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Abstract 

T-joint fillet welding is the most common welding in engineering applications. 

Transport vehicles, marine ships, mobile plant equipment are few examples where 

fillet welding are used extensively. Analysis of welded structures are still remains a 

challenge for the designer to produce desired output results. In welding process rapid 

heating and cooling introduced residual stress and geometrical deformations. Heat 

effected zone play pivotal role in determining the strength of a welded joint which 

changes the properties of parent material and reduce the strength after welding 

operation. There are many case which structures are continuously under cyclic loading 

when the fatigue life of the welded joints are a major design consideration 

The aim of this project is to analyse the normal stress and fatigue life of fillet welded 

joints using computer modelling and experiments. Finite element based tool ANSYS 

Workbench 15.0 was been used to analyse the normal stress and the fatigue life under 

cyclic loading. Computer model of the joint developed using three different types of 

material which was parent metal, heat affected zone metal and weld metal. 

Experimental tests were carried out at USQ laboratory on double side welded T-joints. 

Grade 250 Structural steel was used to prepare specimen and gas metal arc welding 

(GMAW) process applied to welding the joints.  

The ultimate purpose of the project has been achieved with developing techniques of 

the finite element analysis of fillet welded joint. The experimental investigation 

validate the performance of the FEA analysis results were found 1.2% error on tensile 

test. The experiment yield stress was found 263.4 MPa and simulation yield stress at 

the same location appears 266.7 MPa. In order to calculate fatigue life of welded joint 

used iterative process to define stress at one million cycle. The analysis found 274 

MPa stress and 7740 cycle fatigue life applying yield load. After reduced load at 12kN 

and found the fatigue life one million cycle where shows 88 MPa stress which is 35% 

of yield stress. So that designer can consider 35% of yield strength when design 

structure for fluctuating and repeated loading conditions.   
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1. Chapter 1 – Introduction 

 

1.1 Overview 

The aim of this chapter is to give an insight on the background of fillet welding, 

purpose of the study, and research objectives of the project. An understanding on the 

welding behaviour under real world situation is presented. This information will be 

relevant throughout the dissertation and underlining the comparison of experiment test 

results with simulation results.   

1.2 Background 

Welding is the most commonly used process for permanent joining of machine parts 

and structures. Welding is a fabrication process which joins materials (metals) or 

thermoplastics, by causing union (A. Thirugnanam 2014). In the joining process of 

welding application uses heat and/or pressure, with or without the addition of filler 

material. Various auxiliary materials, e.g. shielding gases, flux or pastes, may be used 

to make the process possible or to make it easier. The energy required for welding is 

supplied from outside sources. 

Fillet welding is the process of joining two pieces of metal together whether 

perpendicular or in angle between 80-100 degrees (AWS 2010). This welds are 

commonly referred to as Tee joints which is perpendicular to each other’s or lap joints 

which are overlap one another and welded at the edges. Figure 1-1 is the example of 

fillet weld. 

 

Figure 1-1: fillet welding diagram (Welded Connections) 
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Due to the influence of the welding residual stress, residual plastic deformation, heat 

affected zone and stress concentration effect the fatigue life of welded components is 

far lower than the parent metal (Yang, Zou & Deng 2015). 

Fatigue life is most common word in engineering design, it simply means life of 

structure under repeated or fluctuating loading. Fatigue failure of the welded structures 

remains the most common type of failure (Richards 1969). Repeated or fluctuating 

load disturbs the material strengths and it causes the initiation of cracks. Neither metals 

nor the welds joining them are as smooth as they look, they have pits, grooves and 

cracks (Hicks 1987). The pits, grooves and cracks in a metal under load causes high 

strains over very small areas. Fluctuating loads will create small tears or fractures 

which increases in length with each application of the load.   

In general, welded joints are more susceptible to fatigue cracking in comparison with 

bolted joints (A. Thirugnanam 2014). Residual stress and stress concentrations due to 

weld geometry induce micro-cracks that’s are often accelerate fatigue damage. Failure 

caused by fatigue can be minor or catastrophic. Fatigue is a failure under repeated or 

otherwise varying load which never reaches a level sufficient to cause failure in single 

application. The consequences of failure are often very costly and it is estimated that 

80-90% of all structural failures are caused by fatigue (Leap Australia  2014). Another 

statics shows 70-90% of the welded structures invalidation accidents in the past several 

years were caused by fatigue failure (Yang, Zou & Deng 2015). Leap Australia shows 

an example in Figure 1-2 the damage of fatigue failure. This is a structural failure due 

to fatigue. 
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Figure 1-2: Structure failed due to fatigue (Leap Australia  2014) 

Fatigue cracking on bridge structures are quite often occurred where always induced 

dynamic loads. The crack started from weld defects at the intersection between the 

filleted welds connecting to the longitudinal stiffeners to the girder web and the butt 

welds made for transverse splices in the longitudinal stiffener. Fatigue damage 

involving web crack on a girder, as well as in flange to web weld caused by the radial 

stress in Figure 1-3. 

 

Figure 1-3: Fatigue cracking in a bridge girder from weld defects  (Haghani 2012) 

The damage was caused by the fatigue cracking on the structure was found and 

reported that the connection between flanges to the web was made by fillet welding 

(Haghani 2012). The cracks on the girder web of the bridge can grow with radial stress 

component as seen in Figure 1-4  
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Figure 1-4: Example of radial and tangential cracks (Haghani 2012) 

As the stories of building getting higher and the spans of bridge are getting longer, 

there are greater demands for high performance joints capability. T-joint fillet welds 

are extensively employed in various engineering applications. The welded joints has 

residual stress which interrupt the life of structures. 

Processes for the fatigue analysis of metallic structures are now well defined, both in 

the stress-life or strain-life regimes (Aygul 2012). It has been recognized for some 

considerable time that the design of fabricated welded structures can be heavily 

dependent on the fatigue life of welded regions.  Finite Element tools are often used to 

analyse complex welded joints. Figure 1-5 shows an analysis of a multi-sided weld 

joint using FEA. The optimization of such designs is therefore dependant on having 

good predictions of the fatigue life at the weld. 

The fatigue life of welded metallic structures is dependent on the increased levels of 

stress found at the weld toe, root or throat due to weld geometry and the reduction in 

material properties with the heat affected zone.  In addition to this, the amount of fusion 

of the weld into the parent metal and whether there is hot or cold fusion at a weld end 

all add to the inherent variability of welded structures.  In short, the prediction of a 

robust fatigue life at a weld is extremely difficult. 

This project was carried out FEA analysis with an overview of the work in the area of 

weld fatigue. Its includes industrial real world applications of current weld life 

prediction and modelling methods which gave an insight into the decisions to be taken 

to achieve robust results. 
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Figure 1-5: Analysis of fillet weld using FEA (Aygul 2012) 

The way finite element analysis obtains the temperatures, residual stresses, and the 

load application, or other desired unknown parameters in the finite element model are 

by minimizing an energy functional. An energy functional consists of all the energies 

associated with the particular finite element model. Based on the law of conservation 

of energy, the finite element energy functional must equal zero. The finite element 

method obtains the correct solution for any finite element model by minimizing the 

energy functional. The minimum of the functional is found by setting the derivative of 

the functional with respect to the unknown grid point potential for zero. Thus, the basic 

equation for finite element analysis is 
𝜕𝐹

𝜕𝑃
= 0 

Where F is the energy functional and p is the unknown grid point potential in 

mechanics, the potential displacement to be calculated. This is based on the principle 

of virtual work, which states that if a particle is under equilibrium (Chang & Lee 2009), 

under a set of a system of forces, then for any displacement, the virtual work is zero. 

Each finite element will have its own unique energy functional. 

1.3 Project topic 

The topic of the project is to develop and evaluate techniques to analyse the strength 

and stiffness of welded joints. The analysis of welding with the software to validate 

simulation method compare with experiment testing of fillet welded T-joints. The aim 

of the project is to develop techniques for simplifying finite element analysis such as 

stress analysis and dynamic properties of structures under vibration excitation on non-

complete joint penetrated (Fillet) welding. The analysis allow us to understand and 

compare experiment test result and software analysis result.  
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1.4 Scope of the research 

In welding process used electric current and produce arc to melt the consumable 

electrode and the work piece to be welded. Electric current flow through high 

resistance air gap generates an intense arc with temperature running from 3000o C – 

6000o C 

Residual stresses caused by welding can have various kinds of influence on the welded 

structure, e.g. increasing the susceptibility of a weld to fatigue damage, stress crossing 

cracking and fracture. Moreover, residual stresses developed in T-joint fillet welds 

made of steels are probably different from those of full penetrated welds in magnitude. 

Residual stresses are unavoidable, and the effects on welded structures are cannot be 

disregarded. Therefore, it is very important to clarify the characteristics of residual 

stresses in T-joint fillet welds in the structures. Welded steel joints always susceptible 

to fatigue damage when subjected to repetitive loading. Fatigue failure may occur even 

under modest in-service stresses. Furthermore, fatigue lives exhibit considerable 

scatter even under constant amplitude loading in controlled laboratory conditions. This 

phenomenon makes statistical methods indispensable and fatigue life has to be 

predicted at given probability levels of failure for a given welded detail under defined 

environment and loading conditions. 

