et al. (2012). However, these figures are comparable, and

the source of the difference might have come from the

use of different modeling approaches, resolution of data,

bioclimatic variables, and the cutoff points to change the

Figure 2. Predicted suitable habitats for snow leopard and blue sheep under different climatic conditions.

Figure 3. Change in niche overlap between snow leopard and blue

sheep under different climatic conditions.
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continuous data into binary format of suitable and

unsuitable habitats. Forrest et al. (2012) included only

patch sizes greater than 500 km2 as good snow leopard

habitat, whereas we did not exclude habitats based on

patch size; this might cause discrepancies in the total esti-

mated areas suitable for snow leopard habitat. However,

predicted areas of the suitable habitat for snow leopard

decreased significantly after including the predicted distri-

bution of blue sheep in the model. As availability of food

fundamentally dictates a species’ distribution and abun-

dance, it is not surprising that the predicted niche of a

predator is limited by its prey distribution.

Our results show that the existing protected areas of

Nepal incorporate significant portions of the predicted

habitats of snow leopard and blue sheep. This is because

current protected areas of Nepal are highly skewed toward

the high-mountain areas, which comprise 69% of the

total protected areas (Shrestha et al. 2010) and are the

habitats of both species. For future extension of protected

areas to incorporate more snow leopard and blue sheep

habitats, if needed, it would be prudent to extend these

in the corridors between current protected areas. While

current protected areas are sufficient to cover the spatial

areas of snow leopard and blue sheep habitats, they can-

not guarantee effective habitat conservation as many fac-

tors account for effective conservation: prey density,

anthropogenic pressures, habitat quality, and human–
wildlife conflict (Aryal et al. 2014c). Besides creation of

protected areas, threat mitigation measures might be an

effective conservation strategy (Hayward 2011). The

reported causes of population decline of snow leopard in

Nepal are poaching, habitat destruction, retaliatory kill-

ing, reduced prey density, and weak enforcement of con-

servation policies (Aryal et al. 2014b,c): These are likely

to be aggravated under future climate change situations.

Our analysis indicates that the maximum loss of habitats

is predicted to occur outside the current protected areas;

therefore, to adapt to future climate change, either new

conservation areas need to be established or current con-

servation areas expanded to cover the predicted loss of

habitats under climate change scenario.

Our results reaffirm that predicted habitat of predators

declines substantially when prey information is added to

the climate-only model (Peers et al. 2014). Our finding

that climate change will lead to a spatial mismatch of

snow leopard requirements and blue sheep availability

based on the decline in Schoener’s D value from current

climate to 2030 to 2050 suggesting a lower degree of

overlap and higher degree of mismatch. The role of cli-

mate in affecting predators through its impact on the rel-

ative timing of food requirements and food availability

can have a significant effect (e.g., Durant et al. 2007;

Broitman et al. 2008). Factors affecting species

distribution and predator and prey relationships interact

in complex ways (Moritz et al. 2008) and variations in

the rates of range shifts among and within species due to

differential dispersal abilities affecting a mismatch of

predator and prey requirements (Durant et al. 2007; Peers

et al. 2014). This mismatch is accentuated in simple

ecosystems such as in the Himalaya and with specialist

species like the snow leopard.

Evolutionarily, the snow leopard, an example of a ste-

nospecies, could have been driven to adapt to a life in

marginal habitats with harsh climatic conditions and low

resource availability, making this specialized species par-

ticularly sensitive to environmental changes (Lovari et al.

2013). As climate change squeezes the snow leopard to a

narrow range between the forest – an unsuitable habitat

for this species – and the higher, barren rocky areas, the

species marginal habitat (Forrest et al. 2012), snow leop-

ard’s distribution will be increasingly restricted with

undesirable effects on the conservation of this endangered

large cat. The spatial mismatch between blue sheep and

snow leopard may also mean snow leopard will have to

broaden its diet breadth overlapping its requirement with

that of common leopard (Lovari et al. 2013) which is

moving toward higher altitude. Competition with this

superior competitor for diet and space would be deleteri-

ous to the snow leopard. It is interesting to see how other

prey species (Himalayan thar, argali, serow, goral, musk

deer, marmots) of snow leopard will respond to climate

change and influence its distribution given the complexi-

ties of incorporating prey information into the climate-

only predictions. Studies included multiple prey species

showed that dietary switching occurs in predator species

with narrow niches (Peers et al. 2014).

While this study incorporates biotic interactions and

addresses key methodological issues of MaxEnt modeling

and adds value to previous research in species distribu-

tion modeling emphasizing the importance of biotic

interactions, it has some limitations. We used the MaxEnt

modeling approach considering its popularity and perfor-

mance, selected a single global climate model based on its

predictive accuracy in the study area, and incorporated

the distribution of the commonest prey species of snow

leopard. Efforts of using multiple distribution models,

other global climate models (GCMs), and alternative

emission scenarios and incorporating several alternate

prey species such as Himalayan thar, argali, serow, goral,

musk dear, and marmots might add values to the current

study. Therefore, this study should be evaluated on the

basis of the limitations of the modeling methods and the

availability and quality of the available data given the

context of a weak spatial data infrastructure in the Hima-

laya. Moving beyond these constraints, future studies

could be improved by including human pressures,
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abundance of prey populations, and predicted changes in

land cover in the model.
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