
University of Southern Queensland

Faculty of Health, Engineering and Sciences

Optimisation of Multicore Processor and GPU for use in Embedded

Systems

A dissertation submitted by

Chloe Mansell

In fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Computer Systems Engineering (Honours)

Submitted October, 2015

Abstract

The advancement in technology continues to consume an increasing part of

our lives and as we watch the slowing of Moore’s Law as Integrated Circuits

approach physical limitations, we will continue to search for faster execution

of programs.

The advancement in robotics and machine vision will see them become part

of our daily lives and the need for real time machine vision algorithms will

increase.

This dissertation will investigate optimisation options when executing

machine vision algorithms on a multi-core processor and provide a guide for

programmers to use when writing similar machine vision algorithms on Arm

A7 or A15 processors containing a Mali T628 Graphics processing unit.

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health,

Engineering & Sciences, and the staff of the University of Southern

Queensland, do not accept any responsibility for the truth, accuracy or

completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not

at the risk of the Council of the University of Southern Queensland, its

Faculty of Health, Engineering & Sciences or the staff of the University of

Southern Queensland.

This dissertation reports an educational exercise and has no purpose or

validity beyond this exercise. The sole purpose of the course pair entitled

“Research Project” is to contribute to the overall education within the

student’s chosen degree program. This document, the associated hardware,

software, drawings, and other material set out in the associated appendices

should not be used for any other purpose: if they are so used, it is entirely at

the risk of the user.

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and

conclusions set out in this dissertation are entirely my own effort, except

where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously

submitted for assessment in any other course or institution, except where

specifically stated.

C. Mansell

0061024275

Acknowledgments

Firstly I would like to extend my thanks and appreciation to my supervisor

Stephen Rees who has always been available when needed and has offered

valuable input and feedback.

I would also like to acknowledge the massive undertaking a university degree

is and the large effects it has had on my family. I would like to say a huge

thankyou to my immediate family especially to my supportive husband who

has had to pick up the slack and endure many weekends and holidays without

his wife. To my beautiful boys who are my inspiration and keep me going.

I would also like to acknowledge the assistance I have received from extended

family and friends. I have not gotten this far on my own, from babysitting,

cooking, washing, cleaning, staying away so I can study as well as a friendly

ear to listen to me complain about the many assignments, exams and projects

I needed to complete. This has all helped me get to this stage.

Contents

Abstract i

Acknowledgments iv

List of Figures

List of Tables

Chapter 1 Introduction 1

1.1 Research Aim . 2

 1.2 Objectives . 2

 1.3 Overview of Dissertation . 2

 1.4 Background Information . 4

 1.4.1 Common Embedded Systems. 4

 1.4.2 What is Optimisation . 19

 1.4.3 Why Optimise . 19

Chapter 2 Literature Review 21

 2.1 Software Optimisation techniques . 21

 2.1.1 Software techniques . 21

 2.1.2 Compiler Optimisations . 22

 2.1.2.1 Function inlining. 22

 2.1.2.2 Eliminating common sub-expressions. . . . 22

 2.1.2.3 Loop unrolling .23

 2.1.2.4 GCC optimisation options 24

 2.1.3 Source code modifications . 26

 2.1.3.1 Loop termination . 26

 2.1.3.2 Loop Fusion . 26

 2.1.3.3 Variable Selection 27

 2.1.3.4 Pointer aliasing . 27

 2.1.3.5 Division and modulo 27

 2.1.4 Software Optimisation Conclusion 28

 2.2 Optimising with Hardware . 29

 2.2.1 Neon Data Engine . 29

 2.2.2 Graphics Processing Unit . 31

Chapter 3 Methodology 33

 3.1 Research and Development methods 33

 3.2 Task analysis 34

 3.3 Risk Assessment . 35

 3.3.1 Risk Identification . 35

 3.3.2 Risk Evaluation . 35

 3.3.3 Risk Control . 36

 3.4 Resource Analysis . 37

 3.4.1 Research and reporting .37

 3.4.2 Software development and Hardware testing 37

 3.5 Project Timeline . 39

Chapter 4 Software Development 40

 4.1 Optimisation Techniques . 41

 4.2 Image Processing 42

 4.3 Grey Scale Thresholding . 41

 4.4 Average Smoothing Filter .52

 4.5 Testing .60

Chapter 5 Results and Discussion 61

 5.1 Grey Scale Thresholding .. 61

 5.11 Results 62

5.2 Average Smoothing Filter . 71

 5.2.1 Results .72

 5.3 Conclusion 80

Chapter 6 Conclusion and Further Work 82

References 83

Appendix A Project Specification 87

Appendix B Code for Grey Scale Threshold Image Processing 89

Appendix C Average Smoothing Filter code for Image Processing 107

Appendix D Output photos from Grey Scale Algorithm 132

Appendix E Output photos for Average Smoothing Filter 137

List of Figures

1.1 Harvard architecture . 5

1.2 Von Neumann architecture . 5

1.3 Arm Cortex A7 .7

1.4 Cortex A7 Pipeline .7

1.5 Arm Cortex A15 .8

1.6 Cortex A15 Pipeline .8

1.7 Scalar add vs SIMD parallel add .9

1.8 Neon registers . 10

1.9 Single Precision floating-point format .11

1.10 Circular buffer operation .13

1.11 Typical DSP architecture . 14

1.12 FIR filter steps .15

1.13 FPGA .16

1.14 Comparison between CPU and GPU cores .17

1.15 Computer vision vs computer graphics . 18

1.16 Arm Mali – T628 .18

2.1 Example of loop .24

2.2 Example of loop unrolled .24

2.3 Example of unmerged and merged loops .27

3.1 ODROID XU3 Development Board .38

3.2 Project Timeline . 39

4.1 (a) Input Image . 43

4.2 Grey Scale threshold development code. 45

4.3 Loop reversal for greyscale threshold . 46

4.4 Loop unrolling excerpt . 47

4.5 For loop within grey scale threshold program 48

4.6 Block of code directing process through single core 48

4.7 Loop for Neon data engine . 50

4.8 Convert greyscale image to RGB code .51

4.9 Smoothing filter algorithm . 52

4.10 Original image used for image processing . 53

4.11 Image after alterations from average smoothing filter 53

4.12 Average Smoothing Filter program . 54

4.13 Loop for average smoothing filter with loop unrolling56

4.14 Load and sum functions in average smoothing filter 58

4.15 Copy of program section which calculates execution time60

5.1 Image prior to image processing 61

5.2 Output image from Grey Scale thresholding62

5.3 Grey Scale Thresholding Graph .69

5.4 Grey Scale Thresholding Graph without GPU 70

5.5 Output image from Average Smoothing Filter 71

5.6 Average Smoothing Filter Graph .78

5.7 Average smoothing filter graph without GPU 79

List of Tables

5.1 Results from Grey Scale Thresholding Program62

5.2 Results from Grey Scale Thresholding with loop reversal 63

5.3 Results from Grey Scale Thresholding with loop unrolling 64

5.4 Results from Grey Scale Thresholding with pointer Optimisation. 64

5.5 Results from Grey Scale Thresholding pointer and loop unrolling 65

5.6 Results from Grey Scale Thresholding Pointer and loop reversal.. 66

5.7 Results from Grey Scale Thresholding directed through A7 Core. 66

5.8 Results from Grey Scale Thresholding directed through A15 core..67

5.9 Results from Grey Scale Thresholding directed through Neon . . . 68

5.10 Results from Grey Scale Thresholding directed through GPU . . . 69

5.11 Results from Average Smoothing Filter .72

5.12 Results from Average Smoothing Filter with loop reversal72

5.13 Results from average smoothing filter with loop unrolling73

5.14 Results from average smoothing filter with pointer optimisation . 74

5.15 Results from average smoothing filter with pointer and reversal. . 74

5.16 Results from average smothing filter with pointer and unrolling. . .75

5.17 Results from average smoothing filter directed through A7. 76

5.18 Results from average smoothing filter directed through A15 76

5.19 Results from average smoothing filter through Neon77

5.20 Results from average smoothing filter through GPU 78

Abbreviations

DSP Digital Signal Processor

FPU Floating Point Unit

SIMD Single instruction stream multiple data stream

GPU Graphics processing unit

RISC Reduced instruction set computer

CISC Complex instruction set computer

CPU Central Processing Unit

Chapter 1

Introduction

The advancement of technology has been continuing at a rate predicted by

Moore’s Law half a century ago. Continued advancements including the

decrease in the size of integrated circuit components allowing more

components on a single chip has decreased the cost of processors and greatly

improved performance including clock speeds and power efficiency.

We are now seeing the slowing of Moore’s Law as advancement’s in

Integrated Circuits approach physical limitations. This slowing has

contributed in the birth of multicore processors and parallel processing to

allow for continued increase in processing power. As the cost of multicore

processors and development boards become lower this will allow multicore

processors to become more of a viable option for use in embedded systems.

This dissertation will investigate the use of multicore processors and Graphics

Processing Unit to execute optimised embedded system algorithms.

.

P a g e | 2

1.1 Research Aim

The aim of this project is to investigate how to optimise a multicore processor

and its ancillary computational hardware, for use in an embedded system.

The project will determine if there is an advantage in using a range of

optimisation software techniques combined with manually directing data

through the Central Processing Unit, Neon unit and the Graphics Processing

unit, in comparison to allowing the compiler to schedule the optimise code

and direct the data.

1.2 Objectives

1. To develop a software program which will benchmark computational

speeds of different components on the ODROID XU3 development

board.

2. Test the development board with software programs containing

typical machine vision algorithms and record execution speeds.

3. Analyse and benchmark the data obtained.

1.3 Overview of Dissertation

The dissertation has been broken up into the following chapters.

Chapter 1: Introduction

This chapter will outline the research aim and objectives as well as discuss

background information required to understand current processes used in

embedded systems.

P a g e | 3

Chapter 2: Literature Review

The literature review will review current literature on software optimisation

techniques which will assist in the decision on what techniques will be used

on the software code for the purpose of this dissertation. The review will also

investigate the current literature covering the use of hardware components

including the Neon Data engine and Graphics processing unit to further

improve on execution speeds of the software program.

Chapter 3: Methodology

Chapter three contains research and development methods as well as a task

analysis outlining milestones for the project. This is followed by a Risk

assessment, Resource analysis and Project timeline.

Chapter 4: Software Development

Chapter four will outline the development of each software program and how

the algorithms were approached.

Chapter 5: Results and Discussion

Chapter five will show the results from the execution of the software and

analysis of the results.

Chapter 6: Conclusion and further work

Chapter six will discuss the achievements of the project’s objectives and

outline any future work in regards to this dissertation

P a g e | 4

1.4 Background Information

This section will cover the background information required to obtain an in-

depth understanding of current processors used in embedded systems.

Optimisation and why optimisation is required will also be examined.

1.4.1 Common embedded systems

Microcontroller

A microcontroller can be described as a computer on a single chip containing

simplified elements which are able to perform less complex applications. The

microcontroller is a smaller more economical options which has been

typically used in the use of embedded systems (Bates 2011, p.17). A

microcontroller will contain a central processing unit, memory and access to

input data and the ability to output data. The following background

information will cover a range of processing units available to be used to

perform the tasks required in a real time system.

Central Processing Unit (CPU)

To understand how different CPU’s works an understanding of the typical

architectures is required. There are two major types of physical architectures

available and the first architecture to be examined is the Harvard architecture.

The Harvard architecture consists of two separate storages, one for the data

memory and one for the instruction memory. These storage spaces are

connected to the main control unit through a bus, and as there is two separate

P a g e | 5

storage spaces and two buses this allows simultaneous transfer of instructions

and data as well as allowing the instruction and data sizes to be different

(USQ, 2013).

Figure 1.1 Harvard architecture (USQ 2013, p.137)

The second major architecture available is the Von Neumann architecture

which has one place for storage hence the data and instructions are stored

within the same memory. As there is only one storage unit available there is

also only one bus for the information to move from memory to the control

unit not allowing for simultaneous transfer of instructions and data.

Movement between these units will consequently need to be scheduled and

the size of the data and instruction will need to be the same length (USQ,

2013).

Figure 1.2 Von Neumann architecture (USQ 2013, p.136)

There are other variations on these architectures available, one of these being

the modified Harvard architecture. This architecture takes the best of both of

the architectures and combines them for a more enhanced design. The

modified Harvard architecture consists of a Von Nuemann architecture with

P a g e | 6

two on board memory caches added. There is a cache available for instruction

memory and one available for data memory and each has a common address

space that share the one memory. The modified Harvard architecture allows

the processor to perform similar to a Von Neumann when accessing memory

and similar to a Harvard when accessing the caches.

Other terms which are common when discussing different forms of CPU’s

are the type of instructions sets which are used when programming. The two

distinct types are CISC architecture which stands for a complex instruction

set computer and RISC which stands for a reduced instruction set computer.

A CISC is a complex set of instructions and therefore there are more

instruction available to use then the RISC set, this allows the programmer to

write less code to perform the same task when compared to a RISC (USQ,

2013). This however is not always appropriate in an embedded system as

more transistors are required on the chip and there is also a higher power

consumption and heat dissipation when using this form of architecture.

Therefore a RISC architecture would be a more appropriate choice for

microcontrollers when used in embedded or mobile applications. This is seen

in the ARM architectures which is a popular set of RISC microcontrollers

which can be found in 95% of smart phones, 80% of digital cameras and 35%

of all electronic devices (ARM, 2014).

The Exynos 5422 the processor on the ODROID XU3 development board

contains a Cortex A7 quad core alongside the Cortex A15 quad core

P a g e | 7

A7 – CPU

Figure 1.3 Arm Cortex A7 (ARM 2015)

The Cortex A7 has an in order, non-symmetric dual issue processor with a

pipeline length between 8 to 10 stages (ARM 2015). The chip contains

hardware for SIMD in the Neon data engine, a floating point unit and two on

board cache.

Figure 1.4 Cortex A7 Pipeline (Electronic Design 2011).

The A7 processor main advantage is its power efficiency. It is used in

conjunction with the A15 to run smaller less intensive applications whilst the

A15 sits idle until more powerful processing is required.

P a g e | 8

A15 – CPU

Figure 1.5 ARM Cortex A15 (ARM 2015)

The Cortex A-15 is a high end triple issue, out of order processor core. The

A15 has the ability to implement virtualisation instructions, hardware-

accelerated integer division and also a 40 bit virtual memory addressing

extensions (ARM 2015). The A15 also contains a SIMD unit in the Neon data

engine and floating point unit as well as two on board cache.

Figure 1.6 Cortex A15 Pipeline (Electronic Design 2011).

Comparing the two processors the assumption is that the A15 core will

perform the test calculations at a faster rate than the A7 core.

P a g e | 9

SIMD – Single Input Multiple Data

SIMD or Single Instruction Stream Multiple Data Stream allows the same

operation to be performed on Multiple Data at the same time (Zhou & Shi

2008).

SIMD will allow a single instruction to split a register into multiple data

elements which will allow multiple identical operations on these elements.

