
University of Southern Queensland

Faculty of Health, Engineering & Sciences

Condition Monitoring of Rotating Machinery

- Vibration Analysis

A dissertation submitted by

Richard Amos Little

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Mechanical Engineering

Submitted: October, 2015

Abstract

The aim of condition monitoring is to detect defective machine components and allow

timely repair before failure and secondary damage occurs. This project, in particular,

covers the condition monitoring techniques applicable to rotating machinery and vibration

analysis.

Vibration analysis is a specialised role and equipment owners often have a limited under-

standing of it. Practicing technicians also benefit from better understanding fundamental

principles and ongoing training. Key to improving outcomes of CM programs is improving

knowledge and understanding.

Utilising overall project specifications, a schedule, flow and Gantt charts, decision trees,

listing activities with diagrams and milestones ensured the orderly development of the

project. Researching condition monitoring practices and standards applicable to rotating

machinery led to developing required outcomes, software specifications and user require-

ments for a virtual training package prior to writing the Matlab program. Development

of the vibration training program in line with ISO18436-2 requirements and industry

recognised practices for personnel conducting and utilising vibration condition monitor-

ing resulted in a program that is easy to use, familiarising the user with fundamental

concepts and readily detectable faults.

The key aspect of the project, the development of a training and awareness tool based

on industry practices and expectations, is displayed in the training program. It is a tool

that can help technicians and plant owners better understand and implement vibration

condition monitoring and improve outcomes thus reducing costly unplanned plant outages.

University of Southern Queensland

Faculty of Health, Engineering & Sciences

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of

the Council of the University of Southern Queensland, its Faculty of Health, Engineering

& Sciences or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to con-

tribute to the overall education within the student’s chosen degree program. This doc-

ument, the associated hardware, software, drawings, and other material set out in the

associated appendices should not be used for any other purpose: if they are so used, it is

entirely at the risk of the user.

Dean

Faculty of Health, Engineering & Sciences

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Richard Amos Little

0050085773

Acknowledgments

I would like to thank my supervisor Mr Robert Fulcher for guidance and feedback on

work throughout the project.

I would also like to thank work colleagues Mr Phil Carroll for ideas and interest in my

project and Mr Alan Fogarty for support, throughout the course of the program, in helping

manage my work responsibilities whilst absent from work studying.

Richard Amos Little

Contents

Abstract i

Acknowledgments iv

List of Figures xiv

List of Tables xxii

Chapter 1 Introduction 1

1.1 Introduction . 2

1.2 Project Aim and Methodology . 2

1.3 Project Rationale . 3

Chapter 2 Literature Review 4

2.1 Failure Modes and Defects . 5

2.2 Condition Monitoring of Rotating Machinery 7

2.3 Particle Condition Monitoring . 7

2.3.1 Ferrography . 8

2.3.2 Analytical Ferrography . 8

CONTENTS vii

2.3.3 Direct Reading (DR) Ferrography 8

2.3.4 Mesh Obscuration (MO) Particle Counter 8

2.3.5 Pore Blockage (PB) Particle Count (Flow Decay) 9

2.3.6 Light Extinction (LE) Particle Counter 9

2.3.7 Light Scattering particle Counter 9

2.3.8 Real Time Ferromagnetic Sensor 9

2.3.9 All Metal Debris Sensor . 10

2.3.10 Graded Filtration . 10

2.3.11 Magnetic Chip Detection . 10

2.3.12 Blot Testing . 10

2.3.13 Patch Test . 11

2.4 Monitoring Water in Oil . 11

2.4.1 Calcium Hydride Water Test . 11

2.4.2 Karl Fischer Titration Test . 11

2.4.3 Crackle Test (Human Sensed) . 12

2.4.4 Crackle Test (Audio detector) . 12

2.4.5 Moisture Monitor (Vapor Induced Scintillation) 12

2.4.6 Clear and Bright Test . 13

2.5 Chemical Condition Monitoring . 13

2.5.1 Atomic Emission (AE) Spectroscopy 13

2.5.2 Atomic Absorption (AA) Spectroscopy 14

CONTENTS viii

2.5.3 Thin Layer Activation . 14

2.5.4 X-Ray Fluorescence Spectroscopy 14

2.6 Lubrication Condition Monitoring . 15

2.6.1 Viscosity Monitoring . 15

2.6.2 Fourier Transform Infrared (FT-IR) Spectroscopy 15

2.6.3 Ultra Violet and Visible Absorption Spectroscopy 16

2.6.4 Color Indicator Titration . 16

2.6.5 Total Acid Number - Total Base Number (TAN/TBN) 16

2.6.6 Exhaust Emission Analyzer (Four gas Analysis) 17

2.7 Additional Condition Monitoring Techniques 17

2.8 Vibration Monitoring . 18

2.8.1 Simple Harmonic Motion . 20

2.8.2 Time and Frequency Domains . 21

2.8.3 Fourier Transform . 22

2.8.4 Frequency and Period . 22

2.8.5 The Concept of Phase . 23

2.8.6 Frequency Units . 23

2.8.7 Amplitudes and Units . 23

2.8.8 Data Sample Properties . 25

2.8.9 Aliasing . 26

2.8.10 Natural Frequency . 26

CONTENTS ix

2.8.11 Damping . 27

2.8.12 Logarithmic Decay . 28

2.8.13 Resonance . 29

2.8.14 Time Windows . 32

2.8.15 Vibration Measuring Devices and Transducers 35

2.8.16 Vibration Analysis Techniques . 43

2.8.17 Basic Faults . 47

2.8.18 Corrective Actions . 49

2.8.19 Case Studies . 51

2.9 Applications for Condition Monitoring Techniques 57

Chapter 3 Training Program Design 64

3.1 Design Requirements of Training Unit . 65

3.1.1 User Requirements . 65

3.1.2 Functional Requirements . 68

3.1.3 Level 1 Functional Requirements 68

3.1.4 Level 2 Functional Requirements 70

3.1.5 Level 3 Functional Requirements 71

3.1.6 Virtual Machine Component Specification 72

3.1.7 Generated Faults . 73

3.1.8 System Output . 74

3.2 Programming Software Review . 75

CONTENTS x

3.3 Program Design and Development . 77

3.3.1 Program Design . 77

3.3.2 Generating Data . 78

3.3.3 Generating Defects . 82

3.3.4 Equipment Knowledge . 85

3.3.5 Acceptance Testing . 85

3.4 GUI Design . 86

3.5 Testing the Program . 88

Chapter 4 Results 93

4.1 Overview of program . 94

4.2 Program and GUI Functions . 97

4.2.1 Open . 97

4.2.2 Level 1 1 . 97

4.2.3 Level 1 2 . 97

4.2.4 Level 1 3 . 98

4.2.5 Level 1 4 . 98

4.2.6 Level 1 5 . 99

4.2.7 Level 1 6 . 99

4.2.8 Level 1 7 . 100

4.2.9 Level 1 8 . 101

4.2.10 Level 1 9 . 102

CONTENTS xi

4.2.11 Level 1 10 . 102

4.2.12 End Level 1 . 103

4.2.13 Level 2 1 . 103

4.2.14 Level 2 2 . 104

4.2.15 Level 2 3 . 104

4.2.16 Level 2 4 . 105

4.2.17 Level 2 5 . 106

4.2.18 Level 2 6 . 106

4.3 GUI Images . 107

Chapter 5 Conclusion and Further Work 127

5.1 Conclusion . 128

5.2 Further Required Work . 128

References 131

Appendix A Project Specification 134

Appendix B Supporting Information 137

B.1 Vibration Plots . 138

Appendix C Program Code 144

C.1 Program Code Overview . 145

C.2 Open . 146

CONTENTS xii

C.3 Level 1 1 . 148

C.4 Level 1 2 . 152

C.5 Level 1 3 . 159

C.6 Level 1 4 . 164

C.7 Level 1 5 . 175

C.8 Level 1 6 . 187

C.9 Level 1 7 . 197

C.10 Level 1 8 . 214

C.11 Level 1 9 . 228

C.12 Level 1 10 . 239

C.13 End Level 1 . 251

C.14 Level 2 1 . 253

C.15 Level 2 2 . 259

C.16 Level 2 3 . 264

C.17 Level 2 4 . 279

C.18 Level 2 5 . 302

C.19 Level 2 6 . 310

C.20 Single Degree of Freedom Solver Function 326

C.21 Two Degrees of Freedom Solver Function 327

Appendix D Risk Analysis 328

CONTENTS xiii

Appendix E Resource Analysis 332

Appendix F Project Planning 334

F.1 Project Flowchart . 335

F.2 Project Activity List . 336

F.3 Project Network Diagram . 338

F.4 Gantt Chart . 339

List of Figures

2.1 Failure patterns and percentages for probability of failure. Pattern A 4%,

B 2%, C 5%, D 7%, E 14%, F 68%. (Moubray 1997 p. 12) 6

2.2 The P-F Curve (Moubray 1997 p. 144) 7

2.3 This shows aliasing of a 5Hz signal sampled at 5.26Hz and the lower fre-

quency that appears to be present. 27

2.4 The following shows the logarithmic decay of vibration for under damped

system with various degrees of damping. 29

2.5 This shows the amplitude response vs the frequency ratio for a single degree

of freedom system with a rotating unbalance acting directly on the system

mass for several values of damping ratio. 30

2.6 This shows the phase response vs the frequency ratio for a single degree

of freedom system with a rotating unbalance acting directly on the system

mass for several values of damping ratio. 31

2.7 This shows the amplitude response vs the frequency ratio for several values

of damping ratio. This is for a single degree of freedom system where the

excitation/input force is external to the system mass. 31

2.8 This shows the phase response vs the frequency ratio for a single degree

of freedom system with a rotating unbalance acting directly on the system

mass for several values of damping ratio. 32

2.9 This shows the rectangular window having no effect on the sinusoid . . . 33

LIST OF FIGURES xv

2.10 This shows the effect of the Hamming window on a sine wave 34

2.11 This shows the effect of the Hanning window on a sine wave 34

2.12 This shows the effect on the Blackman Harris window on a sinusoid . . . 34

2.13 This shows a comparison of the window shapes graphed together 35

2.14 This shows the SKF hand held CMAS 100-SL vibration meter. (SKF 2014) 36

2.15 This shows the portable GE Commtest vb8 Vibration Analyzer. (GE

Commtest 2015) . 37

2.16 This shows the portable Emmerson CSI 2140 Machinery Health Analyzer.

(Emmerson 2015) . 37

2.17 This shows an Allen Bradley Rockwell XM-121 module. (Rockwell 2015) . 38

2.18 This shows two types of velocity transducers.(Scheffer 2004, fig. 3.1) . . . 39

2.19 This image shows the 20mV/g, ‘AAA’ powered SKF wireless transmitting

accelerometer the Micro-Vibe. (SKF 2014) 41

2.20 This shows the layout of a laser vibration meter (Mohanty 2014) 42

2.21 This image shows input pinion gear spalling from fatigue. (Bureau Veritas

2008-2015) . 52

2.22 This spectrum and waveform show vibration from input pinion damage.

The input shaft speed is approximately 16.2Hz, the pinion has 23 teeth

giving the defect frequency near 374Hz. (Bureau Veritas 2008-2015) . . . 52

2.23 This image shows the conveyor bend pulley outer race defect with the defect

impact rate of 15Hz. The spectrum and waveform are in velocity units of

mm/s. (Bureau Veritas 2008-2015) . 54

2.24 This image shows advanced inner race damage on a dragline hoist gearbox

input shaft. (Bureau Veritas 2008-2015) 55

LIST OF FIGURES xvi

2.25 This image shows vibration from a healthy gearbox at top compared to the

impacting from the advanced inner race damage vibration at the bottom

The waveform acceleration units are G′s. (Bureau Veritas 2008-2015) . . 56

3.1 This figure shows the software design layout in a flow chart. 79

3.2 This figure shows the force calculated by Moazenahmadi (2015) in the

modeling of defective bearings. The duration of the near rectangular pulse

is approximately 0.008s . 83

3.3 This figure shows typical internal bearing load distribution for a bearing

with radial load only (NSK 2015) . 84

3.4 This figure shows the effect a sinusoidal load distribution and 155◦ bearing

defect load zone has on a 8.8Hz square pulse train, as an example of

modulating defect amplitudes from the virtual training program. 84

3.5 An example of a machine displayed in the Level 1 section of the virtual

training software package, a fully enclosed air cooled electric motor driving

a centrifugal water pump. The impeller is overhung off one end of the shaft

with supporting bearings at the motor side of the pump barrel. The pump

inlet is in line with the rotational axis of the pump and the fluid outlet is

vertically up (Image (Bureau Veritas 2008-2015)) 86

3.6 This figure shows one of the Matlab graphical user interfaces in Matlab

GUIDE where the components for the GUI can be selected from the toolbar

on the left and positioned on the grid. 90

3.7 This graph is extracted from the program and used to test the output of

the single degree of freedom system against a worked example in Magrab

(2009) pg 199. 91

3.8 This graph is a plot of the recored and calculated data from the the

Level 2 6 GUI and is used test the amplitude response of single degree

of freedom used in the program. Frequency ration on the horizontal axis

and calculated amplitude response on the vertical axis. 91

LIST OF FIGURES xvii

3.9 This graph is extracted from a section of the Level 2 4 code and used as a

comparison to test the function of the two degrees of freedom component

of the program. 92

4.1 This shows the program flowchart and levels, each with an associated GUI. 96

4.2 This shows the Open.m GUI for initial entry into the program. It allows

the user to enter Level 1 or the Level 2 section of the program. Space has

been left to include a Level 3 section . 108

4.3 This screen shot shows the Level 1 1 GUI. It explains simple harmonic

motion as a mass on a spring oscillating back and forward and displays

a sine wave. The two sliders in the GUI allow the user to change the

amplitude and frequency of the sine wave. The ‘Start’ pushbutton begins

the blue box moving in the pattern and frequency displayed in the sine wave109

4.4 This screen shot shows the Level 1 2 GUI. It covers the concept of phase.

It is similar to Level 1 1 with the addition of another sinusoid displaying

simple harmonic motion. There are two sliders in the GUI allow the user

to change the amplitude, one slider to adjust the frequency of the waves

that each remain at the same frequency. The slider bar on the far left of

the GUI adjusts the phase angle. The ‘Start’ pushbutton begins the blue

and red boxes moving in the pattern and frequency displayed in the sine

waves to demonstrate two sinusoids and the concept of phase. 110

4.5 This screen shot shows the Level 1 3 GUI. It introduces the Level 1 user to

the time domain and the frequency domain by displaying a simple wave-

form and frequency spectrum of the waveform. The user can adjust the

amplitude and frequency with the slider bars. 111

4.6 This screen shot shows the Level 1 4 GUI. This builds on the previous

GUIs by explaining and displaying frequency units and amplitude units in

the time and frequency domain. The user can adjust the amplitude and

frequency with the slider bars. Units can be changed between millimetres

and inches. RMS and peak levels are introduced to the user. 112

LIST OF FIGURES xviii

4.7 This screen shot shows the Level 1 5 GUI. It introduces the user to com-

monly used data sampling properties, the maximum frequency and lines

of resolution. The length of the time waveform based on these inputs is

displayed with associated frequency spectrum. The user can adjust the

amplitude and frequency of the sinusoid with the slider bars. 113

4.8 This screen shot shows the Level 1 6 GUI. It shows the user the effect

that changing the stiffness and the mass has on a single degree of freedom

system with rotating unbalance vibration. It allows the user to change the

system properties on the slider bars and observe the change in vibration

amplitude. 114

4.9 The Level 1 7 GUI allows the user to select from several synchronous de-

fects and machine speed and observe the response of a single degree of free-

dom system with otherwise fixed parameters. The waveform and spectrum

can also be plotted to allow close inspection with plot tools and features. 115

4.10 The Level 1 8 GUI allows the user to select from bearing defects. Here

selecting a machine component changes the machine speed. The response

of a single degree of freedom system is plotted. The waveform and spectrum

can also be plotted to allow close inspection with plot tools and features. 116

4.11 The Level 1 9 GUI introduces the user to acceptance testing. It allows

the user to select a machine class based the given ISO10816-1 table. By

using the “Change Machine” pushbutton an unbalance mass is randomly

generated and the response of a single degree of freedom system is plotted.

Based on the RMS level the machine evaluation condition is displayed. A

machine image of the class of machine selected is displayed. The associated

waveform and spectrum can be displayed in separate Matlab figures for

closer inspection. 117

LIST OF FIGURES xix

4.12 The Level 1 10 GUI allows the user to select a machine class based the

ISO10816-1 table. By using the “Change Machine” pushbutton an unbal-

ance mass is randomly generated and the response of a single degree of

freedom system is plotted. The user can then evaluate the machine vi-

bration level by selecting A-Good, B-Acceptable, C-Satisfactory for short

term operation or D-Being widely accepted as damaging. The box below

the selection pushbuttons will light up green if correct and red if incor-

rect. The associated waveform and spectrum can be displayed in separate

Matlab figures for closer inspection . 118

4.13 This shows the End Level 1 GUI. It allows the user to open the Level Se-

lection GUI, return to Level 1 10 or close the program at use of a pushbutton.119

4.14 The Level 2 1 GUI introduces the user to the concepts of integration and

differentiation. As well as an explanation of the processes and showing

equations for each the GUI demonstrates it by allowing the user to visualize

the relationship between displacement (D), velocity (V) and acceleration

(A) shown as sinusoids. Sliders allow the user to adjust the frequency

and amplitude. The start pushbutton begins an animation of the blocks

D, V and A to further show the phase and amplitude relationships. The

waveform displayed in the GUI can be plotted as a separate figure for closer

inspection . 120

4.15 The Level 2 2 GUI introduces the user to the fast Fourier transform. It

offers a simple explanation of the process, show a randomly generated wave-

form, conducts the fft on that waveform and graphs it constituents in the

frequency spectrum, each peak representing a sinusoid in frequency and

amplitude. The change waveform pushbutton randomly generates another

waveform with the same FMax and LOR settings 121

4.16 The Level 2 3 GUI introduces the user to the frequency band filtering and

enveloping in conjunction to display the effect of demodulation. It also has

the function of introducing averaging to reduce the amount of noise in the

averaged spectrum and better separate the frequencies of interest from the

noise, helping find the needle in the haystack. 122

LIST OF FIGURES xx

4.17 The Level 2 4 GUI combines the filtering function of Level 2 3 and the

non-synchronous bearing faults introduced in Level 1 8 with a two degree

of freedom system working in the background and provides an example of

the application of demodulation to a realistic vibration signal from a sim-

ulated bearing defect. This image shows a filtered waveform with envelope

in orange and the spectrum from the fft of the envelope. The spectrum

shows the defect rate harmonics with shaft speed sidebands. Sound for the

acceleration waveforms can be played. 123

4.18 This figure shows a close up of the enveloped waveform in the GUI of

Level 2 4. It is a 5000-10000Hz filtered signal (in blue) of a simulated inner

race defect and shows the Hilbert transform as an envelope (in orange) on

the waveform. 124

4.19 This figure shows the GUI of Level 2 5. A waveform is randomly generated

and different windows are applied to the waveform and resulting frequency

spectrum is displayed. Changes in the waveform are observed dependent

on the window shape and changes to accuracy in the representation of

frequencies and amplitudes can be observed in the frequency spectrum. . 125

4.20 This figure shows the GUI of Level 2 6. This GUI works on a single degree

of freedom system where the user can change the machine rotational speed,

its damping factor, system mass, stiffness and the unbalance mass. The

changes in natural frequency, frequency ration, critical damping value and

damping ratio are output to the GUI screen. The displacement and velocity

waveform responses are plotted relative to the phase of the unbalance mass .126

B.1 This image shows a conveyor bend pulley outer race defect with the defect

impact rate of 15Hz. The spectrum and waveform are in displacement units

of microns. (Bureau Veritas 2008-2015) 138

B.2 This image shows the conveyor bend pulley outer race defect with the defect

impact rate of 15Hz with spectrum and waveform in acceleration units of

G′s. (Bureau Veritas 2008-2015) . 139

LIST OF FIGURES xxi

B.3 This image shows a pump motor outer race defect with the defect impact

rate of 154Hz. The spectrum shows approximately 0-4000Hz in velocity

units of mm/s. (Bureau Veritas 2008-2015) 139

B.4 This figure shows vibration from a pump 25Hz pump motor with an inner

race defect at 97Hz with the spectrum in acceleration g’s and the waveform

in velocity mm/s. Note the sidebands in the spectrum and the impact

modulation in the waveform. (Bureau Veritas 2008-2015) 140

B.5 This image shows a 50Hz pump with a bearing roller defect at a rate of

211Hz. The spectrum and waveform show 0-2000Hz in velocity units of

mm/s. (Bureau Veritas 2008-2015) . 140

B.6 This image shows a 25Hz pump motor with an unbalance vibration. The

spectrum and waveform are in velocity units of mm/s. (Bureau Veritas

2008-2015) . 141

B.7 This image shows looseness in a product screen jack shaft with multiple har-

monics in the spectrum and impact in the waveform at run speed 15.4Hz.

Units are velocity mm/s. (Bureau Veritas 2008-2015) 141

B.8 This image shows an example of motor-pump misalignment in a 50Hz drive

with the typical waveform pattern and elevated second harmonic in the

frequency spectrum.(Bureau Veritas 2008-2015) 142

B.9 This image shows a 25Hz pump with vane pass vibration at 7 orders of run

speed highlighted in the spectrum and waveform. The sunits are velocity

mm/s. (Bureau Veritas 2008-2015) . 142

B.10 This image shows a 25Hz pump displaying cavitation as random vibra-

tion across a broad frequency rage. The spectrum and waveform are in

acceleration units of g’s. (Bureau Veritas 2008-2015) 143

B.11 This image shows a pump motor with friction as a concentrated area of

elevated random vibration in the spectrum. The spectrum and waveform

are in acceleration units of g’s. (Bureau Veritas 2008-2015) 143

List of Tables

2.1 This table shows attributes of common windows (LDS Group 2003) 33

2.2 This table matches the measurable condition effects that are applicable to

the tabled machines . 58

2.3 This table grades the severity of vibration on non rotating parts for classes

of machines based on broadband velocity RMS vibration levels (ISO10816-1. 59

2.4 This table matches dynamic effects monitoring techniques that are suitable

for monitoring the condition of the tabled machines based on defects and

failure modes they are likely to develop. 60

2.5 This table matches the various dynamic effects monitoring techniques and

their suitability for detecting the listed defects and failure modes that are

common to rotating machines. 61

2.6 This table matches lubrication contamination monitoring techniques to ro-

tating machines based on faults and failure modes to be detected and the

lubrication systems these machines typically utilize. 62

2.7 This table matches the chemical monitoring techniques used with lubri-

cation of listed rotating machines based on the lubrication systems these

machines typically utilize and faults and failure modes to be detected. . . 63

LIST OF TABLES xxiii

3.1 This table shows the machine components, shaft speeds and bearing de-

tails used in bearing defect generation withing the training program. The

gearbox 2nd shaft is based on an input speed of 25Hz and a geared speed

reduction of 26T/33T. Bearing details FTF, BSF, ORDF and IRDF are in

orders as a factor of shaft speed. 85

3.2 This table shows frequency readings (Hz), the system damping ration, the

displacement amplitude readings and calculated amplitude response values

for Level 2 6 using equation 2.21 on page 30. 89

4.1 This table shows the Matlab file names for each of the GUI’s and the

corresponding screen name displayed in the GUI. The file name is also

visible in a bar at the top of the GUI when in use. 95

F.1 This table list project events, activities, durations and start finish times. . 337

Chapter 1

Introduction

1.1 Introduction 2

1.1 Introduction

Machines use rotating components to transfer energy and are found in all industrial en-

deavors. From use in paper mills, power plants, diesel engines in trucks or ships, chemical

processing plant to small electric motors and pumps used in space. Moubray (1997) out-

lines how prior to the the Second World War there was a tendency to fix a machine when

it failed. Those machines were typically heavy, over engineered machines. The effort in

war time to increase factory output, and the increased demand for raw materials, lead

to to machinery being leaned down and improvements in maintenance practice. Meeting

the need to produce more machinery from a set amount of steel meant reducing com-

ponent sizes especially in the urgency of war. This lead to increased component speeds,

improved performance and output from machines which in turn required more mainte-

nance. To maintain higher equipment output levels the maintenance strategy became

one of preventing failure with work such as rebuilds to stop failures of harder working

smaller components. Improved inspection regimes and measurement of product proper-

ties from assembly lines indicated wear of production line machinery and the need for

repair could then be planned and prepared for. Advances in technologies lead to the

development of more sophisticated condition monitoring (CM) techniques either designed

for or best suited to specific machine types, machine components or failure modes. There

are condition monitoring techniques that can be used while the machine is operating

or being productive, techniques that require the machine to be running but out of pro-

duction mode and inspection techniques for which machinery must be out of service or

dismantled. There are so many techniques that choosing the best and cost efficient can

be challenging. The goal of condition monitoring is to detect defective components and

allow timely repair before failure and secondary damage occurs.

1.2 Project Aim and Methodology

This project covers condition monitoring techniques applicable to rotating machinery

and in particular the technique of vibration analysis with the aim of developing a virtual

software package for awareness and training purposes. Methodology for this project sets

out a process to conduct the project in an objective manner. A primary task is the research

of technologies used by the various condition monitoring techniques. From this research,

1.3 Project Rationale 3

established standards and practices a grading of techniques as suitable to detect failure

modes at different stages of fault development is desired. This process highlights what

are common industry expectations of a vibration analyst and is supported by current

standards regarding the competencies expected of trained technicians. With a reliable

base of information the aim of the project is the development a virtual training package

for vibration analysis and awareness. The project defines the requirement outcomes of a

training program and incorporates the researched dynamic properties into the program

for introduction to the user from the concept of simple harmonic motion to balancing

techniques. The virtual package can be easily operated with the use of graphical user

interfaces (GUI) allowing adjustment to machine physical properties and a display of the

effect these changes have on a machines.

1.3 Project Rationale

Vibration analysis (VA) is a tool capable of detecting changes in a machines condition

well before a fault develops to the stage of risk of failure being high. It is a specialized

role and many sites are not large enough to employ permanent staff to fulfill this role.

As a result most staff of companies owning machinery have had limited exposure to VA.

Many companies use specialized external labor to conduct this work and often do not have

in house personnel with a solid understanding of the service they buy. This can lead to

misunderstandings surrounding the technique, the results of testing and limitations of the

technique. In some cases these misunderstandings result in machine failure. Technicians

new to the field may also find they receive only basic training before being sent into the

field with a data collector/analyzer to diagnose complex and expensive machinery faults.

This can cause a great deal of stress for analyst and plant owner and is a recipe for poor

outcomes. The science of the technique is well documented and there are formal training

options available for an ISO level accreditation.

Chapter 2

Literature Review

2.1 Failure Modes and Defects 5

2.1 Failure Modes and Defects

Every machine is subject to a number of ways in which it may fail. This can range

from wear and tear from heavy duty or deterioration with age. Lubrication failures can

include the wrong lubricant, the wrong amount or type of lubrication, excess oil shear,

oxidation, additive deterioration and contamination by water, dirt or chemical. Failure

may be caused by operator error or equipment misuse, errors from maintenance tasks

and fundamental problems with design. These are known as failure modes. Unless a

machine has a component with an inherent weakness that is proven to fail at a given

point then there is a good chance it can be left in service with minimal maintenance. In

fact maintenance often has the effect of introducing human errors of some degree which can

be detrimental to machine life. Moubray (1997 p. 12-13) outlines how there are broadly

six patterns regarding the ”conditional probability of failure against operating age for a

variety of electrical and mechanical items, shown in figure 2.1 on page 6. Percentages

for the six probability of failure patterns are A 4%, B 2%, C 5%, D 7%, E 14%, F 68%.

This study also showed that the more complex the machine is the higher the percentage of

patterns E and F are. This is some proof that doing maintenance is a risk to the machines

reliability and that there is little or no relationship between how long a machine has been

in service and how likely it is to fail. It also shows that once a machine is past the infant

mortality phase then failure rate is likely to be relatively constant.

Moubray (1997) classifies failures into three groups

� When capability falls below desired performance.

� When desired performance is greater than initial capability.

� When the machine capability does not meet desired performance from the new.

Once a machine is in service and a fault has been detected three ways of managing the

situation are to slow the rate of deterioration by reducing the load on machine, monitor it

to detect the onset of failure then repair or remove it from service once the risk of it failing

is too high or let it run to failure. Machine failure can lead to product contamination,

upset clients or financial penalties for not meeting contract obligations, cause irreparable

damage to expensive infrastructure, cessation of operations, kill and risk the safety of

personnel, cause environmental and public health disasters such as large oil spills and

2.1 Failure Modes and Defects 6

Figure 2.1: Failure patterns and percentages for probability of failure. Pattern A 4%, B 2%,

C 5%, D 7%, E 14%, F 68%. (Moubray 1997 p. 12)

nuclear contamination.

Condition based maintenance makes use of the P-F curve to illustrate machine deterio-

ration and the need to capture machine condition in the context of time (figure 2.2 on

page 7). The point P is when a potential failure is detected. The point F on the curve

is a level of failure. Failure can be determined as completely destructive or the machine

may still work but not meet predetermined standard for further operation. The trick is

to have a condition monitoring inspection program in place to detect a fault at the point

P when the failure is developing with enough time to plan and prepare for the required

maintenance, safely before the point F of functional failure is reached. Condition moni-

toring needs to be conducted at a time interval between inspections no shorter than the

P-F period, ideally half of the P-F time.

2.2 Condition Monitoring of Rotating Machinery 7

Figure 2.2: The P-F Curve (Moubray 1997 p. 144)

2.2 Condition Monitoring of Rotating Machinery

Understanding the failure modes of the machine to be monitored is essential to applying to

best technique for detecting likely failure modes. Equipment to detect failures. Moubray

(1997) lists approximately 100 condition monitoring techniques and classifies them broadly

as

� Particle effects

� Chemical effects

� Temperature effects

� Physical effects

� Electrical effects

� Vibration effects

2.3 Particle Condition Monitoring

For rotating machinery this is typically the monitoring of lubrication for contamination

by detecting foreign particles that inhibit or degrade the function of the lubrication and

cause damage to machine components.

2.3 Particle Condition Monitoring 8

2.3.1 Ferrography

This is a technique that entails running a sample of fluid/oil over an inclined glass slide.

This slide is prepared so that the particles will adhere to the slide as they pass over it.

The particles are distributed along the slide from larger at the start to smaller at the lower

end. There is also a varying magnetic field along the length of the slide that will cause the

magnetic particles to align themselves with the field identifying them as ferrous particles.

Used to analyze the particle count, ferrous content and non ferrous contamination debris.

Methods of varying degrees of complexity and cost can be employed from microscopic

examination with reflected and or transmitted light with red, green or polarized filters to

aid visualization. An electron microscope can also be used to examine the wear particles

for closer analysis on determination of which machine component they came from and

the method in which they were dislodge from their origin.

2.3.2 Analytical Ferrography

Analytic Ferrography uses a machine to prepare the ferrogram and scans it to conduct

an analysis. The machine automatically reports findings on number, size and type of

particles, and wear mechanisms based on shape of particles

2.3.3 Direct Reading (DR) Ferrography

A direct reading ferrogram subjects a sample to a magnetic field to separate ferrous

material. Light is projected through the area where the ferrous material is deposited and

based on the strength of the light passing through the deposit in two areas, two trend-able

readings are given based on particle sizes of greater than and less than 5 microns.

2.3.4 Mesh Obscuration (MO) Particle Counter

This test uses an instrument to measure the pressure differential across three mesh sizes,

for example 5,15 and 25 microns. Based on the pressure difference across each mesh

the quantity of particles larger than each screen size is determined. It is not able to

distinguish whether particles are wear or contamination. This can be translated to an

2.3 Particle Condition Monitoring 9

ISO4406 cleanliness level depending on mesh sizes used.

2.3.5 Pore Blockage (PB) Particle Count (Flow Decay)

A fluid sample is pushed under pressure through fine precision screens, for example, 5,

10 and 15 microns. Over time as the particles block the screens the flow is reduced. The

produces a flow vs time decay curve which a mathematical program converts to a particle

size distribution. This reading can be converted to an ISO4406 cleanliness level

2.3.6 Light Extinction (LE) Particle Counter

An incandescent light is shone through a fluid as it passes through the particle counter at

a specific volumetric flow rate. A photo-voltaic diode detects the quantity of light passing

through the sample and as the particles cause interruption to the light the instrument

measures the amount of light reflected and how much passes through. The output voltage

of the diode is used to determine the quantity and size of the particles. This can be

converted to an ISO4406 cleanliness level.

2.3.7 Light Scattering particle Counter

Uses a laser light, an object cell for the fluid to pass through and a photo-voltaic diode.

Fluid passes through the cell at a specific volumetric flow rate. The laser light hitting the

diode changes as particles pass through the cell and the reading of the diode output is

used to determine particle size and quantity. This can be converted to an ISO cleanliness

level.

2.3.8 Real Time Ferromagnetic Sensor

The sensor is an electromagnet and it attracts the magnetic particles as they pass and

holds them. The frequency of the current is effected relative to the mass of the particles.

The test is run over a set time to give readings that can be trended over time. This only

tells the mass of ferrous material.

2.3 Particle Condition Monitoring 10

2.3.9 All Metal Debris Sensor

(Miller, Kitaljevich 2006) Three wound coils are positioned on a section of pipe which

the oil flows through. The two outer coils are powered with high frequency current in

opposite directions. The center coil is the sensor coil. As a particle passes the first and

third coils it disturbs their magnetic fields which in turn generate an output on the center

sense coil. The mass of a ferrous particle is proportional to the output signal and the

surface area of a non ferrous conductive particle is proportional to the output signal. A

ferrous conductive particle produce a signal with opposite phase to that of a non ferrous

conductive particle. Needs to be in a return line before filtration/settling.

2.3.10 Graded Filtration

A sample of diluted oil is passed through a series of filtration discs. Discs are examined

visually for the number and size of particles. The distribution of particles is graphed and

the profile of graphs is what determines whether wear is normal or not.

2.3.11 Magnetic Chip Detection

This is the use of a magnetic plug that is exposed to the fluid. The magnetic particles

are held on the plug by the magnet. The magnet plug is removed periodically for visual

or microscopic inspection. The plug must not be down stream of filtration units.

2.3.12 Blot Testing

Drops of oil are placed on blotting paper. The larger particles are left in the center as the

oil is drawn outward by the paper. The finer particles are carried outward by the oil as

it spreads, the finer the particle the further it is from the center. A clearly visible ring is

present around the blotted area if there is sludge in the sample. It can take up to 24 hours

for a sample to finish but hours or less is often sufficient. The oil can be heated briefly

to 240◦C (Troyer 1999) and if the oil is near failing from thermal stress or oxidization it

will show on the blot test.

2.4 Monitoring Water in Oil 11

2.3.13 Patch Test

A volume of test fluid is drawn by vacuum through 0.8-5 micron patch or disc. The

degree of discoloration is used to determine the level of contamination by comparing it to

a chart, from which an ISO cleanliness rating can be given. The patch can be examined

under a microscope to determine type and size of particles. Available as a portable kit.

2.4 Monitoring Water in Oil

Moubray (1997) notes that ”water in oil can reduce bearing life by up to 100 times”

and that ”one drop of water in 5 liters of oil at 85◦C totally destroys zinc anti-wear

additives”. Water in oil also increases oxidation, reacts with additives to form acids,

salts, slime, sludge and promotes microbe growth. It also affects oil viscosity, corrodes

components, increases wear, blocks valves and enables more air to be suspended in oil

reducing its lubricating ability. Techniques for detecting water in oil include:

2.4.1 Calcium Hydride Water Test

Water reacts with calcium hydride and releases hydrogen gas. Prescribed quantities of

sample oil and calcium hydride are place into a container that has a partition to separate

the contents before it is closed and sealed. The container is then shaken to mix its

contents and begin the reaction. The quantity of water in a sample can be determined

by the quantity of gas released, by measuring pressure in the container and reading off a

chart the pressure to water quantity equivalent.

2.4.2 Karl Fischer Titration Test

Can be either volumetric or coulometric titration to determine the quantity of water in

oil.

� The Coulometric method relies on the oxidization of sulfur dioxide by iodine a

reaction that uses the water in the oil. The current the reaction creates across an

anode and cathode in the solution is measured. A sensing current is run through

2.4 Monitoring Water in Oil 12

the solution by another anode-cathode in the solution and the voltage drop across

the sensing circuit signals the end of the reaction. The charge required to complete

the reaction is a measure of quantity of water in the sample tested. Can detect

water as low as 1ppm. 1mg water equivalent to 10.72C charge.

� The volumetric method requires measured addition of iodine and reaction ends

when the water in the sample is used. The end of the reaction is sensed by a drop

in voltage across an anode/cathode in the solution at which point the addition of

reactant is stopped. The amount of reactant used determines the quantity of water

present in the sample. Volumetric titration is not suitable for less than 100ppm.

Used for lubricating,hydraulic and transformer oils.

2.4.3 Crackle Test (Human Sensed)

Used for lubricating,hydraulic and transformer oils. Several drops of oil are place onto

a hot plate at 120-160◦C. The water in the sample vaporises and makes an audible

crackling sound. Bubbling of the water and spitting may also be visible. Water content

below 300ppm not easily heard. (Moubray 1997)

2.4.4 Crackle Test (Audio detector)

Several drops of oil are place onto a hot plate at at 120-160◦C. The moisture in the oil

will vaporise and a microphone detects the noise. A computerized collector converts the

signal threshold crossings into a ppm reading. Water content as low as 25ppm detectable.

Used for lubricating,hydraulic and transformer oils. (Moubray 1997)

2.4.5 Moisture Monitor (Vapor Induced Scintillation)

Uses a hand held instrument.The unit has a probe with a small heated element that is

submersed in a sample. A microphone detects the water vaporising and a computerized

collector converts signal threshold crossings into a ppm reading. Water content as low as

25ppm detectable. Used for lubricating,hydraulic and transformer oils. (Moubray 1997)

2.5 Chemical Condition Monitoring 13

2.4.6 Clear and Bright Test

A visual inspection to assess whether the oil is become hazy. Low level of suspended water

in the oil may be difficult to detect visually. Generally a high concentration of water is

present once noticeable as the water in oil may need to be at the saturation point to be

distinguishable. Severe levels of water present when emulsified milky white.

2.5 Chemical Condition Monitoring

Chemical monitoring techniques used on oils and fuels of rotating machinery and can be

used to detect indicators of machine wear. Chemical monitoring is also used to detect

chemicals associated with degradation of a fluid and its additives as well as contamination.

2.5.1 Atomic Emission (AE) Spectroscopy

The three methods following are variation on the same theme. The objective of them

is to elevate energy state of the particles in the sample and cause them to emit light

energy. This light is diffracted into the different characteristic wavelengths according to

each element. The intensity of each elements emission is proportional to the elements

concentration in the sample. A detector (such as a vacuum photomultiplier, photo diode

or silicon photomultiplier measures each element line intensity and a computer analyses

and outputs results. They are accurate and fast. Instruments are available to measure

individual element light lines by means of a movable grating and a single photo detector

requiring a burn of sample for each element to be analyzed thus a longer time to sample

a range of elements. May be unable to atomize particles over 8 microns.

� Electric Arc or a Flame AE - An electric arc or a flame is used to vaporise a sample

portion. Provides within several parts per million (ppm) accuracy.

� Rotating Disc Electrode AE - A rotating graphite disc is immersed in a sample and

picks it up as it rotates. The disc and sample are subject to a high temperature

electric arc that completely atomizes the sample on the disc and in this process the

elements in the sample emit light. Provides parts per million accuracy.

2.5 Chemical Condition Monitoring 14

� Inductively Coupled Plasma AE - Argon gas is heated to between 8000K to 10000K

by a strong radio frequency magnetic field producing plasma. The oil sample is

diluted with a low viscosity solvent so it can be nebulized and carried by the argon

gas into the plasma stream. The high temperature excites the particles in the sample

which radiate their characteristic emissions. Very accurate and can provide parts

per billion accuracy.

2.5.2 Atomic Absorption (AA) Spectroscopy

AA works on the principle that a material atom absorbs light of a specific wavelength.

The sample is diluted and atomized by heat. Atomization can be by nebulizing the sample

into a hot flame, for example an acetylene mixture or as it passes through an electrically

heated graphite tube. The flame or tube outlet is irradiated by a specialized lamp with

the characteristic wavelength of the metal tested for. The higher the concentration of

that metal in the sample the higher the absorption of light. The absorption is measured

and computed output given.

2.5.3 Thin Layer Activation

This involves irradiating the surfaces to be monitored with a beam of radioactively charged

particles. This makes a thin layer of material radioactive. The radioactivity of the

component can be used as a measurement as radioactive strength will decrease with wear.

The radioactivity of wear particles can also be used as a measure of wear. It is used for

monitoring wear on turbine blades, engine cylinders, shafts, bearings, electrical contacts

and cooling systems. Wear of 1 micron can be detected but reactivation is required every

four years. Can be used to monitor wear on inaccessible components while a machine is

in service.

2.5.4 X-Ray Fluorescence Spectroscopy

High energy X-Ray is used to bombard the sample to raise the energy level of the contam-

inants. The contaminants in the sample emit a secondary X-Ray which is characteristic

of the elements present, known as their characteristic fluorescence. An analyzer is used

2.6 Lubrication Condition Monitoring 15

to convert the characteristic emissions and their intensity to a result. Can detect any

particle size, large or small. Good accuracy, precision and repeatability. Able to detect

more elements than AA or AE. Accurate results require a cryogenically cooled detector.

X-Ray health precautions are required. Reveals wear metals and contaminants such as

silicon and corrosion.

2.6 Lubrication Condition Monitoring

The condition of lubrication is an important aspect of machine health. Oils and greases

are complex and tailored to suit load, temperature, speed and environment. Many adverse

lubricant conditions can affect machine life. The wrong type of lubricant, wrong viscosity,

wrong additives, depleted, oxidized or worn out aspects of the oil that stop it operating

as designed. Failure of lubricant will lead to premature failure of machine.

2.6.1 Viscosity Monitoring

Some techniques for monitoring viscosity are listed.

� Viscosity Monitor - Hand held units are available. A probe is placed in the oil for

an instant readout.

� Falling Ball Comparator - Based on Stoke Law a ball with a small is dropped into

a tube filled with sample, allowed to reach terminal velocity then timed over a

distance. Available in a kit with a set range of balls and conversion chart for time

to viscosity.

� Kinematic Viscosity test - Instruments are available to conduct this test. It works

on measuring the time taken for a given quantity of oil at a certain pressure to flow

through a calibrated tube and referencing this time to a charted viscosity.

2.6.2 Fourier Transform Infrared (FT-IR) Spectroscopy

FT-IR uses the light emissions of various elements to determine their concentration in a

sample. Uses a special broadband infra red beam that is passed through a sample. As

2.6 Lubrication Condition Monitoring 16

it passes through it is altered by the characteristic absorbency of the contaminants. The

altered beam enters a detector which is converted into an audible electronic signal and

then converted into individual wavelength and amplitude data by a Fourier transform.

The contaminated sample is compared to data of an unused sample.

2.6.3 Ultra Violet and Visible Absorption Spectroscopy

Works on the principle that elements will absorb light of a certain wavelength. The sample

and contamination elements are exposed to a high energy ultra violet (UV) hydrogen or

deuterium lamp, or a visible light such as a tungsten lamp. The amount of light absorbed

by the energized particles is measured using a wavelength separator such as a prism or

a diffraction grating. Concentrations can be assessed by scanning the whole spectrum or

by focusing on the particular characteristic wavelength of an element. Used to measure

changes in oil condition such as alkalinity, acidity and insolubles from combustion. For

oils of engines, gas turbines, transmissions, gearboxes, compressors and hydraulic systems.

2.6.4 Color Indicator Titration

This is used to measure mineral oil acidity and alkalinity. The higher the reading the

greater the deterioration of the oil. Sample is dissolved into a mixture of toluene, isopropyl

alcohol and water and titrated with an alcoholic base or acid solution to the titration

endpoint indicated by a color change. For oils of engines, gas turbines, transmissions,

gearboxes, compressors and hydraulic systems.

2.6.5 Total Acid Number - Total Base Number (TAN/TBN)

Determines the deterioration of mineral oil by a measurement of acidity or alkalinity.

Sample is dissolved in a Ph neutral solvent. Acidic oil is titrated with potassium hydroxide

and a basic oil titrated with hydrochloric acid. The titration point can determined by

measuring change in the solutions electrical conductivity as the titrate is added. The

titration neutral point can also be determined by measuring light that passes through

the sample during titration, sample temperature during titration and observing changing

color. The TAN/TBN is the amount of titrate required to neutralize a sample of oil

2.7 Additional Condition Monitoring Techniques 17

in mg/g. For oils of engines, gas turbines, transmissions, gearboxes, compressors and

hydraulic systems.

2.6.6 Exhaust Emission Analyzer (Four gas Analysis)

Used to analyze combustion efficiency by measuring oxygen, carbon monoxide, carbon

dioxide and hydrocarbons in exhaust gas. The analyzer is inserted into the exhaust pipe

for a reading. High CO means engine is running rich. High oxygen indicates it is a lean

mixture or and exhaust leak. CO2 is at a maximum at the optimum fuel/air ratio. and

drops when it is too lean or rich. High hydrocarbon indicate a misfire or incomplete

combustion.

2.7 Additional Condition Monitoring Techniques

There are numerous other condition monitoring techniques listed by Moubray (1997)

including the following.

Temperature Effect Monitoring

� Focal Plane Arrays

� Fibre Loop Thermometry

� Temperature Indicating Paints

Physical Effect Monitoring

� Liquid Dye Penetrator

� Electrostatic Fluorescent penetrator

� Magnetic Particle Inspection

� Strippable Magnetic Film

� Eddy Current Testing

2.8 Vibration Monitoring 18

� X-ray Radiography

� X-ray Radiographic Flouroscopy

� Rigid Boroscopes

� Cold Light Rigid Probes

� Deep Probe Endoscope

� Pan-view Fiberscopes

� Electron Fractography

� Strain Gauge (Strain)

Electrical Effects Monitoring

� Line Polarization resistance (Corrator)

� Electrical Resistance (Corrometer)

� Potential Monitoring

� Power Factor Testing

� Electrical Surge Comparison

� Motor Current Signature Analysis

� Power Signature Analysis

� Partial Discharge

� High Potential testing (Hi-Pot)

� Magnetic Flux Analysis

� Battery Impedance Test

2.8 Vibration Monitoring

Vibration analysis as a means of monitoring the condition of rotating machinery has been

around for decades. The modes of failure that can be detected dynamically as vibration

2.8 Vibration Monitoring 19

include damage from effects of bearing fatigue, damage, wear, geometric anomalies, effects

of corrosion, brinelling and false brinelling, lubrication issues between rollers and cage -

rollers and raceways - cage and raceway.

In a rolling element bearing that lasts its full life fatigue will be a normal failure mode.

The cyclical stress on elements initiates sub surface cracking that will often develop at

the interface between the harder surface material and the tougher sub surface structure.

As the size of cracking increases with fatigue a small piece of the hardened surface will

break away and bearing elements will impact on the surface defect.

Brinelling occurs from overloading a stationary bearing and results in plastic deformation,

often seen as roller indentations on inner or outer raceways and flattened areas on rollers.