 

The driving factor for conducting this research project is need for a more confidently 

using of finite element analysis tool to predict life of the welded structures. This is the 

time for engineers to design more sustainable, safe and desirable component for the 

society and finite element analysis tool is more convenient and very less time required 

to solve the most complex structures. 

The comparison of physical test with finite element analysis are not much available 

which can refer to predict the life of structures. Finite element analysis (FEA) is a 

computer based method of simulating/analysing the behaviour of engineering 

structures and components under variety of conditions. 

Fillet weld is most common welding in the engineering field and this weld used almost 

everywhere in building structures. Finite element analysis of simple fillet welding 
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compare with physical testing will allow us to analyse more complex structures with 

more accurately with minimum error.     

1.5 Project objectives 

 

 The primary objective of this project is to develop techniques of finite 

element analysis to define normal stress and fatigue strength of fillet welded 

joint.  

 Compare experimental test results with finite element analysis results of the 

investigated joint 

 Characterise the strength of fillet welded joints in comparison with parent 

metals. 

 

1.6 Expected outcomes and significance of the study 

The research outcome will help designer to estimate strength of welded structural 

component under dynamic load. Welding is the common engineering join method 

which used for various structures. The major construction projects in all around the 

worlds are using cranes, earth moving equipment, those also always under dynamic 

load, the marine ships another heavy welded structure which are also subjected to 

dynamic loads at all the time. The body of transportation equipment are highly 

impacted by dynamic load which is focused in this analysis. Fatigue test and analysis 

of a T joint with fillet welding in a typical connection is presented in this study. 

Relevant finite element analysis of the joint is also established. The project will help 

to characterise the behaviour of fillet welded joints.    

This study is expected to provide with an in-depth understanding of the behaviour of 

fillet welded joint under cyclic loading. The comparison of the test results with the 

finite element analysis will also give an indication about the assessment capability of 

the analysis tools for this type of joint. A simple and useful graphic representation in 

the form of chart, which will aid the readers to actualise the effect of cyclic loading on 

the joint is also expected.  
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1.7 Dissertation outline 

The dissertation is arranged in the following sequence of the chapters:  

 Chapter 1 introduces the study and states the objectives of the study followed 

by the expected outcomes from the study. 

 Chapter 2: Literature Review contains the recap of the available literature. 

Potential gap in the studies is identified and reason for this study is highlighted.  

 Chapter 3: Methodology and Project planning composed of the details of the 

methodology of the tests and simulations to be carried out in this investigation.  

 Chapter 4: Physical Investigation provides with the test properties of the fillet 

weld joints in the laboratory.  

 Chapter 5: Finite Element Analysis and simulation with ANSYS program on 

the fillet welded joints for comparison with the physical testing.  

 Chapter 6: Discussion of Outcomes narrates analysis of the results and findings 

in terms of the parameters involved.  

 Chapter 7: Conclusion gives a summary of the results and scope of further 

study and outlined.  
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2. Chapter 2 – Literature Review 

 

2.1 General 

The following chapter reviews literature relevant to the welding process and welding 

analysis using finite element methods. To calculate strength of welded structure and 

to find behaviour under cyclic load, it is very important to do analysis according to 

real life problems, so that analysis results can be used to predict the life of structures. 

After welding of structures there are many factor involve defining parameter in the 

finite element analysis. In this this report will go through and underline the associating 

maters with the welding. Material behaviour will influence by the heat effected zone, 

residual stress, types of welding, types of joint and different types of stress applications 

also included in the report. Fatigue analysis will take place to determine life of 

structure under cyclic load. 

2.2 Welding process 

Welding is the process of permanently joining two or more materials together, usually 

metals, by heat or pressure or both. When heated, the material reaches molten state 

and maybe joined together with or without additional filler materials being added 

(Welding fundamentals and processes  2011). 

Welding is an expedient by which metals may be joined by increasing the temperature 

of the work pieces to their fusion point and allowing the molten metal formed to flow 

together and solidify (Morris 1955). There are many different types of welding process 

available now a days. The common welding processes are manual metal arc (MMA) 

welding, gas metal arc (GMA) welding, tungsten inert gas (TIG) welding, and 

submerged arc (SA) welding.  

All of those processes used electric arc to melt electrode and parent metals. Due to 

high productivity GMA welding is widely used in the industry for general fabrications. 

In GMA welding process electrode is melted and molten metal is transferred to the 

work piece. The transfer of molten metal from the electrode to the work piece can be 

divided in to three modes (Welding : theory and practice  1990). Olson D L. et al. 

found increasing current increases weld penetration and weld size thereby distortion 

and residual stress is more which is affect to the welded structures.          
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Heat induced by welding has metallurgical effect on the metals it caused grain growth 

found observing microstructural feature (Dodge et al. 2014). Based on observations in 

the number of study found, a coarse-grained HAZ, martensite grain in the welded 

region but post weld heat treatment can be developed the HAZ materials. Normally 

very high percentage of welding structures used without heat treatment however, most 

of the structures induce stress in the joint which called residual stress.   

2.3 Brief History of FEA 

The finite element method is a numerical procedure that can be applied to obtain 

solution to many different type of engineering problem. The modern finite element 

method can be traced back to early 1900s. However, Courant has been credited with 

being first person to develop the finite element method in paper published in early 

1940s (Moaveni 2007). The next significant step in the utilisation of finite element 

methods was taken by Boeing in 1950s after that 1960 Clough made the term finite 

element popular. 

ANSYS is a comprehensive general purpose finite element computer program which 

can use for structural mechanics, fluid dynamics, electromagnetics, system and 

multiphasic analysis and simulations this program was released in 1971 for first time. 

ANSYS has more than 100,000 lines of code and it capable of performing static, 

dynamic, heat transfer, fluid flow etc. ANSYS has been leading FEA program over 35 

years.     

2.4 Effect of residual stress 

Due to varying temperature distribution of welding process, thermal stress is 

generated. It is known that thermal stress leads to residual stress. At higher temperature 

when metal melted as liquid stage and solidified very sort of time, it has change grain 

structure of surrounding of weld metal which causes shrinkage and introduce residual 

stress.  The welding residual stress has an effect on deformation of structures, 

concentration of structure, fatigue fracture etc. 

The investigation done by Seok et al. (Seok, Suh & Park 1999)  for the residual stress 

of H-type beam in Figure 2-1: H-type beam on butt welding made of high tensile  steel 

by finite aliment method, they found the case of longitudinal component of the residual 

stress.  



Chapter 2 – Literature Review 

11 

 

 

Figure 2-1: H-type beam(Seok, Suh & Park 1999) 

The tensile residual stress increases from the centreline of weld bead to 5mm in the 

transverse direction and decreases to converge to zero after the location of 5mm off. 

That is the maximum tensile residual stress occurs in HAZ (heat effected zone), which 

is the location of 5mm apart from the centre line of weld bead, and magnitude is 62.5%  

of yield stress shown in Figure 2-2 

 

Figure 2-2 Longitudinal residual stress vs location from the centreline of weld bead (Seok, Suh & Park 1999) 

There are many different stress levels in the welded joint, in the Figure 2-3 as 

following; 
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Figure 2-3:Longitudinal residual stress from the bottom on weld metal and parent metal.(Seok, Suh & Park 1999) 

 

The location A and B are corresponding to the weldment and HAZ respectively in 

addition C, D and E are for base metal. In figure 5 it is observed that residual stress 

distribution of B on HAZ is higher than the A weldment.  

T-joint fillet welding is extensively using in manufacturing industry such as 

shipbuilding and bridge constructions. During welding localized heating and rapid 

cooling causes tensile residual stress which develops close to the toe of the welding. 

Finite element analysis done by (Teng et al. 2001) on T-joint fillet welded joint. In 

order to analyse the Tee section Mr. Teng consider symmetric and used mesh 

refinement in the Figure 2-4. 
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Figure 2-4: Finite element meshes of the T-joint fillet weld(Teng et al. 2001) 

 A stress acting on the direction of the weld bead is known as transverse residual stress, 

Figure 2-5 represents distribution of residual stress along X direction. A very large 

tensile residual stress is produced at the toe of the welding where stress shows 25 MPa 

(Teng et al. 2001). 

 

Figure 2-5: Transverse residual stress distribution along the X direction (Teng et al. 2001) 

A very large tensile residual stress is produced at the surface of the base plate near the 

fillet weld toes. The value of the residual stress near the weld toe is 25 MPa and 

decreases to zero as the distance from the weld toes increases. A stress acting parallel 

to the direction of the weld bead is called longitudinal stress denoted at Figure 2-6 
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depicts the distributions of the residual stress along the X-directions. The residual 

stress value found is 110 MPa approaching the yield stress of the material. 

 

Figure 2-6: Longitudinal residual stress distribution along the X-direction 

In the welding process, different weldment thicknesses required different weld 

penetration depths to controls the heat input to investigate the effect of different weld 

penetration depths on residual stress and distortions. In Figure 2-7 it can be seen that 

residual stress of fillet weld is higher than the full penetration joint. 

