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Abstract 

 

The Green-Ampt (1911) equation has been regarded as one of the foremost infiltration 

models. Mein and Larson’s (1971) work extended its use to modelling infiltration under 

rainfall conditions, known as the GAML model, and Chu (1987) further extended its use 

to time-varying application rates such as occurs under moving sprinkler systems. 

However, Chu only demonstrated the efficacy of his work using simple, idealised 

application patterns that are not seen in the real world. This project, then, sought to extend 

Chu’s work by testing it in the field using real sprinkler performance data. 

 

Sprinkler performance data, using Nelson brand centre-pivot S3000 sprinkler heads, was 

collected for the project in the hydraulics laboratory at USQ, Toowoomba. A sprinkler 

infiltrometer was used in the field to determine modified GAML model parameters, per 

Chu (1986). A computer program written in Matlab, based on the graphical methods of 

Chu (1987), used the laboratory sprinkler data and the modified GAML parameters to 

make a prediction of the runoff that would be generated from a specified time-varying 

application rate. A mobile sprinkler rig was constructed to deliver the time-varying 

application rate of water in the field.   

 

A new concept for a sprinkler infiltrometer was tested in the course of the project. Initial 

work in the laboratory appeared promising but the concept failed to meet expectations in 

the field, principally due to wind interference. Consequently a small droplet-forming 

sprinkler infiltrometer was constructed and used for all of the field testing.   

 

The process of determining the modified GAML model parameters was reasonably 

successful. However, predictions of runoff by the computer model were consistently far 

larger than that measured. This was believed to be for two key reasons. Firstly, whilst 

Chu’s (1987) method worked well for simple application patterns, it appeared to struggle 

with real data and so the predicted runoff by the computer program could only be regarded 

with suspicion. Secondly, there were significant difficulties collecting all of the runoff 

from the soil plots in the field. These two reasons for the disparity between predicted and 

measured runoff meant that this project was not able to conclusively affirm or reject Chu’s 

(1987) method for applying the GAML model as being suitable for use with real moving 

sprinkler systems in the field.         
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Nomenclature and Modelling Parameters 

 

In this project, the term ‘model’ is used as per the Oxford English Dictionary to mean a 

simplified description, especially a mathematical one, of a system or process, to assist 

calculations and predictions (Oxford 2015). Generally the term will not be used to refer 

to a computer model; when it is necessary to do so, the term ‘computer model’ or 

‘computer algorithm’ will be used explicitly. 

 

Matric potential, soil water pressure, capillary tension, capillary pressure, and capillary 

suction are sometimes used as though they were synonymous, even though there are 

differences between these terms. In this project the term ‘capillary suction’, which is a 

positive value, has been preferred. 

 

Runoff and ponding are both phenomena that occur as a consequence of the situation 

where the rate of water application to a soil surface exceeds the infiltration capacity of 

the soil (see Section 2.2). Ponded water does not flow laterally, and runoff does flow 

laterally. However, in this project, when the term ‘runoff’ is used it is usually to represent 

both phenomena, unless explicitly stated otherwise. 

 

Similarly, the term ‘rainfall’ is sometimes used in this project to represent water applied 

by either rainfall or sprinkler irrigation, except when the context makes it clear otherwise. 

This is just to save having to repeatedly say ‘rainfall and sprinkler irrigation’. 

 

 

  

http://www.oxforddictionaries.com/definition/english/simplify#simplify__2
http://www.oxforddictionaries.com/definition/english/mathematical#mathematical__2
http://www.oxforddictionaries.com/definition/english/calculation#calculation__2
http://www.oxforddictionaries.com/definition/english/prediction#prediction__2
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Modelling parameters and variables 

 

θ0  initial (antecedent) soil moisture content (L3/L3) 

θs  saturated soil moisture content (L3/L3), equal to porosity 

Δθ  change in soil moisture content (L3/L3), equal to θs – θ0 

hf  capillary suction, a positive value whose magnitude is equal  

to capillary pressure which is a negative value (L)  

i  instantaneous infiltration rate (L/T) 

I  cumulative infiltration (L) 

K  hydraulic conductivity (L/T) 

Ke  effective hydraulic conductivity (L/T), approximately equal to  

   0.5Ks 

Ks  saturated hydraulic conductivity (L/T) 

r  rainfall (or sprinkler) application rate (L/T) 

R  cumulative rainfall (or sprinkler) application (L)  

t  time (T) 

tp  time to ponding (T) 

ts  pseudotime (T), a concept used by Chu (see Section 2.5.5.2) 

z  depth to wetting front (L) 
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Chapter 1 - Introduction 

 

1.1 Background to the Project 

 

Irrigation is an important part of agriculture around the globe, and sprinkler irrigation is 

playing an increasing role within that. However, sprinkler irrigation tends to be capital 

and energy intensive and its design and management should be undertaken holistically. 

In particular, a reasonable match between the soil properties, crop requirements and 

sprinkler performance should be sought. However, it has often been the case that this has 

not been done, or that data used in the design process was generated by methods that are 

unrepresentative of sprinkler irrigation. Thus the sprinkler irrigation system may be 

operated inefficiently to the detriment of water use efficiency, crop productivity, 

environmental protection, and financial profitability. Considering the large financial 

investment that is generally needed to undertake sprinkler irrigation, it is arguably 

worthwhile to have an appropriate assessment done of the sprinkler-soil system.    

 

One aspect of a sprinkler-soil system assessment is to determine the behaviour of 

infiltration for the soils in question. Sometimes this is not done at all; at other times it 

may be determined in a laboratory or perhaps in the field typically using ponded 

infiltrometers. None of these scenarios are ideal because they do not give a good 

representation of the infiltration process that is occurring under sprinkler irrigation.  

 

The Green-Ampt-Mein-Larson (GAML) model was developed in the 1970’s in response 

to this need for a suitable method to estimate the infiltration and runoff properties of a 

system under sprinkler or rainfall conditions. The GAML model was the theoretical basis 

for this project. 
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1.2 Objectives of the Project 

 

The primary objective of this project was to investigate an alternative method for 

estimating runoff that will be generated from a sprinkler irrigation event that has a time-

varying application rate. The method under investigation was based upon the work of 

Green and Ampt (1911), Mein and Larson (1971), and Chu (1986, 1987). Chu’s work 

appeared promising but was not tested against real sprinkler data in the field; this project 

sought to make that next step. 

 

The project was an attempt to apply the GAML-plus-Chu model to the case of a simple 

moving sprinkler system (purpose-built for this project) to predict its performance in 

terms of infiltration and runoff generation. Rather than separately attempt to predetermine 

the soil hydraulic properties for the field where the sprinkler system will operate, as is 

generally done, a sprinkler infiltrometer was used to estimate modified forms of the 

GAML parameters immediately before the irrigation event. These, in turn, were used to 

make a prediction of the surface runoff that would be generated from the field from a 

given irrigation event.  

 

Successful attainment of this objective was, admittedly, always going to be a difficult 

prospect because there were many possible confounding factors. It was hoped, however, 

that by predetermining the GAML parameters of the field using a sprinkler infiltrometer 

(to mimic the sprinkler irrigation process), in the immediate vicinity of the sprinkler 

system, and immediately before running the sprinkler-system, that some of the 

confounding factors could be mitigated against.     
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1.3 Outline of the Project 

 

The project was comprised of seven phases. 

 

Phase 1. A literature review of 91 books and papers was undertaken.  

Phase 2. 67 sprinkler performance tests, each of about 30min to 60min duration,  

were undertaken to search out and find suitable data for use in  

subsequent phases. 

Phase 3. Writing of a computer program (590 lines in Matlab) to apply the data  

     from Phase 2 using a GAML-based model. 

 

Phase 2 and Phase 3 were undertaken concurrently. 

 

Phase 4. Desktop testing of the computer algorithm by using the methods  

     of Chu (1986, 1987) to compare against two sets of published results in  

     the literature. 

Phase 5. Construction of a sprinkler rig capable of use as both a sprinkler  

     infiltrometer and as a moving sprinkler system.  

Phase 6. Field testing (9 tests) using the sprinkler rig as a static infiltrometer to  

gather infiltration versus time data and determine GAML parameters   

for use by the computer model. 

Phase 7.  Field testing (9 tests) using the sprinkler rig as a moving system to  

     compare the computer model’s predictions against observed results. 

 

Phase 6 and Phase 7 were necessarily undertaken together. 

 

The literature review is contained in Chapter 2. Descriptions of the computer model and 

the field and laboratory test procedures are included in Chapter 3. The results and analysis 

from Phases 2, 4, 6 and 7 are included in Chapter 4 and the discussion of these results 

and issues that arose follows in Chapter 5.    
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Chapter 2 – Literature Review 

 

91 papers and books were reviewed or referred to in the undertaking of this project. The 

key ideas have been summarised in this chapter. 

 

 

2.1 Significance of Sprinkler Irrigation 

 

Irrigation is becoming increasingly important for agriculture around the world, especially 

as arid and semi-arid regions seek to increase crop productivity, crop diversification and 

stability of food supply (Rossi 2015, Postel 1999). Sprinkler irrigation already comprises 

a significant proportion of irrigated land, and surface irrigated lands are steadily being 

converted to sprinkler irrigation due to labour and water concerns (Kincaid 2005). Nearly 

one third of irrigated land in the United States is already irrigated by centre-pivots 

(Kincaid 2005). Figure 2-1 shows that 29% of Australian irrigation is under sprinklers of 

all forms (ABS 2015), of which 45% is irrigated by centre-pivots or lateral-move (CPLM) 

machines. Some growers have been reluctant to convert to sprinkler irrigation because of 

misinformation regarding the extent of evaporative losses; Uddin et al. (2014) showed 

that additional evaporative losses due to use of sprinklers are actually only about 4% 

rather than up to 45% as is sometimes cited. In Queensland’s Murray Darling Basin, 66% 

of CPLM operators are irrigating on heavy clay soils, and a further 31% are irrigating on 

clay loam soils (Wigginton 2011). Among these operators, the primary drivers for 

adopting CPLM irrigation are to save labour, save water and reduce waterlogging 

(Wigginton 2011). 

 

There are a number of difficulties that are sometimes experienced with sprinkler 

irrigation. Travelling laterals can have very high application rates, sometimes exceeding 

the soil’s intake rate, which can lead to runoff and/or ponding in lower parts of the field 

(Addink et al. 1975). Some sprinkler systems have been designed to use low-pressure 

nozzles with high peak application rates, which means the wetted diameters of the 

sprinklers are too small, in order to save energy (Luz 2011). However, again, this may 

cause surface runoff, especially on low-infiltration soils such as the heavy clays of the 

Murray Darling Basin mentioned above. Surface runoff and / or ponding are undesirable
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Figure 2–1: Irrigation in Australia by area watered, 2013-14 (ABS 2015) 



7 
 

for several reasons. They lead to reduced uniformity of water application across a field 

(Kincaid 1969); they waste resource inputs (DeBoer 2001), both of water and the energy 

used to move the water; they may promote surface sealing and crusting (Jennings et al. 

1988); and may lead to reductions in crop yields (DeBoer 2001). The runoff may also 

carry fertilisers and soil components off the field and detrimentally affect the water 

quality of downstream receiving waters (DeBoer 2001). 

 

 

2.2 The Infiltration Process 

 

There has been great interest in studying and modelling infiltration from a diversity of 

disciplines, including agriculture, irrigation design, hydrology, soil science, civil 

engineering and environment sciences (Assouline 2013; Ravi & Williams 1998). In 

particular, there has been a concerted effort on the part of hydrologists to understand 

infiltration because it has the largest influence on the volume of catchment runoff 

generated from a given rainfall event (Mein & Larson 1973).  

 

Infiltration can be defined as ‘the entry of water into the soil surface and its subsequent 

vertical motion through the soil profile’ (Assouline 2013, p.1755). This is a process under 

the influence of gravity (although gravity may not necessarily be the primary driver) in 

contrast to when water moves as horizontal flow in the absence of gravity forces, a 

process known as ‘sorption’.  

 

The following description of the infiltration process is, for the most part, per Assouline 

(2013), Williams & Ouyang (1998), and Ravi & Williams (1998). Water supplied to a 

permeable soil surface will enter down through that surface (unless the soil volume is 

confined by impermeable barriers or is already fully saturated). The rate at which the 

water will enter the soil will decrease as the volume of water entering the soil increases 

until eventually a limiting rate is reached (which has usually been taken to be the soil’s 

‘saturated hydraulic conductivity’, Ks). Bouwer (1969) argued that 0.5Ks should be used 

instead of Ks when modelling infiltration due to various effects (see Section 2.5.4.1). The 

rate of water entry at the soil surface is driven predominantly by capillary forces, or matric 

potentials. When the water has entered the soil, then both gravitational and capillary 

forces are important in moving the water down through the soil profile. Capillary forces 
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vary inversely and non-linearly with the soil moisture and can exhibit enormous variation 

between soil types and within soil types under different management regimes.  

 

Figure 2-2 shows the zones in the soil profile as the infiltration process occurs under 

ponded conditions. In the saturated zone the pores are all filled with water (this may only 

extend to a few millimetres depth). The transition zone features a rapid decrease in water 

content with depth, extending perhaps only a few centimetres. The transmission zone 

makes up the majority of the soil moisture profile and features nearly uniform water 

content with depth. The wetting zone has a steep decrease in water content and sits 

between the transmission zone and the wetting front, and the wetting front is the boundary 

between the ‘dry’ and wetted soil. Water flow in the wetting front and wetting zone is 

driven predominantly by capillary forces, whereas flow in the top three zones is driven 

predominantly by gravity forces. 

 

 

 
Figure 2–2: Infiltration under ponded conditions (Williams et al. 1998, Fig. 1, p.2) 

 

 

There are many factors that affect the infiltration process. These include the water supply 

rate and the pattern of application; the elapsed time since the onset of water application; 

the hydraulic properties of the soil, including porosity, conductivity, antecedent moisture 

content, sorptivity, and connectivity of pores; the depth of the soil; the presence of 

impermeable sub-layers such as the rock bed or plough pans; the chemical properties of 

the soil and water; water and soil temperature; and biological activity.  
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While the soil surface is ponded the water supply rate and application pattern are of no 

consequence. However, if the surface is not ponded then these factors become critical.  If 

the water is supplied at a greater rate than the soil’s ability to allow the water to enter, the 

excess water will accumulate on the soil surface and/or become runoff (Figure 2-3). The 

‘infiltration capacity’ (i) of a soil is the maximum rate at which the water can enter 

through the soil surface, often expressed in units of mm/hr or cm/hr. It depends on the 

initial soil moisture content of the soil and on the temporal pattern of application of water. 

Under ponded conditions the infiltration capacity will always decrease monotonically to 

Ks as infiltration continues.  

 

 

Figure 2–3: The change of infiltration rate with time where the soil is not ponded at time t = 0 (Ravi 

& Williams 1998, Fig.2, p.3) 
 

 

Under sprinkler irrigation or rainfall, if the application rate is less than Ks then it can 

continue indefinitely and no ponding or runoff will occur. This scenario is generally of 

little interest to hydrologists (Morel-Seytoux 1978) but may be of interest to irrigators, 

especially those operating fixed sprinkler systems (Tovey 1966). Hillel (1982) termed 

this type of infiltration process as ‘supply controlled’. If the application rate is greater 

than Ks then initially the applied water will be imbibed by the soil until such a time when 

the soil becomes saturated, termed the ‘ponding time’ (tp). Thence the sub-surface water 

movement will govern the infiltration capacity (‘profile controlled’ per Hillel 1982), 

which will decrease with continuing water application. If the infiltration capacity 

becomes less than the application rate then water will accumulate on the surface or runoff.  
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2.3 Modelling Infiltration 

 

In this project, the term ‘model’ is used as per the Oxford English Dictionary to mean a 

simplified description, especially a mathematical one, of a system or process, to assist 

calculations and predictions (Oxford 2015). Generally it will not be referring to a 

computer model; when it is necessary to do so, the term ‘computer model’ or ‘computer 

algorithm’ will be used explicitly. 

 

‘There is of course no such thing as an equation of infiltration in general’ (Morel-Seytoux 

& Khanji 1974, p.795). Indeed, there are a plethora of techniques to estimate water 

infiltration into soil. For the purposes of this project, however, the infiltration models can 

be divided into the following three categories per Ravi & Williams (1998): empirical 

models; analytical models (principally Green-Ampt models); and numerical models 

based on the Richards equation. These categories will be briefly surveyed below. 

Williams et al. (1998) noted that the selection of a model should be subject to the model’s 

suitability for intended use, the model’s efficiency, the model’s reliability, and the 

model’s credibility. With regard to the model’s credibility they stated that: 

 

“The credibility of the model, and that of the theoretical framework represented, is based 

on the model’s proven reliability, and on its acceptance by users. Model credibility is a 

major concern in model use. Therefore, special attention should be given in the selection 

process to ensure the use of qualified simulation models which have undergone adequate 

review and testing.” (Williams et al. 1998, p.16) 

 

 

2.3.1 Numerical Models 

 

Numerical modelling of infiltration is usually about finding solutions to the Richards 

equation. The Richards equation (Richards 1931) is based upon the Darcy-Buckingham 

law (which is analogous to Darcy’s law): 

 

𝑞 = −𝐾(𝜃)∇𝛹(𝜃) 

 

(2-1) 

 

  

http://www.oxforddictionaries.com/definition/english/simplify#simplify__2
http://www.oxforddictionaries.com/definition/english/mathematical#mathematical__2
http://www.oxforddictionaries.com/definition/english/calculation#calculation__2
http://www.oxforddictionaries.com/definition/english/prediction#prediction__2
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where  

q  water flux 

𝜃  volumetric water content (as a function of time and location) 

K  unsaturated hydraulic conductivity of the soil (as a function of θ) 

ψ  total soil water head (as a function of θ) 

 

The Darcy-Buckingham law is combined with the continuity equation to get the general 

Richards equation: 

 

𝜕𝜃

𝜕𝑡
= ∇(𝐾(𝜃)∇ℎ(𝜃)) −

𝜕𝐾(𝜃)

𝜕𝑧
 

(2-2) 

 

where h is the capillary head. Because the vertical infiltration of water can be treated as 

a one-dimensional problem, the general Richards equation can be simplified to: 

 

𝜕𝜃

𝜕𝑡
=

∂

∂z
(𝐾(𝜃)

∂h(θ)

∂z
) −

𝜕𝐾(𝜃)

𝜕𝑧
 

(2-3) 

 

The variables h and θ are dependent on each other and so the one-dimensional Richards 

equations can be rewritten in terms of either h or θ. This version of the Richards equation 

assumes isothermal conditions, homogenous isotropic soil, and a rigid porous medium 

that allows air to freely escape (Assouline 2013). It also requires that the relationship 

between θ and ψ be known, which is the water retention curve, or soil moisture 

characteristic.  

 

Numerical solutions to the Richards equation are not only used ‘to solve the partial 

differential equations of porous media flow and thus provide a model… …they can be 

used in designing infiltration experiments and interpreting infiltrometer results’ (Smith 

1976, p.507). They are also frequently used as a benchmark against which to evaluate 

empirical or analytical models. Mein & Larson (1973, p.385) stated that ‘though the 

Richards equation… …is not suitable for general application, it is considered the best 

method available for computing vertical flow of soil moisture’ and thus invaluable for 

evaluations and comparisons.  
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The Richards equation is a nonlinear, parabolic partial differential equation and generally 

analytical solutions are not possible. Numerical methods are thus used but convergence 

and stability remain ongoing problems and the equation continues to be a challenge to 

solve (Assouline 2013). Furthermore, the results tend to come in sets of numbers and 

there is difficulty in generalising the results or understanding the mechanics of the process 

(Hachum & Alfaro 1978). The requirement for large amounts of data about soil hydraulic 

parameters makes the use of Richards equation impractical except for research use (Ravi 

& Williams 1998; Morel-Seytoux & Khanji 1974; Mein & Larson 1973).  