The following figure 2.1 illustrates the difference between a scalar add and a

SIMD parallel add (ARM 2013).

Figure 1.7 Scalar add vs SIMD parallel add (ARM 2013).

SIMD operations are available to use on a variety of CPU’s through

specialised instructions or hardware units. The Arm architecture has a Neon

Data engine to carry out vectored operations. The Neon is able to accelerate

repetitive operations on large data sets which is an advantage when used in

Digital filters, Pixel processing and Matrix operations (ARM 2013).

Neon uses this concept outlined in figure 2.1 using a 64 bit and 128 bit

instruction set. This instruction set will provide a 128 bit wide vector

P a g e | 10

operations. The registers can either be made up of 16 x 128 bit or 32 x 64

bit registers (ARM 2013).

Figure 1.8 Neon registers (ARM 2015)

NEON has the following data types available:

- Unsigned integer U8 U16 U32 U64.

- Signed integer S8 S16 S32 S64

- Integer of unspecified type I8 I16 I32 I64

- Floating-point number F16 F32

- Polynomial over {0,1} PS

 (ARM 2013)

Processing data in NEON can be done in either Normal, Long, Wide,

Narrow and saturating variants. Processing may also be done with scalars

and vectors where the scalar may be 8,16,32 or 64 bit (ARM 2013).

P a g e | 11

Floating Point Unit (FPU)

Each core in both the Arm A7 and A15 processors contain a Floating Point

Unit which can be used when it has been enabled otherwise any Floating point

calculations will be done through the use of library functions. (ARM 2013).

As per the IEEE-754 standard floating point numbers are represented within

the Arm Cortex A series hardware as follows:

Figure 1.9 Single Precision floating-point format (ARM 2013)

S = Sign Bit which indicates if the number is positive or negative

Exponent gives the order of the magnitude of the number and the Mantissa is

the fractional binary digits of the number. If the number is a single precision

float the number is stored as per figure 2.10. The conversion to a single 32

bit float may cause a loss of precision if the number being stored cannot be

represented wholly within the 23 bit mantissa. In this case the use of a double-

precision floating point number may be appropriated as it has an exponent

field with 11 bits and a mantissa with 52 bits (ARM 2013).

Both the Cortex A7 and A15 have the VFPv4 Floating point micro-

architecture and the following registers:

- Thirty two or sixteen double-word registers (ARM 2013).

- Floating point system ID register (FPSID) which is used to

allow the system to read and to determine which features are

available within the hardware (ARM 2013)

P a g e | 12

- Floating point status and control registers (FPSCR) which are

used to hold comparison results, flags for exceptions, select

rounding options and enable floating point exception trapping

(ARM 2013).

- Floating point Exception register (FPEXC) which is used to

enable system software which controls exceptions which

determine what has happened (ARM 2013).

- Media and VFP feature register 0 and 1 (MVFR0 and MVFR1)

which enable software which determines what features from

Floating point or SIMD are implemented on the processor

(ARM 2013).

Digital Signal Processor (DSP)

A Digital signal processor or DSP is a programmable microcontroller which

has been designed to manipulate a stream of real time digital data usually in

the form of a signal. A DSP is often used in processing audio, video and

graphics processing (Thompson, 2001).

A DSP is designed to perform data manipulation and mathematical

calculations at a rate fast enough to allow usage in a real time system and will

have the following characteristics.

- Specialised high speed arithmetic

- A form of data transfer from and to the real world

- A memory architecture which will allow multiple access

 (Smith, 1997)

P a g e | 13

A DSP will often be used in digital signals to apply a digital filter to a signal

to allow the signal to be free from distortion, interference or it may be used

to separate two signals. This process involves taking samples of a signal,

performing arithmetic to this sample and outputting the modified signal all in

real time, therefore the DSP needs to perform large calculations fast. The

signal will be represented by an equation for example the input will be x(n)

and the output will be equal to y(n). The following is an example of an

equation to find the output signal from a DSP with a FIR digital filter applied.

0 1 2() (n) (1) (2)y n a x a x n a x n      (1.1)

The number of coefficients in this equation could be a number in the

thousands and the DSP may be sampling a large amount of samples of the

signal every second. To enable the DSP to do this it uses a circular buffer

where it will store each coefficient for example x(n-1) where n-1 represents a

past input separately within the buffer. As the time moves forward only one

coefficient needs to be added and therefore only one value needs to be updated

and not every coefficient within the equation (Smith, 1997).

Figure 1.10 Circular buffer operation (Smith 1997)

P a g e | 14

In Figure 1.1 smith shows an example of how the circular buffer is used and

how only one value x(n) is added which replaces the oldest value x(n-7). This

allows the DSP to perform these calculations in real time and allows there to

be no obvious delay between the readings of the information from the input

signal to the output of the filtered signal (Smith 1997).

A DSP has a modified Harvard architecture which contains two data busses,

one for the instructions and one for data. The DSP also has an instruction

cache which will allow the storage of all the recent program instructions as

seen in Figure 1.2. As the DSP performs the same repetitive instructions

when sampling data, the DSP will retrieve the instructions from the cache

after the first loop. Once the DSP is receiving instructions from the on board

cache the memory transfer can be achieved within a single loop.

The DSP is now capable of receiving the sample from the signal from the data

memory bus, the coefficients from the program memory bus and the

instructions from the cache in parallel (Smith 1997).

Figure 1.11 Typical DSP architecture (Smith 1997)

P a g e | 15

A DSP will also allow access to the Multiplier, ALU and shifter to be accessed

in parallel. (Smith 1997). In the following figure 1.3 Smith outlines the

following steps in a DSP cycle when applying an FIR filter.

Figure 1.12 FIR filter steps (Smith 1997)

Once the beginning steps 1 – 5 are carried out Steps 6-14 may be carried out

simultaneously within a single clock cycle which will allow a calculation for

100 coefficients to be performed in approximately 105-110 clock cycles.

Programmable Logic Devices

A logic device is a circuit which will accept either a logic 1 or logic 0 or a

combination and return an output of either a 1 or a 0 (USQ 2013). A

programmable logic device is a block of logic devices which are organised in

a way to perform a particular task. They can be known as a Complex

programmable logic device (CPLD), Field programmable gate array (FPGA)

as well as many others.

A complex programmable logic device is a device with contains re-

programmable functional blocks. These blocks are all connected via inputs

P a g e | 16

and outputs through a global interconnection matrix. This matrix can be

changed as necessary to allow different connections between blocks. There

is the ability to connect input and output to these devices. The blocks can be

programmed to perform logic functions such as OR, AND, NAND, NOR etc.

A field programmable gate array (FPGA) is a controller which consists of an

array of logic blocks surrounded by input and output blocks. The logic blocks

in an FPGA will implement the logic whilst programmable interconnect wires

connect the inputs and outputs to the logic blocks as seen in Figure 1.3.

Combined with the ability to be reprogrammed an FPGA can be very flexible

and is often used in systems such as software-defined radio, aerospace and

defence systems as well as medical imaging, computer vision and speech

recognition (National Instruments 2014).

Figure 1.13 FPGA (National Instruments 2014)

P a g e | 17

GPU’s – Graphics processing unit

A graphics processing unit is a multi-processor which has been designed for

use in graphics processing. As a GPU is designed to process graphics which

can include the process of thousands of pixels at one time they have a parallel

architecture with thousands of small cores which are designed to all work

simultaneously. This massive parallel processing is now being identified to

be useful in applications other than graphics processing including scientific

computation (NVidia 2015).

Figure 1.14 Comparison between CPU and GPU cores (NVidia 2015)

The use of the Graphics Processing unit has become useful for computer

vision algorithms in particular as these algorithms are the inverse of the

GPU’s primary use (Pulli et al. 2012). For example the GPU was designed

to transfer data of an object into pixels and output it onto the screen and a

typical computer vision algorithm will take the pixel and transform it into data

to be manipulated (Pulli et al. 2012). Figure 1.15 shows the relationship

between the two processes.

P a g e | 18

Figure 1.15 Computer vision vs computer graphics (Pulli et al. 2012)

The ability to partially program the GPU was created by the addition of

shaders which allows data to be shared with the CPU and not sent directly to

the display via a fixed-function pipeline (Pulli et al. 2012).

Writing parallel programs to utilise the GPU can be extremely difficult and

complex which has seen the development of specific languages such as

OpenCL, OpenGL and CUDA to assist programmers.

The GPU on the ODROID XU3 is the Arm Mali –T628 as shown in figure

1.15.

Figure 1.16. Arm Mali –T628 (ARM 2015)

The Mali has 8 shader cores enabling them to be partially programmed.

P a g e | 19

1.4.2 What is optimisation?

Optimisation is when a process or task is designed to be the most efficient it

can be. In computing terms this can be done through various techniques either

by optimising the software code or through the use of various hardware units

depending on the task at hand. For example a Digital signal processor would

be used to apply a filter to a signal as this is the most efficient hardware

available for this task.

Software optimisation is optimising the process through programming

techniques such as; the use of registers, the removal of any dead code, the use

of pointers and unrolling of loops to name a few. Appropriate software

techniques will be looked at in more detail in the next chapter. In an

embedded system optimisation can be used to increase the speed of the

execution of code, increase the performance of battery life, code density or

reducing the memory footprint of the code (Arm 2013).

1.4.3 Why optimise

Optimisation is important when in terms of embedded systems as it is

typically required to operate in a real time environment, therefore the process

will need to seem instantaneous for it to be affective.

As we see the slowing of moore’s law as the amount of transistors which can

be put on a single chip is slowing due to physical limitations we can no longer

expect a continued large increase in processing power with the next

generation of chip being developed. This slowing has led to other options

being exploited to increase computing power such as parallel computing,

multi core processors, optimisation of code to increase execution speeds and

P a g e | 20

the use of specialised units such as the Neon data engine, Floating point units

and Graphics processing units in combination with the CPU.

Chapter 2

Literature Review

In an embedded system optimisation is typically used to reduce the execution

time of a program, reduce battery life, code density or the memory footprint

(Arm 2013). For the purpose of this dissertation optimisation will be used to

increase the speed of the code being executed. This section will cover

possible optimisation techniques available to be used in conjunction with the

ARM A series processors A7 and A15 as well as the ARM Mali T-628 GPU,

this will also include the use of the NEON and FPU units included on the A7

and A15 processors.

2.1 Software Optimisation techniques

2.1.1 Profiling

The technique known as profiling is typically used to help identify parts of

code which are consuming large amounts of execution time and is used in

embedded applications to assist with the optimisation of the code. Cao et al.

(2010) study on Loop-Centric Profiling method for embedded applications

highlights that code written for an embedded application will typically follow

the 90-10 rule which states that 10 percent of the code in an embedded

application will account for 90 percent of the execution time. Profiling is

used to identify the 10 percent of code to allow the programmer to optimise

the section of code highlighted and therefore reduce the execution time (Cao

et al. 2010). As each code that will be developed for the use in this

P a g e | 22

dissertation will be limited to a single set of calculations representing the 10

percent of code, profiling will therefore not be necessary.

2.1.2 Compiler Optimisations

GCC-4.8 will be the compiler which will be used to compile code on the

development board. The Arm A-series Programmers guide outlines the

following compiler optimizations to be used with the GCC Compiler to assist

with optimisation of code to be run on an ARM A series Processor.

2.1.2.1 Function inlining

Function inlining is a technique that can be performed by the GCC compiler

using a specific keyword inline. Inlining is the process of creating a copy of

the function code and placing it where the function is being called within the

main program. Function inlining eliminates the overhead created when

calling a function and is useful in applications with small functions which are

going to be called a large amount of times (ARM 2013). Mahalingam &

Asokan (2012) study on Optimising GCC for ARM architecture highlights

function inlining as being non advantageous with the ARM architecture due

to interruptions to the pipeline and therefore we would not expect to see any

improvement in execution speed using function inlining through the

compiler.

2.1.2.2 Eliminating common sub-expressions

Eliminating common sub-expressions is the process where the compiler uses

an already computed result in a later expression instead of re calculating the

value again, however the compiler may not pick up on all cases and this

P a g e | 23

should be done manually if possible by the programmer (ARM 2013).

Eliminating common sub-expressions was used as part of software

optimisation in a study conducted by Park et al (2013) Software Optimisation

for Embedded Communication systems alongside other optimisation

techniques and an improvement in code execution time was found. Although

eliminating common sub-expressions was not tested independently, the

literature does suggest that an improvement was found and therefore this will

be a technique used to optimise code for this dissertation.

2.1.2.3 Loop unrolling

Loop unrolling is a method which increases the programs performance by

increasing pipeline efficiency and decreasing branching penalties and pointer

arithmetic’s associated when using loops (Velkoski et al. 2014). Velkoski et

al (2014) study on the performance impact analysis of loop unrolling results

found using loop unrolling techniques on a matrix multiplication algorithm

had improved performances of the execution speed however this

improvement varied depending on the size of the matrix and also on the

architecture of the CPU. Park et al study on software optimisation for

embedded communication system also found through the use of loop

optimisations they were able to improve execution time of code with an

improvement between 11.9 and 79.2 percent depending on the message type

they were optimizing.

The following code is an example of loop unrolling.

Prior to loop unrolled

P a g e | 24

Figure 2.1 Example of loop written in C

Loop unrolled

Figure 2.2 Example of loop unrolled written in C

As the literature supports the conclusion that loop unrolling will be

advantageous this technique will be used for the purpose of this dissertation

when optimising code.

2.1.2.4 GCC optimisation options

There are various GCC optimisation levels which can be chosen to increase

the performance of code when compiling (Arm 2013). Optimisation levels

available are as follows:

- 00 – No optimisation

- 01 – uses common optimisation techniques to reduces the size of the

program whilst increasing the performance

P a g e | 25

- 02 – Additional optimisation still ensuring speed without increase in

size of program.

- 03 – optimisations which may increase the speed of the program and

increase the size of the program

o Can add to this level –ftree-vectorize which will attempt to

generate NEON code

- –funroll-loops – will enable loop unrolling

- -0s. This will minimise the size of the program which may cause

decrease in speed

 (ARM 2013)

Available also are armcc compiler optimisation options, however during

testing the gcc compiler will be used and therefore these optimisations will

therefore not be relevant.

Park et al (2013) study on software optimisation had a justification that

compilers typically focused on high performance computers and not on

embedded systems and therefore the best way to optimise software code for

embedded systems is to manually transform code. Simunic et al (2000) study

on source code optimisation and profiling of energy consumption in

embedded systems also states that manual code rewriting is more efficient

than using compiler optimisations as they tend to be for higher level usage.

Therefore it would be expected that a better result would be achieved through

manually altering code alongside the use of compiler optimisation levels. As

execution speed is the focus of this dissertation compiler options 01, 02 and

03 will be tested.

P a g e | 26

2.1.3 Source code modifications

The ARM Cortex –A Series Programmer’s Guide recommends the following

source code modifications to optimize code to run on an ARM A series

processor.