False brinelling also occurs while the bearing is in a stationary state with mechanisms

of corrosion and fretting from relative movement of components. These mechanisms can

occur when the lubrication separating elements is pushed out over time and exposes

metal to metal contact of components to fretting, exposure of metal to moisture and

oxidization. Corrosion can also occur as a result of moisture reacting with the lubricant

ant the creation of acids.

Damage from corrosion can occur when contaminants enter the system such as water,

process materials of fluids. Water and other fluids can have the effect of reacting with oil

additives to create acids detrimental to bearing life. This can occur with inappropriate

vent breathers, leaking cooling systems, damaged seals, or the machine being subject to

a wetter environment than it was designed for.

Bearing wear is caused mainly by dirt and materials entering the bearing causing varying

degrees of element surface damage. This can occur because of human error with intro-

duction of contaminated lubrication error, defective of inappropriate vent breathers or

oil system filtration, damaged seals or loose machine components compromising sealed

compartments. The effects of wear from a grinding action can include changes in the

dimensions of bearing components (geometric errors) from a grinding action, changed

contact areas within bearing, increased rolling friction, slipping and skidding in bearings,

increased internal clearances in all machine components such as gearing and hydraulic

systems. Larger particle contamination can initiate surface defects causing impacting

and accelerated fatigue damage.

2.8 Vibration Monitoring 20

Inadequate or incorrect lubrication can cause bearing rollers to skid which causes friction.

This causes a temperature increase and if friction is great enough and the heat generated

cannot be dissipated then the temperature can rise until bearing elements have their

metallurgical properties changed, the cage may melt or be deformed, the bearing elements

may weld together and cause complete destructive failure. Temperature increases can

cause inner raceways fitted to shafts to spin if it expands too much from being heated.

Skidding can also occur in bearings as a result of poor bearing choice or incorrect use of

equipment. A bearing is designed to work with a minimum load and without this load

and adequate internal friction, to make the bearing elements roll, they have a tendency

to skid. Too heavy a lubrication for a given application can also cause bearing rollers to

skid.

The temperature range a machine is exposed to will affect component clearance due to

thermal expansion. Operating outside a designed temperature range can cause excess or

inadequate load on bearings. It may cause gears to mesh incorrectly or a machine to run

with misalignment, can render lubrication inadequate or inappropriate if a separation film

cannot be sustained or it may cause inadequate load on bearing elements casing rollers

to skid.

2.8.1 Simple Harmonic Motion

This term is used to describe the motion of a mass connected to a spring with ideal

conditions of no friction or losses. In this case the mass continues oscillate back and

forward. The number of oscillations that occur in one second is known as the frequency

(f) and has the unit of Hertz (Hz). Hookes law defines the amount of force F (N) required

to deflect a spring of stiffness k(N/m) by a displacement of x(m)

F = kx (2.1)

Once the force is known Newtons second law 2.2 can be used in conjunction with Hookes

law to determine the acceleration of the object.

F = m a (2.2)

2.8 Vibration Monitoring 21

,

a =
kx

m
(2.3)

Similarly a point on circle rotating at a constant speed, viewed in one plane, moves

backward and forward with the same harmonic motion that a mass on a spring does. The

displacement of a mass moving in simple harmonic motion is sinusoidal an can be defined

as

x = A sin(ωt) (2.4)

where A is the maximum displacement, ω is the angular velocity (rad/s) and t is time

(s).

In both these cases, linear oscillation and rotating motion, at the extremity of displace-

ment the object changes direction and at this instant the displacement is a maximum

amplitude, the velocity is zero and acceleration is a maximum amplitude. The object

continues to accelerate until it passes the central point where displacement is zero, veloc-

ity is at maximum amplitude and acceleration amplitude is zero. Displacement, velocity

and acceleration are vector quantities meaning they have both an amplitude and a direc-

tion.

2.8.2 Time and Frequency Domains

Vibration as acceleration, velocity or displacement is represented in the time domain as

a time waveform. This is graphed as time on the x axis and vibration amplitude on the y

axis. A basic time waveform describing simple harmonic motion is made by a sine wave.

The frequency of a sine wave in Hertz (Hz) is the number of cycles completed in one

second. For a shaft rotating at 1 Hz it completes one rotation/cycle per second. The

basic principal is that an imbalance vibration on this shaft will represent a sine wave in

the time waveform with a frequency of 1 Hz. This time waveform can be graphed in the

frequency domain and is known as a frequency spectrum. The x axis units are frequency

and the y-axis remains as vibration amplitude. For the case of a 1 Hz shaft the frequency

2.8 Vibration Monitoring 22

spectrum will have a line at Hz on the frequency axis of the same amplitude as shown in

the waveform.

2.8.3 Fourier Transform

Using a process called the Discrete Fourier Transform (DFT) it is possible to break a

time domain signal into constituent sinusoids with real/amplitude and imaginary/phase

components.

F (m) =
N−1∑
n=0

f(n)e−2πimn/N , m = 0, 1, 2, ..., N − 1 (2.5)

where n and m are the index of the input and output, N is the size of the sample.

The Fast Fourier Transform (FFT) is a method by which the number of calculations

required to perform the DFT is reduced. Briefly it is done by sorting and dividing the

signal in two as many times as possible, the reason why binary storage files are required

for the most efficient FFT algorithms. The DFT calculations are performed on the smaller

arrays in a structured fashion diagrammatically known as butterflies, reducing the sorting

and merging process to give the compiled result.

As an example similar to that shown by Osgood (2007) the calculations required by the

FFT process when the number of points in a waveform is N = 214 = 16384 (giving

6400LOR), is in the order of O(N logN), that gives 214log2214 ≈ 229× 103. By applying

the DFT process directly to the initial array calculations are in the order of O(N2), that

is 22×14 ≈ 268× 106 calculations, that is near 1200 times greater.

2.8.4 Frequency and Period

One period T is the time it takes to complete one cycle or one revolution. The relationship

between period and frequency is

T = 1/f (2.6)

2.8 Vibration Monitoring 23

2.8.5 The Concept of Phase

Phase is a relative concept where for example the position in time of the peak of one

sine wave is compared to position in time of another sine wave peak. The measurement

of phase is normally given as an angle and describes the difference between the peaks of

both the sine waves. A sine wave can also have its phase shifted by adding or subtracting

the desired phase angle φ

x = A sin(ωt± φ) (2.7)

2.8.6 Frequency Units

In vibration analysis the rate of rotation of a shaft may be represented in a variety of

units

� Hertz(Hz) Cycles per second

� RPM/CPM Revolution/Cycles per minute

� Orders The speed of a shaft can be described as 1order. This is the frequency of

interest as a ratio of shaft speed. If the frequency of interest is 100RPM and the

shaft speed is 100RPM then the frequency of interest can be described as 1order.

Converting between Hz and RPM is given by the relationship

f(Hz) = RPM/60 (2.8)

2.8.7 Amplitudes and Units

Vibration amplitude is represented as units of

� Displacement - Imperial units of inches (in) or thousandths of an inch (mils) or

metric units of millimetres (mm) or microns

2.8 Vibration Monitoring 24

� Velocity - Commonly as Imperial units of inches per second (in/s) or Metric units

of millimetres per second (mm/s)

� Acceleration - Imperial units of inches per second per second (in/s2), Metric units

of metres per second per second (m/s2) and commonly as G’s, 1G being the accel-

eration due to gravity given as 9.81m/s2

Conversion between metric and imperial units is given by the relationship that 1 inch =

25.4mm.

For vibration analysis integration is the mathematical process converting acceleration to

velocity and velocity to displacement. It can be done by a process of calculating the area

under a curve for each time step. The following equation shows how breaking the area

under a curve into n slices of width ∆ t the area of each slice is calculated and summed.

Taking more slices makes the calculation more accurate to the point where the integral

over an interval from a to b is equivalent to taking infinite slices over that interval.

limn→∞

n∑
i=1

f(ti)∆t =

∫ a

b
f(t)dt (2.9)

For a known function such as a sine wave there are rules governing the integration of the

curves function and the integral can be calculated directly and accurately.

Differentiation is the process of going from displacement to velocity and from velocity to

acceleration. Differentiation is a process of calculating and plotting the slope of a curve

(rise/run) at each time step. Again the smaller the steps are the more accurate the result

to the point of making them infinitely small and the results can be calculated directly

using predefined rules on specific functions.

f ′(t) = lim∆t→0
f(t+ ∆t)− f(t)

∆t
(2.10)

The measurements of displacement, velocity and acceleration units can be presented in

the following ways

� RMS This is the square root of the mean of the square of the waveform and is

2.8 Vibration Monitoring 25

representative of the level of constant energy or constant vibration level that is

present. The RMS level for a sine wave is

xRMS = Amax/
√

2 (2.11)

� Peak(P) This measure describes the amplitude of vibration from 0 to the maximum

peak value.

� Peak to Peak(P −P) This is a measure of amplitude from the minimum peak level

in the time waveform to the maximum peak level.

2.8.8 Data Sample Properties

Measuring vibration usually involves measuring and recording a sensor voltage. The

instruments used to record a data sample often requires some input on parameters re-

garding the sample it is to record. These input values affect the output qualities of data

and determine what defects will and will not be captured in the recording.

Some instruments, for example, will record 50000 samples per second. The user in this

case has the choice of selecting the amount of time to sample. Nyquist theorem states

that for a maximum frequency of fmax to be captured in a waveform the frequency of

data sampling must be at least 2× fmax. Theoretically up to a 25000Hz spectrum could

be extracted from this waveform. The fmin is determined by the length of the time

recorded where at least one cycle must be recorded.

Common hand held data collectors use binary storage of fixed file sizes ranging from

210 − 215 bits, which give the number of points in a recorded time waveform. This

conventional file sizing also makes computing the Fast Fourier Transform (FFT) faster

thought improved modern algorithms have reduced the time to process the FFT on data

files of an unconventional size. Hardware introduces a degree of error in the process of

turning an analogue signal into a digital signal. Hardware digitizing the signal guarantees

a quality signal to 78.125% of the Nyquist sample rate and for this reason the higher

frequency portion is not used in the frequency domain. This further removes aliasing

that may occur in the upper frequency range. For these units 2.56 is the factor that

gives 78.125% of the Nyquist frequency. Therefore the sampling rate determines the

2.8 Vibration Monitoring 26

frequency lines of resolution (LOR) that will be in the given the frequency domain. Lines

of resolution are also known as frequency bins of FFT bins. The following shows how

the number of points in a time waveform equates to lines of resolution for a frequency

spectrum.

� 210/2.56 = 1024/2.56 = 400LOR

� 211/2.56 = 2048/2.56 = 800LOR

� 212/2.56 = 4096/2.56 = 1600LOR

� 213/2.56 = 8192/2.56 = 3200LOR

� 214/2.56 = 16384/2.56 = 6400LOR

� 215/2.56 = 32768/2.56 = 12800LOR

With these units one also has to choose a maximum frequency fmax as a collection

parameter. This will also be the fmax in the resultant spectrum. For example if a

fmax = 2000Hz and 6400LOR are chosen, the time duration of the waveform will be

6400/2000Hz = 3.2s and contain 16384 points. The spectrum for this point will have

an fmax = 2000Hz and with 6400LOR will display 2000Hz/6400 = 0.3125Hz between

plotted points.

2.8.9 Aliasing

Aliasing occurs when the sampling rate is not high enough to accurately represent the

changes that occur in the analog signal and what happens is a lower frequency than is

present can be recorded in the data. An example of this is shown in figure 2.3 on page 27

where a 5Hz signal is sampled at 5.26Hz and a resulting low frequency signal is created

that is not present.

2.8.10 Natural Frequency

For the simple harmonic motion of a mass attached to a spring there are two factors that

effect the natural frequency of system, the magnitude of the mass and the stiffness of

2.8 Vibration Monitoring 27

Figure 2.3: This shows aliasing of a 5Hz signal sampled at 5.26Hz and the lower frequency

that appears to be present.

the spring. The natural frequency is the frequency that the mass will oscillate back and

forward at once released and it given by

ωn =

√
k

m
(2.12)

In the general sense this applies to machinery, structures and vibrating systems where

increasing the vibrating mass will reduce the natural frequency and increasing the stiffness

will increase the natural frequency.

2.8.11 Damping

Damping is a system property that removes energy from from a vibrating system in a way

that reduce the maximum amplitude of a freely oscillating system. Viscous damping c is

a linear property where the resulting force is proportional and in the opposite direction

to the velocity of the system mass.

F = cv (2.13)

Where c the system damping coefficient has units of N · s/m and v is the velocity m/s of

the system mass. Structural damping is also a linear property, suitable for a system with

a sinusoidal forcing function, with equivalent damping defined as

2.8 Vibration Monitoring 28

ceq =
2kβ

ω
(2.14)

where β and empirically obtained system constant

The critical damping cc of an oscillating system is defined by

cc = 2mωn = 2
√
km (2.15)

Where cc the system critical damping coefficient, units of N · s/m.

The damping ratio ζ for a system is the ratio of system damping to critical damping

coefficients and is has no units.

ζ = c/cc (2.16)

A system with ζ = 1 is critically damped. A system with ζ <1 is under damped and

will overshoot the equilibrium point on oscillation and an over damped system with ζ >1

is over damped taking longer to reach the equilibrium point than a critically or under

damped system.

Damping also has an effects on the natural frequency. The damped natural frequency ωd

is given by

ωd = ωn

√
1− ζ2 (2.17)

2.8.12 Logarithmic Decay

When an under damped single degree of freedom system is subject to an impact and

left to settle, the rate of decay is defined by Balachandran (2009, p154) as “the logarith-

mic decrement δ is defined as the natural logarithm of the ratio of any two successive

amplitudes of the response that occur at a period Td apart”.

2.8 Vibration Monitoring 29

δ =
1

p
ln

(
x(t)

x(t+ pTd)

)
p = 1, 2, 3, ... (2.18)

Once δ has been determined the following equation can be used to calculate the damping

ratio

ζ =
1√

1 + (2π/δ)2
(2.19)

A bump test commonly mentioned as a test for natural frequency involves recording the

response of a machine component when impacted. Analysis of the waveform and these

equations can be used to determine the damping ratio.

Figure 2.4: The following shows the logarithmic decay of vibration for under damped system

with various degrees of damping.

2.8.13 Resonance

If the natural frequency of the structure a machine mounted on is near the forcing fre-

quency then the magnitude of vibration will be increased by a factor dependent an system

damping ratio ζ and frequency ratio Ω. This magnification of amplitude is a condition

known as resonance.

The frequency ratio Ω is the ratio of the forcing frequency to the natural frequency

Ω =
ω

ωn
(2.20)

2.8 Vibration Monitoring 30

The amplitude response factor is also known as transmissibility. There is also an affect on

the phase of the response dependent on the system properties. The amplitude response

H(Ω) and phase response θ for a system with a rotating unbalance mass is given by the

following

H(Ω)ub =
Ω2√

(1− Ω)2)2 + (2ζΩ)2
(2.21)

Figure 2.5: This shows the amplitude response vs the frequency ratio for a single degree

of freedom system with a rotating unbalance acting directly on the system mass for several

values of damping ratio.

θub = tan−1 2ζΩ

1− Ω2
(2.22)

The amplitude response of a system that has base excitation is defined as

H(Ω)mb =

√
1 + (2ζΩ)2√

(1− Ω2)2 + (2ζΩ)2
(2.23)

θmb = tan−1 2ζΩ3

1 + Ω2(4ζ2 − 1)
(2.24)

These transmissibility equations show that for the case where a forcing frequency coin-

cides with a natural frequency, if damping is not sufficient, magnification of vibration

(resonance) will occur and this will be destructive to a machine and lead to premature

failure.

2.8 Vibration Monitoring 31

Figure 2.6: This shows the phase response vs the frequency ratio for a single degree of freedom

system with a rotating unbalance acting directly on the system mass for several values of

damping ratio.

Figure 2.7: This shows the amplitude response vs the frequency ratio for several values of

damping ratio. This is for a single degree of freedom system where the excitation/input force

is external to the system mass.

2.8 Vibration Monitoring 32

Figure 2.8: This shows the phase response vs the frequency ratio for a single degree of freedom

system with a rotating unbalance acting directly on the system mass for several values of

damping ratio.

2.8.14 Time Windows

The FFT process assumes that the time domain signal begins at zero amplitude, is purely

periodic and end again at zero. This can be the case for a sine wave and it is also the

case for an impulse starting at zero before the pulse and decayed to zero at the other end

of the waveform. Other than such ideal cases without time windows the FFT process will

cause what is called leakage in the frequency domain from the bin where it should be into

adjacent bins. This is known as Gibbs phenomenon. Time windows are easiest applied

prior to the fft process converting from the time domain to the frequency domain though

they can be applied to the frequency domain. Because of the effect windows have on a

waveform amplitude across the time domain the results of the FFT must be increased by

a factor to compensate. For the Hanning window the correction factor is 2. A rectangular

window is essentially having no window at all on a waveform. Time windows also have

an effect on frequency and amplitude in the spectrum and there is often a compromise

between having accuracy with amplitude or frequency definition.

Rectangular Window figure 2.9 on page 33

Hamming Window figure 2.10 on page 34

Hanning Window figure 2.11 on page 34

Blackman-Harris time window, figure 2.12 on page 34

2.8 Vibration Monitoring 33

Table 2.1: This table shows attributes of common windows (LDS Group 2003)

Window Best for these

Signal Types

Frequency

Resolution

Spectral Leak-

age

Amplitude Ac-

curacy

Barlett Random Good Fair Fair

Blackman Random or

Mixed

Poor Best Good

Flat Top Sinusoids Poor Good Best

Hanning Random Good Good Fair

Hamming Random Good Fair Fair

Kaiser-Bessel Random Fair Good Good

None / Rect-

angular

Transient and

Synchronous

Sampling

Best Poor Poor

Tukey Random Good Poor Poor

Welch Random Good Good Fair

Figure 2.9: This shows the rectangular window having no effect on the sinusoid

2.8 Vibration Monitoring 34

Figure 2.10: This shows the effect of the Hamming window on a sine wave

Figure 2.11: This shows the effect of the Hanning window on a sine wave

Figure 2.12: This shows the effect on the Blackman Harris window on a sinusoid

2.8 Vibration Monitoring 35

Figure 2.13: This shows a comparison of the window shapes graphed together

Comparison of window shapes figure 2.13 on page 35

2.8.15 Vibration Measuring Devices and Transducers

There are numerous factors to consider in deciding how vibration condition monitoring

might be implemented with rotating machinery. Criticality of equipment, in service access,

temperatures, safety considerations, may determine the measuring device used. These

factors as well as machine design and expected failure modes will determine the sensor

that will be used.

Transducers sensing vibration convert mechanical energy to an electrical signal for for

digitizing and evaluation. These transducers include proximity or eddy current probes for

measuring displacement, velocimeters for measuring velocity, accelerometers measuring

acceleration, lasers, acoustic emissions transducers and microphones. The output of these

transducers is usually transferred via cable or wireless connection to a hand held recording

device or to a permanently installed system. These devices can display a live readout of the

reading sensed, record trends and or store the data in a predefined format eg. waveforms,

spectra, RMS or position readings from proximity sensors. Permanently installed systems

can be set up to trigger alarms, control processes or shut down machinery based on

predefined or custom configured settings. Shut down of equipment can be based on one

reading alone or based on multiple input conditions such as vibration, speed, temperature

and pressure. There are many vibration measuring devices available from easy to use hand

held units that give a readout of machine condition, hand held units for complex diagnosis

2.8 Vibration Monitoring 36

with waveform and spectral analysis capability to permanently installed systems set up

to constantly monitor machine vibration. The following are some examples of available

measuring devices and transducers.

Hand Held Vibration Meters

This SKF hand held meter gives an overall velocity vibration level readout and it also

takes a higher frequency filtered reading aimed at bearing health. The unit gives a readout

based on ISO 10816-3. It also takes an infra-red temperature reading. It operates at a

velocity range from 0.7 to 65 mm/s RMS. It weighs 125 grams and has a 10hr battery

life.

Figure 2.14: This shows the SKF hand held CMAS 100-SL vibration meter. (SKF 2014)

Portable Vibration Analyzers

The portable GE Commtest vb5, vb6, vb7 and vb8 vibration analyzer units offers from

1-4 channels for simultaneous data collection. The units have a 95db dynamic range.

They offer demodulation for a filtered high frequency reading. They offer up to 6400 or

12800 lines of resolution depending on the unit purchased. FMax for a standard unit is

40 kHz with the option for upgrade to 80kHz. Windowing options offered are Hanning

and rectangular (none). Battery life is quoted as 10hrs. The unit weighs 1.2kg.

2.8 Vibration Monitoring 37

Figure 2.15: This shows the portable GE Commtest vb8 Vibration Analyzer. (GE Commtest

2015)

Emmerson Process Managements CSI 2140 is a portable vibration analyzer offering up

to 4 channel simultaneous data collection. It has a 120db dynamic range. Analogue to

digital converter is 24 bit. They offer demodulation and Peakvue as options for obtaining

filtered high frequency data. The unit give up to 12800 lines of resolution. The True

Zoom option provides an effective 300,000 lines of resolution. FMax is 80kHz maximum.

Windowing options are Hanning or rectangular (none). Battery life is quoted as 10hrs.

The unit weighs 1.79 kg. Hardware and software available for balancing, laser alignment.

Figure 2.16: This shows the portable Emmerson CSI 2140 Machinery Health Analyzer. (Em-

merson 2015)

2.8 Vibration Monitoring 38

Permanently Installed Systems

There is also a variety of permanently installed continuous monitoring systems available

and the Allen Bradley XM-120 and XM-121 modules are just one example of such systems.

They come in a two channel module that can be run independently or fitted to in a

bank feeding data back to either other XM modules, programmable logic controllers, a

distributed control system or a condition monitoring system. The modules will accept

accept any voltage output measurement device for vibration, pressure, temperature or

tachometer. Suitable for order analysis or variable speed monitoring. The units operate

with a 24 bit analogue to digital converter and a dynamic range of 90db. Offers 100, 200,

400 and 800 lines of resolution. Up to 16 alarms can be set per module on any measured

parameter with logic operators of greater than, less than, inside range and outside range.

These units may not give as much resolution as portable analyzers but they are a very

powerful tool able to be set up to monitor equipment around the clock and ensure it

operates within a tolerance that be accurately defined in terms of frequency bands and

levels.

Figure 2.17: This shows an Allen Bradley Rockwell XM-121 module. (Rockwell 2015)

Proximity Sensors

Inductive proximity sensors used for vibration readings also known as eddy current sensors

come as a unit with the sensor and an oscillator/demodulator to drive and read the

sensor. A radio frequency signal is transmitted by cable to the probe and radiates from

the probe tip. This generates eddy currents in the target/shaft. These eddy currents in

the target affect the output of the oscillator demodulator and this is output is compared

2.8 Vibration Monitoring 39

to a reference value. The AC component of the signal is proportional to vibration and

the rectified DC signal is proportional to the air gap. These probes are sensitive to the

resistivity and magnetic permeability of the the target material. The probe and systems

must be suitable type for the target material even down to the type and quantity of

alloys in a steel shaft. They are sensitive to shaft run-out and need a smooth ground

or polished area three times wider than the probe to read off. They are often used

on babbitt/journal bearings and thrust arrangements and can be mounted on brackets

external to the bearings or internally through holes in the bearings themselves. On a shaft

for radial measurements there is often two mounted at 90 degrees at a bearing. They are

also sensitive to residual magnetic fields and shafts need to be degaussed.

Velocity Transducers

Figure 2.18: This shows two types of velocity transducers.(Scheffer 2004, fig. 3.1)

Velocity meter transducers work on the principle of having a magnet move relative to a

wound coil. The moving component, whether magnet or coil is lightly sprung and has a

damper to stop free oscillation. It is manufactured to give an output voltage proportional

to the speed of the movement of the machine it is mounted on. They typically have a

linear response over a frequency range of 10Hz − 1kHz though models are available for

low frequency applications down to 1Hz. Their sensitivity is often given as mV/mm/s.

A general purpose sensor is of a sensitivity between 20 − 30mV/mm/s (Scheffer 2004)

with sensors ranging from 4-50 mV/mm/s. They are sensitive to influence from external

magnetic fields which can affect sensor output signal. A shield can be used to protect the

sense coil from an external magnetic field. Ideally mounted by threaded stud or clamped

in position. Can be held in position. They don not require external power. They have

moving parts and can fatigue and require routine calibration annually to inspect function

over their measurable frequency range. Two different types are shown in shown in figure

2.8 Vibration Monitoring 40

2.18 on page 39.

Accelerometers

Machines with rolling element bearings and gears ”should be monitored with accelerom-

eters” (Scheffer 2004 p.9). This of course can depend on the speed of a shaft. As the

name accelerometer implies they measure acceleration by having a mass attached to a

piezoelectric crystal. The mass and crystal are matched to give a calibrated charge from

the crystal when the mass exerts a force on it that is proportional to the acceleration of

the mass/unit. This is demonstrated by newtons second law, equation 2.2 page 20.

The charge output from the crystal measured in pico Coulombs per g of acceleration

(pC/g) where 1g is 9.8m/s2 acceleration. These sensors are generally a sealed unit and

cannot be calibrated. A charge amplifier converts the charge to a proportional voltage

output for computation as a vibration level. The amplifiers are typically internal and

known as integrated electronic piezoelectric (IEPE) accelerometers. They have no mov-

ing parts. Accelerometer sensitivities are given as mV/g. Common systems require a

constant current source or a regulated voltage source. It uses a two wire system, one for

power/signal and the other a common. The circuitry of internal amplifiers is susceptible

to the effects of heat. Cable lengths beyond 150m may begin to reduce the frequency

response range. Mounting accelerometers is best done by screwing them to the machine.

This gives the best high frequency response of all mounting methods. As the stiffness

in the mounting is reduces so is the mounting resonant frequency, affecting the upper

frequency response of the accelerometer to the vibration present. The sensors can also

be glued to the machine for permanent installation. Portable measurements with magnet

mounted sensors is a common method as the initial cost of permanent installations across

large sites is high. Holding the accelerometer on the machine with the use of a stinger can

also be used, but care must be taken to hold it secure and still to ensure the best high

frequency response and that the low frequency aspect of the signal is stable. Stingers can

be shaped specifically to reach between the air cooling fins on an electric motor in an ef-

fort to access the best transmission path for higher frequency defect vibration. There are

even wooden shaft riders that can be attached to accelerometers to measure the vibration

of the shaft directly. The general purpose accelerometer of 100mV/g sensitivity has a

reliable frequency range of 1−10kHz beyond which the response is outside an acceptably

2.8 Vibration Monitoring 41

linear range. Accelerometers are also available with wireless transmitters.

The Commtest Ranger system combines the an accelerometer and wireless transmitter

for harder to access areas and battery life is advertised as 18 months when used as

recommended.

SKF also has the ‘Micro-Vibe’, a wireless transmitting 20mV/g accelerometer for use with

android devices designed as a portable device with a batter life of 5hrs with two ‘AAA’

batteries. Data allows for up to 12800 LOR with an acceleration FMax of 30kHz. The

software caters for Hanning, rectangular and flat top windows. Data can be uploaded

then to a base PC loaded with software for detailed analysis.

Figure 2.19: This image shows the 20mV/g, ‘AAA’ powered SKF wireless transmitting ac-

celerometer the Micro-Vibe. (SKF 2014)

Laser Transducers

Often uses a neon-helium laser source with a frequency of 4.74 × 1014Hz. Inside the

instrument the laser is split into two beams. One of these beams is a reference beam

and the other is pointed at the object to be measured. The laser pointed at the object

is reflected back to the instrument and is changed in frequency and phase by the objects

vibration, the Doppler shift effect. The instrument compares the reflected laser light

to the reference beam for a vibration readout. Good for high temperature application

where it is too hot for other sensors. Also good for use where the mass vibrating is

small. Can be set up to measure one, two or three dimensional movements and also

to measure torsional vibration. Used on structures, bridges, wind mill gearboxes, gas

turbines, delicates membrane vibrations. Frequency response ranges up to 100kHz.

2.8 Vibration Monitoring 42

Figure 2.20: This shows the layout of a laser vibration meter (Mohanty 2014)

Acoustic Transducers

Common frequency range is from as low as 20kHz up to 2MHz. Measured with a

parabolic microphone , they are designed to detect a very high frequency stress wave

generated when a cracks grow under load and when short time impacts such as defects

are encountered. Because the frequencies measured are so high there is a lot of machine

noise that will not be present as that is predominantly in the lower frequency ranges

below 20kHz. An example of use is setting up the equipment beside a rail line, with

the microphone pointed at the train axles as they pass the instrument detects the noise

bearing defects generate.

Ultrasonic Analysis

Generally covers a sound range from 20kHz to 100kHz. The ultrasound instrument

detects sound frequencies above the human hearing range. The instruments is commonly

placed in contact with the machine close to the bearing. A transducer can also be used

to turn airborne ultrasonic signal into an electrical signal for measurement. The impacts

excite the machines higher natural frequencies and are detected by the instrument. An

overall level can be read or the signal can be demodulated and turned into a spectrum

2.8 Vibration Monitoring 43

for frequency analysis. Has many applications from steam leaks, valve leaks, pressure

vessel/pipe leakage, vacuum leaks. Can monitor corona generated in electrical switch

gear and static discharge events. Basic instruments used underground for inspection of

conveyor rollers where background noise is high and there are many rollers present. Also

used in measuring lower frequencies where an ultrasonic sender is mounted to a machine

and a receiver measures and translates how the signal is distorted by Doppler shift.

2.8.16 Vibration Analysis Techniques

A rotating machine produces varying degrees of overall vibration and that may be spread

over a wide range of frequencies. The art in vibration monitoring is to know where to

find the indications of problems, that is to target the specific type of indications that

will alert one to an impending problem or fault condition that will reduce the life of the

machine. The following techniques have been developed with specific aspects of machine

defects and all are applicable to rotating machinery and a range of defects.

Broad Band Vibration Analysis

A meter records the overall signal from the sensor and gives an RMS reading, the root

mean square. Frequencies monitored can vary depending on the transducers response

range and meter settings.

Octave Band Analysis

The vibration spectrum is divided into octaves or fractional octave bands. An RMS level is

reported for each frequency band. A machines condition can be interpreted by comparison

to preset levels, by trending with historical date or by an experienced technician. This is

an example of constant percentage bandwidth.

Constant Band Width Analysis

The signal from a sensor is subjected to a constant bandwidth filter over the frequency

range being measured, that is the same sample rate is used at the low end of the frequency

2.8 Vibration Monitoring 44

spectrum as is used at the higher end.

Constant Percentage Bandwidth

As the name implies the bandwidth filter is a constant percentage of the frequency range

being targeted.

Real Time Analysis

A signal is recorded on computer and played back through a real time analyzer. The signal

is transformed into the frequency domain. A constant bandwidth spectrum is produce

at a resolution dependent on the sample rate of the recorded time waveform. Varying

resolutions and frequency bands can be selected, listened to or analyzed as waveform or

spectrum. Suited to short duration, transient vibration for analysis though may record

a long waveform limited by memory. Multi channel units recording data simultaneously

can aid in pinpointing spurious sources and in phase readings.

Time waveform Analysis

Used to be done with an oscilloscope. Good representation of transients like gear teeth

impacting, slow beat frequencies, amplitude modulation, imbalance, misalignment and

looseness. Use of a data collector with screen will show these vibrations in real time and

data can be stored for further analysis. Filters can be applied during collection or in

analysis software.

Time Synchronous Averaging

This technique requires a tachometer to tell the analyzer unit when to begin the data sam-

ple. Samples of vibration from each successive rotations of the shaft are added together

and an average waveform is produced, This has the effect of removing non-synchronous

vibration, whether from bearing, transients, random noise, vibration from other shafts or

machines. Can be used to analyze specific gears and condition of each tooth. Can allow

for precise location of defects for inspection on gears. Can be transformed into spectrum

2.8 Vibration Monitoring 45

or circular plots for visual representation.

Frequency Analysis

Typically uses an accelerometer and a hand held vibration collector. The data is collected

with preset parameters and transferred to a computer where a software package is used

to interpret the data. Often the waveform and spectrum are stored in the data collector.

Filters can be applied by hardware before storing data or by post processing with software.

Software packages allow changing units, trending, waterfall plots. A baseline reading is of

a machine in good condition for future reference is beneficial. A change of one standard

deviation over the baseline level for any forcing frequency can indicate a machine problem.

Cross Correlation

This is a comparison of two time waveforms and gives a measure of the degree of repeata-

bility with 0 being no repeatability and 1 being the highest degree of repeatability

Autocorrelation

Similar to cross correlation this is a comparison of a time waveform with itself to determine

what is repetitive in the waveform.

Cepstrum

A Cepstrum is the FFT of a logarithmic spectrum. It is used to separate the harmonics

and sidebands that are present in a spectrum, allowing them to individually be trended.

It lifts up the lower level indications making them easier to distinguish. Can also be used

to filter out an echo or reflected vibration.

Amplitude Demodulation

First the signal goes through a high pass filter to remove low frequency vibrations. The

signal is then demodulated by removing the higher frequency carrier component of the

2.8 Vibration Monitoring 46

wave. A low pass filter is applied to remove other unwanted high frequency noise. A

resultant waveform can be converted to a spectrum. Moubray (1997) mentions it is

difficult to use for detecting slow speed bearing faults because when the signal is subject

to the low pass filter a portion of the short duration stress wave from the impact is

filtered out and decreases likelihood of detection. Signals can be filtered by the instrument

circuitry before being stored or a raw signal can be post processed by software.

Peak Value (PeakVue) Analysis

Separates the stress wave vibration from the signal by use of a high pass filter. The signal

amplitude and high frequency shock pulse width is then enhanced before it is subject to

the low pass filter. This means more of the original stress wave signal remains making it

more sensitive than amplitude demodulation.

Spike Energy

The signal passes through a high pass filter. The remaining signal passes through a peak

to peak detector. A time delay factor is used to envelope the signal decay after the impact

and the peak to peak value is reported in ’gSE’ units (acceleration waveform peak to peak

value as g′s). This can be subject to the FFT process to give the Spike Energy Spectrum

Proximity Analysis

Uses a displacement sensor to record position in time. Can be used to measure displace-

ment and change in displacement vs time. Often used in applications with white metal

bearings in an x − y configuration and on critical thrust arrangements. Ideal for mea-

surement of misalignment, oil whirl, imbalance, bent shafts. System often set up to trip

machines on excess displacements and velocity levels.

Shock Pulse Monitoring

Detects the mechanical shock wave from impacting using a special layered piezoelectric

accelerometer tuned to a mechanical and electrical resonance of 32kHz. The shock pulse

2.8 Vibration Monitoring 47

or pressure wave excites the resonance in the transducer. For a given defect in a machine

the amplitude of the sensor signal is directly proportional the impact velocity. Not af-

fected significantly by background noise as it targets such a high frequency range. Was

developed for monitoring rolling element bearings and is successful at detecting inade-

quate lubrication. Will detect other metal to metal impacting where a stress wave is

generated.

Kurtosis

Looks at shock pulse related vibration in the higher frequency ranges by filtering out lower

frequencies. A frequency band for analysis can be set and recorded by the instrument or

a raw signal can be recorded and processed at a later time. It is a statistical analysis of

the time domain signal. As the impact from a defect increases the amplitude difference

from the waveform mean level increases and statistically there is greater variance and

a higher peak in the distribution curve. A normal distribution has a Kurtosis (K) of 3

and as defect become evident K increases. Is very sensitive to noise from other impact

sources. As a defect becomes larger and the time signal noisier the K value will decrease,

so it can be a good early fault indicator.

2.8.17 Basic Faults

Vibration analysis is used to detect faults in machines and it is the analysts job to recog-

nize when there is a fault present and determine what it is. Faults broadly fall into two

categories;

� Synchronous faults covers unbalance, misalignment, looseness, gear damage, pump

vane pass vibration and any vibration or fault that is a whole integer multiple of

shaft speed, eg 1,2,3,4,5....orders

� Non-Synchronous faults covers the bearing defect vibrations, v-belt pass vibration

and faults whose vibrations occur not at whole number multiples of run speed.

2.8 Vibration Monitoring 48

Unbalance

This vibration is always present at some level. It is recognizable in the time waveform

as a sinusoid at the rotational rate of the shaft, and in the spectrum as a peak at the

frequency of shaft rotation. It can be modeled a mass that rotates around the center of

the shaft causing a periodic centrifugal force given by

f(t) = mrω2sin(ωt) (2.25)

where m is the out of balance mass, r is the radius of unbalance mass, ω is the forcing

frequency in rad/s.

Misalignment

Radially this can be seen more in the velocity or displacement waveforms and gives a M-W

pattern to the wave. In the spectrum this gives a strong peak at twice the frequency of

the shaft speed, ie at 2orders. This is strongest with solid couplings and is due to radial

loading of the shafts each side of the coupling. Because the shafts are loaded 180◦ out of

phase when they are coupled out of alignment, when they rotate the misalignment force

is present, once from each shaft per revolution, twice per revolution. Axial misalignment

shows as a run speed vibration in readings taken axially. It will bee present as a sinusoid

in the waveform and as a peak at run speed frequency or 1order in the spectrum.

Looseness

When as shaft has excess radial or axial clearance it is not constrained to run in position as

designed. The excess clearance allows it to move or slap around and this action normally

occurs at the rotational rate of the shaft. This often causes an impact to some degree and

this impact in the ideal case will be seen as a spikes in the time waveform spaced at the

rotational period. In the frequency spectrum this will be present as multiple harmonics

of the run speed frequency.

2.8 Vibration Monitoring 49

Bearing Damage

A bearings can display the following fault frequencies;

� Outer Race Defect Frequency (ORDF)

ORDF = f
n

2

(
1 +
�b
�p

cosΘ

)
(2.26)

� Inner Race Defect Frequency (IRDF)

IRDF = f
n

2

(
1− �b
�p

cosΘ

)
(2.27)

� Ball Spin Defect Frequency (BSDF)

BSDF = f
�p
2�b

[
1−

(�b
�p

cosΘ

)2
]

(2.28)

� Fundamental Train Defect Frequency (FTDF)

FTDF =
f

2

(
1− �b
�p

cosΘ

)
(2.29)

where f is the shaft speed in Hz, n is the number of balls/rollers in the bearing, �b is

the ball/roller diameter, �p is the ball/roller pitch diameter and Θ is the contact angle.

Bearing damage such as spalling occurs in the time domain as an impact and due to the

geometry of a bearing these defects are non synchronous vibrations, eg an ORDF may

occur at 5.6orders, that means that there will be 5.6 impacts per revolution of the shaft

from rollers hitting the defect in the outer race.

2.8.18 Corrective Actions

It is the nature of a machine to have natural frequencies. A machine should be designed

not to have natural frequencies near inherent forcing frequencies. The problem arises

when natural frequencies coincide with forcing frequencies. For an in service machine

with this condition the mass or the stiffness can be changed to shift the natural frequency

away from the forcing frequency. A different operational speed can be used to move the

forcing frequency away from the natural frequency. The natural frequency of a structure

can also change if it is weakened by damage, cracking or loose components so inspection

2.8 Vibration Monitoring 50

of a structure may be warranted. Modification of a machines operational speed, load,

mass or structure may also cause undesirable resonance.

Correcting a case of unbalance requires a process of balancing. This is often not a straight

forward process and a component can become out of balance for numerous reasons. In

the case of fans dirt will often build up which may happen unevenly, fan blades may crack

or erosion can occur causing unbalance. Some indications of looseness or an inadequately

stiff structure can also give the same indication of unbalance. To confirm the cause of

run speed vibration bump tests should be conducted to eliminate natural frequencies as

a cause of elevated vibration. Testing phase between components is also recommended

to eliminate looseness as a cause of elevated run speed vibration and to confirm that the

phase shift is consistent with that common to unbalance. The simplest form of balancing is

static balancing. This is a process of having a shaft on low friction rollers and allowing the

heavy area or the shaft to rotate to the bottom under the effect of gravity. A trial weight

is added to the shaft and the heavy spot allowed to rotate to the bottom again. Once the

right amount of weight determined it can it can be fixed to the shaft at the correct radius

or the same amount removed from a point at 180◦ on the same radius. Dynamic balancing

is a more complex process where the shaft is rotating and measurements of the vibration

are taken to determine the location of the unbalance mass on the shaft. Unbalance can

further be described as coplanar with the rotating unbalance in one plane or non-coplanar

where unbalance masses along a shaft are not rotating in the same plane. If a shaft is

dynamically balanced it will also be statically balanced, but a statically balanced shaft

will not necessarily be dynamically balanced.

In the case of misalignment shafts need to be aligned. Rigid bolted couplings need to be

unbolted and separated allowing them to move independently as the shafts are rotated

during the alignment process. Measurements of misalignment can be taken with a sturdily

mounted dial indicator. Zero the dial indicator at the top and rotate the two shaft together

recording 4 dial readings at 90◦ intervals checking it come back to the zero reference at

the top. It can also be done by turning the shaft with the dial on it and recording

the 4 dial positions at 90◦ intervals, then turn the shaft without the dial 180◦, zero the

dial then rotate the shaft with the dial on it and recording the 4 dial positions at 90◦

intervals again. From these readings the horizontal and vertical difference in alignment

can be calculated and adjustment made to correct alignment. It is also easy to use todays

user friendly laser alignment equipment. Machine dimensions as required by the hand

2.8 Vibration Monitoring 51

held computer as required such as distance between mounting feet on a motor and the

pump, distance between the mounting feet and the coupling. A laser is connected to one

side of the coupling or shaft and a pick up connected to the other. The shafts can be

turned together or incrementally allowing the pick up the pass the laser, vise versa, so

it can read the change in the position of the laser on the pick up. The computer uses

the machines dimensional information and the angles measured by the laser to calculate

the change required in packing under machine mounting feet to correct the alignment.

The calculated changes in packing are made and the measurements retaken to ensure

correction.

A defective bearing requires replacement before deterioration develops threatening a high

or unjustifiable chance of failure.

2.8.19 Case Studies

Wind Turbine

Wiggelinkhuizen et al. (2008) outline a condition monitoring program used in the CON-

MOW wind turbine project using on-line and off-line monitoring systems. The project

classed five CM categories and assigned each varying scores based on three desirable as-

pects, early fault detection, availability of tools/instruments and the potential of the CM

technique to reduce maintenance costs. Oil analysis and temperature, acoustic emissions

and vibration analysis were used on drive train components. Accelerometers are used in

higher speed shafts and displacement sensors on low speed shafts. Time and frequency

analysis of electrical power was used to monitor the generator. They used fiber optic

and mechanical strain gauge analysis to monitor blade and structure condition. Trending

the resonant responses of key components and visual inspections were also used. On this

project they report that there was high vibration detected in one turbine due to generator

misalignment. Bearing temperatures on the turbines increased with generator output and

the bearing temperature is graphed as a function of power output to give them a more

stable and accurate trend. Another trend they use is acceleration vibration as a function

of wind speed squared and it gives them a straight line trend.

2.8 Vibration Monitoring 52

Gear Faults

Using acoustic emissions to monitor gearbox conditions Loutas et al 2008 RMS found RMS

levels to vary as much as 33% over time between cold and normal operating temperature

due to oil film thickness. AE levels were found to increase with increased gear teeth

pitting. One limitation is the shaft riders used in some AE applications, eg for gears fault

detection.

Figure 2.21: This image shows input pinion gear spalling from fatigue. (Bureau Veritas

2008-2015)

Figure 2.22: This spectrum and waveform show vibration from input pinion damage. The

input shaft speed is approximately 16.2Hz, the pinion has 23 teeth giving the defect frequency

near 374Hz. (Bureau Veritas 2008-2015)

2.8 Vibration Monitoring 53

Diesel Engine

The Cooperative Research Center for Infrastructure and Engineering Asset Management

(CRCIEAM) in a study with a diesel engine, Lin et al. (2011), lists approximately

29 modes of failure for a diesel engine that cause symptoms of misfire, low or insuffi-

cient power, overheating, excessive mechanical noise, excessive black smoke, excessive

white/gray smoke and engine will not start. The modes of failure cover faults with the

fuel injection system, the engine valve and timing system, cylinder and piston units, the

cooling and electrical systems. Though vibration monitoring has been the preferred tech-

nique In the study they show that AE was successful in detecting an induced injector

faults in the engine at a full load condition. Data for the induced fault condition shows

a higher synchronous average AE RMS level compared to the no fault condition. In sep-

arate projects the group has shown AE can be successfully used to fault find a in a slow

speed gearbox and in a marine diesel engine with higher signal to noise ratio compared

to the more commonly used technique of vibration monitoring making it better suited to

applications with high background noise and vibration.

Screw Compressors

The CRCIEAM note that screw compressors are not covered by ISO standard though.

They report that a major cause of failure in screw compressors is failure of lubrication,

and makes mention how changes in thrust clearance can be critical. This makes AE,

vibration and oil monitoring suitable for these machines. Sudden changes of flow and or

pressure at inlet and outlet of these machines can also cause or indicate a failure.

2.8 Vibration Monitoring 54

Conveyor Pulley Bearing Defect

The following is vibration data for a conveyor pulley defect that has developed with strong

impacting that can be felt at the pulley shaft.

Figure 2.23: This image shows the conveyor bend pulley outer race defect with the defect

impact rate of 15Hz. The spectrum and waveform are in velocity units of mm/s. (Bureau

Veritas 2008-2015)

2.8 Vibration Monitoring 55

Gearbox Bearing Defect

The following image of a damaged bearing inner raceway. The vibration data for this

advanced damage, is presented in the time wavefrom with data from a machine in good

condition for comparison. See figure 2.25 on page 56

Figure 2.24: This image shows advanced inner race damage on a dragline hoist gearbox input

shaft. (Bureau Veritas 2008-2015)

2.8 Vibration Monitoring 56

Figure 2.25: This image shows vibration from a healthy gearbox at top compared to the

impacting from the advanced inner race damage vibration at the bottom The waveform ac-

celeration units are G′s. (Bureau Veritas 2008-2015)

2.9 Applications for Condition Monitoring Techniques 57

2.9 Applications for Condition Monitoring Techniques

There are a wide range of rotating machines of varying complexity for which one or a

number of condition monitoring techniques will be suited to detecting defects at their

different stages. These rotating machine will use different lubricants, run at different

temperatures, have different operating tolerances be of differing sizes and operate with a

range of power requirements. Further a single machine may operate with different loads in

different phases of production. These will be powered by differing sources, electric motors,

steam turbines, gas turbines, internal combustion engines, hydraulic motors, or be an an-

cillary drive in a train of machines. All of these machines will have failure modes specific

to their design and the systems they depend upon to maintain the desired function. Some

condition monitoring techniques are more suited to early fault detection while others are

suited to detecting symptoms at end of life. Depending on the machine some techniques

will detect both early stage faults and end of life conditions, for example increased tem-

perature in a high speed shaft may indicate too much or insufficient lubrication which

can lead to premature failure and a temperature rise can also indicate end of life failure.

Eddy current sensor for example will not detect an impact shock wave in a machine as it

is suited to lower scale frequencies. This variety has lead to techniques being categorized

in international standards to machine classes, with reference to size, mounting structure,

load and speed. The table 2.2 on page number 58 is similar to table A1 pg 11 of AS ISO

17359:2014 in that it lists the groups of condition effects that are suitable in predicting

machine condition.

ISO Standard 7919 covers evaluation of measurement of mechanical vibration on rotating

shafts grades steam turbines and generators in excess of 50MW with normal operating

speeds of 1500rpm, 1800rpm, 3000rpm, 3600rpm under normal operating conditions, un-

der run up and coast down phases and covers changes that can occur during operation.