 

 

2.3.2 Empirical Models 

 

Empirical models are equations that have been formed by curve-fitting to actual measured 

data. They are generally relatively simple and seek only to describe input-output relations 

(Smith 1975). They feature parameters that are specific to particular data and have no 

apparent physical basis (Ravi & Williams 1998). The emergence of empirical models that 

related infiltration rate to time came about, in part, because of ‘the importance of 

infiltration and the need to describe it quantitatively on one hand and the high non-

linearity of the [Richards] flow equation on the other’ (Assouline 2013, p.1757).  

 

Several of the more significant empirical models used for modelling of infiltration are 

highlighted below. 

 

 

2.3.2.1  Kostiakov’s Equation  

 

The Kostiakov equation (also referred to as the Kostiakov-Lewis equation) is of the form: 

 

𝑖(𝑡) =  𝛼𝑡−𝛽 (2-4) 

 

𝐼(𝑡) =
𝛼

1 − 𝛽
𝑡(1−𝛽) (2-5) 
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where  

i  infiltration rate [mm/hr] at time t [hr] 

I  cumulative infiltration [mm] at time t [hr] 

α, β  empirical constants to be fitted (α > 0, 0 < β < 1) 

 

Because i(t) →0 as t →∞ the equation for i(t) is usually modified to:  

 

𝑖(𝑡) =  𝑖𝑓 + 𝛼𝑡−𝛽 (2-6) 

 

where if is the steady final infiltration rate [mm/hr] as t→∞ (Assouline 2013, p.1757). 

The Kostiakov equation is often used in modelling of surface irrigation (Assouine 2013) 

and whilst it generally performs well at small time values, it becomes less accurate at 

large times (Ravi & Williams 1998). Also, the equation does suggest that the infiltration 

rate is infinite at the beginning of the test, which clearly is not true. On a side note, 

Swartzendruber (1993) pointed out that Kostiakov never wrote the power-of-time 

equation 𝑖 = 𝛼𝑡−𝛽; rather, his contribution was to propose that 𝐾𝑡 = 𝐾0 𝑡𝛼⁄  where Kt is the 

coefficient of absorption at time t, and K0 is the coefficient of absorption responding to 

the air-dry condition of the soil. Swartzendruber argues that it was not possible to get 

from the equation for Kt to the equation for i(t) without making ruthless assumptions that 

Kostiakov never would have taken. Instead, there is ‘a historical basis for an unambiguous 

attribution of [the equation for i(t)] to Lewis (1937)… …I now propose and recommend 

that [the equation for i(t)] be called the Lewis equation.’ (Swartzendruber 1993, p.2456).  

 

 

2.3.2.2  Horton’s Equation 

 

The Horton equation is the most widely used empirical equation in hydrology (Ravi & 

Williams 1998). It is of the form: 

 

𝑖(𝑡) = 𝑖𝑓 + (𝑖𝑜 − 𝑖𝑓)𝑒−𝛾𝑡 (2-7) 

 

𝐼(𝑡) =  𝑖𝑓𝑡 +
1

𝛾
(𝑖𝑜 − 𝑖𝑓)(1 − 𝑒−𝛾𝑡) (2-8) 
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where i0, if and γ are the empirical constants to be fitted. Unlike Kostiakov’s equation, 

the infiltration rate is finite at the beginning of the test. For the purposes of predicting 

ponding time (tp) under sprinkler irrigation, Gencloglan et al. (2005) found the Horton 

equation to perform much better than the Kostiakov equation. 

 

 

2.3.2.3  Philip’s Two-Term Model 

 

The Philip’s two-term model is the truncated version of Philip’s (1957) Taylor series 

solution (Williams et al. 1998): 

 

𝑖(𝑡) =
1

2
𝑆𝑡−1

2 + 𝐴 
(2-9) 

 

𝐼(𝑡) = 𝑆𝑡
1
2 + 𝐴𝑡 (2-10) 

 

where S is the sorptivity [mm/hr1/2] and A is an empirical constant to be fitted. The 

Philip’s two-term model is equivalent to the Kostiakov equation for particular sets of 

parameters. The model assumes a homogenous soil; uniform and constant soil water 

content; and that water content near the surface is constantly near saturation. The model 

is suited to early stages of infiltration into a relatively dry soil (Assouline 2013) but there 

is an assumption of an excess water supply at the surface and thus the model does not 

handle a time lag between onset of water application and ponding as well as other models 

(Williams et al. 1998; Mein & Larson 1973).      

 

 

2.3.2.4  Other Empirical Models 

 

Other significant empirical infiltration models include, without explanation here, 

Mezencev’s equation, the Soil Conservation Service (SCS) method, Boughton’s 

equation, and Holtan’s equation. Interestingly, like the Green-Ampt equation, Holtan’s 

equation is not a function of time but, in Holtan’s case, of the unoccupied pore space in 

the soil (Mein & Larson 1973). A major difficulty with the Holtan model is that the 
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estimated infiltration capacity is highly dependent on the arbitrarily selected control depth 

of soil (Mein & Larson 1971). Smith (1976) further argued that Holtan’s equation did not 

agree with hydraulic principles, but maintained nonetheless that it was still superior to 

the SCS method that required that the infiltration predicted by the SCS be proportional to 

the rainfall rate.  

 

Empirical models are used for their simplicity and low computing demands. However, 

some significant difficulties detract from their use. They need to be fitted to observed data 

or to data extrapolated from other fields or catchments (Wilson et al. 1982). Without 

specific data, the parameters are difficult to predict or calculate because they are obscure 

and have no physical significance (Mein & Larson 1973, Smith 1976). There is difficulty 

of correlating regression constants with governing physical parameters (Jennings et al. 

1988), and they ‘do not consider the changes in the initial water content without obtaining 

a new flooded infiltration rate curve’ (Hachum & Alfaro 1978, p. 500). They are, 

essentially, spatially and temporally restricted and they are dependent on infiltrometer 

testing having being done. 

 

 

2.3.3 Analytical Models 

 

Analytical models are theoretically derived from a physical law, such as Darcy’s Law, 

and as such tend to be more general and enable a better understanding of the phenomena 

involved (Hachum & Alfaro 1978; Mein & Larson 1971). A key advantage of the 

analytical models is that they often use physical parameters that can be determined by 

experiments or inferred from other data obviating the need for curve-fitting and, perhaps, 

site-specific field experiments (Slack 1980). However, the derivation of analytical models 

frequently involves making simplifying assumptions that can be critical under certain 

conditions (Hachum & Alfaro 1978).  

 

The Australian scientists W.H. Green and G.A. Ampt (1911) were the first to derive a 

physically-based analytical model to describe infiltration, since known as the Green-

Ampt equation. It has been the subject of great scrutiny and many developments 

thereupon, particularly within the hydrology disciplines. The Green-Ampt equation 

continues to be the model of choice for estimating infiltration in many physically-based 
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hydrology models (Ravi & Williams 1998). Section 2.5 below will discuss the Green-

Ampt model in more detail.  

 

Analytical models can become mathematically very complex. Some authors have 

complained of such models becoming ‘mathematical overkill’, subject to such an array 

of parameters that, though being physically determinable, require such extensive time and 

effort in the laboratory or field to measure that is unjustifiable given the approximate 

nature of infiltration equations (Smith 1975, p.762). Some authors have advocated the use 

of graphical methods to solve analytical infiltration models (Luz 2011; Chu 1987), 

sometimes producing results identical to the more accurate, but demanding, Richards 

equation (Chu 1987). However, these graphical methods can be cumbersome and are 

generally not easily included into computer-based algorithms for modelling infiltration.  

 

 

2.3.4 Factors that affect infiltration models 

 

There are many factors to account for when modelling infiltration, some of which have 

been mentioned already. Empirical equations avoid the need to directly address these 

factors by simply fitting a curve to the measured data to determine the equation’s 

parameters; the trade-off, however, is that it becomes very difficult to know how the 

model’s parameters might apply to, or be modified for, different field condition from 

whence they were determined.  

 

Besides the pattern of water application, some of the more significant factors for 

infiltration modelling are as follows below.  

 

 

2.3.4.1  Crusting and surface sealing 

 

A surface seal and a soil crust, which may only be in the order of 0.1mm and 1-3mm 

thick, respectively, can reduce infiltration by up to an order of magnitude (Brakensiek & 

Rawls 1983).  Jennings et al. (1988) found that puddling following rainfall impact on 

unprotected soil surfaces, especially those with small soil aggregates, could cause a 

surface crust to form upon drying which is responsible for up to a 107 fold decrease in 
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the hydraulic conductivity for subsequent water application events. Philip (1998) argued 

that the Green-Ampt model is ill-fitted for the analysis of crusted soils. 

 

 

2.3.4.2  Chemical and physical properties 

 

Soil swelling during wetting due to high clay contents; soil sodicity and electrolyte 

concentrations of the irrigation water; and thermal effects of the soil and water were all 

cited by Assouline (2013) as impacting upon the hydraulic properties of soil and will 

consequently affect infiltration.   

 

 

2.3.4.3  Macropores 

 

When a soil surface is generating runoff, or is ponded, macroscopic channels such as 

cracks, root holes or worm holes can conduct water and enhance its vertical transfer. This 

has been termed ‘preferential flow’ or ‘bypass flow’ (Crescimanno et al. 2007). However, 

this will not occur when the water application rate is less than the infiltration capacity of 

the soil (Davidson 1985). Davidson (1985) cites several studies that confirm that 

infiltration is increased by the presence of macropores and that the water may infiltrate 

laterally at depth bypassing the unsaturated zone (Beven & Germann 1982).  

 

 

2.3.4.4  Dynamic nature of soils (temporal variability) 

 

‘Predicting runoff generation on arable land is inherently difficult due to the rapidity with 

which soil and crop conditions change’ (Van den Putte 2013, p.343). Rawls et al. (1983) 

discussed how surface roughness and porosity of the soil can change within a growing 

season due to natural and operational processes. 
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2.3.4.5  Surface storage of water 

 

The amount of runoff will depend on the amount of water that can accumulate in the 

depressions of a rough soil surface and on the slope (Rossi 2015; Gencloglan et al. 2005). 

This amount is termed the ‘retention capacity’ of the soil (Chu 1978). Luz (2011) found 

that his models had a general trend of runoff over-prediction and suggests that surface 

storage factors might have contributed to this result. Smith (1976) cautioned that 

modellers must understand that the time to ponding (tp) is not a depression storage 

phenomenon and that such depression storage of water can result in significant lag of 

response. Rossi (2015, p.3) found that there has not been a lot of investigation into the 

‘effect of micro-topographic surfaces and the related hydrological connectivity on the 

spatial distribution of surface water and infiltration flows.’ 

 

 

2.3.4.6  Entrapped soil air and air viscosity 

 

Assouline (2013, p.1766) said that infiltration is 

  

“basically a problem of immiscible movement of water and air. Under natural conditions, 

the movement of air is generally small… …However, under conditions of flood 

irrigation, intense rainfall, and soil column experiments, air can be compressed at the 

wetting front and beyond and reduce significantly the infiltration rate until it could find 

a way to escape and release the pressure build-up.” 

 

Jarret and Fritton (1978) observed that soil air could become entrapped and compressed 

ahead of the wetting front. This has the effect of reducing the gradient head that is driving 

the infiltration. The air pressure may eventually become sufficiently large that the air can 

escape via the larger pores to the surface, and infiltration will then proceed at an increased 

rate (Jarret & Fritton 1978), which may mean that the infiltration capacity function is not 

always monotonically decreasing. Wilson et al. (1982) found that the largest soil pores, 

which are the most efficient at conducting water, were often occupied by air that can 

become entrapped. Thus the hydraulic conductivity can actually be much less than Ks 

determined in the laboratory (Wilson et al. 1982).  
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Morel-Seytoux (1978) pointed out that most of the major studies that had been undertaken 

toward predicting ponding time and infiltration rates had neglected the air viscous effect. 

Morel-Seytoux and Khanji (1974) formed an infiltration equation based on the GAML 

model that accounted for air viscosity. They found that neglecting the air viscosity term 

could cause errors in predicted infiltration rates of 10% – 40%. Similarly, Jarrett and 

Fritton (1978) found that air-trapped treatments showed a reduction in infiltration rates 

of 45%.  ‘Even without air compression effects, the mere air viscous resistance to flow 

can affect infiltration rates significantly (Morel-Seytoux 1975, p.763). Bouwer (1969) 

recommended that the K value required for the Green-Ampt model should be half that of 

the fully saturated Ks value, which appears consistent with the models that factor in air-

entrapment and air viscosity.  

 

In conclusion, the great number of infiltration models is due, in part, to the inclusion or 

exclusion of these and other influencing factors. Rossi and Ares (2015, p.2) conceded that 

‘complex interactions of runoff generation, transmission and re-infiltration over short 

temporal scales… …add difficulties in the estimation of infiltration and overland flows.’ 

Thus many of these factors are simply ignored by the major infiltration models.  

 

“Perhaps this and other easily improved infiltration models have been perpetuated 

because they are most often used (or evaluated) in hydrologic situations which are either 

insensitive to errors of infiltration pattern, or where other uncertainties override.” (Smith 

1976, p. 507). 

 

Mein & Larson (1971, p. 7) commented that 

 

“It follows then that a simple infiltration model which will be accurate for natural soils is 

not possible, for the complete description of the soil itself is impracticable. One can only 

hope to produce a model which will give a reasonable estimate of the infiltration 

behaviour.” 

 

Van den Putte et al. (2013, p.333) concurred, remarking that 

 

“The [modelling] approaches vary in complexity with respect to the (assumed) 

description of the factors controlling infiltration and hence also with respect to the 

information that is required. It is, however, still unclear whether the incorporation of 
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additional effects through a more refined model description and/or through more refined 

parameter estimation methods do indeed result in better predictive capabilities.” 

 

 

2.4 Infiltrometers 

 

Infiltrometers are a means of applying water to a field soil so that soil hydraulic data can 

be measured or inferred. The two main methods are ponded infiltrometers and 

sprinkler/rainfall infiltrometers. 

 

 

2.4.1 Ponded Ring Infiltrometers 

 

Ponded ring infiltrometers can be single-ring or double-ring. The latter is preferable as it 

simplifies calculations and reduces bias that can result from the three-dimensional flow 

that will occur near the outer boundary of the wetting zone (Smith 1976; McQueen 1969). 

Indeed, lateral movement of water past the outer boundary of the soil plot is generally 

considered to be a primary source of error (McQueen 1969). The double-ring ponded 

infiltrometer has been used extensively in infiltration research. It consists of concentric 

rings that have been driven into the soil and often a set of Mariotte tubes to maintain a 

constant water depth within the rings (Figure 2-4). The volume of water infiltrated into 

the soil from the inner ring is measured against time and plotted to produce the infiltration 

capacity function. The test method for use of double-ring ponded infiltrometers on soils 

is specified by ASTM D3385-09 (ASTM 2009).  

 
Figure 2–4: A double-ring infiltrometer featuring Mariotte tubes (ASTM 2009, Fig.2, p.3) 
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Ponded ring infiltrometers can be convenient and generate data well suited to empirical 

models (Kincaid 1969).  However, McQueen (1969, p.2) cautioned against use of the 

ponded ring infiltrometers. He pointed out that ‘any ring, tube, or plot frame forced into 

the soil surface to delimit an infiltrometers plot will disturb a part of the plot area. Water 

movement into the disturbed zone may be increased to several times the natural 

infiltration rate.’ He concedes that this may not be such an issue for ploughed or cultivated 

agricultural soils. A further issue is that the ponded surface may poorly model the soil 

behaviour under sprinkler irrigation or rainfall (Gencoglan et al. 2005). 

 

 

2.4.2 Sprinkler and Rainfall Infiltrometers 

 

Sprinkler and rainfall infiltrometers can be used to determine the infiltration capacity 

function for a soil (Gencoglan et al. 2005). Sprinkler and rainfall infiltrometers have 

generally been of two forms: simulators that use drop formers, and simulators that 

generate ‘rainfall’ from nozzles. The former generally use arrays of hanging yarn, coiled 

hollow wire, capillary tubes, drawn glass, tubing tips or hypodermic needles that allow 

water from a reservoir above to generate arrays of droplets of known diameters and 

intensities (Humphrey et al. 2002; Singh et al. 1999). The Dripolator, also known as the 

Stalactometer, was developed by the US Soil Conservation Service and was one of the 

first such devices (Hall 1970). A number of techniques have been developed to allow the 

operator to vary the droplet sizes and/or intensity of application, or to promote 

randomness in terms of where the droplets land on the soil (Humphrey et al. 2002; Singh 

et al. 1999).  
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Figure 2–5: A photo of a small droplet forming rainfall simulator (Singh et al. 1999, Fig.2a, p.172) 
 

 

Simulators that use nozzles to generate ‘rainfall’ come in many forms (Hall 1970). Mostly 

they consist of a frame that suspends a singular nozzle (Figure 2-6), or an array of nozzles, 

above the test plot. The nozzle/s may be fixed, rotating or reciprocating, but the effect of 

the frequency of intermittent applications must be taken into account in the latter two 

cases (Hall 1970). An important advantage of nozzle-based sprinkler infiltration tests is 

that the simulation can be performed over much larger ground surface areas than the 

double-ring infiltrometers or droplet formers (Gencoglan et al. 2005). 

 

 
Figure 2–6: A portable rainfall simulator using a single pressurised nozzle. The plot area is 1.5m x 

2.0m (Humphrey et al. 2002, Fig.1, p.201). 
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Chu (1986) noted that sprinkler or rainfall infiltrometers have seldom been used to model 

infiltration under sprinkler irrigation. He cited difficulties with a) droplet impact energy, 

and b) the initial period when all of the water is imbibed into the soil, as historical 

disincentives to their adoption. But Singh et al. (1999) cites these very factors as one of 

the reasons for the recent growth in popularity of sprinkler infiltrometers. The ability to 

replicate the processes of droplets impacting the soil and absorbing into it, which a 

ponded infiltrometer cannot do, is a key advantage of sprinkler infiltrometers. 

Furthermore, if a soil crust is to be avoided, because crusted soil infiltration models are 

not convenient for parameter evaluation, then use of a sprinkler infiltrometer with at least 

50% vegetation cover on the soil surface should suffice (Chu 1986). Smith (1976, p.508) 

argued that it is ‘important to treat infiltration under rainfall [or sprinklers] as significantly 

different from infiltration from sudden ponding.’  McQueen (1969) also identified the 

value of sprinkler infiltrometers in not having to disturb the surface soil through driving 

large steel cylinders or plot frames deep into the soil. 

 

Kincaid et al. (1969) conceded that the assumptions in their analysis of potential runoff 

were probably invalid under the moving sprinkler systems; they had used ponded ring 

infiltrometers where the soil is suddenly flooded to determine their parameters, rather 

than sprinklers where the soil is gradually saturated. Mein and Larson (1971), two years 

on, published their model that separated the pre-ponding phase from the ponded phase of 

infiltration, thereby avoiding altogether the convoluted process that Kincaid et al. (1969) 

took to adjust the data by the methods of Cook (1946).  

 

Perhaps the simplest sprinkler infiltrometer design come across in the literature was that 

presented by Tovey and Pair (1966). The concept was simply to position an irrigation 

sprinkler on a representative field (Figure 2-7), whose moisture content was near field 

capacity, with an array of catch-cans spaced out on a radial leg. The soil was observed 

during the irrigation and the times at which surface ponding first occurred at various 

distances along the radial leg were recorded.  The application rates for each of the 

corresponding distances were determined by dividing the volume of water in the catch-

cans at those distances by the elapsed time. Thus the times to ponding (tp) for given 

application rates could be estimated, as could the maximum application rate that should 

be used so that runoff will not be generated on this field. However, no further information 
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on the infiltration capacity function or even on how tp might change with different 

antecedent soil moisture conditions is obtained.   