 

 

Figure 2-7: Transverse residual stress distribution for different penetration depths 
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The following research investigated both an experimental and finite element 

simulations for welding distortion in a T-joint fillet welding. There are many research 

and investigation done on the above topics. In principle, a finite element (FE) 

simulation of the welding process consist of two main parts: thermal analysis and 

mechanical stress analysis (Perić et al. 2014). In thermal analysis, the temperature field 

is determined as a function of time for each integration point. This temperature time-

history is used as an input into the thermal stress analysis. Herein, the thermal solution 

can be sequentially or fully coupled with the mechanical solution of the structure. As 

presented in the literature, the use of three dimensional (3D) models is required for 

accurate prediction of post-weld deformation and residual stress distribution. Peric et 

al. 2014 done experiment according to Figure 2-8 

 

Figure 2-8: Geometry of T joint (Perić et al. 2014) 

The welding experiments are conducted and the measured temperatures and 

displacements are compared with the results obtained by the numerical analysis by 

(Perić et al. 2014). It is shown that the numerical results agree well with the 

experimental results in Figure 2-9. 
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Figure 2-9: : Deflection and residual stress of fillet welding at direction along the line C-C, from figure 10 (Perić et al. 
2014) 

To control residual stress in the welded joint clamping method is given significant 

different result from unclamped joint. Three different clamping condition has been 

analysed by Padma Kumari.T and Venkata Sairam.S the condition (i) is unclamped (ii) 

is clamped but released immediate after welding and (iii) clamped and released after 

cold down at ambient temperature. Among the three cases considered, the third case 

yields the minimum transverse residual stresses at the upper surface of the plate while 

it is reversed with regard to the bottom surface. Since the plate is unclamped after 

cooling down to ambient temperature, it increases the longitudinal stresses at the 

bottom surface due to the self-weight of the plate as it acts as a fixture to the bottom 

surface found (PadmaKumari 2013). Hence the third case is the most preferable 

condition in regard to the residual stresses in Figure 2-10. 
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Figure 2-10: Transverse stress distribution at the top surface (a) and the bottom surface (b) (PadmaKumari 2013) 

To predict residual stress of T-joint fillet welding (Kyong-Ho Chang & Chin-Hyung 

Lee) described in Figure 2-11 thermal analysis and mechanical stress analysis where 

they found stress are higher on the weld toe area and its get lower while distance from 

centre is increased. 

 

Figure 2-11: Residual stress profile at cross section of flange (Chang & Lee 2009). 
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2.5 Effect of welding sequence 

Influence of welding sequences on the distribution of residual stress and distortion 

generated when welding flat bar as a stiffener on to the steel plate. Gannon et al. 2010 

found In the case of longitudinal residual stresses, welding sequence did not have a 

significant influence on the distribution pattern of the stress; however it did affect the 

peak values. In the Figure 2-12 welding Sequences (a) and (d) caused the notably 

higher compressive residual stresses in the plate than sequences (b) and (c). In the 

stiffener, the maximum compressive residual stress due to sequence (b) was 

approximately 3.5 times greater than the next lowest value. The distribution and peak 

values of residual stress were similar to measured values and predictions used in 

literature. Maximum tensile residual stresses equal to the material yield strength were 

predicted in the vicinity of the weld and maximum compressive residual stresses from 

_97 MPa to _58 MPa in the plate and stiffener respectively (Gannon et al. 2010). 

 

Figure 2-12: Welding sequences (Gannon et al. 2010) 

In the case of welding-induced distortion, welding sequence B resulted in the largest 

out-of-plane deflection of the plate which may result in a reduced plate effectiveness. 

Sequence B resulted in the largest out-of-plane deformation of the plate along the axis 

of the stiffener. These predicted distortions were of lower magnitude than typical 

values suggested in literature. Welding sequences A and B resulted in the largest lateral 

deflections of the stiffener. Sequences C and D resulted in the least distortion of both 

plate and stiffener for the geometry considered. Considering both residual stress and 

distortion as a result of welding, welding sequence D is identified as the preferred 

welding sequence with the lowest welding-induced residual stress and distortion in 

Figure 2-13. 
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Figure 2-13: Deformation shapes with von misses stress contours (Gannon et al. 2010) 

Overall, the finite element model including both thermal and mechanical procedures 

has provided simulation results in reasonably good agreement with the experimental 

measurements. The variations observed between the numerical and experimental 

results were considered to be within the acceptable limits (Gannon et al. 2010). 

Fillet welded joint has very common angular distortion, restricted stiffeners welding 

and free restrained stiffeners welding are given different angular distortion and 

residual stress see Figure 2-14. Type of weld, joint preparation, thickness of plate, size 

of weld, joint restraint, heat input as well as welding sequence are effect of residual 

stress on welded joint. 

 

Figure 2-14: Angular change in T-fillet joint (A) free restrained (B) Restricted 
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(Syahroni & Hidayat 2012) consider in his study and the numerical investigation 

according to the following sequence in Figure 2-15 welding sequences considered 

were the one direction welding (WS-1), the contrary direction welding (WS-2), the 

welding from centre of one side (WS-3), and the welding from centres of two sides 

(WS-4). 

 

Figure 2-15: Variation of welding sequence, (a) WS-1, (b) WS-2, (c) WS-3, (d) WS-4 (Syahroni & Hidayat 2012). 

According to above preparation finite element procedure was employed to simulate 

the thermos mechanical response of welding problem Syahroni & Hidayat 2012 found 

results on the problem considered are presented in this section. The finite element 

simulation for all the variation of welding was completed in 45 load-steps (LS). During 

the number of load-steps, the welding process took for 40 load-steps, while the cooling 

one took for the rest of the LS. For the presentation of welding simulation, the results 

of the LS which respectively represent the conditions of the peak temperature and the 

beginning of cooling processes were taken and plotted. Note that the temperature went 

down towards the room temperature after the LS of 41. Accordingly, the longitudinal 

and transverse residual stresses and the distortions occurred due to the welding 

sequences. Peak temperature is always varying during welding in different sequencing 

found in the Figure 2-16 
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Figure 2-16: Peak temperature for each welding sequence (Syahroni & Hidayat 2012). 

Figure 2-17 describes the transverse residual stress distribution along the fillet weld 

for each WS. The maximum values of longitudinal and transverse stresses as well as 

von Mises stress for each welding sequence were summarized in Table 2. The ratio 

between the longitudinal and the transverse residual stress values for the problem 

considered varies from 1. 06 to 1. 22 (Syahroni & Hidayat 2012). 

 

Figure 2-17: Distribution of transverse residual stress along the fillet weld for each welding sequence (Syahroni & 
Hidayat 2012) 

It can be clearly observed that the distributions of transverse residual stresses produced 

by WS-3 and WS-4 and WS-1 and WS-2, respectively, are in consistent nature with 

respect to the welding sequences. 

2.6 Fatigue life calculation 

Welded steel joints are vulnerable to fatigue damage when subjected to repetitive 

loading. Fatigue failure may occur even under modest in-service stresses. Furthermore, 

fatigue lives exhibit considerable scatter even under constant amplitude loading in 

controlled laboratory conditions (Lassen, Darcis & Recho 2006). Fatigue strength of 
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weld seams can be evaluate according to nominal stress or the notch stress approach. 

Determination of the stress of welding seams have to be generated a concept of 

compatible way (Rother & Rudolph 2011) that means correct stress need to be 

assigned on finite element analysis. 

Characteristic of structures after welding with the method of hot spot stress Rother et 

el. found in the Figure 2-18  where distance can be calculated based on plate thickness. 

 

Figure 2-18: Linear (Left) Quadratic (Right) extrapolation based on stress derived from strain gage measurement 
(Rother & Rudolph 2011) 

 Rother & Rudolph done seven test specimens according notch stress method to predict 

fatigue life they found the following results in Table 2-1   

Table 2-1:Computed structural notch stress including derived fatigue life (Rother & Rudolph 2011) 

 

(Shen & Clayton 1996) have done testing before stress relief and after stress relief, 

Table 2-2 shows the fatigue test result under pulsed-tension there was no consistence 

effect of residual effect on fatigue strength. With tension-compression cyclic loads, 

stress relieved specimens exhibited a superior fatigue life. 
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Table 2-2: Fatigue test result of fillet welded A515 Steel specimen (Shen & Clayton 1996) 

 

The most recent design code in this regard is the ASME Boiler and Pressure Vessel 

Code, Section VIII-2 (2007) (Joshi & Price 2009). Annex 3.F in Part III gives 

equations for the number of allowable design cycles for non-welded and welded joint 

fatigue curves based on empirical constants. In the following eq. code states the 

formula for N, the number of design cycles for welded joint fatigue curve, as 

 

f = Fatigue improvement factor, when the structure has been burr grinded, TIG dressed, 

or hammer peened, 

fE = Environmental modification factor, which is typically a function of the fluid 

environment, loading frequency, temperature, and material variables such as grain size 

and chemical composition, for structures operating in environments other than ambient 

air, 

fMT = Temperature adjustment factor, which is required for materials other than carbon 

steel and/or for temperatures above 21 oC (70 oF), 

∆𝑆𝑟𝑎𝑛𝑔𝑒 = Structural stress range. 

Residual stresses are unavoidably generated in the component after welding (Zhang et 

al. 2013). To investigate the effect of residual stress Zhang et al. used 16 inch pipe, the 

result from the centre-hole measurements suggested that there are no clear effect of 
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residual stress, however, he found high tensile residual stress on the surface of the weld 

root where welding started and stopped. 

2.7 Fatigue life improvement 

In many cases, the fatigue life can be improved employing good detail design of 

welding profile. However, there are two main improvement method addresses by 

(Kirkhope et al. 1999) which is weld geometry modification methods and residual 

stress methods. Following Figure 2-19 is the layout of the fatigue improvement 

methods.  