Levels in this standard cover a broad frequency band and are presented as peak to peak

waveform displacement of the shaft and are categorized into four levels:

� A - good,

� B - acceptable

� C - satisfactory for short term operation

� D - being widely accepted as being damaging.

2.9 Applications for Condition Monitoring Techniques 58

Table 2.2: This table matches the measurable condition effects that are applicable to the

tabled machines

Parameter E
le

ct
ri

c
M

ot
or

/G
en

er
at

or

G
as

T
u

rb
in

e

S
te

a
m

T
u

rb
in

e

T
u

rb
in

e
B

la
d

es

In
te

rn
al

C
om

b
u

st
io

n
E

n
gi

n
es

E
n

gi
n

e
C

y
li

n
d

er
s

E
n

gi
n

e
V

al
ve

s

G
ea

rb
ox

P
u

m
p

R
ol

le
r

B
ea

ri
n

g

B
ab

b
it

t
B

ea
ri

n
g

H
y
d

ra
u

li
c

S
y
st

em
s

C
om

p
re

ss
or

S
h

af
ts

F
an

s

B
el

t
D

ri
v
es

S
ol

id
C

o
u

p
li

n
g
s

F
lu

id
C

o
u

p
li

n
g
s

Dynamic Effects � � � � � � � � � � � � � � � � � �

Particle Effects � � � � � � � � � �

Water Contamina-

tion

� � � � � � � � � �

Chemical Effects � � � � � � � � � � �

Lubrication Condi-

tion

� � � � � � � � � �

Temperature � � � � � � � � � � � � � � �

Physical Effects � � � � � � � � � � � � � � � � � �

Electrical Effects �

2.9 Applications for Condition Monitoring Techniques 59

ISO 10816 part 1 covers general guideline to evaluation of measurement of mechanical

vibration by measurement on non rotating part using the same condition assesments A,

B , C and D as used as in ISO7919. In addition machines are categorized in four classes:

� Class 1 Machine components eg up to 15kW electric motors

� Class 2 Medium size machines without special foundations, rigidly mounted ma-

chines up to 300kW on special foundations

� Class 3 Large prime movers and large machines with rigid, heavy and relatively stiff

foundations

� Class 4 Large prime movers and large machines on relatively soft foundations, eg

steam turbines with output greater than 10MW

Table 2.3: This table grades the severity of vibration on non rotating parts for classes of

machines based on broadband velocity RMS vibration levels (ISO10816-1.

R.M.S. Vibration Velocity mm/s Class 1 Class 2 Class 3 Class 4

0.28

A
A

A
A

0.45

0.71

1.12
B

1.8
B

2.8
C B

4.5
C B

7.1

D

C
11.2

D

C
18

D28
D

45

2.9 Applications for Condition Monitoring Techniques 60

Table 2.4: This table matches dynamic effects monitoring techniques that are suitable for

monitoring the condition of the tabled machines based on defects and failure modes they are

likely to develop.

Dynamic Tech-

niques

E
le

ct
ri

c
M

ot
o
r/

G
en

er
a
to

r

G
as

T
u

rb
in

e

S
te

am
T

u
rb

in
e

T
u

rb
in

e
B

la
d

es

In
te

rn
al

C
o
m

b
u

st
io

n
E

n
g
in

es

E
n

g
in

e
C

y
li

n
d

er
s

E
n

g
in

e
V

a
lv

es

G
ea

rb
ox

P
u

m
p

R
o
ll

er
B

ea
ri

n
g

B
ab

b
it

t
B

ea
ri

n
g

H
y
d

ra
u

li
c

S
y
st

em
s

C
om

p
re

ss
or

S
h

af
ts

F
an

s

B
el

t
D

ri
v
es

S
o
li

d
C

o
u

p
li

n
g
s

F
lu

id
C

o
u

p
li

n
g
s

Broadband � � � � � � � � � � � � � �

Octave Band � � � � � � � � � � � � � � �

Constant Band

Width

� � � � � � � � � � � � � � �

Constant Percent-

age Bandwidth

� � � � � � � � � � � � � � �

Real Time Analysis � � � � � � � � � � � � � � �

Time waveform � � � � � � � � � � � � � � �

Time Synchronous

Averaging

� � � � � � � � � � � �

Frequency Analysis � � � � � � � � � � � � � � �

Cross Correlation � � � � � � � � � � � � � � �

Cepstrum � � � � � � � � � �

Amplitude Demod-

ulation

� � � � � � � � � � � � � �

Peak Value � � � � � � � �

Spike Energy � � � � � � �

Proximity Analysis � � � � �

Shock Pulse � �

Kurtosis �

Acoustic �

Ultrasonic � � � � �

2.9 Applications for Condition Monitoring Techniques 61

Table 2.5: This table matches the various dynamic effects monitoring techniques and their

suitability for detecting the listed defects and failure modes that are common to rotating

machines.

Dynamic Tech-

niques

F
at

ig
u

e

W
ea

r

C
ra

ck
s

B
ro

ke
n

G
ea

r
T

ee
th

S
h

o
ck

S
tr

es
s

W
av

es

Im
b

al
an

ce

B
en

t
S

h
af

t

M
is

a
li

g
n

m
en

t

L
o
os

en
es

s

E
cc

en
tr

ic
it

y

T
ra

n
si

en
ts

C
av

it
a
ti

on

In
a
d

eq
u

at
e

L
u

b
ri

ca
ti

o
n

F
lu

id
F

lo
w

O
il

W
h

ir
l

R
es

o
n

a
n

ce

D
a
m

a
g
ed

D
ri

ve
B

el
ts

Broadband � � � � � � � �

Octave Band � � � � � � � �

Constant Band

Width

� � � � � � � � �

Constant Percent-

age Bandwidth

� � � � � � � � � �

Real Time Analysis �

Time waveform � � � � � � � �

Time Synchronous

Averaging

� � �

Frequency Analysis � � � � � � �

Cepstrum � � � �

Amplitude Demod-

ulation

� � � � �

PeakVue � � � � � �

Spike Energy � � � � � � � �

Proximity Analysis � � � � � �

Shock Pulse � � � �

Kurtosis � � �

Acoustic � � �

Ultrasonic � � � �

2.9 Applications for Condition Monitoring Techniques 62

Table 2.6: This table matches lubrication contamination monitoring techniques to rotating

machines based on faults and failure modes to be detected and the lubrication systems these

machines typically utilize.

E
le

ct
ri

c
M

o
to

r

G
as

T
u

rb
in

e

S
te

a
m

T
u

rb
in

e

T
u

rb
in

e
B

la
d

es

In
te

rn
al

C
o
m

b
u

st
io

n
E

n
gi

n
es

G
ea

rb
ox

P
u

m
p

R
o
ll

er
B

ea
ri

n
g

B
ab

b
it

t
B

ea
ri

n
g

H
y
d

ra
u

li
c

S
y
st

em
s

C
om

p
re

ss
or

S
h

af
ts

F
an

s

B
el

t
D

ri
v
es

S
o
li

d
C

o
u

p
li

n
g
s

F
lu

id
C

o
u

p
li

n
g
s

Particle Contamination Monitoring

Ferrography � � � � � � � � � � � � � � �

Analyt Ferrography � � � � � � � � � � � � � � �

DR Ferrography � � � � � � � � � � � � � � �

MO Particle Count � � � � � � � �

PB Particle Count � � � � � � � � � � � � � � �

LE Particle Count � � � � � � � � � � � � � � �

LS Particle Count � � � � � � � �

Real Time Ferro-

magnetic Sensor

� � � � � � � � � � � � � � �

All Metal Debris

Sensor

�

Graded Filtration � � � � � � � � � � � � � � �

Mag Chip Detection � � � � � � � � � � � � � � �

Blot Testing � � � � � � � � � � � � � � �

Patch Test � � � � � � � � � � � � � � �

Water Contamination Monitoring

Calc Hydride Test � � � � � � � �

K Fischer Titration � � � � � � � �

Crackle Test � � � � � � � �

Vapor Induced Scin-

tillation

� � � � � � � �

Clear and brightt � � � � � � � �

2.9 Applications for Condition Monitoring Techniques 63

Table 2.7: This table matches the chemical monitoring techniques used with lubrication of

listed rotating machines based on the lubrication systems these machines typically utilize and

faults and failure modes to be detected.

Chemical/Lubrication

Monitoring

E
le

ct
ri

c
M

o
to

r

G
as

T
u

rb
in

e

S
te

am
T

u
rb

in
e

T
u

rb
in

e
B

la
d

es

In
te

rn
al

C
om

b
u

st
io

n
E

n
gi

n
es

E
n

gi
n

e
C

y
li

n
d

er
s

G
ea

rb
ox

R
ol

le
r

B
ea

ri
n

g

B
ab

b
it

t
B

ea
ri

n
g

H
y
d

ra
u

li
c

S
y
st

em
s

C
om

p
re

ss
o
r

S
h

af
ts

F
lu

id
C

o
u

p
li

n
g
s

Atomic Emission

Spectroscopy

� � � � � � � �

Atomic Absorption

Spectroscopy

� � � � � � � �

X-Ray Fluorescence

Spectroscopy

� � � � � � � �

Fourier Transform IR

Spectroscopy

� � � � � � � �

UV and Visible Ab-

sorption Spectroscopy

� � � � � � � �

Thin Lay Activation � � � � �

Color Indicator Titra-

tion

� � � � � � � �

Total Acid/Base

Number

� � � � � � � �

Exhaust Emission

Analysis

� �

Viscosity Monitoring � � � � � � � �

Chapter 3

Training Program Design

3.1 Design Requirements of Training Unit 65

3.1 Design Requirements of Training Unit

The aim is produce a basic program for training and awareness and it will primarily

be aimed at skills required for a level 1 technician incorporating some aspects required

by level 2 technicians and level 3 technicians. Animation would be beneficial to give an

understanding some basics such as simple harmonic motion and superposition of waveform

components. Capability to select a machine, its speed, a fault, generate a time waveform,

view and manipulate frequency spectra would be desirable in a training unit.

3.1.1 User Requirements

To meet ISO 18436-2 requirements a level 1 technician should have a level of training al-

lowing them to conduct pre-defined, simple single channel vibration condition monitoring

activities in accordance with established procedures and under the direction of at least a

level 2 technician. Personnel classified to category I shall at least:

� Know of the basic principles of vibration and recognize the different units of mea-

surement

� Be able to collect reliable data ensuring appropriate standards of repeatability

� Be able to identify errors in collected data

� Be able to retrieve pre-defined measurement settings for use with VA equipment

and transfer data from an analysis system to a computer-based system

� Be able to compare overall or single-value vibration measurements against pre-

established alert settings

� Be able to identify deviations from the norm for single-value vibration values and

trends

� Report on visual observations of equipment condition

They shall not be responsible for:

� The choice of sensor, test method or technique or for any analysis or diagnosis to

be conducted.

3.1 Design Requirements of Training Unit 66

� The assessment of test results, other than identifying conditions against pre-established

criteria, such as acceptance, alert, alarm, shutdown, etc.

Further, training course topics to be covered for a level 1 technician are outline in Ta-

ble A.1 in the standard are Principles of vibration, Data acquisition, Signal processing,

Condition monitoring, Fault analysis, Corrective action, Equipment knowledge and Ac-

ceptance testing. Under these subject areas Table A.2 in ISO18346-2 outlines further the

topics to be covered in training. For a level 1 technician this includes being introduced

to simple harmonic motion, the relationship between period and frequency, basic under-

standing of phase, manage frequency in different units, amplitudes in r.m.s., peak and

peak to peak values, units and units conversions, an awareness of the time and frequency

domains, an awareness of natural frequencies, resonance, critical speeds and their effect on

vibrations. They should also be aware of available transducers powered and not powered,

mounted resonance of sensors and general effects of various mounting techniques, upload

and download data, be made aware of basic terminology lines of resolution, number of

lines FMax time to sample, recognize basic preset faults such as looseness, unbalance,

misalignment, bearing damage, be aware of basic maintenance action, alignment, lubrica-

tion. Some knowledge of equipment as far as recognizing motors, generators, fans, pumps

and a basic understanding of the faults that can be present. Be able to recognize different

types of rolling mills, compressors and basic gearbox that can be encountered. Level 1

technicians need to be aware of safety implications related to conducting these tasks. It

would beneficial for the user to have good HSC math, trigonometry, simple harmonic

motion and superposition and an understanding of some HSC physics such as Newtons

laws.

It is desirable that the virtual training unit will meet some ISO18436-2 Level 2 training

objectives also. In addition to level 1 knowledge a level 2 trained technicians should

be able to conduct machinery vibration measurements and basic vibration analysis of

single-channel measurements, with or without phase trigger signals, in accordance with

established and recognized procedures. In addition to level 1 knowledge, experience and

skills a level 2 technician shall at least:

� Be able to define the measurement activities to be undertaken by a category I

individual in the course of routine data collection

3.1 Design Requirements of Training Unit 67

� Be aware of and capable of using the basic principles of signal analysis and, as

such, can define acquisition and analysis settings to collect data appropriate to the

machine(s) monitored

� Be able to perform basic (single-channel) impact tests to determine natural frequen-

cies

� Be able to interpret and evaluate test results from routine analysis and acceptance

tests in accordance with specifications and standards

� Be able to diagnose common fault indications and recommend basic corrective ac-

tions commensurate with their area of machinery experience including carrying out

single-plane balancing of rigid rotors with or without phase

� Be able to provide technical guidance to and instruct category I personnel

A level 2 technician is to have a greater understanding all of the topics listed for level

1 training. In addition to these skills the following are some of the recommended topics

for training. An understanding of integration, enveloping, band pass filters, demodula-

tion, crest factor, phase reference, recognize factors of frequency, stiffness, mass, damping

and isolation and their interdependence, perform dual channel functions including phase,

familiarity with transducer types and mounting, run-out compensation, calibration, tribo-

electric effects, have a basic understanding of clipping, truncation and leakage, be aware

of the Hanning window and it effect on amplitude and frequency, anti aliasing filter,

bandwidths, resolutions, filtering and averaging to reduce noise, diagnose fault conditions

of unbalance, looseness, misalignment, bearing damage, gear mesh faults, rotor bar and

stator faults, drive belt faults and resonances, single plane balancing of rigid rotors and

mass estimation, analyze and reporting of routine testing.

Further to these some level 3 concepts may be included in the virtual package if time

permits. This level of the virtual package if developed could introduce the user to concepts

of:

� The use of various hardware

� Non routine machine investigation

� Complex faults and analysis techniques

3.1 Design Requirements of Training Unit 68

� Advanced analysis techniques

� Two plane rigid rotor balancing

� The effect of recommending changes to machinery and its operation

3.1.2 Functional Requirements

The following features are desirable in the virtual package concept:

� There will be a graphical user interface to operate the system.

� The user will choose from levels 1,2 or 3.

� Choosing level 1 to follow a guided step by step approach

� Choosing level 2 to follow a guided step by step approach

� Choosing level 3 allowing use of all GUI options

� Machine components will be selectable, such as a driver, intermediate components

such as a lay shafts or belt drives and driven components such as a gearbox, a pump

or fan.

� Capability to select a machine, its speed and a fault

� Generate a time waveform

� View and manipulate frequency spectra would be desirable in a training unit.

� Animation would be beneficial to give an understanding of some basics such as

simple harmonic motion and superposition of waveform components.

3.1.3 Level 1 Functional Requirements

Principles of Vibration

The user will be given explanations and a waveform and spectral plot, an output from a

basic machine with no defects, to represent the following

3.1 Design Requirements of Training Unit 69

� Basic Simple Harmonic Motion

� The relationship between period and frequency

� Provide a basic understanding of phase

� Represent frequency in different units

� Amplitudes in r.m.s., peak and peak to peak values

� Show units and units conversions

Data acquisition

Use a simulated data collector on a simulated machine, upload and download data, be

made aware of basic terminology, eg. lines of resolution, number of lines, FMax and time

to sample,

Signal processing

Provide an awareness of the time and frequency domains.

Dynamic Properties

Provide an awareness of natural frequencies, resonance, critical speeds and their effect on

vibrations.

Fault analysis

Provide function to help recognize basic preset faults such as looseness, unbalance, mis-

alignment, bearing damage and be aware of basic corrective actions such as alignment

and improving lubrication.

3.1 Design Requirements of Training Unit 70

Equipment Knowledge

Improve knowledge of equipment as far as recognizing motors, generators, fans, pumps and

a basic understanding of the faults that can be present in these. Facilitate recognition of

different types of rolling mills, compressors and basic gearboxes that can be encountered.

Level 1 technicians need to be aware of safety implications related to conducting condition

monitoring tasks.

Acceptance testing

Make user aware of acceptance testing and provide for assessment of test results against

pre-established criteria, such as acceptance, alert, alarm, shutdown etc.

3.1.4 Level 2 Functional Requirements

Functional requirements of the virtual training unit for the level 2 user may include the

following;

Signal Processing

Introduce the user to the concepts of integration, the fft, enveloping, band pass filters,

demodulation, crest factor, phase reference, anti aliasing filter, bandwidths, resolutions

and averaging to reduce noise,

Data Acquisition

Provide the user with the ability to use the basic principles of signal analysis to define

appropriate data acquisition settings.

Dynamic Properties

Provide introduction to system properties of stiffness, mass, damping and isolation and

their interdependence.

3.1 Design Requirements of Training Unit 71

Time Windows

Make the user aware of the Hanning window and it effect on amplitude and frequency,

provide a basic understanding of clipping, truncation and leakage.

Fault Analysis

Teach the user to diagnose fault conditions of unbalance, looseness, misalignment, bearing

damage, gear mesh faults, rotor bar and stator faults, drive belt faults and resonances,

and introduce dual channel functions like relative phase.

Balancing

Provide for learning single plane balancing of rigid rotors. Provide a method to calculate

unbalance mass and its angular position.

3.1.5 Level 3 Functional Requirements

Further to these some level 3 concepts may be included in the virtual package if time

permits. This level of the virtual package if developed could introduce the user to the

following concepts.

Available Hardware

Introduce the ability to virtually fit an accelerometer, velocimeter or proximity probe to

a machine.

Complex Fault Analysis

Introduce a mystery fault and provide a toolbox of techniques that can be used to diagnose

such as filtering, averaging, coherence, cepstrum, phase, synchronous averaging.

3.1 Design Requirements of Training Unit 72

Two Plane Rigid Rotor Balancing

Simulate a rigid shaft supported by two bearings with a randomly positioned mass of a

random size and provide a method to determine the axial and angular position of the

unbalance mass and allow for its correction.

Machine Modification

Allow user to diagnose a fault and be given options to modify lubrication properties,

machine stiffness in two planes, damping properties and component mass. Change the

speed of a machine or the load on it to achieve desirable effects. Multiple degree of

freedom systems.

3.1.6 Virtual Machine Component Specification

Mounting Structure

Desirable feature of three different structures of varying physical properties allowing for

different characteristics and different transfer of vibration between driver, intermediary

and driven. Steel reinforced concrete base. Steel plate structure. Separated structures.

Driving Component

Electric motor selected from list of manufacturer and model. Natural frequencies deter-

mined by basic 3D modeling or by bump test. Imbalance as a feature and bearings as

listed by manufacturer to simulate faults. Desirable electrical related vibrations such as

pole pass frequency and rotor bar looseness.

Coupling selection

Desirable to be able to select from solid couplings to one with a degree of flexibility. This

will allow for modeling a variance in misalignment effect on vibration.

3.1 Design Requirements of Training Unit 73

Gearbox

Desirable component for vibration simulation. Would be a single reduction. Bearings

included for fault generation. Vibration associated with gear eccentricity desirable. Vari-

ance in levels of gear deterioration desirable. Imbalance desirable.

Pump

Include selectable pumps for generation of bearing, imbalance, looseness and vane pass

faults. Displaying cavitation as a fault is a desirable. Natural frequencies of pumps may

be determined by basic 3D modeling or by bump test on real pump.

Belt Drive

Allow for modeling of pulley eccentricity and belt pass frequency.

3.1.7 Generated Faults

Bearings

Cage related defects, Ball Spin Defects, Outer Race Defect, Inner Race Defect, Looseness

Balance

Most rotating shafts will have the feature of an off center rotating unbalance mass. This

may be in the plane of a bearing or coplanar

Looseness

Will generate a run speed impact. It is desirable this would be by an impact in the

waveform. May be by the addition of run speed harmonics.

3.1 Design Requirements of Training Unit 74

Misalignment

Will generate an appropriate signal of twice run speed frequency if misalignment is given

as an option and chosen.

Random Vibration

May be added to represent random vibrations such as cavitation in a pump, a normal

variation in amplitudes, a slight variation in bearing defect frequencies, lubrication prob-

lems.

3.1.8 System Output

Visual

� Time waveform

� Frequency Spectrum

� Cursors for identifying peaks in waveform and spectrum

� Images of machines

� Display of worded explanations

� Basic animation to represent simple harmonic motion is desirable

Audible

The user should be able to listen to generated waveforms.

Signal Output

It is desirable that a real data collector could be connected via USB to record a signal.

3.2 Programming Software Review 75

Tactile

The system could include a method by which the user can feel the generated vibration

signal.

System Help

A hard copy manual be available describing the function, operation and specification of

the system. This will also be available within the software.

3.2 Programming Software Review

There are many software packages available that could be used to create a virtual vibration

training program. These softwares available have embedded functions, an example is

Matlab performing a fast Fourier transform by using the command fft(...) and Excel

using sin(...) to calculate sine of a value. A graphical user interface will be necessary to

run the virtual training program.

Cooperative Research Centres for Infrastructure and Engineering Asset Management

(CIEAM)s developed COLOMOS software, a collaborative work by Queensland Univer-

sity of Technology (QUT), Curtin University of Technology (CUT) and the University

of Western Australia (UWA). COMOLOS was developed for condition monitoring of low

speed machinery that is set up to collect data by on-line remote control, on-line data

transfer, on-line live monitoring, off-line analysis and to record trends. It is made with

the National Instruments made software LabVIEW. The screen shots of this package with

graphical user interface and analysis screens shows some appealing visuals suitable for a

training program. The National Instruments LabVIEW web site shows that signals can

be made with virtual instruments within the software. LabVIEW could be an option but

it is costly with the full version at $1100 and add ons are expensive. A student version

is available for a 45 day free trial. The professional version is approximately $7850. This

makes it a specialized tool and would limit availability of the training package to either

those having the software or training with the version it was created on.

Matlab would give good visual representation of a machine signal and spectra. A machine

3.2 Programming Software Review 76

could be built in Matlab and/or Simulink to give a degree of realistic data with an output

for forced and natural responses. Creating a completely stand alone executable file from

Matlab is not possible with the student versions as the ”deploytool” comes as an add

on for a full licensed version. A 3D animation package is an add on that is available to

students though and could give some scope for visualizing machine dynamics. This option

could give some scope to future development of a the virtual training training unit as a

salable product or adaption into an analysis program.

Microsoft Excel is an option that might be a little more difficult to build a virtual vibration

training unit with but it has the benefit that it could be used by anyone with Microsoft.

There are some great examples of animation available on the internet enabled by use of

Visual Basic Macros in Excel that can be an aid to writing programming. It does not

have some of the embedded functions of Matlab/Simulink and would require some checks

and balances to ensure that code written in lieu of functions is correct. A trial GUI for

the vibration program was partially developed in Excel and extra code had to be written

to perform functions such as for the fft, or creating a square pulse wave. Excel would

allow anyone to use it, and I have seen some good examples for other applications with

graphical user interface and animations that seem very user friendly.

ANSYS16.0 capabilities pdf viewed on-line shows table with topics of vibration as modal,

spectrum, harmonic, random vibration, rotor dynamics, super elements and component

mode synthesis and mis-tuning all covered by ANSYS Multiphysics, Mechanical and

Structural workbenchs. ANSYS will display spectra representing natural modes of a

structure, the spectral response of a structure to an impulse and the spectral response

of a structure to an input table of forcing frequencies/amplitudes. There appeared to be

no waveform representation of vibration in the Mechanical workbench. Waveforms are a

feature in the acoustic workbench and for this application they are airborne vibration.

The preferred option was to use the student Matlab package that has been used through-

out BE Mechanical course and the Matlab Signal Processing Toolbox and its pre written

functions. Matlab student version R2015a has been used to build the program. The

program has been run on Windows 10 with Matlab R2015a 64bit and on Windows Vista

with Matlab R2015a 32bit software.

3.3 Program Design and Development 77

3.3 Program Design and Development

The following covers concepts written into and used by the program when the user oper-

ates GUI controls.

3.3.1 Program Design

The concepts to be covered as GUI’s are defined by the user requirements and have been

combined in a flow chart showing connection of the program elements has been developed

to map a structured approach to software development.

The opening GIU, ‘Level Selection’, allows the user to choose either Level 1, 2 or 3.

The GUI concepts and sequence for the Level 1 section of the program is the following.

Level 1

� Display and explanation of basic simple harmonic motion.

� Display and explain time and frequency domains.

� Display and explain the relationship between frequency and period

� Display and explain the concept of phase.

� Display and explain the concept of frequency in units of cycles per minute and

orders of shaft speed.

� Display and explain measures of amplitude in RMS, peak, peak to peak.

� Display and explain units and conversions.

� Display and explain the concepts of lines of resolution, number of lines, frequency

maximum and time to sample.

� Display and explain natural frequencies, resonance, critical speed and their effects

on vibration.

� Display and explain basic faults.

� Explain possible corrective actions.

3.3 Program Design and Development 78

� Equipment knowledge.

� Give acceptance tests.

� Give a test bench for experimentation with these concepts.

Levels 2 and 3 have been built in a similar fashion from the system requirements and the

following flow chart for the program was created.

Numbering of GUIs for Level 1 as , Level 1 1, Level 1 2 etc, and Level 2 in the same

fashion.

3.3.2 Generating Data

Basic Concepts

For initial introduction to basic concepts some program GUI’s are written to generate a

purely sinusoidal wave or combinations of them that are graphed as sinusoid or superim-

posed for graphing.

Single Degree of Freedom System

The model used most in this program to simulate vibration from a machine is that of a

single degree of freedom system with linear stiffness and viscous damping whose motion is

defined by the following differential equation. For simulation initial stiffness and damping

values were take from the Moazenahmadi (2015) and changed slightly to give a desired

response to try and replicate real machine data, some of which is displayed in Appendix

B as supporting information.

mÿ + cẏ + ky = f(t) (3.1)

where m is the total mass of the system and f(t) is the input force.

Putting this into Cauchy form with x1 = y, x2 = ẏ and this gives two equations

3.3 Program Design and Development 79

Figure 3.1: This figure shows the software design layout in a flow chart.

3.3 Program Design and Development 80

ẋ1 = x2 (3.2)

ẋ2 =
1

m
f(t)− k

m
x1 −

c

m
x2 (3.3)

This can be written as the matrix equation

 ẋ1

ẋ2

 =

 0 1

− k
m − c

m

 x1

x2

+

 0

1
m

 f(t) (3.4)

This is in the form of

ẋ = Ax + Bf(t) (3.5)

where

A =

 0 1

− k
m − c

m

 (3.6)

x =

 x1

x2

 (3.7)

and

B =

 0

1
m

 (3.8)

Two Degree of Freedom System

The model used in the Level 2 4 section of the program is a two degree of freedom system

with linear stiffness and damping. The motion of the system is defined by the following

equations

m1ÿ1 + c1(ẏ1 − ẏ2) + k1(y1 − y2) = f(t) (3.9)

m2ÿ2 + (c1 + c2)ẏ2 − c1ẏ1 + (k1 + k2)y2 − k1y1 = 0 (3.10)

3.3 Program Design and Development 81

This can be written as the matrix form as

[M]

 ÿ1

ÿ2

+ [C]

 ẏ1

ẏ2

+ [K]

 y1

y2

 = [F] (3.11)

Where M is the inertia matrix, C is the damping matrix, K is the stiffness matrix and

F is the input force matrix.

[M] =

 m1 0

0 m2

 (3.12)

[C] =

 c1 −c1

−c1 c1 + c2

 (3.13)

[K] =

 k1 −k1

−k1 k1 + k2

 (3.14)

[K] =

 k1 −k1

−k1 k1 + k2

 (3.15)

[F] =

 f(t)

0

 (3.16)

Balachandran (2009) lays this out in the state space formulation for a multiple degree of

freedom system [
Ẋ
]

= [A] [X] + [B] [F] (3.17)

where

[X] =

 X1

X2

 =

x1

x2

ẋ1

ẋ2

(3.18)

3.3 Program Design and Development 82

and

[
Ẋ
]

=

 Ẋ1

Ẋ2

 =

ẋ1

ẋ2

ẍ1

ẍ2

(3.19)

[A] =

 [0] [I]

− [M]−1 [K] − [M]−1 [C]

 (3.20)

[B] =

 [0]

[M]−1

 (3.21)

[A] is a 2N × 2N state matrix. [B] is a 2N ×N matrix. [I] is an N ×N identity matrix

and [0] is and N ×N zero matrix.

3.3.3 Generating Defects

Moazenahmadi (2015) developed a complex multiple degree of freedom model for simu-

lation of a bearing defect. The simulation with the model is an accurate representation

when compare to the real system modeled. For a rectangular shaped defect the force

calculated in the Moazenahmadi (2015) simulated model differs slightly from a square

impulse that will be used in this project model.

Periodic pulse train with variable period and pulse duration is given by the Fourier series.

Appendix B Table B eq (h) Magrab 2009 and Example 5.17

f(t) = Foα

[
1 + 2

∞∑
i=1

sin(iπα)

(iπα)
cos(2iπt/T)

]
(3.22)

where Fo is the amplitude of the impulse, α = td/T, td is the duration of the pulse, T is

the period of the impulse.

For this model I am using the Matlab signal toolbox function rectpuls. This is suitable

for a defect with a constant amplitude such as looseness, an outer race defect, a cage

3.3 Program Design and Development 83

Figure 3.2: This figure shows the force calculated by Moazenahmadi (2015) in the modeling

of defective bearings. The duration of the near rectangular pulse is approximately 0.008s

defect and does not account for vibration with amplitude modulation.

Bearing defects can display amplitude modulation due to a varying amplitude of impulse

force Fo either at the rotational rate of the shaft or at the rotational rate of the cage. NSK

(2015) covers bearing load distribution and for a roller bearing with radial load only the

loaded zone for rollers is less than 180◦. The angle of the loaded zone is also dependent

on shaft loads and bearing internal clearance. For this program defects with amplitude

modulation the model will consider only radial loads and a fixed load zone angle of 155◦.

The distribution of the load in the load zone will be sinusoidal with a fundamental function

having an amplitude from 0 to 1. This is used to modulate the amplitude of the pulsing

force, the square wave function to simulate vibration from rotating shaft/inner race defect

(or static shaft/outer race defects) and rollers with defects that pass through the bearing

load zone. The pulse force is built in the GUI code prior to calling the ODE23 solver and

is set up with the peak force to vary with shaft speed to give a response representative of

real data. The period of the pulse force is set at 0.05× T where T is the period between

the modeled defect impacts. The centrifugal force is constructed as time progresses in the

iterative process of the solver and it is summed with the impulse force for that moment

in time extracted from the array in the GUI code.

Machine component selection in GUI’s selects information from an array. The array for

each machine component is structured in the same order with the spectrum maximum

frequency, lines of resolution for the spectrum, the shaft speed for that component, and the

bearing defect frequencies for the bearing in the chosen machine component, fundamental

3.3 Program Design and Development 84

Figure 3.3: This figure shows typical internal bearing load distribution for a bearing with

radial load only (NSK 2015)

Figure 3.4: This figure shows the effect a sinusoidal load distribution and 155◦ bearing defect

load zone has on a 8.8Hz square pulse train, as an example of modulating defect amplitudes

from the virtual training program.

3.3 Program Design and Development 85

train ratio, ball spin ratio, outer race defect ratio and inner race defect ratio, ratios as

a function of shaft speed. At the same time an image of the machine component is

displayed. There is a variable mod switch in the code for each of the chosen defects

that has a value of 0 when there is no amplitude modulation and a value of 1 to apply

the modified sinusoid to the defect impulse force. The modulation ratio is taken as the

fundamental train ratio for the bearing ball/roller defect or is set as 1 for the rotating

shaft inner race defect.

Table 3.1: This table shows the machine components, shaft speeds and bearing details used

in bearing defect generation withing the training program. The gearbox 2nd shaft is based

on an input speed of 25Hz and a geared speed reduction of 26T/33T. Bearing details FTF,

BSF, ORDF and IRDF are in orders as a factor of shaft speed.

Machine Components Brng Number Speed (Hz) FTF BSF ORDF IRDF

Tail Pulley 23040 1.67 0.45 4.74 11.2 13.8

Crusher Shaft 24156 7.05 0.441 4.074 9.711 12.289

GBox 2nd Shaft 32312 19.62 0.4 2.45 6.47 9.53

Motor NDE 6318 25 0.39 2.09 3.09 4.91

Motor DE NU318 25 0.4 2.43 5.21 7.79

3.3.4 Equipment Knowledge

Being able to recognize machinery such as motors, generators, fans, pumps, rolling mills,

compressors gearboxes is required. A basic understanding of the faults that can be present

is also required. This is included by presenting images of machinery when choose a

machine component and a defect. This is an aside to the function of the popupmenu’s

that define the input parameter for simulated data collection/generation and resulting

system output.

3.3.5 Acceptance Testing

Acceptance testing is conducted to ensure a machine meets a predetermined acceptable

level of vibration. This is often done on commissioning a new machine, a reconditioned or

repaired machine. Testing at this phase also provides a baseline data sample as a reference

to measure future changes by. Use the table from ISO10816-1 to grades the severity of

vibration on non rotating parts for classes of machines based on broadband velocity RMS

3.4 GUI Design 86

Figure 3.5: An example of a machine displayed in the Level 1 section of the virtual training

software package, a fully enclosed air cooled electric motor driving a centrifugal water pump.

The impeller is overhung off one end of the shaft with supporting bearings at the motor side

of the pump barrel. The pump inlet is in line with the rotational axis of the pump and the

fluid outlet is vertically up (Image (Bureau Veritas 2008-2015))

vibration levels. The table lists four levels of assessment as good, acceptable, satisfactory

for short term operation and damaging and categorizes four machine classes. For example

a 200kW conveyor motor has an RMS velocity level of 2.1mm/s. This makes it a class 2

machine with an acceptable level of vibration. This concept is presented in Level 1 9 and

the user tested on it in Level 1 10.

3.4 GUI Design

The GUI’s were initially written on paper in terms of concepts to be displayed and layout

of controls. Suitable display of text for concepts, equations relating to concepts, graphing

of vibration as waveform and or spectrum and controls for the user to interact with the

program were sketched for each GUI before using the Matlab Graphical User Interface

Design Environment (GUIDE) to place appropriate displays and buttons in a screen set-

ting. As the program developed some concepts were suited to previously made GUIs being

modified others required new design. Initial values for sliders and buttons, maximum and

minimum values, some colors and the degree to which they are used by each GUI have

been set in the GUIDE control inspector to make the program operate as desired. In

operation these control values can be modified by writing code to change them that is

called by the user prompting the GUI to perform a function. The GUI components have

3.4 GUI Design 87

been positioned in GUIDE manually, numerically or using the snap to grid function. Text

displayed with controls is set inside the GUIDE control inspector.

Once GUIDE has generated the figure it opens a template in a Matlab file with headings

for the GUI, headings for creation of objects in the GUI and opens functions for the

operation of the controls. It also checks some computer background colors and sets

control default colors and plotting axes colors in some brief code within the template

Matlab file.

The code to operate the GUI’s and present the material as a training program is written

under function and callback headings to operate slider, pushbutton, radiobuttons and

popupmenus controls and under axes and edit box titles to display system output. This

code performs the calculations required to generate the simulated vibration data and

display it. GUI’s that will plot separate Matlab figures, of the data displayed in the GUI,

extract the plot information from data sent to the Matlab workspace.

Where the GUI uses a single degree of freedom model or the two degree of freedom model

to simulate a vibration response either the SDOF SOLVER.m file or TDOF SOLVER

functions written for this program is called to construct systems governing differential

equations in a form for the iterative solution performed by the Matlab ODE23 solver.

The ODE23 solver is time constrained by a time matrix pre built as tspan in the GUI

code to achieve a binary length file and generate data in the fashion of what a user is

likely to encounter in industry. The binary length data file avoids the need to append

zeros to a file or the need to cut it short to achieve the binary length required by the

Matlab fft function. The representation of the fft calculation has been manipulated to

simulate only digitizing 78.125% of the Nyquist rate to generate a frequency spectrum in

the fashion of what a user is likely to encounter in industry. This makes becoming familiar

with the sampling properties described in ISO18436-2 easier as the user is visualizing lines

of resolution, number of lines, frequency maximum, time to sample and sample sizes and

the relationship between them. Some of the simulating GUI’s where transients occur at

the beginning of the simulation have extended waveforms by a time written into the code

and the time constraint tspan is then extended by a required amount of samples and then

that number of samples removed from the start of the generated response waveform.

Images displayed in GUI’s are .jpg files stored in the Matlab source folder and called when

the GUI is opened or when requested by a popupmenu selection.

3.5 Testing the Program 88

Text explaining the concepts covered in the GUI’s are .txt files stored in the Matlab source

folder and called when the GUI is opened.

Equations displayed in GUI’s has been written into code using the Matlab Latex Inter-

preter and are called when the GUI is opened.

3.5 Testing the Program

The graphing of the fft’s output as the frequency spectra show fundamentals forcing

frequency peaks that align input force sets for simulated run speeds of shafts and defect

impact frequencies. These can be checked by plotting Matlab figures from the GUI’s and

using the Matlab Data Cursor to inspect the frequency and by using the readout on the

GUI for the calculated defect frequency. This allows input to be checked against system

output where waveforms are generated directly from sinusoids.

The single degree of freedom tests include using code from the system in stand alone files

and setting the input mass, stiffness and damping values to those set in Balachandran

(2009) example 5.4 on pages 197-199. The following figure 3.7 on page 91 matches that

in Balachandran (2009) figure 5.9(iii) on page 199. The single degree of freedom system

is also tested by using Level 2 6 GUI and adjusting slider bars and recording system

output amplitudes and values. The damping ratio for this test was set at 0.26 and

the natural frequency was set at 20Hz. With these settings the simulated shaft speed

was adjusted with the slider control from 1 to 50Hz and the output damping ratio and

peak displacement amplitude response was recorded. The amplitude response was then

calculated using equation 2.21 on page 30. These results are shown in table 3.2 on 89 and

plotted in figure 3.8 on page 91 and are similar to that presented in figure 2.5 on 30. Key

points of similarity are being near zero at a low frequency ratio, peaking at a frequency

ratio of 1 and appearing to approach an asymptote of 1 as the frequency ratio increases

beyond 2.

The two degrees of freedom system is tested by using the USQ MEC3403 Dynamics 2

Study Book (2010.2) Exercise 7.8 as a comparison. The code for the system was tested

by modifying it slightly to input the matrices for mass, damping and stiffness as per the

exercise and comparing the result to that in the activity feedback section of the Study

Book. The response result from the written code in figure 3.9 on page 92 is the same as

3.5 Testing the Program 89

Table 3.2: This table shows frequency readings (Hz), the system damping ration, the dis-

placement amplitude readings and calculated amplitude response values for Level 2 6 using

equation 2.21 on page 30.

Level 2 6

Values

1 2 3 4 5 6 7 8 9 10 11 12

Frequency 1 4 7 10 15 20 25 29 35 40 45 50

Damping

Ratio

0.05 0.2 0.35 0.5 0.75 1 1.24 1.44 1.74 1.99 2.24 2.48

Amplitude 0.0006 0.01 0.035 0.08 0.24 0.48 0.46 0.4 0.34 0.32 0.3 0.28

Amplitude

Response

0.0025 0.04 0.14 0.33 1.27 9.71 2.79 1.91 1.49 1.33 1.25 1.19

in the USQ Dynamics 2 Study Book.

3.5 Testing the Program 90

F
ig

u
re

3.
6:

T
h

is
fi

gu
re

sh
ow

s
on

e
of

th
e

M
at

la
b

gr
ap

h
ic

al
u

se
r

in
te

rf
a
ce

s
in

M
a
tl

a
b

G
U

ID
E

w
h

er
e

th
e

co
m

p
o
n

en
ts

fo
r

th
e

G
U

I
ca

n
b

e
se

le
ct

ed
fr

o
m

th
e

to
ol

b
ar

on
th

e
le

ft
an

d
p

os
it

io
n

ed
on

th
e

gr
id

.

3.5 Testing the Program 91

Figure 3.7: This graph is extracted from the program and used to test the output of the single

degree of freedom system against a worked example in Magrab (2009) pg 199.

Figure 3.8: This graph is a plot of the recored and calculated data from the the Level 2 6

GUI and is used test the amplitude response of single degree of freedom used in the program.

Frequency ration on the horizontal axis and calculated amplitude response on the vertical

axis.

3.5 Testing the Program 92

Figure 3.9: This graph is extracted from a section of the Level 2 4 code and used as a

comparison to test the function of the two degrees of freedom component of the program.

Chapter 4

Results

4.1 Overview of program 94

4.1 Overview of program

To cover the Level 1 and Level 2 technician vibration topics and design functional require-

ments the outcome of the program is slightly different in terms of the number of GUI’s

and the concepts which each covers when compared to the original design flowchart figure

3.1 on page 79. For current flowchart of the program layout see figure 4.1 on page 96

Topics presented in level 1 include principles of vibration, simple harmonic motion, the

relationship between period and frequency, basic understanding of phase, managing fre-

quency and amplitude in different units and unit conversions, The user is given an aware-

ness of the time and frequency domains, natural frequencies, resonance, critical speeds

and their effect on vibrations, data acquisition parameters of resolution (LOR), maximum

frequency (FMax) and time in a sample based on these settings. Signal processing, fault

familiarization and recognition of common faults such as looseness, unbalance, misalign-

ment, bearing damage and cavitation are introduced by program simulations. Level 1

provides for recognition of motors, conveyor pulley, crusher, gearboxes motors and a ba-

sic understanding of the faults that can be present in them by presenting machine images

with faults and concepts. Introduction to acceptance testing is also present with a test

for the user on this concept.

Level 2 concepts presented in GUIs for the program include an introduction to integration

differentiating, enveloping, band pass filters, demodulation, crest factor, kurtosis, phase

reference, resonance, recognition of a vibrating systems properties of frequency, stiffness,

mass, damping ,isolation and the interdependence of these properties. Amplitude re-

sponse, frequency ratio and damping ratio are introduced. The user is introduced to the

fft and fft leakage. The user can apply rectangular, Hanning, Hamming and Blackman

Harris windows and observe their effect on amplitude and frequency. Averaging to re-

duce noise is presented with the ability to run 10 averages of a signal. The user can

run simulated bearing damage with the ability filter and envelope the acceleration re-

sponse. Acceleration data can be played as sound at the press of a control button. Data

throughout level 2 can be plotted external to the GUI to analyse the data.

4.1 Overview of program 95

Table 4.1: This table shows the Matlab file names for each of the GUI’s and the corresponding

screen name displayed in the GUI. The file name is also visible in a bar at the top of the GUI

when in use.

Matlab File Name GUI Screen Name

Open.m Level Selection

Level 1 1.m Simple Harmonic Motion

Level 1 2.m The Concept of Phase

Level 1 3.m Time and Frequency Domains

Level 1 4.m Frequency and Amplitude Units

Level 1 5.m Data Sampling Properties

Level 1 6.m Natural Frequencies

Level 1 7.m Basic Fault Signals

Level 1 8.m Bearing Fault Signals

Level 1 9.m Acceptance Testing

Level 1 10.m Condition Assessment Test

End Level 1.m End Level 1

Level 2 1.m Integration and Differentiation

Level 2 2.m The FFT

Level 2 3.m Signal Processing

Level 2 4.m Bearings and Signal Processing

Level 2 5.m Effects of Windows

Level 2 6.m Interdependence of Properties

4.1 Overview of program 96

Figure 4.1: This shows the program flowchart and levels, each with an associated GUI.

4.2 Program and GUI Functions 97

4.2 Program and GUI Functions

The following are descriptions of the GUI’s used in the training program, the concepts

covered in them, an overview of their functions and the way in which the written code

for the program operates when GUI controls are operated.

4.2.1 Open

This small GUI is the opening of the program. It allows the user to go into the level 1

section of the program or the level 2 section by code running the requested level when

the pushbutton is clicked on and closing the Open GUI. See figure 4.2 on page 108

4.2.2 Level 1 1

Level 1 1 present simple harmonic motion (SHM) with an explanation in the of SHM,

Hookes law and the use of spring constants and the relationship of linear SHM to the

concept of rotation SHM. The GUI has equations displayed in for a sinusoid, Hookes law,

Newtons second law and the relationship between frequency and period. The GUI graphs

a sinusoid on a plot with amplitude and time axes. The GUI has a slider to change

the frequency of the plotted sinusoid and a slider control to change the amplitude of the

sinusoid. As these sliders are moves the program recalculates and plots the waveform.

A start button begins animation of the blue edit box at the bottom right of the screen.

The linear animation runs for the 10 seconds plotted on the axis at the frequency and

amplitude presented in the plot. The Start pushbutton is deactivated until the animation

is complete and then it is reactivated. The Previous pushbutton closes this level and runs

Open and the Next pushbutton closes this level and runs

4.2.3 Level 1 2

This GUI present the concept of phase and builds on what is present in Level 1 1. Text

explains the concept of phase and an equation for a sinusoid shows the position of φ to

cause a change in phase. The GUI graphs two sinusoids on a plot with amplitude and

time axes. The GUI has a slider to change the frequency of the plotted sinusoids. The

4.2 Program and GUI Functions 98

frequency is the same for each of the sinusoids. There is a slider control to change the

amplitude of each sinusoid. There is a slider control to change the relative phase angle

of these sinusoids ±90◦. As these sliders are moves the program recalculates and plots

the waveforms. A start button begins animation of the blue and red edit boxes at the

bottom right of the screen. The linear animation runs for the 10 seconds plotted on the

axis at the frequency, amplitudes and phase relationship presented in the plot. The Start

pushbutton is deactivated until the animation is complete and then it is reactivated. The

Previous pushbutton closes this level and runs Level 1 1 and the Next pushbutton closes

this level and runs Level 1 3. See figure 4.4 on page 110

4.2.4 Level 1 3

This GUI introduces the user to the concept of the time domain and its representation

in the frequency domain by explaining the concept in text. Graphically the concept is

displayed by presenting a single sinusoid and plotting the frequency spectrum for this

sinusoid. The amplitude and frequency of the sinusoid are adjusted by the slider bars at

which point the program recalculates the fft and plots the frequency spectrum and time

waveform. The Previous pushbutton closes this level and runs Level 1 2 and the Next

pushbutton closes this level and runs Level 1 4. See figure 4.5 on page 111

4.2.5 Level 1 4

This GUI presents various frequency and amplitude units to the user. For frequency this

is done by the display of text explaining Hertz, cycles per minute, orders and conversion

between them. Units of amplitude as displacement, velocity and acceleration are explained

covering metric and imperial conversion and acceleration as Gs. Presentation of these

units as RMS, peak and peak to peak is covered. Equations for conversion of RPM to Hz

is displayed and the equation for calculating the RMS level of a sinusoid. The GUI plots

a single sinusoid as a time waveform and is presents as a peak in the frequency spectrum.

Positive and negative peak values and the RMS value are highlighted in the waveform.