 

 
Figure 2–7: A sprinkler infiltrometer in operation (Tovey & Pair 1966, Fig.1, p.359) 
 

 

2.5 The Green-Ampt Infiltration Model 

 

W. Heber Green and G.A. Ampt, who were chemists in Victoria, Australia, published 

their seminal paper Studies on Soil Physics – Part 1: The Flow of Air and Water through 

Soils in 1911 (Green & Ampt 1911). The paper pointed out that commonly performed 

mechanical analyses of soils whereby percentages of various sized particles were 

determined were, at best, giving only a qualitative understanding of the drainage 

properties of the soils. For example, a soil with a large percentage of clay was known to 

be only slightly permeable to water. Green and Ampt sought to create a quantitative 

model of movements of water and air through the soil. The result of their work came to 

be known as the Green-Ampt equation. Green and Ampt thence recommended that soils 

be classified in terms of the parameters of permeability, capillary potential, and porosity. 

Such information would have become invaluable for soil hydraulic modelling; 

unfortunately, this advice has generally not been taken (Mein & Larson 1971). 

 

Over 100 years have elapsed since the publication of the Green-Ampt equation and it 

continues to be the most widely used analytical infiltration model, especially in the fields 

of hydrology and erosion modelling (Van den Putte 2013; Chu 1995). Chu (1978, p.461) 

believed the Green-Ampt model, despite its highly simplified representation of the 
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infiltration process, to be ‘by far one of the best models available to describe infiltration 

during a rainfall event.’ Brackesiek et al. (1979) found the Green-Ampt equation to 

satisfactorily simulate an observed infiltration rate curve under a portable droplet-forming 

infiltrometer in the field. Whisler and Bouwer (1970) compared the Philips equation and 

the Green-Ampt equation with field data and found that the Green-Ampt equation was 

superior for practical reasons. Smith (1976, p.506) even went so far as to remark that 

‘…the Green-Ampt formula is the most elegant approximation that exists today’. 

 

 

2.5.1 Model Concept 

 

The Green-Ampt model was the first infiltration model to be theoretically derived from 

physical principles (Ravi & Williams 1998). The Green-Ampt model assumed that the 

soil could be treated as a bundle of capillary tubes and took its derivation from Darcy’s 

Law (Green & Ampt 1911), which is also referred to as the Darcy-Buckingham equation 

(Narasimhan 2005): 

 

𝑞 = −𝐾
𝜕ℎ

𝜕𝑧
+ 𝐾 

(2-11) 

 

where  

q  flux [mm/hr] 

K  hydraulic conductivity [mm/hr] 

h  capillary pressure head [mm] 

z  vertical co-ordinate [mm], taken as positive downward.  

 

In the development of the Green-Ampt equation, the soil water was considered to be 

ponded at the surface and to move downward as a unit with a sharp front (Figure 2-8), 

sometimes referred to as ‘piston flow’. The pressure gradient at the wetting front was 

considered to be the sum of the capillary tension of the soil immediately ahead of the 

front and the height of the water column behind the wetting front (Smith 1976). 
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Figure 2–8: Illustration of the Green-Ampt parameters and the concept of the 'piston flow' water 

movement down through the soil profile (Ravi & Williams 1998, Fig.3, p.7) 
 

 

The full derivation of the Green-Ampt equation can be found in Green and Ampt (1911, 

pp. 2-8). Its final form is as follows: 

 

𝐼 = 𝐾𝑠𝑡 − (ℎ𝑓 − ℎ𝑠)(𝜃𝑠 − 𝜃0) log𝑒 [1 −
𝐼

(ℎ𝑓 − ℎ𝑠)(𝜃𝑠 − 𝜃0)
] 

(2-12) 

 

where  

I cumulative infiltration [mm] and is a function of time 

Ks soil’s hydraulic conductivity [mm/hr] 

T time [hr] 

hf wetting front pressure head, a negative value [mm] 

hs pressure head at the soil surface under ponded conditions [mm] 

𝜃𝑠  saturated volumetric water content of the soil [m3/m3] 

𝜃0  antecedent volumetric water content of the soil ahead of the wetting  

 front [m3/m3] 

log𝑒  the natural logarithm 

 

Using the relation 𝐼(𝑡) = 𝑍(𝜃𝑠 − 𝜃0), where Z is the depth of the wetting front, then: 

 

𝑖 =  
𝑑𝐼

𝑑𝑡
= −𝐾𝑠 (

ℎ𝑓 − (ℎ𝑠 + 𝑍)

𝑍
) 

(2-13) 
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where 𝑖(𝑡) is the rate of infiltration [mm/hr]. Often a negligible ponding depth is assumed 

and so hs is taken to be zero. The equation then takes the familiar form: 

 

𝑖 = 𝐾𝑠 (1 +
ℎ𝑓∆𝜃

𝐼
) 

(2-14) 

 

where hf is now treated as a positive suction head [mm], and ∆𝜃 is the difference between 

saturated volumetric water content [m3/m3] and the antecedent volumetric water content 

[m3/m3]. Often the saturated volumetric water content is assumed to equal the porosity of 

the soil.  

 

 

2.5.2 Assumptions 

 

Smith (1976, p.505) reiterated that ‘The key to utilising approximations [such as the 

Green-Ampt equation] lies in understanding the sensitivity of their assumptions, and in 

appreciating the accuracy needed for their use.’ The Green-Ampt model makes some 

significant assumptions, either explicitly or implicitly. The model’s piston displacement 

profile (Figure 2-8) is very rough and takes liberties with significant factors such as 

gravity and viscosity effects (Morel-Seytoux & Khanji 1974). Water flow is assumed to 

occur only downwards with a well-defined wetting front (Ravi & Williams 1998), and 

there is no effect of diffusion. The Green-Ampt model assumes that the soil is 

homogenous and without macropores that would allow preferential flow, or bypass flow 

(Green & Ampt 1911). The model assumes that the surface is ponded from time t = 0, 

thus ensuring that the surface is always saturated. The model also assumes that the 

antecedent soil moisture content is uniform throughout the soil profile ahead of the 

wetting front, and that the soil is uniformly saturated behind the advancing wetting front 

(Green & Ampt 1911). It is also implied that the soil is isothermic; that the supplied water 

is not changing the physical properties of the soil, such as shrink-swell phenomena or 

sodicity effects; that the soil surface is not sealed or crusted such that the hydraulic 

conductivity of the surface is markedly different to the subsoil; and that the soil pores are 

continuous and are not occluded by air. Many models have been developed upon the 

original Green-Ampt equation to specifically deal with some of these assumptions.  
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And yet, given all of these assumptions, when compared against measured data, empirical 

models, and solutions of the Richards equation, the performance of the model is 

‘astonishingly good’ (Morel-Seytoux & Khanji 1974, p.795). Indeed, it can be shown that 

the Green-Ampt equation can be obtained as an exact analytical solution of the Richards 

equation (Craig 2010; Raats et al. 2006; Ravi & Williams 1998). 

 

Mein and Larson (1971) and Broadbridge and White (1987) pointed out that some of the 

assumptions are not really as restrictive as they appear. The assumptions of soil 

homogeneity and of uniformity of soil moisture content are reasonable because it is only 

the upper layer that determines the soil’s infiltration behaviour, possibly as shallow as 

5cm for heavy clays (Mein & Larson 1971). In particular, the long-term effects of tillage 

are known to homogenise the upper soil layer (Mein & Larson 1971). Furthermore, 

wetting fronts seldom go deeper than 10cm before ponding occurs in many rainfall events, 

and soil cracks and macropores do not become fully operative until after the surface has 

become saturated (Broadbridge & White 1987; Davidson 1985). 

 

 

2.5.3 Advantages 

 

There are several important advantages associated with the Green-Ampt equation. The 

equation itself, particularly in its time-derivative form for 𝑖 , is conceptually easily 

understood, relatively simple to apply, and exhibits satisfactory performance across a 

broad scope of problems (Ravi & Williams 1998). Also, the parameters required for the 

equation have physical significance and thus are better able to be predicted (Luz 2011; 

Mein & Larson 1973), and do not require calibration unlike the empirical models (Wilson 

et al. 1982).  

 

Luz (2011) reported that the Green-Ampt model is increasingly being used, particularly 

after Mein and Larson’s (1971) work to allow for non-ponding conditions at time t = 0. 

Morel-Seytoux and Khanji (1974) described the Green-Ampt equation as an ‘efficient’ 

equation in that, by assuming a priori the piston displacement profile of water advance, 

the need to find a solution to a partial differential equation for flow is obviated.  

 

An outstanding feature of the Green-Ampt model, as presented in its Equation 2-14 form, 

is that the infiltration capacity, 𝑖, is a function of the accumulated infiltration, 𝐼, rather 
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than time (Foley 2015). This is a somewhat unique characteristic among infiltration 

models (the Holton model is also a non-time based infiltration model - refer 2.3.2) and is 

a different way to understand infiltration. It may also become advantageous when the 

water being supplied to the soil surface and the water infiltrating through the surface are 

being measured on different time scales or are being measured as functions of volume 

(instead of time). 

 

 

2.5.4 Limitations and Difficulties 

 

Several difficulties with the Green-Ampt equation will be discussed here, namely its 

implicit form; that it does not account for many significant influencing factors; the need 

for ponded conditions; and determination of parameter values. Because of the attention 

that the issue of Green-Ampt parameters has received in the literature, they will be 

discussed separately in Section 2.5.4.1.  

 

Historically, the implicit form of the Green-Ampt equation had caused difficulties 

because it required an iterative procedure to determine the time, 𝑡, for different values of 

cumulative infiltration, 𝐼  (Nasseri et al. 2008). Thus various explicit, approximate 

solutions have been proposed, some yielding less than 2% error compared to the implicit 

form (Williams et al. 1998). Srivastava et al. (1996) pointed out that the speed advantages 

from using explicit, approximate, solutions may become significant when performing 

simulations of multiple scenarios with fine resolutions of space and time. In recent years, 

fast modern computers have become ubiquitous which has meant that the difficulty of 

solving the implicit form has generally been limited to instances of hand calculations.   

 

Another limitation to the original Green-Ampt model is that it did not account for some 

significant influencing factors such as entrapped air (Wilson et al. 1981; Jarret & Fritton 

1978; Morel-Seytoux & Khanji 1974); viscosity changes such as occur with temperature 

changes (Bodman & Coleman 1943); the effect of consecutive irrigation or rainfall 

events, especially upon bare soil (Jennings 1998); or, indeed, any of the other factors 

listed in Section 2.3.4. Wilson et al. (1982) reported that there were some discrepancies 

in the literature as to the importance of these factors on the outputs of the Green-Ampt 

model. Broadbridge and White (1987), who neglected soil swelling, entrapped air and 
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raindrop impact phenomena reported that the time to ponding (tp) was substantially 

overestimated by the Green-Ampt model.  

 

Until the work of Mein and Larson (1971) the assumption of ponded conditions for the 

entire duration of the infiltration event was a significant limitation for the Green-Ampt 

equation. Particularly under sprinkler or rainfall conditions, researchers resorted to other 

methods that were generally modifications of empirical equations [see, for example, 

Kincaid’s (1969) use of methods proposed by Cook (1946)]. 

 

 

2.5.4.1  Parameters in the Green-Ampt Equation 

 

Perhaps the most significant difficulty with using the Green-Ampt model is to correctly 

determine the value of the parameters. Brackensiek et al. (1981, p.338, italics added) 

wrote that ‘Use of the Green and Ampt infiltration equation for computing surface runoff 

for a constant rainfall rate is fairly simple, once the parameters are known’. Mein and 

Farrell (1974) and Luz (2011) stated that some of the Green-Ampt parameters, whilst 

having a physical basis, are not easily obtained, except by exacting and time consuming 

procedures.  

 

Bard (1974, p.11) explained what is meant by the term ‘parameters’: 

 

“Usually a model is designed to explain the relationships that exist among quantities 

which can be measured independently in an experiment; these are the variables of the 

model. To formulate these relationships, however, one frequently introduces "constants" 

which stand for inherent properties of nature (or of the materials and equipment used in 

a given experiment). These are the parameters.” 

 

Accordingly, in the Green-Ampt equation the required variables are depth of ponding, hs, 

and antecedent soil moisture, 𝜃𝑜. There are well established techniques for determining 

the soil moisture (Schmugge et al. 1980). The Green-Ampt parameters requiring 

determination are the soil porosity, which is assumed equivalent to the soil moisture 

content at saturation, 𝜃𝑠; saturated hydraulic conductivity, Ks; and the capillary suction, 

hf (Morel-Seytoux & Khanji 1974). The processes for determining the latter two are not 

altogether clear and established values of these parameters are not available for many 
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soils (Ahuja et al. 1989). Empirical relations or estimation procedures for the Green-Ampt 

parameters in terms of easily-measured variables were developed, particularly following 

extensive efforts by the USDA’s Agricultural Research Service (Luz 2011; Ravi & 

Williams 1998). Rawls et al. (1983) published tables of Ks and hf that were estimated 

from soil texture, bulk density and organic content by empirical regression equations. 

However, published tables of ‘typical’ values for the Ks and hf parameters for 

representative soil classes vary enormously between authors [See the comparison by 

Williams et al. (1998, pp.25-28) of tabulated data from Carsel & Parrish (1988), Pajian 

(1987), and Brackensiek et al. (1981)]. Ravi and Williams (1998) appended to their report 

an annotated bibliography containing 44 papers that deal with the issues of estimating 

various soil hydraulic parameters, including those required for the Green-Ampt equation.  

 

The saturated hydraulic conductivity, Ks, of a soil is frequently determined in the 

laboratory using vertical columns of (disturbed) soil or in field using a ponded 

infiltrometer or permeameter. However, Bouwer (1966) argued that the hydraulic 

conductivity parameter that should be used in models where there is a positive capillary 

suction, such as the Green-Ampt model, should be 0.5Ks to allow for entrapped air. This 

is consistent with the findings of Morel-Seytoux and Khanji (1974) and Jarret and Fritton 

(1978). 

 

The capillary suction parameter, hf, has proved more difficult to both define (Skaggs et 

al. 1983) and to determine. Hillel (1980) defined matric potential, which is almost 

synonymous with capillary suction, as the affinity of water to the whole soil matrix. For 

a long time it was considered that hf did not have any direct relation to measureable soil 

characteristics (Neuman 1976) and this was a great impediment to the use of the Green-

Ampt model. Morel-Seytoux and Khanji (1974) stated that the Green-Ampt equation 

might even have been forgotten but for the work of Bouwer (1964) who, 53 years after 

Green and Ampt (1911) published their work, was the first to suggest a way to link hf to 

measurable soil characteristics based on an analogy with horizontal flow (Neuman 1976). 

Bouwer (1969) also proposed an alternative approach to estimating hf by taking it as one-

half of the soil air-entry value, where the air-entry value had already been defined by 

Bouwer (1966, p.730) as ‘the pressure head of the soil water when air of zero gauge 

pressure enters soil with a continuous water phase’. Following on from Bouwer, Mein 

and Larson (1971) showed that the average capillary suction could be determined from 

integrating the S – kr curve, i.e. the suction versus relative conductivity curve (Figure 2-
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9). Note that kr is defined by 𝑘𝑟 =
𝐾(𝜃)

𝐾(𝜃𝑠)
 where 𝐾(𝜃) is the absolute conductivity and 𝐾(𝜃𝑠) 

is the absolute conductivity at saturation. Mein and Larson (1971) conceded, however, 

that ‘it is very difficult to experimentally determine this relationship even for an ideal 

soil’ (Mein & Larson 1971, p.49). Smith (1975) and Morel-Seytoux and Khanji (1974) 

both found that Mein and Larson’s method for determining hf generally under-predicted 

infiltration. Estimation of capillary suction is particularly difficult for clay soils (Mein & 

Larson 1971) where small changes in soil moisture can cause large changes in suction 

(Figure 2-10).  

 

 
Figure 2–9: An example of an S - k_r curve (capillary suction vs relative conductivity) for selected 

soils (Mein & Larson 1971, Fig.13, p.33) 
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Figure 2–10: Variation of capillary suction, h_f, with moisture content (Mein & Larson 1971, Fig.7, 

p.11). Curve (1) is typical of a sandy soil, and curve (2) is typical of a clay soil. 
 

 

Smith (1976) said that the Green-Ampt equation could be used as an empirical formula 

and have it fitted to data to accurately find the parameters, but ‘the laboratory work 

necessary makes the procedure absurd if a practical use is intended’ (Smith 1976, p.508). 

This is because not only is significant spatial variability in the Green-Ampt parameters 

frequently observed (Brackensiek & Onstad 1977), but the parameters are not necessarily 

even constant for a given site. Van den Putte et al. (2013) noted, for example, that a 

decrease in Ks might be observed over time because of surface sealing secondary to 

rainfall impact. Kunze and Shayya (1993) also found that, regardless of the initial and 

boundary conditions, the value of hf was time-dependent and that it tended to decrease 

(when it was taken as a positive suction value) to about 70% of its initial value; they found 

that there was, on average, an overall reduction on cumulative infiltration of about 5% 

when the decreasing hf was accounted for (Figure 2-11). Chu (1995) reported that all three 

Green-Ampt parameters are affected by the initial water content, and Luz (2011, p.88) 

admitted that the assumption ‘that the soil water characteristics and saturated hydraulic 

conductivity relationships are not time variant’ may not always hold. 

 

Then there is the question of the relative importance of each of the Green-Ampt 

parameters, and how sensitive the performance of the Green-Ampt equation is to each of 

its parameters.  

 

The capillary suction, hf, which is generally the more difficult parameter to determine, 

turns out to be the least important of the parameters. Because hf only contributes to the 

matric flow component of total soil water flow, its influence becomes less and less as 
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infiltration time increases (Figures 2-11 and 2-12). Brackensiek and Onstad (1977) found 

that hf is clearly the least sensitive parameter in the Green-Ampt equation. They reported 

that a 10% high estimate of hf caused a 4.7% high estimate in surface infiltration, and a 

10% low estimate of hf caused a 9.4% low estimate of surface infiltration; thus an overly 

high estimate of hf is preferable to an overly low estimate. 

 

 
Figure 2–11: The total infiltration flows and the matric sub-components of the total infiltration 

flows obtained using the Green-Ampt equation with constant and time-dependent h_f (Kunze & 

Shayya 1993, Fig.1, p.1095). 
 

 
Figure 2–12: An example of the variability of h_f with time, for three different initial soil moisture 

conditions (Kunze & Shayya 1993, Fig.3, p.1096). 
 

 

The soil porosity, or the fillable soil porosity, is a slightly more significant parameter than 

hf. A 5% low estimate of fillable porosity was found to translate to an almost 29% 

overestimate of runoff (Brackensiek & Onstad 1977). 
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By far the most significant parameter in the Green-Ampt equation is the hydraulic 

conductivity, K. Brackensiek and Onstad (1977) preferred to use the term ‘effective 

conductivity’, Ke, because of the impacts of air viscosity and air entrapment on water 

flow. Kincaid (2002) found that K is the main soil parameter that affects infiltration and 

runoff predictions. Van den Putte et al. (2013) similarly noted that K is an especially 

sensitive parameter in the GAML model; indeed, they were able to optimise the GAML 

model in K alone, with the other parameters fixed at average values, and still obtain 

satisfactory results. Commonly used field techniques to estimate K are subject to major 

errors and variations (Brackensiek & Onstad 1977). McQueen (1963) argued against the 

use of ponded ring infiltrometers because of the need to hammer them into the ground; 

the shaking, cracking and disturbing of the soil that results will inevitably lead to errors 

in K. An error of 100% is reportedly not unreasonable (Brackensiek & Onstad 1977; 

Nielsen et al. 1973); Brackensiek and Onstad (1977) found that a 100% low estimate 

translated to a 441% overestimate of runoff volume, and a 100% high estimate translated 

to 281% underestimate of runoff volume. Broadbridge and White (1987) cautioned that, 

under ponded conditions, considerable preferential flow may occur. This may affect the 

accuracy of field determination of K, or the accuracy of predictions made when applying 

laboratory-determined K to a field environment; predicted results may be out by 100 

times (Broadbridge and White 1977). McQueen (1963) advocated the use of sprinkler 

infiltrometers because preferential flow would not become a factor until the surface had 

become saturated.  