 

Figure 2-19: Classification of some weld improvement methods(Kirkhope et al. 1999) 

The Welding Institute recommended that after welding fatigue life can be improved 

with some technic, such as Hammer peening, Machining, Shot peening, Plasma 

dressing and Disc grinding locally burr machining seen in the Figure 2-20 
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Figure 2-20: Typical improvement in fatigue strength of mild steel fillet weld resulting from selected weld toe 
improvement technic (Maddox 2002) 

 

The offshore technology report provides information of selection design process for 

specially oil platforms. In the Figure 2-21 from OT report produce basic design curve 

for welded tubular and plate in the air.  

 

Figure 2-21: Basic design curve for welded tubular plates in the air (Joshi & Price 2009) 
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2.8 Computational challenges in welding simulation 

Welding analysis is an important topic in engineering research and it is widely 

employed in the fabrication due to their advantage of improved structures 

performance, cost savings and easy implementation. However, welding application 

cause undesirable permanent distortion and residual stress in the material (Deng, Liang 

& Murakawa 2007). Welding has about 26 imperfections e.g. cracks, porosity, worm 

hole, inclusions, lack of penetration, lack of fusion, lack of fit, undercut, excessive 

weld overfill, insufficient weld throat, root overfill, misalignment, weld sag, 

incomplete root, cold lap, arc strike, sputter etc. (Hobbacher 2009). With all this 

imperfection simulation parameter will be in challenge. Material modelling is, together 

with the uncertain net heat input, one of the major problems in welding simulation 

(Lindgren 2001) 

2.9 Thermal and mechanical finite element analysis  

Finite element analysis (FEA) has been used widely by many researchers Bibby et al. 

(1992), Goldak et al. (1991), Zhang et al. (2006). Wikander et al. (1996), Breiguine et 

al.(1992), Gundersen et al. (1997), Lindgren L-E et al.(1988)], to perform welding 

simulations and to predict residual stresses in different types of welded joints and 

materials. Prediction is very difficult due to the complex variations of temperature, 

thermal contraction and expansion, and variation of material properties with time and 

space (PadmaKumari 2013). 

Over the last few years, the technology of laser direct metal deposition (LDMD) has 

gained increasing attention in the industry for the rapid manufacture, repair, and 

modification of metallic components especially those involving high cost material 

such as superalloys. The technology is used in various industrial disciplines for its 

demonstrated possibility in the production of parts with complex internal structures 

that could not be achieved by machining. Furthermore, its associated lower material 

wastage ratios in low volume manufacturing applications is among those attributes 

leading to its high level of utilization in the aerospace industry. 

The prediction of residual stress in laser deposited Waspaloy parts was found that 

experimental result and simulation result has some relation. While the results of the 

study indicated that modelling the deposition process with slight overestimation about 

20% in the width of the deposited wall has no significant effect on predicted residual 
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stress, the effect (A. M. Kamara 2011), which an underestimation in the width of the 

deposited wall could have on predicted residual stress, is also an interesting issue to 

be investigated. 

(Brickstad & Josefson 1998) simulate the residual stresses due to welding using 

ABAQUS to perform finite element analysis, their analysis consist of two main parts 

the thermal and the structural. The analysis is two-dimensional and axisymmetric. The 

thermal analysis models the heat input from the welding torch into the weld elements 

causing the weld to melt. Heat losses allow the weld region to solidify. The 

temperature reliefs obtained from this part of the analysis are used in the sequential, 

structural analysis to derive the stresses generated as the material heats up and cools 

down again. The behaviour of the material involves non linearity and therefor residual 

stresses remain in the welded joint after cooling. 

The mechanical effect of the material due to heat source, during analysis need to 

consider the following effect in Figure 2-22 two dimensional model of heat source. 

This model gave a more realistic model with better heat distribution in the melted zone.   

 

Figure 2-22: Heat distribution of melted zone(Rabih Kamal Kassab1 2012)  

2.10 Heat affected zone 

Heat affected zone is the most critical location in welded joint where the most residual 

stress develop due to metal grain coarsened. Heat affected zone is very hard to predict 

heat effected zone property (Wang et al. 2007) however, the region of HAZ partially 
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ferrite and austenite at peak temperature (Woolling & Carrouge 2002). Figure 2-23 

shows the grain growth in the ferrite phase. 

 

Figure 2-23: High temperature HAZ showing grain coarsened region (Woolling & Carrouge 2002) 

The next to the weld is assigned strength properties slightly lower than the values given 

in the design codes in order to trigger strain localization. The width of this zone should 

be approximately equal to the plate thickness and discretised with one or several 

elements. The remaining part of the HAZ is assigned the strength properties given in 

the design code, and discretised with several elements. The accuracy of this procedure 

remains to be validated. After welding heat affected zone are completely change 

geometry of grain structure as Figure 2-24, due to the affect material strength has been 

change. 

 

Figure 2-24: Heat affected zone after welding (Welding Inspection Cswip  2010) 

2.11 Welding deformation 

The deformation of welded structure in Figure 2-25  result from non-uniform 

expansion and contraction of weld and the surrounding base material due to heating 
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and cooling cycle during welding process. Welding deformation play an important role 

in sealing capabilities and service life of welded joints says (Abid & Siddique 2005). 

There are lots of numerical and analytical model has been available for butt welding 

process. However, only very limited literature describing welding deformation of fillet 

welds are available (Deng, Liang & Murakawa 2007). Deng et al. found that the flange 

thickness of T-joint has influence on welding deformation and the simulated result 

demonstrates that the temperature gradient through thickness is a main factor that 

strongly governs the generation of angular distortion in fillet-welded joint. 

 

Figure 2-25: deformation after welding (Deng, Liang & Murakawa 2007) 

The heat source used in fillet welding joint in Figure 2-26 

 

Figure 2-26: Combined heat source in the fillet welding joint (Deng, Liang & Murakawa 2007) 

Distortion after welding in Figure 2-27 shows 500mm of welding can angle difference 

.022 rad. 
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Figure 2-27: Distribution of angular distortion along welding line (Deng, Liang & Murakawa 2007) 

The distortion of welded structure also be subject to welding sequence as well as 

number of pass of welding. Analysis of a welding thermo-mechanical response due to 

welding is the important factor. Welding distortions depend on the geometry, welding 

condition as well as the material properties (WANG Rui 2008). Sulaiman et al. 2011 

has done investigation of simulation and experimental distortion of welded T-joint, 

where they found 20.9 % error of the result (Sulaiman et al. 2011) which is reasonable 

agreement. 

2.12 Weld metal property 

Weld metal properties are not exactly same as a parent metals, it has different strength 

and different grain structures. Pisarski et al. investigated on a grade X100 pipe, they 

found the tensile property of the weld metal after different type of weld process used 

which shown in Table 2-3 and fi can see that weld metal strength are lower than the 

parent metal. 

Table 2-3: Tensile properties of grade X100 pipe (Pisarski, Tkach & Quintana 2004) 

   

 



Chapter 2 – Literature Review 

31 

 

 

Figure 2-28: Experimental stress strain carves of parent pipe and GMAW, FCAW weld metal (Pisarski, Tkach & 
Quintana 2004) 

2.13 Visualise stress and deformation 

Founded in 1828, Bureau Veritas is a global leader in testing, inspection and 

certification. In the marine industry, Bureau Veritas as an official certification body 

(SIEMENS 2015). Bureau Veritas provides numerical stress analysis services based 

on the Finite Element Method. FEA calculates and visualises stresses and deformations 

resulting from applied loads in Figure 2-29. With stresses accurately calculated, actual 

safety margins over material strength can be determined. This approach to design is 

recognised within the design standards as being an appropriate alternative to manual 

calculation. Complex geometries may be accurately assessed and time dependant load 

histories may be applied. Loads may include force, restraint, pressure, temperature, 

gravity and dynamic loads.  

http://www.bureauveritas.com/
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Figure 2-29: Bureau Veritas use FE map to help designs conform to regulations (SIEMENS 2015) 

 

2.14 Adaptive mesh technique 

(Qingyu et al. 2002) have developed an adaptive mesh technique applied in the three-

dimensional numerical simulation of the welding process on the basis of the 

commercial software MARC. The adaptive mesh technique generates a dense mesh 

and makes it move simultaneously with the heat source. Any part of the mesh away 

from the heat source is much coarser, significantly saving CPU time. The calculation 

time comparison shows that the adaptive mesh technique can reduce the CPU time by 

almost one-third.  

In traditional finite element analysis, as the number of element increases the accuracy 

of solution will be improves. Mesh density will be chosen when the result difference 

will be very less from one elements size to another elements size. Example of the 
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Figure 2-30 shown, where, a 2D bracket model is constrained at its top end and 

subjected to a shear load at the edge on the lower right.  This generates a peak stress 

in the fillet, as shown.  The curve shows that as the mesh density increases, the peak 

stress in the fillet increases.  Ultimately, increasing the mesh density further produces 

only minor increases in peak stress.  In this case, an increase from 1134 elements per 

unit area to 4483 elements per unit area yields only a 1.5% increase in stress (Hale 

2014). 