2.1.3.1 Loop termination

Loop termination is the process of finishing loops within a program at zero

and involves decrementing loops opposed to incrementing the loops after

starting at a value of zero (ARM 2013). Joshi and Gurumurthy (2014) study

analysing and improving the performance of software code for real time

embedded systems found a reduction in execution time using a process known

as Loop Reversal which is the same process known as loop termination. Joshi

and Gurmurthy concluded that they had a 30% improvement in the speed of

execution of code using this technique.

2.1.3.2 Loop Fusion

Loop Fusion is the technique a programmer will use to optimise code which

will merge loops together and result in a single loop over multiple loops. This

is typically used when loops have the same count as per figure 2.3 (ARM

2013). Joshi and Gurnmurthy tested loop fusion as part of their study and

found an increase of 60% in execution speed.

P a g e | 27

Figure 2.3 Example of unmerged and merged loops (ARM 2013).

2.1.3.3 Variable Selection

As the arm registers are 32 bit, variables should be 32 bit in size. This will

prevent overflows if the variable are 8 or 16 bit in size which can slow the

execution of the code (Arm 2013). Variable selection will be a continued

consideration during the software development.

2.1.3.4 Pointer aliasing

Will become an issue if more than one pointer is used within the code and

both pointers point to the same memory location. As with variable selection

this will also be a constant consideration during software development

2.1.3.5 Division and modulo

If the hardware being used does not have support for division it can slow the

code down as library functions will need to be used to divide and use the

modulo function. As both the A7 and A15 have hardware available to divide

this will not be a consideration when optimising code (ARM 2013).

P a g e | 28

Software Optimisation Conclusion

Simunic et al (2000) study used techniques in critical loops to optimise code

such as loop merging, loop unrolling, software pipelining and loop invariant

extraction and found an 87 percent increase in performance.

Joshi and Gurumurthy (2014) study analysing and improving the performance

of software code for real time embedded systems found a reduction in

execution time with the following techniques. Loop Reversal also knows as

loop termination had a 30 percent increase in speed, Loop fusion had a 60

percent increase in speed and Loop unswitching also had a 60 percent increase

in speed.

Velkoski et al (2014) study on the performance impact analysis of loop

unrolling found using loop unrolling techniques could have a performance

increase on execution speeds.

After review of the current literature available the Software optimisation

techniques which will be used for the purpose of this dissertation will be as

follows:

- Loop unrolling

- Loop reversal

Alongside the above three techniques, elimination of common

subexpressions, variable selection and pointer aliasing will be constant

considerations during the development of software although they will not be

independently tested for this dissertation.

P a g e | 29

It has also been decided to test the difference in execution times when pointers

are allocated to image arrays to see if a decrease in execution time will be

seen.

2.2 Optimising with Hardware

This section will review the capabilities of the units on the ODROID XU3

and the ability to manually use these units to optimise the calculation time of

the algorithm.

To help the compiler compile optimal code there are available identifiers to

tell the compiler which platform is being targeted.

- –march=<arch> - where arch is the architecture wanting to

compile for

- –mtune=<cpu> - tunes the code for specific cpu

- –mfpu=<fpu> - targets specific hardware for example the

floating point unit or the NEON unit. (ARM 2013)

2.2.1 Neon Data Engine

The Neon data engine is a Single input multiple data stream unit which allows

multiple data to be performed on simultaneously. The neon unit allows for

vectored operation which has been shown to accelerate repetitive operations

as previously discussed in chapter 1.4 Background information under the

heading of SIMD.

P a g e | 30

When writing software for the NEON unit it has been found to be efficient

when written in Assembly although this has been known to be hard to use and

also bug prone (Jo et al. 2014). Another option to access the Neon unit is

through the use of auto vectorisation which is implemented through the GCC

compiler. The last option available is through instrinisc function which when

called are replaced with a NEON instruction (Jo et al. 2014).

Jang et al (2011) study on the performance analysis of Arm Neon technology

for mobile platforms found an increase in execution speeds when the Neon

unit was used in the processing, however as this study was based on the use

of auto vectorisation they found that the use of the Neon unit was not always

used.

Mitra et al. (2013) study on the Use of SIMD Vector operations to accelerate

application code performance on lower-powered ARM and intel platforms

found using neon intrinsic with hand written code with intrinsic functions was

between 1.05x and 13.88x faster than that of the auto vectorization through

the GCC compiler.

The literature shows an increased improvement in execution speeds when the

Neon unit is used with a big advantage being through the use of intrinsic

functions over the auto vectorisation option. The software code written for

the Neon unit will therefore be written with the use of intriniscs as this appears

to be a more efficient process when accessing the Neon data unit.

The NEON unit can be specified when compiling code using GCC with the

following instructions –mfpu=neon-vfpv4.

P a g e | 31

2.2.2 Graphics Processing Unit (GPU)

Grasso et al. (2014) study on energy efficient HPC on Embedded SoC’s:

Optimization techniques for Mali GPU found an increase in speed by 8.7x

over the cortex-A15 on the Arm Mali-T604 GPU. These increased speeds

where found by optimising code for the Arm Mali architecture using OpenCl.

The following techniques where used:

Memory allocation and mapping – unlike typical GPU – CPU combinations

on a desktop system, the Mali GPU has a memory system which is unified

with the CPU and therefore copying operations are not required and the GPU

cannot access memory buffers created with the malloc function. Grasso et al

therefore suggest that buffers be allocated using the clCreateBuffer function

with the CL_MEM_ALLOC_HOST_PTR flag and the clEnqueueMapBuffer

and clEnqueueUnmanpMemObject. This will enable both the application

processor and the Mali GPU to access the data (Grasso et al. 2014).

Load distributions – Grasso et al. (2014) recommend to manually tune the

local_work_size parameter after they noticed performance degradation.

Yi et al. (2014) study on real-time integrated face detection and recognition

on Embedded GPGPUs has a look at optimization techniques for the local

binary pattern integrated face detection and recognition algorithms. They

were able to achieve increased execution speeds 2.9 times using the Mali

T604 GPU in comparison to using the CPU.

The current literature suggests that an increase in execution speeds should be

able to be achieved in comparison to the CPU as long as certain optimisations

and architecture considerations are taken into consideration.

P a g e | 32

The Arm mali- T628 has Open GL ES 3.0/2.0/1.1 and OpenCL 1.1 Full

profile available for programming, in the current literature OpenCL and

CUDA are the libraries which have been popular choices for programing

GPU’s and therefore for the purpose of this dissertation the Mali GPU will be

programmed using the OpenCL 1.1.

Chapter 3

Methodology

This chapter will cover the Research and development methods required to

successfully complete the development of a software program to optimise the

ODROID XU3 development board for the use in an embedded system

including a task analysis. This will be followed by a risk and a resource

requirement analysis.

3.1 Research and Development methods

The Research component of the project will be to attain which software

optimisation techniques will be advantageous in the development of the

software. The Neon data engine and Graphics processing unit will also be

reviewed to assist in the optimisation of the execution time of the software.

The Software written for this project will be used to show an understanding

of how the ODROID XU3 multi core processor and development board can

be optimised when performing two typical machine vision algorithms as

follows:

- Global thresholding of a grey scale image.

- Average Smoothing filter

P a g e | 34

3.2 Task analysis

The task analysis will outline the milestones in the project which will be

required to reach to successfully complete the project

 Identify components and current practices of embedded systems

including optimisation techniques.

 Investigate the ODROID XU3 development board in particular the

board’s capabilities for the use in embedded systems. Including the

following Hardware components

o NEON data engine

o Graphics processing unit

 Investigate GCC compiler and how to compile code to use different

hardware components on the development board.

 Develop software for two typical machine vision algorithms as per the

advice of the NCEA. Each algorithm will be optimised through

various software techniques as well as modified to allow for them to

be executed through the Neon data engine and the graphics processing

unit.

 Implement developed software and obtain execution times through

the use of the opencv gettickcount function to calculate execution

time. Analyse and compare results to determine where improvements

in execution time was found.

P a g e | 35

3.3 Risk Assessment

The Risk Assessment section of this dissertation will identify the risks

involved in the project, evaluate these risks and decide on what control

measures will be implemented.

3.3.1 Risk Identification

The following risks have been identified within this project.

a) Energy Source – Electrical shock

b) Storage – Loss of Documents stored on computer

c) Hardware – Computer failure

d) Hardware – Damage to ODROID XU3

e) Sickness – Failure to complete work due to illness or other unforeseen

circumstances

3.3.2 Risk Evaluation

a) There may be a small risk of electrocution when plugging ODROID

into power source, as this may need to occur many times to set and

reset ODROID during testing.

b) A slight risk of computer files being corrupted resulting in the loss of

data and files.

c) A very slight risk that damage to current computer resulting in the loss

of availability to computer and internet resources.

d) A slight risk of damage to the ODROID XU3 development board.

P a g e | 36

e) Very slight risk for personal illness occurring and or other unforeseen

circumstances in which may result in failing to complete dissertation.

3.3.3 Risk Control

a) When turning the ODROID off either use the power down options

within the operating system or turn power off from the source. Do not

plug and unplug chord from the ODROID when power is still supplied

to chord.

b) When saving files on computer also regularly back up files either on

a cloud based service such as sky drive or onto a USB.

c) Access to another computer will be required if there is damage

resulting in a computer which no longer works. This can be achieved

immediately as there is access to numerous computers.

d) If the ODROID XU3 is damaged the need to order a new one from the

company will be required. This will result in a charge of

approximately $180 USD and an approximate wait of two weeks for

delivery.

e) If personal illness or other unforeseen circumstance is to arise

documentation from a medical professional to assist in request for

extension if required. Otherwise remaining ahead of schedule will

assist to ensure delivery of dissertation in a timely manner.

P a g e | 37

3.4 Resource Analysis

The following section will outline the required resources needed at each stage

of the project to be able to successfully complete the required tasks.

3.4.1 Research and reporting

There will be a large research and reporting component of this project which

will begin at the start and will not be completed until the project is complete.

This will require the following resources to be available for the duration.

- Computer access

o A computer with access to the internet to assist with research

and background information.

o Word processor for reporting requirements.

3.4.2 Software development and Hardware testing

The process of developing software will be made more efficient if access to

the ODROID XU3 is possible. The software can be can be written directly

onto the ODROID through the use of its Linux based operating system

lubuntu. Lubuntu is a light version of the more popular operating system

Ubuntu. This will also allow testing to be completed as the program develops

to allow for a more efficient debugging process. The ODROID development

board will be paramount to obtain results and complete dissertation. The

following components are required and have been supplied by the National

Centre for Engineering in Agriculture.

P a g e | 38

- ODROID XU3

o Including access to the operating system on board the

ODROID XU3 and including access to a tool to write and

compile the software such as a Linux based txt editor.

Figure 3.1 ODROID XU3 Development Board

- Power Supply

o A 5V Power supply for the ODROID XU3

- EMMC

o Memory card containing lubuntu operating system

- Micro HDMI to Large HDMI cable

o Cable required to attach ODROID to monitor or screen

- Monitor

o Monitor or screen to attach the development board to

- Mouse and Keyboard

o Mouse and Keyboard will be required to operate the

development board effectively.

P a g e | 39

3.5 Project Timeline

Figure 3.2 Project Timeline

Chapter 4

Software Development

This chapter will outline the stages undertaken during the software

development. This will include the software optimisation techniques as well

as the process of accessing the separate hardware units contained on the

development board through the software. Software libraries which have been

accessed to assist with software development and image processing will also

be reviewed.

The process of development of each program will be examined including the

output which was required from the two machine vision algorithms. Samples

of code have been included to assist with understanding of each program.

Compiler options used for testing and how the timing of execution during

testing was calculated will also be reviewed.

P a g e | 41

4.1 Optimisation Techniques

The literature review identified the following software optimisation

techniques as being appropriate techniques to reduce execution time within

software programs.

1. Loop unrolling

2. Loop reversal

3. Pointers

To test which software techniques will improve execution time the code was

written and tested for two machine vision algorithms as follows:

1. Without any optimisation

2. Loop Reversal

3. Containing one loop unrolled.

4. Optimised through the use of pointers

5. Optimised with pointers and loop reversal.

6. Optimised with pointers and a loop unrolled.

7. Any calculations which can be manually vectorised to be calculated

by the Neon data engine

8. Calculations done through programming the GPU

P a g e | 42

4.2 Image Processing

Image processing was required for both programs and was achieved through

the use of the following libraries.

- OpenCV - was used to import image pixel values allowing alterations

to images to be made as required as well as other functions such as

displaying and saving altered images. OpenCV was also used to assist

with timing of execution through the getTickCount() and

getTickFrequency() functions.

- OpenCL has been used to access the Graphics processing unit for the

execution of kernels.

- Neon Intrinsic library was used to develop program which required

access to the Neon data engine.

4.3 Grey Scale Thresholding

Greyscale thresholding is a machine vision algorithm which comprises of

changing the intensity levels of individual pixels within a greyscale image. A

threshold was chosen to identify at which value pixel colours or intensity were

changed. By altering the intensity value of a pixel for example to a value of

0, the pixel will change to the colour black. If the intensity is changed to the

top value of 255 this will cause the pixel to change to white.

P a g e | 43

The photo chosen to be used when testing the two machine vision algorithms

was found within the sample codes in the openCV library. This image was

chosen as it was a greyscale image and appropriate for testing of the

programs.

Figure 4.1 (a) Input image 4.1 (b) Output image

For the purpose of this dissertation a threshold value of 128 was chosen and

any value below this threshold was changed to an intensity of 0. The result

of this change is shown in figure 4.1.

The first program to be developed was the grey scale threshold program

containing no optimisations. The program was developed to loop through

each pixel value in the image and change any values below the threshold. The

OpenCV data type Mat was used to hold the data values of the image and the

image was imported via the imread function. The Mat data type is a matrix,

and as the image used was a greyscale image the matrix stored the intensity

values of each pixel ranging from 0 to 255.

The program contains two nested for loops which is where the pixel level is

checked and changed. The first loop, loops through until it reaches the value

of the height of the image matrix and the second nested loop, loops until

P a g e | 44

reaching the value of the width. The height and width values were found

using OpenCV methods of height and width. These two loops allow the

program to compare each individual pixel of the image with the threshold.

The program developed is show in figure 4.2 and can also be found in

Appendix B.1.

P a g e | 45

Figure 4.2 Grey scale threshold development code.

P a g e | 46

The second program developed and tested is the Grey Scale threshold with

loop reversal. Developing this program only required a small change from

the original, which included changing the loops to decrementing in place of

incrementing loops. This is shown in figure 4.3 and a copy of the full

program can be found in Appendix B.2.

Figure 4.3 Loop reversal for greyscale threshold.

The second software optimisation used was loop unrolling. Development of

this code was done by unrolling the inner loop. To achieve loop unrolling the

width of the image matrix was required and found. This width of 384 was the

amount of times the inside loop needed to be written. An excerpt of the loop

unrolling program can be found in figure 4.4 and the full program is shown

in Appendix B.3.