 

There is some contention about whether or not having more parameters is better. Smith 

(1976, p.509), for example, reasoned that ‘to a certain extent, there should be a positive 

relation between accuracy (or fit to data) and number of model parameters in these 

approximate relations.’ Van den Putte et al. (2013, p.341) disagreed: 

 

“…the predictive capability of the one parameter GAML model was clearly superior to 

that of model versions with more parameters, while still being somewhat lower than that 

of a multiple regression equation… …Thus while allowing more parameters to be 

calibrated does increase the model’s ability to describe the data it actually decreases its 

predictive ability. This is because the two and four parameter calibration procedures 

result in parameter values that are poorly related to the measured variables. Optimisation 

of more than one parameter value allows the model to respond to variability in infiltration 
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dynamics that is not captured or controlled by the measured data, resulting in physically 

unrealistic parameter values for some experiments.” 

 

But a one-parameter Green-Ampt model, in K, still requires an educated guess for 

capillary suction, hf. Fortunately, as discussed earlier, hf is the least sensitive of the Green-

Ampt parameters. Smith (1976) was hopeful that eventually surveys and tabulations of 

soil parameters would be compiled and made available in support of ‘handbook’ 

approximations of soil infiltration calculations.  

 

 

2.5.5 Developments upon the Green-Ampt Equation 

 

There have been numerous models developed based upon the Green-Ampt equation. 

Some will be listed here without further explanation. Because of their direct relevance to 

this project, more attention will be given to the work of Mein and Larson, and then to 

Chu.  

 

There are many Green-Ampt based models that have attempted to incorporate one or 

more of the factors noted in Section 2.3.4 (Kale & Sahoo 2011; Ravi & Williams 1998 

pp.8-9). Van Duin (1955), Bouwer (1969), Childs and Bybordi (1969), and Bybordi 

(1973) extended the model to account for layered soils. Hillel and Gardner (1970) and 

Rawls et al. (1990) sought to account for a surface crust. Ahuja and Tsuji (1976) 

accounted for time-varying effective hydraulic conductivity, and Wilson et al. (1981) 

accounted for air viscosity and air entrapment effects. Chen and Young (2006) created a 

sloping surface variant of the Green-Ampt model, and Craig et al. (2010) sought to 

account for the spatial variability of the Green-Ampt parameters across a catchment. 

However, the Mein and Larson (1971, 1973) and Chu (1978) variants remain as the most 

implemented versions of the Green-Ampt model (Van den Putte 2013).   
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2.5.5.1  The Green-Ampt-Mein-Larson (GAML) model for steady rainfall 

 

Mein and Larson (1971) pointed out that the typical textbook infiltration curve (Figure 

2-13) assumes that the soil is saturated from time t = 0. This is an assumption of the 

Green-Ampt model and can occur for flood irrigation. It would, however, be a very 

unlikely occurrence for sprinkler irrigation or rainfall because there will likely be a 

period of time between t = 0 and t = tp when all of the rainfall is imbibed into the soil. 

Smith (1976, p.508) stated that it is ‘important to treat infiltration under rainfall as 

significantly different from infiltration from sudden ponding’. 

 

 
Figure 2–13: A 'typical textbook infilitration curve' (Mein & Larson 1971, Fig.4, p.8) 
 

 

It was thus proposed by Mein and Larson (1971) that three general cases for infiltration 

could occur under rainfall or sprinkler irrigation: 

 

Case ‘A’: 𝒓 ≤ 𝑲𝒔 

The rainfall rate, r, is less than the saturated hydraulic conductivity of the soil, and 

ponding or runoff will never be generated. This corresponds with curve ‘A’ in 

Figure 2-14. 

 

Case ‘B’: 𝑲𝒔 < 𝒓 < 𝒊 

This case is when the rainfall rate is greater than saturated hydraulic conductivity 

but initially less than the soil’s infiltration capacity. It corresponds to the 

horizontal part (‘B’) of the infiltration curve ‘B-C’ in Figure 2-14. 
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Case ‘C’: 𝒓 > 𝒊 

When the rainfall exceeds the infiltration capacity, ponding or runoff will begin 

to occur. This will correspond to the decaying part (‘C’) of the infiltration curve 

‘B-C’ in Figure 2-14. For a constant rainfall, the runoff can be estimated by the 

difference between the (flat) rainfall curve and the decaying infiltration curve 

(Figure 2-15) 

 

 
Figure 2–14: Infiltration curves for three different cases of infiltration behaviour (Mein & Larson 

1973, Fig.1, p.385). Curve D is the case when the soil is saturated from time t = 0. Curve A is the 

case when rainfall is always less than K_s. Curve BC is the case when rainfall is greater than K_s 

but initially less than infiltration capacity. 
 

 
Figure 2–15: An illustration of Mein & Larson's (1973) Case ‘C’ where ponding or runoff is 

generated because infiltration capacity has become less than rainfall intensity (Williams et al. 1998, 

Fig.2, p.3). 
 

 

Mein and Larson (1971) proposed that the infiltration event be divided into two distinct 

phases: pre-saturation and post-saturation. The post-saturation phase would be equivalent 

The process of water movement through layers can be investigated through an interactive1

software package entitled SUMATRA-1 developed by M. Th. van Genuchten (1978), USDA/

ARS, US Salinity Laboratory, Riverside, CA 92521.

3

Figure 2. Infiltration rate will generally be high

in the first stages, and will decrease with time

(Adapted from Hillel, 1982).

wetting front due to larger pore size and thus a

higher hydraulic gradient would be required for

flow into the layers.   The surface crust will1

also act as a hydraulic barrier to infiltration due

to the lower hydraulic conductivity near the

surface, reducing both the initial infiltrability

and the eventually attained steady infiltrability.  

As might be expected, the slope of the land

can also indirectly impact the infiltration rate.  

Steep slopes will result in runoff, which will

impact the amount of time the water will be

available for infiltration.  In contrast, gentle

slopes will have less of an impact on the

infiltration process due to decreased runoff. 

When compared to the bare soil surface,

vegetation cover tends to increase infiltration by retarding surface flow, allowing time for water

infiltration.  Plant roots may also increase infiltration by increasing the hydraulic conductivity of

the soil surface.  Due to these effects, infiltration may vary widely under different types of

vegetation.

A number of mathematical models have been developed for water infiltration in unsaturated

zone (Philip, 1957; Bouwer, 1969; Fok 1970; Moore 1981; Ahuja and Ross, 1983; Parlange et

al., 1985; Haverkamp et al., 1990; Haverkamp et al., 1991).   A thorough review of water

infiltration models used in the fields of soil physics and hydrology has been presented in a

previous volume prepared in conjunction with the current project (Ravi and Williams, 1998).

1.2 Intended Use of this Document

Soil water infiltration has been determined from experimental measurements (Parlange, et al.,

1985) and mathematical modeling (Philip, 1957; Bouwer, 1969; Fok 1970; Moore 1981; Ahuja

and Ross, 1983; Parlange et al., 1985; Haverkamp et al., 1990; Haverkamp et al., 19941). 

Although a considerable amount of research has been devoted to the investigation of water

infiltration in unsaturated soils, these investigations have primarily focused on scientific research

aspects.  An overall evaluation of infiltration models in terms of their application to various

climatic characteristics, and soil physical and geological conditions has not been done. 

Specifically, documentation of these type models has been limited and, to some extent, non-

existent for the purpose of demonstrating appropriate site-specific application.  This document

attempts to address this issue by providing a set of water infiltration models which have been

applied to a variety of hydrogeologic, soil, and climate scenarios.   More specifically, the
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to the Green-Ampt model, except that the value for time requires an adjustment equal to 

tp. The pre-saturation phase assumes that all of the applied water is imbibed.  

 

The so-called Green-Ampt-Mein-Larson (GAML) model is thus a two-part equation 

given as follows: 

 

𝐼(𝑡) = {

𝑟𝑡 𝑓𝑜𝑟 𝑡 ≤ 𝑡𝑝

𝐾𝑒(𝑡 − 𝑡𝑝) + 𝐼𝑝 + ℎ𝑓(𝜃𝑠 − 𝜃0) log𝑒 (
ℎ𝑓(𝜃𝑠 − 𝜃0) + 𝐼

ℎ𝑓(𝜃𝑠 − 𝜃0) + 𝐼𝑝
) 𝑓𝑜𝑟 𝑡 > 𝑡𝑝

 

(2-16) 

 

where  

 𝑟 rainfall / sprinkler intensity [mm/hr] 

 𝑡𝑝 ponding time [hr], which is when the surface has become saturated 

 𝐼𝑝 accumulated infiltration [mm] at time 𝑡𝑝, and is found by 𝐼𝑝 = 𝑟𝑡𝑝  

 𝐾𝑒  effective hydraulic conductivity [mm/hr] which is estimated by Bouwer  

  (1966) as 𝐾𝑒 = 0.5𝐾𝑠.  

 

All other components of the model are as defined for the Green-Ampt model in Section 

2.5.1. Note that this model assumes that the rainfall intensity is constant (Mein & Larson 

1971).  

 

The cumulative infiltrated volume of water, 𝐼𝑝 , is found by 𝐼𝑝 = 𝑟𝑡𝑝 . It can also be 

calculated, per Mein and Larson (1971), as: 

 

𝐼𝑝 =
ℎ𝑓(𝜃𝑠 − 𝜃0)

(
𝑟

𝐾𝑒
) − 1

 
(2-17) 

 

Equating the two expressions for 𝐼𝑝 yields the following expression for determining 𝑡𝑝 

(Van den Putte 2013; Craig 2010): 

 

𝑡𝑝 =
𝐾𝑒ℎ𝑓(𝜃𝑠 − 𝜃0)

𝑟(𝑟 − 𝐾𝑒)
 

(2-18) 
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The infiltration rate, 𝑖, which is found by taking the time-derivative of 𝐼, is given by Craig 

et al. (2010) as: 

 

𝑖 = {

𝑟 𝑓𝑜𝑟 𝑡 ≤ 𝑡𝑝

𝐾𝑒 (1 +
ℎ𝑓(𝜃𝑠 − 𝜃0)

𝐼
) 𝑓𝑜𝑟 𝑡 > 𝑡𝑝

 

(2-19) 

 

Thus for time 𝑡 > 𝑡𝑝 the form of the GAML model is exactly the same as the original 

Green-Ampt model.  

 

Generally the same assumptions are made as for the Green-Ampt model (refer 2.5.2), 

however the ponded surface assumption is replaced with a constant rate rainfall that is 

greater than Ks and does not have an impact effect on the soil (Mein & Larson 1971). The 

raindrop non-impact assumption is significant (Jennings et al. 1988) and Chu (1987) and 

Slack (1980) have said that the GAML model shows promise for predicting surface 

ponding under time-varying application rates in the field when the soil surface is 

protected by vegetation. Van den Putte et al. (2013) cautioned that there is uncertainty 

about the performance of the GAML model under wet conditions because the piston flow 

assumption, which is quite reasonable under relatively dry conditions, may break down.    

 

 

2.5.5.2  The Chu model for unsteady rainfall 

 

The GAML model was limited to the case of a constant application rate, a situation rarely 

ever seen. Mein and Larson (1971) suggested that further study should be made to account 

for non-uniform rainfall; this was done by Chu (1978, 1986, 1987). 

 

Chu followed Mein and Larson in recognising that infiltration under rainfall or sprinklers 

requires the process be modelled as two distinct phases: pre-ponding and ponded. Chu 

(1978) also used the Green-Ampt equation to model the ponded phase but introduced two 

time parameters, ponding time tp and pseudotime ts, to modify the Green-Ampt equation. 

He also supplied a rather detailed calculating procedure for estimating runoff that was 

quite suitable for use in a spreadsheet software package. 
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Chu (1978) recognised that modelling infiltration under unsteady rainfall is further 

complicated by the possibility that the ponding time, tp, may not be unique for a rainfall 

event. There may be several periods when the rainfall exceeds infiltration capacity and 

the infiltration process may alternate between ponded and non-ponded phases (Figure 2-

16).  

 

 

Figure 2–16: Example of when there are multiple occasions when application rate exceeds 

infiltration capacity. 
 

 

A simpler generalised GAML infiltration model was proposed by Chu (1987). The intent 

was to retain the Mein-Larson technique of dividing the infiltration process into pre-

ponding and ponded phases, and also to have the flexibility to replace the Green-Ampt 

equation for the ponded phase with any other infiltration model. This replacement model 

might be, for example, a Kostiakov infiltration capacity curve as measured in the field, 

or a representative family curve from the Soil Conservation Service, or a modified form 

of the Green-Ampt model itself. As long as the soil has a unique infiltration capacity 

curve, which means that raindrop impact and soil crusting are of no influence, then the 

generalised Mein-Larson model can work (Chu 1987). A centre-pivot sprinkler irrigation 

over a vegetated soil surface is an example of where this model might work well. 

 

The challenge with the Chu (1987) model is that there cannot be a general set of equations 

that will allow the determination of important values such as time to ponding, cumulative 

infiltration, runoff etc. This is because the ponded phase may be described by any one of 
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a considerable number of models. Additionally, the application curves and the infiltration 

curves might be on different time scales (Chu 1987) and this makes superimposition of 

the curves problematic because it first requires the determination of the time offset 

between the curves.  

 

Chu’s solution was to use a graphical technique (Figure 2-17). The time-based application 

patterns were plotted on the left, and the time-based infiltration patterns plotted on the 

right. The rate curves (application rate and infiltration capacity) were at the top, and the 

depth curves (cumulative rainfall and cumulative infiltration) were at the bottom. Starting 

at any point on the lower left curve, a vertical line is extended upward until it hits the 

application rate curve at point ‘A1’, then turn right 90° and extend a horizontal line to the 

next curve ‘A2’, then turn right 90°… and keep repeating until the points ‘A1’, ‘A2’, ‘A3’, 

and ‘A4’ at which the drawn lines intersect the four curves stabilise and the drawn lines 

form a rectangle. Then translate the infiltration capacity curve (on the right) to the left so 

that ‘A2’ and ‘A3’ coincide. As seen in Figure 2-17, the point ‘B2’ is the second 

intersection of the application rate curve and infiltration capacity curve when they have 

been superimposed. Extending a horizontal line from ‘B2’ to ‘B3’, then down to ‘B4’ 

allows the potential runoff from the event to be determined. The term ‘potential runoff’ 

is used because the Mein-Larson model does not attempt to account for factors that reduce 

the actual runoff, such as surface storage of water. 
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Figure 2–17: An illustration of the graphical method proposed by Chu (1987, Fig.2, p.159) to solve 

the generalised Mein-Larson model. 

 

 

Table 2-1 shows that the graphical solution method of the Generalised Mein-Larson 

model fared very well against other modelling methods (Chu 1987).  

 

 

Table 2-1: Comparison of estimated ponding time, t_p, calculated from four methods (Chu 1987, 

Table 1, p.161) 
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One of the difficulties with Chu’s (1978, 1987) approach is that it presupposes that the 

infiltration capacity function is known and is unique for a given soil. Also, it may be that 

the sprinkler pattern is not a clean elliptical curve such as that used by Chu (1987) in 

Figure 2-17. Chu’s method assumed that once tp had been reached, that the application 

rate would remain greater than the infiltration capacity for the duration of the event. This 

assumption may not always hold true as Figure 2-16 illustrated and some further 

modification of Chu’s methods may still be required to accommodate such scenarios. 

 

 

2.6 Approximating Sprinkler Patterns for Use in Infiltration Models 

 

Kincaid (2002) reported that reliable estimates of both 𝐾 and the water application pattern 

were critical to predicting runoff. A common practice has been to approximate sprinkler 

or rainfall patterns with simple geometric shapes. Slack (1980) noted that elliptical or 

triangular approximations are generally used when modelling centre-pivot irrigation 

systems (Figure 2-18), even when the approximation bears little resemblance to the 

observed data (Figure 2-19).   

 

 
Figure 2–18: An example sprinkler application rate curve showing a triangular approximation to 

the observed data (Slack 1980, Fig.1, p.598) 
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Figure 2–19: An example sprinkler application rate curve (Slack 1980, Fig.2, p.599) that 

demonstrates that in some cases the chosen triangular or elliptical approximation poorly reflects 

the observed data. 
 

 

Chu (1987) noted, in his background to using the GAML model with variable rain, that 

the elliptical sprinkler pattern frequently encountered in the modelling of sprinkler 

irrigation is also being used to represent variable rain. This is exemplified by Hachum 

(1978) in Figure 2-20 and is in spite of the fact that a variable rainfall pattern would 

typically be something more like Figure 2-21 (Morel-Seytoux 1978). 

 

 
Figure 2–20: A variable rainfall pattern of an idealised elliptical form (Hachum 1978, Fig.2, p.504) 
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Figure 2–21: An example of a more 'typical' rainfall pattern (Morel-Seytoux 1978, Fig. 3, p.563). 
 

 

DeBoer (2001, p.1217) noted that ‘elliptical water application rate-time distributions have 

been used extensively during the past 30 years’ for sprinkler irrigation simulations (Figure 

2-22). However, his work identified that for three different irrigation technologies the 

distribution patterns tended to be more trapezoidal in shape than elliptical (DeBoer et al. 

1992). He maintained that while the trapezoidal pattern had generally been a better 

approximation (Figure 2-23), its mathematical description required three piece-wise 

continuous segments which is more complex to work with than a single equation for an 

ellipse (DeBoer 2001).  

 

 
Figure 2–22: An example of the commonly assumed elliptical irrigation application pattern 

(DeBoer 2001, Fig. 1, p.1217). 
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Figure 2–23: An example of trapezoidal and elliptical approximations of measured sprinkler data 

(DeBoer 2001, Fig.3, p.1218) 
 

 

Instead of using a mathematical equation to describe the whole application profile, Luz 

(2011) used the sprinkler’s peak application rate and irrigation depth when modelling 

potential runoff under centre-pivot irrigation. Kincaid (2005, p.605) also decided to 

characterise application rates under traveling sprinkler laterals ‘in terms of average rate, 

peak rate and instantaneous rate’ for the purpose of creating an equation to predict nozzle 

size from system pressure and required flow.  

 

Addink (1975, p.523) analysed the effect of different application patterns and reasoned 

that because the ‘intake rate of a soil is normally much higher during the first ten minutes 

than during the last ten minutes’ then a forward-skewed application-rate pattern would be 

at a definite advantage for reducing ponding and runoff. His experimental results showed 

forward skewed patterns to have more than 11% advantage over symmetrical patterns if 

the application time were equal for both, particularly for shrink-swell soils with higher 

percentage of clay particles (Addink 1975). 
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2.7 Literature Review Summary 

 

The significance of infiltration for a wide variety of disciplines is reflected in the 

enormous body of literature that deals with it. Researchers and industry have resorted to 

a variety of techniques to model infiltration including using numerical methods involving 

the Richards equation; empirical curve-fitting methods; or physical/analytical models 

such as the Green-Ampt model. The Green-Ampt model remains pre-eminent among the 

physical infiltration models and many subsequent developments have emerged to deal 

with the significant assumptions of the original form. The Green-Ampt-Mein-Larson 

variant is the most significant and is the theoretical basis of this project. 