 

Figure 2-30: Stress sensitivity to mesh density (Hale 2014) 

  

The difference results between coarse mesh and finer mesh found from above 

investigation in Figure 2-31 

 

Figure 2-31: Relative difference in stresses at shared nodes for coarse mesh (L) and finer mesh (R) (Hale 2014) 
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2.15 Further Research  

Fillet weld joints are one of the mostly used welding joints in the industry. Current 

body of literatures suggests considerable effect of thermal and cyclic loading on fillet 

weld joints. Numerous studies are dedicated to characterise the behaviour of these 

types of joints. Complexity of dimensions and physical parameters possess a challenge 

for the researchers. However, there are lack of study on fillet weld joints comparing 

experiment test and finite element analysis in light of nominal stress method and hot 

spot method. This study exerts an effort to actualise this behaviour to further enrich 

this domain of knowledge. This research will allow us to justify uses of finite element 

tools for this kind of applications. 
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3. Chapter 3 – Methodology and Project planning 

3.1 Introduction 

This chapter details the specimens used as well as the testing methods and processes 

used in both simulation and physical investigation of fatigue life of T-joint fillet 

welded structure. In the simulation define parameter of thermal and mechanical 

behaviour of the joints. In the physical test will be used maximum load to disturb the 

object and compare with simulation result.  Also covered in this chapter is a guideline 

into the finite element analysis methods and procedures used to computationally 

investigate/correlate the grating properties and data. The design process is to over view 

of the project research that carried out to complete the finite element analysis and 

physical investigation.  

3.2 Methodology 

This study comprised of experimental investigations and computer modelling of fillet 

welding. The double sided T-section of structural steel welded specimen were prepared 

for tensile test. Computer modelling used the finite element based commercial package 

of ANSYS Static Structural. 

3.2.1 Experimental Investigation 

The preparation of experimental specimens and the procedure of experiment is 

discussed in this section. 

3.2.1.1 Experiment preparation  

The experiment made from standard structural steel grade 250, it has 250MPa yield 

stress. Three pieces of plate cut from full plate with automatic gas cutting and the size 

chosen for the base plate one is 400mm X 150mm and other two 400mm X 150mm.  

All the edges of plate has been grinded to remove any kind of slug or rust. Three plate 

now join together using tack weld and before welding fitted three back-up plate to 

control deformations. Welding has been carried out using gas metal arc welding 

(GMAW). In the following Figure 3-1 can see the shape of specimen which is created 

using AutoCAD.  
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Figure 3-1: Geometry of test sample 

After welding completed, the object cut-off small sections (15mm) with bend saw and 

grind all sharp edges. 

3.2.1.2 Procedure 

Tensile test is the fundamental test in the material science where we can find yield 

stress and ultimate stress. The test has been carried out to find yield stress of the welded 

joint where mostly heat passes through during welding. The load will be applied on 

two axis, one is on the base metal which is continue plate, this will allow us to find 

stress on the heat affected zone Another loading axis will be normal to the welded 

metal this will us to find welding strength or bonding strength. Details of applying load 

on the two different directions can see Figure 3-2 
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Figure 3-2: Direction of load applied 

 

Following procedure taken to consider for the tensile test: 

 Six specimens where chosen and marked 1-6 for the records and identifications 

 Record down cross section area of individual pieces, where 6 pieces are not 

same sizes 

 Visual inspection conducted to ensure that, the specimens did not have any 

notching or cracks  

 Clean up machine parts and clamping area then started the machine 

 Wait for warm up and set graph paper in to the barrel for load deflection graph 

and make sure pen is working condition 

 Before loading the specimen make sure safety glasses is worn 

 Load specimen and set dial indicator to zero position then apply load, slowly 

increase the load and wait until the necking started and increase the load to 

break the specimen 

 Switch down to idle position and take off graph paper and rest the machine for 

next test. 
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3.2.2 Finite Element analysis 

The section presents finite element model development, creating fillet weld, 

methodology of mesh element size development and model set-up. Meshing element 

size define with various number of elements and graphical presentation also made. 

3.2.2.1 Model development 

Model development is the crucial part of the analysis, if the model parameter is not 

match with the experiment then desire results will not match with the simulation 

results. The dimension of the model is taken 15mm width and 10mm thick of double 

sided T-joint. The model separated in three main parts which is body, heat effected 

zone and weld material. Reason to do that its can apply different type of material 

property. Figure 3-3 drawn in PTC Creo parametric and for analysis Creo model will 

be exported to ANSYS for the simulation. 

 

Figure 3-3: basic model of welded joint 

 

The following Figure 3-4 is the exploded view of the model where can find the 

different parts of the model. 

Heat effected zone 

Weld metal 

Base metal 

Material not connected   
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Figure 3-4: Exploded view of the model 

 

3.2.2.2 Creating fillet weld 

In order to create fillet welding in the model, three pieces of plate will not connected 

together with one another. The connected area will be the welded material only. In this 

model base plate and welded metal will be different parts. In the connection tab from 

model tree can find contact region and suppressed plate connection to disconnect the 

surface. After applying load Figure 3-5 can see that there is no connection between 

plates except welding.  
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Figure 3-5 Proof of fillet welding 

 

3.2.2.3 Meshing 

In traditional finite element analysis we know that, the number of element increases 

the accuracy of solution will be improved also it is not necessary to put element size 

very small. Smaller element size will takes longer time to analysis and some time it is 

almost impossible to run the model. 

In order to find optimum element size I have chosen different element size and analyse 

the model, where the stress are not changing dramatically assume that is the optimum 

size. Following Figure 3-6 and Figure 3-7 can see how different element size vary the 

stress with same applying load. 
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Figure 3-6: Mesh development  

 

 

 

 

 

 

 

 

            Default mesh size                                        Mesh size 10mm 

 

        Mesh size 5mm                                          Mesh size 4mm 



Chapter 3 – Methodology and Project planning 

42 

 

 

Figure 3-7: Mesh development  

The stress concentration on red colour location is very high, its dose not display actual 

results because the area is very small compare with cross section and its only 0.5 mm. 

The grinding operation can be removed sharp concentration areas. In the Figure 3-8 

shows the stresses are changing due to different size of element.  

 

               Mesh size 3mm                                          Mesh size 2.5mm  

Mesh size 2mm                                          Mesh size 1.5mm 
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Figure 3-8: Mesh element size Vs stress 

Above figure can identify that element size between 2.5mm to 1.5mm where the stress 

haven’t been changes. There for the adequate mesh element size can be considered 

2.5mm to 1.5mm. 

 

3.2.2.4 Model set-up 

There are many different parameter has been set-up for the model in the Figure 3-9 is 

the model tree of the model set-up. 

 

 

 

 

 

 

  

390

400

410

420

430

440

450

460

470

480

Default 10mm 5mm 4mm 3mm 2.5mm 2mmm 1.5mm

M
ax

 S
tr

e
ss

 (
M

P
a)

Mesh element size

Mesh element size vs stress



Chapter 3 – Methodology and Project planning 

44 

 

 

Figure 3-9: Model set-up tree 

There are 11 different parts in the model and its sets different material property. Base 

metal used structural steel which tensile yield strength 250 MPa, for heat affected zone 

used 350 MPa due to rapid heating and cooling process, and for the weld metal strength 

used 450 MPa (Austmig ES6) which provided Austmig ES6 material datasheet. 

Contact region sets two suppress to make disconnect surface between the plates. In the 

mesh set-up tab, all mesh is patch conforming method and different body has sets 

different element size. 
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4. Chapter 4 – Finite Element Simulation 

4.1 Introduction 

In this chapter included basic simulation on a double sided T-joint fillet welding using 

ANSYS workbench. The property of base metal chosen structural steel material of 250 

MPa, for heat affected zone used 350 MPa yield strength and for weld material used 

450 MPa yield strength. Result set-up for stress chosen equivalent stress and fatigue 

life. Adequate mesh applied to the model. 

 

4.2 Background 

Finite element analysis (FEA) is the modelling of products and systems in a virtual 

environment, for the purpose of finding and solving potential (or existing) structural 

or performance issues (SIEMENS 2015). FEA is the practical application of the finite 

element method (FEM), which is used by engineers and scientist to mathematically 

model and numerically solve very complex structural, fluid, and multi physics 

problems. 

A finite element model comprises a system of points, called “nodes”, which form the 

shape of the design. Connected to these nodes are the finite elements themselves which 

form the finite element mesh and contain the material and structural properties of the 

model, defining how it will react to certain conditions. The density of the finite element 

mesh may vary throughout the material, depending on the anticipated change in stress 

levels of a particular area. Regions that experience high changes in stress usually 

require a higher mesh density than those that experience little or no stress variation. 

Points of interest may include fracture points of previously tested material, fillets, 

corners, complex detail, and high-stress areas. 

FE models can be created using one-dimensional (1D beam), two-dimensional (2D 

shell) or three-dimensional (3D solid) elements. By using beams and shells instead of 

solid elements, a representative model can be created using fewer nodes without 

compromising accuracy. FEA is originally developed for solving solid mechanics 

problem (Qi 2006). The Finite Element Analysis is offers a mean to find the 

approximation, this is not an exact solution. The general procedure of FEA in Figure 

4-1 shows how does it works: 
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Figure 4-1: General procedure of finite element analysis (Hobbacher 2009)  

In the past, there are many different way welding joints considered and analysed with 

different types of simulation tools such as ANSYS, ABAQUS, and SOLIDWORKS 

etc. Using those tools and analysed normal stress, residual stress, fatigue life 

calculations and deformations etc. where mostly found after welding of steel strength 

of metal specially fatigue life are less than original metal. The welding institute tested 

welding joints applying axial force and they found the design of welded joint has a 

dominant effect on fatigue life. Figure 4-2 can see the S/N curves for welded and un-

welded specimens where welded carbon steel has less fatigue strength than un-welded 

steel. 