P a g e | 47

Figure 4.4 Loop unrolling excerpt.

The third and final software optimisation technique used was the use of

pointers in the program development. Pointer Optimisation was achieved

through using the IplImage data type contained within the OpenCV library.

IplImage data type enables a declaration of a pointer to the image data. By

using the pointer in the IplImage, the program is able to loop through the size

of the image within one loop opposed to the two loops previously used. This

is demonstrated in figure 4.5.

P a g e | 48

Figure 4.5 For loop within the Grey scale threshold algorithm with use of pointer.

The pointer optimised program was then changed to allow for loop reversal

and loop unrolling and each program individually tested.

The next section of the software development comprised altering the program

to allow control over which hardware units were to process the data.

The first changes made to the code was achieved by adding to the Grey scale

algorithm with the use of pointers the code shown in figure 4.6.

Figure 4.6 Block of code directing process through single core

Using sched_setaffinity allows the programmer to direct the data through the

chosen CPU core. Use of this function with the ODROID XU3 allows the

use of the eight cores with the following numbers:

P a g e | 49

A7 Core 1 = 0 A15 Core 1 = 4

A7 Core 2 = 1 A15 Core 2 = 5

A7 Core 3 = 2 A15 Core 3 = 6

A7 Core 4 = 3 A15 Core 4 = 7

The addition of the block of code to the next two programs to be tested

allowed the data to be directed through a single A7 core by setting the CPU

to 0 and through a single A15 core by setting the CPU to 7. These two

programs can be found in Appendix B.7 and B.8.

The next program to be developed was a Grey scale threshold program which

was to be directed through the Neon data engine. As explained previously in

chapter 2 section 2.2.1. The Neon data engine works with SIMD or single

input multiple data stream and the software was written using neon intrinsic

functions and data types. The arm_neon.h header was added to allow use of

the neon intrinsic functions.

To use the neon data engine the program needed to be vectorised.

Vectorisation was achieved through the use of vector data types available

within the neon intrinsic library. The image pointer was declared as vector

type unin8x16_t. This contains 16, 8 bit unsigned intergers. To use the neon

data engine a new image was created and another pointer allocated for the

altered output image data.

Two additional vectors were declared, one was named threshold and another

named mask, both vectors were of data type unin8x16_t. The threshold

P a g e | 50

vector was loaded with the threshold value of 128 into each slot of the vector.

This was done using the vdupq_n_u8(128).

The mask vector was used for the output of the compare of the ptr and

threshold. If the ptr was greater than the threshold a value of 1 is recorded in

the mask and if it is less a value of 0 is saved in the mask. An and operation

is then performed on the ptr and mask and the result is then pointed to by the

output image pointer. These calculations were done in a loop to ensure each

pixel in the image was compared with the threshold and recorded. Figure 4.7

has an excerpt of the program containing the loop and the full program can

be found in appendix B.9.

Figure 4.7 Loop for Neon data engine

The last program to be developed for the greyscale thresholding algorithm

was to direct the processing through the graphics processing unit. To access

the graphics processing unit OpenCL libraries where needed alongside

OpenCV.

After following tutorials in the Mali OpenCL SDK v1.1.0 the image_scaling

sample was found to be similar to the program required and with a few

alterations the grey sale algorithm was able to be achieved. This folder was

copied and changed as follows:

P a g e | 51

#include <opencv2/opencv.hpp> was added to allow access to OpenCV

functions and the Tick count functions were added to enable timing in .line

with previous programs. The original program continued, initialising

variables and setting up the OpenCL environment including creating context,

command queue, program and kernel.

A pointer to the input image was then initialised and the height and width of

the image found. As the program was set up to take an RGB or Red Green

Blue image the greyscale image was converted to RGB with the code block

contained in figure 4.8.

Figure 4.8 Convert greyscale image to RGB code

A 2D Image is now created and held in memory alongside a memory object

for the new output image to be written to. The image is then transferred to a

RGBA format which essentially adds an extra empty container in the RGB

array.

Global memory of width and height are set to allow access to these within the

kernel. The kernel is now called which contains the grey scale algorithm as

per the code in appendix B.10. The kernel compares each value in the first

position of the RGBA array with the threshold and the output image data is

written into memory. The memory is now accessed by the host code,

transferred back into the RGB format and saved as a bitmap file.

P a g e | 52

4.4 Average Smoothing Filter

The Average smoothing filter is a typical machine vision algorithm which

smoothes sharp edges in images. This is calculated by adding neighbouring

pixel values and replacing the pixel value with the average of these

neighbours. This is demonstrated in figure 4.9. This calculation is carried out

on each pixel in the image. There are issues with this type of algorithm when

considering outside pixels and therefore edges of the diagram have the same

value then prior to the image processing.

Figure 4.9 smoothing filter algorithm.

Figure 4.11 shows the result of an image being processed by a smoothing

filter algorithm and figure 4.10 contains the original image.

P a g e | 53

Figure 4.10 Original image used for image processing

Figure 4.11 Image after alterations from average smoothing filter

Figure 4.12 contains a full copy of the average smoothing filter.

P a g e | 54

Figure 4.12 Average Smoothing Filter Program

P a g e | 55

The main algorithm for this program contains four loops, the first two loops

are identical to the greyscale image and allow the program to loop through

the width, times the height of the image. The inner two loops allow the

program to find the sum of the values of the 3x3 matrix required to find the

pixels average of the neighbouring values. This process continues through

every pixel in the image and changes values of pixels accordingly.

The next two programs developed for the smoothing filter has the same

changes that where made previously to the greyscale threshold programs. The

first change being Loop reversal and as done previously this involves

changing the loops to a decrement replacing the incrementing loop. A full

copy of the average smoothing filter with loop reversal can be found in

appendix C.2.

The next change was to unroll one inner loop in the code to create the average

smoothing filter with loop unrolling. This has been a smaller change in

comparison to the greyscale threshold as the inner loops only contain 9 lines

in total as shown in figure 4.13. The full code for this software program can

be found in appendix C.3.

P a g e | 56

Figure 4.13 Loop for average smoothing filter with loop unrolling

The next software optimisation to be added to the smoothing filter is the use

of pointers. This has again been achieved through the use of the IplImage

data structure allowing a pointer to be pointed to the image data. The full

code can be found at appendix C.4.

The pointer optimisation smoothing filter code has then had loop reversal

added and as with the greyscale threshold involves decrementing loops. The

full code for this software development can be found in Appendix C.5.

The pointer optimisation was then altered by unrolling the inner loop as was

done previously and can be seen in figure 4.13 with the only change being the

use of pointers opposed to the mat image function. The full code for this

program can be found in Appendix C.6.

P a g e | 57

To direct the processing through selected cores in both the A7 and A15

processes the sched_setaffinity() function has been used as was done in the

grey scale threshold and CPU values set accordingly. This has been used to

direct data through an individual A7 and A15 core.

Until this point all the changes made to the original smoothing filter program

have been very similar to the changes made in the grey scale thresholding

programs, however the next changes were to allow the data to be vectorised

and sent through the data engine unit and have very different changes.

As this algorithm requires 3x3 matrix values, this has been a challenge to

vectorise. The neon data engine allows a 128 bit wide vector length and this

was found to be difficult to use when trying to split data into a 3x3 matrix.

The pointers to the image where stored in uint8x8_t data types which only

allows one value at a time. As we are now taking image data and creating a

new image opposed to changing values in the original image, the outside

values of the image need to be set to the original values.

The program was then developed to load 3 unit8x8_t (contains 8 unit values)

with 8 image values from three lines. This giving the appearance of an 8x3

matrix. Line 1 and line 2 are summed together but now need to be stored in a

16x8_t data type to allow for a number larger than 255. Line 3 is then added

to this value. Figure 4.14 is the excerpt of code of which load and sum

through the use of intrinsic functions.

P a g e | 58

Figure 4.14 Load and sum functions in average smoothing filter directed through neon data

engine.

The program adds the first three values together contained in the sum variable

and divides the total by 9. This value is now stored into the output pointer,

and the output pointer is incremented. This continues six times which does

cause the last value in the vector to remain empty. The program continues

to loop through these calculations and each time increments the ptr by a value

of six. This program will only work for an image which has a width which is

divisible by 6. The full code for this program can be found in Appendix C.9.

The last program written for this dissertation was the average smoothing filter

which was directed through the graphics processing unit. As with the grey

scale thresholding algorithm a sample program was chosen which had similar

requirements to the average smoothing filter. The program chose was the

fir_float.cpp and kernel.

Appropriate OpenCL headers and getTickCount functions were added to the

program. The image was loaded through the IplImage data structure,

however this time it was saved in the buffer and not in a 2D image. The image

array values are converted to floats and the kernel for the smoothing filter

algorithm is queued.

P a g e | 59

Four values from the first line of the image are loaded into a float4 vector

structure through the vload4 instruction. The next container has the four

values loaded from one point forward and the last container has another four

values loaded from the next point forward. This would give the following

values where the values contained in the data vectors are the position of the

first line in the image data.

data 0 = 0,1,2,3

data 1 = 1,2,3,4

data 2 = 2,3,4,5

The first values in each array are added together giving the sum of the first

three values in line 1. This is continued for line 2 and line 3, thus giving the

summed value of a 3x3 matrix. This value is then divided by 9 and outputted

to the output image pointer. Once all pixel values have been changed the

program returns to the host and retrieves the output image values. These

values are converted from a float to and uchar and stored as a bitmap image.

The full code for this program can be found in appendix C.10.

P a g e | 60

4.5 Testing

The calculation of execution time was found with the use of the OpenCV

function getTickCount(). GetTickCount returns the number of ticks after an

event (OpenCV 2014). This function were placed at the beginning of the

program and again at the end. The tick count from the beginning of the

program was subtracted from the end count which gave an overall tick count

for the execution of the program. To turn the tick count into time the

getTickFrequency() function was used. The getTickFrequency() fuction

returned the number of ticks per second (OpenCV 2014). The overall tick

count was then divided by the tick frequency to obtain the time in seconds

and multiplied by 1000 to obtain the time in milliseconds. The code used to

calculate execution time is in figure 4.1.

Figure 4.15 Copy of program section which calculates execution time.

To assist with getting an accurate representation of execution time 10 results

were taken and the average used as the result.

All programs were compiled using the G++ compiler v4.8. Each program

was tested using optimisation values O0, O1, O2, and O3 and execution time

recorded.

Chapter 5

Results and Discussion

This chapter will display and discuss test results from the execution of the

developed programs. When programs were tested they were executed ten

times and the average was calculated and used as the final result. All ten test

results for each program have been displayed throughout this chapter. All

output images from testing both the greyscale thresholding programs and the

average smoothing filter programs can be found in appendix D and appendix

E.

5.1 Grey Scale Thresholding

Figure 5.1 and 5.2 is an example of the effects of the greyscale thresholding

image processing.

Figure 5.1 Image prior to image processing.

P a g e | 62

Figure 5.2 Output image from Grey Scale Thresholding

5.1.1 Results

No Optimisation

The first program tested was the grey scale thresholding program which

contained no optimisations and would be used as a base time for all other tests

to be compared. As seen in table 5.1 the compiler optimisations made a

difference to the execution time and it can be noted that the fastest time was

using the 03 compiler option.

 Grey scale thresholding

Compiler Option 0 1 2 3

test 1 3.764 1.971 1.926 1.987

test 2 3.851 1.984 1.929 1.924

test 3 3.754 1.924 1.927 1.917

test 4 3.737 1.924 1.971 1.952

test 5 3.748 1.925 1.972 1.923

test 6 3.700 2.039 1.971 1.921

test 7 3.754 1.917 1.925 1.977

test 8 3.730 1.982 1.977 1.924

test 9 3.747 1.919 1.945 1.924

test 10 3.722 1.925 1.930 1.927

Average (ms) 3.751 1.951 1.947 1.938

Table 5.1 Results from grey scale thresholding program

P a g e | 63

Loop Reversal

The next test performed was on the first of the optimised programs which was

grey scale thresholding with loop reversal. A decrease in execution time was

expected and comparing the results in table 5.2 with table 5.1 there is a small

decrease in time when no compiler optimisation was chosen. When the G++

compiler is optimised using 01, 02 and 03 is used 03 is still the fastest options.

 Grey scale thresholding with loop reversal

Compiler Option 0 1 2 3

test 1 3.684 1.987 1.989 1.930

test 2 3.680 1.988 1.937 1.936

test 3 3.772 1.977 1.939 1.927

test 4 3.719 1.973 1.934 1.967

test 5 3.679 1.941 1.943 1.929

test 6 3.687 1.940 1.933 1.928

test 7 3.655 1.939 1.942 1.985

test 8 3.679 1.940 1.940 1.986

test 9 3.694 1.939 1.944 1.937

test 10 3.685 1.975 1.929 1.926

Average (ms) 3.693 1.960 1.943 1.945

Table 5.2 Results from grey scale thresholding with loop reversal

Loop Unrolling

The next program to be tested is the grey scale thresholding with a loop

unrolled. The expectations of unrolling the loop were not high as it increased

the size of the execution code by approximately 2000 lines of code. The

results shown in table 5.3 show that there was not a decrease in execution

time and in fact there was a significant increase.

P a g e | 64

 Grey scale thresholding with loop unrolling

Compiler Option 0 1 2 3

test 1 4.030 2.096 2.092 2.061

test 2 3.871 2.097 2.218 2.140

test 3 3.925 2.131 2.033 2.008

test 4 3.923 2.118 2.089 2.133

test 5 3.964 2.011 2.028 2.138

test 6 4.070 2.068 2.117 2.004

test 7 4.013 2.079 2.007 2.007

test 8 4.001 2.167 2.054 2.067

test 9 4.066 2.007 2.058 2.272

test 10 4.036 2.132 2.139 2.224

Average (ms) 3.990 2.091 2.083 2.105

Table 5.3 Results from grey scale thresholding program with loop unrolling

Pointer Optimisation

Pointer optimisation was the next optimisation technique chosen to see if the

execution time can be decreased. This was the first large decrease in

execution time, going from 1.938 ms to 1.201 ms using g++ compiler option

02.

 Grey scale pointer optimisation

Compiler Option 0 1 2 3

test 1 1.466 1.205 1.188 1.192

test 2 1.465 1.184 1.273 1.192

test 3 1.481 1.199 1.185 1.198

test 4 1.465 1.190 1.192 1.202

test 5 1.463 1.186 1.190 1.201

test 6 1.462 1.189 1.190 1.194

test 7 1.463 1.186 1.202 1.198

test 8 1.524 1.187 1.196 1.190

test 9 1.464 1.299 1.209 1.334

test 10 1.465 1.221 1.189 1.190

Average (ms) 1.472 1.205 1.201 1.209

Table 5.4 Results from grey scale thresholding with pointer optimisation

P a g e | 65

Pointer and Loop unrolling optimisation

Using the pointer optimisation and adding loop unrolling did not show a

significant increase in code size and this is reflected in the results, however

there has been a small decrease in execution time under the gcc 03 compiler

option in comparison to the 03 column in table 5.4, however the result is equal

to the 02 compiler option and therefore there is only an advantage using the

gcc 03 compiler option.