 

Also discussed here were the issues of how the infiltration capacity function is determined 

and of how sprinkler patterns are represented. With regard to the former, ponded 

infiltrometers have been widely used but their suitability to modelling infiltration under 

rainfall is highly questionable; for this reason and others sprinkler infiltrometers are 

becoming increasingly popular. Regarding the representation of sprinkler patterns, these 

have tended to be modelled by idealised geometric shapes such as triangles, ellipses or 

trapezoids. This helps to simplify the modelling by allowing mathematical functions to 

describe the pattern; less work has been done with real application patterns. 
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Chapter 3 – Methodology 

 

The primary objective of this project was to investigate an alternative method for 

estimating runoff that will be generated from a sprinkler irrigation event that has a time-

varying application rate. Specifically, this required the application of two of Chu’s (1986, 

1987) methods to solving the GAML model to determine an infiltration characteristic for 

an in-situ field soil under sprinkler irrigation and thence to predict infiltration and runoff. 

A secondary objective that emerged during the course of the project was to explore an 

idea the author had for a new sprinkler infiltrometer technique.  

 

 

3.1 Determining an Infiltration Characteristic and Predicting Runoff  

 

Many of the techniques used to estimate and model the infiltration characteristic are not 

well suited to sprinkler irrigation which is characterised by application rates of finite 

magnitude that are typically smaller than the initial infiltration capacity. The work of 

Mein and Larson (1971) and Chu (1986, 1987) arose in response to these deficiencies. As 

noted in Section 2.5.5, a limitation of Mein and Larson’s work was the requirement for a 

constant application rate, which rarely occurs in nature or under moving sprinkler 

systems. Chu’s work sought to address this limitation but was only tested against simple, 

contrived data and numerical models. The primary objective in this project was to go one 

step further and apply Chu’s methods using real sprinkler data in a field and test how well 

the runoff and infiltration can be predicted. For the purpose of this project this was a 

three-step process:  

1. Use a sprinkler infiltrometer to determine the GAML parameters of a field plot 

and thus form an infiltration characteristic function. 

2. Apply the infiltration characteristic function in a computer model to make a 

prediction of the runoff volume from a simple moving sprinkler system. 

3. Measure the runoff from a field plot in close proximity and of similar form to that 

used in Step (1) and compare the results against those predicted.   
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3.2 STEP ONE: Determine GAML Parameters with Sprinkler Infiltrometer 

 

Section 2.5.4.1 noted how difficult it can be to determine the K, hf and θ0 parameters 

required for Green-Ampt based equations. Chu (1986) suggested that because hf and θ0 

always feature together in the GAML formulations, let them be lumped together as a 

single parameter; he labeled the lumped parameter SM (for effective soil moisture Suction 

at the wetting front, and the average Moisture content difference before and after wetting). 

That is: 

 

𝑆𝑀 ≡ ℎ𝑓(𝜃𝑠 − 𝜃0) (3-1) 

 

where the ℎ𝑓(𝜃𝑠 − 𝜃0) term is from the Green-Ampt equation. Thus the time integrated 

form of the Green-Ampt equation : 

 

𝐼 = 𝐾𝑠𝑡 − (ℎ𝑓 − ℎ𝑠)(𝜃𝑠 − 𝜃0) log𝑒 [1 −
𝐼

(ℎ𝑓 − ℎ𝑠)(𝜃𝑠 − 𝜃0)
] 

(3-2) 

 

can be rewritten as: 

 

𝐼

𝑆𝑀
− log𝑒 [1 +

𝐼

𝑆𝑀
] =

𝐾𝑡

𝑆𝑀
 

 

(3-3) 

Then it becomes necessary to only find two unknown terms K and SM. If one has an I vs 

t curve then solving Equation 3-3 simultaneously at two separate points will yield the two 

unknowns. Once K and SM are known then i vs t or i vs I infiltration characteristic curves 

can be generated. Chu (1986) resorted to a graphical method to overcome the difficulties 

of finding an analytical solution to the two simultaneous implicit logarithmic equations 

(detailed in Appendix B). This same method was adopted for the purposes of this project 

in which Chu’s graphical process was encoded using Matlab (see Appendix C for the 

script). 

 

The generation of an I vs t curve, necessary to this whole process, was done with a 

sprinkler infiltrometer. (As noted earlier, whilst ponded ring infiltrometers or other 

devices might also be able to generate infiltration characteristics, these rely on ponded 
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surface conditions and may not reflect well the physical processes happening in the 

sprinkler or rainfall context.) 

 

 

3.2.1 The Sprinkler Infiltrometer 

 

Section 2.4.2 noted a few of the sprinkler infiltrometer designs that are in common use. 

At the time of the project, none of these pieces of equipment were available to the author; 

furthermore, the author was keen to investigate whether an idea he had for a different 

approach to a sprinkler infiltrometer design might work. Thus it was decided to develop 

and trial a new sprinkler infiltrometer as a sub-project with the intent that it would also 

be used toward achieving the project’s primary objective. A second sprinkler 

infiltrometer design option was kept in reserve in case the first failed to perform as 

required; both are discussed below. 

 

 

3.2.1.1  The SHCAZ Sprinkler Infiltrometer  

 

The idea for a new approach to creating a sprinkler infiltrometer was conceived when it 

was noted during earlier sprinkler performance testing that a few particular sprinkler 

configurations produced a radial leg profile that featured a zone of constant application 

rate (compare Figures 3-1 and 3-2).  

 

 

 

Figure 3–1: An example of a sprinkler radial leg profile. This example is of a Nelson S3000 with #21 

nozzle, 10 PSI, height 2.44m, red plate. There is no zone of constant application rate in this profile. 
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Figure 3–2: An example of a sprinkler radial leg profile that exhibits a zone of constant application 

rate. This example is of a Nelson S3000 #44 nozzle, 25 PSI, height 2.44m, red plate. 

 

 

Thus rather than attempting to create an area of constant application rate over a soil test 

plot using an array of droppers, a grid of sprinkler heads, or an oscillating sprinkler 

head(s), it was instead proposed to locate a specifically selected sprinkler head at an 

appropriate distance from the soil test plot so that over the full area of the test plot there 

is a constant and known application rate. So, for example, if the sprinkler configuration 

of Figure 3-2 is used then a soil test plot that is 3.00m to 4.25m away would be expected 

to receive a reasonably uniform 27mm/hr of water application across its full surface 

(Figure 3-3). The author dubbed the concept as a Single-Head-Constant-Application-

Zone (SHCAZ) Sprinkler Infiltrometer. 

 

 

Figure 3–3: Illustration of the SHCAZ infiltrometer concept. From the data shown in Figure 3-2 

this Soil Test Plot would be expected to receive a uniform 27mm/hr. 
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It became, then, a necessary task to first identify which combinations of nozzle size and 

pressure would produce suitable radial leg patterns for this purpose. 

  

  

Identification of Appropriate Nozzle Size and Pressure Combinations in the Laboratory 

 

The identification of which combinations of nozzle size and pressure would produce 

suitable radial leg profiles (that is, featuring a sufficiently large portion of the radial leg 

profile with a constant application rate) required an extensive survey of the possible 

combinations of nozzle sizes and operating pressures. The testing was undertaken in the 

hydraulics laboratory at the USQ Toowoomba campus during May and June 2015. The 

testing was confined to the Nelson S3000 Spinner Centre Pivot range of sprinkler 

products (Figure 3-4), as these were readily available at the time. The testing included 

only the red and yellow plates, otherwise the permutations would have become 

overwhelming as various nozzle size and pressure combinations were exercised.   

 

 
Figure 3–4: Nelson S3000 Spinner head assembly with yellow plate and #18 nozzle 

(www.nelsonirrigation.com). 

 

 

The hydraulics lab had a constant head delivery system that was used to supply a 415V 

centrifugal pump. The water was delivered by way of 20mm (¾ inch) reinforced hose and 

rigid pipe to the sprinkler head that was fixed 2.54m above the ground. The catch-cans 

were circular plastic take-away containers that had an inner diameter at the mouth of 

110mm, with a 6mm wide lip. The wide lip was removed part way through the testing 

process, giving a new mouth diameter of 105mm and a new lip width of 0.5mm (these 

new dimensions were noted in the data collected). The catch-cans were 0.10m in height, 

giving an effective sprinkler height of 2.44m (8ft). Water pressure was monitored by two 

separate gauges at 0.05m upstream of the sprinkler head (Figure 3-5) and flowrate was 

Spinner

Accelerator

Sprayhead

Trashbuster
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monitored using a Kent mechanical flowmeter and an ABB Magmaster electromagnetic 

flowmeter. Pressure and flow were controlled using gate valves at the pump outlet. 

 

 

 

Figure 3–5: Sprinkler head set-up, with the pressure line to primary pressure gauge and the 

secondary pressure gauge shown. 

 

 

Catch-cans were spaced every 0.25m along a straight radial line, starting from 

immediately beneath the sprinkler head out to a distance of 9.00m (Figure 3-6). This 

spacing of catch-cans was much closer than generally reported in the literature and was 

intended to give a greater resolution in the radial leg profile. 
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Figure 3–6: Schematic of the layout for the sprinkler radial leg data collection. 

 

 

Screens were arranged around the sprinkler head so as to protect other equipment within 

the hydraulics laboratory. Several measures were taken in order to assure that no splash 

from the screens was reaching the catch-can containers: The screens were set back 1.5m 

from the catch-cans; the screens had soft towels draped over them where the water was 

travelling fastest so as to absorb some of the water’s energy; and additional catch-cans 

were positioned on the ground between the screens and the radial leg catch-cans in order 

to monitor the extent of splash (it was found that no splash came close to the radial leg 

catch-cans). 

 

A wide variety of nozzle plus pressure combinations were tested, with pressures ranging 

between 6psi and 30psi, and nozzle sizes ranging between 14/128th inch (a #14 nozzle) 

through to 48/128th inch (a #48 nozzle). Each test typically ran for 30-60 minutes (longer 

tests were used for lower flowrate nozzles), and system pressure and flowrate were 

monitored during the test. The mass of water in each catch-can was measured at the end 

of the test and converted to an equivalent depth [mm] and application rate [mm/hour]. A 

plot of the sprinkler radial leg profile from each test was inspected to identify if it 

exhibited a zone of constant application rate, preferably of at least 1m in length. The tests 

that appeared suitable for the SHCAZ Sprinkler Infiltrometer were subjected to repeat 

testing to confirm the results.  
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3.2.1.2  A Reserve Sprinkler Infiltrometer: The ‘Bucket Infiltrometer’ 

 

 

Because the data generated from use of the sprinkler infiltrometer in the field was 

essential to the study, and because the proposed SHCAZ Sprinkler Infiltrometer was an 

untested concept, it was felt prudent to have a second sprinkler infiltrometer option in 

reserve. The chosen reserve infiltrometer was essentially a less sophisticated (and much 

less expensive) version of the Cornell Sprinkler Infiltrometer (Cornell 2003). It worked 

by forming droplets at a known rate above a small surface of soil and measuring the runoff 

(Figure 3-7), which is then compared to the water application rate to determine 

infiltration. 

 

 

 

Figure 3–7: A Cornell Sprinkler Infiltrometer in use (Molacek et al. date unknown). 

 

 

A 20L bucket was pierced with 21 hypodermic needles (Nipro brand, 21G - 0.8mm x 

30mm) through the bottom in an equally spaced pattern; the needles used to pierce the 

holes in the plastic were discarded and replaced by new needles because it was found that 

sometimes the plastic from the bucket could partially or fully occlude the needle during 

the piercing process. The ‘bucket infiltrometer’ was placed on a stand at a height of 0.20m 

above the soil plot (Figure 3-8). A constant head of clean water was maintained by 

manually topping up the water level every three minutes to a pre-marked line at a depth 

of 0.30m. The variation in water depth was only ever about 0.01m and this delivered a 
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constant application rate of 178mm/hr over a soil area of 0.0638m2 (a 28.5cm diameter 

circle).  

 

 
Figure 3–8: The ‘bucket infiltrometer’ used as a reserve sprinkler infiltrometer,. 

 

 

3.3 STEP TWO: A Computer Model to Predict Runoff and Infiltration 

 

The computer model was written in Matlab r2015a Student Edition. The scripts can be 

found in Appendix C. A brief description of the model follows below. The computer 

model was created in two parts. The output of Part 1, an infiltration characteristic function 

based upon modified GAML parameters, became one of the inputs of Part 2. 

 

 

3.3.1 Part 1 of the Computer Model: Determine the Infiltration Characteristic 

  

Runoff versus time data was collected from a soil plot that had been subjected to a 

sprinkler infiltrometer. This was entered into Part 1 of the computer model and an 

infiltration characteristic was generated using the methods of Chu (1986). Figure 3-9 

describes the process used. 
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Figure 3–9: Flowchart describing the process used in Part 1 of the computer model. 
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3.3.2 Part 2 of the Computer Model: Estimating Runoff under Sprinklers 

 

Laboratory radial leg catch-can data for selected individual sprinkler heads were 

interpolated in 2-dimensions to form a grid for each. Identical copies of the grid were 

superimposed, offset from the next by a distance that reflected the separation distance 

between adjacent sprinkler heads. This mapped the spatially varying application rates that 

would be expected underneath a system of sprinkler heads with overlapping areas of 

application. This was plotted as a 3-dimensional surface, with the x- and y- dimensions 

being distances along the ground, and the z- dimension being the rate of application by 

the system of sprinklers. A cross-sectional slice of the 3-dimensional shape, taken 

perpendicular to the line of sprinklers, produced a 2-dimensional curve, which was the r 

vs t curve (instantaneous application rate versus time).   

 

By taking into account the travel speed of the system of sprinkler heads, an R vs t curve 

(cumulative application depth versus time) was yielded from the r vs t curve. The I vs t 

curve (cumulative infiltration depth versus time) was yielded from the i vs t curve that 

was generated in Part 1 of the computer model.  

 

Using the four curves (i vs t, I vs t, r vs t, R vs t), the runoff was estimated using the 

methods of Chu (1987). Figure 3-10 describes the process used in Part 2 of the computer 

model. 
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Figure 3–10: Flowchart describing the process used in Part 2 of the computer model. 

 

 

Many infiltration and runoff models already existed which took into account, to varying 

degrees, a host of soil properties. Often there were complex data requirements that could 

be difficult to measure in a field environment. The appeal of this model was the simplicity 

of its data requirements: only cumulative infiltration vs time data was required from the 

field. The more difficult Step Three of the project’s research design (refer Section 3.1) 

was not part of the computer model per se; its purpose was just to validate the model’s 

predictions. 
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3.3.3 Desktop Testing of the Computer Model 

 

Desktop testing of the computer model used published data from the literature to check 

the reliability of the model and programming. Part 1 of the computer model was fully 

tested. Part 2 of the computer model was only partially tested due to limited availability 

of suitable data.  

 

 

3.4 STEP THREE: Field Measurements of Runoff 

 

Step Three of the research design was about gathering field runoff measurements under 

a time-vary application rate to evaluate the accuracy of the predicted values for runoff 

from the computer model. It was necessary to construct a simple mobile sprinkler 

irrigation rig for this purpose. 

 

 

3.4.1 Mobile Sprinkler Rig 

 

A small mobile sprinkler rig was constructed during May and June 2015 (Figure 3-11).  

 

 

Figure 3–11: The mobile sprinkler rig that was constructed for Step 3 of the project. 
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The rig was designed so that it could be dismantled easily and transported on the roof of 

a car. Budget constraints and a desire to re-use the materials at a later date for other 

purposes meant that the majority of the construction was made of timber and rope. The 

cantilever-type design (Figures 3-11 and 3-12) was chosen so that the rig could be more 

easily maneuvered around low shrubs, fences and grass embankments that were around 

the test area. Several passers-by likened the construction to a trebuchet! The square base 

was heavy for stability and sat upon four wheelbarrow wheels that proved quite suitable 

for rolling over the soft ground. The base also supported a battery-powered ABB 

AquaMaster electromagnetic flowmeter and a set of valves and pressure gauges for 

setting and monitoring the flow conditions in the hoses.  

 

 

 

Figure 3–12: Sketch of the mobile sprinkler rig showing key dimensions. Not drawn to scale. 

 

 

The horizontal beam from which the sprinklers were suspended was supported at a single 

pin so that its angle relative to the horizontal could be adjusted as required. This was 

useful, for example, when the ground under the rig’s wheels was at a different slope to 

that of the soil test plots. The weight of horizontal beam was counterbalanced by a 

suspended weight; there was also a second suspended weight that tensioned a rope that 

was used to support the end of the beam against sagging. The vertical structure of the rig 

was supported by tensioned ropes connected to the base. 
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Four sprinkler heads were mounted on the horizontal beam at a spacing of 1.20m (4 ft) 

and a height of 2.44m (8 ft) above the ground. Three of the sprinkler heads were able to 

be removed and capped off (Figure 3-13) so that the rig could be used in a stationary 

mode for the SHCAZ Sprinkler Infiltrometer (refer 3.2.1), which removed the need to 

build a separate support structure.  

 

 

Figure 3–13: The mobile sprinkler rig as used in the static role as a sprinkler infiltrometer. The 

other 3 sprinkler heads have been removed and capped off. 

 

 

The rig’s water supply came via a 50m long 50mm lay-flat hose connected to a 50mm 

pressurised town water supply outlet. The pressure and flowrate were sufficient for the 

purposes of the testing and though an electric pump was connected to the water outlet it 

was not needed. The water was distributed to the four sprinkler heads by a 25mm (1”) 

hose that was arranged in a branching configuration so that upstream of each sprinkler 

head was the same length of hose and the same arrangement of elbows, t-pieces and 

barbed connections (Figure 3-14). This was to promote an equal flow to each sprinkler 

head, which was an implied assumption in Part 2 of the computer model. 
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Figure 3–14: A schematic drawing showing how the water supply hose was repeatedly divided in an 

identical manner for each of the sprinklers. 

 

 

The water pressure at the sprinkler heads was monitored via a pressure line that was 

connected immediately above one of the rigid vertical drops, with an adjustment made 

for the height difference between the sprinkler head and the gauge. Flowrate monitoring 

using the Aquamaster flowmeter helped to confirm that the correct pressures were being 

produced at the nozzles.  

 

The mobile rig was pushed along manually during each test in Step Three. All of the 

wheels were fixed (non-swivel) and any steering required that the base of the rig be lifted 

and shifted sideways to set a new course, which was heavy work. Thus the soil plots from 

which runoff was collected were arranged in a straight line on the field so that the rig 

could be pushed in a straight line.  

 

 

3.4.2 Collecting Runoff 

 

Collecting the runoff was critically important to the project. It was performed when using 

the sprinkler infiltrometer for Step One and when using the mobile sprinkler rig for Step 

Three (refer Section 3.1). 

 

 

3.4.2.1  Soil Plots for Runoff Generation 

 

For the purposes of this project, ten soil plots were prepared near the USQ Agricultural 

Plot in Toowoomba. The soil plot sites were selected for their gently sloping ground 
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(gradient 5-7%) that would facilitate the collection of runoff, and their proximity to a 

suitable water source that would be needed for the tests. 

 

The soil plots were prepared in pairs, located nearly adjacent to each other and of 0.75m 

x 0.75m size. The grass cover on each plot was reduced to approximately 50% using a 

line trimmer (‘whipper snipper’) so that the soil could be readily observed. A trench was 

dug along the bottom end of each plot, sloping toward a hole that was deep and wide 

enough to hold a collection container. A trough made from half of a 90mm PVC storm-

water pipe was laid into the trench to collect the runoff water. The trench was cut so that 

its upslope wall angled beneath the soil plot to improve the chances of the PVC trough 

collecting the runoff water (Figure 3-15). Additionally, the PVC trough was pressed 

firmly into the soil wall by wooden chocks to improve runoff collection. 