 

Figure 4-2 : S/N curves for welded and un-welded carbon steel (TWI Fatigue testinng  2015) 
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4.3 ANSYS simulation 

In order to analyse the model with ANSYS the nominal stress and fatigue life 

calculations are rely on the ASME Boiler and Pressure Vessel Code, Section III (and 

Section VIII, Division 2) for guidelines on range counting, simplified elastic-plastic 

adaptations, and cumulative fatigue summation by Miner's rule. There are few number 

of method available in fatigue assessment of welded joint; 

 Nominal stress method 

 Hot spot method 

 Fracture mechanic analysis  

 Effected notch stress method 

Simulation details as following 

Project name Finite element analysis of fillet welding 

FEA tools & 

version  

ANSYS 15.0.7 Release 

Analysis type Static structural  

Material data  Structural steel 

 HAZ material 

 Weld material 

Unit system Metric (mm, kg, N, mV, mA)  

Length on X 

direction 

200mm 

Length on Y 

direction 

210mm 

Length on Z 

direction 

15mm 

Applied force 40000N 

Connections Total 14 connections, region 1 and 3 suppressed 

Mesh  Method applied Tetrahedrons, element size 3mm for base metal, 

2mm for heat affected zone and 1.5mm for welded material.  

Nodes  50230 

Elements 29694 
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Results Maximum principal stress and Fatigue life 

Loaded model 

 

Figure 4-3 Model with force direction and fixed support 
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4.3.1 Stress analysis 

 

Figure 4-4: Stress distribution on the fillet welded specimen 

Static structural analysis has been carried out applying maximum principal stress as 

shown above in Figure 4-4. Maximum stress was found at 606.8 MPa with a appled 

yield load of 40 kN. However, the stress in the vertical axis was 266.65 MPa which 

demonstrate that those regions were not affected by welding.  

The maximum stress was concentrated at the toe of the welding which can identify 

very small area (red coloured in Figure 4-5). Approximately 1.5 mm away from the 

maximum stress point, the stress are significantly less than the maximum stress which 

was below of 260 MPa. The gap in the figure demonstrate that some part of the material 

are not bonded in the fillet welding. 
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Figure 4-5: Stress distribution in the welded region 

Above Figure 4-5 shows stress distribution in zoomed view. Stress appears 250-260 

MPa which is very close to the yield stress. However, maximum stress 606 MPa 

distributed only 0.5 mm areas. 

 

Figure 4-6: Stress distribution with 60kN load 
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Figure 4-6 (above) applied 60kN load, where found maximum 910 MPa stress at the 

concentrated area. However, the average stress found in the randomly selected location 

close to the concentrated area (no. 1-6 is from lower to upper value) as follows:  

Table 4-1: Calculation of stress with 60kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 393 444 438 468 398 438 430 

 

 

Figure 4-7: Stress distribution with 50kN load 

 

Figure 4-7 (above) applied 50kN load and maximum stress found 758 MPa at the 

concentrated area. However, the average stress found as follows:  

Table 4-2: Calculation of stress with 50kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 351 332 297 364 352 374 345 
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Figure 4-8: Stress distribution with 40kN load applied 

Figure 4-8 (above) applied 40kN load where found 606 MPa stress at the concentrated 

area on red coloured marked. 40kN load was found in the experiment as its yield load. 

However, the average stress in surrounding found as follows: 

Table 4-3: Average stress of 40kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 276 275 273 282 262 277 274 

 

 

Figure 4-9: Stress distribution with 35kN load applied 
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Now load reduction interval reduced by 5kN for better result. Figure 4-9: (above) 

applied load is 35kN, where maximum 530 MPa stress found at the concentrated area. 

However, the average stress in surrounding found as follows: 

Table 4-4: Average stress of 35kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 245 242 273 246 225 284 252 

 

 

Figure 4-10: Stress distribution with 30kN load 

Figure 4-10 (above) applied load is 30kN, maximum 430 MPa stress found at the 

concentrated area. However, the average stress in surrounding found as follows: 

Table 4-5: Average stress of 30kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 225 220 234 234 232 226 235 
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Figure 4-11: Stress distribution with 25kN load 

Figure 4-11 found maximum stress 358 MPa with applied load 25kN. The maximum 

stress shows at the inner part of the welding where weld metal started fusion. Actual 

stress occurs surrounding to the red coloured marks. The average stress as follows: 

Table 4-6: Average stress of 25kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 166 164 163 219 197 174 180 

   

Figure 4-12: Stress distribution with 20kN load 

Figure 4-12: (above) applied 20kN load, where found 303 MPa stress at the 

concentrated area. However, the average stress in surrounding found as follows: 

Table 4-7 Average stress of 20kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 141 140 189 144 138 168 153 
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Figure 4-13: Stress distribution with 18kN load 

Figure 4-13: (above) applied load is 18kN, maximum 273 MPa stress found at the 

concentrated area. However, the average stress in surrounding found as follows: 

Table 4-8: Average stress of 18kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 129 126 138 132 152 139 136 

 

Figure 4-14: Stress distribution with 16kN load 

Figure 4-14: found maximum stress 229 MPa with applied load 16kN. Now reduce 

load by 2kN only to get better results. The maximum stress shows at the inner part of 

the welding where weld metal started fusion. Actual stress occurs surrounding to the 

red colour marks. The average stress as follows: 

Table 4-9: average stress of 16kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 112 111 114 115 123 119 115 
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Figure 4-15: Stress distribution with 14kN load 

Figure 4-15 (above) applied load is 14kN, maximum stress found 212 MPa at the 

concentrated area. However, the average stress in surrounding found as follows: 

Table 4-10: Average stress of 14kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 103 101 112 100 109 112 106 

 

Figure 4-16: Stress distribution with 12kN load 

Figure 4-16 (above) applied load is 14kN, maximum stress found 182 MPa at the 

concentrated area. However, the average stress in surrounding found as follows: 

Table 4-11: Average stress of 12kN load 

Location 1 2 3 4 5 6 Average 

Stress (MPa) 84 85 89 85 94 91 88 
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4.3.2 Fatigue life analysis 

In order to predict fatigue life of the structure, in this analysis chosen fatigue tool from 

solution tab and selected life. The loading type used fully reversed constant amplitude 

and stress life with Goodman mean stress theory. Finite element analysis starts with a 

structural simulation to calculate the how many repeated load can be applied without 

disruption of structures. Following figure shows the fatigue life in terms of cycle and 

result taken using probe selection on the model.   

 

Figure 4-17 Fatigue life with 60kN load 

Figure 4-17 (above) shows the calculated fatigue life, applying 60kN forces which is 

ultimate load. The red spotted line shows minimum 351 cycles of alternating load can 

be applied. Average number of cycles in Table 4-12 found in the surrounded area of 

red coloured line which is more realistic and area is more than the concentrated area.  

Table 4-12: Calculation of fatigue life with 60kN load 

Location 1 2 3 4 5 6 Average 

No. of cycle 2713 2433 2578 2016 2344 2689 2462 
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Figure 4-18 Fatigue life with 50kN load 

 

Figure 4-18 (above) shows the calculated fatigue life from simulation at 50kN load 

which is ultimate load. Minimum 564 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows; 

Table 4-13: Calculation of fatigue life with 50kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 3353 3452 3046 3231 2932 2746 3127 

 

 

Figure 4-19 Fatigue life with 40kN load 

Figure 4-19 (above) shows the calculated fatigue life from simulation at 40kN load 

which is ultimate load. Minimum 1008 cycles of alternating load can apply and its 
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shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows; 

Table 4-14: Calculation of fatigue life with 40kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 5181 6018 5407 5417 4860 6882 5627 

 

 

 

Figure 4-20 Fatigue life with 35kN load 

Figure 4-20 (above) shows the calculated fatigue life from simulation at 35kN load 

which is ultimate load. Minimum 1427 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows; 

Table 4-15: Calculation of fatigue life with 35kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 13407 13026 12751 13998 13737 11233 13025 
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Figure 4-21 Fatigue life with 30kN load 

 

Figure 4-21 (above) shows the calculated fatigue life from simulation at 30kN load 

which is ultimate load. Minimum 2157 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows; 

Table 4-16: Calculation of fatigue life with 30kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 20124 18612 25528 16008 20228 20132 20105 
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Figure 4-22 Fatigue life with 25kN load 

Figure 4-22 (above) shows the calculated fatigue life from simulation at 25kN load 

which is ultimate load. Minimum 3789 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows; 

Table 4-17: Calculation of fatigue life with 25kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 44917 47749 44113 57148 47517 40465 46985 
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Figure 4-23 Fatigue life with 20kN load 

Figure 4-23 (above) shows the calculated fatigue life from simulation at 20kN load 

which is ultimate load. Minimum 7553 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows; 

Table 4-18: Calculation of fatigue life with 20kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 84164 81529 71657 78125 81235 74912 78603 

 

 

Figure 4-24 Fatigue life with 18kN load 
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Figure 4-24 (above) shows the calculated fatigue life from simulation at 18kN load 

which is ultimate load. Minimum 10512 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot as 

follows: 

Table 4-19: Calculation of fatigue life with 18kN 

Location 1 2 3 4 5 6 Average 

No. of cycles 116640 152980 114060 119500 103230 118270 120780 

 

 

Figure 4-25 Fatigue life with 16kN load 

Figure 4-25 (above) shows the calculated fatigue life from simulation at 16kN load 

which is ultimate load. Minimum 15736 cycles of alternating load can apply and its 

shows in red spot area only. Average cycles found in the surrounding of red spot is 

174975 cycles. 