The peak amplitude and RMS amplitude levels are displayed as peaks together in the

frequency spectrum. Radio buttons allow the amplitude to be switched between metric

and imperial units. The GUI has sliders to change the frequency and amplitude of the

sinusoid. As these sliders are moves the program recalculates and plots the waveform

4.2 Program and GUI Functions 99

peak and RMS levels, presents the frequency spectrum as peak and RMS values. The

Previous pushbutton closes this level and runs Level 1 3 and the Next pushbutton closes

this level and runs Level 1 5. See figure 4.6 on page 112

4.2.6 Level 1 5

This GUI introduces the user to data sampling properties. Text in the GUI explains the

way in which vibration data collectors often require some pre collection parameters to be

set. Terms and properties such as FMax maximum frequency, LOR lines of resolution,

length of time waveform and frequency resolution are covered. The has two popupmenus,

one for the user to select from FMax values of 20kHz, 10kHz, 5kHz, 2kHz, 1kHz, 500Hz,

200Hz, 100Hz and 50Hz. The other popupmenu offers LOR values of 25600, 12800, 6400,

3200, 1600, 800 and 400. The code to run the GUI uses these values to produce and plot a

binary length sinusoidal waveform and the frequency spectrum is plotted using FMax and

lines of resolution specified by the user, using 78.125% of the Nyquist rate. The complete

waveform is plotted to familiarize the user with the length of time in the waveform due

to the FMax and LOR settings. The GUI has slider controls to change the frequency and

amplitude of the sinusoid. As these sliders are moves the program recalculates and plots

the waveform and frequency spectrum. The Previous pushbutton closes this level and

runs Level 1 4 and the Next pushbutton closes this level and runs Level 1 6. See figure

4.7 on page 113

4.2.7 Level 1 6

This GUI introduces the user to the concept of natural frequency. Text explains nat-

ural frequency as a linear concept and expands to explain how this applies to rotating

machinery with rotational speed as a forcing frequency and how the amplitude response/-

transmissibility can be influence by a systems stiffness and mass. Equations are displayed

for the relationship between natural frequency, system mass and stiffness, the frequency

ratio, the ratio between system forcing frequency and natural frequency. The equation for

transmissibility for a system with rotating unbalance mass is also displayed. Slider con-

trols are used to vary the values of ForcingFrequency, ForcingAmplitude and Stiffness

for which the values are displayed in text boxes. There is also a Mass slider control for

adjusting system mass. The code running the GUI uses these slider values and the am-

4.2 Program and GUI Functions 100

plitude response/transmissibility equation to calculate the system transmissibility. This

system transmissibility value is plotted as a red circle on the transmissibility curve for a

system with rotating unbalance mass. The user can see this circle move when the sliders

are moved and the value displayed as Tr in a text box. The ForcingAmplitude from the

slider bar is displayed in a text box and this amplitude is magnified by the transmissibility

value. This magnified waveform is plotted in the GUI. This allows the user to see the

relationship between natural frequency, stiffness, mass, between forcing frequency and

natural frequency and visualize the effect of resonance. The damping ration is fixed in

this GUI at 0.3. The Previous pushbutton closes this level and runs Level 1 5 and the

Next pushbutton closes this level and runs Level 1 7. See figure 4.8 on page 114

4.2.8 Level 1 7

This GUI introduces the user to machine defects synchronous with shaft speed. A popup-

menu SelectDefect gives the options of unbalance, misalignment, looseness, gear damage

and pump vane pass as synchronous faults. Random vibrations of pump cavitation and

friction are also selectable in this popupmenu. The popupmenu SelectMachineSpeed(Hz)

allows for selections of 50Hz, 25Hz, 16.6Hz and 8.3Hz. Different Fmax and LOR are used

for each of these shaft speeds in calculating the system response. The defect fundamental

frequency is displayed in text boxes in the GUI as Hz and orders of shaft speed. Text for

this GUI covers the concept of faults that are known as synchronous and explains unbal-

ance, misalignment and looseness faults. The program code is calculating the response of

a single degree of freedom system to input forces. The unbalance force is calculated at

the iterative time step. There are four pulse train input forces constructed and summed

for the complete time sequence prior to calling the ODE23 solver and the function file

SDOF SOLV ER. The ODE23 solver iterative process is time constrained by a pre-

constructed array to generate a waveform with an evenly space sample period across it

and to produce the binary length wave file. In this GUI there is a delay of dt = 0.1second

in the code to allow for the transient at the beginning of the wave to settle out in some

of the simulations. This adds 0.1 seconds worth of samples (rounded) to the end of the

simulation and removes the same number of samples from the beginning of results, re-

moving the transient and retaining the desired file length. The resulting velocity response

is graphed as a waveform and frequency spectrum. 78.125% of the Nyquist rate is plot-

ted in the frequency spectrum. The PlotWaveform and PlotSpectrum plots the graphs

4.2 Program and GUI Functions 101

displayed in the GUI as separate Matlab figures by extracting the information that has

been sent to the workspace. These figures allow closer inspection of the data with the

tools offered in the figure toolbar. The Previous pushbutton closes this level and runs

Level 1 6 and the Next pushbutton closes this level and runs Level 1 8. See figure 4.9

on page 115

4.2.9 Level 1 8

This GUI introduces the user to non-synchronous faults in the way of bearing defects.

The text for this GUI covers the rolling element bearing faults and the nature of them

that makes them non-synchronous. A popupmenu NonSynchronousDefects gives the

options of bearing cage defect, bearing ball defect, bearing outer race defect and bearing

inner race defect. The popupmenu SelectMachineComponent(Hz) allows for selections

of conveyor pulley, crusher rotor, gearbox second shaft, motor NDE and motor DE. This

menu also selects information pertaining to a real machine, i.e. its shaft rotational speed

and a bearing fault ratio set. This also sets the FMax and LOR for the simulation run

in this GUI and presents an image relevant to the machine component selected. The

machine shaft speed in Hz and defect fundamental frequency as Hz and orders of shaft

speed for the current simulation are displayed in the GUI. The code operating this GUI

is similar to that of Level 1 7. The unbalance force is calculated at the iterative time

step though its unbalance mass is reduced in this code. The pulse train input forces is

constructed and summed for the complete time sequence prior to calling the ODE23 solver.

In this GUI the pulse train is set either as a constant or modulating amplitude depending

on the bearing defect selected in the popupmenu. The modified sinusoid presented in

Chapter 3 is employed in the case of requiring amplitude modulation. The ODE23 solver

iterative process is time constrained by a pre-constructed array to generate a waveform

with an evenly space sample period across it and to produce the binary length wave

file. The resulting velocity response is graphed as a waveform and frequency spectrum.

78.125% of the Nyquist rate is plotted in the frequency spectrum. The PlotWaveform

and PlotSpectrum plots the graphs displayed in the GUI as separate Matlab figures by

extracting the information that has been sent to the workspace. These figures allow

closer inspection of the data with the tools offered in the figure toolbar. The Previous

pushbutton closes this level and runs Level 1 7 and the Next pushbutton closes this level

and runs Level 1 9. See figure 4.10 on page 116

4.2 Program and GUI Functions 102

4.2.10 Level 1 9

This level introduces the user to Acceptance testing. This is achieved by explaining the

reasons testing is conducted, introducing ISO 10816 part 1, the four machine evaluation

condition levels, and the four machine classes. The table displayed in the GUI categorizes

these evaluation conditions based on machine class and RMS machinery velocity mm/s.

The text explains the use of this table and offers an example in applying it. There is a

popupmenu ClassofMachine where the user has the choice of a class 1, class 2, class 3

or class 4 category machine. Selecting a machine will display an image of a machine in

this category. An RMS level for the vibration waveform plotted is displayed in the GUI

next to the waveform. The ChangeMachine pushbutton randomly generates another

waveform of the same frequency but different amplitude. The RMS is displayed and the

code assesses the machine evaluation based on the RMS level for this class of machine

as good (A), acceptable (B), satisfactory for short term operation (C) or damaging (D)

based on the standard table displayed. The PlotWaveform and PlotSpectrum plots the

graphs displayed in the GUI as separate Matlab figures by extracting the information

that has been sent to the workspace. These figures allow closer inspection of the data

with the tools offered in the figure toolbar. The Previous pushbutton closes this level

and runs Level 1 8 and the Next pushbutton closes this level and runs Level 1 10. See

figure 4.11 on page 117

4.2.11 Level 1 10

This level is a condition assessment test for the level 1 user, based on ISO10816-1 pre-

sented in Level 1 9. There is a popupmenu ClassofMachine where the user has the

choice of a class 1, class 2, class 3 or class 4 category machine. Selecting a machine will

display an image of a machine for this category. An RMS level for the vibration waveform

plotted is displayed in the GUI next to the waveform. The test for the user is to deter-

mine the machine evaluation condition from the given table as good (A), acceptable (B),

satisfactory for short term operation (C) or damaging (D) based on the RMS level and

the class of machine selected. The correct answer will highlight bring up a green box with

the word Correct or it will be red Incorrect. The ChangeMachine pushbutton randomly

generates another waveform of the same frequency but different amplitude. The wave-

form is generated with the single degree of freedom system similar to that of Level 1 7

4.2 Program and GUI Functions 103

with dominant unbalance and only a small 6.3 order defect present. The correct answer

is sent to a box in the GUI by an if , elseif loop and is not visible to the user. Another

if , else loop is set up for each pushbutton A, B, C and D to evaluate the users answer

as correct or incorrect and to set the color green or red. Selecting ChangeMachine or

ClassofMachine resets the machine evaluation process and resets the background color.

The PlotWaveform and PlotSpectrum plots the graphs displayed in the GUI as separate

Matlab figures by extracting the information that has been sent to the workspace. These

figures allow closer inspection of the data with the tools offered in the figure toolbar.

The Previous pushbutton closes this level and runs Level 1 9. At this stage the Next

pushbutton closes this level and runs the EndLevel 1 GUI. See figure 4.12 on page 118

4.2.12 End Level 1

This GUI gives the user the options of ReturntoLevel 1 10, open LevelSelection or

CloseProgram. See figure 4.13 on page 119

4.2.13 Level 2 1

This GUI covers the topic of integration and differentiation by way of explaining the

concepts and the way it is presented in the GUI. Equations for integration and differen-

tiation are displayed in the GUI. A displacement sinusoid is constructed in Matlab and

the differentiation of it once is used to present velocity and twice to present acceleration.

This is plotted to show the relationship between them in an ideal case. The amplitude

and frequency of the displacement sinusoid are adjustable by slider controls in the GUI. A

simple animation of the three colored boxes traces out the plotted waves. The boxes are

named D (displacement), V (velocity) and A (acceleration) with colors matching those

in the plot, begins when the Start pushbutton is used. PlotWaveform plots the cur-

rently displayed waveform in a separate Matlab figure for close inspection. The Previous

pushbutton closes this level and runs LevelSelection and the Next pushbutton closes this

level and runs Level 2 2. See figure 4.14 on page 120

4.2 Program and GUI Functions 104

4.2.14 Level 2 2

This level offers an explanation of the discrete and fast Fourier transforms of the time

waveform and converting the time domain into the frequency domain and the use of

binary length signals for the fft. A randomly generated waveform with six frequencies

is compiled. Frequency is from0-200Hz and amplitude from 0-5 units. The FMax is set

at 200Hz and LOR at 800. The ChangeWaveform button generates a new waveform,

calculates the fft and plots the frequency spectrum. The Previous pushbutton closes this

level and runs Level 2 1 and the Next pushbutton closes this level and runs Level 2 3.

See figure 4.15 on page 121

4.2.15 Level 2 3

This GUI introduces the user to signal processing. The text in the GUI covers filtering,

frequency bands and enveloping a signal to remove the unwanted part of a signal. It

also explains crest factor and kurtosis as a way of evaluating data and covers averaging

of multiple spectra of a noisy signal to remove unwanted noise. These are the topics

presented for the user in the GUI. Waveforms are generated in a similar fashion to that in

Level 2 2 with the addition of upper and lower sidebands added to one of the randomly

generated frequencies. The FMax is set at 200Hz and LOR at 800. A random level of

noise is also generated with each use of the ChangeWaveform pushbutton. The RMS

level, crest factor and kurtosis are displayed for each plotted waveform. The filter band

is a pass band. The filter, its parameters are generated using Matlabs firpmord and

firpm functions including the filter delay calculation. The generated filter is applied to

the constructed waveform for plotting and the fft is performed on the filtered waveform

and plotted. At the same time the Hilbert transform function in Matlab is applied to the

filtered waveform data creating an envelope and exported to the workspace. When the

filter radiobutton is used the envelope button is enabled, and when pressed the envelope

the waveform and envelope are plotted together and the frequency spectrum of the Hilbert

transform envelope is plotted with the spectrum of the filtered waveform. When the

FilterBand radiobutton is pressed the SamplesinAverage radiobutton is disabled, visa

versa. There is a slider control for the user to select the number of samples to average.

When the averaging begins program extracts all of the frequencies, amplitudes and level of

noise from the currently plotted waveform from the workspace. These are used to generate

4.2 Program and GUI Functions 105

a new waveform with variation in base amplitudes and noise level to replicate variation

that might occur in a real machine. A delay allows for plotting each of the waveforms

and their spectrum used in the average process. Each generated spectrum is added to the

previous in a loop and when the number set on the slider control is reached the average

spectrum is plotted removing noise and averaging frequency amplitudes. Average RMS,

crest factor and kurtosis is also displayed in the GUI. The Previous pushbutton closes this

level and runs Level 2 2 and the Next pushbutton closes this level and runs Level 2 4.

See figure 4.16 on page 122

4.2.16 Level 2 4

This GUI covers the Non-Synchronous faults introduces in Level 1 8 with the two degree

of freedom system covered in Chapter 3 in the background giving a simulated vibration

response. The function file TDOF SOLV ER.m is called by level 4 to assemble the

state A and B matrices for the system, input the forcing matrix for the ODE23 solver

used. The unbalance force is calculated at the iterative time step. In this GUI the pulse

train is set either at constant or modulating amplitude depending on the bearing defect

selected in the popupmenu. The modified sinusoid presented in Chapter 3 is employed

in the case of requiring amplitude modulation. The ODE23 solver iterative process is

time constrained by a pre-constructed array to generate a waveform with an evenly space

sample period across it and to produce the binary length wave file. The resulting response

for Mass1 with unbalance force applied graphed as a waveform and frequency spectrum

can be viewed in Acceleration or V elocity on using the so named radiobuttons. This GUI

also combines the filtering function of Level 2 3 to the simulated bearing defects as an

example of the application of demodulation to a realistic vibration signal from a bearing

defect. As in Level 1 8 the following bearing faults, Inner Race Defect Frequency, outer

Race Defect Frequency, Ball Spin Frequency, Cage Defect Frequency can be displayed for

a conveyor pulley, a crusher rotor, a gearbox shaft, and both ends of a motor. While

viewing the acceleration response the FilterBand radiobutton is enabled. Set the lower

and upper band pass filter settings to view the desired band. Once the data is filtered and

displayed operating the Envelope radiobutton will plot the Hilbert transform envelope on

the filtered waveform and plot a frequency spectrum of the envelope itself. This has the

effect of removing the high frequency signal and highlighting the defect forcing frequency.

The shaft speed is displayed as Hz and the defect fundamental frequency as Hz and orders

4.2 Program and GUI Functions 106

of shaft speed. At any stage the waveform and spectrum viewed in the GUI can be plotted

as a separate figure for closer inspection use the Matlab zoom, cursor and other functions

for analysis. Figure 4.18 on page 124 is a plot from this GUI of the Hilbert transform as

an envelope plotted on a filtered waveform for simulated inner race data, showing how

the higher frequency component of the waveform is removed by the envelope. Sound for

the acceleration waveforms can also be played. The Previous pushbutton closes this level

and runs Level 2 3 and the Next pushbutton closes this level and runs Level 2 5. See

figure 4.17 on page 123

4.2.17 Level 2 5

This GUI introduces windows and their effects on the time and frequency domain. In

this GUI they are applied to the time domain and the shape of the waveform can be seen

change when applied. The FMax and LOR are set at 200 making a coarse spectrum. This

makes it easier to see the effect of the window. When the GUI is opened the windows

for these data settings are created and sent to the workspace. The waveform is randomly

generated with some frequencies purposefully close together. The Change Waveform

pushbutton generates a new waveform. The waveform is sent to the workspace. When a

‘Windows’ radiobutton is operated the appropriate window function and current waveform

are extracted from the workspace to create the modified time waveform and then conduct

the fft and display the resulting frequency spectrum. This allows the user to view the

effect the chosen window has on the amplitude and frequency in the spectrum where

peaks can change height or disappear. Because of the effect windows have on waveform

amplitude across the time domain the results of the fft must be increased by a factor

to compensate. For the Hanning window the correction factor is 2, Hamming 1.85 and

Blackman Harris 2.36. The Previous pushbutton closes this level and runs Level 2 4 and

the Next pushbutton closes this level and runs Level 2 6. See figure 4.19 on page 125

4.2.18 Level 2 6

This GUI demonstrates the interdependence of machine properties that influence vibra-

tion. The text explains the concepts to be observed in the GUI. For the single degree

of freedom system working behind the GUI there are slider controls for Machine Speed,

System Damping, System Mass, Stiffness, and Unbalance Mass. The current value of

4.3 GUI Images 107

each of these slider controls is displayed in the GUI. Other system properties calculated

and displayed are the natural frequency of the system, the frequency ratio, the systems

critical damping factor and the current damping ratio. The FMax is set at 2000Hz and

the LOR at 6400. The unbalance force is calculated at the iterative time step. There is

no pulse train force for this system, however the same function file as used by other GUIs,

SDOF SOLVER.m is used so for this purpose it is made of zeros. The ODE23 solver is

used and the iterative process is time constrained by a pre-constructed array to generate a

waveform with an evenly space sample period across it and to produce the binary length

wave file. In this GUI there is a delay of dt = 1 second in the code to allow for the

transient at the beginning of the wave to settle out in some of the simulations. This adds

1 seconds worth of samples (rounded) to the end of the simulation and removes the same

number of samples from the beginning of results, removing the transient and retaining

the desired file length. The orange trace in the graphs are the position of the unbalance

mass and provides a phase reference to observe the effect the change in properties has on

the phase of the response relative to the forcing function of unbalance. The displacement

response is in the top plot and the velocity response in the bottom plot. Plot the complete

waveform as a Matlab figures for further inspection or analysis. The Previous pushbutton

closes this level and runs Level 2 5 and the Next pushbutton closes this level and runs

the Open GUI Level Selection. See figure 4.20 on page 126

4.3 GUI Images

There are 10 Level 1 GUI in the program Level 1 1 to Level 1 10. The level section has

6 GUI’s from Level 2 1 to Level 2 6. The following images show these GUI’s, the Open

(Level Selection) GUI and the End Level 1 GUI.

4.3 GUI Images 108

Figure 4.2: This shows the Open.m GUI for initial entry into the program. It allows the user

to enter Level 1 or the Level 2 section of the program. Space has been left to include a Level

3 section

4.3 GUI Images 109

F
ig

u
re

4.
3:

T
h

is
sc

re
en

sh
ot

sh
ow

s
th

e
L

ev
el

1
1

G
U

I.
It

ex
p

la
in

s
si

m
p

le
h

a
rm

o
n

ic
m

o
ti

o
n

a
s

a
m

a
ss

o
n

a
sp

ri
n

g
o
sc

il
la

ti
n

g
b

a
ck

a
n

d
fo

rw
a
rd

a
n

d
d
is

p
la

y
s

a

si
n

e
w

av
e.

T
h

e
tw

o
sl

id
er

s
in

th
e

G
U

I
al

lo
w

th
e

u
se

r
to

ch
an

g
e

th
e

a
m

p
li

tu
d

e
a
n

d
fr

eq
u

en
cy

o
f

th
e

si
n

e
w

av
e.

T
h

e
‘S

ta
rt

’
p

u
sh

b
u

tt
o
n

b
eg

in
s

th
e

b
lu

e
b

ox

m
ov

in
g

in
th

e
p

at
te

rn
an

d
fr

eq
u

en
cy

d
is

p
la

ye
d

in
th

e
si

n
e

w
av

e

4.3 GUI Images 110

F
ig

u
re

4.
4:

T
h

is
sc

re
en

sh
ot

sh
ow

s
th

e
L

ev
el

1
2

G
U

I.
It

co
v
er

s
th

e
co

n
ce

p
t

o
f

p
h

a
se

.
It

is
si

m
il

a
r

to
L

ev
el

1
1

w
it

h
th

e
a
d

d
it

io
n

o
f

a
n

o
th

er
si

n
u

so
id

d
is

p
la

y
in

g

si
m

p
le

h
ar

m
on

ic
m

ot
io

n
.

T
h

er
e

ar
e

tw
o

sl
id

er
s

in
th

e
G

U
I

al
lo

w
th

e
u

se
r

to
ch

a
n

g
e

th
e

a
m

p
li

tu
d

e,
o
n

e
sl

id
er

to
a
d

ju
st

th
e

fr
eq

u
en

cy
o
f

th
e

w
av

es
th

a
t

ea
ch

re
m

ai
n

at
th

e
sa

m
e

fr
eq

u
en

cy
.

T
h

e
sl

id
er

b
ar

on
th

e
fa

r
le

ft
of

th
e

G
U

I
a
d

ju
st

s
th

e
p

h
a
se

a
n

g
le

.
T

h
e

‘S
ta

rt
’

p
u

sh
b

u
tt

o
n

b
eg

in
s

th
e

b
lu

e
a
n

d
re

d
b

ox
es

m
ov

in
g

in
th

e
p

at
te

rn
an

d
fr

eq
u

en
cy

d
is

p
la

ye
d

in
th

e
si

n
e

w
av

es
to

d
em

o
n

st
ra

te
tw

o
si

n
u

so
id

s
a
n

d
th

e
co

n
ce

p
t

o
f

p
h

a
se

.

4.3 GUI Images 111

F
ig

u
re

4.
5:

T
h

is
sc

re
en

sh
ot

sh
ow

s
th

e
L

ev
el

1
3

G
U

I.
It

in
tr

o
d

u
ce

s
th

e
L

ev
el

1
u

se
r

to
th

e
ti

m
e

d
o
m

a
in

a
n

d
th

e
fr

eq
u

en
cy

d
o
m

a
in

b
y

d
is

p
la

y
in

g
a

si
m

p
le

w
av

ef
or

m
an

d
fr

eq
u

en
cy

sp
ec

tr
u

m
of

th
e

w
av

ef
or

m
.

T
h
e

u
se

r
ca

n
a
d

ju
st

th
e

a
m

p
li

tu
d

e
a
n

d
fr

eq
u

en
cy

w
it

h
th

e
sl

id
er

b
a
rs

.

4.3 GUI Images 112

F
ig

u
re

4.
6:

T
h

is
sc

re
en

sh
ot

sh
ow

s
th

e
L

ev
el

1
4

G
U

I.
T

h
is

b
u

il
d

s
o
n

th
e

p
re

v
io

u
s

G
U

Is
b
y

ex
p

la
in

in
g

a
n

d
d

is
p

la
y
in

g
fr

eq
u

en
cy

u
n

it
s

a
n

d
a
m

p
li

tu
d

e
u

n
it

s
in

th
e

ti
m

e
an

d
fr

eq
u

en
cy

d
om

ai
n

.
T

h
e

u
se

r
ca

n
ad

ju
st

th
e

am
p

li
tu

d
e

a
n

d
fr

eq
u

en
cy

w
it

h
th

e
sl

id
er

b
a
rs

.
U

n
it

s
ca

n
b

e
ch

a
n

g
ed

b
et

w
ee

n
m

il
li

m
et

re
s

a
n

d
in

ch
es

.

R
M

S
an

d
p

ea
k

le
ve

ls
ar

e
in

tr
o
d

u
ce

d
to

th
e

u
se

r.

4.3 GUI Images 113

F
ig

u
re

4.
7:

T
h

is
sc

re
en

sh
ot

sh
ow

s
th

e
L

ev
el

1
5

G
U

I.
It

in
tr

o
d

u
ce

s
th

e
u

se
r

to
co

m
m

o
n

ly
u

se
d

d
a
ta

sa
m

p
li

n
g

p
ro

p
er

ti
es

,
th

e
m

a
x
im

u
m

fr
eq

u
en

cy
a
n

d
li

n
es

of
re

so
lu

ti
on

.
T

h
e

le
n

gt
h

of
th

e
ti

m
e

w
av

ef
or

m
b

as
ed

on
th

es
e

in
p

u
ts

is
d

is
p

la
ye

d
w

it
h

a
ss

o
ci

a
te

d
fr

eq
u

en
cy

sp
ec

tr
u

m
.

T
h

e
u

se
r

ca
n

a
d
ju

st
th

e
a
m

p
li

tu
d

e

an
d

fr
eq

u
en

cy
of

th
e

si
n
u

so
id

w
it

h
th

e
sl

id
er

b
ar

s.

4.3 GUI Images 114

F
ig

u
re

4.
8:

T
h

is
sc

re
en

sh
ot

sh
ow

s
th

e
L

ev
el

1
6

G
U

I.
It

sh
ow

s
th

e
u

se
r

th
e

eff
ec

t
th

a
t

ch
a
n

g
in

g
th

e
st

iff
n

es
s

a
n

d
th

e
m

a
ss

h
a
s

o
n

a
si

n
g
le

d
eg

re
e

o
f

fr
ee

d
o
m

sy
st

em
w

it
h

ro
ta

ti
n
g

u
n
b

al
an

ce
v
ib

ra
ti

on
.

It
al

lo
w

s
th

e
u

se
r

to
ch

a
n

g
e

th
e

sy
st

em
p

ro
p

er
ti

es
o
n

th
e

sl
id

er
b

a
rs

a
n

d
o
b

se
rv

e
th

e
ch

a
n

g
e

in
v
ib

ra
ti

o
n

a
m

p
li

tu
d

e.

4.3 GUI Images 115

F
ig

u
re

4.
9:

T
h

e
L

ev
el

1
7

G
U

I
al

lo
w

s
th

e
u

se
r

to
se

le
ct

fr
om

se
ve

ra
l

sy
n

ch
ro

n
o
u

s
d

ef
ec

ts
a
n

d
m

a
ch

in
e

sp
ee

d
a
n

d
o
b

se
rv

e
th

e
re

sp
o
n

se
o
f

a
si

n
g
le

d
eg

re
e

o
f

fr
ee

d
om

sy
st

em
w

it
h

ot
h

er
w

is
e

fi
x
ed

p
ar

am
et

er
s.

T
h

e
w

av
ef

or
m

a
n

d
sp

ec
tr

u
m

ca
n

a
ls

o
b

e
p

lo
tt

ed
to

a
ll

ow
cl

o
se

in
sp

ec
ti

o
n

w
it

h
p

lo
t

to
o
ls

a
n

d
fe

a
tu

re
s.

4.3 GUI Images 116

F
ig

u
re

4.
10

:
T

h
e

L
ev

el
1

8
G

U
I

al
lo

w
s

th
e

u
se

r
to

se
le

ct
fr

om
b

ea
ri

n
g

d
ef

ec
ts

.
H

er
e

se
le

ct
in

g
a

m
a
ch

in
e

co
m

p
o
n

en
t

ch
a
n

g
es

th
e

m
a
ch

in
e

sp
ee

d
.

T
h

e
re

sp
o
n

se

of
a

si
n

gl
e

d
eg

re
e

of
fr

ee
d

om
sy

st
em

is
p

lo
tt

ed
.

T
h

e
w

av
ef

or
m

a
n

d
sp

ec
tr

u
m

ca
n

a
ls

o
b

e
p

lo
tt

ed
to

a
ll

ow
cl

o
se

in
sp

ec
ti

o
n

w
it

h
p

lo
t

to
o
ls

a
n

d
fe

a
tu

re
s.

4.3 GUI Images 117

F
ig

u
re

4.
11

:
T

h
e

L
ev

el
1

9
G

U
I

in
tr

o
d

u
ce

s
th

e
u

se
r

to
ac

ce
p

ta
n

ce
te

st
in

g
.

It
a
ll

ow
s

th
e

u
se

r
to

se
le

ct
a

m
a
ch

in
e

cl
a
ss

b
a
se

d
th

e
g
iv

en
IS

O
1
0
8
1
6
-1

ta
b

le
.

B
y

u
si

n
g

th
e

“C
h

an
ge

M
ac

h
in

e”
p

u
sh

b
u

tt
on

an
u

n
b

al
an

ce
m

as
s

is
ra

n
d

o
m

ly
g
en

er
a
te

d
a
n

d
th

e
re

sp
o
n

se
o
f

a
si

n
g
le

d
eg

re
e

o
f

fr
ee

d
o
m

sy
st

em
is

p
lo

tt
ed

.
B

a
se

d

on
th

e
R

M
S

le
v
el

th
e

m
ac

h
in

e
ev

al
u

at
io

n
co

n
d

it
io

n
is

d
is

p
la

ye
d

.
A

m
a
ch

in
e

im
a
g
e

o
f

th
e

cl
a
ss

o
f

m
a
ch

in
e

se
le

ct
ed

is
d

is
p

la
ye

d
.

T
h

e
a
ss

o
ci

a
te

d
w

av
ef

o
rm

a
n

d

sp
ec

tr
u

m
ca

n
b

e
d

is
p

la
ye

d
in

se
p

ar
at

e
M

at
la

b
fi

gu
re

s
fo

r
cl

os
er

in
sp

ec
ti

o
n

.

4.3 GUI Images 118

F
ig

u
re

4.
12

:
T

h
e

L
ev

el
1

10
G

U
I

al
lo

w
s

th
e

u
se

r
to

se
le

ct
a

m
a
ch

in
e

cl
a
ss

b
a
se

d
th

e
IS

O
1
0
8
1
6
-1

ta
b

le
.

B
y

u
si

n
g

th
e

“
C

h
a
n

g
e

M
a
ch

in
e”

p
u

sh
b

u
tt

o
n

a
n

u
n
b

al
an

ce
m

as
s

is
ra

n
d

om
ly

ge
n

er
at

ed
an

d
th

e
re

sp
on

se
of

a
si

n
g
le

d
eg

re
e

o
f

fr
ee

d
o
m

sy
st

em
is

p
lo

tt
ed

.
T

h
e

u
se

r
ca

n
th

en
ev

a
lu

a
te

th
e

m
a
ch

in
e

v
ib

ra
ti

o
n

le
ve

l
b
y

se
le

ct
in

g
A

-G
o
o
d

,
B

-A
cc

ep
ta

b
le

,
C

-S
at

is
fa

ct
or

y
fo

r
sh

o
rt

te
rm

o
p

er
a
ti

o
n

o
r

D
-B

ei
n

g
w

id
el

y
a
cc

ep
te

d
a
s

d
a
m

a
g
in

g
.

T
h

e
b

ox
b

el
ow

th
e

se
le

ct
io

n

p
u

sh
b

u
tt

on
s

w
il

l
li

gh
t

u
p

gr
ee

n
if

co
rr

ec
t

an
d

re
d

if
in

co
rr

ec
t.

T
h

e
a
ss

o
ci

a
te

d
w

av
ef

o
rm

a
n

d
sp

ec
tr

u
m

ca
n

b
e

d
is

p
la

ye
d

in
se

p
a
ra

te
M

a
tl

a
b

fi
g
u

re
s

fo
r

cl
o
se

r

in
sp

ec
ti

on

4.3 GUI Images 119

Figure 4.13: This shows the End Level 1 GUI. It allows the user to open the Level Selection

GUI, return to Level 1 10 or close the program at use of a pushbutton.

4.3 GUI Images 120

F
ig

u
re

4.
14

:
T

h
e

L
ev

el
2

1
G

U
I

in
tr

o
d

u
ce

s
th

e
u

se
r

to
th

e
co

n
ce

p
ts

o
f

in
te

g
ra

ti
o
n

a
n

d
d

iff
er

en
ti

a
ti

o
n

.
A

s
w

el
l

a
s

a
n

ex
p

la
n

a
ti

o
n

o
f

th
e

p
ro

ce
ss

es
a
n

d
sh

ow
in

g

eq
u

at
io

n
s

fo
r

ea
ch

th
e

G
U

I
d

em
on

st
ra

te
s

it
b
y

al
lo

w
in

g
th

e
u

se
r

to
v
is

u
a
li

ze
th

e
re

la
ti

o
n

sh
ip

b
et

w
ee

n
d

is
p

la
ce

m
en

t
(D

),
v
el

o
ci

ty
(V

)
a
n

d
a
cc

el
er

a
ti

o
n

(A
)

sh
ow

n
as

si
n
u

so
id

s.
S

li
d

er
s

al
lo

w
th

e
u

se
r

to
ad

ju
st

th
e

fr
eq

u
en

cy
a
n

d
a
m

p
li

tu
d

e.
T

h
e

st
a
rt

p
u

sh
b

u
tt

o
n

b
eg

in
s

a
n

a
n

im
a
ti

o
n

o
f

th
e

b
lo

ck
s

D
,

V
a
n

d
A

to

fu
rt

h
er

sh
ow

th
e

p
h

as
e

an
d

am
p

li
tu

d
e

re
la

ti
on

sh
ip

s.
T

h
e

w
av

ef
o
rm

d
is

p
la

ye
d

in
th

e
G

U
I

ca
n

b
e

p
lo

tt
ed

a
s

a
se

p
a
ra

te
fi

g
u

re
fo

r
cl

o
se

r
in

sp
ec

ti
o
n

4.3 GUI Images 121

F
ig

u
re

4.
15

:
T

h
e

L
ev

el
2

2
G

U
I

in
tr

o
d

u
ce

s
th

e
u

se
r

to
th

e
fa

st
F

o
u

ri
er

tr
a
n

sf
o
rm

.
It

o
ff

er
s

a
si

m
p

le
ex

p
la

n
a
ti

o
n

o
f

th
e

p
ro

ce
ss

,
sh

ow
a

ra
n

d
o
m

ly
g
en

er
a
te

d

w
av

ef
or

m
,

co
n

d
u

ct
s

th
e

ff
t

on
th

at
w

av
ef

or
m

an
d

gr
ap

h
s

it
co

n
st

it
u

en
ts

in
th

e
fr

eq
u

en
cy

sp
ec

tr
u

m
,

ea
ch

p
ea

k
re

p
re

se
n
ti

n
g

a
si

n
u

so
id

in
fr

eq
u

en
cy

a
n

d

am
p

li
tu

d
e.

T
h

e
ch

an
ge

w
av

ef
or

m
p

u
sh

b
u

tt
on

ra
n

d
om

ly
ge

n
er

a
te

s
a
n

o
th

er
w

av
ef

o
rm

w
it

h
th

e
sa

m
e

F
M

a
x

a
n

d
L

O
R

se
tt

in
g
s

4.3 GUI Images 122

F
ig

u
re

4.
16

:
T

h
e

L
ev

el
2

3
G

U
I

in
tr

o
d

u
ce

s
th

e
u

se
r

to
th

e
fr

eq
u

en
cy

b
a
n

d
fi

lt
er

in
g

a
n

d
en

ve
lo

p
in

g
in

co
n

ju
n

ct
io

n
to

d
is

p
la

y
th

e
eff

ec
t

o
f

d
em

o
d

u
la

ti
o
n

.
It

al
so

h
as

th
e

fu
n
ct

io
n

of
in

tr
o
d

u
ci

n
g

av
er

ag
in

g
to

re
d

u
ce

th
e

am
o
u

n
t

o
f

n
o
is

e
in

th
e

av
er

a
g
ed

sp
ec

tr
u

m
a
n

d
b

et
te

r
se

p
a
ra

te
th

e
fr

eq
u

en
ci

es
o
f

in
te

re
st

fr
o
m

th
e

n
oi

se
,

h
el

p
in

g
fi

n
d

th
e

n
ee

d
le

in
th

e
h

ay
st

ac
k
.

4.3 GUI Images 123

F
ig

u
re

4.
17

:
T

h
e

L
ev

el
2

4
G

U
I

co
m

b
in

es
th

e
fi

lt
er

in
g

fu
n

ct
io

n
o
f

L
ev

el
2

3
a
n

d
th

e
n

o
n

-s
y
n

ch
ro

n
o
u

s
b

ea
ri

n
g

fa
u

lt
s

in
tr

o
d
u

ce
d

in
L

ev
el

1
8

w
it

h
a

tw
o

d
eg

re
e

of
fr

ee
d

om
sy

st
em

w
or

k
in

g
in

th
e

b
ac

k
gr

ou
n

d
an

d
p

ro
v
id

es
an

ex
a
m

p
le

o
f

th
e

a
p

p
li

ca
ti

o
n

o
f

d
em

o
d

u
la

ti
o
n

to
a

re
a
li
st

ic
v
ib

ra
ti

o
n

si
g
n

a
l

fr
o
m

a
si

m
u

la
te

d

b
ea

ri
n

g
d

ef
ec

t.
T

h
is

im
ag

e
sh

ow
s

a
fi

lt
er

ed
w

av
ef

or
m

w
it

h
en

ve
lo

p
e

in
o
ra

n
g
e

a
n

d
th

e
sp

ec
tr

u
m

fr
o
m

th
e

ff
t

o
f

th
e

en
ve

lo
p

e.
T

h
e

sp
ec

tr
u

m
sh

ow
s

th
e

d
ef

ec
t

ra
te

h
ar

m
on

ic
s

w
it

h
sh

af
t

sp
ee

d
si

d
eb

an
d

s.
S

ou
n

d
fo

r
th

e
ac

ce
le

ra
ti

o
n

w
av

ef
o
rm

s
ca

n
b

e
p
la

ye
d

.

4.3 GUI Images 124

F
ig

u
re

4.
18

:
T

h
is

fi
gu

re
sh

ow
s

a
cl

os
e

u
p

of
th

e
en

ve
lo

p
ed

w
av

ef
o
rm

in
th

e
G

U
I

o
f

L
ev

el
2

4
.

It
is

a
5
0
0
0
-1

0
0
0
0
H

z
fi

lt
er

ed
si

g
n

a
l

(i
n

b
lu

e)
o
f

a
si

m
u

la
te

d
in

n
er

ra
ce

d
ef

ec
t

an
d

sh
ow

s
th

e
H

il
b

er
t

tr
an

sf
or

m
as

an
en

ve
lo

p
e

(i
n

o
ra

n
g
e)

o
n

th
e

w
av

ef
o
rm

.

4.3 GUI Images 125

F
ig

u
re

4.
19

:
T

h
is

fi
gu

re
sh

ow
s

th
e

G
U

I
of

L
ev

el
2

5.
A

w
av

ef
o
rm

is
ra

n
d

o
m

ly
g
en

er
a
te

d
a
n

d
d

iff
er

en
t

w
in

d
ow

s
a
re

a
p

p
li

ed
to

th
e

w
av

ef
o
rm

a
n

d
re

su
lt

in
g

fr
eq

u
en

cy
sp

ec
tr

u
m

is
d

is
p

la
ye

d
.

C
h

an
ge

s
in

th
e

w
av

ef
or

m
ar

e
o
b

se
rv

ed
d

ep
en

d
en

t
o
n

th
e

w
in

d
ow

sh
a
p

e
a
n

d
ch

a
n

g
es

to
a
cc

u
ra

cy
in

th
e

re
p

re
se

n
ta

ti
o
n

o
f

fr
eq

u
en

ci
es

an
d

am
p

li
tu

d
es

ca
n

b
e

ob
se

rv
ed

in
th

e
fr

eq
u
en

cy
sp

ec
tr

u
m

.

4.3 GUI Images 126

F
ig

u
re

4
.2

0:
T

h
is

fi
gu

re
sh

ow
s

th
e

G
U

I
of

L
ev

el
2

6.
T

h
is

G
U

I
w

o
rk

s
o
n

a
si

n
g
le

d
eg

re
e

o
f

fr
ee

d
o
m

sy
st

em
w

h
er

e
th

e
u

se
r

ca
n

ch
a
n

g
e

th
e

m
a
ch

in
e

ro
ta

ti
o
n

a
l

sp
ee

d
,

it
s

d
am

p
in

g
fa

ct
or

,
sy

st
em

m
as

s,
st

iff
n

es
s

an
d

th
e

u
n
b

a
la

n
ce

m
a
ss

.
T

h
e

ch
a
n

g
es

in
n

a
tu

ra
l

fr
eq

u
en

cy
,

fr
eq

u
en

cy
ra

ti
o
n

,
cr

it
ic

a
l

d
a
m

p
in

g
va

lu
e

a
n

d

d
am

p
in

g
ra

ti
o

ar
e

ou
tp

u
t

to
th

e
G

U
I

sc
re

en
.

T
h

e
d

is
p

la
ce

m
en

t
a
n

d
ve

lo
ci

ty
w

av
ef

o
rm

re
sp

o
n

se
s

a
re

p
lo

tt
ed

re
la

ti
ve

to
th

e
p
h

a
se

o
f

th
e

u
n
b

a
la

n
ce

m
a
ss

.

Chapter 5

Conclusion and Further Work

5.1 Conclusion 128

5.1 Conclusion

The primary goal of developing a vibration training and awareness program was to create

a tool to familiarize clients, plant owners and technicians with the techniques used in

vibration condition monitoring of rotating machinery. The program has been created by

researching condition monitoring practices, international standard and vibration theory

on the subject. The program is the result of including the key aspects of this research

in a Matlab program and with graphical user interfaces to operate the program in the

background the user has an interactive learning tool. The user can make changes in the

displayed system to data collection parameters directly or by selecting a range of common

faults for output of a simulated vibration response. This is done to familiarize the user

with the common form of vibration data and to provide a virtual view of a machine in

terms of vibration patterns. With explanation of concepts, changes the user makes with

on screen controls produce an observable change. The user has option to plot data for

analysis beyond that provided by the graphical user interface. In this way the user can

gain an improved understanding of vibration monitoring from basic concepts to signal

processing and the interdependence of the properties effecting the vibration response.

This understanding will help the technician and plant owner better understand the role

vibration analysis can play in detecting developing machine faults, helping them prevent

expensive plant downtime.

5.2 Further Required Work

The following is work that is required to complete the level 1 and level 2 sections of the

program as well as some issues with it in its current form.

Across Program

� There appears to be some letter or number issues in GUI .txt file possibly caused

going from Windows Vista to Windows 10. A complete inspection of GUI text and

its spelling is required.

� Inclusion of code ’evalin(’base’,’clear’)’ in more GUIs to clear the workspace when

opening

5.2 Further Required Work 129

� Include more waitbars in the program

� Completion of the checklist for comprehensive review of the software.

� A program help package describing the function, operation and specification of the

system has not been compiled.

Level 1

� The user at this stage is not given information on available transducers; rather the

program is focused on the output of transducers in a horizontal plane. Simulating

data acquisition with a simulated data collector, uploading and download data is

not covered by the program for level 1 user.

� There is a fault in Level 1 5 where a slider disappears, possibly going outside range.

It happens when another slider control is used.

� Text in Level 1 7 only covers three of faults presented in the GUI, unbalance mis-

alignment and looseness. There is no text related to gear damage, vane pass, pump

cavitation or friction. Images are displayed only for the unbalance and misalignment

cases. Friction is not set up to give a plotted response Level 1 7.

� Level 1 8 code does not allow for a time delay if a transient is present in the initial

response of the single degree of freedom system.

Level 2

� Setting of pass filter lower and upper frequency bands needs to be managed by code

so the user cannot set them out of bounds.

� The two degrees of freedom system in Level 2 4 is slow and could be sped up by

changing the LOR and FMax. For the concepts of this level the established single

degree of freedom system could also be used. The two degree of freedom model was

used in Level 2 4 with the plan of achieving a system with a low frequency response

and a high frequency response, one to simulate a relatively low structural response

and the other the high frequency response to an early stage defect to be used in

enveloping. Further work is required on this.

5.2 Further Required Work 130

Further desirable work

More selectable components, drivers, intermediaries, and driven components and combin-

ing these in a system for which the vibration response to fault forces could be simulated

is yet to be developed. This would add the level of complexity with multiple degrees of

freedom where a vibration from the driven component is transferred through the structure

to the drive component. This would be along the lines of the coplanar balancing with a

rigid shaft that is required as a part of a complete Level 2 training package. The system

as it is currently written in Matlab does not accommodate this degree of complexity.

Also desirable functions are

� Provide for simulated response to be fed as a output signal to a real data collector

to record the signal.

� Provide the user with a tactile sense of the simulated vibration signal.

References

Ahmadi, A. M., Petersen, D. & Howard, C. (2015), ‘A Nonlinear Dynamic Vibration

Model of Defective Bearings - The Importance of Modelling the Finite Size of Rolling

Elements’, Mechanical Systems and Signal Processing 52-53, Issue 1, 309–326.

Balachandran, B. & Magrab, E. B. (2009), Vibrations, 2nd edn, Cengage Learning,

Toronto, Canada.

Bureau Veritas (2008), ‘Equipment photos and vibration traces extracted from database

files, Singleton NSW office’.

Commtest New Zealand (2015), ‘Products portable solutions’. http://www.commtest.

com/products/portable.

Drew, T. (1999), ‘Get Ready for More Soot: Is Your Soot Monitoring Program Up to

the EPAs New Challenge?’, Practicing Oil Analysis Magazine pp. 17–22. http:

//www.machinerylubrication.com/Read/223/photometry-engine-oil-soot.

Emerson Process Management (2015), CSI 2140 Machinery Health Analyzer. http:

//www2.emersonprocess.com/siteadmincenter/PM%20Asset%20Optimization%

20Documents/ProductReferenceAndGuides/2140_ref_UserGuide.pdf.

Engineers Australia (2010), Code of Ethics, Reference, Engineers Australia. https://

www.engineersaustralia.org.au.

Institute, M. (2010), Vibration Training Course Book Category 3, Mobius Institute, chap-

ter Appendix B, ISO Standards. Revision 31-03-10.

ISO (2014), Condition Monitoring and Diagnostics of Machines Requirements for Qual-

ification and Assessment of Personnel Part 2: Vibration Condition Monitoring and

Diagnostics, Standard ISO18436-2:2014, International Organization for Standariza-

tion. http://www.saiglobal.com.ezproxy.usq.edu.au/online/autologin.asp.

http://www.commtest.com/products/portable
http://www.commtest.com/products/portable
http://www.machinerylubrication.com/Read/223/photometry-engine-oil-soot
http://www.machinerylubrication.com/Read/223/photometry-engine-oil-soot
http://www2.emersonprocess.com/siteadmincenter/PM%20Asset%20Optimization%20Documents/ProductReferenceAndGuides/2140_ref_UserGuide.pdf
http://www2.emersonprocess.com/siteadmincenter/PM%20Asset%20Optimization%20Documents/ProductReferenceAndGuides/2140_ref_UserGuide.pdf
http://www2.emersonprocess.com/siteadmincenter/PM%20Asset%20Optimization%20Documents/ProductReferenceAndGuides/2140_ref_UserGuide.pdf
https://www.engineersaustralia.org.au
https://www.engineersaustralia.org.au
http://www.saiglobal.com.ezproxy.usq.edu.au/online/autologin.asp

REFERENCES 132

LDS Group (2003), Understanding FFT Windows. 1203http://www.physik.

uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf.

Lin, Ran, T., Tan, Andy, Howard, Ian, Pan, Jie, Crosby, Peter, Mathew & Joseph (2011),

Development of a Diagnostic Tool for Condition Monitoring of Rotating Machinery,

in ‘ICOMS Asset Management Conference Proceedings’, Asset Management Council

Limited, Oakleigh, VIC, Australia, pp. 1–9. http://eprints.qut.edu.au/41753/.