 

 

 
Figure 3–15: Sketch of side profile of the soil plot sloping down to the trench with an inlaid PVC 

half-pipe. 

 

 

 
Figure 3–16: Sketch of end-view of PVC trough sitting in soil trench and sloping down to collection 

container. 

 

 



66 
 

The trench and the hole with the collection container were both covered so that there was 

no direct collection of sprinkler water. Thus what water was measured in the collection 

container was only runoff from the soil plot that came via the PVC trough. 

 

A second trench was dug into the ground just uphill of each soil plot (not shown in Figure 

3-17). Its purpose was to divert around the soil plot any runoff from further up the slope. 

A low border made of plywood with a sharpened edge was pressed into the ground around 

the top and side edges of each soil plot to encourage the runoff from the soil plot down 

toward the PVC trough and also to minimize runoff from outside the soil plot flowing 

sideways onto the soil plot (which would have been unlikely anyhow because that would 

require cross-slope flow).  

 

 
Figure 3–17: One of the soil plots. The adjacent soil plot, the diverting trench (upslope) and 

protective cover have not been prepared yet and are not shown. 

 

 

The soil plots were prepared in adjacent pairs. The first plot in each pair was used for the 

sprinkler infiltrometer testing (Step One); the second plot was used with the mobile 

sprinkler rig to confirm the computer model’s runoff predictions (Step Three). A tarpaulin 

covered the second plot during the infiltrometer testing and it was assumed that the second 

plot would have equivalent soil and hydraulic properties as the first plot given their close 

proximity and equal treatments. The mobile sprinkler rig was used on the second plot 

very soon after the cessation of the sprinkler infiltrometer at the first plot, usually within 

an hour.  
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3.4.2.2  Runoff from the Sprinkler Infiltrometers 

 

Runoff was initially being measured using a tipping bucket rain gauge connected to a 

TinyTag data logger. A small pond pump was used to keep the water level in the hole 

below that of the rain gauge so that its function was not interfered with. However, 

technical difficulties with the equipment such as the data logger sometimes failing to 

make recordings or the tipping bucket rain gauge failing to signal tipping events meant 

that a simpler approach ended up being preferred. Runoff was simply measured using a 

500mL plastic collection container in the hole that was weighed every three minutes 

during the test.   

 

 

3.4.2.3  Runoff from the Mobile Sprinkler Rig 

 

Only the total runoff was measured during the testing with the mobile sprinkler rig. This 

was because the computer model only produced a single value for the total runoff and no 

extra benefit would have been produced by trying to record the rate of runoff production. 

Also, because the mobile sprinkler rig was being pushed manually, an additional worker 

would have been required if frequent measurements were required. The total runoff was 

simply collected in a bucket and weighed at the end of the test, with the result rounded to 

the nearest 100ml. 
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Chapter 4 – Results and Analysis 

 

The results from the preparatory work in the hydraulics laboratory and the results of the 

desktop testing of the computer model are presented first in Section 4.1. Then the results 

of the field phase of the project are presented in Section 4.2. Further discussion on the 

results is presented in Chapter 5. 

 

 

4.1 Preparatory Work and Computer Model Testing 

 

The preparatory work for the project was that which occurred before undertaking the field 

trials. It consisted of obtaining sprinkler data in the hydraulics laboratory for use by the 

SHCAZ Sprinkler Infiltrometer and also for use by the computer model to predict the 

runoff generated by the mobile sprinkler rig. The preparatory work also included some 

basic desktop testing of the computer model against published data. 

 

 

4.1.1 Laboratory Sprinkler Testing 

 

Testing of sprinkler heads occurred as per Section 3.2 during May and June 2015 in the 

hydraulics laboratory at USQ, Toowoomba. The data from 67 sprinkler tests, each of 

about 30min to 60min duration, were recorded into an Excel file and the nine test results 

that were potentially suitable for the SHCAZ Sprinkler Infiltrometer concept are listed in 

Table 4-1. The naming format used in Table 4-1 is explained in Figure 4-1. The full record 

of raw data and the accompanying sprinkler radial leg profiles of each of those nine tests 

are contained in Appendix D. 
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Table 4-1: Suitable sprinkler configurations for SHCAZ Sprinkler Infiltrometer concept. 

 

Sred10_18 

Sred10_21 

Sred10_32 

Sred15_26 

Sred20_14 

Sred20_38 

Sred25_44 

Sred30_38 

Syellow20_21 

 

 

 

Sred10_32 
 

 

 

 

 

 

 

Of the nine test results in Table 4-1 the one that had the most potential for the SHCAZ 

Sprinkler Infiltrometer was the Sred25_44. Another test result that is not listed in Table 

4-1 but was used heavily with the mobile sprinkler rig was the Sred6_44. 

 

The Sred25_44 was a Nelson brand S3000 centre-pivot sprinkler head with a red spinner 

plate and #44 size nozzle (44/128ths of an inch), operating at 25psi from a height of 

2.44m. Out of the nine sprinkler configurations that were suitable for the SHCAZ 

Sprinkler Infiltrometer concept this one had the highest application rate (27mm/hr). The 

collected data for the Sred25_44 sprinkler configuration are shown in Tables 4-2 and 4-3 

and two radial leg plots are included in Figure 4-2. (Discussion on the difference between 

these radial leg plots can be found in Chapter 5.) 

 

 

S = S3000 
Spinner 

red = red 
spinner  
plate 

10 = 
10psi 

32 = #32 
nozzle 

Figure 4–1: Naming format for sprinkler test results. 
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Table 4-2: Catch-can data for Sred25_44 test. 

 

 Mass    

Distance 

Can 

1 

Can 

2 

Can 

3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 3743     3743 70 127 

0.25 45.0 68.0 55.0 56 6 12 

0.50 52.0 65.0 45.0 54.0 6.2 11 

0.75 48.0 38.0 60.0 48.7 5.6 10 

1.00 47.0 42.0 54.0 47.7 5.5 10 

1.25 53.0     53.0 6.1 11 

1.50 57.0     57.0 6.6 12 

1.75 72.0     72.0 8.3 15 

2.00 96.0     96.0 11.1 20 

2.25 128.0     128.0 14.8 27 

2.50 149.0     149.0 17.2 31 

2.75 143.0     143.0 16.5 30 

3.00 133.0     133.0 15.4 28 

3.25 132.0     132.0 15.2 27 

3.50 132.0     132.0 15.2 27 

3.75 133.0     133.0 15.4 28 

4.00 132.0     132.0 15.2 27 

4.25 131.0     131.0 15.1 27 

4.50 127.0     127.0 14.7 26 

4.75 122.0     122.0 14.1 25 

5.00 121.0     121.0 14.0 25 

5.25 113.0     113.0 13.0 23 

5.50 100.0     100.0 11.5 21 

5.75 89.0     89.0 10.3 18 

6.00 79.0     79.0 9.1 16 

6.25 69.0     69.0 8.0 14 

6.50 61.0     61.0 7.0 13 

6.75 53.0     53.0 6.1 11 

7.00 43.0     43.0 5.0 9 

7.25 28.0     28.0 3.2 6 

7.50 14.0     14.0 1.6 3 

7.75 6.5     6.5 0.8 1 

8.00 0.7     0.7 0.1 0 

8.25 0.2     0.2 0.0 0 
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Table 4-3: Test conditions for the Sred25_44 test. 

 

 

Nozzle 44 1/128ths

Pressure 25 PSI

Sprinkler Type S3000 (Grey Cap)

Plate Colour Red

Height sprinkler 2.54 m

Height catch-cans 0.1 m

Effective Height 2.44 m

Catch-can Diameter 105 mm

Catch-can lip thickness 0.5 mm

Zero Pt Can Diameter 260 mm

Date & Duration

Test Date: 2/06/2015

(hh:mm 24hr)

Time Start

Time Finish

Total Time  

1:00:00

0.56 hrs

Flow Rates

KENT FLOWMETER

Flow Meter @ START 23.9887 m3

Flow Meter @ END 26.2888 m3

Av. Flow Rate 68.8 L/min

Av. Flow Rate 18.2 US GPM

ABB MAGMASTER ELECTROMAGNETIC FLOWMETER

Velocity 6.5 m/s

Instantaneous Flow Rate 1.14 L/s @ time

Instantaneous Flow Rate 1.14 L/s @ time

Instantaneous Flow Rate 1.13 L/s @ time

Av. Instantaneous Flow Rate 1.137 L/s

Equivalent Av. Flow Rate 68.2 L/min

Equivalent Av. Flow Rate 18.02 US GPM

NELSON SUPPLIED FLOW VALUES FOR GIVEN NOZZLE + PRESSURE

Flow Rate per 3TN Nozzle Chart 64.3 L/min

Flow Rate per 3TN Nozzle Chart 17 US GPM

Environment

Test Location? Lab (Indoors)

Solar Irradiance? No

Wind? No

Wind Speed (kph) 0

Dry Bulb Air Temp (deg C) 14

Wet Bulb Air Temp (deg C) n/a

Water Temp (deg C) 16

Relative Humidity n/a

Av. Hourly Loss to Evaporation

on 10.0mL sample in catch-can

Scales

Digitech

0.01g(up to 1kg)

Yes(May 2015)

<0.03%

Pressures

Gauge 1 (Primary) Wika Mechanical (-100 - 250kPa)

Gauge 2 (Secondary) (0 PSI - 60 PSI)

Tolerance

ml

Sprinkler Settings

or
Stopwatch Time

0:33:26

(h:mm:ss)

Total Time (digital)

0.1

Brand

Measurement Increments

Tolerance Checked?
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Figure 4–2: Plots of the catch-can data for the Sred25_44 sprinkler test. The second plot includes 

the catch-can directly beneath the sprinkler head. 

 

 

The second laboratory test result that was heavily used in the field phase on the mobile 

sprinkler rig was the Sred6_44. This was also a Nelson brand S3000 centre-pivot sprinkler 

head with a red spinner and a #44 size nozzle, but operated at only 6psi from 2.44m. The 

tables of data and the radial leg plots are presented in Tables 4-4 and 4-5, and Figure 4-

3.  
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Table 4-4: Catch-can data for Sred6_44 test. 

 

 Mass    

Distance 

[m] 

Can 

1 

Can 

2 

Can 

3 
Average 

Mass 

[g] 

Depth 

[mm] 

Application 

Rate 

[g] [g] [g] [mm/hr] 

0.00 1484     1484 28 47.9 

0.25 24.4 21.7 18.5 22 2 4.3 

0.50 14.1 17.9 13.6 15.2 1.8 3.0 

0.75 8.7 7.5 12.7 9.6 1.1 1.9 

1.00 9.2 7.6 7.8 8.2 0.9 1.6 

1.25 9.4     9.4 1.1 1.9 

1.50 13.6     13.6 1.6 2.7 

1.75 20.2     20.2 2.3 4.0 

2.00 25.9     25.9 3.0 5.1 

2.25 33.7     33.7 3.9 6.7 

2.50 44.8     44.8 5.2 8.9 

2.75 61.4     61.4 7.1 12.2 

3.00 75.7     75.7 8.7 15.0 

3.25 83.5     83.5 9.6 16.5 

3.50 99.4     99.4 11.5 19.7 

3.75 119.3     119.3 13.8 23.6 

4.00 126.2     126.2 14.6 25.0 

4.25 110.4     110.4 12.7 21.8 

4.50 86.4     86.4 10.0 17.1 

4.75 94.6     94.6 10.9 18.7 

5.00 167.9     167.9 19.4 33.2 

5.25 208.7     208.7 24.1 41.3 

5.50 97.2     97.2 11.2 19.2 

5.75 34.0     34.0 3.9 6.7 

6.00 16.5     16.5 1.9 3.3 

6.25 5.3     5.3 0.6 1.0 

6.50 0.7     0.7 0.1 0.1 

6.75 0.0     0.0 0.0 0.0 

7.00 0.0     0.0 0.0 0.0 

7.25 0.0     0.0 0.0 0.0 

7.50 0.0     0.0 0.0 0.0 

7.75 0.0     0.0 0.0 0.0 

8.00 0.0     0.0 0.0 0.0 

8.25 0.0     0.0 0.0 0.0 
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Table 4-5: Test conditions for the Sred6_44 test. 

 

 

  

Nozzle 44 1/128ths

Pressure 6 PSI (53kPa	Big	Gauge)

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 24/06/15

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.58 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 45.2857 m3

Flow	Meter	@	END 46.4040 m3

Av.	Flow	Rate 31.9 L/min

Av.	Flow	Rate 8.4 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 3 m/s

Instantaneous	Flow	Rate 0.53 L/s @	time 0:01:00

Instantaneous	Flow	Rate 0.53 L/s @	time 0:16:00

Instantaneous	Flow	Rate 0.53 L/s @	time

Av.	Instantaneous	Flow	Rate 0.530 L/s

Equivalent	Av.	Flow	Rate 31.8 L/min

Equivalent	Av.	Flow	Rate 8.40 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 31.52 L/min

Flow	Rate	per	3TN	Nozzle	Chart 8.33 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 15

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 15

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g (up	to	1kg)

Yes (May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

0:35:01

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Figure 4–3: Plots of the catch-can data for Sred6_44 sprinkler test. 

 

 

4.1.2 Desktop Testing of Computer Model 

 

The results of the desktop testing of the computer model are included here. For the 

computer model’s outputs using the sprinkler infiltrometer and mobile sprinkler rig field 

data see Section 4.2. 

 

 

4.1.2.1 Desktop Testing of Part 1 of the Computer Model 

 

Chu (1986) proposed a graphical method to determine the GAML parameters using a 

sprinkler infiltrometer with a constant application rate. The method was encoded by the 

author in Matlab and the scripts are included in Appendix C.  

 

Two sets of published I vs t data (Table 4-6) were used to validate the programming. The 

values for 𝐾 and 𝑆𝑀 that Chu determined (refer Appendix B) are included below each 

data set. 
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Table 4-6: Cumulative Infiltration (I) vs time (t) data from Chu (1986). 

 

 

 

Figure 4-4 shows the output plots from testing Part 1 of the computer model using the 

first set of Chu’s (1986) data in Table 4-6.  The top-left plot shows the I vs t data. The 

bottom two plots are included only to assist with understanding the process used to solve 

the implicit form of the Green-Ampt equation simultaneously (see Appendix B for a 

mathematical description of the process). Here the computer model calculated that K = 

2.17cm/hr and SM = 0.70cm, both of which are within 5% of Chu’s manually calculated 

values of K = 2.11cm/hr and SM = 0.74cm. The i vs I plot that can be generated once K 

and SM are determined is shown at the top-right plot in Figure 4-4. 
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Figure 4–4: Output from desktop testing of Part 1 of computer model using the first set of Chu's (1986) infiltration data. 

 

 



79 
 

 

Figure 4–5: Output from desktop testing of Part 1 of computer model using second set of Chu's (1986) infiltration data.
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To repeat the process, the second of Chu’s data sets in Table 4-6 was used to check the 

computer program. The output plots are presented in Figure 4-5. The computer model 

determined that K and SM are 7.67cm/hr and 0.103cm respectively, which compared 

favourably to Chu’s manually determined values of 7.72cm/hr and 0.13cm. 

 

 

4.1.4.2 Desktop Testing of Part 2 of the Computer Model 

 

Only a small part of Part 2 of the computer model could be subjected to desktop testing 

before implementation with real field data. This was because no suitable information 

sources that combined sprinkler information and cumulative infiltration/runoff data could 

be found. 

 

Chu (1987) used only highly idealised functions to demonstrate the efficacy of his 

method. Nevertheless, his data and results were used for the desktop testing of the 

programming of Part 2 of the computer model. Note that whilst predicting the time-to-

ponding was not an explicit objective in this project, the computer model was able to 

estimate the time-to-ponding in the course of estimating runoff and it was convenient to 

use the time-to-ponding value to compare other methods (Table 4-7 and Figure 4-6).  

  

Table 4-7: Comparison of predicted time-to-ponding for two different soils by different approaches. 

The numerical solution to Richard’s equation and Chu’s graphical method are both per Chu (1987) 

 
 Silt Loam Loamy Sand 

Equations of curves used for 

modelling 

 

 

𝑖 = 1.15𝑡−0.587 

𝐼 = 2.79𝑡0.413 

𝑟 = 1500𝑡 

𝑅 = 750𝑡2 

 

𝑖 = 15.8𝑡−0.336 

𝐼 = 23.8𝑡0.664 

𝑟 = 1500𝑡 

𝑅 = 750𝑡2 

Predicted 

time to 

ponding 

Numerical solution to 

Richards equation 
0.018 days 0.043 days 

Chu’s graphical method 0.018 days 0.043 days 

Part 2 of computer model 0.020 days 0.049 days 
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Figure 4–6: Example of the iterative process used per Chu (1987) for Part 2 of the computer model. These plots correspond to the Silt Loam of Table 4-7. The red dashed 

line has been added in for illustrative purposes. 
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For the two desktop tests performed on Part 2 of the computer model it appears that results 

were within 10-15% of the values produced by the other modelling methods.  

 

In summary, then, Part 1 and Part 2 of the computer model appeared to be working 

reasonably to the extent that it could be tested against published data.  

 

 

4.2 Field Observations and Model Predictions 

 

The field testing phase of the project involved using the sprinkler infiltrometer to generate 

𝐼 𝑣𝑠 𝑡 data, making runoff predictions using that same data with Part 1 and Part 2 of the 

computer model, and then using the mobile sprinkler rig to supply a time-varying 

sprinkler application pattern to test the computer model’s runoff predictions. The results 

of these three activities are presented here. 

 

 

4.2.1 The SHCAZ Sprinkler Infiltrometer 

 

The SHCAZ Sprinkler Infiltrometer was implemented in the field by capping off three of 

the four sprinkler heads on the (stationary) mobile sprinkler rig (Figure 3-13, refer 3.4.1). 

The Sred25_44 sprinkler configuration (refer 4.1.1) was used as it had the highest 

application rate. However, disappointingly, the SHCAZ Sprinkler Infiltrometer concept 

was eventually abandoned after repeated attempts to collect 𝐼 𝑣𝑠 𝑡 data due to several 

intractable problems. Most notable of these problems was interference by gusting and 

shifting winds, but long test times and high rates of water consumption were also 

contributory factors to abandoning the concept for this project.  

 

No attempts at collecting 𝐼 𝑣𝑠 𝑡 data using the SHCAZ Sprinkler Infiltrometer in the field 

were successful. Further discussion on this matter is presented in Chapter 5. All 𝐼 𝑣𝑠 𝑡 

data that was measured in the field during this project was generated using the ‘bucket 

infiltrometer’ (refer 3.2.1.2 and 4.2.2). 
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4.2.2 The Bucket Infiltrometer 

 

The alternative sprinkler infiltrometer for this project was the so-called ‘bucket 

infiltrometer’ (refer 3.2.1.2). This option had been held in reserve and was only 

constructed and applied in the field when it became apparent that the SHCAZ Sprinkler 

Infiltrometer concept was not going to perform as hoped.  

 

The bucket had twenty-one hypodermic needles pierced through the bottom, with the 

hubs of the needles pointing toward the ground. The dripping rate of the needles was 

tested several times and the overall performance was as per Table 4-8. 

 

 

Table 4-8: Bucket Infiltrometer performance parameters. 