 Grey scale pointer optimisation loop unrolling

Compiler Option 0 1 2 3

test 1 1.583 1.204 1.201 1.257

test 2 1.587 1.200 1.211 1.261

test 3 1.575 1.243 1.205 1.379

test 4 1.642 1.202 1.198 1.205

test 5 1.581 1.198 1.212 1.201

test 6 1.581 1.198 1.246 1.257

test 7 1.584 1.229 1.260 1.200

test 8 1.576 1.205 1.201 1.201

test 9 1.574 1.205 1.203 1.209

test 10 1.579 1.205 1.203 1.290

Average (ms) 1.586 1.209 1.214 1.246

Table 5.5 Results from grey scale thresholding with pointer optimisation and loop unrolling

Pointer and Loop reversal Optimisation

Loop unrolling was then added to the pointer optimisation program and

tested, a small decrease in execution time was found with no compiler

optimisation, however no decrease in execution time was found with the g++

compiler optimisation options, as shown in figure 5.6.

P a g e | 66

 Grey scale pointer optimisation loop reversal

Compiler Option 0 1 2 3

test 1 1.462 1.256 1.219 1.231

test 2 1.468 1.260 1.222 1.223

test 3 1.507 1.274 1.221 1.230

test 4 1.498 1.282 1.223 1.228

test 5 1.469 1.225 1.277 1.361

test 6 1.467 1.222 1.229 1.230

test 7 1.460 1.265 1.225 1.231

test 8 1.515 1.235 1.224 1.227

test 9 1.472 1.222 1.223 1.227

test 10 1.495 1.224 1.263 1.236

Average (ms) 1.481 1.247 1.233 1.242

Table 5.6 Results from grey scale thresholding with pointer optimisation and loop reversal

Arm A7

The next section of testing involved using different hardware units on the

development board. The first test was to use a single Arm A7 core, the results

were expected to see an increase in execution time due to clock speeds in

comparison to the A15. As shown in table 5.7 the expected results were seen,

however this did confirm that the scheduler is processing the grey scale

thresholding program on an A15 core, when it is not being manually selected.

 Grey scale threshold A7

Compiler Option 0 1 2 3

test 1 4.113 2.496 2.409 2.372

test 2 4.087 2.424 2.475 2.421

test 3 4.072 2.482 2.309 2.344

test 4 4.090 2.488 2.581 2.420

test 5 4.163 2.740 2.362 2.456

test 6 3.971 2.397 2.548 2.422

test 7 4.094 2.445 2.433 2.443

test 8 4.127 2.454 2.384 2.524

test 9 4.073 2.334 2.471 2.472

test 10 4.428 2.390 2.393 2.378

Average (ms) 4.122 2.465 2.436 2.425

Table 5.7 Results from grey scale thresholding directed through A7 core

P a g e | 67

Arm A15

Testing on the Arm A15 confirmed what was suspected from A7 testing

results. The execution time when manually directing data through the A15 is

similar to when no core is chosen, thus confirming that the scheduler is

scheduling the greyscale threshold algorithm through the A15.

 Grey scale threshold A15

Compiler Option 0 1 2 3

test 1 1.505 1.213 1.260 1.217

test 2 1.453 1.207 1.200 1.206

test 3 1.497 1.301 1.201 1.262

test 4 1.512 1.204 1.236 1.211

test 5 1.507 1.210 1.203 1.215

test 6 1.460 1.303 1.207 1.200

test 7 1.628 1.247 1.214 1.199

test 8 1.460 1.261 1.195 1.213

test 9 1.459 1.204 1.256 1.201

test 10 1.456 1.314 1.208 1.207

Average (ms) 1.494 1.246 1.218 1.213

Table 5.8 Results from grey scale thresholding directed through A15 core

Neon Data Engine

The next hardware unit the data was to be directed through was the Neon Data

Engine. This test shows the biggest decrease in execution time so far. The

best time being 1.051 ms using the g++ compiler optimisation 01.

P a g e | 68

 Grey scale threshold Neon

Compiler Option 0 1 2 3

test 1 1.103 1.044 1.061 1.060

test 2 1.127 1.056 1.044 1.047

test 3 1.174 1.053 1.045 1.158

test 4 1.138 1.045 1.047 1.042

test 5 1.105 1.088 1.050 1.048

test 6 1.116 1.044 1.052 1.049

test 7 1.115 1.049 1.039 1.046

test 8 1.122 1.036 1.103 1.140

test 9 1.118 1.045 1.043 1.084

test 10 1.120 1.052 1.042 1.059

Average (ms) 1.124 1.051 1.053 1.073

Table 5.9 Results from Grey Scale Thresholding directed through Neon

Graphics Processing Unit

The last test performed on the grey scale threshold algorithm was using the

graphics process unit. Unfortunately there is a large increase in execution

time found when using the GPU. When only testing the execution time of the

kernel there is only a small increase, however to keep timing in line with other

programs the timing is calculated from the beginning of the program to the

end. There may be more use for the GPU when continually running image

processing functions as this will reduce the effect of the overhead due to the

complexity and size of the program.

P a g e | 69

 Grey scale threshold GPU

Compiler Option 0 1 2 3

test 1 196.482 185.425 184.421 184.108

test 2 194.219 183.977 184.450 183.520

test 3 193.843 184.489 183.435 184.147

test 4 194.104 185.935 184.185 183.828

test 5 194.005 184.838 184.066 185.166

test 6 194.750 184.106 184.765 184.584

test 7 194.073 184.656 183.670 185.410

test 8 194.753 184.122 184.443 183.809

test 9 195.198 183.789 183.692 183.447

test 10 193.974 184.939 184.289 184.055

Average (ms) 194.540 184.628 184.142 184.207

Table 5.10 Results from Grey scale program directed through GPU

Figure 5.3 contains all results from the grey scale thresholding testing.

Figure 5.3 Grey Scale Thresholding Graph

Due to the large outlier from the execution speeds when using the GPU the

graph in figure 5.3 does not give a clear indication of other results and

therefore Figure 5.4 has a graph containing the results without the GPU

results.

P a g e | 70

Figure 5.4 Grey Scale Thresholding Graph without GPU results

As shown in figure 5.4 the best result from making changes to the grey scale

thresholding algorithm has been through the automatic compiler

optimisations, pointer optimisations and through the use of the Neon data

engine. There was no significant decrease in execution times using the two

software optimisation techniques of loop unrolling and loop reversal after

the program was compiled using compiler optimisation options.

P a g e | 71

5.2 Average Smoothing Filter

The same image that was used for the greyscale filter was used again for the

average smoothing filter. The output picture from the average smoothing

filter is shown in figure 5.5.

Figure 5.5 Output image from average smoothing filter

The smoothing of any edges in the image can be seen, giving the image an

almost blurred effect.

5.2.1 Results

No Optimisation

The first test completed on the Smoothing filter program was with no software

optimisations and this will again be used as the base of execution times for

all other programs to be compared.

P a g e | 72

Smoothing Filter

Compiler Option 0 1 2 3

test 1 16.134 5.566 5.209 2.044

test 2 16.230 5.645 5.305 2.077

test 3 16.160 5.694 5.345 2.083

test 4 16.134 5.636 5.255 2.024

test 5 16.209 5.704 5.342 2.026

test 6 16.254 5.734 5.199 2.023

test 7 16.163 5.582 5.363 2.064

test 8 16.154 5.645 5.314 2.030

test 9 16.177 5.806 5.187 2.090

test 10 16.183 5.523 5.367 2.133

Average (ms) 16.180 5.654 5.289 2.059

Table 5.11 Results from Average Smoothing Filter

Loop Reversal

The next test performed on the smoothing filter algorithm was using the

software which had loop reversal optimisation added. Once again there was

no advantages gained from using lop reversal.

 Smoothing with Loop reversal

Compiler Option 0 1 2 3

test 1 16.134 5.566 5.209 2.044

test 2 16.230 5.645 5.305 2.077

test 3 16.160 5.694 5.345 2.083

test 4 16.134 5.636 5.255 2.024

test 5 16.209 5.704 5.342 2.026

test 6 16.254 5.734 5.199 2.023

test 7 16.163 5.582 5.363 2.064

test 8 16.154 5.645 5.314 2.030

test 9 16.177 5.806 5.187 2.090

test 10 16.183 5.523 5.367 2.133

Average (ms) 16.180 5.654 5.289 2.059

Table 5.12 Results from average smoothing filter with loop reversal

P a g e | 73

Loop unrolling

Adding Loop unrolling to the average smoothing filter has shown a large

decrease in execution time when using compiler optimisation options of 0, 1

and 2. These gains were lost when compiler optimisation option 3 was tested.

 Smoothing with Loop unrolling

Compiler Option 0 1 2 3

test 1 11.457 2.170 2.136 2.079

test 2 11.459 2.082 2.144 2.065

test 3 11.506 2.112 2.141 2.079

test 4 11.523 2.127 2.138 2.032

test 5 11.471 2.137 2.173 2.033

test 6 11.596 2.133 2.140 2.097

test 7 11.526 2.080 2.151 2.093

test 8 11.574 2.122 2.141 2.072

test 9 11.499 2.117 2.191 2.078

test 10 11.570 2.124 2.139 2.034

Average (ms) 11.518 2.120 2.149 2.066

Table 5.13 Results from average smoothing filter with loop unrolling

Pointer Optimisations

Similar to the grey scale threshold program a large decrease in execution time

was found by adding pointers to the image structure. A new pattern started

to emerge where there was a notable slowing of the program using compiler

optimisation 02 and then a large increase in execution speeds when compiler

option 03 was chosen.

P a g e | 74

 Smoothing Optimised

Compiler Option 0 1 2 3

test 1 9.480 4.185 6.179 1.223

test 2 9.503 4.650 6.880 1.233

test 3 9.523 4.127 6.940 1.229

test 4 9.535 4.559 8.308 1.245

test 5 9.499 4.188 6.974 1.233

test 6 9.554 3.967 6.259 1.225

test 7 9.528 4.088 6.203 1.229

test 8 9.502 4.171 8.208 1.229

test 9 9.517 4.113 6.549 1.284

test 10 9.508 4.150 6.819 1.230

Average (ms) 9.515 4.220 6.932 1.236

Table 5.14 Results from average smoothing filter with pointer optimisation

Pointer Optimisations with loop reversal

Adding loop reversal eliminated the decrease in speeds under compiler

optimisation 02. This did not see any other significant gains as shown in table

5.15.

 Smoothing Optimised with loop reversal

Compiler Option 0 1 2 3

test 1 9.422 4.167 2.810 1.282

test 2 9.433 5.006 2.803 1.243

test 3 9.517 4.874 2.805 1.250

test 4 9.394 4.140 2.809 1.278

test 5 9.455 4.987 2.812 1.257

test 6 9.433 4.208 2.798 1.245

test 7 9.407 4.459 2.933 1.241

test 8 9.493 4.880 2.860 1.308

test 9 9.470 5.058 2.811 1.249

test 10 9.436 4.719 2.944 1.283

Average (ms) 9.446 4.650 2.839 1.264

Table 5.15 Results from average smoothing filter with pointer optimisation and loop

reversal

P a g e | 75

Pointer Optimisations with loop unrolling

The next test was completed on a smoothing filter program using Pointer

Optimisation and loop unrolling as the software optimisation. Loop unrolling

once again has seen a slowing of the program for compiler option 03 in

comparison to table 5.14. There was however an increase in speed under

optimisation option 01 and 02 which were still almost one millisecond slower

than the best time we have received so far.

 Smoothing Optimised with loop unrolling

Compiler Option 0 1 2 3

test 1 11.457 2.170 2.136 2.079

test 2 11.459 2.082 2.144 2.065

test 3 11.506 2.112 2.141 2.079

test 4 11.523 2.127 2.138 2.032

test 5 11.471 2.137 2.173 2.033

test 6 11.596 2.133 2.140 2.097

test 7 11.526 2.080 2.151 2.093

test 8 11.574 2.122 2.141 2.072

test 9 11.499 2.117 2.191 2.078

test 10 11.570 2.124 2.139 2.034

Average (ms) 11.518 2.120 2.149 2.066

Table 5.16 Results from average smoothing filter with pointer optimisation and loop

unrolling

Arm A7

The next test performed involved testing the arm A7 hardware. The results

were similar to the grey scale threshold program with the A7 being slower.

P a g e | 76

 Smoothing Opt A7

Compiler Option 0 1 2 3

test 1 31.595 7.758 6.105 3.025

test 2 31.784 7.728 6.079 3.207

test 3 31.595 7.559 5.986 3.108

test 4 31.709 7.645 6.207 3.000

test 5 31.688 7.611 6.102 2.889

test 6 31.722 7.506 6.136 2.946

test 7 31.679 7.814 6.088 2.955

test 8 31.373 7.715 6.010 3.029

test 9 31.569 7.684 6.146 2.914

test 10 31.276 7.724 6.127 2.913

Average (ms) 31.599 7.674 6.099 2.999

Table 5.17 Results from average smoothing filter directed through A7

Arm A15

Testing the A15 unit also confirmed that it is likely that the scheduler is

automatically scheduling any machine vision algorithms through the A15

core as timing is similar without manually choosing.

 Smoothing Optimised A15

Compiler Option 0 1 2 3

test 1 9.518 4.852 6.764 1.311

test 2 9.531 4.176 6.877 1.238

test 3 9.572 4.144 6.272 1.237

test 4 9.588 5.069 7.077 1.337

test 5 9.500 5.055 7.544 1.239

test 6 9.543 5.051 7.006 1.251

test 7 9.510 4.135 6.872 1.237

test 8 9.572 4.947 6.884 1.230

test 9 9.519 4.994 6.763 1.233

test 10 9.534 4.063 7.042 1.250

Average (ms) 9.539 4.649 6.910 1.256

Table 5.18 Results from average smoothing filter directed through A15

P a g e | 77

Neon Data Engine

Testing the software code for the average smoothing filter through the Neon

data unit, did not see an increase in execution speeds. When using the Neon

data engine it is important code can be vectorised neatly for it to be an

advantage. This has shown with the smoothing filter as it was difficult to

vectorise the 3x3 moving window.

 Smoothing Neon Data Engine

Compiler Option 0 1 2 3

test 1 3.373 1.397 1.426 1.449

test 2 3.280 1.403 1.478 1.424

test 3 3.263 1.400 1.419 1.413

test 4 3.255 1.403 1.417 1.412

test 5 3.191 1.403 1.475 1.475

test 6 3.212 1.398 1.459 1.419

test 7 3.239 1.395 1.414 1.421

test 8 3.267 1.394 1.415 1.423

test 9 3.265 1.396 1.472 1.464

test 10 3.223 1.394 1.413 1.417

Average (ms) 3.257 1.398 1.439 1.432

Table 5.19 Results from average smoothing filter directed through Neon

Graphics Processing Unit

The next test performed involved testing the Mali T628 Graphics Processing

and as it was seen with the Grey Scale threshold program no advantage was

found.