Miller, J. L. & Kitaljevich, D. (2000), In-line Oil Debris Monitor for Aircraft En-

gine Condition Assessment, in ‘Aerospace Conference Proceedings, Big Sky,

Montana, USA’, Vol. 6, Institute of Electrical and Electronics Engineers, MT,

USA, pp. 49–56. http://www.ewp.rpi.edu/hartford/~ernesto/F2006/EP/Aids/

Papers/Figueroa-Rodriguez/Miller.pdf.

Mohanty, R. A. (2014), Machinery Condition Monitoring Practices and Princi-

ples, CRC Press, FL. USA, pp. 82–86. https://books.google.com.au/

books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%

7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=

0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%

20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%

7Drinciples&f=false.

Moubray, J. (1997), Reliability Centred Maintenance, 2nd edn, Industrial Press Incorpo-

rated, New York, New York.

NSK Ltd (2015), Bearing Internal Load Distribution and Displacement. http://www.

nsk.com/services/basicknowledge/technicalreport/05distribution.html.

Osgood, B. (2007), The Fourier Transform and its Applications, Stanford University,

chapter 6. https://see.stanford.edu/materials/lsoftaee261/book-fall-07.

pdf.

Safe Work Australia (1991), Ergonomic Principles and Checklists for the Selec-

tion of Office Furniture and Equipment, Reference, Safe Work Australia.

http://www.safeworkaustralia.gov.au/sites/SWA/about/Publications/

Documents/31/Ergonomic.

Safe Work Australia (2013), Guide for Managing the Risk of Fatigue at Work, Reference,

Safe Work Australia. http://www.safeworkaustralia.gov.au/sites/SWA/about/

Publications/Documents/825/Managing-the-risk-of-fatigue.pdf.

1203http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
1203http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
http://eprints.qut.edu.au/41753/
http://www.ewp.rpi.edu/hartford/~ernesto/F2006/EP/Aids/Papers/Figueroa-Rodriguez/Miller.pdf
http://www.ewp.rpi.edu/hartford/~ernesto/F2006/EP/Aids/Papers/Figueroa-Rodriguez/Miller.pdf
https://books.google.com.au/books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%7Drinciples&f=false
https://books.google.com.au/books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%7Drinciples&f=false
https://books.google.com.au/books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%7Drinciples&f=false
https://books.google.com.au/books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%7Drinciples&f=false
https://books.google.com.au/books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%7Drinciples&f=false
https://books.google.com.au/books?id=TXXSBQAAQBAJ&pg=PP1&dq=M%7Dachinery+%7BC%7Dondition+%7BM%7Donitoring+%7BP%7Dractices+and+%7BP%7Drinciples&hl=en&sa=X&ved=0CDEQ6AEwAGoVChMIuc2c3qHfxwIVoimmCh3Y5gCd#v=onepage&q=M%7Dachinery%20%7BC%7Dondition%20%7BM%7Donitoring%20%7BP%7Dractices%20and%20%7BP%7Drinciples&f=false
http://www.nsk.com/services/basicknowledge/technicalreport/05distribution.html
http://www.nsk.com/services/basicknowledge/technicalreport/05distribution.html
https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf
https://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf
http://www.safeworkaustralia.gov.au/sites/SWA/about/Publications/Documents/31/Ergonomic
http://www.safeworkaustralia.gov.au/sites/SWA/about/Publications/Documents/31/Ergonomic
http://www.safeworkaustralia.gov.au/sites/SWA/about/Publications/Documents/825/Managing-the-risk-of-fatigue.pdf
http://www.safeworkaustralia.gov.au/sites/SWA/about/Publications/Documents/825/Managing-the-risk-of-fatigue.pdf

REFERENCES 133

Rockwell Automation (2015), XM120 and XM121 Dynamic Measurement Modules.

http://www.ab.com/en/epub/catalogs/5668943/5675109/5675111/5675276/

index.html.

Scheffer, C. & Girdhar, P. (2004), Practical Machinery Vibration Analysis and Predictive

Maintenance, revised edn, Elsevier, chapter 3, pp. 29–30.

SKF USA (2014), Condition Monitoring Essentials. http://www.skf.com/binary/

101-48656/CM-P1-11704-6-EN-Condition-Monitoring-Essentials-Catalog.

pdf.

Wiggelinkhuizen, E., Verbruggen, T., Braam, H., Rademakers, L., Xiang, J. & Wat-

son, S. (2008), ‘Assessment of Condition Monitoring Techniques for Offshore

Wind Farms’, Journal of Solar Energy Engineering 130. http://www.ewea.org/

ewec2007/allfiles2/136_Ewec2007fullpaper.pdf.

http://www.ab.com/en/epub/catalogs/5668943/5675109/5675111/5675276/index.html
http://www.ab.com/en/epub/catalogs/5668943/5675109/5675111/5675276/index.html
http://www.skf.com/binary/101-48656/CM-P1-11704-6-EN-Condition-Monitoring-Essentials-Catalog.pdf
http://www.skf.com/binary/101-48656/CM-P1-11704-6-EN-Condition-Monitoring-Essentials-Catalog.pdf
http://www.skf.com/binary/101-48656/CM-P1-11704-6-EN-Condition-Monitoring-Essentials-Catalog.pdf
http://www.ewea.org/ewec2007/allfiles2/136_Ewec2007fullpaper.pdf
http://www.ewea.org/ewec2007/allfiles2/136_Ewec2007fullpaper.pdf

Appendix A

Project Specification

135

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project

PROJECT SPECFICATION

FOR: Richard Amos Little

TOPIC: CONDITION MONITORING OF ROTATING MACHINERY -

VIBRATION ANALYSIS

SUPERVISOR: Robert Fulcher

PROJECT AIM: Predicting failure problems with rotating machines using condition

monitoring techniques.

Determine faults most readily detected using vibration analysis and

create a virtual

software package for awareness and training purposes.

PROGRAM: Version 4, 18/3/15

1. Research condition monitoring (CM) techniques, and associated theory, used with

rotating machinery

2. Research suitability and success of various CM techniques in predicting failure prob-

lems with various types of rotating machinery.

3. Grade the success of various CM techniques to machine classes based on findings

from literature review.

4. Research safety issues associated with condition monitoring of machines. Section

10.7 and appendix C of the project resource book (PRB).

5. Cover implications, consequential effects and any ethical issues related to the project

and potential outcomes. Section 10.5 and appendix H of PRB.

6. Define desirable features and learning outcomes from use of a training unit.

7. Research the suitability and availability of software packages to create a virtual

training unit. See section 10.8 of PRB.

8. Complete the literature review of evidence supporting all research thus far including

the citation of other work and provision of references at an international standard.

See section 10.4, 11.8, appendix F of PRB and USQ library material.

136

9. SUBMIT PRELIMINARY REPORT JUNE 3 IN STYLE FOR DISSERTATION

WITH ASPECTS COMPLETED FOR INSERTION DIRECTLY INTO DISSER-

TATION. Section 10.3 of PRB.

10. Design and create a virtual training unit based on critique of research and literature

review.

11. Set out conclusions and recommendations based on project results with respect to

initial objectives and with supporting evidence of outcomes.

12. Explore ideas for potential future work on the topic.

13. Prepare a presentation of project work for delivery to a university and industry

audience as part of the annual project conference on USQ campus. 21-25 September

2015

14. Complete Dissertation. Section 11 and Appendix E of PRB.

15. SUBMIT DISSERTATION 29 OCTOBER 2015, APPENDIX G

AGREED:

R LITTLE (Student) R FULCHER (Supervisor)

Date : 18/03/2015 Date : 18/03/2015

Appendix B

Supporting Information

B.1 Vibration Plots 138

B.1 Vibration Plots

The following vibration waveforms and spectra are included to give reference to the pat-

terns that defects create. This reference is for comparison with output from the modeled

systems programmed into the of the virtual training program.

Figure B.1: This image shows a conveyor bend pulley outer race defect with the defect impact

rate of 15Hz. The spectrum and waveform are in displacement units of microns. (Bureau

Veritas 2008-2015)

B.1 Vibration Plots 139

Figure B.2: This image shows the conveyor bend pulley outer race defect with the defect

impact rate of 15Hz with spectrum and waveform in acceleration units of G′s. (Bureau

Veritas 2008-2015)

Figure B.3: This image shows a pump motor outer race defect with the defect impact rate

of 154Hz. The spectrum shows approximately 0-4000Hz in velocity units of mm/s. (Bureau

Veritas 2008-2015)

B.1 Vibration Plots 140

Figure B.4: This figure shows vibration from a pump 25Hz pump motor with an inner race

defect at 97Hz with the spectrum in acceleration g’s and the waveform in velocity mm/s.

Note the sidebands in the spectrum and the impact modulation in the waveform. (Bureau

Veritas 2008-2015)

Figure B.5: This image shows a 50Hz pump with a bearing roller defect at a rate of 211Hz.

The spectrum and waveform show 0-2000Hz in velocity units of mm/s. (Bureau Veritas

2008-2015)

B.1 Vibration Plots 141

Figure B.6: This image shows a 25Hz pump motor with an unbalance vibration. The spectrum

and waveform are in velocity units of mm/s. (Bureau Veritas 2008-2015)

Figure B.7: This image shows looseness in a product screen jack shaft with multiple harmonics

in the spectrum and impact in the waveform at run speed 15.4Hz. Units are velocity mm/s.

(Bureau Veritas 2008-2015)

B.1 Vibration Plots 142

Figure B.8: This image shows an example of motor-pump misalignment in a 50Hz drive

with the typical waveform pattern and elevated second harmonic in the frequency spec-

trum.(Bureau Veritas 2008-2015)

Figure B.9: This image shows a 25Hz pump with vane pass vibration at 7 orders of run speed

highlighted in the spectrum and waveform. The sunits are velocity mm/s. (Bureau Veritas

2008-2015)

B.1 Vibration Plots 143

Figure B.10: This image shows a 25Hz pump displaying cavitation as random vibration across

a broad frequency rage. The spectrum and waveform are in acceleration units of g’s. (Bureau

Veritas 2008-2015)

Figure B.11: This image shows a pump motor with friction as a concentrated area of elevated

random vibration in the spectrum. The spectrum and waveform are in acceleration units of

g’s. (Bureau Veritas 2008-2015)

Appendix C

Program Code

C.1 Program Code Overview 145

C.1 Program Code Overview

This is Matlab code for training program. The general structure is raised once the GUI

is built in the Matlabs graphical user interface development environment (GUIDE). The

titles, function headings for opening the level, GUI controls, axes and text boxes are

raised automatically when the GUI is generated giving a structure that code is written

in to perform the function of the controls on the users request and to display texts and

graphing of vibration simulations. Titles have been modified where it helps explain the

function of GUI operations. Some brief GUIDE auto generated code remains unchanged

and is required by the program to generate the GUI when it is called and where computer

background colors are checked and some default colors set to generate the GUI screen.

The display of images, text, values, plotting and operation of all GUI pushbuttons, radio-

buttons, sliders etc is operated by code written to present the training/awareness program.

This code also modifies some color output for animations, the test of Level 1 10 and in

some plotting functions.

The function file for the single degree of freedom system at the end of this appendix is

called by the GUI code throughout the program for iteratively solving the response of the

system to the input forcing functions. The two degree of freedom function file is called

by Level 2 4 to solve displacement and velocity response for mass 1 and mass 2 due to

the forcing function acting on mass 1, and only reslts for mass 1 are used.

In addition to the code in this appendix the GUIDE generated .fig figure files for each

level are required. Images of GUI’s are shown in Chapter 4.

The program can be started with the command run’Open’ in the Matlab command win-

dow.

C.2 Open 146

C.2 Open

function varargout = Open(varargin)

% OPEN M-file for Open.fig

% Last Modified by GUIDE v2.5 12-Sep-2015 14:25:46

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Open OpeningFcn, ...

'gui OutputFcn', @Open OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Open is made visible.

function Open OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Open

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.

function varargout = Open OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

C.2 Open 147

% --- Executes on button press in pushbutton1.

function pushbutton1 Callback(hObject, eventdata, handles)

run('Level 1 1')

close('Open')

% --- Executes during object creation, after setting all properties.

function pushbutton1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in pushbutton3.

function pushbutton3 Callback(hObject, eventdata, handles)

run('Level 2 1')

close('Open')

%End of OPEN.m

C.3 Level 1 1 148

C.3 Level 1 1

function varargout = Level 1 1(varargin)

% LEVEL 1 1 M-file for Level 1 1.fig

%

% Last Modified by GUIDE v2.5 11-Sep-2015 17:19:23

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 1 OpeningFcn, ...

'gui OutputFcn', @Level 1 1 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 1 is made visible.

function Level 1 1 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 1

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Displays text explanation in GUI edit1

fid=fopen('Level 1 1.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

C.3 Level 1 1 149

set(handles.edit1,'String',C);

%Calculates and plots a sine wave

t=0:0.01:10;

w=get(handles.slider2,'Value');

A=get(handles.slider1,'Value');

sine=A*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 1 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Recalculates and plots wave when amplitude is adjusted

function slider1 Callback(hObject, eventdata, handles)

t=0:0.01:10;

w=get(handles.slider2,'Value');

A=get(handles.slider1,'Value');

sine=A*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

axes(handles.axes1);

xlabel('Time (s)')

C.3 Level 1 1 150

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots wave when frequency is adjusted

function slider2 Callback(hObject, eventdata, handles)

t=0:0.01:10;

w=get(handles.slider2,'Value');

A=get(handles.slider1,'Value');

sine=A*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Open')

close('Level 1 1')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

C.3 Level 1 1 151

run('Level 1 2')

close('Level 1 1')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

'callback'; SHM

% --- Executes on button press in radiobutton1.

function radiobutton1 Callback(hObject, eventdata, handles)

% --- Executes on button press in pushbutton5.

function pushbutton5 Callback(hObject, eventdata, handles)

% --- Executes on button press in pushbutton6.

function pushbutton6 Callback(hObject, eventdata, handles)

%Runs basic animation of simple harmonic motion

set(handles.pushbutton6,'enable','off');

a=get(handles.pushbutton5,'position');

A1=get(handles.slider1,'Value');

w=get(handles.slider2,'Value');

tstep=0.1;

t=0:tstep:10;

pause on

for n=1:max(size(t))

y1=a(2)+0.18*A1*sin(w*t(n));

pause(tstep)

set(handles.pushbutton5,'position',[a(1) y1 a(3) a(4)])

if n>=max(size(t))

set(handles.pushbutton5,'position',[a(1) 0.289 a(3) a(4)])

set(handles.pushbutton6,'enable','on');

end

end

%END Level 1 1

C.4 Level 1 2 152

C.4 Level 1 2

function varargout = Level 1 2(varargin)

% LEVEL 1 2 M-file for Level 1 2.fig

% Last Modified by GUIDE v2.5 17-Aug-2015 07:14:54

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 2 OpeningFcn, ...

'gui OutputFcn', @Level 1 2 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 2 is made visible.

function Level 1 2 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Displays text explanation for concept presented in GUI

fid=fopen('Level 1 2.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

C.4 Level 1 2 153

fclose(fid);

set(handles.edit1,'String',C);

%Calculates and plots sine waves with phase shift

t=0:0.01:10;

f=get(handles.slider2,'Value');

w=2*pi*f;

A=get(handles.slider1,'Value');

p=get(handles.slider3,'Value');

a=get(handles.slider4,'Value');

phi=p*pi;

sine=A*sin(w*t);

sine2=a*sin(w*t+phi);

plot(handles.axes1,t,sine,t,sine2)

xlabel('Time (s)')

ylabel('Amplitude')

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 2 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Recalculates and plots when amplitude(left) is changed.

function slider1 Callback(hObject, eventdata, handles)

t=0:0.01:10;

f=get(handles.slider2,'Value');

w=2*pi*f;

A=get(handles.slider1,'Value');

p=get(handles.slider3,'Value');

C.4 Level 1 2 154

a=get(handles.slider4,'Value');

phi=p*pi;

sine=A*sin(w*t);

sine2=a*sin(w*t+phi);

plot(handles.axes1,t,sine,t,sine2)

xlabel('Time (s)')

ylabel('Amplitude')

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots when Frequency is changed.

function slider2 Callback(hObject, eventdata, handles)

t=0:0.01:10;

f=get(handles.slider2,'Value');

w=2*pi*f;

A=get(handles.slider1,'Value');

p=get(handles.slider3,'Value');

a=get(handles.slider4,'Value');

phi=p*pi;

sine=A*sin(w*t);

sine2=a*sin(w*t+phi);

plot(handles.axes1,t,sine,t,sine2)

xlabel('Time (s)')

ylabel('Amplitude')

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

C.4 Level 1 2 155

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 1')

pause off

close('Level 1 2')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 3')

pause off

close('Level 1 2')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% Shows equation for sin wave and phase adjustment

'callback';

text(0.1,0.95,'Shifting the Phase','FontSize',10)

text('Interpreter','latex','String'...

,'$$y=A\cos(\omega t \pm \phi)$$','Position',[.3 .85],'FontSize',10)

% --- Executes on button press in pushbutton3.

function pushbutton3 Callback(hObject, eventdata, handles)

%Runs simple harmonic motion animation of two boxes as per the graph

set(handles.pushbutton3,'enable','off');

a=get(handles.pushbutton4,'position');

b=get(handles.pushbutton5,'position');

A1=get(handles.slider1,'Value');

A2=get(handles.slider4,'Value');

f=get(handles.slider2,'Value');

w=2*pi*f;

p=get(handles.slider3,'Value');

C.4 Level 1 2 156

phi=p*pi;

tstep=0.01;

t=0:tstep:10;

pause on

for n=1:max(size(t))

y1=a(2)+0.18*A1*sin(w*t(n));

y2=b(2)+0.18*A2*sin(w*t(n)+phi);

pause(tstep)

set(handles.pushbutton4,'position',[a(1) y1 a(3) a(4)])

set(handles.pushbutton5,'position',[b(1) y2 b(3) b(4)])

if n>=max(size(t))

set(handles.pushbutton4,'position',[a(1) 0.2944 a(3) a(4)])

set(handles.pushbutton5,'position',[b(1) 0.2944 b(3) b(4)])

set(handles.pushbutton3,'enable','on');

end

end

% --- pushbutton4 used in animation.

function pushbutton4 Callback(hObject, eventdata, handles)

% --- pushbutton5 used in animation.

function pushbutton5 Callback(hObject, eventdata, handles)

% --- Executes on button press in togglebutton1.

function togglebutton1 Callback(hObject, eventdata, handles)

a=get(handles.pushbutton4,'position');

disp(a)

tstep=0.1;

t=1:tstep:10;

pause on

for n=1:max(size(t))

y=0.34+0.2*sin(3*t(n));

pause(tstep)

set(handles.pushbutton4,'position',[a(1) y a(3) a(4)])

end

% --- Recalculates and plots when phase is changed.

function slider3 Callback(hObject, eventdata, handles)

t=0:0.01:10;

f=get(handles.slider2,'Value');

w=2*pi*f;

C.4 Level 1 2 157

A=get(handles.slider1,'Value');

p=get(handles.slider3,'Value');

a=get(handles.slider4,'Value');

phi=p*pi;

sine=A*sin(w*t);

sine2=a*sin(w*t+phi);

plot(handles.axes1,t,sine,t,sine2)

xlabel('Time (s)')

ylabel('Amplitude')

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

% --- Executes during object creation, after setting all properties.

function slider3 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

,get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots when amplitude (right) is changed.

function slider4 Callback(hObject, eventdata, handles)

t=0:0.01:10;

f=get(handles.slider2,'Value');

w=2*pi*f;

A=get(handles.slider1,'Value');

p=get(handles.slider3,'Value');

a=get(handles.slider4,'Value');

phi=p*pi;

sine=A*sin(w*t);

sine2=a*sin(w*t+phi);

plot(handles.axes1,t,sine,t,sine2)

xlabel('Time (s)')

ylabel('Amplitude')

set(handles.axes1,'xlim', [0 11])

set(handles.axes1,'ylim',[-1.2 1.2])

% --- Executes during object creation, after setting all properties.

function slider4 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

C.4 Level 1 2 158

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

%END Level 1 2

C.5 Level 1 3 159

C.5 Level 1 3

function varargout = Level 1 3(varargin)

% LEVEL 1 3 M-file for Level 1 3.fig

% Last Modified by GUIDE v2.5 17-Aug-2015 07:14:21

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 3 OpeningFcn, ...

'gui OutputFcn', @Level 1 3 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 3 is made visible.

function Level 1 3 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 3

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Displays text for concepts covered in this GUI

fid=fopen('Level 1 3.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

C.5 Level 1 3 160

set(handles.edit1,'String',C);

%Calculates and plots sinewave

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=get(handles.slider1,'Value');

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'xlim', [0 2.2])

set(handles.axes1,'ylim',[-1.2 1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2 for Hanning window

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Turn wave into a binary length file for fft

NFFT = 2ˆ(nextpow2(Length)+2);

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)))

set(handles.axes2,'xlim', [0 55])

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 3 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

C.5 Level 1 3 161

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Recalculates and plots sinewave when amplitude is adjusted

function slider1 Callback(hObject, eventdata, handles)

%Calculates and plots sinewave

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=get(handles.slider1,'Value');

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'xlim', [0 2.2])

set(handles.axes1,'ylim',[-1.2 1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2 for Hanning window

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Turn wave into a binary length file for fft

NFFT = 2ˆ(nextpow2(Length)+2);

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)))

set(handles.axes2,'xlim', [0 55])

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

C.5 Level 1 3 162

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots sinewave when frequency is adjusted

function slider2 Callback(hObject, eventdata, handles)

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=get(handles.slider1,'Value');

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'xlim', [0 2.2])

set(handles.axes1,'ylim',[-1.2 1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2 for Hanning window

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Turn wave into a binary length file for fft

NFFT = 2ˆ(nextpow2(Length)+2);

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)))

set(handles.axes2,'xlim', [0 55])

C.5 Level 1 3 163

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 2')

close('Level 1 3')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 4')

close('Level 1 3')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

%END Level 1 3

C.6 Level 1 4 164

C.6 Level 1 4

function varargout = Level 1 4(varargin)

% LEVEL 1 4 M-file for Level 1 4.fig

%

% Last Modified by GUIDE v2.5 17-Aug-2015 07:13:34

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 4 OpeningFcn, ...

'gui OutputFcn', @Level 1 4 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 4 is made visible.

function Level 1 4 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 4

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Open a text document for insertion into GUI at edit1

fid=fopen('Level 1 4.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

C.6 Level 1 4 165

set(handles.edit1,'String',C);

%Set initial conditions amplitude and frequency of displayed waveform

if (get(handles.radiobutton11,'Value') == get(handles.radiobutton11,'Max'))

% Radio button is selected-take approriate action

u=25.4;

else

% Radio button is not selected-take approriate action

u=1;

end

%

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=u*get(handles.slider1,'Value');

%The following are needed to plot -peak, zero, peak and RMS lines

one=ones(size(t));

zero=zeros(size(t));

p=Amplitude*one;

%Makes the sine wave plotted in axes1 and for the fft process

%Also plots -peak, zero, peak and RMS lines

sine=Amplitude*sin(w*t);

PP=1500;

RM=1600;

plot(handles.axes1,t(1:PP),sine(1:PP),t,p,'g',t,-p,'g',t,zero,'g'...

,t(1:RM),0.707*p(1:RM),'r')

text(0.7,Amplitude+0.05,' This is the Positive Peak','Parent'...

,handles.axes1);

text(0.7,-(Amplitude+0.05),' This is the Negative Peak','Parent'...

,handles.axes1);

text(1.6,Amplitude/sqrt(2),' This is the RMS Level','Parent'...

,handles.axes1);

set(handles.axes1,'xlim', [0 2.2],'ylim',[-u*1.2 u*1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window to reduce leakage in fft

HanningLength=length(sine);

C.6 Level 1 4 166

Transposesine=sine';

%This an amplitude correction factor of 2. Energy calculation use cf 1.633

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Next power of 2 for length

NFFT = 2ˆ(nextpow2(Length)+2);

%Conduct fft and plot in axes2 as spectrum

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)),f,sqrt(2)*abs(Y(1:NFFT/2+1)),'r')

set(handles.axes2,'xlim', [0 55],'ylim',[0 u*1.2])

%AXES LABELS

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

text(Frequency+1,Amplitude,'Peak','Parent',handles.axes2);

text(Frequency+1,Amplitude/sqrt(2),'RMS','Parent',handles.axes2);

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 4 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Recalculates and plots when amplitude is adjusted

function slider1 Callback(hObject, eventdata, handles)

if (get(handles.radiobutton11,'Value') == get(handles.radiobutton11,'Max'))

C.6 Level 1 4 167

% Radio button is selected-take approriate action

u=25.4;

else

% Radio button is not selected-take approriate action

u=1;

end

%

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=u*get(handles.slider1,'Value');

%The following are needed to plot -peak, zero, peak and RMS lines

one=ones(size(t));

zero=zeros(size(t));

p=Amplitude*one;

%Makes the sine wave plotted in axes1 and for the fft process

%Also plots -peak, zero, peak and RMS lines

sine=Amplitude*sin(w*t);

PP=1500;

RM=1600;

plot(handles.axes1,t(1:PP),sine(1:PP),t,p,'g',t,-p,'g',t,zero,'g'...

,t(1:RM),0.707*p(1:RM),'r')

text(0.7,Amplitude+0.05,' This is the Positive Peak','Parent'...

,handles.axes1);

text(0.7,-(Amplitude+0.05),' This is the Negative Peak','Parent'...

,handles.axes1);

text(1.6,Amplitude/sqrt(2),' This is the RMS Level','Parent'...

,handles.axes1);

set(handles.axes1,'xlim', [0 2.2],'ylim',[-u*1.2 u*1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window to reduce leakage in fft

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2. Energy calculation use cf 1.633

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

C.6 Level 1 4 168

% Next power of 2 for length

NFFT = 2ˆ(nextpow2(Length)+2);

%Conduct fft and plot in axes2 as spectrum

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)),f,sqrt(2)*abs(Y(1:NFFT/2+1)),'r')

set(handles.axes2,'xlim', [0 55],'ylim',[0 u*1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

text(Frequency+1,Amplitude,'Peak','Parent',handles.axes2);

text(Frequency+1,Amplitude/sqrt(2),'RMS','Parent',handles.axes2);

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots when frequency is adjusted

function slider2 Callback(hObject, eventdata, handles)

%

if (get(handles.radiobutton11,'Value') == get(handles.radiobutton11,'Max'))

% Radio button is selected-take approriate action

u=25.4;

else

% Radio button is not selected-take approriate action

u=1;

end

%

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=u*get(handles.slider1,'Value');

C.6 Level 1 4 169

%The following are needed to plot -peak, zero, peak and RMS lines

one=ones(size(t));

zero=zeros(size(t));

p=Amplitude*one;

%Makes the sine wave plotted in axes1 and for the fft process

%Also plots -peak, zero, peak and RMS lines

sine=Amplitude*sin(w*t);

PP=1500;

RM=1600;

plot(handles.axes1,t(1:PP),sine(1:PP),t,p,'g',t,-p,'g',t,zero,'g'...

,t(1:RM),0.707*p(1:RM),'r')

text(0.7,Amplitude+0.05,' This is the Positive Peak','Parent'...

,handles.axes1);

text(0.7,-(Amplitude+0.05),' This is the Negative Peak','Parent'...

,handles.axes1);

text(1.6,Amplitude/sqrt(2),' This is the RMS Level','Parent'...

,handles.axes1);

set(handles.axes1,'xlim', [0 2.2],'ylim',[-u*1.2 u*1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window to reduce leakage in fft

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2.

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Next power of 2 for length

NFFT = 2ˆ(nextpow2(Length)+2);

%Conduct fft and plot in axes2 as spectrum

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)),f,sqrt(2)*abs(Y(1:NFFT/2+1)),'r')

set(handles.axes2,'xlim', [0 55],'ylim',[0 u*1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

C.6 Level 1 4 170

text(Frequency+1,Amplitude,'Peak','Parent',handles.axes2);

text(Frequency+1,Amplitude/sqrt(2),'RMS','Parent',handles.axes2);

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 3')

close('Level 1 4')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 5')

close('Level 1 4')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Recalculates and plots when mm are selected.

function radiobutton11 Callback(hObject, eventdata, handles)

if (get(handles.radiobutton11,'Value') == get(handles.radiobutton11,'Max'))

% Radio button is selected-take approriate action

u=25.4;

else

% Radio button is not selected-take approriate action

u=1;

end

C.6 Level 1 4 171

%

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=u*get(handles.slider1,'Value');

%The following are needed to plot -peak, zero, peak and RMS lines

one=ones(size(t));

zero=zeros(size(t));

p=Amplitude*one;

%Makes the sine wave plotted in axes1 and for the fft process

%Also plots -peak, zero, peak and RMS lines

sine=Amplitude*sin(w*t);

PP=1500;

RM=1600;

plot(handles.axes1,t(1:PP),sine(1:PP),t,p,'g',t,-p,'g',t,zero,'g'...

,t(1:RM),0.707*p(1:RM),'r')

text(0.7,Amplitude+0.05,' This is the Positive Peak','Parent'...

,handles.axes1);

text(0.7,-(Amplitude+0.05),' This is the Negative Peak','Parent'...

,handles.axes1);

text(1.6,Amplitude/sqrt(2),' This is the RMS Level','Parent'...

,handles.axes1);

set(handles.axes1,'xlim', [0 2.2],'ylim',[-u*1.2 u*1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window to reduce leakage in fft

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Next power of 2 for length

NFFT = 2ˆ(nextpow2(Length)+2);

%Conduct fft and plot in axes2 as spectrum

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)),f,sqrt(2)*abs(Y(1:NFFT/2+1)),'r')

C.6 Level 1 4 172

set(handles.axes2,'xlim', [0 55],'ylim',[0 u*1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

text(Frequency+1,Amplitude,'Peak','Parent',handles.axes2);

text(Frequency+1,Amplitude/sqrt(2),'RMS','Parent',handles.axes2);

% --- Recalculates and plots when inches are selected.

function radiobutton12 Callback(hObject, eventdata, handles)

if (get(handles.radiobutton11,'Value') == get(handles.radiobutton11,'Max'))

% Radio button is selected-take approriate action

u=25.4;

else

% Radio button is not selected-take approriate action

u=1;

end

%

TimeStep=0.001;

Time=2;

t=0:TimeStep:Time;

Frequency=get(handles.slider2,'Value');

w=2*pi*Frequency;

Amplitude=u*get(handles.slider1,'Value');

%The following are needed to plot -peak, zero, peak and RMS lines

one=ones(size(t));

zero=zeros(size(t));

p=Amplitude*one;

%Makes the sine wave plotted in axes1 and for the fft process

%Also plots -peak, zero, peak and RMS lines

sine=Amplitude*sin(w*t);

PP=1500;

RM=1600;

plot(handles.axes1,t(1:PP),sine(1:PP),t,p,'g',t,-p,'g',t,zero,'g'...

,t(1:RM),0.707*p(1:RM),'r')

C.6 Level 1 4 173

text(0.7,Amplitude+0.05,' This is the Positive Peak','Parent'...

,handles.axes1);

text(0.7,-(Amplitude+0.05),' This is the Negative Peak','Parent'...

,handles.axes1);

text(1.6,Amplitude/sqrt(2),' This is the RMS Level','Parent'...

,handles.axes1);

set(handles.axes1,'xlim', [0 2.2],'ylim',[-u*1.2 u*1.2])

%Setting parameters for input into fft

SampleFrequency=1/TimeStep;

Length=Time/TimeStep;

%Hanning window to reduce leakage in fft

HanningLength=length(sine);

Transposesine=sine';

%This an amplitude correction factor of 2

cf=2;

Sine=cf*Transposesine.*hanning(HanningLength);

% Next power of 2 for length

NFFT = 2ˆ(nextpow2(Length)+2);

%Conduct fft and plot in axes2 as spectrum

Y = fft(Sine,NFFT)/Length;

f = SampleFrequency/2*linspace(0,1,NFFT/2+1);

plot(handles.axes2,f,2*abs(Y(1:NFFT/2+1)),f,sqrt(2)*abs(Y(1:NFFT/2+1)),'r')

set(handles.axes2,'xlim', [0 55],'ylim',[0 u*1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

text(Frequency+1,Amplitude,'Peak','Parent',handles.axes2);

text(Frequency+1,Amplitude/sqrt(2),'RMS','Parent',handles.axes2);

% --- Executes during object creation, after setting all properties.

function axes3 CreateFcn(hObject, eventdata, handles)

% hObject handle to axes3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

text(0.1,0.9,'Conversion of RPM to Hz','FontSize',10)

text('Interpreter','latex','String','$$f(Hz)=RPM/60$$','Position'...

,[.2 .75],'FontSize',10)

C.6 Level 1 4 174

text(0.1,0.6,'RMS level for a sinusoid','FontSize',10)

text('Interpreter','latex','String','$$x {rms}=A {max}/\sqrt{2}$$'...

,'Position',[.2 .45],'FontSize',10)

%END Level 1 4

C.7 Level 1 5 175

C.7 Level 1 5

function varargout = Level 1 5(varargin)

% LEVEL 1 5 M-file for Level 1 5.fig

%

% Last Modified by GUIDE v2.5 17-Aug-2015 07:11:15

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 5 OpeningFcn, ...

'gui OutputFcn', @Level 1 5 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 5 is made visible.

function Level 1 5 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 5

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

fid=fopen('Level 1 5.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

C.7 Level 1 5 176

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1

FMax=20000;

case 2

FMax=10000;

case 3

FMax=5000;

case 4

FMax=2000;

case 5

FMax=1000;

case 6

FMax=500;

case 7

FMax=200;

case 8

FMax=100;

case 9

FMax=50;

otherwise

end

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

LOR=25600;

case 2

LOR=12800;

case 3

LOR=6400;

case 4

LOR=3200;

case 5

LOR=1600;

case 6

LOR=800;

case 7

LOR=400;

otherwise

end

C.7 Level 1 5 177

%fft accounts for the common use of the factor 2.56. Matlab will use 100

% of the fft outcome giving a FMax at half the sampling frequency where

% because of alaising that can occur with digitizing a signal because of

%leakage with filtering hardware it is common to use 100%*(2/2.56)=78.125%

%

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

set(handles.slider2,'Max',FMax);

set(handles.slider2,'Min',1);

set(handles.slider2,'Value',0.5*FMax);

f=get(handles.slider2,'Value');

Amplitude=get(handles.slider1,'Value');

w=2*pi*f;

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'ylim',[-1.1 1.1]);

Y = fft(sine,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 5 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

C.7 Level 1 5 178

% hObject handle to edit1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on slider movement.

function slider1 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1

FMax=20000;

case 2

FMax=10000;

case 3

FMax=5000;

case 4

FMax=2000;

case 5

FMax=1000;

case 6

FMax=500;

case 7

FMax=200;

case 8

FMax=100;

case 9

FMax=50;

otherwise

end

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

LOR=25600;

case 2

LOR=12800;

C.7 Level 1 5 179

case 3

LOR=6400;

case 4

LOR=3200;

case 5

LOR=1600;

case 6

LOR=800;

case 7

LOR=400;

otherwise

end

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

f=get(handles.slider2,'Value');

Amplitude=get(handles.slider1,'Value');

w=2*pi*f;

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'ylim',[-1.1 1.1]);

Y = fft(sine,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

C.7 Level 1 5 180

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes on slider movement.

function slider2 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1

FMax=20000;

case 2

FMax=10000;

case 3

FMax=5000;

case 4

FMax=2000;

case 5

FMax=1000;

case 6

FMax=500;

case 7

FMax=200;

case 8

FMax=100;

case 9

FMax=50;

otherwise

end

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

LOR=25600;

case 2

LOR=12800;

case 3

LOR=6400;

case 4

LOR=3200;

case 5

LOR=1600;

case 6

LOR=800;

C.7 Level 1 5 181

case 7

LOR=400;

otherwise

end

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

set(handles.slider2,'Max',FMax);

set(handles.slider2,'Min',1);

f=get(handles.slider2,'Value');

Amplitude=get(handles.slider1,'Value');

w=2*pi*f;

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'ylim',[-1.1 1.1]);

Y = fft(sine,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

C.7 Level 1 5 182

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 4')

close('Level 1 5')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 6')

close('Level 1 5')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Executes on selection change in popupmenu1.

function popupmenu1 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1

FMax=20000;

case 2

FMax=10000;

case 3

FMax=5000;

case 4

FMax=2000;

case 5

FMax=1000;

case 6

FMax=500;

case 7

FMax=200;

case 8

FMax=100;

case 9

FMax=50;

otherwise

end

C.7 Level 1 5 183

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

LOR=25600;

case 2

LOR=12800;

case 3

LOR=6400;

case 4

LOR=3200;

case 5

LOR=1600;

case 6

LOR=800;

case 7

LOR=400;

otherwise

end

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

set(handles.slider2,'Max',FMax);

set(handles.slider2,'Min',1);

f=get(handles.slider2,'Value');

Amplitude=get(handles.slider1,'Value');

w=2*pi*f;

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'ylim',[-1.1 1.1]);

Y = fft(sine,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

C.7 Level 1 5 184

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on selection change in popupmenu2.

function popupmenu2 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1

FMax=20000;

case 2

FMax=10000;

case 3

FMax=5000;

case 4

FMax=2000;

case 5

FMax=1000;

case 6

FMax=500;

case 7

FMax=200;

case 8

FMax=100;

case 9

FMax=50;

otherwise

end

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

LOR=25600;

C.7 Level 1 5 185

case 2

LOR=12800;

case 3

LOR=6400;

case 4

LOR=3200;

case 5

LOR=1600;

case 6

LOR=800;

case 7

LOR=400;

otherwise

end

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

f=get(handles.slider2,'Value');

Amplitude=get(handles.slider1,'Value');

w=2*pi*f;

sine=Amplitude*sin(w*t);

plot(handles.axes1,t,sine)

set(handles.axes1,'ylim',[-1.1 1.1]);

Y = fft(sine,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 1.2])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Executes during object creation, after setting all properties.

function popupmenu2 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

C.7 Level 1 5 186

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

%END Level 1 5

C.8 Level 1 6 187

C.8 Level 1 6

function varargout = Level 1 6(varargin)

% LEVEL 1 6 M-file for Level 1 6.fig

%

% Last Modified by GUIDE v2.5 17-Aug-2015 11:59:13

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 6 OpeningFcn, ...

'gui OutputFcn', @Level 1 6 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 6 is made visible.

function Level 1 6 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 6

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Display text description of concepts presented in GUI

fid=fopen('Level 1 6.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

C.8 Level 1 6 188

FMax=200; %Maximum frequency

LOR=6400; %Lines of resolution

%Get parameter values from sliders for Amplitude, frequency, mass and

%stiffness

Amplitude=get(handles.slider1,'Value');

fHz=get(handles.slider2,'Value');

m=get(handles.slider3,'Value');

k=get(handles.slider4,'Value');

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

%Forcing frequency and natural frequency

wf=2*pi*fHz;

wn=sqrt(k/m);

%Frequency ratio

F R=wf/wn;

d r=0.1; %Damping ratio

T R=((F Rˆ2)/sqrt((1-F Rˆ2)ˆ2+(2*d r*F R)ˆ2));

f r=(0.01:0.01:2*F R);

t r=((f r.ˆ2)./sqrt((1-f r.ˆ2).ˆ2+(2*d r*f r).ˆ2));

sine=T R*Amplitude*sin(wf*t);

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round(Amplitude,2));

set(handles.edit5,'String',round(wn/(2*pi),2));

set(handles.edit6,'String',round(T R,2));

p=plot(handles.axes1,f r,t r,F R,T R);

p(2).Marker='O';

legend(handles.axes1,'Transmissibility Curve','System Transmissibility')

set(handles.axes1,'xlim',[0 2*F R],'ylim',[0 6]);

axes(handles.axes1);

xlabel('wf/wn')

ylabel('Transmissibility Tr')

plot(handles.axes2,t,sine)

set(handles.axes2,'xlim',[0 1],'ylim',[-6 6]);

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Forcing Amplitude x Tr')

C.8 Level 1 6 189

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 6 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Recalculates and plots when amplitude is adjusted

function slider1 Callback(hObject, eventdata, handles)

FMax=200;

LOR=6400;

Amplitude=get(handles.slider1,'Value');

fHz=get(handles.slider2,'Value');

m=get(handles.slider3,'Value');

k=get(handles.slider4,'Value');

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

wf=2*pi*fHz;

wn=sqrt(k/m);

F R=wf/wn;

d r=0.1;

T R=((F Rˆ2)/sqrt((1-F Rˆ2)ˆ2+(2*d r*F R)ˆ2));

f r=(0.01:0.01:2*F R);

t r=((f r.ˆ2)./sqrt((1-f r.ˆ2).ˆ2+(2*d r*f r).ˆ2));

sine=T R*Amplitude*sin(wf*t);

C.8 Level 1 6 190

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round(Amplitude,2));

set(handles.edit5,'String',round(wn/(2*pi),2));

set(handles.edit6,'String',round(T R,2));

p=plot(handles.axes1,f r,t r,F R,T R);

p(2).Marker='O';

legend(handles.axes1,'Transmissibility Curve','System Transmissibility')

set(handles.axes1,'xlim',[0 2*F R],'ylim',[0 6]);

axes(handles.axes1);

xlabel('wf/wn')

ylabel('Transmissibility Tr')

plot(handles.axes2,t,sine)

set(handles.axes2,'xlim',[0 1],'ylim',[-6 6]);

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Forcing Amplitude x Tr')

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

% hObject handle to slider1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots when frequency is adjusted

function slider2 Callback(hObject, eventdata, handles)

FMax=200;

LOR=6400;

Amplitude=get(handles.slider1,'Value');

fHz=get(handles.slider2,'Value');

m=get(handles.slider3,'Value');

k=get(handles.slider4,'Value');

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

C.8 Level 1 6 191

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

wf=2*pi*fHz;

wn=sqrt(k/m);

F R=wf/wn;

d r=0.1;

T R=((F Rˆ2)/sqrt((1-F Rˆ2)ˆ2+(2*d r*F R)ˆ2));

f r=(0.01:0.01:2*F R);

t r=((f r.ˆ2)./sqrt((1-f r.ˆ2).ˆ2+(2*d r*f r).ˆ2));

sine=T R*Amplitude*sin(wf*t);

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round(Amplitude,2));

set(handles.edit5,'String',round(wn/(2*pi),2));

set(handles.edit6,'String',round(T R,2));

p=plot(handles.axes1,f r,t r,F R,T R);

p(2).Marker='O';

legend(handles.axes1,'Transmissibility Curve','System Transmissibility')

set(handles.axes1,'xlim',[0 2*F R],'ylim',[0 6]);

axes(handles.axes1);

xlabel('wf/wn')

ylabel('Transmissibility Tr')

plot(handles.axes2,t,sine)

set(handles.axes2,'xlim',[0 1],'ylim',[-6 6]);

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Forcing Amplitude x Tr')

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

C.8 Level 1 6 192

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 5')

close('Level 1 6')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 7')

close('Level 1 6')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Displays equations for concepts covered within GUI.

function axes4 CreateFcn(hObject, eventdata, handles)

text(0.1,0.9,'Natural frequency mass/spring system','FontSize',10)

text('Interpreter','latex','String','$$\omega {n}=\sqrt\frac{k}{m} $$'...

,'Position',[0.2 0.75],'FontSize',10)

text(0.1,0.6,'Transmissibility','FontSize',10)

text('Interpreter','latex','String'...

,'$$Tr=\frac{\Omegaˆ2}{\sqrt((1-\Omega)ˆ2)ˆ2+(2\zeta\Omega)ˆ2)}$$'...

,'Position',[.2 0.45],'FontSize',10)

text(0.1,0.3,'Frequency Ratio','FontSize',10)

text('Interpreter','latex','String'...

,'$$\Omega=\frac{\omega {f}}{\omega {n}}$$','Position'...

,[0.6 0.3],'FontSize',10)

text(0.1,0.15,'Forcing Frequency','FontSize',10)

text('Interpreter','latex','String','$$\omega {f}$$','Position'...

,[0.6 0.15],'FontSize',10)

text(0.1,0.05,'Natural Frequency','FontSize',10)

text('Interpreter','latex','String','$$\omega {n}$$','Position'...

,[0.6 0.05],'FontSize',10)

C.8 Level 1 6 193

% --- Recalculates and plots when system mass slider is adjusted

function slider3 Callback(hObject, eventdata, handles)

FMax=200;

LOR=6400;

Amplitude=get(handles.slider1,'Value');

fHz=get(handles.slider2,'Value');

m=get(handles.slider3,'Value');

k=get(handles.slider4,'Value');

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

wf=2*pi*fHz;

wn=sqrt(k/m);

F R=wf/wn;

d r=0.1;

T R=((F Rˆ2)/sqrt((1-F Rˆ2)ˆ2+(2*d r*F R)ˆ2));

f r=(0.01:0.01:2*F R);

t r=((f r.ˆ2)./sqrt((1-f r.ˆ2).ˆ2+(2*d r*f r).ˆ2));

sine=T R*Amplitude*sin(wf*t);

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round(Amplitude,2));

set(handles.edit5,'String',round(wn/(2*pi),2));

set(handles.edit6,'String',round(T R,2));

p=plot(handles.axes1,f r,t r,F R,T R);

p(2).Marker='O';

legend(handles.axes1,'Transmissibility Curve','System Transmissibility')

set(handles.axes1,'xlim',[0 2*F R],'ylim',[0 6]);

axes(handles.axes1);

xlabel('wf/wn')

ylabel('Transmissibility Tr')

plot(handles.axes2,t,sine)

set(handles.axes2,'xlim',[0 1],'ylim',[-6 6]);

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Forcing Amplitude x Tr')

C.8 Level 1 6 194

% --- Executes during object creation, after setting all properties.

function slider3 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Recalculates and plots when system stiffness slider is adjusted

function slider4 Callback(hObject, eventdata, handles)

FMax=200;

LOR=6400;

Amplitude=get(handles.slider1,'Value');

fHz=get(handles.slider2,'Value');

m=get(handles.slider3,'Value');

k=get(handles.slider4,'Value');

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

wf=2*pi*fHz;

wn=sqrt(k/m);

F R=wf/wn;

d r=0.1;

T R=((F Rˆ2)/sqrt((1-F Rˆ2)ˆ2+(2*d r*F R)ˆ2));

f r=(0.01:0.01:2*F R);

t r=((f r.ˆ2)./sqrt((1-f r.ˆ2).ˆ2+(2*d r*f r).ˆ2));

sine=T R*Amplitude*sin(wf*t);

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round(Amplitude,2));

set(handles.edit5,'String',round(wn/(2*pi),2));

set(handles.edit6,'String',round(T R,2));

p=plot(handles.axes1,f r,t r,F R,T R);

p(2).Marker='O';

legend(handles.axes1,'Transmissibility Curve','System Transmissibility')

C.8 Level 1 6 195

set(handles.axes1,'xlim',[0 2*F R],'ylim',[0 6]);

axes(handles.axes1);

xlabel('wf/wn')

ylabel('Transmissibility Tr')

plot(handles.axes2,t,sine)

set(handles.axes2,'xlim',[0 1],'ylim',[-6 6]);

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Forcing Amplitude x Tr')

% --- Executes during object creation, after setting all properties.

function slider4 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function edit3 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit3 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

C.8 Level 1 6 196

function edit5 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit6 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit6 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

%END Level 1 6

C.9 Level 1 7 197

C.9 Level 1 7

function varargout = Level 1 7(varargin)

% LEVEL 1 7 M-file for Level 1 7.fig

% Last Modified by GUIDE v2.5 23-Aug-2015 22:12:58

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 7 OpeningFcn, ...