 

Head of water [m] over the needle tip 0.30 m 

Water temperature [°C] 14 

Gauge of needle (Nipro brand) 
21G (0.8 mm x 

30 mm long) 

Diameter [m] of soil plot under bucket 

Area [m2] 

0.285 m  

0.0638 m2 

Flowrate of a single needle 
0.15 ml/sec 

(540 ml/hour) 

Flowrate of 21 needles 11.34 L/hour 

APPLICATION RATE OF 21 NEEDLES 178 mm/hour 

 

 

Clean town water was used in the bucket infiltrometer but some small pieces of grass or 

dirt still occasionally made their way into the water and proceeded to occlude some of the 

needles. Thus the water was fully changed in between each test and all of the needles 

were flushed through using a syringe.  

 

Runoff that was generated from each of the soil plots under the bucket infiltrometer was 

collected via the soil plot runoff collection system (refer 3.4.2). Every three minutes the 

water collection container was exchanged with an empty one, and the mass of the water 

collected was measured. At this point the water level in the bucket was also topped up so 
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that the head of 0.30m over the needles remained constant. Any reduced flow through the 

needles manifested itself by a reduction in the amount of water required to top up the 

bucket for the three minute interval, and served as a prompt to take corrective action 

(generally requiring the piece/s of grass to simply be removed from the needle bevel).  

 

The field tests were undertaken in July through September 2015. The tests were arranged 

in pairs (e.g. Test 1A and 1B) on adjacent soil plots. The first test involved the use of the 

sprinkler infiltrometer (the ‘bucket infiltrometer’) on the first soil plot to generate the 

𝐼 𝑣𝑠 𝑡 data (Step One per Section 3.1). The second test involved the use of the mobile 

sprinkler rig to provide a time-varying application rate over the second soil plot to 

generate surface runoff which was collected and measured (Step Three per Section 3.1).  

 

18 field tests were conducted, arranged into 9 pairs (Test 1A/1B etc. where Test A was 

the first test with the sprinkler infiltrometer and Test B was the corresponding second test 

with the time-varying sprinkler application rate provided by the mobile sprinkler rig). The 

test conditions common to all of the 9 pairs of tests are detailed in Table 4-9. Field results 

are given in Sections 4.2.4 and 4.2.5. 

 

 

Table 4-9: Details of test conditions common to all pairs of tests. 

 

 Test A Test B 

Method of water 

application 

Bucket infiltrometer 

 

Mobile sprinkler rig 

4  x  Sred6_44 at 2.44m 

Application rate 178mm/hr Time-variable application 

rate, but the system through-

put was 2.1L/s, or 7.6m3/hr.  

Peak application rate = 

140mm/hr.   

Mean application rate = 

48mm/hr. 

Speed of system Stationary 36m/hour 
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4.2.3 Mobile Sprinkler Rig 

 

The mobile sprinkler rig worked remarkably well during Step Three of the project. It was 

easily assembled and quite stable. Figure 4-7 shows it connected to the 50mm hose and 

Figure 4-8 shows it parked downwind of a building that had protected it from gale force 

winds on the preceding day. The rig rolled easily over the ground and the height of the 

sprinklers could be accurately set at 2.44m.  

 

 

 

Figure 4–7: Photo of the mobile rig with sprinklers running. Note the flowmeter and pressure 

gauge at the bottom right. 

 

 

 

Figure 4–8: Photo of the rig before sunrise. Note the reflective ropes used to stabilise the structure 

and reduce sagging of the horizontal bar. 
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The rig had to be ‘driven’ by manual pushing. Every 30 seconds the rig was pushed an 

increment of 30cm, as measured with a ruler, giving an average speed of 0.6m/min, or 

36m/hour. This was not a continuous motion, as assumed in the modelling; however, it 

was considered a reasonable compromise because maintaining a continuous motion by 

mechanical drive, electric winch or by continuous manual pushing of the rig was just 

too expensive or difficult to control. A short video of the sprinkler rig being pushed 

along (Figure 4-9 contains a screenshot) can be viewed at:  

 

http://www.youtube.com/watch?v=8fFEglt_iJg. 

 

 

 
 

Figure 4–9: Screen-shot of video of sprinkler rig www.youtube.com/watch?v=8fFEglt_iJg 

 

Figure 4-10 contains plots generated by Part 2 of the computer model using the laboratory 

test data for the Sred6_44 as used on the mobile sprinkler rig. Shown in Figure 4-10 are 

the: 

 sprinkler application rate profile, as collected in the laboratory (top left) 

 2-dimensional interpolation of the application rate profile to represent a single 

sprinkler head’s full circle application pattern (top right) 

 application rate pattern when four of the sprinkler heads are spaced at 1.20m 

separations (bottom left and right plots, each showing the same information but 

from different 3-dimensional viewpoints). 

The information presented in Figure 4-10 was applicable to Test B for every pair of tests 

as only the Sred6_44 sprinkler was ever used with the mobile sprinkler rig.

http://www.youtube.com/watch?v=8fFEglt_iJg
http://www.youtube.com/watch?v=8fFEglt_iJg
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Figure 4–10: Plots produced by the computer model for the Sred6_44 sprinkler. The top two plots are for the single sprinkler, and the bottom two are for four overlapping 

sprinklers.



88 
 

The raw data and the outputs of Part 1 and Part 2 of the computer model are given in 

Section 4.2.4 for just a single pair of field tests as an example of the process used to 

generate the results. A summary table and summary plots of the results for all of the 9 

pairs of tests are given in Section 4.2.5. Complete tables of the raw field data are 

contained in Appendix E. 

 

 

4.2.4 Detailed Results for a Single Pair of Tests 

 

The results for Tests 6A and 6B are presented in full here to exemplify the process used 

in each of the nine test pairs.  

 

 

4.2.4.1  Results for Test 6A – Runoff and Cumulative Infiltration 

 

Table 4-10 contains the measured runoff values created using the sprinkler infiltrometer 

(bucket infiltrometer) in Step One, in the left two columns. The computed cumulative 

infiltration is in the far right column. A plot of the 𝐼 𝑣𝑠 𝑡 data is shown in Figure 4-11. 
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Table 4-10: Example data (from Test 6A) collected when using sprinkler infiltrometer. 

 

 

 

 

 
Figure 4–11: Cumulative infiltration (I) versus time (t) for Test 6A 
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4.2.4.2  Results for Test 6A – Output of Part 1 of Computer Model 

 

The 𝐼 𝑣𝑠 𝑡 data was entered into Part 1 of the computer model. The top-right plot of 

Figure 4-12 shows several different curves for 𝑖 𝑣𝑠 𝐼 that were generated by the computer 

model. The reason there are several curves is because the final results for 𝐾 and 𝑆𝑀 can 

differ slightly depending upon which pairs of points on the 𝐼 𝑣𝑠 𝑡 curve were chosen for 

solving the GAML equations. Each infiltration characteristic curve is based on different 

sets of 𝐾 and 𝑆𝑀 values. It was decided to take an average value for 𝐾 and 𝑆𝑀, in this 

case giving 𝐾 = 10.3433cm/hr and 𝑆𝑀 = 0.0673cm.  

 

To check if the infiltration characteristic equation (that has been created using the values 

for 𝐾 and 𝑆𝑀) was reasonable, the area under the infiltration characteristic curve was 

compared to the total accumulated infiltration. Theoretically they should be equal. The 

process is detailed below. 
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Figure 4–12: Plots from Part 1 of computer model for Test 6A.
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The infiltration characteristic equation was found by substituting 𝐾 and 𝑆𝑀 into 

 

𝑖 = 𝐾 (1 +
𝑆𝑀

𝐼
) 

 

(4-1) 

where the values for 𝐼 were found by interpolating the 𝐼 𝑣𝑠 𝑡 field data to match specified 

values for 𝑡. The 𝑖 𝑣𝑠 𝐼 curve (equation 4-1) was then able to be converted to an 𝑖 𝑣𝑠 𝑡 

curve because the 𝐼 𝑣𝑠 𝑡 curve (the original field data) was known. Thus the (time-based) 

infiltration characteristic equation for Test 6A was found to be: 

 

𝑖 = 99.3975𝑡−0.061317 

 

(4-2) 

Making the check then: 

 The area under the 𝑖 𝑣𝑠 𝑡 curve  (Equation 4-2) was 80mm. This was calculated 

using the Matlab trapz function in Part 1 of the computer model. 

 The total cumulative infiltration was read from Table 4-10 as 86mm. 

These figures are reasonably close and so the decision was made to accept the infiltration 

characteristic function (Equation 4-2) based on these values for 𝐾 and 𝑆𝑀. It was thus 

with some confidence that this infiltration characteristic function was exported to Part 2 

of the computer model (refer 3.3.1 and 3.3.2).    

 

 

4.2.4.3  Results for Test 6B – Observed Runoff versus Predicted Runoff 

 

When using the infiltration characteristic function (Equation 4-2) as determined from the 

data of Test 6A and Part 1 of the computer model, the predicted runoff from Part 2 of the 

computer model was 8.11L, or a depth of 14.4mm. The measured runoff was, however, 

only 5.10L, or a depth of 9.1mm. This is a significant difference. Discussion on the error 

evident here, which was typical of most of the project’s field test results, is presented in 

Chapter 5. 
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4.2.5 Summarised Results for All Tests 

 

A summary of the results for all of the remaining tests, which were all carried out in the 

same manner as the example case of Section 4.2.4, is given in Table 4-11. Note that in 

Table 4-11 the closer the two values under the ‘Quality Check’ heading are the more 

confidence one would have in the infiltration characteristic function that is output from 

Part 1 of the computer model. The results from Test No’s 4, 6, 7 and (especially) 8 

appeared promising. 

 

 

Table 4-11: Summary of results for the 9 pairs of field tests.  

Test 

No. 

Results Generated By Test ‘A’ – Stationary Sprinkler Infiltrometer 

Results 

From Test 

‘B’ - Mobile 

Sprinkler 

Rig 

Computed Values 
Computed 

Infiltration 

Characteristic 

Function 

Quality Check 

Runoff 

Predicted 

(L) 

Runoff 

Measured 

(L) K 

(cm/hr) 

SM 

(cm) 

Total I 

(mm) 

Area 

under 

i vs t 

(mm) 

1 7.6765 0.8355 𝑖 = 73.1264𝑡−0.28362 111.7 99.3 7.91 2.00 

2 9.6817 0.3977 𝑖 = 90.8232𝑡−0.18429 92.7 110.5 7.80 3.05 

3 6.1446 1.5559 𝑖 = 56.6788𝑡−0.41912 73.1 80.0 7.90 5.20 

4 2.8717 2.2363 𝑖 = 31.1227𝑡−0.50417 55.0 51.2 8.60 8.15 

5 6.0353 0.9206 𝑖 = 53.9393𝑡−0.34549 76.1 66.0 8.30 6.10 

6 10.3433 0.0673 𝑖 = 99.3975𝑡−0.06132 86.0 80.0 8.11 5.10 

7 9.6468 0.1807 𝑖 = 89.1797𝑡−0.12942 82.4 78.4 8.10 5.85 

8 10.3990 0.2398 𝑖 = 94.6975𝑡−0.15525 85.4 86.4 7.82 6.00 

9 9.8107 0.2029 𝑖 = 89.5046𝑡−0.1452 71.9 80.9 8.00 4.95 
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Figure 4-13 shows all of the 𝐼 𝑣𝑠 𝑡 curves generated from the nine sprinkler infiltrometer 

(bucket infiltrometer) tests. Note that only the first two sprinkler infiltrometer tests were 

of 60 minutes duration; all of the rest were 45minutes each. 

 

 

 
Figure 4–13: Cumulative infiltration versus time (𝑰 𝒗𝒔 𝒕) for all of the sprinkler infiltrometer tests. 
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Figure 4-14 is a summary plot of how the predicted runoff for each test compared to the 

measured runoff. The red square-shaped markers are where the data should have plotted 

if the runoff that was measured matched what was predicted by the computer model; the 

blue diamond-shaped markers are where the data actually plotted. Clearly there was a 

trend for the measured runoff values to be well below what was predicted, often markedly 

so.   

 

 

 
Figure 4–14: Comparison of predicted runoff volumes (red squares) from the sprinkler 

infiltrometer tests and the measured runoff volumes (blue diamonds) using the mobile sprinkler 

rig.  

 

 

4.3 Summary of Results 

 

A large amount of laboratory data was collected for two purposes. Firstly, to provide 

quality sprinkler performance data for use in the computer model; and secondly, to 

identify a sprinkler nozzle size and pressure combination that would be suitable for 

application in a SHCAZ Sprinkler Infiltrometer application. The Sred25_44 was 

considered to be the option most suitable for the purpose. 
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However, the SHCAZ Sprinkler Infiltrometer concept did not work as well in the field as 

hoped. Wind interference and high rates of water consumption (as there was no water 

recycling facility in the field) made it impractical and unreliable. An improvised drip-

generating infiltrometer (‘bucket infiltrometer’), modelled after the Cornell Sprinkler 

Infiltrometer, was used instead to good effect.  

 

A mobile sprinkler rig with four sprinkler heads at a height of 2.44m (8 ft) and spaced 

apart at 1.2m (4 ft) was constructed for the project. It performed well and enabled a time-

varying application rate to be delivered. However, significant differences between the 

runoff values predicted by the computer model and those actually observed were almost 

universally present. Discussion as to the possible causes and implications of the apparent 

error is presented in Chapter 5.  
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Chapter 5 – Discussion 

 

The discussion will focus on the preparatory sprinkler data collection work first before 

turning to the issues encountered in the field testing phases of this project.  

 

 

5.1 Sprinkler Data Collection 

 

Significant work went into the collection of sprinkler data in the laboratory. In the end 

much of this proved to be of little direct value to the project but the efforts were not all in 

vain. The extensive testing did eventually discover the necessary information to allow the 

trial of the SHCAZ Sprinkler Infiltrometer concept in the field. 

 

There were several points of interest regarding the sprinkler data collection worth 

discussing here.  

 

Firstly, Figure 4-2 (refer 4.1.1) showed two radial leg patterns, one with a ‘zero point’ 

and one without. The zero point refers to the catch-can (actually a 9L bucket) that was 

located directly beneath the sprinkler head. The practice of measuring the application rate 

at the zero point is not commonly performed in industry. As a result published sprinkler 

performance data has generally failed to report that the magnitude of the application rate 

at the zero point can be several times larger than the highest application rate anywhere 

else on the radial leg profile. It was observed during the testing that there was a constant 

trickle of water from the sprinkler head during operation that probably resulted from when 

the jets of water from the spinner plate hit the supporting vanes (refer Figure 3-4 in 

Section 3.2.1.1). This phenomenon was seen across all of the sprinkler tests undertaken 

with the Nelson brand centre-pivot sprinkler heads. The yellow spinner plates generally 

produced higher rates of water trickle from the sprinkler head than the red spinner plates. 

A possible explanation is that the supporting vanes were noted to be oriented radially 

whereas the exiting streams of water would have slightly tangential velocities (due to the 

rapidly spinning plate). This means that there is an increased cross-sectional area of the 

vanes in the path of the water streams and thus an increased splash occurring within the 

sprinkler head body, with a resultant trickle of water. It is possible that a researcher or 

industry tester may miss this altogether if the application rate directly below the sprinkler 
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head is not measured - an omission all the more significant if a sprinkler machine features 

large numbers of sprinkler heads spaced at close intervals.  

 

Secondly, Table 4-2 showed that, besides at the zero point, which can only have a single 

catch-can beneath it, the other close-in catch-can measurements were made in triplicate. 

This was done because it was observed that spray from water hitting the vanes of the 

sprinkler head caused marked variation between catch-cans located at equal radial 

distance but on different radial legs. Thus several catch-cans at equal radial distances but 

on different radial legs were measured and an average value obtained. For catch-cans 

further away from the sprinkler head there was no noticeable effect as long as the vanes 

of the sprinkler head were consistently oriented for each test.  

 

Thirdly, the question of the accuracy of the catch-can data should be discussed. On the 

one hand the catch-cans were spaced every 0.25m which is a much closer interval than 

used in many sprinkler tests. The significance of this is illustrated in Figures 5-1 and 5-2. 

The higher resolution of data in Figure 5-1 gives a more complete and accurate 

representation of what is really happening. All of the laboratory sprinkler tests were 

undertaken using 0.25m catch-can intervals. 

 

 

Figure 5–1: Sprinkler test data for a Nelson Sred6_44 when measured at 0.25m intervals. 

 

 

 
Figure 5–2: Sprinkler test data for the same Nelson Sred6_44 when measured at 1.0m intervals 
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However, some doubt over the accuracy of the catch-can data was created when a water 

balance was performed during the course of testing. When the total volume of water that 

was emitted from the sprinkler head during the Sred25_44 test, for example, was 

estimated based on the radial catch-can data using a summation of the ANNULA_AREA 

× DEPTH products, the emitted volume was estimated to be about 1900L. This differed 

significantly from the volume estimated for the same Sred25_44 test using 

AVERAGE_FLOWRATE × TIME which came to 2300L… a difference of nearly 20%. 

There was every reason to have confidence in the flowmeters as the two types being used 

agreed with each other and were close to Nelson’s published data for nozzle flowrates. 

Thus, unless there was significant error in the process of calculating the volumes, this 

suggested that water had been ‘lost’ at some point. 

 

Evaporation loss was initially considered as a possible explanation, but soon ruled out as 

a significant enough factor. The potential for evaporation losses from the catch-cans was 

monitored in the laboratory using 5 catch-cans (identical to those being used in the 

testing) containing 5ml, 10ml, 20ml, 50ml and 100ml of water. These were placed on the 

floor near the test area but out of the sprinkler’s reach. The mass of water in each was 

measured at the start and end of each day to determine an average hourly evaporative 

loss. As it turned out, the hourly evaporative losses were very small in all cases, typically 

less than 0.1ml per hour, and so no adjustment to the sprinkler catch-can data was ever 

made. The very low evaporative losses could be attributed to several factors: cool air and 

water temperatures, typically about 10°C - 17°C; no solar irradiance because the tests 

were indoors; high relative humidity due to the abundance of water on the floor of the 

laboratory and being sprayed through the air; no air-conditioning or dehumidification in 

the laboratory; and an absence of any wind.   

 

It is possible that some water droplets splashed out of the catch-cans on impact. This 

might account for the discrepancy during the volume balance. Splash-out was watched 

for and none was apparent but it was not always easy to identify if this was in fact 

occurring. 
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5.2 Field Testing 

 

Points of interest discussed here are the use of the sprinkler infiltrometers, the mobile 

sprinkler rig, and collecting the runoff in the field. The difference between predicted 

and observed runoff values is also discussed at length. 

 

 

5.2.1 Sprinkler Infiltrometers 

 

Whilst not one of the original objectives of this project, the desire to trial a new idea for 

a sprinkler infiltrometer came to be something of a sub-project. It was born of both a need 

to supply a sprinkler infiltrometer for the purposes of the project, and of a simple curiosity 

as to whether the new sprinkler infiltrometer concept might even have some merit.  

 

The laboratory testing was successful in identifying several appropriate nozzle-plus-

pressure configurations for the SHCAZ Sprinkler Infiltrometer. However, as already 

noted in Chapter 4, the SHCAZ Sprinkler Infiltrometer was abandoned after repeated 

attempts to use it in the field.  

 

The main problem encountered was with wind interference. The extent that wind that was 

gusting and varying direction could affect the application pattern of the sprinkler head 

had hitherto been grossly underappreciated. Catch-cans that were placed around the 

perimeter of the soil test plots (as a rudimentary quality check) were observed to have 

varying depths of water in them. Thus it was difficult to know what the application rate 

was across the soil plot or even if the application rate was constant over time across the 

soil plot. Wind-free days proved to be rare and this was problematic to the progress of the 

project. The need for such wind-free conditions was also problematic to the very utility 

of the SHCAZ Sprinkler Infiltrometer concept; unless there existed the ability to erect a 

wind-proof shelter of some form, or be able to work indoors, then the concept was 

arguably unreliable and impractical. 