P a g e | 78

Smoothing GPU

Compiler Option 0 1 2 3

test 1 112.381 109.983 109.631 109.512

test 2 113.123 109.605 109.103 109.482

test 3 112.399 109.362 110.154 109.478

test 4 112.629 109.417 109.612 110.147

test 5 111.835 109.619 109.411 110.050

test 6 112.483 110.226 109.448 110.100

test 7 112.129 109.673 110.472 109.605

test 8 112.426 109.371 109.258 110.682

test 9 113.188 109.561 109.730 109.765

test 10 112.539 109.431 109.888 109.528

Average (ms) 112.513 109.625 109.671 109.835

Table 5.20 Results from average smoothing filter directed through GPU

The following graph in figure 5.6 contains all results for the average

smoothing filter and again the GPU processing has caused the graph to be

hard to read.

Figure 5.6 Average Smoothing Filter Graph

P a g e | 79

Figure 5.7 contains all results without the outliers from the GPU and therefore

gives a good indication of the result from testing.

Figure 5.7 Average Smoothing Filter Graph without GPU results

P a g e | 80

5.3 Conclusion

Following analysis of the results, the following conclusions and

recommendations have been drawn.

1. Compiler optimisation option 03 using g++ would be the

recommendation when compiling machine vision algorithms

2. When code can be easily vectorised the Neon data engine is the fastest

way of executing machine vision algorithms

3. When using compiler optimisations loops unrolling and loop reversal

do not make a significant impact on the execution times.

4. The Graphics Processing Unit is not a viable option when running

single image processing.

5. Automatic scheduling by the scheduler is a faster option when running

single image machine vision algorithms.

Chapter 6

Conclusion and Further Work

6.1 Conclusion

This dissertation has successfully completed all 8 program objectives as

outlined in the project specification contained in appendix A. The following

points as outlined at the end of chapter five were determined.

1. Compiler optimisation option 03 using g++ would be the

recommendation when compiling machine vision algorithms

2. When code can be easily vectorised the Neon data engine is the fastest

way of executing machine vision algorithms

3. When using compiler optimisations loops unrolling and loop reversal

do not make a significant impact on the execution times.

4. The Graphics Processing Unit is not a viable option when running

single image processing.

5. Automatic scheduling by the scheduler is the faster option when

running single image machine vision algorithms.

6.2 Further Work

If time constraints were not an issue it would be advantageous to re-test the

programs processing more than one image. This may increase the viability

of using the graphics processing unit as overheads become less of an issue.

References

ARM 2015, ARM Limited viewed 8th July 2015,

<http://www.arm.com/products/processors/cortex-a/cortex-a7.php.>

ARM 2015, ARM Limited viewed 8th July 2015,

<http://www.arm.com/products/processors/cortex-a/cortex-a15.php.>

ARM 2015, ARM Limited viewed 8th July 2015,

< http://www.arm.com/products/multimedia/mali-performance-efficient-

graphics/mali-t628.php>

ARM 2014, ARM Limited viewed 18th November 2014,

<http://www.arm.com/about/company-profile/index.php>

ARM 2013, ARM Cortex –A Series Programmer’s Guide, Version 4.0,

Cambridge, England.

Arm Connected Community, ARM Limited viewed 10th July 2015,

<http://community.arm.com/groups/processors/blog/2014/03/28/arm-

biglittle-making-waves>

Bates, M 2011, PIC MICROCONTROLLERS, Elsevier, Oxford.

Cao, C Naifeng, J, Weifeng, H & Yuzhuo, F 2010,‘A loop-centric profiling

method for embedded applications’, Microelectronics and Electronics

(PrimeAsia), 2010 Asia Pacific Conference on Postgraduate Research in ,

vol., no., pp.45,48, 22-24.

http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/multimedia/mali-performance-efficient-graphics/mali-t628.php
http://www.arm.com/products/multimedia/mali-performance-efficient-graphics/mali-t628.php
http://www.arm.com/about/company-profile/index.php
http://community.arm.com/groups/processors/blog/2014/03/28/arm-biglittle-making-waves
http://community.arm.com/groups/processors/blog/2014/03/28/arm-biglittle-making-waves

P a g e | 84

Electronic design, electronic design viewed 9th July 2014,

<http://electronicdesign.com/microcontrollers/little-core-shares-big-core-

architecture>

ELE 1301 Computer Engineering: study book 2013, University of Southern

Queensland, Toowoomba

FPGA Fundamentals 2012, National Instruments Corporation, Austin,

viewed 8th July 2015 < http://www.ni.com/white-paper/6983/en/>.

Grasso, I Radojkovic, P Rajovic, N Gelado, I & Ramirez, A 2014,’Energy

Efficient HPC on Embedded SoCs: Optimization Techniques for Mali

GPU’,2014 IEEE 28th International Parallel & Distributed Processing

Symposium, pp.123-132.

Jang, M Kim, K & Kim, K 2011, ‘The performance analysis of ARM

NEON technology for mobile platforms’, ACM Symposium on Research in

Applied computation (RACS ’11), pp 104,106.

Jo, G Jeon, W Jung, W Taft, G & Lee, J 2014,’OpenCL framework for

ARM processors with NEON support’, Proceedings of the 2014 Workshop

on Programming models for SIMD/Vector processing, pp. 33-40.

Joshi, P & Gurumurthy, K 2014 ‘Analysing and Improving the Performance

of Software Code for Real Time Embedded Systems’ Devices, Circuits and

Systems (ICDCS), 2014 2nd International Conference, March 6-8, pp.1-5.

Mahalingam, P. R. & Asokan, S 2012, ‘A framework for optimizing GCC

for ARM architecture’, Proceedings of the International Conference on

Advances in Computing, Communications and Informatics, pp. 337-3423

http://electronicdesign.com/microcontrollers/little-core-shares-big-core-architecture
http://electronicdesign.com/microcontrollers/little-core-shares-big-core-architecture
http://www.ni.com/white-paper/6983/en/

P a g e | 85

Mitra, G Johnston, B Rendell, A McCreath, E & Zhou, J 2013,’Use of

SIMD vector operation to accelerate application code performance on

lower-powered ARM and intel platforms’,Parallel and Distributed

Processing Symposium Workshops & PHD Forum, 2013 IEEE 7th

International, pp 1107-1116.

OpenCV 2014, OpenCv 2.4.11.0 documentation, viewed 25th October 2015,

<http://docs.opencv.org/modules/core/doc/utility_and_system_functions_an

d_macros.html#gettickcount>.

Park, I Lee, H & Lee, H 2013 ‘Software Optimization for Embedded

Communication system’, Information Networking (ICOIN) International

Conference, Jan 28-30, pp. 676-679.

Pulli, K Baksheev, A Kornyakov, K & Eruhimov. V 2012, ‘ Realtime

Computer Vision with OpenCV’, Queue 10, 4, pp 40, 57.

Nvidia 2015, NVIDIA Corporation CA, USA viewed 8th July 2015,

<http://www.nvidia.com/object/what-is-gpu-computing.html>.

Simunic, T Benini, L De Micheli, G & Hans, M 2000, ‘Source code

optimization and profiling of energy consumption in embedded systems’,

Proceedings of the 13th international symposium on system synthesis (ISSS

’00), pp. 193-198.

Smith, S 1997, The scientist and engineer’s guide to digital signal

processing, California Technical Pub., California.

Thompson, T2001,’Digital Signal Processor’, Computerworld, vol.35, no.

11, p. 66.

http://www.nvidia.com/object/what-is-gpu-computing.html

P a g e | 86

Velkoski, G Gusev, M. & Ristov, S 2014, ‘The performance impact analysis

of loop unrolling’, Information and Communication Technology,

Electronics and Microelectronics (MIPRO), 2014 37th International

Convention, vol., no., pp.307-312.

Yi, S Yoon, I Oh, C & Yi, Y 2014,’Real-time integrated face detection and

recognition on embedded GPGPUs”, Embedded Systems for Real-time

Multimedia (ESTIMedia), 2014 IEEE 12th Symposium, Oct 16-17, pp, 98-

107.

Zhou, J & Shi, C 2008, ‘Efficient SIMD optimization for media processors’,

Journal of Zhejiang University SCIENCE A, Vol. 9, April 20, pp. 524-530.

Appendix A

Project Specification

P a g e | 88

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG 4111/4112 Research Project

PROJECT SPECIFICATION

FOR: Chloe Mansell

TOPIC: OPTIMISATION OF MULTICORE

PROCESSOR AND GPU FOR USE IN

EMBEDDED SYSTEMS

SUPERVISOR: Mr Steven Rees, National Centre of Engineering

in Agriculture

ENROLMENT: ENG 4111 – S1, 2015

 ENG 4112 – S2, 2015

PROJECT AIM: The aim of this project is to investigate the Exynos

5422 multicore processor and ancillary

computational hardware on the ODROID XU3

development board. Develop software to optimise

the processor and ancillary devices on the

development board. Compare the operation of the

optimised software and automated compiler

generated software for benefits to embedded

systems.

PROGRAMME: Issue A. 6th March 2015

1. Research Background information in relation to operation and current

practices of:

 embedded microcontrollers, DSPs, Logic devices and GPUs;

 multicore processors;

 optimisation techniques

2. Investigate the ODROID XU3 development board hardware capacity (CPU

cores, FPU, NEON and GPU).

3. Design and develop software to optimise the operation of the CPU cores,

FPU, NEON and GPU for application of an algorithm for benchmarking.

4. Implement and record operational data for optimised software. Implement

and run automated code generated by the compiler for the ODROID XU3.

5. Compare and analyse the results of the optimised verse automated software

to determine the value of manually optimising embedded systems for the

additional on-board hardware.

6. Investigate the benefits of optimising machine vision algorithms (e.g.

stereo vision) for on-board hardware.

7. Write dissertation.

8. Submit Dissertation on the above

AGREED:

Chloe Mansell (Student) Steven Rees (Supervisor)

17/03/2015 17/03/2015

P a g e | 89

Appendix B

Code for Grey Scale Threshold Image

Processing

P a g e | 90

B.1 Grey Scale Threshold

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 Mat image;

 image = imread("scene_r.bmp", 0);

 Size s = image.size();

 int intensity = 0;

 int T = 128;

 // Loop through matrix and change intensity accordingly

 for (int i = 0; i < s.height; i++)

 {

 for(int j = 0; j < s.width; j++)

 {

 unsigned char bgrPixel = image.at<uchar>(i,j);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,j) = 0;

 }

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

// namedWindow("Display window", WINDOW_NORMAL);

// imshow("Display window", image);

// imwrite("Output.bmp",image);

 waitKey(0);

 return 0;

 }

P a g e | 91

B.2 Grey Scale Threshold with Loop Reversal

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 Mat image;

 image = imread("scene_r.bmp", 0);

 Size s = image.size();

 int intensity = 0;

 int T = 128;

 for (int i = s.height; i>0; i--)

 {

 for(int j = s.width; j>0; j--)

 {

 unsigned char bgrPixel = image.at<uchar>(i,j);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,j) = 0;

 }

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

// namedWindow("Display window", WINDOW_AUTOSIZE);

// imshow("Display window", image);

// imwrite("Output.bmp",image);

// waitKey(0);

 return 0;

 }

P a g e | 92

B.3 Grey Scale Threshold with Loop Unrolling

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 Mat image;

 image = imread("scene_r.bmp", 0);

 Size s = image.size();

 int intensity = 0;

 int T = 128;

 // use s.width to discover how many times to unroll loop

// cout << s.width << endl;

 for (int i = 0; i < s.height; i++)

 {

 unsigned char bgrPixel = image.at<uchar>(i,1);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,1) = 0;

 }

 bgrPixel = image.at<uchar>(i,2);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,2) = 0;

 }

 bgrPixel = image.at<uchar>(i,3);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,3) = 0;

 }

 bgrPixel = image.at<uchar>(i,4);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i, 4) = 0;

 }

P a g e | 93

 bgrPixel = image.at<uchar>(i,5);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,5) = 0;

 }

 bgrPixel = image.at<uchar>(i,6);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,6) = 0;

 }

……………………………………………CONTINUED TO THE VALUE 384

bgrPixel = image.at<uchar>(i,383);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,383) = 0;

 }

 bgrPixel = image.at<uchar>(i,384);

 intensity = int(bgrPixel);

 if (intensity < T){

 image.at<uchar>(i,384) = 0;

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 // Display and store image to check corectness

 //namedWindow("Display window", WINDOW_AUTOSIZE);

 //imshow("Display window", image);

 //imwrite("Output.bmp",image);

 //waitKey(0);

 return 0;

 }

P a g e | 94

B.4 Grey Scale Threshold with Pointer Optimisation

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Load image and assign pointer

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int T = 128;

 int size = image->imageSize;

 // Loop through matrix and change intensity

 for(int x = 0; x < size; x++)

 {

 if (*ptr < T){

 *ptr = 0;

 ptr++;

 }

 else {ptr++;}

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 // Used to test image output and save

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOpt.jpg",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

}

P a g e | 95

B.5 Grey Scale Threshold with Pointer Optimisation and

Loop Unrolling

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Load image and assign pointer

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int T = 128;

 int size = image->imageSize;

 // Loop through matrix and change intensity

 for(int x = 0; x < size; x=x+6)

 {

 if (*ptr < T){

 *ptr = 0;

 ptr ++;

 }

 else {ptr ++;}

 if (*ptr < T){

 *ptr = 0;

 ptr ++;

 }

 else {ptr ++;}

 if (*ptr < T){

 *ptr = 0;

 ptr ++;

 }

 else {ptr ++;}

 if (*ptr < T){

 *ptr = 0;

 ptr ++;

 }

 else {ptr ++;}

 if (*ptr < T){

 *ptr = 0;

 ptr ++;

P a g e | 96

 }

 else {ptr ++;}

 if (*ptr < T){

 *ptr = 0;

 ptr ++;

 }

 else {ptr ++;}

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvWaitKey(0);

 //cvSaveImage("GreyScaleOptloop.bmp",image);

 cvReleaseImage(&image);

 return 0;

}

P a g e | 97

B.6 Grey Scale Threshold with Pointer Optimisation and

Loop Reversal

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int T = 128;

 int size = image->imageSize;

 // Loop through matrix and change intensity

 for(int x = size; x >0; x--)

 {

 if (*ptr < T){

 *ptr = 0;

 ptr++;

 }

 else ptr++;

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOptdec.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

}

P a g e | 98

B.7 Grey Scale Threshold with Pointer Optimisation

directed through A7 core

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 cpu_set_t my_set;

 CPU_ZERO(&my_set);

 CPU_SET(0, &my_set);

 sched_setaffinity(0, sizeof(cpu_set_t), &my_set);

 int64 tickCount = getTickCount();

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int T = 128;

 int size = image->imageSize;

 for(int x = 0; x < size; x++)

 {

 if (*ptr < T){

 *ptr = 0;

 ptr++;

 }

 else {ptr++;}

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOptA7.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

}

P a g e | 99

B.8 Grey Scale Threshold with Pointer Optimisation

directed through A15 core

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 cpu_set_t my_set;

 CPU_ZERO(&my_set);

 CPU_SET(7, &my_set);

 sched_setaffinity(0, sizeof(cpu_set_t), &my_set);

 int64 tickCount = getTickCount();

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int T = 128;

 int size = image->imageSize;

 for(int x = 0; x < size; x++)

 {

 if (*ptr < T){

 *ptr = 0;

 ptr++;

 }

 else {ptr++;}

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOptA15.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

}

P a g e | 100

B.9 Grey Scale Threshold directed through Neon Data

Engine

 #include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

#include <arm_neon.h>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Download and store image

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 // Assign pointer to image data

 uint8x16_t* __restrict ptr= (uint8x16_t *)image ->imageData;

 int size = image->imageSize;

 // Create Image to store result

 IplImage* result = cvCreateImage(cvGetSize(image),IPL_DEPTH_8U,1);

 uint8x16_t*__restrict optr = (uint8x16_t *)result ->imageData;

 uint8x16_t threshold = vdupq_n_u8(128);

 uint8x16_t mask;

 uint8x16_t output;

 for (; size > 0; size -=16, ptr++, optr++){

 mask = *ptr > threshold;

 *optr = *ptr & mask;

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //namedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", result);

 //cvSaveImage("GreyScaleOptNeon2.bmp",image);

 //waitKey(0);

 cvReleaseImage(&image);

 return 0;

 }

P a g e | 101

B.10 Grey Scale Threshold directed through Graphics

Processing Unit

Image_scaling.cpp and image_scaling.cl from Mali OpenCL SDK v1.1.0

samples were altered to perform grey scale thresholding. Program has been

marked with CM initials and dated where program code has been altered.