'gui OutputFcn', @Level 1 7 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 7 is made visible.

function Level 1 7 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 7

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

evalin('base','clear')

%Display text covering concepts presented in GUI

fid=fopen('Level 1 7.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

C.9 Level 1 7 198

fclose(fid);

set(handles.edit1,'String',C);

%Image associated with concept based on defect selected in popupmenu1

axes(handles.axes4)

imshow('Unbal.jpg');

FMax=get(handles.popupmenu2,'Value');

%Maximum frequency and colection parameters based on shaft speed (fHz)

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

FMax=10000;

LOR=6400;

fHz=50;

case 2

FMax=10000;

LOR=6400;

fHz=25;

case 3

FMax=5000;

LOR=3200;

fHz=16.6;

case 4

FMax=2000;

LOR=3200;

fHz=8.3;

otherwise

end

%Menu to select fault condition for input into SDOF model

dratio=get(handles.popupmenu1,'Value');

switch dratio

case 1 %Unbalance

dratio=1; %Defect as a ratio of shaft speed

mod switch=2; %Modulation

mod ratio=0; %Rate of modulation as a ratio of shaft speed

mis switch=0; %Misalignment

vane switch=0; %Pump vane pass

cav switch=0; %For cavitation effect

case 2 %Misalignment

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=1;

C.9 Level 1 7 199

vane switch=0;

cav switch=0;

case 3 %Looseness

dratio=1;

mod switch=0;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

case 4 %Gear damage

dratio=17;

mod switch=1;

mod ratio=1;

mis switch=0;

vane switch=0;

cav switch=0;

case 5 %Pump vane psee

dratio=5;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=1;

cav switch=0;

case 6 %Cavitation

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=1;

cav switch=1;

case 7 %Friction not yet working

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

otherwise

end

global Mt M mo c k T r wf fi tspan

%Kust test for a bearing outer defect with 5.4 orders defect

C.9 Level 1 7 200

%Also outer because force will be constant, ie in addition to the imbalance

M=150; %Machine mass

mo=500*(1/fHzˆ2); %Unbalance mass

Mt=M+mo; %Syatem mass

k=460000000; %Stiffness N/m

wf=2*pi*fHz; %Shaft turning speed rad/s

%beta=0.05; %Empirical constant for structural damping

%c=2*k*beta/wf; %Structural Damping coefficient

c=100000; %Viscous damping coefficient

imp=10*fHzˆ2; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio; %Defect ration as a function of shaft speed

T=1/dHz; %Defect force impulse period

%wn=sqrt(k/M+mo); %Single degree of freedom natural frequency

%c c=2*(M+mo)*wn; %Critical damping

%zeta=c/c c; %Damping ration

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=0.1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%Time span for fixing ODE slover iterations

tspan=(0:(Wave L-1)+dt n)*Tstep;

d=(0:T:max(tspan)); % Array for defect repetition

%Single degree of freedom defect input forces

%This determines value of pulse force to go to solver

if mod switch==0

y1=imp*(pulstran(tspan,d,'rectpuls',0.05*T));

elseif mod switch==1

y1=imp*((0.5*(1+sin(mod ratio*wf*tspan))).*...

(pulstran(tspan,d,'rectpuls',0.05*T)));

elseif mod switch==2

y1=zeros(1,(max(size(tspan))));

end

%This will add a value y2 for misalignment 180 degree out of phase at 0.7

%the magnitude of unbalance force for convenience in displating the effect

if mis switch==1

y2=1.5*mo*r*wfˆ2*sin(2*wf*tspan);

else

y2=zeros(1,(max(size(tspan))));

end

C.9 Level 1 7 201

%This adds the vane pass frequency vibration if called and in this case is

%a simple model for a centrifugal pump with 5 vanes.

if vane switch==1

y3=0.1*mo*r*wfˆ2*sin(5*wf*tspan);

else

y3=zeros(1,(max(size(tspan))));

end

%Input force for cavitation effect

if cav switch==1

y4 = (10*fHzˆ2)*randn(1,length(tspan));

else

y4=zeros(1,(max(size(tspan))));

end

%Sum of single degree of freedom defect input forces

fi=y1+y2+y3+y4;

%Calls SDOF SOLVER

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Solutions to SDOF system

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,V*1000); %Velocity waveform mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

fV = FMax*linspace(0,1,LOR);

plot(handles.axes2,fV,YV*1000) %Velocity spectrum mm/s

%ACCELERATION SPECTRUM

Ya = fft(A,2.56*LOR)/(2.56*LOR);

YA=2*abs(Ya(1:LOR));

fA = FMax*linspace(0,1,LOR);

%plot(handles.axes2,fA,YA)

C.9 Level 1 7 202

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','t',t)

assignin ('base','fV',fV);

assignin ('base','YV',YV)

assignin ('base','fA',fA);

assignin ('base','YA',YA)

set(handles.edit4,'String',(fHz*dratio));

set(handles.edit5,'String',dratio);

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 7 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

C.9 Level 1 7 203

run('Level 1 6')

close('Level 1 7')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 8')

close('Level 1 7')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Executes on selection change in popupmenu1.

function popupmenu1 Callback(hObject, eventdata, handles)

%See opening function for Level 1 7 for additional notes

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

FMax=10000;

LOR=6400;

fHz=50;

case 2

FMax=10000;

LOR=6400;

fHz=25;

case 3

FMax=5000;

LOR=3200;

fHz=16.6;

case 4

FMax=2000;

LOR=3200;

fHz=8.3;

otherwise

end

dratio=get(handles.popupmenu1,'Value');

switch dratio

C.9 Level 1 7 204

case 1 %Unbalance

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

axes(handles.axes4)

imshow('Unbal.jpg'); %Image associated with defect selected

case 2 %Misalignment

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=1;

vane switch=0;

cav switch=0;

axes(handles.axes4)

imshow('MisAlign.jpg'); %Image associated with defect selected

case 3 %Looseness

dratio=1;

mod switch=0;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

case 4 %Gear damage

dratio=17;

mod switch=1; %Gives modulating gear damage

mod ratio=1;

mis switch=0;

vane switch=0;

cav switch=0;

case 5 %Pump vane pass

dratio=5;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=1;

cav switch=0;

case 6 %Cavitation

dratio=1;

mod switch=2;

mod ratio=0;

C.9 Level 1 7 205

mis switch=0;

vane switch=1;

cav switch=1;

case 7 %Friction

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

otherwise

end

global Mt M mo c k T r wf fi tspan

h=waitbar(0.5,'Calculating Output, Please wait...');

M=150; %Machine mass

mo=500*(1/fHzˆ2); %Unbalance mass

Mt=M+mo; %System mass

k=460000000; %Stiffness N/m

wf=2*pi*fHz; %Shaft turning speed rad/s

c=100000; %Viscous damping coefficient

imp=10*fHzˆ2; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force impulse period

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=0.1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%tspan created to control ODE solver iterations

tspan=(0:(Wave L-1)+dt n)*Tstep;

d=(0:T:max(tspan)); % T repetition frequency

%This determines value of pulse force to go to solver

if mod switch==0

y1=imp*(pulstran(tspan,d,'rectpuls',0.05*T));

elseif mod switch==1

y1=imp*((0.5*(1+sin(mod ratio*wf*tspan))).*...

(pulstran(tspan,d,'rectpuls',0.05*T)));

C.9 Level 1 7 206

elseif mod switch==2

y1=zeros(1,(max(size(tspan))));

end

%This will add a value y2 for misalignment 180 degree out of phase at 0.7

%the magnitude of unbalance force for convenience in displating the effect

if mis switch==1

y2=1.5*mo*r*wfˆ2*sin(2*wf*tspan);

else

y2=zeros(1,(max(size(tspan))));

end

%This adds the vane pass frequency vibration if called and in this case is

%a simple model for a centrifugal pump with 5 vanes.

if vane switch==1

y3=0.1*mo*r*wfˆ2*sin(5*wf*tspan);

else

y3=zeros(1,(max(size(tspan))));

end

if cav switch==1

y4 = (10*fHzˆ2)*randn(1,length(tspan));

else

y4=zeros(1,(max(size(tspan))));

end

%Sum of input defect forces for ODE solver

fi=y1+y2+y3+y4;

%Calls solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,V*1000); %1000 converts m to mm

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

C.9 Level 1 7 207

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

fV = FMax*linspace(0,1,LOR);

plot(handles.axes2,fV,YV*1000) %Velocity waveform mm/s

%ACCELERATION SPECTRUM

Ya = fft(A,2.56*LOR)/(2.56*LOR);

YA=2*abs(Ya(1:LOR));

fA = FMax*linspace(0,1,LOR);

%plot(handles.axes2,fA,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','t',t)

assignin ('base','fV',fV);

assignin ('base','YV',YV)

assignin ('base','fA',fA);

assignin ('base','YA',YA)

set(handles.edit4,'String',(fHz*dratio));

set(handles.edit5,'String',dratio);

close(h)

% --- Executes during object creation, after setting all properties.

function popupmenu2 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

C.9 Level 1 7 208

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on selection change in popupmenu2.

function popupmenu2 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1

FMax=10000;

LOR=6400;

fHz=50;

case 2

FMax=10000;

LOR=6400;

fHz=25;

case 3

FMax=5000;

LOR=3200;

fHz=16.6;

case 4

FMax=2000;

LOR=3200;

fHz=8.3;

otherwise

end

dratio=get(handles.popupmenu1,'Value');

switch dratio

case 1

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

case 2

C.9 Level 1 7 209

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=1;

vane switch=0;

cav switch=0;

case 3

dratio=1;

mod switch=0;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

case 4

dratio=17;

mod switch=1;

mod ratio=1;

mis switch=0;

vane switch=0;

cav switch=0;

case 5

dratio=5;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=1;

cav switch=0;

case 6

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=1;

cav switch=1;

case 7

dratio=1;

mod switch=2;

mod ratio=0;

mis switch=0;

vane switch=0;

cav switch=0;

otherwise

C.9 Level 1 7 210

end

global Mt M mo c k T r wf fi tspan

h=waitbar(0.5,'Calculating Output, Please wait...');

M=150; %Machine mass

mo=500*(1/fHzˆ2); %Unbalance mass

Mt=M+mo; %System mass

k=460000000; %Stiffness N/m

wf=2*pi*fHz; %Shaft turning speed rad/s

c=100000; %Viscous damping coefficient

imp=10*fHzˆ2; %Peak pulse force N varies with speed

r=0.5; %Radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force impulse period

%wn=sqrt(k/M+mo) %Single degree of freedom natural frequency

%c c=2*(M+mo)*wn

%zeta=c/c c

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=0.1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%Tspan to control iteration time steps of ODE solver

tspan=(0:(Wave L-1)+dt n)*Tstep;

d=(0:T:max(tspan)); % T repetition frequency

%This determines value of pulse force to go to solver

if mod switch==0

y1=imp*(pulstran(tspan,d,'rectpuls',0.05*T));

elseif mod switch==1

y1=imp*((0.5*(1+sin(mod ratio*wf*tspan))).*...

(pulstran(tspan,d,'rectpuls',0.05*T)));

elseif mod switch==2

y1=zeros(1,(max(size(tspan))));

end

%This will add a value y2 for misalignment 180 degree out of phase at 0.7

%the magnitude of unbalance force for convenience in displating the effect

if mis switch==1

y2=1.5*mo*r*wfˆ2*sin(2*wf*tspan);

else

C.9 Level 1 7 211

y2=zeros(1,(max(size(tspan))));

end

%This adds the vane pass frequency vibration if called and in this case is

%a simple model for a centrifugal pump with 5 vanes.

if vane switch==1

y3=0.1*mo*r*wfˆ2*sin(5*wf*tspan);

else

y3=zeros(1,(max(size(tspan))));

end

%Cavitation input force

if cav switch==1

y4 = (10*fHzˆ2)*randn(1,length(tspan));

else

y4=zeros(1,(max(size(tspan))));

end

%Sum of defect input force for ODE solver

fi=y1+y2+y3+y4;

%Calls solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Solver results

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,V*1000); %Velocity waveform mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

fV = FMax*linspace(0,1,LOR);

plot(handles.axes2,fV,YV*1000) %Velocity spectrum mm/s

%ACCELERATION SPECTRUM

Ya = fft(A,2.56*LOR)/(2.56*LOR);

YA=2*abs(Ya(1:LOR));

C.9 Level 1 7 212

fA = FMax*linspace(0,1,LOR);

%plot(handles.axes2,fA,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','t',t)

assignin ('base','fV',fV);

assignin ('base','YV',YV)

assignin ('base','fA',fA);

assignin ('base','YA',YA)

set(handles.edit4,'String',(fHz*dratio));

set(handles.edit5,'String',dratio);

close(h)

% --- Executes during object creation, after setting all properties.

function axes4 CreateFcn(hObject, eventdata, handles)

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit5 CreateFcn(hObject, eventdata, handles)

C.9 Level 1 7 213

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on button press in pushbutton4.

function pushbutton4 Callback(hObject, eventdata, handles)

%Plots spectrum in figure separate to GUI

fV=evalin('base','fV');

YV=evalin('base','YV');

figure

plot(fV,YV*1000)

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s) ')

% --- Executes on button press in pushbutton5.

function pushbutton5 Callback(hObject, eventdata, handles)

%Plots waveform in figure separate to GUI

V=evalin('base','V');

t=evalin('base','t');

figure

plot(t,V*1000)

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

%END Level 1 7

C.10 Level 1 8 214

C.10 Level 1 8

function varargout = Level 1 8(varargin)

% LEVEL 1 8 M-file for Level 1 8.fig

%

% Last Modified by GUIDE v2.5 23-Aug-2015 15:03:26

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 8 OpeningFcn, ...

'gui OutputFcn', @Level 1 8 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 8 is made visible.

function Level 1 8 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 8

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

fid=fopen('Level 1 8.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

C.10 Level 1 8 215

FMax=get(handles.popupmenu2,'Value');

%FMax Maximum frequency specified for spectrum

%LOR Lines of resolution for spectrum

%fHz shaft speed

%Baring defects as a ratio of shaft speed

%FTF(Cage Defect), BSF(Ball Spin), ORDF(Outer Race), IRDF(Inner Race)

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

Info=[200 1600 1.67 0.45 4.74 11.2 13.8]; %Conveyor pulley

axes(handles.axes4)

imshow('Pulley.jpg'); %Image of machine associated with defect

case 2

Info=[1000 3200 7.05 0.441 4.074 9.711 12.289]; %Crusher shaft

axes(handles.axes4)

imshow('Crusher.jpg'); %Image of machine associated with defect

case 3

Info=[2000 6400 19.62 0.4 2.45 6.47 9.53]; %GBox shaft

axes(handles.axes4)

imshow('2ndShaft.jpg'); %Image of machine associated with defect

case 4

Info=[2000 6400 24.83 0.39 2.09 3.09 4.91]; %Motor NDE Bearing

axes(handles.axes4)

imshow('MtrNDE.jpg'); %Image of machine associated with defect

case 5

Info=[2000 6400 24.83 0.4 2.43 5.21 7.79]; %Motor DE Bearing

axes(handles.axes4)

imshow('MtrDE.jpg'); %Image of machine associated with defect

otherwise

end

%Selects data collection properties and defect related properties

%based on the defect selected in the 'Non Synchronous Defects' popupmenu

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1 %Bearing Cage Defect

FMax=Info(1); %Selects maximum frequency

LOR=Info(2); %Selects Lines of Resolution

fHz=Info(3); %Selects shaft speed

dratio=Info(4); %Selects defect ratio

mod switch=0; %No modulation

mod ratio=0; %No modulation

case 2 %Bearing Ball Defect

FMax=Info(1); %Selects maximum frequency

C.10 Level 1 8 216

LOR=Info(2); %Selects Lines of Resolution

fHz=Info(3); %Selects shaft speed

%Multiply ball spin ratio by 2, 2 impacts inner and outer per rev

dratio=2*Info(5); %Selects defect ratio

mod switch=1; %No modulation

mod ratio=Info(4); %Modulation as a ratio of shaft speed

case 3 %Outer Race Defect (Rotating Shaft)

FMax=Info(1); %Selects maximum frequency

LOR=Info(2); %Selects Lines of Resolution

fHz=Info(3); %Selects shaft speed

dratio=Info(6); %Selects defect ratio

mod switch=0; %No modulation

mod ratio=0; %No modulation

case 4 %Inner Race Defect (Rotating Shaft)

FMax=Info(1); %Selects maximum frequency

LOR=Info(2); %Selects Lines of Resolution

fHz=Info(3); %Selects shaft speed

dratio=Info(7); %Selects defect ratio

mod switch=1; %Applies modulation

mod ratio=1; %Modulation as a ratio of shaft speed = 1

otherwise

end

global Mt M mo c k T r wf fi tspan

M=150; %Machine mass

mo=50*(1/fHzˆ2); %Unbalance mass

Mt=M+mo; %System mass

c=100000; %Damping coefficient

k=460000000; %Stiffness N/m

imp=100*fHz; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio; %Defect ratio Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

%c c=2*(M+mo)*wn %Critical damping ratio

%zeta=c/c c %Damping ration

%wn=sqrt(k/(M+mo)); %Single degree of freedom natural frequency

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

C.10 Level 1 8 217

%Sets time steps to control ODE iterations

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % Array for defect repetition

%Modified sinusoid to simulate damaged bearing component entering and

%leaving the bearing load zone

y1=sin(mod ratio*wf*tspan)-0.2165;

yscale=1/max(y1);

for n=1:length(tspan)

if y1(n)>0

y1(n)=y1(n)*yscale;

else y1(n)=0;

end

end

%Create pulse force for input into ODE solver

if mod switch==0

y=pulstran(tspan,d,'rectpuls',0.05*T);

else

y=y1.*(pulstran(tspan,d,'rectpuls',0.05*T));

end

fi=imp*y;

%Call ODE Solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Solver results

D=x(:,1);

V=x(:,2);

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,V*1000); %1000 converts m to mm

%fft to use 100%*(2/2.56)=78.125% of Nyquist rat

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

fV = FMax*linspace(0,1,LOR);

plot(handles.axes2,fV,YV*1000) %Velocity spectrum mm/s

%ACCELERATION SPECTRUM

%Ya = fft(A,2.56*LOR)/(2.56*LOR);

%YA=2*abs(Ya(1:LOR));

%fA = FMax*linspace(0,1,LOR);

C.10 Level 1 8 218

%plot(handles.axes2,fA,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YV',YV)

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round((fHz*dratio),2));

set(handles.edit5,'String',dratio);

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 8 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

C.10 Level 1 8 219

run('Level 1 7')

close('Level 1 8')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 9')

close('Level 1 8')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Executes on selection change in popupmenu1.

function popupmenu1 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

%FMax Maximum frequency specified for spectrum

%LOR Lines of resolution for spectrum

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

Info=[200 1600 1.67 0.45 4.74 11.2 13.8]; %Conveyor Pulley

axes(handles.axes4)

imshow('Pulley.jpg');

case 2

Info=[1000 3200 7.05 0.441 4.074 9.711 12.289]; %Crusher Shaft

axes(handles.axes4)

imshow('Crusher.jpg');

case 3

Info=[2000 6400 19.62 0.4 2.45 6.47 9.53]; %GBox Shaft

axes(handles.axes4)

imshow('2ndShaft.jpg');

case 4

Info=[2000 6400 24.83 0.39 2.09 3.09 4.91]; %Motor NDE Bearing

axes(handles.axes4)

imshow('MtrNDE.jpg');

case 5

Info=[2000 6400 24.83 0.4 2.43 5.21 7.79]; %Motor DE Bearing

axes(handles.axes4)

imshow('MtrDE.jpg');

otherwise

C.10 Level 1 8 220

end

%See opening function for Level 1 8 for notes

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(4);

mod switch=0;

mod ratio=0;

case 2

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=2*Info(5);

mod switch=1;

mod ratio=Info(4);

case 3

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(6);

mod switch=0;

mod ratio=0;

case 4

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(7);

mod switch=1;

mod ratio=1;

otherwise

end

global Mt M mo c k T r wf fi tspan

h=waitbar(0.5,'Calculating Output, Please wait...');

M=150; %Machine mass

mo=50*(1/fHzˆ2); %Unbalance mass

Mt=M+mo; %System mass

C.10 Level 1 8 221

c=100000; %Damping coefficient

k=460000000; %Stiffness N/m

imp=100*fHz; %Peak pulse force N varies with speed

r=0.5; %Radius unbalance mass rotates at

dHz=fHz*dratio; %Defect ratio as a function of shaft speed

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

%wn=sqrt(k/(M+mo)) %Single degree of freedom natural frequency

%c c=2*(M+mo)*wn %Critical damping factor

%zeta=c/c c %Damping ration

def deg=155; %Defect Load Zone andle 155 degrees

def rad=def deg/(180/pi); %Defect Load Zone andle radians

shift=sin(def rad); %Factor to shifts sinwave for load zone

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time array to control ODE solver iterations

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % Defect repetition

%Modified sinusoid to simulate bearing load zone modulation

y1=sin(mod ratio*wf*tspan)-sin(1/mod ratio*shift);

yscale=1/max(y1);

for n=1:length(tspan)

if y1(n)>0

y1(n)=y1(n)*yscale;

else y1(n)=0;

end

end

%Create pusele for input to ODE slover

if mod switch==0

y=pulstran(tspan,d,'rectpuls',0.05*T);

else

y=y1.*(pulstran(tspan,d,'rectpuls',0.05*T));

end

fi=imp*y;

%Call solver for SDOF system

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE Solver results

D=x(:,1);

V=x(:,2);

C.10 Level 1 8 222

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,V*1000); %Velocity waveform mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

fV = FMax*linspace(0,1,LOR);

plot(handles.axes2,fV,YV*1000) %Velocity spectrum mm/s

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YV',YV)

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round((fHz*dratio),2));

set(handles.edit5,'String',dratio);

close(h)

% --- Executes during object creation, after setting all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on selection change in popupmenu2.

function popupmenu2 Callback(hObject, eventdata, handles)

FMax=get(handles.popupmenu2,'Value');

C.10 Level 1 8 223

%FMax Maximum frequency specified for spectrum

%LOR Lines of resolution for spectrum

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

Info=[200 1600 1.67 0.45 4.74 11.2 13.8]; %Pulley

axes(handles.axes4)

imshow('Pulley.jpg');

case 2

Info=[1000 3200 7.05 0.441 4.074 9.711 12.289]; %Crusher

axes(handles.axes4)

imshow('Crusher.jpg');

case 3

Info=[2000 6400 19.62 0.4 2.45 6.47 9.53]; %GBox Speed

axes(handles.axes4)

imshow('2ndShaft.jpg');

case 4

Info=[2000 6400 24.83 0.39 2.09 3.09 4.91]; %Motor NDE

axes(handles.axes4)

imshow('MtrNDE.jpg');

case 5

Info=[2000 6400 24.83 0.4 2.43 5.21 7.79]; %Motor DE

axes(handles.axes4)

imshow('MtrDE.jpg');

otherwise

end

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(4);

mod switch=0;

mod ratio=0;

case 2

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=2*Info(5);

mod switch=1;

mod ratio=Info(4);

case 3

C.10 Level 1 8 224

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(6);

mod switch=0;

mod ratio=0;

case 4

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(7);

mod switch=1;

mod ratio=1;

otherwise

end

global Mt M mo c k T r wf fi tspan

h=waitbar(0.5,'Calculating Output, Please wait...');

M=150; %Machine mass

mo=50*(1/fHzˆ2); %Unbalance mass

Mt=M+mo; %System mass

c=100000; %Damping coefficient

k=460000000; %Stiffness N/m

imp=100*fHz; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio; %Defect ratio as a function of shaft speed

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

%c c=2*(M+mo)*wn %Critical damping factor

%zeta=c/c c %Damping ratio

%wn=sqrt(k/(M+mo)) %Single degree of freedom natural frequency

def deg=155; %Defect Load Zone andle 155 degrees

def rad=def deg/(180/pi); %Defect Load Zone andle radians

shift=sin(def rad); %Factor to simulate load zone modultaion

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time span to control ODE iterations

tspan=(0:Wave L-1)*Tstep;

C.10 Level 1 8 225

d=(0:T:Time); % T repetition frequency

%Create modified sinusoid for load zone modulation

y1=sin(mod ratio*wf*tspan)-sin(1/mod ratio*shift);

yscale=1/max(y1);

for n=1:length(tspan)

if y1(n)>0

y1(n)=y1(n)*yscale;

else y1(n)=0;

end

end

%Create pusle force for input into ODE solver

if mod switch==0

y=pulstran(tspan,d,'rectpuls',0.05*T);

else

y=y1.*(pulstran(tspan,d,'rectpuls',0.05*T));

end

fi=imp*y;

%Call ODE solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE solver results

D=x(:,1);

V=x(:,2);

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,V*1000); %Velocity waveform mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

fV = FMax*linspace(0,1,LOR);

plot(handles.axes2,fV,YV*1000) %Velocity spectrum mm/s

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Peak Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

assignin ('base','D',D);

C.10 Level 1 8 226

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YV',YV)

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round((fHz*dratio),2));

set(handles.edit5,'String',dratio);

close(h)

% --- Executes during object creation, after setting all properties.

function popupmenu2 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Plots displayed spectrum in figure separate to GUI.

function pushbutton4 Callback(hObject, eventdata, handles)

fV=evalin('base','fV');

YV=evalin('base','YV');

figure

plot(fV,YV*1000)

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s) ')

% --- Plots displayed waveform in figure separate to GUI.

function pushbutton5 Callback(hObject, eventdata, handles)

V=evalin('base','V');

tspan=evalin('base','tspan');

figure

plot(tspan,V*1000)

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

% --- Executes during object creation, after setting all properties.

C.10 Level 1 8 227

function axes4 CreateFcn(hObject, eventdata, handles)

function edit3 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit3 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit5 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

%END Level 1 8

C.11 Level 1 9 228

C.11 Level 1 9

function varargout = Level 1 9(varargin)

% LEVEL 1 9 M-file for Level 1 9.fig

%

% Last Modified by GUIDE v2.5 24-Aug-2015 21:23:05

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 9 OpeningFcn, ...

'gui OutputFcn', @Level 1 9 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 9 is made visible.

function Level 1 9 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 9

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Displays text associated with concept covered in GUI

fid=fopen('Level 1 9.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

C.11 Level 1 9 229

%ISO Table displayed in GUI

axes(handles.axes4)

imshow('ISO10816 1.jpg');

%Popupmenu assigning Velocity RMS Values to class of machine

Evaluation=get(handles.popupmenu1,'Value');

switch Evaluation

case 1 %Class 1

v1=0.71;

v2=1.8;

v3=4.5;

axes(handles.axes5)

imshow('4kW.jpg');

case 2 %Class 2

v1=1.12;

v2=2.8;

v3=7.1;

axes(handles.axes5)

imshow('186kW.jpg');

case 3 %Class 3

v1=1.8;

v2=4.5;

v3=11.2;

axes(handles.axes5)

imshow('2350kW.jpg');

case 4 %Class 4

v1=2.8;

v2=7.1;

v3=18;

axes(handles.axes5)

imshow('600MW.jpg');

otherwise

end

global Mt M mo c k T r wf fi tspan

M=200; %Machine mass

mo=0.05; %Unbalance mass

Mt=M+mo; %System mass

c=100000; %Damping coefficient Ns/m

k=46000000; %Stiffness N/m

imp=100; %Peak pulse force N

r=0.5; %radius unbalance mass rotates at

fHz=25; %Shaft turning speed Hz

C.11 Level 1 9 230

dratio=6.3; %Defect frequency as a ratio of shaft speed

dHz=fHz*dratio; %Defect ratio as a function of shaft speed

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

FMax=1000; %Frequency maximum

LOR=1600; %Lines of resolution

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time sequence to contol ODE solver iteration

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % T repetition frequency

%Small defect pulse and solver input force fi

y=pulstran(tspan,d,'rectpuls',0.05*T);

fi=imp*y;

%Calls ODE solver for SDOF system

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE solver results

D=x(:,1); %Displacement m

V=x(:,2); %Velocity m/s

Vmm=V*1000; %m to mm conversion

A=diff(V); %Acceleration m/s/s

A(max(size(A))+1)=0; %Append 0

plot(handles.axes1,t,Vmm); %plot time waveform mm/s

V RMS=sqrt(mean((Vmm).ˆ2)); %RMS calculation mm/s

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV = 2*abs(Yv(1:LOR));

YVmm=1000*YV;

fV = FMax*linspace(0,1,LOR);

%plot(handles.axces2,fV,YV)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

assignin ('base','D',D);

assignin ('base','Vmm',Vmm)

assignin ('base','A',A)

C.11 Level 1 9 231

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YVmm',YVmm)

set(handles.edit3,'String',round(V RMS,2));

set(handles.edit4,'String',(fHz*dratio));

%This loop categorises the evaluation of the machine condition based on

%the RMS output and displays 'Machine Evaluation'

if (V RMS <= v1);

set(handles.edit4,'String','Good')

elseif (V RMS > v1 && V RMS <= v2)

set(handles.edit4,'String','Acceptable')

elseif (V RMS > v2 && V RMS <= v3)

set(handles.edit4,'String'...

,'Satisfactory for short term operation')

elseif (V RMS > v3)

set(handles.edit4,'String','Damaging')

end

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 9 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 8')

C.11 Level 1 9 232

close('Level 1 9')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 1 10')

close('Level 1 9')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes on selection of 'Class of Machine' in popupmenu.

function popupmenu1 Callback(hObject, eventdata, handles)

%Resets case value, recalculates,replots and evaluates machine condition

Evaluation=get(handles.popupmenu1,'Value');

switch Evaluation

case 1

v1=0.71;

v2=1.8;

v3=4.5;

axes(handles.axes5)

imshow('4kW.jpg');

case 2

v1=1.12;

v2=2.8;

v3=7.1;

axes(handles.axes5)

imshow('186kW.jpg');

case 3

v1=1.8;

v2=4.5;

v3=11.2;

axes(handles.axes5)

imshow('2350kW.jpg');

case 4

v1=2.8;

v2=7.1;

v3=18;

axes(handles.axes5)

imshow('600MW.jpg');

otherwise

end

C.11 Level 1 9 233

global Mt M mo c k T r wf fi tspan

M=200; %Machine mass

mo=0.05; %Unbalance mass

Mt=M+mo; %System mass

c=100000; %Damping coefficient

k=46000000; %Stiffness N/m

imp=100; %Peak pulse force N

r=0.5; %radius unbalance mass rotates at

fHz=25; %Shaft turning speed Hz

dratio=6.3; %Defect frequency as a ratio of shaft speed

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

FMax=1000; %Maximum frequency

LOR=1600; %Lines of resolution

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time constrain on ODE solver iterations

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % Defect repetition

%pusle defect for input to ODE solver

y=pulstran(tspan,d,'rectpuls',0.05*T);

fi=imp*y;

%Call ODE solver for SDOF system

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE solver results

D=x(:,1);

V=x(:,2);

Vmm=V*1000;

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,Vmm);

%RMS of velocity waveform mm/s

V RMS=sqrt(mean((Vmm).ˆ2));

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV = 2*abs(Yv(1:LOR)); %m/s

YVmm=1000*YV;

fV = FMax*linspace(0,1,LOR);

C.11 Level 1 9 234

%plot(handles.axces2,fV,YV)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

assignin ('base','D',D);

assignin ('base','Vmm',Vmm)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YVmm',YVmm)

%Display values RMS level in GUI

set(handles.edit3,'String',round(V RMS,2));

%This loop categorises the evaluation of the machine condition based on

%the RMS output

if (V RMS <= v1);

set(handles.edit4,'String','Good')

elseif (V RMS > v1 && V RMS <= v2)

set(handles.edit4,'String','Acceptable')

elseif (V RMS > v2 && V RMS <= v3)

set(handles.edit4,'String'...

,'Satisfactory for short term operation')

elseif (V RMS > v3)

set(handles.edit4,'String','Damaging')

end

% --- Executes during object creation, after setting all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Plot spectrum on button press in pushbutton4.

function pushbutton4 Callback(hObject, eventdata, handles)

fV=evalin('base','fV');

YVmm=evalin('base','YVmm');

C.11 Level 1 9 235

figure

plot(fV,YVmm)

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s) ')

% --- Plot waveform on button press in pushbutton5.

function pushbutton5 Callback(hObject, eventdata, handles)

Vmm=evalin('base','Vmm');

tspan=evalin('base','tspan');

figure

plot(tspan,Vmm)

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

% --- Executes during object creation, after setting all properties.

function axes4 CreateFcn(hObject, eventdata, handles)

function edit3 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit3 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

C.11 Level 1 9 236

function edit5 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Recalculates waveform with random amplitude for evaluation.

function pushbutton6 Callback(hObject, eventdata, handles)

%Sets RMS valuse for Machine class

%Sets m1 factor to change the range of values randn generates

Evaluation=get(handles.popupmenu1,'Value');

switch Evaluation

case 1

v1=0.71;

v2=1.8;

v3=4.5;

m1=0.1;

case 2

v1=1.12;

v2=2.8;

v3=7.1;

m1=0.2;

case 3

v1=1.8;

v2=4.5;

v3=11.2;

m1=0.3;

case 4

v1=2.8;

v2=7.1;

v3=18;

m1=0.55;

otherwise

end

global Mt M mo c k T r wf fi tspan

M=200; %Machine mass kg

mo=abs(randn)*m1; %Unbalance mass * m1 factor, case/class set

Mt=M+mo; %System masee

c=100000; %Damping coefficient

C.11 Level 1 9 237

k=46000000; %Stiffness N/m

imp=100; %Peak pulse force N

r=0.5; %radius unbalance mass rotates at

fHz=25; %Shaft turning speed Hz

dratio=6.3; %Defect frequency as a ratio of shaft speed

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

FMax=1000; %Maximum frequency

LOR=1600; %Lines of resolution

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Contraining ODE solver iterations

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % Defect repetition

%pulse force for input to ODE solver

y=pulstran(tspan,d,'rectpuls',0.05*T);

fi=imp*y;

%Calls ODE Solve

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE Solver results

D=x(:,1);

V=x(:,2);

Vmm=V*1000;

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,Vmm); %Velocity waveform mm/s

V RMS=sqrt(mean((Vmm).ˆ2)); %Velocity RMS mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV = 2*abs(Yv(1:LOR));

YVmm=1000*YV;

fV = FMax*linspace(0,1,LOR);

%plot(handles.axces2,fV,YV)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

C.11 Level 1 9 238

assignin ('base','D',D);

assignin ('base','Vmm',Vmm)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YVmm',YVmm)

%Display RMS Value in GUI

set(handles.edit3,'String',round(V RMS,2));

%This loop categorises the evaluation of the machine condition based on

%the RMS output

if (V RMS <= v1);

set(handles.edit4,'String','Good')

elseif (V RMS > v1) && (V RMS <= v2)

set(handles.edit4,'String','Acceptable')

elseif (V RMS > v2) && (V RMS <= v3)

set(handles.edit4,'String'...

,'Satisfactory for short term operation')

elseif (V RMS > v3)

set(handles.edit4,'String','Damaging')

end

%END Level 1 9

C.12 Level 1 10 239

C.12 Level 1 10

function varargout = Level 1 10(varargin)

% LEVEL 1 10 M-file for Level 1 10.fig

%

% Last Modified by GUIDE v2.5 25-Aug-2015 14:19:25

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 1 10 OpeningFcn, ...

'gui OutputFcn', @Level 1 10 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 1 10 is made visible.

function Level 1 10 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 1 10

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Displays text associated with concept covered in GUI

fid=fopen('Level 1 10.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

C.12 Level 1 10 240

%Shows image of ISO assesment table

axes(handles.axes4)

imshow('ISO10816 1.jpg');

%Sets RMS Values based on machine clasee in ISO10816

%Shows image for machine of slected Calss

Evaluation=get(handles.popupmenu1,'Value');

switch Evaluation

case 1

v1=0.71;

v2=1.8;

v3=4.5;

axes(handles.axes5)

imshow('4kW.jpg');

case 2

v1=1.12;

v2=2.8;

v3=7.1;

axes(handles.axes5)

imshow('186kW.jpg');

case 3

v1=1.8;

v2=4.5;

v3=11.2;

axes(handles.axes5)

imshow('2350kW.jpg');

case 4

v1=2.8;

v2=7.1;

v3=18;

axes(handles.axes5)

imshow('600MW.jpg');

otherwise

end

global Mt M mo c k T r wf fi tspan

M=200; %Machine mass

mo=0.05; %Unbalance mass

Mt=M+mo; %System mass

c=100000; %Damping coefficient

k=46000000; %Stiffness N/m

imp=100; %Peak pulse force N

r=0.5; %radius unbalance mass rotates at

C.12 Level 1 10 241

fHz=25; %Shaft turning speed Hz

dratio=6.3; %Defect frequency as ratio of shaft speed

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

FMax=1000; %Maximum frequecy

LOR=1600; %Lines of resolution

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time constraint on iterations for ODE solver

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % T repetition frequency

%Defect pulse for input to ODE solver

y=pulstran(tspan,d,'rectpuls',0.05*T);

fi=imp*y;

%Calls ODE solver for SDOF system

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE solver results

D=x(:,1); %Displacement

V=x(:,2); %Velocity m/s

Vmm=V*1000; %Velovity mm/s

A=diff(V); %Acceleration m/s/s

A(max(size(A))+1)=0; %Append 0

plot(handles.axes1,t,Vmm); %Plot velocity timewaveform mm/s

V RMS=sqrt(mean((Vmm).ˆ2)); %Calculate waveform RMS level mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV = 2*abs(Yv(1:LOR));

YVmm=1000*YV;

fV = FMax*linspace(0,1,LOR);

%plot(handles.axces2,fV,YV)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

assignin ('base','D',D);

assignin ('base','Vmm',Vmm)

assignin ('base','A',A)

C.12 Level 1 10 242

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YVmm',YVmm)

%Display RMS Level on GUI

set(handles.edit3,'String',round(V RMS,2));

%Display machine condition based on ISO10816 table

%Not visible to user

set(handles.edit4,'String','Good');

% --- Outputs from this function are returned to the command line.

function varargout = Level 1 10 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 1 9')

close('Level 1 10')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('End Level 1')

close('Level 1 10')

% --- Executes during object creation, after setting all properties.

C.12 Level 1 10 243

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes on selection change in popupmenu1.

function popupmenu1 Callback(hObject, eventdata, handles)

%Rcalculates, plots based on machine class. Resets evaluation tabs

Evaluation=get(handles.popupmenu1,'Value');

switch Evaluation

case 1

v1=0.71;

v2=1.8;

v3=4.5;

set(handles.popupmenu1,'Value',1)

axes(handles.axes5)

imshow('4kW.jpg');

case 2

v1=1.12;

v2=2.8;

v3=7.1;

set(handles.popupmenu1,'Value',2)

axes(handles.axes5)

imshow('186kW.jpg');

case 3

v1=1.8;

v2=4.5;

v3=11.2;

set(handles.popupmenu1,'Value',3)

axes(handles.axes5)

imshow('2350kW.jpg');

case 4

v1=2.8;

v2=7.1;

v3=18;

set(handles.popupmenu1,'Value',4)

axes(handles.axes5)

imshow('600MW.jpg');

otherwise

end

global Mt M mo c k T r wf fi tspan

M=200; %Machine mass

mo=0.05; %Unbalance mass

Mt=M+mo; %Machine mass

C.12 Level 1 10 244

c=100000; %Damping coefficient

k=46000000; %Stiffness N/m

imp=100; %Peak pulse force N

r=0.5; %radius unbalance mass rotates at

fHz=25; %Shaft turning speed Hz

dratio=6.3; %Defect frequency as ratio of shaft speed

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

FMax=1000; %Maximum frequency

LOR=1600; %Lines of resolution

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time array to constrain ODE solver itreations

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % Defect repetition

%Assemble defect pulse train for input to ODE solver

y=pulstran(tspan,d,'rectpuls',0.05*T);

fi=imp*y;

%Calls ODE Solver for SDOF system

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE Solver results

D=x(:,1);

V=x(:,2); %Velocity m/s

Vmm=V*1000;

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,Vmm); %Plots velocity waveform mm/s

V RMS=sqrt(mean((Vmm).ˆ2)); %Calculates velocity RMS level mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV = 2*abs(Yv(1:LOR)); %m/s

YVmm=1000*YV; %mm/s

fV = FMax*linspace(0,1,LOR);

%plot(handles.axces2,fV,YV)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

C.12 Level 1 10 245

assignin ('base','D',D);

assignin ('base','Vmm',Vmm)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YVmm',YVmm)

%Displays Velocity RMS level in GUI

set(handles.edit3,'String',round(V RMS,2));

%Reset message and textbox colour

set(handles.text11,'String'...

,'Evaluate Machine Vibration Select A, B, C or D '...

,'BackgroundColor',[0.94 0.94 0.94]);

%This loop categorises the evaluation of the machine condition based

%on the RMS output not visible to user

if (V RMS <= v1);

set(handles.edit4,'String','Good')

elseif (V RMS > v1 && V RMS <= v2)

set(handles.edit4,'String','Acceptable')

elseif (V RMS > v2 && V RMS <= v3)

set(handles.edit4,'String','Satisfactory')

elseif (V RMS > v3)

set(handles.edit4,'String','Damaging')

end

% --- Executes during object creation, after setting all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Plots associated velocity spectrum on button press

function pushbutton4 Callback(hObject, eventdata, handles)

fV=evalin('base','fV');

YVmm=evalin('base','YVmm');

figure

plot(fV,YVmm)

xlabel('Frequency (Hz)')

C.12 Level 1 10 246

ylabel('Peak Velocity (mm/s) ')

% --- Plots velocity timewaveform on button press in pushbutton5.

function pushbutton5 Callback(hObject, eventdata, handles)

Vmm=evalin('base','Vmm');

tspan=evalin('base','tspan');

figure

plot(tspan,Vmm)

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

% --- Executes during object creation, after setting all properties.

function axes4 CreateFcn(hObject, eventdata, handles)

function edit3 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit3 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit5 CreateFcn(hObject, eventdata, handles)

%

% See ISPC and COMPUTER.

C.12 Level 1 10 247

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- 'Chang Machine' on button press in pushbutton6.

function pushbutton6 Callback(hObject, eventdata, handles)

%Generates a new waveform with a randomly generated amplitude

%m1 factor used in generating amplitude based on machine class

Evaluation=get(handles.popupmenu1,'Value');

switch Evaluation

case 1

v1=0.71;

v2=1.8;

v3=4.5;

m1=0.1;

case 2

v1=1.12;

v2=2.8;

v3=7.1;

m1=0.2;

case 3

v1=1.8;

v2=4.5;

v3=11.2;

m1=0.3;

case 4

v1=2.8;

v2=7.1;

v3=18;

m1=0.55;

otherwise

end

global Mt M mo c k T r wf fi tspan

M=200; %Machine mass

mo=abs(randn)*m1; %Unbalance mass randomly generated number

Mt=M+mo; %System mass

c=100000; %Damping coefficient

k=46000000; %Stiffness N/m

imp=100; %Peak pulse force N

r=0.5; %radius unbalance mass rotates at

C.12 Level 1 10 248

fHz=25; %Shaft turning speed Hz

dratio=6.3; %Defect frequency as a ratio of shaft speed

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

FMax=1000; %Maximum Frequency

LOR=1600; %Lines of resolution

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time sequence for constraint of ODE solver iterations

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); %Defect repetition

%Creates pulse force train for input to ODE solver

y=pulstran(tspan,d,'rectpuls',0.05*T);

fi=imp*y;

%Calls ODE solver for SDOF system

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%ODE Solver results

D=x(:,1);

V=x(:,2); %Velocity m/s

Vmm=V*1000; %Velocity mm/s

A=diff(V);

A(max(size(A))+1)=0;

plot(handles.axes1,t,Vmm); %Plot velocity waveform mm/s

V RMS=sqrt(mean((Vmm).ˆ2)); %Calculate Velocity RMS Level mm/s

%fft to use 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV = 2*abs(Yv(1:LOR)); %m/s

YVmm=1000*YV;

fV = FMax*linspace(0,1,LOR);

%plot(handles.axces2,fV,YV)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

assignin ('base','D',D);

assignin ('base','Vmm',Vmm)

assignin ('base','A',A)

C.12 Level 1 10 249

assignin ('base','tspan',tspan)

assignin ('base','fV',fV);

assignin ('base','YVmm',YVmm)

%Dispaly RMS level in GUI

set(handles.edit3,'String',round(V RMS,2));

%Reset text box message and background colour to origional

set(handles.text11,'String'...

,'Evaluate Machine Vibration Select A, B, C or D '...

,'BackgroundColor',[0.94 0.94 0.94]);

%This loop categorises the evaluation of the machine condition based

%on the RMS output not visible to user

if (V RMS <= v1);

set(handles.edit4,'String','Good')

elseif (V RMS > v1) && (V RMS <= v2)

set(handles.edit4,'String','Acceptable')

elseif (V RMS > v2) && (V RMS <= v3)

set(handles.edit4,'String','Satisfactory')

elseif (V RMS > v3)

set(handles.edit4,'String','Damaging')

end

% --- Executes on button press Machine Evaluation 'A'

function pushbutton7 Callback(hObject, eventdata, handles)

%This loop evaluates the users answer of 'A' as Correct or Incorrect

PBA=cellstr(get(handles.edit4,'String'));

disp(PBA)

%edit4=PBA{get(handles.popupmenu1,'Value')};

%disp(edit4)

if strcmp(PBA,'Good')

set(handles.text11,'String','CORRECT','BackgroundColor','green')

else

set(handles.text11,'String','INCORRECT','BackgroundColor','red')

end

% --- Executes on button press Machine Evaluation 'B'

function pushbutton8 Callback(hObject, eventdata, handles)

%This loop evaluates the users answer of 'B' as Correct or Incorrect

PBA=cellstr(get(handles.edit4,'String'));

disp(PBA)

C.12 Level 1 10 250

%edit4=PBA{get(handles.popupmenu1,'Value')};

%disp(edit4)

if strcmp(PBA,'Acceptable')

set(handles.text11,'String','CORRECT','BackgroundColor','green')

else

set(handles.text11,'String','INCORRECT','BackgroundColor','red')

end

% --- Executes on button press Machine Evaluation 'C'

function pushbutton9 Callback(hObject, eventdata, handles)

%This loop evaluates the users answer of 'B' as Correct or Incorrect

PBA=cellstr(get(handles.edit4,'String'));

disp(PBA)

%edit4=PBA{get(handles.popupmenu1,'Value')};

%disp(edit4)

if strcmp(PBA,'Satisfactory')

set(handles.text11,'String','CORRECT','BackgroundColor','green')

else

set(handles.text11,'String','INCORRECT','BackgroundColor','red')

end

% --- Executes on button press Machine Evaluation 'D'

function pushbutton10 Callback(hObject, eventdata, handles)

%This loop evaluates the users answer of 'D' as Correct or Incorrect

PBA=cellstr(get(handles.edit4,'String'));

disp(PBA)

%edit4=PBA{get(handles.popupmenu1,'Value')};

%disp(edit4)

if strcmp(PBA,'Damaging')

set(handles.text11,'String','CORRECT','BackgroundColor','green')

else

set(handles.text11,'String','INCORRECT','BackgroundColor','red')

end

%END Level 1 10

C.13 End Level 1 251

C.13 End Level 1

function varargout = End Level 1(varargin)

% END LEVEL 1 M-file for End Level 1.fig

% Last Modified by GUIDE v2.5 26-Aug-2015 07:44:28

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @End Level 1 OpeningFcn, ...