Location 1 2 3 4 5 6 Average 

No. of cycles 218260 188570 151320 152350 152560 186790 174975 
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Figure 4-26 Fatigue life with 14kN load 

Figure 4-26 (above) shows the calculated fatigue life from simulation at 14kN load 

which is ultimate load. Minimum 25248 cycles of alternating load can apply and its 

shows in red spot area only. Average cycle found in the surrounding of red spot is 

425023 cycles. 

Location 1 2 3 4 5 6 Average 

No. of cycles 419560 411060 384180 407700 477200 450440 425023 

 

 

Figure 4-27 Fatigue life with 12kN load 

Figure 4-27 (above) shows the calculated fatigue life from simulation at 12kN load 

which is ultimate load. Minimum 44445 cycles of alternating load can apply and its 

shows in red spot area only. Average cycle found in the surrounding of red spot is 

1000000 cycles. The million cycle consider to be infinite life according to ASME. 



Chapter 5 – Results and Discussion 

65 

 

5. Chapter 5 – Results and Discussion 

5.1 Introduction 

This chapter includes computer simulations results, experiment test results and 

discussions. Discussions carried out for how the results are interpreted and justify the 

methods that set up in the methodology. Limitations of the project was the critical part 

of the discussion. 

5.2 FEA Simulation results 

In order to find stress of the welded joint, FEA simulations set up for maximum 

principal stress. There are many different load combination has been used in the 

simulations. However, this project compare yield stress of the experiment yielding 

location. During simulation two different results has been deployed one is stress and 

other is fatigue life. Table 5-1 shows the stresses and fatigue life of welded joint using 

FEA tools (ANSYS). 

Table 5-1: Results of stress and fatigue life of different load combination   

Force (kN) 
Maximum principal 

Stress (MPa) 

Fatigue life            No. 

of Cycle 

60 430 2462 

50 345 4299 

40 274 7740 

35 252 14258 

30 235 21082 

25 180 45426 

20 153 90508 

18 136 136166 

16 115 274938 

14 106 545923 

12 88 1000000 

 

The following Figure 5-1, S-N carve obtain from simulation data. In this graph shows 

88 MPa stress can be consider for the fillet welded joints. 
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Figure 5-1: S-N carve of welded joint 

 

5.3 Experiment results 

Tensile test has been carried out in the experiment where disruption occurs in the base 

metal. The breaking point is far from the welding joint following Figure 5-2 and Figure 

5-3 can see the break happen 60mm apart from welding joint. 

 

Figure 5-2: Motion of tensile test 
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Figure 5-3: Brocken test pieces after tensile test 

Above figure shows broken location and the reading from the tensile test machine. 

Five different specimen has been tested and the specimen was numbered as 2, 3, 4, 5 

and 6. 

 

Figure 5-4: Load elongation graph of item 2 & 3 
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Figure 5-5: Load elongation graph of item 4,5 and 6 

Total six number of item carried out tensile test. Item 1 has failed after loaded. 

Everyone has different size of width due to manual cutting process. Table 5-2 given 

all the test result and average yield stress found 263.4 MPa  

Table 5-2: Test results of experiment 

Item 

no 

Cross section area of 

experiment 

Yield 

load (N) 

Ultimate 

load (N) 

Yield stress 

(MPa) 

Ultimate 

stress (MPa) 

1 10x15.66 = 156.6mm2 Fail Fail Fail Fail 

2 10x15 = 150mm2 39000 59900 260 400 

3 10x16 = 160mm2 42000 63000 263 394 

4 10x15.3 = 153mm2 40500 61800 265 404 

5 10x14.5= 145mm2 37800 57900 261 399 

6 10x14.2 = 142mm2 38000 56400 268 397 

Average  stress        40000 60000 263.4 399 
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5.4 Discussions 

Fatigue damage occurs when stress at a point changes over time. Fatigue life set up in 

the simulation as constant amplitude loading with fully reversed (+1 to -1). Fatigue 

life can be over the time (no. of day hour) or number of cycle, to develop SN carve we 

chose number of cycle. 

The main aim of the project was to compare physical data of fatigue life with finite 

element analysis data. However, fatigue life test of the specimen could not be 

completed because of time and resource constraints from the technical support area 

due to their commitments to post graduate projects 

In order to validate finite element analysis results with comparing experiment results 

we have completed tensile test. Figure 5-6 shows the experiment test piece yielding at 

263.4 MPa. The necking started far from the welded area. In the model simulation 

found 266.7 MPa stress at the same location where specimen broken. The results 

different between experiment and simulation only 1.2%. Considering this minimum 

error of the results we are conducting simulations for different type of analysis such as 

fatigue life. 

  

Applied force Experiment yield stress Simulation stress 

40 kN 263.4 MPa 266.7 MPa 

Figure 5-6: Comparison of experiment test with model simulation 

 

Experiment yield stress taken average of five different specimen because the cross 

sectional area of the each specimen are not same due to manually prepared of the test 

pieces. Simulation stress taken at the same location where yield started although stress 

of the model are same everywhere except weld toe. 

Yielding 
266.7 
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Weld toe has the maximum stress and minimum number of fatigue life cycles. 

However, the weld toe is the concentrated area Figure 5-7 shows the dimension of the 

area about 0.25 mm where, we can observe it is very smaller area compare to the cross 

sectional area. In real life situation molten weld metal toe will be a bit curve or after 

removed some material from toe using grinding operation will be removed most red 

coloured area. 

 

Figure 5-7: Zoomed view of stress concentrated area 

There are eleven different load combination has been applied to predict one million 

cycle fatigue life. Started from ultimate stress load (60 kN) than gradually decrease the 

load to get 1 million cycles, the result shows at 88 MPa stress can be used for the 

design calculation of this kind of material.  
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6. Chapter 6 – Conclusions 

6.1 Chapter overview 

This final chapter summarises the achievement of project objectives, identifies future 

works and provide recommendations. Definitive project conclusion also find end of 

this chapter. 

The objective of this project was to validate finite element analysis outcome compare 

with experimental investigation. Primary results has been achieved successfully with 

some lack of boundary condition input. Initial aims of experiment investigation was 

fatigue life of fillet welded joint have not been achieved within the research project 

time frame. However tensile test has been done to validate the FEA results. 

6.2 Achievement of the project  

The ultimate purpose of this project has been to perform finite element analysis of fillet 

welded joint and comparison with experimental investigation. In order to achieve the 

reasonable outcome study begin with introduction of the project then literature review, 

methodology and project planning, model simulation finally result discussion. 

Chapter 1 was to understand background of the welded structures and how the 

structures fails during operations initiate cracks from the welded area. From 

background knowledge define scope of the research and set up expected outcome than 

outlined the dissertation. 

Chapter 2 of this research has been successfully investigated a broad range of available 

literature related to the finite element analysis of welded structure and how welding 

operation affected to the materials and how can improved the life of welding joints.  

Methodology and project planning developed in the chapter 3, where describe details 

drawings of specimen and model development. In the FEA model, mesh element size 

also define using iterative process then used boundary condition for analysis. 

Chapter 4 detailed the finite element simulation and predicted principal stress and 

fatigue life of the model. The stress found for infinite life under cyclic load is 88 MPa 

which is 35% of yield stress. 

Finally chapter 5 carry out discussion of the results from FEA analysis and experiment 

investigation. Appendices has been included end of this report and there are some 
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boundary condition haven’t been included to the model which will be discussed in the 

future work and recommendation topic.    

6.3 Further work and recommendation 

Although a significant amount of the original goals have been achieved as part of this 

research project, a substantial amount of future work to be completed for the more 

accurate results and comparison between experiment investigation and model 

simulation. Details recommendations of simulation and experimental investigation 

listed below: 

 Fatigue testing – Experiment test has been carried out for this project was 

tensile test where observed yielding started on parent metal rather than weld 

toe area which means welded joint stronger than original material in terms of 

tensile force. To investigate fatigue life of the structure, Fatigue testing of 

experiment is more relevant to compare with FEA results.   

 Model simulation – FEA model will be given result according to input data 

and boundary condition. In the model simulation at weld needed to induce 

residual stress.  

 Mesh element size – Proper mesh element size is the key parameter to get 

better results. Mesh method need to be justified between Tetrahedron, Hex 

dominant, Sweep and Multizone which will be given more accuracy.  