Please note that comments have also been changed to reflect new purpose of

code.

/*This confidential and proprietary software may be used only as

 * authorised by a licensing agreement from ARM Limited

 * (C) COPYRIGHT 2013 ARM Limited

 * ALL RIGHTS RESERVED

 * The entire notice above must be reproduced on all authorised

 * copies and copies may only be made to the extent permitted

 * by a licensing agreement from ARM Limited.

 */

#include "common.h"

#include "image.h"

#include "common.cpp" //added CM 25/10/2015

#include "image.cpp" //added CM 25/10/2015

#include <CL/cl.h>

#include <iostream>

#include <opencv2/opencv.hpp> //added CM 25/10/2015

#include <stdio.h>

#include <stdlib.h>

using namespace std;

using namespace cv;

int main(void)

{

 // Get start time added CM 25/10/2015

 int64 tickCount = getTickCount();

 cl_context context = 0;

 cl_command_queue commandQueue = 0;

 cl_program program = 0;

 cl_device_id device = 0;

P a g e | 102

 cl_kernel kernel = 0;

 const int numMemoryObjects = 2;

 cl_mem memoryObjects[numMemoryObjects] = {0, 0};

 cl_int errorNumber;

 // Set up OpenCL environment: create context, command queue, program

and kernel

 // Create context

 if (!createContext(&context))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed to create an OpenCL context. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Create Command Queue

 if (!createCommandQueue(context, &commandQueue, &device))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed to create the OpenCL command queue. " << __FILE__

<< ":"<< __LINE__ << endl;

 return 1;

 }

 // Create Program

 if (!createProgram(context, device, "assets/image_scaling.cl",

&program))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed to create OpenCL program." << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Create Kernel

 kernel = clCreateKernel(program, "image_scaling", &errorNumber);

 if (!checkSuccess(errorNumber))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed to create OpenCL kernel. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Load the input image data

 // accessing greyscale image through opencv added CM 25/10/2015

 IplImage* image = cvLoadImage("assets/input.bmp",0);

 cl_int height = image->height;

P a g e | 103

 cl_int width = image->width;

 unsigned char* input=(unsigned char*)image ->imageData;

 // Convert image to RGB added CM 25/10/2015

 unsigned char *rgbIn = new unsigned char[width * height * 3];

 luminanceToRGB(input, rgbIn, width, height);

 saveToBitmap("input.bmp", width, height, rgbIn);

 cl_image_format format;

 format.image_channel_data_type = CL_UNORM_INT8;

 format.image_channel_order = CL_RGBA;

 //Allocate memory for the input image that can be accessed by the CPU

and GPU.

 bool createMemoryObjectsSuccess = true;

 memoryObjects[0] = clCreateImage2D(context,

CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, &format,

width, height, 0, NULL, &errorNumber);

 createMemoryObjectsSuccess &= checkSuccess(errorNumber);

 memoryObjects[1] = clCreateImage2D(context,

CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, &format,

width, height, 0, NULL, &errorNumber);

 createMemoryObjectsSuccess &= checkSuccess(errorNumber);

 if (!createMemoryObjectsSuccess)

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed creating the image. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 size_t origin[3] = {0, 0, 0};

 size_t region[3] = {width, height, 1};

 size_t rowPitch;

 unsigned char* inputImageRGBA = (unsigned

char*)clEnqueueMapImage(commandQueue, memoryObjects[0],

CL_TRUE, CL_MAP_WRITE, origin, region, &rowPitch, NULL, 0,

NULL, NULL, &errorNumber);

 if (!checkSuccess(errorNumber))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed mapping the input image. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

P a g e | 104

 }

 //Convert the input data from RGB to RGBA

 RGBToRGBA(rgbIn, inputImageRGBA, width, height);

 delete[] rgbIn;

 //Unmap the image from the host

 if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue,

memoryObjects[0], inputImageRGBA, 0, NULL, NULL)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed unmapping the input image. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 cl_float widthNormalizationFactor = 1.0f / width;

 cl_float heightNormalizationFactor = 1.0f / height;

 // Setup kernel argument

 bool setKernelArgumentsSuccess = true;

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 0,

sizeof(cl_mem), &memoryObjects[0]));

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 1,

sizeof(cl_mem), &memoryObjects[1]));

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 2,

sizeof(cl_float), &widthNormalizationFactor));

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 3,

sizeof(cl_float), &heightNormalizationFactor));

 if (!setKernelArgumentsSuccess)

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, 3);

 cerr << "Failed setting OpenCL kernel arguments. " << __FILE__ <<

":"<< __LINE__ << endl;

 return 1;

 }

 // set workDimensions

 const int workDimensions = 2;

 size_t globalWorkSize[workDimensions] = {width, height};

 // An event to associate with the kernel

 cl_event event = 0;

 // Enqueue the kernel

 if (!checkSuccess(clEnqueueNDRangeKernel(commandQueue, kernel,

workDimensions, NULL, globalWorkSize, NULL, 0, NULL, &event)))

 {

P a g e | 105

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed enqueuing the kernel. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Wait for kernel execution completion.

 if (!checkSuccess(clFinish(commandQueue)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed waiting for kernel execution to finish. " << __FILE__

<< ":"<< __LINE__ << endl;

 return 1;

 }

 printProfilingInfo(event);

 // Release event object

 if (!checkSuccess(clReleaseEvent(event)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed releasing the event object. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 size_t newRegion[3] = {width, height, 1};

 unsigned char* outputImage = (unsigned

char*)clEnqueueMapImage(commandQueue, memoryObjects[1],

CL_TRUE, CL_MAP_READ, origin, newRegion, &rowPitch, NULL, 0,

NULL, NULL, &errorNumber);

 if (!checkSuccess(errorNumber))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 cerr << "Failed mapping the input image. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 unsigned char* outputImageRGB = new unsigned char[width * height *

3];

 RGBAToRGB(outputImage, outputImageRGB, width, height);

 saveToBitmap("output.bmp", width, height, outputImageRGB);

 delete[] outputImageRGB;

P a g e | 106

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numMemoryObjects);

 // Get finish time and find difference divided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

//altered CM 25/10/2015

 cout << time << endl; //altered CM 25/10/2015

 return 0;

}

// Kernel Program

// Define a sampler

const sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE |

CLK_ADDRESS_CLAMP | CLK_FILTER_LINEAR;

__kernel void image_scaling(__read_only image2d_t sourceImage,

 __write_only image2d_t destinationImage,

 const float widthNormalizationFactor,

 const float heightNormalizationFactor)

{

 //Calculate the coordinates

 int2 coordinate = (int2)(get_global_id(0), get_global_id(1));

 float2 normalizedCoordinate = convert_float2(coordinate) *

(float2)(widthNormalizationFactor, heightNormalizationFactor);

 //Read from the source image

 float4 colour = read_imagef(sourceImage, sampler,

normalizedCoordinate);

 //Greyscale Threshold algorithm

 // added CM 26/10/2015

 if (colour.x < 0.50f){

 colour = (0.0f);

 }

 else {colour = colour;}

 //Write to the destination image

 write_imagef(destinationImage, coordinate, colour);

}

P a g e | 107

Appendix C

Average Smoothing Filter code for Image

Processing

P a g e | 108

C.1 Average Smoothing Filter

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 Mat image;

 image = imread("scene_r.bmp", 0);

 Size s = image.size();

 unsigned char bgrPixel;

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = 1; i < s.height; i++)

 {

 for(int j = 1; j < s.width; j++)

 {

 for(int k = 0; k<=2; k++){

 for (int l = 0; l<=2; l++){

 avg = avg + image.at<uchar>(i+k,j+l);

 }

 }

 image.at<uchar>(i,j) = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

double time = ((getTickCount() -

tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //namedWindow("Display window", WINDOW_NORMAL);

 //imshow("Display window", image);

 //imwrite("Output.bmp",image);

 //waitKey(0);

 return 0;

 }

P a g e | 109

C.2 Average Smoothing Filter with Loop Reversal

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 Mat image;

 image = imread("scene_r.bmp", 0);

 Size s = image.size();

 unsigned char bgrPixel;

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = (s.height-1); i>0; i--)

 {

 for(int j = (s.width-1); j>0; j--)

 {

 for(int k = 2; k >= 0; k--){

 for (int l = 2; l >= 0; l--){

 avg = avg + image.at<uchar>(i-k,j-l);

 }

 }

 image.at<uchar>(i,j) = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 namedWindow("Display window", WINDOW_NORMAL);

 imshow("Display window", image);

 imwrite("Output.bmp",image);

 waitKey(0);

 return 0;

 }

P a g e | 110

C.3 Average Smoothing Filter with Loop Unrolling

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 Mat image;

 image = imread("scene_r.bmp", 0);

 Size s = image.size();

 unsigned char bgrPixel;

 int avg = 0;

 // Loop through matrix and change intensity accordingly

 for (int i = 1; i < s.height; i++)

 {

 for(int j = 1; j < s.width; j++)

 {

 avg = image.at<uchar>(i,j);

 avg = avg + image.at<uchar>(i+2,j+2);

 avg = avg + image.at<uchar>(i+1,j+2);

 avg = avg + image.at<uchar>(i+0,j+2);

 avg = avg + image.at<uchar>(i+2,j+1);

 avg = avg + image.at<uchar>(i+1,j+1);

 avg = avg + image.at<uchar>(i+0,j+1);

 avg = avg + image.at<uchar>(i+2,j+0);

 avg = avg + image.at<uchar>(i+1,j+0);

 image.at<uchar>(i,j) = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

double time = ((getTickCount() -

tickCount)/getTickFrequency())*1000;

 cout << time << endl;

P a g e | 111

 namedWindow("Display window", WINDOW_NORMAL);

 imshow("Display window", image);

 imwrite("Output.bmp",image);

 waitKey(0);

 return 0;

 }

P a g e | 112

C.4 Average Smoothing Filter with Pointer Optimisation

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int size = image->imageSize;

 int widthstep = image->widthStep;

 int height = image->height;

 int width = image->width;

 int step = widthstep/sizeof(uchar);

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = 1; i < height; i++)

 {

 for(int j = 1; j < width; j++)

 {

 for(int k = 0; k<=2; k++){

 for (int l = 0; l<=2; l++){

avg = avg +

(int)ptr[((i*step)+k)+(j+l)];

 }

 }

 ptr[i*step + j] = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

double time = ((getTickCount() -

tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //cvNamedWindow("Display window", WINDOW_NORMAL);

P a g e | 113

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOpt.bmp",image);

 //cvWaitKey(0);

 return 0;

 }

P a g e | 114

C.5 Average Smoothing Filter with Pointer Optimisation

and Loop Reversal

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int size = image->imageSize;

 int widthstep = image->widthStep;

 int height = image->height;

 int width = image->width;

 int step = widthstep/sizeof(uchar);

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = height-1; i >0; i--)

 {

 for(int j = width-1; j >0; j--)

 {

 for(int k = 2; k>=0; k--){

 for (int l = 2; l>=0;l--){

 avg = avg + (int)ptr[((i*step)-k)+(j-l)];

 }

 }

 ptr[i*step + j] = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

double time = ((getTickCount() -

tickCount)/getTickFrequency())*1000;

 cout << time << endl;

P a g e | 115

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOpt.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

 }

P a g e | 116

C.6 Average Smoothing Filter with Pointer Optimisation

and Loop Unrolling

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int size = image->imageSize;

 int widthstep = image->widthStep;

 int height = image->height;

 int width = image->width;

 int step = widthstep/sizeof(uchar);

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = 1; i < height; i++)

 {

 for(int j = 1; j < width; j++)

 {

 avg = avg + (int)ptr[((i*step))+(j)];

 avg = avg + (int)ptr[((i*step)+0)+(j+1)];

 avg = avg + (int)ptr[((i*step)+0)+(j+2)];

 avg = avg + (int)ptr[((i*step)+1)+(j+0)];

 avg = avg + (int)ptr[((i*step)+1)+(j+1)];

 avg = avg + (int)ptr[((i*step)+1)+(j+2)];

 avg = avg + (int)ptr[((i*step)+2)+(j+0)];

 avg = avg + (int)ptr[((i*step)+2)+(j+1)];

 avg = avg + (int)ptr[((i*step)+2)+(j+2)];

 ptr[i*step + j] = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 //cvNamedWindow("Display window", WINDOW_NORMAL);

P a g e | 117

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOpt.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

 }

P a g e | 118

C.7 Average Smoothing Filter with Pointer Optimisation

directed through A7 Core

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 cpu_set_t my_set;

 CPU_ZERO(&my_set);

 CPU_SET(0, &my_set);

 sched_setaffinity(0, sizeof(cpu_set_t), &my_set);

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int size = image->imageSize;

 int widthstep = image->widthStep;

 int height = image->height;

 int width = image->width;

 int step = widthstep/sizeof(uchar);

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = 1; i < height; i++)

 {

 for(int j = 1; j < width; j++)

 {

 for(int k = 0; k<=2; k++){

 for (int l = 0; l<=2; l++){

 avg = avg + (int)ptr[((i*step)+k)+(j+l)];

 }

 }

 ptr[i*step + j] = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

P a g e | 119

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOpt.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