'gui OutputFcn', @End Level 1 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End Level 1 initialization code - DO NOT EDIT

% --- Executes just before End Level 1 is made visible.

function End Level 1 OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.

function varargout = End Level 1 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1 Callback(hObject, eventdata, handles)

run('Level 1 10')

close('End Level 1')

C.13 End Level 1 252

% --- Executes during object creation, after setting all properties.

function pushbutton1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in pushbutton3.

function pushbutton3 Callback(hObject, eventdata, handles)

run('Open')

close('End Level 1')

% --- Executes on button press in pushbutton4.

function pushbutton4 Callback(hObject, eventdata, handles)

close('End Level 1')

C.14 Level 2 1 253

C.14 Level 2 1

function varargout = Level 2 1(varargin)

% LEVEL 2 1 M-file for Level 2 1.fig

% Last Modified by GUIDE v2.5 01-Oct-2015 10:31:28

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 2 1 OpeningFcn, ...

'gui OutputFcn', @Level 2 1 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 2 1 is made visible.

function Level 2 1 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 2 1

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Displays text associated with concept in GUI

fid=fopen('Level 2 1.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

%Time array

t=0:0.01:11;

f=get(handles.slider2,'Value'); %Frequency from slider value Hz

w=2*pi*f; %Frequency radians

C.14 Level 2 1 254

d=get(handles.slider1,'Value'); %Displacement amplitude from slider

D=d*sin(w*t); %Displacememt wave

V=diff(D); %Differentiate displacemet

V(length(D))=0; %Append zero

A=diff(V); %Differentiate Velocity

A(length(D))=0; %Append zero

%Plot as displacement, velocity and acceleration in GUI

plot(handles.axes1,t,D,t,V*10,t,A*100)

xlabel('Time (s)')

ylabel('Amplitude')

legend({'Displacement','Velocity x10','Acceleration x100'});

set(handles.axes1,'xlim', [0 10])

set(handles.axes1,'ylim',[-1.2 1.2])

grid on

%Export to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','t',t)

% --- Outputs from this function are returned to the command line.

function varargout = Level 2 1 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on change in Amplitude slider movement.

function slider1 Callback(hObject, eventdata, handles)

%Time array

t=0:0.01:11;

f=get(handles.slider2,'Value'); %Frequency from slider value

w=2*pi*f; %Frequency radians

d=get(handles.slider1,'Value'); %Displacement amplitude from slider

D=d*sin(w*t); %Displacememt wave

C.14 Level 2 1 255

V=diff(D); %Differentiate displacement

V(length(D))=0; %Append zero

A=diff(V); %Differentiate Velocity

A(length(D))=0; %Append zero

%Plot as displacement, velocity and acceleration in GUI

plot(handles.axes1,t,D,t,V*10,t,A*100)

xlabel('Time (s)')

ylabel('Amplitude')

legend({'Displacement','Velocity x10','Acceleration x100'});

set(handles.axes1,'xlim', [0 10])

set(handles.axes1,'ylim',[-1.2 1.2])

grid on

%Export to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','t',t)

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes on change in Frequency slider movement.

function slider2 Callback(hObject, eventdata, handles)

%Time array

t=0:0.01:11;

f=get(handles.slider2,'Value'); %Frequency from slider value Hz

w=2*pi*f; %Frequency radians

d=get(handles.slider1,'Value'); %Displacement amplitude from slider

D=d*sin(w*t); %Displacememt wave

V=diff(D); %Differentiate displacemet

V(length(D))=0; %Append zero

A=diff(V); %Differentiate Velocity

A(length(D))=0; %Append zero

%Plot as displacement, velocity and acceleration in GUI

plot(handles.axes1,t,D,t,V*10,t,A*100)

xlabel('Time (s)')

ylabel('Amplitude')

legend({'Displacement','Velocity x10','Acceleration x100'});

C.14 Level 2 1 256

set(handles.axes1,'xlim', [0 10])

set(handles.axes1,'ylim',[-1.2 1.2])

grid on

%Export to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','t',t)

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

% Hint: slider controls usually have a light gray background.

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Open')

close('Level 2 1')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 2 2')

close('Level 2 1')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Displays Intgration and Differentiation Equations in GUI

% during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

%Uses latex interpreter

'callback';

S1= '$$\int {b}ˆ{a} f(t) dt = lim {n' ;

S2= '\to \infty}\sum {i=1}ˆ{n} f(t i) \Delta t $$' ;

String1=[S1 S2];

text(0.1,0.95,'Integration','FontSize',10)

text('Interpreter','latex','String',String1...

C.14 Level 2 1 257

,'Position',[.1 .75],'FontSize',10)

text(0.1,0.55,'Differentiation','FontSize',10)

S3= '$$ \frac{dy}{dt} = lim {\Delta t \to 0} \frac' ;

S4= '{f(t + \Delta t) - f(t)} {\Delta t} $$' ;

String2=[S3 S4];

text('Interpreter','latex','String', String2...

,'Position',[.1 .35],'FontSize',10)

% --- Executes on button press in pushbutton3.

function pushbutton3 Callback(hObject, eventdata, handles)

%Time sequence for animation

tstep=0.01;

t=0:tstep:10;

%Recalculate plot based on slider values

f=get(handles.slider2,'Value');

w=2*pi*f;

d=get(handles.slider1,'Value');

D=d*sin(w*t);

V=diff(D);

V(length(D))=0;

A=diff(V);

A(length(D))=0;

set(handles.pushbutton3,'enable','off');

a=get(handles.pushbutton4,'position');

b=get(handles.pushbutton5,'position');

c=get(handles.pushbutton7,'position');

%Loop runs animation of buttons 4,5,7

pause on

for n=1:max(size(t)) %Calculates next position

y1=a(2)+D(n)*0.18;

y2=b(2)+V(n)*0.18*10;

y3=c(2)+A(n)*0.18*100;

pause(tstep) %Move button to next position

set(handles.pushbutton4,'position',[a(1) y1 a(3) a(4)])

set(handles.pushbutton5,'position',[b(1) y2 b(3) b(4)])

set(handles.pushbutton7,'position',[c(1) y3 c(3) c(4)])

if n>=max(size(t)) %Set buttons back to start position

set(handles.pushbutton4,'position',[a(1) 0.2944 a(3) a(4)])

set(handles.pushbutton5,'position',[b(1) 0.2944 b(3) b(4)])

set(handles.pushbutton7,'position',[c(1) 0.2944 c(3) c(4)])

set(handles.pushbutton3,'enable','on');

end

end

C.14 Level 2 1 258

% --- Plot currently displayed waveform in separate Matlab figure

%on button press of Plot Waveform.

function pushbutton6 Callback(hObject, eventdata, handles)

%Extract information from workspace and plot

D=evalin('base','D');

V=evalin('base','V');

A=evalin('base','A');

t=evalin('base','t');

figure

plot(t,D,t,V*10,t,A*100)

xlim([0 10]);

xlabel('Time (s)')

ylabel('Amplitude')

legend({'Displacement','Velocity x10','Acceleration x100'});

grid on

%END Level 2 1

C.15 Level 2 2 259

C.15 Level 2 2

function varargout = Level 2 2(varargin)

% LEVEL 2 2 M-file for Level 2 2.fig

% Last Modified by GUIDE v2.5 12-Sep-2015 16:44:31

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 2 2 OpeningFcn, ...

'gui OutputFcn', @Level 2 2 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 2 2 is made visible.

function Level 2 2 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 2 2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

evalin('base','clear')

%Displays text associated with GUI concepts

fid=fopen('Level 2 2.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

%Data creation parameters

FMax=200;

LOR=800;

C.15 Level 2 2 260

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

%Randomly generate wave frequencies and amplitudes

f1=200*rand;

f2=200*rand;

f3=200*rand;

f4=200*rand;

f5=200*rand;

f6=200*rand;

Amplitude1=5*rand;

Amplitude2=5*rand;

Amplitude3=5*rand;

Amplitude4=5*rand;

Amplitude5=5*rand;

Amplitude6=5*rand;

w1=2*pi*f1;

w2=2*pi*f2;

w3=2*pi*f3;

w4=2*pi*f4;

w5=2*pi*f5;

w6=2*pi*f6;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

%Compile and plot wave

wave=wave1+wave2+wave3+wave4+wave5+wave6;

plot(handles.axes1,t,wave) %,t,wave1,t,wave2)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

set(handles.axes1,'xlim',[0 0.5])

%fft useing 100%*(2/2.56)=78.125% of the Nyquist rate

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 5])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

C.15 Level 2 2 261

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

assignin ('base','wave',wave)

assignin ('base','wave1',wave1)

assignin ('base','wave2',wave2)

assignin ('base','t',t)

% --- Outputs from this function are returned to the command line.

function varargout = Level 2 2 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 2 1')

close('Level 2 2')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 2 3')

close('Level 2 2')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Generates and plot new waveform on press of Change Waveform

function pushbutton3 Callback(hObject, eventdata, handles)

C.15 Level 2 2 262

%Data sampling parameters

FMax=200;

LOR=800;

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

%Randomly generate enerate new waveform

f1=200*rand;

f2=200*rand;

f3=200*rand;

f4=200*rand;

f5=200*rand;

f6=200*rand;

Amplitude1=5*rand;

Amplitude2=5*rand;

Amplitude3=5*rand;

Amplitude4=5*rand;

Amplitude5=5*rand;

Amplitude6=5*rand;

w1=2*pi*f1;

w2=2*pi*f2;

w3=2*pi*f3;

w4=2*pi*f4;

w5=2*pi*f5;

w6=2*pi*f6;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

%Compile waveform and plot

wave=wave1+wave2+wave3+wave4+wave5+wave6;

plot(handles.axes1,t,wave) %,t,wave1,t,wave2)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

set(handles.axes1,'xlim',[0 0.5])

%fft using 100%*(2/2.56)=78.125% of the Nyquist rate

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 5])

C.15 Level 2 2 263

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

assignin ('base','wave',wave)

assignin ('base','wave1',wave1)

assignin ('base','wave2',wave2)

assignin ('base','t',t)

%END Level 2 2

C.16 Level 2 3 264

C.16 Level 2 3

function varargout = Level 2 3(varargin)

% LEVEL 2 3 M-file for Level 2 3.fig

%

% Last Modified by GUIDE v2.5 21-Oct-2015 09:07:20

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 2 3 OpeningFcn, ...

'gui OutputFcn', @Level 2 3 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 2 3 is made visible.

function Level 2 3 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 2 3

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Clear workspace

evalin('base','clear')

%Display text associated with the GUI concepts

fid=fopen('Level 2 3.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

C.16 Level 2 3 265

%Set data generation parameter

FMax=200;

LOR=800;

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

%Randomly generate frequencies and assign to workspace

f1=194*rand;

f2=194*rand;

f3=194*rand;

f4=194*rand;

f5=194*rand;

f6=194*rand;

f7=f6+5;

f8=abs(f6-5);

assignin('base','f1',f1);

assignin('base','f2',f2);

assignin('base','f3',f3);

assignin('base','f4',f4);

assignin('base','f5',f5);

assignin('base','f6',f6);

assignin('base','f7',f7);

assignin('base','f8',f8);

%Randomly generate amplitudes and assign to workspace

Amp1=5*rand;

Amplitude1=abs(Amp1+0.5*randn);

Amp2=5*rand;

Amplitude2=abs(Amp2+0.5*randn);

Amp3=5*rand;

Amplitude3=abs(Amp3+0.5*randn);

Amp4=5*rand;

Amplitude4=abs(Amp4+0.5*randn);

Amp5=5*rand;

Amplitude5=abs(Amp5+0.5*randn);

Amp6=5*rand;

Amplitude6=abs(Amp6+0.5*randn);

Amp7=0.7*Amp6;

Amplitude7=Amp7;

Amp8=Amp7;

Amplitude8=Amp7;

assignin('base','Amp1',Amp1);

assignin('base','Amp2',Amp2);

C.16 Level 2 3 266

assignin('base','Amp3',Amp3);

assignin('base','Amp4',Amp4);

assignin('base','Amp5',Amp5);

assignin('base','Amp6',Amp6);

assignin('base','Amp7',Amp7);

assignin('base','Amp8',Amp8);

%Compile waves

w1=2*pi*f1;

w2=2*pi*f2;

w3=2*pi*f3;

w4=2*pi*f4;

w5=2*pi*f5;

w6=2*pi*f6;

w7=2*pi*f7;

w8=2*pi*f8;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

wave7=Amplitude7*sin(w7*t);

wave8=Amplitude8*sin(w8*t);

wave=wave1+wave2+wave3+wave4+wave5+wave6+wave7+wave8;

%Add random noise

noise=20*rand;

wave=wave+noise*randn(size(wave));

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 5])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

C.16 Level 2 3 267

%Send information to workspace

assignin ('base','wave',wave)

assignin ('base','LOR',LOR)

assignin ('base','Sampfreq',Sampfreq)

assignin ('base','FMax',FMax)

assignin ('base','t',t)

assignin ('base','f',f)

assignin ('base','noise',noise)

%Lower and upper ends of frequency band selection

Fpass1=get(handles.slider3,'Value');

set(handles.edit3,'String',Fpass1);

Fpass2=get(handles.slider4,'Value');

set(handles.edit4,'String',Fpass2);

%Stop the envelope function from being used

set(handles.radiobutton2,'enable','off');

%Calculate, display, workspace, RMS, Crest Factor, Kurtosis Values

RMS=round(rms(wave),2);

CF=round(peak2rms(wave),2);

K=round(kurtosis(wave),2);

set(handles.edit5,'String',RMS)

set(handles.edit6,'String',CF)

set(handles.edit7,'String',K)

assignin('base','RMSAv',0)

assignin('base','CFAv',0)

assignin('base','KAv',0)

%Display the number of averages as per slider bar value

sl5=get(handles.slider5,'Value');

set(handles.edit8,'String',sl5)

%Enable pause for displaying average

pause on

% --- Outputs from this function are returned to the command line.

function varargout = Level 2 3 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

C.16 Level 2 3 268

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

pause off

run('Level 2 2')

close('Level 2 3')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

pause off

h=waitbar(0.5,'Opening Next Level, Please wait...');

run('Level 2 4')

close('Level 2 3')

close(h)

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Generate new waveform on button press Change Waveform

function pushbutton3 Callback(hObject, eventdata, handles)

%Allow filter band button to be used

set(handles.radiobutton1,'enable','on')

%Do not allow the envelope button to be used

set(handles.radiobutton2,'enable','off')

%Set data generation parameters

FMax=200;

LOR=800;

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

%Randomly generate frequencies and send to workspace

f1=194*rand;

f2=194*rand;

f3=194*rand;

C.16 Level 2 3 269

f4=194*rand;

f5=194*rand;

f6=194*rand;

f7=f6+5;

f8=abs(f6-5);

assignin('base','f1',f1);

assignin('base','f2',f2);

assignin('base','f3',f3);

assignin('base','f4',f4);

assignin('base','f5',f5);

assignin('base','f6',f6);

assignin('base','f7',f7);

assignin('base','f8',f8);

%Randomly generate amplitudes and send to workspace

Amp1=5*rand;

Amplitude1=abs(Amp1+0.5*randn);

Amp2=5*rand;

Amplitude2=abs(Amp2+0.5*randn);

Amp3=5*rand;

Amplitude3=abs(Amp3+0.5*randn);

Amp4=5*rand;

Amplitude4=abs(Amp4+0.5*randn);

Amp5=5*rand;

Amplitude5=abs(Amp5+0.5*randn);

Amp6=5*rand;

Amplitude6=abs(Amp6+0.5*randn);

Amp7=0.7*Amp6;

Amplitude7=Amp7;

Amp8=Amp7;

Amplitude8=Amp7;

assignin('base','Amp1',Amp1);

assignin('base','Amp2',Amp2);

assignin('base','Amp3',Amp3);

assignin('base','Amp4',Amp4);

assignin('base','Amp5',Amp5);

assignin('base','Amp6',Amp6);

assignin('base','Amp7',Amp7);

assignin('base','Amp8',Amp8);

%Compile waveform

w1=2*pi*f1;

w2=2*pi*f2;

w3=2*pi*f3;

w4=2*pi*f4;

C.16 Level 2 3 270

w5=2*pi*f5;

w6=2*pi*f6;

w7=2*pi*f7;

w8=2*pi*f8;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

wave7=Amplitude7*sin(w7*t);

wave8=Amplitude8*sin(w8*t);

wave=wave1+wave2+wave3+wave4+wave5+wave6+wave7+wave8;

%Add random noise to waveform

noise=20*rand;

wave=wave+noise*randn(size(wave));

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

%set(handles.axes2,'ylim',[0 5])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

%Send information to workspace

assignin ('base','wave',wave)

assignin ('base','LOR',LOR)

assignin ('base','Sampfreq',Sampfreq)

assignin ('base','FMax',FMax)

assignin ('base','t',t)

assignin ('base','f',f)

assignin('base','noise',noise)

%Calculate, display, workspace, RMS, Crest Factor, Kurtosis Values

RMS=round(rms(wave),2);

CF=round(peak2rms(wave),2);

K=round(kurtosis(wave),2);

C.16 Level 2 3 271

set(handles.edit5,'String',RMS)

set(handles.edit6,'String',CF)

set(handles.edit7,'String',K)

assignin('base','RMSAv',0)

assignin('base','CFAv',0)

assignin('base','KAv',0)

% --- Filters displayed waveform on button press for Filter Band

function radiobutton1 Callback(hObject, eventdata, handles)

%Lower and upper ends of frequency band selection

Fpass1=round(get(handles.slider3,'Value'));

Fpass2=round(get(handles.slider4,'Value'));

%Extract time, the wave and sample parameter from the workspace

wave=evalin('base','wave');

FMax=evalin('base','FMax');

Fs=evalin('base','Sampfreq'); % Sampling Frequency

LOR=evalin('base','LOR');

t=evalin('base','t');

rb=get(handles.radiobutton1,'Value');

if rb==1;

%Stop user from generating a new waveform while using filter

set(handles.pushbutton3,'enable','off');

%Stop user from using the average function while using filter

set(handles.radiobutton3,'enable','off');

% Frequency values are in Hz.

Fstop1 = Fpass1-3; % First Stopband Frequency

Fstop2 = Fpass2+3; % Second Stopband Frequency

Dstop1 = 0.0001; % First Stopband Attenuation

Dpass = 0.057501127785; % Passband Ripple

Dstop2 = 0.0001; % Second Stopband Attenuation

dens = 20; % Density Factor

% Calculate the order from the parameters using FIRPMORD.(MATLAB CODE)

[N, Fo, Ao, W] = firpmord([Fstop1 Fpass1 Fpass2 Fstop2]/(Fs/2), [0 1 ...

0], [Dstop1 Dpass Dstop2]);

% Calculate the coefficients using the FIRPM function.

b = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b); %(MATLAB CODE)

%grpdelay(Hd,length(wave),Fs) % plot group delay

D = round(mean(grpdelay(Hd))); % filter delay in sample (MATLAB CODE)

C.16 Level 2 3 272

wavefilt = filter(Hd,[wave,zeros(1,D)]);% Append D zeros to the input data

wavefilt = wavefilt(D+1:end); % Shift data to compensate for delay

%Send filtre and filtered waveform to workspace

assignin ('base','Hd',Hd)

assignin ('base','wavefilt',wavefilt)

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

Y = fft(wavefilt,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 5])

%Hilbert transform applied to filtered waveform as envelope

envelope=abs(hilbert(wavefilt));

%fft of the Hilbert transform envelope

envfft = fft(envelope,2.56*LOR)/(2.56*LOR);

envspect=2*abs(envfft(1:LOR));

plot(handles.axes1,t,wavefilt)%Plot filtered waveform

%send envelope, fft of filtered waveform and envelope to workspace

assignin('base','Y',Y)

assignin('base','envelope',envelope)

assignin('base','envspect',envspect)

assignin('base','f',f)

%Allow user to use the envelope radiobutton

set(handles.radiobutton2,'enable','on');

%Conditions if Filter Band is turned off (Value=0)

else

set(handles.pushbutton3,'enable','on');

set(handles.radiobutton3,'enable','on');

set(handles.radiobutton2,'value',0);

set(handles.radiobutton2,'enable','off');

plot(handles.axes1,t,wave)

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

end

% --- Executes during object creation, after setting all properties.

function radiobutton1 CreateFcn(hObject, eventdata, handles)

function edit3 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit3 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

C.16 Level 2 3 273

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Displays lower band pass frequency on slider movement.

function slider3 Callback(hObject, eventdata, handles)

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit3,'String',Fpass1);

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit4,'String',Fpass2);

% --- Executes during object creation, after setting all properties.

function slider3 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Displays upper band pass frequency on slider movement.

function slider4 Callback(hObject, eventdata, handles)

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit3,'String',Fpass1);

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit4,'String',Fpass2);

% --- Executes during object creation, after setting all properties.

function slider4 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

C.16 Level 2 3 274

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Plots the Hilbert transform and it fft on button press Envelope

function radiobutton2 Callback(hObject, eventdata, handles)

%Get value for if logic

rb=get(handles.radiobutton1,'Value');

rb2=get(handles.radiobutton2,'Value');

%Extract required information from workspace

Y=evalin('base','Y');

wavefilt=evalin('base','wavefilt');

envelope=evalin('base','envelope');

envspect=evalin('base','envspect');

f=evalin('base','f');

t=evalin('base','t');

LOR=evalin('base','LOR');

if rb==1 && rb2==1; %Plots Hilbert Transform Information

set(handles.pushbutton3,'enable','off');

plot(handles.axes1,t,wavefilt,t,envelope,'LineWidth',0.8)

plot(handles.axes2,f,2*abs(Y(1:LOR)),f,2*envspect)

else %Returns to filtered polts

plot(handles.axes1,t,wavefilt)

plot(handles.axes2,f,2*abs(Y(1:LOR)))

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit5 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit6 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit6 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

C.16 Level 2 3 275

set(hObject,'BackgroundColor','white');

end

function edit7 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit7 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit8 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit8 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Sets number of waveform to be averaged on slider movement.

function slider5 Callback(hObject, eventdata, handles)

sl5=round(get(handles.slider5,'Value'));

set(handles.edit8,'String',sl5)

% --- Executes during object creation, after setting all properties.

function slider5 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Performs the averageing process on button press Averaging

function radiobutton3 Callback(hObject, eventdata, handles)

%Number of waveforms to be averaged

sl5=round(get(handles.slider5,'Value'));

assignin('base','sl5',sl5)

%Stop other functions while conducting this

C.16 Level 2 3 276

set(handles.radiobutton1,'enable','off')

set(handles.radiobutton2,'enable','off')

set(handles.radiobutton3,'enable','off')

%Use amplitudes and frequencies from workspace

Amp1=evalin('base','Amp1');

Amp2=evalin('base','Amp2');

Amp3=evalin('base','Amp3');

Amp4=evalin('base','Amp4');

Amp5=evalin('base','Amp5');

Amp6=evalin('base','Amp6');

Amp7=evalin('base','Amp7');

Amp8=evalin('base','Amp8');

f1=evalin('base','f1');

f2=evalin('base','f2');

f3=evalin('base','f3');

f4=evalin('base','f4');

f5=evalin('base','f5');

f6=evalin('base','f6');

f7=evalin('base','f7');

f8=evalin('base','f8');

LOR=evalin('base','LOR');

t=evalin('base','t');

f=evalin('base','f');

%This will create a similar amount of noise in all average samples

noise=evalin('base','noise');

%Start the average process at zero to add first waveform

Y=zeros(1,800);

assignin('base','Av',Y)

%Loop assembles new waveform with frequencies and amplitudes and noise

%taken from the workspace to generate a similar waveform with variation as

%would be seen in operation of a machine.

for n=1:sl5;

pause(1.5) %Allows display of each wavefom used in average

Amplitude1=abs(Amp1+0.5*randn);

Amplitude2=abs(Amp2+0.5*randn);

Amplitude3=abs(Amp3+0.5*randn);

Amplitude4=abs(Amp4+0.5*randn);

Amplitude5=abs(Amp5+0.5*randn);

Amplitude6=abs(Amp6+0.5*randn);

Amplitude7=0.7*Amplitude6;

Amplitude8=Amplitude7;

w1=2*pi*f1;

w2=2*pi*f2;

C.16 Level 2 3 277

w3=2*pi*f3;

w4=2*pi*f4;

w5=2*pi*f5;

w6=2*pi*f6;

w7=2*pi*f7;

w8=2*pi*f8;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

wave7=Amplitude7*sin(w7*t);

wave8=Amplitude8*sin(w8*t);

wave=wave1+wave2+wave3+wave4+wave5+wave6+wave7+wave8;

wave=wave+noise*randn(size(wave));

%Fft using 78.125% of Nyquist rate and plots current waveform in GUI

%for 1.5 seconds

Y = fft(wave,2.56*LOR)/(2.56*LOR);

Y = 2*abs(Y(1:LOR));

plot(handles.axes1,t,wave)

plot(handles.axes2,f,Y)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

%Takes Av from the workspace (initially zeros) and adds the wave

%generated in this loop and sends the sum to the workspace for use in

%the next iteration of the loop.

Av=evalin('base','Av');

Av=(Av+Y);

assignin('base','Av',Av)

%Used to obtain average values for RMS, CF and K, displays current

%waveform value in GUI

RMS=round(rms(wave),2);

CF=round(peak2rms(wave),2);

K=round(kurtosis(wave),2);

set(handles.edit5,'String',RMS)

set(handles.edit6,'String',CF)

set(handles.edit7,'String',K)

RMSAv=evalin('base','RMSAv');

C.16 Level 2 3 278

RMSAv=(RMSAv+RMS);

assignin('base','RMSAv',RMSAv)

CFAv=evalin('base','CFAv');

CFAv=(CFAv+CF);

assignin('base','CFAv',CFAv)

KAv=evalin('base','KAv');

KAv=(KAv+K);

assignin('base','KAv',KAv)

%When number of averages reaches that desired by user this allows 1.5

%second pause to display last wave/fft going into avearge and uses the

%summed Av value divided by number of ffts in average and plots

if n==sl5

pause(1.5)

plot(handles.axes2,f,(Av/sl5))

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

legend('Averaged Signal');

%Displays average values

RMSAv=evalin('base','RMSAv');

CFAv=evalin('base','CFAv');

KAv=evalin('base','KAv');

set(handles.edit5,'String',round(RMSAv/(sl5),2))

set(handles.edit6,'String',round(CFAv/(sl5),2))

set(handles.edit7,'String',round(KAv/(sl5),2))

else

end

end

%Resets values so the loop can be used again

set(handles.radiobutton3,'enable','on')

set(handles.radiobutton3,'Value',0)

assignin('base','RMSAv',0)

assignin('base','CFAv',0)

assignin('base','KAv',0)

%END Level 2 3

C.17 Level 2 4 279

C.17 Level 2 4

function varargout = Level 2 4(varargin)

% LEVEL 2 4 M-file for Level 2 4.fig

%

% Last Modified by GUIDE v2.5 21-Oct-2015 09:06:54

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 2 4 OpeningFcn, ...

'gui OutputFcn', @Level 2 4 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 2 4 is made visible.

function Level 2 4 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 2 4

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

global M C K I wf mo r fi tspan

%Displays text associated with GUI concepts

fid=fopen('Level 2 4.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

C.17 Level 2 4 280

fclose(fid);

set(handles.edit1,'String',C);

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

Info=[2000 12800 1.67 0.45 4.74 11.2 13.8]; %Conveyor pulley

axes(handles.axes4)

imshow('Pulley.jpg');

case 2

Info=[10000 25600 7.05 0.441 4.074 9.711 12.289];%Crusher shaft

axes(handles.axes4)

imshow('Crusher.jpg');

case 3

Info=[10000 25600 19.62 0.4 2.45 6.47 9.53]; %GBox shaft

axes(handles.axes4)

imshow('2ndShaft.jpg');

case 4

Info=[10000 25600 24.83 0.39 2.09 3.09 4.91]; %Motor NDE

axes(handles.axes4)

imshow('MtrNDE.jpg');

case 5

Info=[10000 25600 24.83 0.4 2.43 5.21 7.79]; %Motor DE

axes(handles.axes4)

imshow('MtrDE.jpg');

otherwise

end

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(4);

mod switch=0;

mod ratio=0;

case 2

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=2*Info(5);

mod switch=1;

C.17 Level 2 4 281

mod ratio=Info(4);

case 3

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(6);

mod switch=0;

mod ratio=0;

case 4

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(7);

mod switch=1;

mod ratio=1;

otherwise

end

%Two degree of freedom syatem parameters

m1=100; %Component 1 mass

m2=600; %Component 2 mass

mo=500*(1/fHzˆ2); %Unbalance mass at component 1

c1=900000; %Damping coefficient 1 Ns/m

c2=2500000; %Damping coefficient 2 Ns/m

k1=40000000000; %Stiffness N/m

k2=80000000000; %Stiffness N/m

g=9.81; %Gravity

imp=100000*fHz; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

cf=mo*r*wfˆ2; %Centrifugal force

%Matrices for inertia M,damping C, stiffness K and an identity matrix I.

M=[m1+mo,0;0,m2];

C=[c1,-c1;-c1,c1+c2];

K=[k1,-k1;-k1,k1+k2];

I=[1,0;0,1];

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time contraint for ODE solver

tspan=(0:Wave L-1)*Tstep;

C.17 Level 2 4 282

d=(0:T:Time); % T repetition frequency

%Modified sinusoid for load zone modulation

y1=sin(mod ratio*wf*tspan)-0.2165;

yscale=1/max(y1);

for n=1:length(tspan)

if y1(n)>0

y1(n)=y1(n)*yscale;

else y1(n)=0;

end

end

%Construct pulse train for use in ODE solution

if mod switch==0

y=pulstran(tspan,d,'rectpuls',0.02*T);

else

y=y1.*(pulstran(tspan,d,'rectpuls',0.02*T));

end

fi=imp*y;

%Call ODE solver for two degree of freedom system

[t, x] = ode23('TDOF SOLVER',tspan, [0 0 0 0]);

%Results

D=x(:,1);

V=x(:,2);

A=diff(V);

A(max(size(A))+1)=0;

A=A/g;

plot(handles.axes1,t,V*1000); %1000 converts m to mm

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM and plotting

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,YV*1000) %1000 converts m to mm

%ACCELERATION SPECTRUM and plotting

Ya = fft(A,2.56*LOR)/(2.56*LOR);

YA=2*abs(Ya(1:LOR)); %m/sˆ2

YA=YA/g;

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

%Send information to workspace

C.17 Level 2 4 283

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','f',f);

assignin ('base','YV',YV)

assignin ('base','YA',YA)

assignin ('base','LOR',LOR)

assignin ('base','Samp freq',Samp freq)

assignin('base','FMax',FMax)

%Display values on GUI

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round((fHz*dratio),2));

set(handles.edit5,'String',dratio);

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit6,'String',Fpass1);

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit7,'String',Fpass2);

%Set functions as off so they cannot be used at this stage

set(handles.radiobutton4,'enable','off');

set(handles.radiobutton5,'enable','off');

set(handles.radiobutton6,'enable','off');

% --- Outputs from this function are returned to the command line.

function varargout = Level 2 4 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

C.17 Level 2 4 284

function Previous Callback(hObject, eventdata, handles)

run('Level 2 3')

close('Level 2 4')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Level 2 5')

close('Level 2 4')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Executes on selecting a Non Synchronous Defect in popupmenu1.

function popupmenu1 Callback(hObject, eventdata, handles)

%Enable use of Velocity and Acceleration radiobuttons

set(handles.radiobutton1,'enable','on');

set(handles.radiobutton3,'enable','on');

%Reset Filter Band and Envelope radiobuttons

set(handles.radiobutton4,'Value',0);

set(handles.radiobutton5,'Value',0);

%Select current Machine Component displayed in GUI

FMax=get(handles.popupmenu2,'Value');

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

Info=[2000 12800 1.67 0.45 4.74 11.2 13.8];

axes(handles.axes4)

imshow('Pulley.jpg');

case 2

Info=[10000 25600 7.05 0.441 4.074 9.711 12.289];

axes(handles.axes4)

imshow('Crusher.jpg');

case 3

Info=[10000 25600 19.62 0.4 2.45 6.47 9.53];

axes(handles.axes4)

imshow('2ndShaft.jpg');

case 4

Info=[10000 25600 24.83 0.39 2.09 3.09 4.91]; %

axes(handles.axes4)

C.17 Level 2 4 285

imshow('MtrNDE.jpg');

case 5

Info=[10000 25600 24.83 0.4 2.43 5.21 7.79];

axes(handles.axes4)

imshow('MtrDE.jpg');

otherwise

end

%Select information based on Non Synchronous Defect chosen in popupmenu

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(4);

mod switch=0;

mod ratio=0;

case 2

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=2*Info(5);

mod switch=1;

mod ratio=Info(4);

case 3

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(6);

mod switch=0;

mod ratio=0;

case 4

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(7);

mod switch=1;

mod ratio=1;

otherwise

end

global M C K I wf mo r fi tspan

h=waitbar(0.5,'Calculating Output, Please wait...');

C.17 Level 2 4 286

m1=100; %Component 1 mass

m2=500; %Component 2 mass

mo=500*(1/fHzˆ2); %Unbalance mass at component 1

c1=900000; %Damping coefficient 1 Ns/m

c2=2500000; %Damping coefficient 2 Ns/m

k1=40000000000; %Stiffness 1 N/m

k2=80000000000; %Stiffness 2 N/m

g=9.81; %Gravity

imp=100000*fHz; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio; %Defect ratio Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

cf=mo*r*wfˆ2; %Centrifugal force

%Matrices for inertia M,damping C, stiffness K and an identity matrix I.

M=[m1+mo,0;0,m2];

C=[c1,-c1;-c1,c1+c2];

K=[k1,-k1;-k1,k1+k2];

I=[1,0;0,1];

%Modified sinusoid for load zone modulation

def deg=155; %Defect Load Zone andle 155 degrees

def rad=def deg/(180/pi); %Defect Load Zone andle radians

shift=sin(def rad); %Factor to shift sinwave

%Data collection/generation parameters

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time constraint on ODE solver

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % T repetition frequency

%Construct window for load zone modulation

y1=sin(mod ratio*wf*tspan)-sin(1/mod ratio*shift);

yscale=1/max(y1);

for n=1:length(tspan)

if y1(n)>0

y1(n)=y1(n)*yscale;

else y1(n)=0;

end

end

%Construct pulse train for input to ODE solver

if mod switch==0

y=pulstran(tspan,d,'rectpuls',0.02*T);

C.17 Level 2 4 287

else

y=y1.*(pulstran(tspan,d,'rectpuls',0.02*T));

end

fi=imp*y;

%Call ODE solver

[t, x] = ode23('TDOF SOLVER',tspan, [0 0 0 0]);

%Simulation Results

D=x(:,1);

V=x(:,2);

A=diff(V);

A(max(size(A))+1)=0;

A=A/g;

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

f = FMax*linspace(0,1,LOR);

%ACCELERATION SPECTRUM

Ya = fft(A,2.56*LOR)/(2.56*LOR);

YA=2*abs(Ya(1:LOR)); %m/sˆ2

YA=YA/g; %G's

%Send information to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','f',f);

assignin ('base','YV',YV)

assignin ('base','YA',YA)

assignin ('base','LOR',LOR)

assignin ('base','Samp freq',Samp freq)

assignin('base','FMax',FMax)

%Plots velocity and sets conditions of Filter Band, Envelope and Play

%Sound as unusable if Velocity is selected

rb1=get(handles.radiobutton1,'Value');

if rb1==1

set(handles.radiobutton4,'enable','off');

set(handles.radiobutton4,'Value',0);

set(handles.radiobutton5,'enable','off');

set(handles.radiobutton5,'Value',0);

set(handles.radiobutton6,'enable','off');

plot(handles.axes1,tspan,V*1000)

plot(handles.axes2,f,YV*1000)

C.17 Level 2 4 288

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

else

%Plots acceleration and sets conditions of Filter Band, Envelope

%and Play Sound as unusable if Velocity is not selected

set(handles.radiobutton4,'Value',0);

set(handles.radiobutton5,'Value',0);

set(handles.radiobutton6,'enable','on');

plot(handles.axes1,tspan,A)

plot(handles.axes2,f,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

end

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round((fHz*dratio),2));

set(handles.edit5,'String',dratio);

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit6,'String',Fpass1);

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit7,'String',Fpass2);

close(h) %Close waitbar

% --- Executes during object creation, after setting all properties.

function popupmenu1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes on Select Machine Component change in popupmenu2.

function popupmenu2 Callback(hObject, eventdata, handles)

%Enable use of Velocity and Acceleration radiobuttons

C.17 Level 2 4 289

set(handles.radiobutton1,'enable','on');

set(handles.radiobutton3,'enable','on');

%Reset Filter Band and Envelope radiobuttons

set(handles.radiobutton4,'Value',0);

set(handles.radiobutton5,'Value',0);

%Select current Machine Component and Defect displayed in GUI

FMax=get(handles.popupmenu2,'Value');

%FMax Maximum frequency specified for spectrum

%LOR Lines of resolution for spectrum

switch FMax

case 1 %[FMax LOR fHz FTF BSF ORDF IRDF]

Info=[2000 12800 1.67 0.45 4.74 11.2 13.8];

axes(handles.axes4)

imshow('Pulley.jpg');

case 2

Info=[10000 25600 7.05 0.441 4.074 9.711 12.289];

axes(handles.axes4)

imshow('Crusher.jpg');

case 3

Info=[10000 12800 19.62 0.4 2.45 6.47 9.53];

axes(handles.axes4)

imshow('2ndShaft.jpg');

case 4

Info=[10000 25600 24.83 0.39 2.09 3.09 4.91];

axes(handles.axes4)

imshow('MtrNDE.jpg');

case 5

Info=[10000 25600 24.83 0.4 2.43 5.21 7.79];

axes(handles.axes4)

imshow('MtrDE.jpg');

otherwise

end

%Select information based on Non Synchronous Defect chosen in

LOR=get(handles.popupmenu1,'Value');

switch LOR

case 1

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(4);

mod switch=0;

mod ratio=0;

case 2

C.17 Level 2 4 290

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=2*Info(5);

mod switch=1;

mod ratio=Info(4);

case 3

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(6);

mod switch=0;

mod ratio=0;

case 4

FMax=Info(1);

LOR=Info(2);

fHz=Info(3);

dratio=Info(7);

mod switch=1;

mod ratio=1;

otherwise

end

global M C K I wf mo r fi tspan

h=waitbar(0.5,'Calculating Output, Please wait...');

m1=100; %Component 1 mass

m2=500; %Component 2 mass

mo=500*(1/fHzˆ2); %Unbalance mass at component 1

c1=900000; %Damping coefficient 1 Ns/m

c2=2500000; %Damping coefficient 2 Ns/m

k1=40000000000; %Stiffness N/m

k2=80000000000; %Stiffness N/m

g=9.81; %Gravity

imp=100000*fHz; %Peak pulse force N varies with speed

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio; %Defect frequency Hz

T=1/dHz; %Defect force pulse period

wf=2*pi*fHz; %Shaft turning speed rad/s

cf=mo*r*wfˆ2; %Centrifugal force

%Matrices for inertia M,damping C, stiffness K and an identity matrix I.

M=[m1+mo,0;0,m2];

C=[c1,-c1;-c1,c1+c2];

C.17 Level 2 4 291

K=[k1,-k1;-k1,k1+k2];

I=[1,0;0,1];

%Modified sinusoid for load zone modulation

def deg=155; %Defect Load Zone andle 155 degrees

def rad=def deg/(180/pi); %Defect Load Zone andle radians

shift=sin(def rad); %Factor to shift sinwave

%Data collection/generation parameters

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

Time=LOR/FMax; %Time/duration of waveform seconds

%Time constraint on ODE solver

tspan=(0:Wave L-1)*Tstep;

d=(0:T:Time); % Defect repetition

%Construct window for load zone modulation

y1=sin(mod ratio*wf*tspan)-sin(1/mod ratio*shift);

yscale=1/max(y1);

for n=1:length(tspan)

if y1(n)>0

y1(n)=y1(n)*yscale;

else y1(n)=0;

end

end

%Construct pulse train for input to ODE solver

if mod switch==0

y=pulstran(tspan,d,'rectpuls',0.02*T);

else

y=y1.*(pulstran(tspan,d,'rectpuls',0.02*T));

end

fi=imp*y;

%Call ODE Solver

[t, x] = ode23('TDOF SOLVER',tspan, [0 0 0 0]);

%Simulation results

D=x(:,1);

V=x(:,2);

A=diff(V);

A(max(size(A))+1)=0;

A=A/g;

%fft using 100%*(2/2.56)=78.125% of Nyquist rate

%VELOCITY SPECTRUM

Yv = fft(V,2.56*LOR)/(2.56*LOR);

YV=2*abs(Yv(1:LOR));

f = FMax*linspace(0,1,LOR);

C.17 Level 2 4 292

%ACCELERATION SPECTRUM

Ya = fft(A,2.56*LOR)/(2.56*LOR);

YA=2*abs(Ya(1:LOR));

YA=YA/g; %G's

%Send information to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin ('base','tspan',tspan)

assignin ('base','f',f);

assignin ('base','YV',YV)

assignin ('base','YA',YA)

assignin ('base','LOR',LOR)

assignin ('base','Samp freq',Samp freq)

assignin('base','FMax',FMax)

%Plots velocity if Velocity is selected

rb1=get(handles.radiobutton1,'Value');

if rb1==1

plot(handles.axes1,tspan,V*1000)

plot(handles.axes2,f,YV*1000)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

else

%Plots Acceleration if Velocity is not selected

plot(handles.axes1,tspan,A)

plot(handles.axes2,f,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

end

set(handles.edit3,'String',fHz);

set(handles.edit4,'String',round((fHz*dratio),2));

set(handles.edit5,'String',dratio);

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit6,'String',Fpass1);

C.17 Level 2 4 293

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit7,'String',Fpass2);

close(h) %Close waitbar

% --- Executes during object creation, after setting all properties.

function popupmenu2 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Plots current spectrum in GUI on pushbutton Plot Spectrum.

function pushbutton4 Callback(hObject, eventdata, handles)

%Get radiobutton information on what is currently plotted

rb1=get(handles.radiobutton1,'Value');

rb3=get(handles.radiobutton3,'Value');

rb4=get(handles.radiobutton4,'Value');

rb5=get(handles.radiobutton5,'Value');

%Get information from workspace

f=evalin('base','f');

YV=evalin('base','YV');

YA=evalin('base','YA');

LOR=evalin('base','LOR');

%Sort radiobutton information and plot approriate spectrum in a

%separate Matlab figure

if rb1==1

figure

plot(f,YV*1000)

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

xlim([0 2000])

title('Velocity Spectrum')

elseif rb3==1 && rb4==0 && rb5==0

figure

plot(f,YA)

xlabel('Frequency (Hz) ')

ylabel('Peak Acceleration (Gs) ')

title('Accelration Spectrum')

elseif rb3==1 && rb4==1 && rb5==0

Y filt=evalin('base','Y filt');

C.17 Level 2 4 294

figure

plot(f,2*abs(Y filt(1:LOR)))

xlabel('Frequency (Hz) ')

ylabel('Peak Acceleration (Gs) ')

title('Spectrum of Filtered Acceleration Signal')

elseif rb3==1 && rb4==1 && rb5==1

figure

envspect=evalin('base','envspect');

plot(f,envspect,'color',[0.8500 0.3250 0.0980])

xlabel('Frequency (Hz) ')

ylabel('Peak Acceleration (Gs) ')

xlim([0 1000])

title('Spectrum of Hilbert Tranform Envelope - Demodulated Signal')

end

% --- Plots current waveform in GUI on pushbutton Plot Waveform.

function pushbutton5 Callback(hObject, eventdata, handles)

%Get radiobutton information on what is currently plotted

rb1=get(handles.radiobutton1,'Value');

rb3=get(handles.radiobutton3,'Value');

rb4=get(handles.radiobutton4,'Value');

rb5=get(handles.radiobutton5,'Value');

%Get information from workspace

tspan=evalin('base','tspan');

V=evalin('base','V');

A=evalin('base','A');

%Sort radiobutton information and plot approriate waveform in a

%separate Matlab figure

if rb1==1

figure

plot(tspan,V*1000)

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

title('Velocity Time Waveform')

elseif rb3==1 && rb4==0 && rb5==0

figure

plot(tspan,A)

xlabel('Time(s)')

ylabel('Acceleration (Gs)')

title('Unfiltered Acceleration Signal')

elseif rb3==1 && rb4==1 && rb5==0

A filt=evalin('base','A filt');

C.17 Level 2 4 295

figure

plot(tspan,A filt)

xlabel('Time(s)')

ylabel('Acceleration (Gs)')

title('Filtered Acceleration Signal')

elseif rb3==1 && rb4==1 && rb5==1

A filt=evalin('base','A filt');

envelope=evalin('base','envelope');

figure

plot(tspan,A filt,tspan,envelope)

xlabel('Time(s)')

ylabel('Acceleration (Gs)')

title('Hilbert Tranform Envelope on Filtered Acceleration Signal')

end

% --- Executes during object creation, after setting all properties.

function axes4 CreateFcn(hObject, eventdata, handles)

function edit3 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit3 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit4 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit4 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit5 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit5 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

C.17 Level 2 4 296

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Plots Current solution as Velocity in GUI on execution of

%Units, Velocity radiobutton.

function radiobutton1 Callback(hObject, eventdata, handles)

%Get information from workspace on current solution

tspan=evalin('base','tspan');

V=evalin('base','V');

f = evalin('base','f');

YV=evalin('base','YV');

%Plots and sets other conditions

rb1=get(handles.radiobutton1,'Value');

if rb1==1

set(handles.radiobutton4,'enable','off');

set(handles.radiobutton4,'Value',0);

set(handles.radiobutton5,'enable','off');

set(handles.radiobutton5,'Value',0);

set(handles.radiobutton6,'enable','off');

plot(handles.axes1,tspan,V*1000)

plot(handles.axes2,f,YV*1000)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Velocity (mm/s)')

else

end

% --- % --- Plots Current solution as Acceleration in GUI on execution

%of Units, Acceleration radiobutton.

function radiobutton3 Callback(hObject, eventdata, handles)

%Get information from workspace on current solution

tspan=evalin('base','tspan');

A=evalin('base','A');

f = evalin('base','f');

YA=evalin('base','YA');

%Plots and sets other conditions

rb3=get(handles.radiobutton3,'Value');

if rb3==1

C.17 Level 2 4 297

set(handles.radiobutton4,'enable','on');

set(handles.radiobutton6,'enable','on');

plot(handles.axes1,tspan,A)

plot(handles.axes2,f,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

else

end

% --- Applies selected band filter to current waveform on execution of

% Filter Band press of radiobutton.

function radiobutton4 Callback(hObject, eventdata, handles)

%Get lower and upper values for band filter

Fpass1=round(get(handles.slider3,'Value'));

Fpass2=round(get(handles.slider4,'Value'));

%Get information on currently displayed solution

A=evalin('base','A');

FMax=evalin('base','FMax');

Fs=evalin('base','Samp freq');

LOR=evalin('base','LOR');

tspan=evalin('base','tspan');

f=evalin('base','f');

YA=evalin('base','YA');

%Button operations

rb4=get(handles.radiobutton4,'Value');

if rb4==1;

%Turn some functions off so they cannot be used during this process

h=waitbar(0.5,'Calculating Output, Please wait...');

set(handles.radiobutton1,'enable','off');

set(handles.radiobutton3,'enable','off');

set(handles.radiobutton5,'enable','on');

set(handles.radiobutton6,'enable','off');

%Code for filter generated by Matlab - Fstops modified

Fstop1 = Fpass1-0.02*Fpass2; % First Stopband Frequency

Fstop2 = Fpass2+0.02*Fpass2; % Second Stopband Frequency

Dstop1 = 0.0001; % First Stopband Attenuation

Dpass = 0.057501127785; % Passband Ripple

Dstop2 = 0.0001; % Second Stopband Attenuation

dens = 20; % Density Factor

C.17 Level 2 4 298

% Calculate the order from the parameters using FIRPMORD.