6.4 Conclusion 

The ultimate purpose of the project has been achieved with developing techniques of 

the finite element analysis of fillet welded joint. The experimental investigation 

validate the performance of the FEA analysis results were found 1.2% error on tensile 

test. The experiment yield stress was found 263.4 MPa and simulation yield stress at 

the same location appears 266.7 MPa. In order to calculate fatigue life of welded joint 

used iterative process to define stress at one million cycle. The analysis found 274 

MPa stress and 7740 cycle fatigue life applying yielding load. After reduced load at 

12kN and found the fatigue life one million cycle where shows 88 MPa stress which 

is 35% of yield stress. So that designer can consider 35% of yield strength when design 

structure for fluctuating and repeated loading conditions. 
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List of Appendices 

A - Project specification 

University of Southern Queensland 

FACULTY OF ENGINEERING AND SURVEYING 

ENG4111/ENG4112 Research Project 

PROJECT SPECIFICATION 

FOR: RAFIQUL ISLAM MOHAMMED 

TOPIC: 
FINITE ELEMENTS ANALYSIS OF FILLET WELDED 

JOINT 

SUPERVISOR: CHRIS SNOOK 

PROJECT AIM: 
The aim of the project is to develop techniques for 

simplifying finite element analysis such as stress analysis 

and dynamic properties of structures under vibration 

excitation on non-complete joint penetrated (Fillet) welding. 

SPONSORSHIP: University of Southern Queensland 

PROGRAMME: Issue A, 18th March 2015 

  Research the back ground information of finite element analysis of welded 

joint. 

  Research on behaviour of welded joints under cyclic load. 

 

  Learn how to use ANSYS to analyse fillet welding joints with specific 

parameter, including ANSYS fatigue analysis.  

 

  Design and analyse the model structures with software (Creo/ANSYS) to 

compare between complete penetration joints and non-complete penetration 

joints. 

 

  Fabricate the T-joint specimen in workshop. 

 

  Complete physical testing of the specimen (using INSTRON). 

 

As time permits: 

 Develop techniques for simplifying finite element analysis of welding joints. 

 

Examiner/Co-examiner____________________________________ 
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B - Resource analysis  

In order to complete the project various resources are required. This project divide in 

to two part, one is to prepare experiment and conduct physical test, another is to design 

and simulation with software using computer. 

The resource that will required to complete the experiment: 

 Access to metal fabrication workshop 

 Grade 250 mild steel, size 400mmX300mmX10mm, one piece 

 Grade 250 mild steel, size 400mmX150mmX10mm, two pieces 

 Welding (MIG) machine and welding wire (ES609S) 

 Band saw 

 Angle grinder 

 Personal protective equipment (PPE) 

 Access to material testing lab (Z104.1) 

 Test machine operator personnel 

The resource that will be required to complete simulation: 

 A standard computer capable to run simulation software and producing data 

 Access to the internet, journals, articles, websites and newspaper to collect 

theoretical information and perform literature review 

 Access to library data-base for previous work which were published 

 Access to standards 

 ANSYS software for design and simulations 

 Access to ANSYS official tutorials to learn operating and useful commands 

 Access to Z block computer laboratories 

Critical resource:  

Learning ANSYS program is the critical service in this project. In the simulation most 

important data input is to applying welding parameter on the geometry. Knowing this 

operation is the most critical.  

Cost involves 

Material cost: $100, manpower cost: $100 X 4 = $400, overhead cost: $100 there for 

total cos involves = $600 
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C - Risk management  

Risk assessment is a process for developing knowledge and understanding about 

hazards and risks so that good decisions can be taken about controlling them. This 

project required use of welding machine, argon mixture with CO2 gas, high power 

cable and band saw in laboratory Z4. For testing use of 810 material testing system in 

a testing lab Z104.1. 

To carry out a basic risk assessment, follow these four steps (Worksafe  2015); 

 Gather information about each hazard that can identify. 

 Workout likelihood of an accident or incident occurring and consider how 

many people are likely to involve. 

 Assess the consequence of hazard for example, fatal, suffer major injuries, 

suffer minor injuries or negligible. 

 Rate the risk. 
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Risk assessment for location Z4 

Description of hazards People at risk  
Number at 

risk (1-5) 
Parts of body  Risk level 

Material falling off Person who 

involve material 

handling 

Up to 5 Feet, lower 

body 

Low 

Categories Short term controls Long term controls Completion details 

Material handling Avoid bending and twisting of body 
Use trolley or lifting 

equipment  

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate      Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  

Description of hazards People at risk  
Number at 

risk (1-5) 
Parts of body  Risk level 

Sharp edges of machine parts Person who 

involve material 

cutting 

Up to 5 Fingers, hands 

and feet. 

Low 

Categories Short term controls Long term controls Completion details 

Material handling Do not keep fingers close to the machine blade Fixed machine guard  

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate  PPE must worn   Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  
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Description of hazards People at risk  
Number at 

risk (1-5) 

Parts of 

body  
Risk level 

Electric shock Person who 

involve Welding 

Up to 5 All Medium  

Categories Short term controls Long term controls Completion details 

Material handling PPE must worn, do not weld if place is wet 

Inspect welding machine 

and cable regularly to 

make sure no damage 

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate    

If damage during 

operation report to the 

supervisor 

Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  

Description of hazards People at risk  
Number at 

risk (1-5) 

Parts of 

body  
Risk level 

Welding fume and gases Person who 

involve Welding 

Up to 5 Lung, skin, 

kidneys 

Low 

Categories Short term controls Long term controls Completion details 

Material handling 
PPE must be worn and fume mask (welding mask) 

need to use during welding 

Local exhaust 

(ventilation)  

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate    

Adequate air flow 

(ventilation) should be in 

the workplace  

Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  
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Description of hazards People at risk  
Number at 

risk (1-5) 

Parts of 

body  
Risk level 

Radiations Person who 

involve Welding 

and surrounding 

people 

Up to 5 Eyes and 

skin 

Low 

Categories Short term controls Long term controls Completion details 

Material handling 
Skin protection, Eye protection Non-flammable 

clothing 

Welding bay covered with 

welding screens  

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate  PPE must be worn   Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  

Description of hazards People at risk  
Number at 

risk (1-5) 

Parts of 

body  
Risk level 

Fire  All people, 

whoever in the 

workshop 

Up to 5 All body Low 

Categories Short term controls Long term controls Completion details 

Material handling Use fire extinguisher and fire hoses 

Safe working practice, 

Flammable goods never 

allow in the welding bay 

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate  Checked welded area after half an hour 
Inspect welding machine 

regularly before start work 
Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  
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Description of hazards People at risk  
Number at 

risk (1-5) 
Parts of body  Risk level 

Heat during welding  Person who 

involve Welding 

Up to 5 Whole body Low 

Categories Short term controls Long term controls Completion details 

Material handling 
Use proper clothing’s, stay away from welding spark 

as much as possible 

Local exhaust and 

adequate     air flow  

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate      Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  
    Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  

Description of hazards People at risk  
Number at 

risk (1-5) 
Parts of body  Risk level 

Compressed gas cylinder explosion Everybody in the 

workshop 

Up to 5 All Low 

Categories Short term controls Long term controls Completion details 

Material handling Positioned gas cylinder upright 

Case around cylinders 

preventing access or 

accidental contact 

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Welding on plate  Use proper valve to control the gases   Prepared by : Rafiqul Mohammed 

Cutting off welded 

plate  

ensure all gas cylinder are kept in the cool area  and 

away from potential heat source 
  Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  
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Risk management chart for Z104.1 testing lab 

Description of hazards People at risk  
Number at 

risk (1-5) 
Parts of body  Risk level 

Electric shock Person undertaking 

the test 

Up to 5 Whole body Low 

Categories Short term controls Long term controls Completion details 

Material handling 
Check all the cables connected to the machine for 

inspection tags whether it is up to date 

Operate machine 

according to specifications 

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Clamping test piece    Do not over loaded Prepared by : Rafiqul Mohammed 

Operating test 

machine 
  Follow instructions Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

  

     Date:  



 

85 

 

Description of hazards People at risk  
Number at 

risk (1-5) 
Parts of body  Risk level 

Flying metal chips Person undertaking 

the test 

Up to 5 Any parts of 

body 

Low 

Categories Short term controls Long term controls Completion details 

Material handling 
PPE must be worn such as full covered shows, safety 

goggles and air plugs.  
Use proper machine guards 

Employer: USQ                                                               

Faculty of Health Engineering and 

Science 

Clamping test piece  Know the location of emergency switch Machine up to date Prepared by : Rafiqul Mohammed 

Operating test 

machine 
Do not touch specimen during loading   Assented to by: Chris Snook  

Workshop PPE     
Position: Discipline group leader                                            

Mechanical engineering 

      Signature: 

      Date:  
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D - Project timeline 

Table 6-1: project timeline 

 

Project proposal: Completed 

Project specification: Completed 

Literature review: Partially completed, further need to review until completing the project. 

Learn ANSYS program: Introduction has been completed with YouTube help. Found access of 

ANSYS software at USQ lab with help from supervisor (Mr. Chris Snook). Still unable to access 

official tutorial due to registration problem, this learning will be carried out until September, in the 

meantime some simulation will be progressed. 

Writing preliminary report: First preliminary report submitted 4th June 2015, feedback received 

with lots of comments. Revision 2 of this report will submitted by 17th July 2015. 

Model simulation: Model has been finalised at this stage now updating knowledge to applying 

welding parameter to the model. 

Prepare experiment: Request has been sent to the workshop to fabrication of specimen and 

expected completion time will be end of July. 

 

Experiment test: Once specimen done then booked for the test. The test will required one day to 

complete. According to timeline by August can be done. 

Thesis writing: Thesis writing in progress, continue writing until the day of submission. 