 }

P a g e | 120

C.8 Average Smoothing Filter with Pointer Optimisation

directed through A15 Core

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

using namespace cv;

using namespace std;

int main ()

{

 cpu_set_t my_set;

 CPU_ZERO(&my_set);

 CPU_SET(7, &my_set);

 sched_setaffinity(0, sizeof(cpu_set_t), &my_set);

 // Get start time

 int64 tickCount = getTickCount();

 // Read in image using mat function

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 unsigned char *ptr= (unsigned char*)image ->imageData;

 int size = image->imageSize;

 int widthstep = image->widthStep;

 int height = image->height;

 int width = image->width;

 int step = widthstep/sizeof(uchar);

 int avg = 0;

 // Loop through matrix and change intesity accordingly

 for (int i = 1; i < height; i++)

 {

 for(int j = 1; j < width; j++)

 {

 for(int k = 0; k<=2; k++){

 for (int l = 0; l<=2; l++){

 avg = avg + (int)ptr[((i*step)+k)+(j+l)];

 }

 }

 ptr[i*step + j] = avg/9;

 avg = 0;

 }

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 cout << time << endl;

P a g e | 121

 //cvNamedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", image);

 //cvSaveImage("GreyScaleOpt.bmp",image);

 //cvWaitKey(0);

 cvReleaseImage(&image);

 return 0;

 }

P a g e | 122

C.9 Average Smoothing Filter directed through Neon

Data Engine

#include <stdio.h>

#include <stdlib.h>

#include <opencv2/opencv.hpp>

#include <arm_neon.h>

using namespace cv;

using namespace std;

int main ()

{

 // Get start time

 int64 tickCount = getTickCount();

 // Download and store image

 IplImage* image = cvLoadImage("scene_r.bmp",0);

 // Assign pointer to image data

 uint8_t * __restrict ptr= (uint8_t*)image ->imageData;

 uint8_t *start = ptr;

 int size = image->imageSize;

 int height = image->height;

 int width = image->width;

 uint16x8_t sum;

 // Create Image to store result

 IplImage* result =

cvCreateImage(cvGetSize(image),IPL_DEPTH_8U,1);

 uint8_t* optr = (uint8_t *)result ->imageData;

 uint8_t *start2 = optr;

 // Initialise line3

 uint8x8_t line1;

 uint8x8_t line2;

 uint8x8_t line3;

 uint8x8_t final;

 // Fill first row;

 for (int i = width; i > 0; i--,optr++, ptr++){

P a g e | 123

 *optr = *ptr;

 }

 // Fill sides

 for (int i = height; i > 0; i--, optr++, ptr++){

 *optr = *ptr;

 optr += (width-1);

 ptr +=(width-1);

 *optr = *ptr;

 }

 optr = optr+=width;

 ptr = ptr+=width;

 // Fill last row;

 for (int i = width; i > 0; i--,optr--, ptr--){

 *optr = *ptr;

 }

 ptr = start;

 optr = start2 + width;

 // Calculate new pixel values

 for (; (size-(width*2)) > 0; size -=6, ptr+=6){

 line1 = vld1_u8(ptr);

 line2 = vld1_u8(ptr + width);

 line3 = vld1_u8(ptr + (width * 2));

 sum = vaddl_u8(line1, line2);

 sum = vaddw_u8(sum, line3);

 optr++;

 *optr = ((vgetq_lane_u16(sum, 0) + vgetq_lane_u16(sum, 1) +

vgetq_lane_u16(sum, 2))/9);

 optr++;

 *optr = ((vgetq_lane_u16(sum, 1) + vgetq_lane_u16(sum, 2) +

vgetq_lane_u16(sum, 3))/9);

 optr++;

 *optr = ((vgetq_lane_u16(sum, 2) + vgetq_lane_u16(sum, 3) +

vgetq_lane_u16(sum, 4))/9);

 optr++;

 *optr = ((vgetq_lane_u16(sum, 3) + vgetq_lane_u16(sum, 4) +

vgetq_lane_u16(sum, 5))/9);

 optr++;

 *optr = ((vgetq_lane_u16(sum, 4) + vgetq_lane_u16(sum, 5) +

vgetq_lane_u16(sum, 6))/9);

 optr++;

 *optr = ((vgetq_lane_u16(sum, 5) + vgetq_lane_u16(sum, 6) +

vgetq_lane_u16(sum, 7))/9);

P a g e | 124

 }

 // Get finish time and find difference devided by frequency

 double time = ((getTickCount() -

tickCount)/getTickFrequency())*1000;

 cout << time << endl;

 // Display and check image

 //namedWindow("Display window", WINDOW_NORMAL);

 //cvShowImage("Display window", result);

 //cvSaveImage("GreyScaleOptNeon2.bmp",result);

 //waitKey(0);

 cvReleaseImage(&image);

 return 0;

 }

P a g e | 125

C.10 Average Smoothing Filter directed through

Graphics Processing Unit

Fir_float.cpp and fir_float.cl from Mali OpenCL SDK v1.1.0 samples were

altered to perform Average Smoothing filter function. Program has been

marked with CM initials and dated where program code has been altered.

Please note that comments have also been changed to reflect new purpose of

code.

/*

 * This confidential and proprietary software may be used only as

 * authorised by a licensing agreement from ARM Limited

 * (C) COPYRIGHT 2013 ARM Limited

 * ALL RIGHTS RESERVED

 * The entire notice above must be reproduced on all authorised

 * copies and copies may only be made to the extent permitted

 * by a licensing agreement from ARM Limited.

 */

#include "common.h"

#include "image.h"

#include "common.cpp" // added CM 27/10/2015

#include "image.cpp" // added CM 27/10/2015

#include <CL/cl.h>

#include <iostream>

#include <fstream>

#include <sstream>

#include <cstddef>

#include <cmath>

#include <opencv2/opencv.hpp> // added CM 27/10/2015

using namespace std;

using namespace cv; // added CM 27/10/2015

int main(void)

{

 // Get start time

 int64 tickCount = getTickCount(); //added CM 27/10/2015

 cl_context context = 0;

 cl_command_queue commandQueue = 0;

P a g e | 126

 cl_program program = 0;

 cl_device_id device = 0;

 cl_kernel kernel = 0;

 const unsigned int numberOfMemoryObjects = 2; //altered

CM 27/10/2015

 cl_mem memoryObjects[numberOfMemoryObjects] = {0, 0}; //altered

CM 27/10/2015

 cl_int errorNumber;

 // Set up OpenCL environment: create context, command queue, program

and kernel

 // Create context

 if (!createContext(&context))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed to create an OpenCL context. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Create Command Queue

 if (!createCommandQueue(context, &commandQueue, &device))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed to create the OpenCL command queue. " << __FILE__

<< ":"<< __LINE__ << endl;

 return 1;

 }

 // Create Program

 if (!createProgram(context, device, "assets/fir_float.cl", &program))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed to create OpenCL program." << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Create Kernel

 kernel = clCreateKernel(program, "fir_float", &errorNumber);

 if (!checkSuccess(errorNumber))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed to create OpenCL kernel. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Load the input image data

P a g e | 127

 // added to import greyscale image through opencv CM 27/10/2015

 IplImage* image = cvLoadImage("assets/scene_r.bmp",0);

 cl_int height = image->height;

 cl_int width = image->width;

 unsigned char* input=(unsigned char*)image ->imageData;

 // buffersize

 size_t bufferSize = width * height * sizeof(float);

 bool createMemoryObjectsSuccess = true;

 memoryObjects[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, &errorNumber);

 createMemoryObjectsSuccess &= checkSuccess(errorNumber);

 memoryObjects[1] = clCreateBuffer(context, CL_MEM_WRITE_ONLY

| CL_MEM_ALLOC_HOST_PTR, bufferSize, NULL, &errorNumber);

 createMemoryObjectsSuccess &= checkSuccess(errorNumber);

 if (!createMemoryObjectsSuccess)

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed to create OpenCL buffers. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 cl_float* inputImageData =

(cl_float*)clEnqueueMapBuffer(commandQueue, memoryObjects[0],

CL_TRUE, CL_MAP_WRITE, 0, bufferSize, 0, NULL, NULL,

&errorNumber);

 if (!checkSuccess(errorNumber))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Mapping memory objects failed " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 //Converting data into float

 for(int i = 0; i < width * height; i++)

 {

 inputImageData[i] = (float)input[i] / 255.0f;

 }

 //Unmap memory

 if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue,

memoryObjects[0], inputImageData, 0, NULL, NULL)))

 {

P a g e | 128

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Unmapping memory objects failed " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Kernel

 bool setKernelArgumentsSuccess = true;

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 0,

sizeof(cl_mem), &memoryObjects[0]));

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 1,

sizeof(cl_mem), &memoryObjects[1]));

 setKernelArgumentsSuccess &= checkSuccess(clSetKernelArg(kernel, 2,

sizeof(cl_int), &width));

 if (!setKernelArgumentsSuccess)

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed setting OpenCL kernel arguments. " << __FILE__ <<

":"<< __LINE__ << endl;

 return 1;

 }

 // even information

 cl_event event = 0;

 //Kernel size

 size_t globalWorksize[2] = {width / 4, height / 1};

 // Enque the kernel

 if (!checkSuccess(clEnqueueNDRangeKernel(commandQueue, kernel, 2,

NULL, globalWorksize, NULL, 0, NULL, &event)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed enqueuing the kernel. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 // Wait for kernel execution completion

 if (!checkSuccess(clFinish(commandQueue)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed waiting for kernel execution to finish. " << __FILE__

<< ":"<< __LINE__ << endl;

 return 1;

P a g e | 129

 }

 // Get finish time and find difference devided by frequency

 /* Print the profiling information for the event. */

 printProfilingInfo(event);

 /* Release the event object. */

 if (!checkSuccess(clReleaseEvent(event)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Failed releasing the event object. " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 /* Map the output memory to a host side pointer. */

 cl_float* output = (cl_float*)clEnqueueMapBuffer(commandQueue,

memoryObjects[1], CL_TRUE, CL_MAP_READ, 0, bufferSize, 0, NULL,

NULL, &errorNumber);

 if (!checkSuccess(errorNumber))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Mapping memory objects failed " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 /* Convert the float output to unsigned char for saving to bitmap. */

 unsigned char *outputData= new unsigned char[width * height];

 for(int i = 0; i< width * height; i++)

 {

 outputData[i] = (unsigned char)(output[i] * 255.0f);

 }

 /* Unmap the output. */

 if (!checkSuccess(clEnqueueUnmapMemObject(commandQueue,

memoryObjects[1], output, 0, NULL, NULL)))

 {

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

 cerr << "Unmapping memory objects failed " << __FILE__ << ":"<<

__LINE__ << endl;

 return 1;

 }

 /* Release OpenCL objects. */

 cleanUpOpenCL(context, commandQueue, program, kernel,

memoryObjects, numberOfMemoryObjects);

P a g e | 130

 /* Convert the output luminance array to RGB and save it out to a file. */

 unsigned char *rgbOut = new unsigned char[width * height * 3];

 luminanceToRGB(outputData, rgbOut, width, height);

 delete [] outputData;

 // Get execution time in ms and output

 double time = ((getTickCount() - tickCount)/getTickFrequency())*1000;

 //added CM 27/10/2015

 cout << time << endl;

 //added CM 27/10/2015

 saveToBitmap("output.bmp", width, height, rgbOut);

 delete [] rgbOut;

 return 0;

}

// Kernel__kernel void fir_float(__global const float* restrict input,

 __global float* restrict output,

 const int width)

{

 const int column = get_global_id(0) * 4;

 const int row = get_global_id(1);

 /* Offset calculates the position in the linear data for the row and the

column. */

 const int offset = row * width + column;

 /* Accumulator array of 4 floats. */

 float4 accumulator = (float4)0.0f;

 // Load first row

 /*

 * Access the first row in the 6x3 window

 * data1 can be constructed from the other vectors without doing an

additional load.

 */

 float4 data0 = vload4(0, input + offset); //altered CM 27/10/2015

 float4 data2 = vload4(0, input + offset + 2); //altered CM

27/10/2015

 float4 data1 = (float4)(data0.s12, data2.s12); //altered CM

27/10/2015

P a g e | 131

 accumulator += data0;

 accumulator += data1;

 accumulator += data2;

 /* [Filter first row] */

 /* [Load and filter second and third row] */

 // Access the second row in the 6x3 window and repeat the process

 data0 = vload4(0, input + offset + width); //altered CM

27/10/2015

 data2 = vload4(0, input + offset + width + 2); //altered CM

27/10/2015

 data1 = (float4)(data0.s12, data2.s12); //altered CM

27/10/2015

 accumulator += data0;

 accumulator += data1;

 accumulator += data2;

 //Access the third row in the 6x3 window and repeat the process

 data0 = vload4(0, input + offset + width * 2); //altered CM

27/10/2015

 data2 = vload4(0, input + offset + width * 2 + 2); //altered CM

27/10/2015

 data1 = (float4)(data0.s12, data2.s12); //altered CM

27/10/2015

 accumulator += data0;

 accumulator += data1;

 accumulator += data2;

 //altered CM 27/10/2015

 // divide accumulator by 9

 accumulator = accumulator/9;

 /* [Store] */

 /* Store the accumulator. */

 vstore4(accumulator, 0, output + offset);

 /* [Store] */

}

P a g e | 132

Appendix D

Output photos for Grey scale algorithm

P a g e | 133

Figure D.1 Grey scale program output photo

Figure D.2 Grey scale program with loop reversal output photo

Figure D.3 Grey scale program with loop unrolling output photo

P a g e | 134

Figure D.4 Grey scale program with pointer optimisation output photo

Figure D.5 Grey scale program with pointer optimisation and loop reversal output photo

Figure D.6 Grey scale program with pointer optimisation and loop unrolling output photo

P a g e | 135

Figure D.7 Grey scale program with pointer optimisation and directed through A7 core

output photo

Figure D.8 Grey scale program with pointer optimisation and directed through A15 core

output photo

Figure D.9 Grey scale program directed through Neon data engine output photo

P a g e | 136

Figure D.10 Grey scale program directed through Graphics processing unit output photo

P a g e | 137

Appendix E

Output photos for Averaging Smoothing

Filter

P a g e | 138

Figure E.1 Smoothing Filter program output photo

Figure E.2 Smoothing Filter program with loop reversal output photo

Figure E.3 Smoothing filter program with loop unrolling output photo

P a g e | 139

Figure E.4 Smoothing filter program with pointer optimisation output photo

Figure E.5 Smoothing filter program with pointer optimisation and loop reversal output

photo

Figure E.6 Smoothing filter program with pointer optimisation and loop unrolling output

photo

P a g e | 140

Figure E.7 Smoothing filter program with pointer optimisation and directed through A7

output photo

Figure E.8 Smoothing filter program with pointer optimisation and directed through A15

output photo

Figure E.9 Smoothing filter program directed through Neon data engine output photo

P a g e | 141

Figure W.10 Smoothing filter program directed through Graphics processing unit output

photo