[N, Fo, Ao, W] = firpmord([Fstop1 Fpass1 Fpass2 Fstop2]/(Fs/2), [0 1 ...

0], [Dstop1 Dpass Dstop2]);

% Calculate the coefficients using the FIRPM function.

b = firpm(N, Fo, Ao, W, {dens});

Hd = dfilt.dffir(b);

%Compensate for filter delay

D = round(mean(grpdelay(Hd))); % filter delay in sample

A filt = filter(Hd,[A',zeros(1,D)]);% Append D zeros to the input data

A filt = A filt(D+1:end); % Shift data to compensate for delay

assignin ('base','Hd',Hd)

%Filtered waveform to workspace

assignin ('base','A filt',A filt)

%fft of filtered waveform and plotted

Y filt = fft(A filt,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y filt(1:LOR)))

%Hilbert transform of filtered waveform as envelope

envelope=abs(hilbert(A filt));

%fft of Hilbert transform envelope

envfft = fft(envelope,2.56*LOR)/(2.56*LOR);

envspect=2*abs(envfft(1:LOR));

%Plot filtered wavefrom

plot(handles.axes1,tspan,A filt)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

%Information to workspace

assignin('base','Y filt',Y filt)

assignin('base','envelope',envelope)

assignin('base','envspect',envspect)

close(h) %close waitbar

else

%Reset button functions and plot unfiltered acceleration

set(handles.radiobutton1,'enable','on');

set(handles.radiobutton3,'enable','on');

set(handles.radiobutton5,'enable','off','value',0);

C.17 Level 2 4 299

set(handles.radiobutton6,'enable','on');

plot(handles.axes1,tspan,A)

plot(handles.axes2,f,YA)

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

end

function edit6 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit6 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function edit7 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit7 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Display lower Filter Band frequency on slider movement.

function slider3 Callback(hObject, eventdata, handles)

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit6,'String',Fpass1);

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit7,'String',Fpass2);

% --- Executes during object creation, after setting all properties.

function slider3 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

C.17 Level 2 4 300

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Display upper Filter Band frequency on slider movement.

function slider4 Callback(hObject, eventdata, handles)

Fpass1=round(get(handles.slider3,'Value'));

set(handles.edit6,'String',Fpass1);

Fpass2=round(get(handles.slider4,'Value'));

set(handles.edit7,'String',Fpass2);

% --- Executes during object creation, after setting all properties.

function slider4 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% --- Plots in the GUI the envelope on filtered waveform and the frequency

%spectrum of the Hilbert transform envelope on press of Envelope

function radiobutton5 Callback(hObject, eventdata, handles)

%Filter Band and Envelope radiobutton values

rb4=get(handles.radiobutton4,'Value');

rb5=get(handles.radiobutton5,'Value');

%Required information form workspace

Y filt=evalin('base','Y filt');

A filt=evalin('base','A filt');

envelope=evalin('base','envelope');

envspect=evalin('base','envspect');

f=evalin('base','f');

tspan=evalin('base','tspan');

LOR=evalin('base','LOR');

FMax=evalin('base','FMax');

YA=evalin('base','YA');

%Performs the following if both Filter Band and Envelope are slected

if rb4==1 && rb5==1;

%Plots the envelope on the filtered waveform in the GUI

plot(handles.axes1,tspan,A filt,tspan,envelope,'LineWidth',0.8)

%Plots the spectrum of the Hilbert transform envelope in the GUI

plot(handles.axes2,f,envspect,'color',[0.8500 0.3250 0.0980])

set(handles.axes2,'xlim',[0 FMax/15])

axes(handles.axes1);

xlabel('Time (s)')

C.17 Level 2 4 301

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

else

%Returns GUI plots to filtered waveform and spectrum

plot(handles.axes1,tspan,A filt)

plot(handles.axes2,f,2*abs(Y filt(1:LOR)))

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Acceleration (Gs) ')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Peak Acceleration (Gs)')

end

% --- Plays the sound associated with the current ODE solution

% on button press of Play Sound

function radiobutton6 Callback(hObject, eventdata, handles)

%Get information on user selections in GUI

rb3=get(handles.radiobutton3,'Value');

rb4=get(handles.radiobutton4,'Value');

rb5=get(handles.radiobutton5,'Value');

%Information required to play the sound from workspace

A=evalin('base','A');

Samp freq=evalin('base','Samp freq');

tspan=evalin('base','tspan');

%Only play sound if acceleration is slected

% and if filter and envelopeare not selected

if rb3==1 && rb4==0 && rb5==0

set(handles.radiobutton6,'enable','off')

sound(A*1000000,Samp freq) %Amplify sound

pause(max(tspan))

set(handles.radiobutton6,'Value',0)

set(handles.radiobutton6,'enable','on')

else

end

%ENDE Level 2 4

C.18 Level 2 5 302

C.18 Level 2 5

function varargout = Level 2 5(varargin)

% LEVEL 2 5 M-file for Level 2 5.fig

% Last Modified by GUIDE v2.5 21-Oct-2015 09:06:06

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 2 5 OpeningFcn, ...

'gui OutputFcn', @Level 2 5 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 2 5 is made visible.

function Level 2 5 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 2 5

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Clear workspace

evalin('base','clear')

%Displays text associated with GUI concepts

fid=fopen('Level 2 5.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

%Data generation/collection properties to workspace

FMax=200;

C.18 Level 2 5 303

assignin('base','FMax',FMax)

LOR=200;

assignin('base','LOR',LOR)

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

assignin('base','t',t)

%Generate random waveform frequencies and amplitudes

f1=195*rand;

f2=195*rand;

f3=195*rand;

f4=195*rand;

f5=195*rand;

f6=195*rand;

f7=f1+2;

f8=f2+2;

f9=f8+2;

Amplitude1=5*rand;

Amplitude2=5*rand;

Amplitude3=5*rand;

Amplitude4=5*rand;

Amplitude5=5*rand;

Amplitude6=5*rand;

Amplitude7=5*rand;

Amplitude8=5*rand;

Amplitude9=5*rand;

w1=2*pi*f1;

w2=2*pi*f2;

w3=2*pi*f3;

w4=2*pi*f4;

w5=2*pi*f5;

w6=2*pi*f6;

w7=2*pi*f7;

w8=2*pi*f8;

w9=2*pi*f9;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

wave7=Amplitude7*sin(w7*t);

C.18 Level 2 5 304

wave8=Amplitude8*sin(w8*t);

wave9=Amplitude9*sin(w9*t);

wave=wave1+wave2+wave3+wave4+wave5+wave6+wave7+wave8+wave9;

%Generate windows and export to workspace

wave=wave';

one=ones(1,length(wave));

rect=one'.*rectwin(length(wave));

hann=one'.*hanning(length(wave));

hamm=one'.*hamming(length(wave));

blackharr=one'.*blackmanharris(length(wave));

assignin('base','rect',rect)

assignin('base','hann',hann)

assignin('base','hamm',hamm)

assignin('base','blackharr',blackharr)

%Plot waveform

plot(handles.axes1,t,wave) %,t,wave1,t,wave2)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%fft using 100%*(2/2.56)=78.125% of Nyquist rate and plot spectrum

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 7])

%Plot axis labels

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

%Information to workspace

assignin ('base','wave',wave)

%assignin ('base','wave1',wave1)

%assignin ('base','wave2',wave2)

assignin ('base','t',t)

% --- Outputs from this function are returned to the command line.

function varargout = Level 2 5 OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

C.18 Level 2 5 305

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

h=waitbar(0.5,'Opening Previous Level, Please wait...');

run('Level 2 4')

close('Level 2 5')

close(h)

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

%User requires waitbar while Level 2 6 opens

h=waitbar(0.5,'Opening Next Level, Please wait...');

run('Level 2 6')

close('Level 2 5')

close(h)

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

% --- Generates ne waveform at press of Change Waveform button .

function pushbutton3 Callback(hObject, eventdata, handles)

%Returns to rectangular/no window

set(handles.radiobutton1,'Value',1);

set(handles.radiobutton2,'Value',0);

set(handles.radiobutton3,'Value',0);

set(handles.radiobutton4,'Value',0);

%Data generation parameter for binary size wave file

FMax=200;

LOR=200;

WavePoints=2.56*LOR;

Sampfreq=2.56*FMax;

C.18 Level 2 5 306

TimeStep=1/Sampfreq;

t=(0:WavePoints-1)*TimeStep;

%Randomly generate frequencies, amplitudes, assemble wave and plot

f1=195*rand;

f2=195*rand;

f3=195*rand;

f4=195*rand;

f5=195*rand;

f6=195*rand;

f7=f1+2;

f8=f2+2;

f9=f8+2;

Amplitude1=5*rand;

Amplitude2=5*rand;

Amplitude3=5*rand;

Amplitude4=5*rand;

Amplitude5=5*rand;

Amplitude6=5*rand;

Amplitude7=5*rand;

Amplitude8=5*rand;

Amplitude9=5*rand;

w1=2*pi*f1;

w2=2*pi*f2;

w3=2*pi*f3;

w4=2*pi*f4;

w5=2*pi*f5;

w6=2*pi*f6;

w7=2*pi*f7;

w8=2*pi*f8;

w9=2*pi*f9;

wave1=Amplitude1*sin(w1*t);

wave2=Amplitude2*sin(w2*t);

wave3=Amplitude3*sin(w3*t);

wave4=Amplitude4*sin(w4*t);

wave5=Amplitude5*sin(w5*t);

wave6=Amplitude6*sin(w6*t);

wave7=Amplitude7*sin(w7*t);

wave8=Amplitude8*sin(w8*t);

wave9=Amplitude9*sin(w9*t);

wave=wave1+wave2+wave3+wave4+wave5+wave6+wave7+wave8+wave9;

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%fft on binary size wave using 78.125% of Nyquist rate

C.18 Level 2 5 307

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 7])

%Plot axis labels

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

%Transpose new wave to work with windoing and send to workspace

wave=wave';

assignin ('base','wave',wave)

% --- Applies rectangular window to waveform on GUI radiobutton press

function radiobutton1 Callback(hObject, eventdata, handles)

%Retrieve information from workspace

rect=evalin('base','rect');

wave=evalin('base','wave');

t=evalin('base','t');

LOR=evalin('base','LOR');

FMax=evalin('base','FMax');

%Modify waveform with time window and plot

wave=wave.*rect;

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%Conduct fft on windowed waveform

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 7])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Applies Hanning window to waveform on GUI radiobutton press

function radiobutton2 Callback(hObject, eventdata, handles)

%Retrieve information from workspace

hann=evalin('base','hann');

C.18 Level 2 5 308

wave=evalin('base','wave');

t=evalin('base','t');

LOR=evalin('base','LOR');

FMax=evalin('base','FMax');

%Modify waveform with Hanning time window and plot

wave=wave.*hann;

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%Amplitude correction factor of 2 for the Hanning window

cf=2;

%fft of Hanning modified waveform

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,cf*2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 7])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Applies Hamming window to waveform on GUI radiobutton press

function radiobutton3 Callback(hObject, eventdata, handles)

%Retrieve information from workspace

hamm=evalin('base','hamm');

wave=evalin('base','wave');

t=evalin('base','t');

LOR=evalin('base','LOR');

FMax=evalin('base','FMax');

%Modify waveform with Hamming time window and plot

wave=wave.*hamm;

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%Amplitude correction factor of 1.85 for the Hamming window

cf=1.85;

%fft of Hanning modified waveform

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,cf*2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 7])

axes(handles.axes1);

xlabel('Time (s)')

C.18 Level 2 5 309

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

% --- Applies Blackman Harris window to waveform on GUI radiobutton press

function radiobutton4 Callback(hObject, eventdata, handles)

%Retrieve information from workspace

blackharr=evalin('base','blackharr');

wave=evalin('base','wave');

t=evalin('base','t');

LOR=evalin('base','LOR');

FMax=evalin('base','FMax');

%Modify waveform with Blackman Harris time window and plot

wave=wave.*blackharr;

plot(handles.axes1,t,wave)

set(handles.axes1,'ylim',[1.1*min(wave) 1.1*max(wave)]);

%Amplitude correction factor (cf) for the Hamming window

cf=1/0.42323;

%fft of Blackman Harris modified waveform

Y = fft(wave,2.56*LOR)/(2.56*LOR);

f = FMax*linspace(0,1,LOR);

plot(handles.axes2,f,cf*2*abs(Y(1:LOR)))

set(handles.axes2,'ylim',[0 7])

axes(handles.axes1);

xlabel('Time (s)')

ylabel('Amplitude')

axes(handles.axes2);

xlabel('Frequency (Hz)')

ylabel('Amplitude')

%END Level 2 5

C.19 Level 2 6 310

C.19 Level 2 6

function varargout = Level 2 6(varargin)

% LEVEL 2 6 M-file for Level 2 6.fig

% Last Modified by GUIDE v2.5 19-Oct-2015 11:07:23

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename, ...

'gui Singleton', gui Singleton, ...

'gui OpeningFcn', @Level 2 6 OpeningFcn, ...

'gui OutputFcn', @Level 2 6 OutputFcn, ...

'gui LayoutFcn', [] , ...

'gui Callback', []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before Level 2 6 is made visible.

function Level 2 6 OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for Level 2 6

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

%Clear workspace

evalin('base','clear')

global Mt M mo c k T r wf fi tspan

%Display text associated with the GUI concepts

fid=fopen('Level 2 6.txt');

C = textscan(fid,'%s','Delimiter','\n');

C=C{1};

fclose(fid);

set(handles.edit1,'String',C);

%Parameters for generating data

C.19 Level 2 6 311

FMax=2000;

LOR=6400;

fHz=get(handles.slider1,'Value'); %Shaft speed

c=get(handles.slider2,'Value'); %Damping factor

M=get(handles.slider3,'Value'); %Machine mass

k=get(handles.slider4,'Value'); %System stiffness

mo=get(handles.slider5,'Value'); %Unbalance mass

%Display Values in GUI

set(handles.Speed,'String',fHz)

set(handles.Damping,'String',c)

set(handles.Mass,'String',M)

set(handles.Stiff,'String',k)

set(handles.Unbal,'String',mo)

dratio=1;

Mt=M+mo; %System mass

wf=2*pi*fHz; %Shaft speed rad/s

r=0.5; %Radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force pulse period

wn=sqrt(k/M+mo); %SDOF natural frequency

wr=wf/wn; %Frequency Ratio

c c=2*(M+mo)*wn; %Critical Damping Value

zeta=c/c c; %Damping Ratio

%Display values in GUI

set(handles.wn,'String',round(wn/(2*pi)))

set(handles.wr,'String',round(wr,2))

set(handles.CritDamp,'String',c c)

set(handles.DampRat,'String',round(zeta,2))

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=1; %Time shift (s) for reaching steady state

dt n=round(dt/Tstep);

%Time constraint for ODE solver

tspan=(0:(Wave L-1)+dt n)*Tstep;

%Centrifugal force

fc=mo*r*wfˆ2*sin(wf*tspan);

fc=fc(dt n+1:end);

assignin('base','fc',fc)

%There is no pulse force fi going to the SDOF Solver in this GUI

fi=zeros(1,length(tspan));

%Call ODE solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

C.19 Level 2 6 312

%Simulation results and plotting, 1000 converts m to mm

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,D*1000,t,fc*(max(D)*1000/max(fc)));

plot(handles.axes2,t,V*1000,t,fc*(max(V)*1000/max(fc)));

axes(handles.axes1);

lim=5*1/fHz;

xlim([0 lim])

xlabel('Time (s)')

ylabel('Displacement (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

axes(handles.axes2);

xlim([0 lim])

xlabel('Frequency (Hz)')

ylabel('Velocity (mm/s)')

legend('Velocity Response','Phase of Unbalance Mass')

%Information on current in GUI to workspace for external figure plotting

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin('base','t',t)

% --- Outputs from this function are returned to the command line.

function varargout = Level 2 6 OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

function edit1 Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function edit1 CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Executes during object creation, after setting all properties.

function axes1 CreateFcn(hObject, eventdata, handles)

C.19 Level 2 6 313

% --- Executes on button press in Previous.

function Previous Callback(hObject, eventdata, handles)

run('Level 2 5')

close('Level 2 6')

% --- Executes on button press in Next.

function Next Callback(hObject, eventdata, handles)

run('Open')

close('Level 2 6')

% --- Executes during object creation, after setting all properties.

function Amplitude CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function axes2 CreateFcn(hObject, eventdata, handles)

function wn Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function wn CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function Damping Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function Damping CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

% --- Plots displacement and phase for top pushbutton Plot Waveform

function pushbutton4 Callback(hObject, eventdata, handles)

%Plots using information on current from workspace

D=evalin('base','D');

C.19 Level 2 6 314

t=evalin('base','t');

fc=evalin('base','fc');

figure

plot(t,D*1000,t,fc*(max(D)*1000/max(fc)));

xlabel('Time (s)')

ylabel('Amplitude (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

% --- Plots velocity and phase for top pushbutton Plot Waveform

function pushbutton5 Callback(hObject, eventdata, handles)

%Plots using information on current from workspace

V=evalin('base','V');

t=evalin('base','t');

fc=evalin('base','fc');

figure

plot(t,V*1000,t,fc*(max(V)*1000/max(fc)));

xlabel('Time (s)')

ylabel('Velocity (mm/s) ')

legend('Velocity Response','Phase of Unbalance Mass')

% Calculates system response to change of Machine Speed slider movement.

function slider1 Callback(hObject, eventdata, handles)

global Mt M mo c k T r wf fi tspan

FMax=2000;

LOR=6400;

fHz=round(get(handles.slider1,'Value'));

c=round(get(handles.slider2,'Value'),-1);

M=round(get(handles.slider3,'Value'));

k=round(get(handles.slider4,'Value'),-5);

mo=round(get(handles.slider5,'Value'),1);

set(handles.Speed,'String',fHz)

set(handles.Damping,'String',c)

set(handles.Mass,'String',M)

set(handles.Stiff,'String',k)

set(handles.Unbal,'String',mo)

dratio=1;

Mt=M+mo; %System mass

wf=2*pi*fHz; %Shaft turning speed rad/s

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force pulse period

C.19 Level 2 6 315

wn=sqrt(k/M+mo); %Single degree of freedom natural frequency

wr=wf/wn; %Frequency Ratio

c c=2*(M+mo)*wn; %Critical Damping Value

zeta=c/c c; %Damping Ratio

%Display values in GUI

set(handles.wn,'String',round(wn/(2*pi)))

set(handles.wr,'String',round(wr,2))

set(handles.CritDamp,'String',c c)

set(handles.DampRat,'String',round(zeta,2))

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%Time constraint on ODE solver

tspan=(0:(Wave L-1)+dt n)*Tstep;

%Centrifugal force

fc=mo*r*wfˆ2*sin(wf*tspan);

fc=fc(dt n+1:end);

assignin('base','fc',fc)

%There is no pulse force fi going to the SDOF Solver in this GUI

fi=zeros(1,length(tspan));

%Call ODE solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Results and plotting

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,D*1000,t,fc*(max(D)*1000/max(fc)));

plot(handles.axes2,t,V*1000,t,fc*(max(V)*1000/max(fc)));

axes(handles.axes1);

lim=5*1/fHz;

xlim([0 lim])

xlabel('Time (s)')

ylabel('Displacement (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

axes(handles.axes2);

xlim([0 lim])

xlabel('Frequency (Hz)')

C.19 Level 2 6 316

ylabel('Velocity (mm/s)')

legend('Velocity Response','Phase of Unbalance Mass')

%Current information to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin('base','t',t)

% --- Executes during object creation, after setting all properties.

function slider1 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% Calculates system response to change of System Damping slider movement.

function slider2 Callback(hObject, eventdata, handles)

global Mt M mo c k T r wf fi tspan

FMax=2000;

LOR=6400;

fHz=round(get(handles.slider1,'Value'));

c=round(get(handles.slider2,'Value'),-1);

M=round(get(handles.slider3,'Value'));

k=round(get(handles.slider4,'Value'),-5);

mo=round(get(handles.slider5,'Value'),1);

set(handles.Speed,'String',fHz)

set(handles.Damping,'String',c)

set(handles.Mass,'String',M)

set(handles.Stiff,'String',k)

set(handles.Unbal,'String',mo)

dratio=1;

Mt=M+mo; %System mass

wf=2*pi*fHz; %Shaft turning speed rad/s

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force pulse period

wn=sqrt(k/M+mo); %Single degree of freedom natural frequency

wr=wf/wn; %Frequency Ratio

c c=2*(M+mo)*wn; %Critical Damping Value

zeta=c/c c; %Damping Ratio

set(handles.wn,'String',round(wn/(2*pi)))

C.19 Level 2 6 317

set(handles.wr,'String',round(wr,2))

set(handles.CritDamp,'String',c c)

set(handles.DampRat,'String',round(zeta,2))

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%Time constraint on ODE solver

tspan=(0:(Wave L-1)+dt n)*Tstep;

fc=mo*r*wfˆ2*sin(wf*tspan); %Centrifugal force

fc=fc(dt n+1:end);

assignin('base','fc',fc)

%There is no pulse force fi going to the SDOF Solver in this GUI

fi=zeros(1,length(tspan));

%Call ODE solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Results and plotting

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,D*1000,t,fc*(max(D)*1000/max(fc)));

plot(handles.axes2,t,V*1000,t,fc*(max(V)*1000/max(fc)));

axes(handles.axes1);

lim=5*1/fHz;

xlim([0 lim])

xlabel('Time (s)')

ylabel('Displacement (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

axes(handles.axes2);

xlim([0 lim])

xlabel('Frequency (Hz)')

ylabel('Velocity (mm/s)')

legend('Velocity Response','Phase of Unbalance Mass')

%Curremt information to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin('base','t',t)

C.19 Level 2 6 318

% --- Executes during object creation, after setting all properties.

function slider2 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% Calculates system response to change of System Mass slider movement.

function slider3 Callback(hObject, eventdata, handles)

global Mt M mo c k T r wf fi tspan

FMax=2000;

LOR=6400;

fHz=round(get(handles.slider1,'Value'));

c=round(get(handles.slider2,'Value'),-1);

M=round(get(handles.slider3,'Value'));

k=round(get(handles.slider4,'Value'),-5);

mo=round(get(handles.slider5,'Value'),1);

set(handles.Speed,'String',fHz)

set(handles.Damping,'String',c)

set(handles.Mass,'String',M)

set(handles.Stiff,'String',k)

set(handles.Unbal,'String',mo)

dratio=1;

Mt=M+mo; %System mass

wf=2*pi*fHz; %Shaft turning speed rad/s

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force pulse period

wn=sqrt(k/M+mo); %Single degree of freedom natural frequency

wr=wf/wn; %Frequency Ratio

c c=2*(M+mo)*wn; %Critical Damping Value

zeta=c/c c; %Damping Ratio

set(handles.wn,'String',round(wn/(2*pi)))

set(handles.wr,'String',round(wr,2))

set(handles.CritDamp,'String',c c)

set(handles.DampRat,'String',round(zeta,2))

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=1; %Time shift of wave for reaching steady state

C.19 Level 2 6 319

dt n=round(dt/Tstep);

%Time step constraint on ODE solver

tspan=(0:(Wave L-1)+dt n)*Tstep;

fc=mo*r*wfˆ2*sin(wf*tspan);

fc=fc(dt n+1:end);

assignin('base','fc',fc)

%There is no pulse force fi going to the SDOF Solver in this GUI

fi=zeros(1,length(tspan));

%Call ODE solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Results and plotting

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,D*1000,t,fc*(max(D)*1000/max(fc)));

plot(handles.axes2,t,V*1000,t,fc*(max(V)*1000/max(fc)));

axes(handles.axes1);

lim=5*1/fHz;

xlim([0 lim])

xlabel('Time (s)')

ylabel('Displacement (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

axes(handles.axes2);

xlim([0 lim])

xlabel('Frequency (Hz)')

ylabel('Velocity (mm/s)')

legend('Velocity Response','Phase of Unbalance Mass')

%current information to the workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin('base','t',t)

% --- Executes during object creation, after setting all properties.

function slider3 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

C.19 Level 2 6 320

% Calculates system response to change of Stiffness slider movement.

function slider4 Callback(hObject, eventdata, handles)

global Mt M mo c k T r wf fi tspan

FMax=2000;

LOR=6400;

fHz=round(get(handles.slider1,'Value'));

c=round(get(handles.slider2,'Value'),-1);

M=round(get(handles.slider3,'Value'));

k=round(get(handles.slider4,'Value'),-5);

mo=round(get(handles.slider5,'Value'),1);

set(handles.Speed,'String',fHz)

set(handles.Damping,'String',c)

set(handles.Mass,'String',M)

set(handles.Stiff,'String',k)

set(handles.Unbal,'String',mo)

dratio=1;

Mt=M+mo; %System mass

wf=2*pi*fHz; %Shaft turning speed rad/s

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force pulse period

wn=sqrt(k/M+mo); %Single degree of freedom natural frequency

wr=wf/wn; %Frequency Ratio

c c=2*(M+mo)*wn; %Critical Damping Value

zeta=c/c c; %Damping Ratio

set(handles.wn,'String',round(wn/(2*pi)))

set(handles.wr,'String',round(wr,2))

set(handles.CritDamp,'String',c c)

set(handles.DampRat,'String',round(zeta,2))

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%Time constraint on time waveform

tspan=(0:(Wave L-1)+dt n)*Tstep;

%Centrifigal force

fc=mo*r*wfˆ2*sin(wf*tspan);

fc=fc(dt n+1:end);

assignin('base','fc',fc)

C.19 Level 2 6 321

%There is no pulse force fi going to the SDOF Solver in this GUI

fi=zeros(1,length(tspan));

%Call ODE solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Results and plotting

D=x(:,1);

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,D*1000,t,fc*(max(D)*1000/max(fc)));

plot(handles.axes2,t,V*1000,t,fc*(max(V)*1000/max(fc)));

axes(handles.axes1);

lim=5*1/fHz;

xlim([0 lim])

xlabel('Time (s)')

ylabel('Displacement (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

axes(handles.axes2);

xlim([0 lim])

xlabel('Frequency (Hz)')

ylabel('Velocity (mm/s)')

legend('Velocity Response','Phase of Unbalance Mass')

%Current information to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin('base','t',t)

% --- Executes during object creation, after setting all properties.

function slider4 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

% Calculates system response to change of Unbalance Mass slider movement.

function slider5 Callback(hObject, eventdata, handles)

global Mt M mo c k T r wf fi tspan

C.19 Level 2 6 322

FMax=2000;

LOR=6400;

fHz=round(get(handles.slider1,'Value'));

c=round(get(handles.slider2,'Value'),-1);

M=round(get(handles.slider3,'Value'));

k=round(get(handles.slider4,'Value'),-5);

mo=round(get(handles.slider5,'Value'),1);

set(handles.Speed,'String',fHz)

set(handles.Damping,'String',c)

set(handles.Mass,'String',M)

set(handles.Stiff,'String',k)

set(handles.Unbal,'String',mo)

dratio=1;

Mt=M+mo; %System mass

wf=2*pi*fHz; %Shaft turning speed rad/s

r=0.5; %radius unbalance mass rotates at

dHz=fHz*dratio;

T=1/dHz; %Defect force pulse period

wn=sqrt(k/M+mo); %Single degree of freedom natural frequency

wr=wf/wn; %Frequency Ratio

c c=2*(M+mo)*wn; %Critical Damping Value

zeta=c/c c; %Damping Ratio

set(handles.wn,'String',round(wn/(2*pi)))

set(handles.wr,'String',round(wr,2))

set(handles.CritDamp,'String',c c)

set(handles.DampRat,'String',round(zeta,2))

Wave L=2.56*LOR; %Number of points in the timewaveform

Samp freq=2.56*FMax; %Frequency of sampling in waveform

Tstep=1/Samp freq; %The waveform sample period

dt=1; %Time shift of wave for reaching steady state

dt n=round(dt/Tstep);

%Time constraint for ODE solver

tspan=(0:(Wave L-1)+dt n)*Tstep;

%Centrifugal force

fc=mo*r*wfˆ2*sin(wf*tspan);

fc=fc(dt n+1:end);

assignin('base','fc',fc)

%There is no pulse force fi going to the SDOF Solver in this GUI

fi=zeros(1,length(tspan));

%Call ODE Solver

[t, x] = ode23('SDOF SOLVER',tspan, [0 0]);

%Results and plotting

D=x(:,1);

C.19 Level 2 6 323

D=D(dt n+1:end);

V=x(:,2);

V=V(dt n+1:end);

A=diff(V);

A(max(size(A))+1)=0;

t=t(1:end-dt n);

plot(handles.axes1,t,D*1000,t,fc*(max(D)*1000/max(fc)));

plot(handles.axes2,t,V*1000,t,fc*(max(V)*1000/max(fc)));

axes(handles.axes1);

lim=5*1/fHz;

xlim([0 lim])

xlabel('Time (s)')

ylabel('Displacement (mm) ')

legend('Displacement Response','Phase of Unbalance Mass')

axes(handles.axes2);

xlim([0 lim])

xlabel('Frequency (Hz)')

ylabel('Velocity (mm/s)')

legend('Velocity Response','Phase of Unbalance Mass')

%Current information to workspace

assignin ('base','D',D);

assignin ('base','V',V)

assignin ('base','A',A)

assignin('base','t',t)

% --- Executes during object creation, after setting all properties.

function slider5 CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor',[.9 .9 .9]);

end

function Mass Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function Mass CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function Stiff Callback(hObject, eventdata, handles)

C.19 Level 2 6 324

%

% --- Executes during object creation, after setting all properties.

function Stiff CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function Unbal Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function Unbal CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function CritDamp Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function CritDamp CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function DampRat Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function DampRat CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function wr Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

C.19 Level 2 6 325

function wr CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

function Speed Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function Speed CreateFcn(hObject, eventdata, handles)

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor')...

, get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end

%END Level 2 6

C.20 Single Degree of Freedom Solver Function 326

C.20 Single Degree of Freedom Solver Function

function xdot = SDOF SOLVER(t,x)

%function file for a single degree of freedom system with a mass, spring

%and damper

%Position is the first output variable and velocity is the second

global Mt mo c k r wf fi tspan

A = [0, 1;-k/Mt, -c/Mt];

B = [0; 1/Mt];

%Retrieves impulse force fi at each time step from calling code,

%calculate centrifugal force and sum as f for input force

f=fi(round(t/(tspan(2))+1))+(mo*r*wfˆ2*sin(wf*t));

xdot = A*x + B*f;

%END

C.21 Two Degrees of Freedom Solver Function 327

C.21 Two Degrees of Freedom Solver Function

function xdot = TDOF SOLVER(t,x)

%function file for a two degree of freedom system with a 2 masses,

%2 springs and 2 dampers

%OUTPUTS - Position is the first variable and the second is velocity for

%the first mass, third variable is position and fourth the velocity for

%the second mass

global M C K I wf mo r fi tspan

%Assemble state matrix A and B matrix for system

A = [[0,0;0,0], I; -(inv(M))*K, -(inv(M))*C];

B = [[0,0;0,0]; inv(M)];

%Retrieves impulse force fi at each time step from calling code,

%calculate centrifugal force and sum as f for input force at mass 1

%Force matrix

f1=fi(round(t/(tspan(2))+1))+(mo*r*wfˆ2*sin(wf*t));

f2=0;

F=[f1;f2];

xdot = A*x + B*F;

%END

Appendix D

Risk Analysis

329

Risk for this project

For undertakings of this project I expect to do all the work myself and any risk associated

to affect me. As this work is going to be research based and software based most of it is

going to be time sitting in front of a computer. Other tasks include using books, printing

and driving a vehicle to buy or use resources. Driving to Toowoomba.

Project Hazard Risk Evaluation (Prior to Controls):

1. Repetitive Strain Injury from typing and using a mouse. Significant/possible chance

of occurring as exposure will be frequent/daily. Consequence may be repetitive

strain/muscle or nerve strain.

2. Eye Strain from hours sitting in front of a computer. Significant/possible chance

of occurring as exposure will be frequent/daily. Consequence may be eye strain,

headache, fatigue.

3. Hours sitting in front of a computer. Significant/possible chance of occurring as

exposure will be frequent/daily. Consequence may be neck/back/shoulder muscle

strain, headache, fatigue.

4. 240V electrical appliances, computers, charger, printers. Significant/possible chance

of occurring as exposure will be frequent/daily. Consequence may include electro-

cution , fire or death.

5. Fatigue needs to be managed. Significant/possible chance of occurring due to work

load. Exposure to this risk may be weekly. Consequence may include being tired,

irritable, have difficulty concentrating, drowsiness, a need for oversleeping.

6. Driving - Significant/possible chance of occurring as it is not unheard of. Exposure

to this risk may twice a month for project related activity. Consequence may include

serious injury or death from a road accident.

Controls for reducing the likelihood of project hazards being risks.

1. Repetitive Strain Injury - Have arms at a comfortable distance and arms in a natural

relaxed position

330

2. Eye Strain - Have work computer screen at a comfortable distance so that screen

text is not too small. Have sufficient light for reading, use a desk lamp as needed.

Adjust screen brightness depending on ambient light levels. Minimize screen glare.

3. Hours sitting in front of a computer - Minimize poor posture. Take regular breaks.

Have a clean workspace and ample desk areas to have paperwork and books easily

at hand. A small book stand on desk for storage. Comfortable reach distances.

4. 240V electrical appliances - Ensure 240V wall sockets and leads are in good condi-

tion. Only use 240V in a dry environment. Visually inspect 240V equipment for

damage. Work office printers must have current inspection tags.

5. Fatigue - Try and maintain normal working hours, not staying up too late. Plan

work hours. Get sufficient sleep 7-8 hours a night. Don’t let sleep debt accumulate.

Take breaks to rest eat and hydrate. be aware of adverse effects of alcohol, drugs.

Be aware fatigue symptoms. Maintain nutrition and fitness.

6. Driving - Drive to conditions. Minimize need to project related travel by planning

activities to coincide with other journeys. Slow down in poor visibility, wet and

dark conditions. Obey traffic rules. Take a break at least every second hour.

Some Condition Monitoring Risks

There are risks associated with the condition monitoring technique described in this work.

Risks associated with vibration monitoring techniques cover inspection of machines while

they are in a dynamic state, possibly working in a production phase, as well as some of

the hazard that might be found when the machine is in a static condition. The risks

cover exposure to rotating components, process fluids such as chemicals, oils and greases,

and product from a conveyor or leaking slurry, exposure to moving/mobile machinery,

vibration, motion sickness, noise, dust, hot surfaces, hot working environment from being

inside working machine compartments, wet environments, mud, slippery railings, poor

equipment condition, electrocution, failure of equipment while testing, working in isolated

areas with limited communication.

Similarly with particle monitoring associated there are risk while collecting and handling

the oil/grease samples and there are risks associated with the testing processes. The

collection side of the task requires either collecting samples from equipment taken off line

331

and switched off/isolated and from equipment that is running. A technician must either

be trained how to isolate energy in a system and release residual energies that might be

harmful, otherwise they need a trained and competent person to do it for them. Fluid

injection injury is very dangerous and requires surgical removal by opening up the body

and scraping/washing it out and can be lethal.

Appendix E

Resource Analysis

333

Resource Analysis

The basic resources required for this project are a computer and some software. To build

the virtual training package software used will be Microsoft Excel 2013 or MatlabSuite

for students R2015a.

A copy of Microsoft 2013 is available for use if the training program is built with this.

Matlab for this project can be purchased online for $109 and a cost of $32 if additional

add ons are required. This can be purchased and downloaded from

<http://au.mathworks.com/pricing-licensing/index.html?intendeduse=student>. This can

be loaded onto multiple computers if needed or if the primary computer fails. The soft-

ware can be purchased and used in this case under the agreement that it is used by the

student in a degree granting university.

A computer with Windows 8.1 and Excel 2013 is available for use if the primary working

computer suffers a failure.

An external hard drive is available to be set up and auto save work in progress. Additional

backing up of the project will occur after a working session and be removed from the work

station in the event a fire destroys the work computer and back up drive.

A car is available to acquire resources if they are available in the local area.

Loss of electricity and the internet for any extended period could be the biggest threat

affecting the use of computer, sourcing information and affect communication with USQ.

If this was to occur an alternative site to work from would be required. A generator could

be acquired if absolutely necessary.

Funding this project is within the allowable budget.

Appendix F

Project Planning

F.1 Project Flowchart 335

F.1 Project Flowchart

F.2 Project Activity List 336

F.2 Project Activity List

Events 1-9 have a 95 day limit Event 9 is Preliminary Report Submission Day 243 is

Dissertation Submission If events could be completed concurrently the Critical Path in this

network would be A-B-C-D-E-G-H-J-K-L-N-P-R-S In essence as this project is completed

by only one person all network paths are essentially critical

F.2 Project Activity List 337

T
ab

le
F

.1
:

T
h

is
ta

b
le

li
st

p
ro

je
ct

ev
en

ts
,

a
ct

iv
it

ie
s,

d
u

ra
ti

o
n

s
a
n

d
st

a
rt

fi
n

is
h

ti
m

es
.

E
ve

n
ts

A
ct

iv
it

ie
s

C
o
d

e
D

u
ra

ti
on

R
eq

u
is

it
e

S
ta

rt
T

im
e(

D
ay

s)
E

n
d

T
im

e(
D

ay
s)

S
ta

rt
T

im
e(

W
ee

k
s)

E
n

d
T

im
e(

W
ee

k
s)

E
a
rl

ie
st

L
a
te

st
E

a
rl

ie
st

L
a
te

st
E

a
rl

ie
st

L
a
te

st
E

a
rl

ie
st

L
a
te

st

1-
2

Id
en

ti
fy

N
ee

d
A

3
-

0
7
0

3
7
3

0
1
0

0
.4

1
0
.4

2-
3

P
ro

je
ct

S
p

ec
ifi

ca
ti

on
B

4
A

3
7
3

7
7
7

0
.4

1
0
.4

1
1
1

3-
4

P
re

li
m

L
it

er
at

u
re

R
ev

ie
w

C
12

B
7

7
7

1
9

9
5

1
1
1

2
.7

1
3
.6

3-
5

R
es

ea
rc

h
T

ra
in

in
g

S
ta

n
d

ar
d

s
D

4
B

7
7
7

1
1

8
1

1
1
1

1
.6

1
1
.6

5-
7

P
re

li
m

U
se

r
R

eq
u

ir
em

en
ts

E
3

D
1
1

8
1

1
4

8
4

1
.6

1
1
.6

2
1
2

3-
6

E
th

ic
s

an
d

S
af

et
y

R
ev

ie
w

F
1

B
7

7
7

8
9
5

1
1
1

1
.1

1
3
.6

7-
8

R
es

ea
rc

h
S

of
tw

ar
e

O
p

ti
on

s
G

4
E

1
4

8
4

1
8

8
9

2
1
2

2
.6

1
2
.7

8-
9

S
u

b
m

it
P

re
li

m
in

ar
y

R
ep

or
t

H
6

C
,F

,G
1
8

8
9

2
4

9
5

2
.6

1
2
.7

3
.4

1
3
.6

9-
11

E
x
p

an
d

li
te

ra
tu

re
re

v
ie

w
I

5
H

2
4

9
5

2
9

2
4
2

3
.4

1
3
.6

4
.1

3
4
.6

9-
10

U
se

r
R

eq
u

ir
em

en
ts

J
2

H
2
4

9
5

2
6

2
0
9

3
.4

1
3
.6

3
.7

2
9
.9

10
-1

2
S

of
tw

ar
e

F
u

n
ti

on
al

S
p

ec
s

K
3

J
2
6

2
0
9

2
9

2
1
2

3
.7

2
9
.9

4
.1

3
0
.3

12
-1

3
R

es
ea

rc
h

P
h
y
si

ca
l

C
on

ce
p

ts
L

5
K

2
9

2
1
2

3
4

2
1
7

4
.1

3
0
.3

4
.9

3
1

10
-1

4
S

of
tw

ar
e

d
es

ig
n

M
2

K
2
6

2
0
9

2
8

2
3
7

3
.7

2
9
.9

4
3
3
.9

13
-1

5
S

of
tw

ar
e

d
ev

el
op

m
en

t
N

15
L

,M
3
4

2
1
7

4
9

2
3
2

4
.9

3
1

7
3
3
.1

15
-1

6
U

S
Q

p
re

se
n
ta

ti
on

O
5

N
4
9

2
3
2

5
4

2
4
2

7
3
3
.1

7
.7

3
4
.6

15
-1

7
T

es
ti

n
g

so
ft

w
ar

e
P

5
N

4
9

2
3
2

5
4

2
3
7

7
3
3
.1

7
.7

3
3
.9

15
-1

8
T

ec
h

n
ic

al
d

o
cu

m
en

ta
ti

on
Q

3
N

4
9

2
3
2

5
2

2
4
2

7
3
3
.1

7
.4

3
4
.6

17
-1

9
C

om
p

il
e

D
is

se
rt

at
io

n
R

5
I,

O
,P

,Q
2
4

2
3
7

5
9

2
4
2

7
.7

3
3
.9

8
.4

3
4
.6

19
-2

0
S

u
b

m
it

D
is

se
rt

at
io

n
S

1
R

5
9

2
4
2

6
0

2
4
3

8
.4

3
4
.6

8
.6

3
4
.7

F.3 Project Network Diagram 338

F.3 Project Network Diagram

F.4 Gantt Chart 339

F.4 Gantt Chart

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Project Aim and Methodology
	1.3 Project Rationale

	Chapter 2 Literature Review
	2.1 Failure Modes and Defects
	2.2 Condition Monitoring of Rotating Machinery
	2.3 Particle Condition Monitoring
	2.3.1 Ferrography
	2.3.2 Analytical Ferrography
	2.3.3 Direct Reading (DR) Ferrography
	2.3.4 Mesh Obscuration (MO) Particle Counter
	2.3.5 Pore Blockage (PB) Particle Count (Flow Decay)
	2.3.6 Light Extinction (LE) Particle Counter
	2.3.7 Light Scattering particle Counter
	2.3.8 Real Time Ferromagnetic Sensor
	2.3.9 All Metal Debris Sensor
	2.3.10 Graded Filtration
	2.3.11 Magnetic Chip Detection
	2.3.12 Blot Testing
	2.3.13 Patch Test

	2.4 Monitoring Water in Oil
	2.4.1 Calcium Hydride Water Test
	2.4.2 Karl Fischer Titration Test
	2.4.3 Crackle Test (Human Sensed)
	2.4.4 Crackle Test (Audio detector)
	2.4.5 Moisture Monitor (Vapor Induced Scintillation)
	2.4.6 Clear and Bright Test

	2.5 Chemical Condition Monitoring
	2.5.1 Atomic Emission (AE) Spectroscopy
	2.5.2 Atomic Absorption (AA) Spectroscopy
	2.5.3 Thin Layer Activation
	2.5.4 X-Ray Fluorescence Spectroscopy

	2.6 Lubrication Condition Monitoring
	2.6.1 Viscosity Monitoring
	2.6.2 Fourier Transform Infrared (FT-IR) Spectroscopy
	2.6.3 Ultra Violet and Visible Absorption Spectroscopy
	2.6.4 Color Indicator Titration
	2.6.5 Total Acid Number - Total Base Number (TAN/TBN)
	2.6.6 Exhaust Emission Analyzer (Four gas Analysis)

	2.7 Additional Condition Monitoring Techniques
	2.8 Vibration Monitoring
	2.8.1 Simple Harmonic Motion
	2.8.2 Time and Frequency Domains
	2.8.3 Fourier Transform
	2.8.4 Frequency and Period
	2.8.5 The Concept of Phase
	2.8.6 Frequency Units
	2.8.7 Amplitudes and Units
	2.8.8 Data Sample Properties
	2.8.9 Aliasing
	2.8.10 Natural Frequency
	2.8.11 Damping
	2.8.12 Logarithmic Decay
	2.8.13 Resonance
	2.8.14 Time Windows
	2.8.15 Vibration Measuring Devices and Transducers
	2.8.16 Vibration Analysis Techniques
	2.8.17 Basic Faults
	2.8.18 Corrective Actions
	2.8.19 Case Studies

	2.9 Applications for Condition Monitoring Techniques

	Chapter 3 Training Program Design
	3.1 Design Requirements of Training Unit
	3.1.1 User Requirements
	3.1.2 Functional Requirements
	3.1.3 Level 1 Functional Requirements
	3.1.4 Level 2 Functional Requirements
	3.1.5 Level 3 Functional Requirements
	3.1.6 Virtual Machine Component Specification
	3.1.7 Generated Faults
	3.1.8 System Output

	3.2 Programming Software Review
	3.3 Program Design and Development
	3.3.1 Program Design
	3.3.2 Generating Data
	3.3.3 Generating Defects
	3.3.4 Equipment Knowledge
	3.3.5 Acceptance Testing

	3.4 GUI Design
	3.5 Testing the Program

	Chapter 4 Results
	4.1 Overview of program
	4.2 Program and GUI Functions
	4.2.1 Open
	4.2.2 Level_1_1
	4.2.3 Level_1_2
	4.2.4 Level_1_3
	4.2.5 Level_1_4
	4.2.6 Level_1_5
	4.2.7 Level_1_6
	4.2.8 Level_1_7
	4.2.9 Level_1_8
	4.2.10 Level_1_9
	4.2.11 Level_1_10
	4.2.12 End Level_1
	4.2.13 Level_2_1
	4.2.14 Level_2_2
	4.2.15 Level_2_3
	4.2.16 Level_2_4
	4.2.17 Level_2_5
	4.2.18 Level_2_6

	4.3 GUI Images

	Chapter 5 Conclusion and Further Work
	5.1 Conclusion
	5.2 Further Required Work

	References
	Appendix A Project Specification
	Appendix B Supporting Information
	B.1 Vibration Plots

	Appendix C Program Code
	C.1 Program Code Overview
	C.2 Open
	C.3 Level_1_1
	C.4 Level_1_2
	C.5 Level_1_3
	C.6 Level_1_4
	C.7 Level_1_5
	C.8 Level_1_6
	C.9 Level_1_7
	C.10 Level_1_8
	C.11 Level_1_9
	C.12 Level_1_10
	C.13 End_Level_1
	C.14 Level_2_1
	C.15 Level_2_2
	C.16 Level_2_3
	C.17 Level_2_4
	C.18 Level_2_5
	C.19 Level_2_6
	C.20 Single Degree of Freedom Solver Function
	C.21 Two Degrees of Freedom Solver Function

	Appendix D Risk Analysis
	Appendix E Resource Analysis
	Appendix F Project Planning
	F.1 Project Flowchart
	F.2 Project Activity List
	F.3 Project Network Diagram
	F.4 Gantt Chart