 

The use of software to model wind distortion effects on the sprinkler pattern and 

incorporate this into the computer model’s predictions was considered. However, the 
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wind was typically gusting or shifting direction many times even within the timeframe of 

a single test and so the inclusion of such software was not pursued.  

 

A second difficulty with implementing the SHCAZ Sprinkler Infiltrometer concept was 

the relatively low application rate of water onto the soil plot. Even though the Sred25_44 

was selected because it had the highest application rate among the nine suitable options 

in Table 4-1, it still only applied water at a rate of 27mm/hr. This meant that each 

infiltrometer test had to run for an extended period of time - in the order of hours when 

the soil was very dry - before any runoff was seen and then for a further 45 minutes to 

generate the required runoff vs time data. There were two issues here: Firstly, it was 

taking far too long to complete each infiltrometer test. This was a problem in itself, but 

when coupled with the very uncertainty of the quality of the data (due to the wind 

interference), the situation was unacceptable. And secondly, the SHCAZ Sprinkler 

Infiltrometer was applying water at 68L/min, or 4m3/hour, over a fixed area of ground 

causing some difficulties with flooding and mud as well as being wasteful of water. (The 

4m3/hour of water was applied over a circular area with a diameter of 13m; the soil plot 

being tested occupied only a small 0.75m x 0.75m area within this.) No means of 

collecting and recycling water had been incorporated into the SHCAZ Sprinkler 

Infiltrometer design and the importance of being able to capture and recirculate water 

during the test, such as had been done in the hydraulics laboratory, quickly became 

apparent in the field. 

 

Thus the SHCAZ Sprinkler Infiltrometer was abandoned as a concept suitable for the 

purposes of this project. However, the author can envisage some scenarios where the 

concept might still work well. In a sheltered environment, particularly inside a laboratory 

or a wind-proof screen, where wind is of no concern and where the water can be drained 

and recycled back through the system, the SHCAZ Sprinkler Infiltrometer concept could 

provide a method of using existing sprinkler components to provide a sprinkler 

infiltrometer capability. It could also be a sprinkler infiltrometer method that better 

simulates droplet impact energy than a droplet-forming sprinkler infiltrometer.  

 

An alternative form of sprinkler infiltrometer, the ‘bucket infiltrometer’ (as the author 

dubbed it) was constructed and implemented when it became apparent that the SHCAZ 

Sprinkler Infiltrometer was to be abandoned. The bucket infiltrometer was simple and 

worked rather well. However, a drawback of the bucket infiltrometer was that the area of 
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the soil plot was only 0.0638m2 (0.285m diameter circle) as opposed to the SHCAZ 

Sprinkler Infiltrometer’s 0.5625m2 (0.75m x 0.75m) plot. Thus there was more risk that 

the small soil plot area used would be less representative of the general area around it. An 

unusually large crack, macropore or micro-topographic feature, for example, might 

severely affect the runoff results. Another concern with the bucket infiltrometer was that 

there was a small amount of leaking that occurred from around the base of the bucket 

infiltrometer where it sat on the soil. Efforts to mitigate against this included cutting the 

soil so that the bucket infiltrometer could be pressed deeper into the soil, and pre-

moistening the surrounding soil so as to reduce its matric pull in the lateral direction (but 

not adding so much moisture that it would ingress into the soil test plot area).  

 

Despite its drawbacks there were two significant advantages of the bucket infiltrometer. 

Firstly, the surrounding ground did not become inundated with water and the overall rate 

of water consumption declined dramatically. And secondly, the application rate of the 

bucket infiltrometer was significantly higher than the SHCAZ Sprinkler Infiltrometer 

(178mm/hr versus 27mm/hr). This meant that runoff was often being generated within 

minutes and each sprinkler infiltrometer test was able to be entirely completed with 45 

minutes.  

 

 

5.2.2 Mobile Sprinkler Rig 

 

The mobile sprinkler rig had been constructed so that field testing could be performed at 

a location and on a schedule that was suitable for this project. The mobile sprinkler rig’s 

purpose was to provide a time-varying application rate of water. Four Sred6_44 sprinkler 

heads spaced at 1.20m intervals were exclusively used on the mobile sprinkler rig for 

several reasons: 

 They had a sufficiently high flow rate to be able to generate runoff in the field, 

which was necessary to test the computer model, whilst being within the flow and 

pressure capacity of the 50mm town water supply outlet.  

 The large nozzle size created large droplets that were less subject to wind drift. 

 The low operating pressure reduced the throw distance of the sprinkler and 

reduced the creation of fine spray particles. This also helped to reduce wind drift. 
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 The low operating pressure meant that the mobile sprinkler rig could be operated 

using pressurised town water supply using a 50m long, 50mm diameter lay-flat 

pipe. This removed the requirement to increase the pressure head using a pump. 

 

 

5.2.3 Measuring Runoff 

 

Table 4-10 and Figure 4-11 showed the pattern of runoff and of accumulation of 

infiltration with time for Test 6A. These data were typical of the test results in this project. 

By contrast, a textbook case of infiltration would have the rate of runoff very small to 

begin with (when infiltration capacity is very large) and then steadily increasing over time 

until it reaches a steady rate, for a constant application rate. However, as can be seen in 

Table 4-10, this doesn’t always occur. Several thoughts are put forward that might offer 

some explanation for the difference between the pattern of runoff that should have 

occurred (theoretically) and what actually occurred: 

 On the soil surface water was frequently observed to pond behind micro-

topographic features, like tiny dam walls. After a while the surface water would 

start to run over these tiny dam walls and erode the soil away, eventually causing 

a breach and a temporary (small) rush of runoff. When this effect is multiplied 

over the whole test area this might account for some of the non-‘textbook’ pattern 

of runoff. 

 Another explanation is that the hydraulic conductivity of the soil was probably 

not constant. The dynamic processes of pores becoming occluded and having air 

entrapped, or having air escape to open new flow paths, can cause the infiltration 

capacity of the soil to increase or decrease over time. 

 It was clear that not all of the runoff was even collected. The data of Table 4-10 

and Figure 4-11 are thus not fully representative of what actually was occurring 

in the field. This is probably the strongest contributor to the non-‘textbook’ 

runoff/infiltration patterns (refer 5.2.4). 
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5.2.4 Difference between Predicted and Measured Runoff Values 

 

As was seen in the results of Sections 4.2.1 and 4.2.2, the measured values of runoff were 

consistently less than what had been predicted. Several possibilities as to the cause of the 

error are discussed in turn.  

 

 

5.2.4.1  Error due to GAML Assumptions 

 

As discussed in Chapter 2, the Green-Ampt model made a number of strong assumptions. 

These included uniform soil moisture with depth; piston-flow of wetting front due to no 

cracks or macropores; no shrink-swell properties; no lateral dispersion of water within 

the soil profile; and a ponded surface. The Mein-Larson model dealt with the latter 

assumption. However, the other assumptions were observed as not holding true in the 

present project.  

 Soil was not uniformly moist. The soil near the surface was observed to be drier 

than that below it for most tests. 

 Cracks and macropores were abundant within the soil plots and proved 

particularly troublesome.  

 Some lateral dispersion of water from the test plots was observed.  

The significance of the violations of these Green-Ampt assumptions in contributing to 

the error in the present results was not quantified. However, some authors believed that 

the assumptions are, nonetheless, not unreasonable (refer 2.5.4). Relative to the other 

sources of error, then, the Green-Ampt assumptions were possibly only a minor source 

of the error observed. 

 

 

5.2.4.2  Error due to the Programming of the Computer Model 

 

The computer model written by the author may itself have been producing incorrect 

runoff predictions. This is a real possibility given the many points at which flaws in the 

modelling and programming processes could have produced errors in the final outputs. 

However, the outputs of the computer model had performed reasonably well during the 
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desktop testing phase of the project (refer 4.1.2) when tested against the same data that 

Chu had used. 

 

 

5.2.4.3  Error due to Chu’s Graphical Methods 

 

Chu’s (1987) graphical methods were shown to work well for simplistic sprinkler 

patterns. The methods relied on an iterative approach that eventually settled on stable 

values for time-to-ponding and potential runoff. It was found during the course of this 

project, however, that Chu’s iterative process failed to arrive at stable values (even after 

thousands of iterations) when the sprinkler application pattern was complex, as was the 

case when using multiple sprinklers on the mobile sprinkler rig (Figure 5-3). 

Consequently the very values predicted for runoff in this project by Chu’s method should 

be regarded with some suspicion. It is suggested here that Chu’s (1987) graphical method 

may be unable to handle more complex-shaped real time-varying sprinkler systems. 

 

 

 

Figure 5–3: Chu’s (1987) iterative graphical method failing to settle on stable values for a complex 

sprinkler application pattern (Compare Figures 2-17 and 4-6). 
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5.2.4.4  Error due to Measurements in the Field 

 

This project attempted to apply Chu’s methods to real time-varying sprinkler systems on 

a real field. (Chu had only tested against idealised contrived data and against the Richards 

equation.) As with any real-world testing scenario there are a myriad of opportunities for 

error to be introduced. Some of the key ones for this project are noted as below. 

 Wind was generally present to varying degrees on each of the testing dates, even 

early in the morning or late in the evening when conditions were expected to be 

calmest. The Sred6_44 was used to produce large droplets with relatively small 

throw distances to mitigate against this. However, some wind distortion of 

sprinkler patterns was sometimes still apparent. Furthermore, the wind was 

typically not constant in its direction or intensity during any given test which 

precluded the retrofitting of wind-distortion modelling software into the computer 

model. 

 The mobile sprinkler rig was not pushed continuously (as the computer model 

supposed) but was pushed in 30cm increments every 30 seconds. However, any 

error generated in this respect would likely have been small. 

 Collection of runoff was highly problematic and was probably the most significant 

source of measurement error in the field. That there was going to be error in the 

runoff data collected in the field was readily apparent even during the testing; not 

all of the runoff was able to be captured and measured. What was not able to be 

quantified, or even reasonably estimated, was just how much runoff evaded 

capture. Soil plots had been prepared so that runoff would drain toward a 

collection trench inside which was located a PVC half-pipe that then drained into 

a collection container (refer 3.4.2). It was observed, however, that some of the 

runoff water instead followed preferential pathways through cracks and 

macropores and avoided entering the half-pipe. Also, it was very difficult to get a 

good seal between the side of the trench and the half-pipe, and runoff water was 

sometimes able to sneak between the two and avoid entering the halfpipe. This 

was more evident on some soil plots than others and occurred in spite of extensive 

efforts to promote the water’s passage into the half-pipe. Without doubt this was 

contributory to the consistent over-prediction of runoff by the computer model 

versus that observed in the field.  
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Whether runoff measurement error should shoulder all of the blame, or whether the 

computer model and/or Chu’s method were also contributory was not clear. 

 

As a final point in this discussion it is perhaps worth noting that very few of the research 

papers encountered in the literature review had actually attempted to collect their own 

infiltration data in the field. Sometimes the language used was even suggestive that to 

obtain such data would be a straightforward and accurate process. This was not the 

experience of this project. Among the authors who did collect field infiltration data, as 

opposed to laboratory infiltration data, none cited any difficulties with its collection 

process or any estimates of error. This was surprising, not only because of the scope for 

potential problems in collecting such data, but also because so many other authors have, 

in turn, utilised and referenced that same data in their own work.  
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Chapter 6 – Conclusions 

 

6.1 Achievement of Project Objectives 

 

This project set out to investigate whether the Green-Ampt (1911) equation can be used 

to model infiltration into soils under centre-pivot and lateral-move sprinkler irrigation 

systems. In short, the answer is “possibly yes”, but difficulties measuring data during the 

field phases of this project meant that a conclusive statement was not possible.   

 

The literature review revealed that the Green-Ampt equation in its original form was not 

ideal for modelling infiltration under sprinkler irrigation due to the assumption of a 

ponded surface. However, the Green-Ampt equation was the basis for Mein and Larson’s 

(1971) work where the ponded surface assumption was able to be removed. Thus the 

Green-Ampt equation could now be applied to a sprinkler irrigation scenario albeit in a 

modified form which has become known as the Green-Ampt-Mein-Larson (GAML) 

model. Yet, in order that there could be a neat analytical mathematical solution, Mein and 

Larson (1971) had made the necessary assumption that the sprinkler application rate was 

constant, which would not be the case under centre-pivot or lateral-move machines.  

 

Chu (1987) was able to bypass this major constraint by not attempting to obtain an 

analytical solution; instead he resorted to a graphical method and was able to predict time-

to-ponding and runoff volumes for time-varying application rates. Thus it appeared that 

the Green-Ampt equation, expressed through a GAML-plus-Chu solution, could be used 

to model infiltration under centre-pivot and lateral-move sprinkler systems. However, 

Chu (1987) only ever demonstrated the efficacy of his method for very simple scenarios 

or against numerical solutions of the Richards equation, neither of which reflected real 

conditions under moving sprinkler systems particularly well. This project, then, in order 

to address the original objective, had the task of going a step further than the simple 

idealised scenario and sought to investigate whether the GAML-plus-Chu method could 

work when dealing with real sprinklers out in the field. 

 

There were two key problems that were addressed. 
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The first key problem was the matter of determining the GAML parameters in the field. 

This had long been one of the principal difficulties with applying the GAML model. 

Chu’s (1986) method for determining a set of modified GAML parameters was applied 

in this project and the results appeared promising. This was very significant because 

Chu’s (1986) method may well obviate the need to measure difficult soil hydraulic 

parameters in the field thus removing one of the barriers to applying the GAML-plus-Chu 

method. 

 

The second key problem was to make Chu’s (1987) graphical method work with real 

sprinkler data. However, Chu’s iterative process appeared to break down when 

confronted by complex-shaped real world data. Also, significant practical difficulties in 

measuring runoff during this project meant that there was insufficient confidence in the 

field data to draw conclusions on the performance of the GAML-plus-Chu model (or of 

the computer model) for real sprinkler systems.  

 

In summary, the usefulness of the Green-Ampt equation for modelling infiltration under 

centre-pivot and lateral move sprinkler machines was investigated. It was found that the 

GAML-plus-Chu approach had potential but had not been tested in the literature against 

real field data. Field testing in this project that attempted to fill this knowledge gap 

suffered from measurement problems and no conclusions could be reached as a result. 

However, the inability of Chu’s (1987) iterative process, which was so critical to his 

graphical method, to settle on stable values when faced with data from real sprinkler 

systems is suggestive that the existing GAML-plus-Chu approach may struggle to handle 

real world moving sprinkler systems. 

 

 

A New Sprinkler Infiltrometer? 

 

A secondary objective that emerged as the project progressed, effectively becoming a 

sub-project, entailed assessing a new concept for a sprinkler infiltrometer design. It was 

found that the proposed new sprinkler infiltrometer concept (the SHCAZ Sprinkler 

Infiltrometer) was impractical and unreliable in an open field setting exposed to the wind, 

especially when facilities for water recycling were not present. 
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6.2 Further Work and Recommendations 

 

The investigation of Chu’s (1987) methods for modelling infiltration under sprinkler 

systems was hampered particularly by difficulties with measuring the water runoff from 

the soil plots. The technique for collecting runoff in this project was inspired by the 

literature review; interestingly no other authors reported having the same difficulties as 

was experienced during the present project. An opportunity for further work exists, then, 

for finding better methods for runoff measurement in the field so that more reliable field 

testing may be undertaken. 

 

The methods of Chu (1986) as an alternative method for determining a soil’s infiltration 

characteristic function under sprinkler irrigation (or rainfall) appeared promising in this 

project. The author believes that this is worthy of further investigation.  

 

The proposed new concept for a sprinkler infiltrometer did not work well in this project. 

However, the concept may be made to work when wind-interference can be eliminated 

and a water recycling system can be implemented. Further work here may develop a 

useful system that has the ability to not only evenly apply a constant rate of random water 

droplets over a surface area but also has the ability to deliver the sorts of droplet impact 

energy as might be expected in a real sprinkler system.  
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Appendix A – Project Specification 

 
University of Southern Queensland 

 

FACULTY OF HEALTH, ENGINEERING AND SCIENCES 

 

ENG4111/4112 Research Project 

PROJECT SPECIFICATION 
 

FOR:   Simon Mark KELDERMAN (0011120971) 

 

TOPIC:   INVESTIGATION INTO THE USE OF GREEN & AMPT’S EQUATION  

   WITH MOVING SPRINKLER IRRIGATION 

 

SUPERVISOR:  Dr. Joseph Foley 

 

SPONSORSHIP:  Cotton Research and Development Corporation  

 

PROJECT AIM:  To investigate whether Green & Ampt’s (1911) equation can be used to  

model infiltration into soils under CP & LM sprinkler irrigation systems. 

 

PROGRAMME: (Issue A, 16 March 2015) 

i. Research the original derivation, subsequent modifications, and historical use 

of the Green & Ampt (1911) equation.  

ii. Survey and evaluate current methods of modelling infiltration under sprinkler 

irrigation. 

iii. Develop a computer based model for modelling infiltration under moving 

sprinkler systems that uses Green & Ampt’s equation (or some modification 

thereof). 

iv. Design and implement a process of field validation of the model for non-

cracking soils. 

v. Submit an academic dissertation on the research. 

     If the model’s validation proves satisfactory, and as time permits: 

vi. Use the model to investigate a range of what-if scenarios. 

vii. Investigate whether other non-time based infiltration models exist and 

compare to the Green & Ampt model. 

viii. Conduct field trials of the model on cracking clay  

 

AGREED:  ___________________ (student) ___________________ (supervisor) 

   Date:      /    / 2015   Date:      /    / 2015 

 

Examiner / Co-examiner:   ______________________ 
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Appendix B - Chu’s Method for Determining GAML Parameters 

 

Chu (1986) developed a graphical process that avoided the need to measure the GAML 

parameters, if data for 𝐼 𝑣𝑠 𝑡 was available. This was very useful because the GAML 

parameters can be difficult to measure in the field. The development of his graphical 

process is explained below. This material has been summarised from Chu (1986). 

 

The Green-Ampt (1911) equation was of the form 

 

𝐼 = 𝐾𝑡 − (ℎ𝑓 − ℎ𝑠)(𝜃𝑠 − 𝜃0) log𝑒 [1 −
𝐼

(ℎ𝑓 − ℎ𝑠)(𝜃𝑠 − 𝜃0)
] 

 

(C-1) 

Recognising that the suction and moisture parameters always featured together, they 

were replaced by a single lumped parameter called 𝑆𝑀 (for Suction & Moisture). 

 

𝐼 = 𝐾𝑡 − 𝑆𝑀 log𝑒 [1 −
𝐼

𝑆𝑀
] 

 

(C-2) 

Rearranging into a convenient form, 

 

𝐼

𝑆𝑀
− log𝑒 [1 +

𝐼

𝑆𝑀
] = 𝐾

𝑡

𝑆𝑀
 (C-3) 

 

If one has an 𝐼 𝑣𝑠 𝑡 curve, then select two points (𝑡1 , 𝐼1) and (𝑡2 , 𝐼2) so that 

 𝐼2 = 2𝐼1. Substituting into equation C-3, 

 

𝐼1

𝑆𝑀
− log𝑒 [1 +

𝐼1

𝑆𝑀
] = 𝐾

𝑡1

𝑆𝑀
 (C-4) 

 

𝐼2

𝑆𝑀
− log𝑒 [1 +

𝐼2

𝑆𝑀
] = 𝐾

𝑡2

𝑆𝑀
 (C-5) 
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Dividing C-5 by C-4, 

 

𝐼2

𝑆𝑀 − log𝑒 [1 +
𝐼2

𝑆𝑀]

𝐼1

𝑆𝑀 − log𝑒 [1 +
𝐼1

𝑆𝑀]
=

𝑡2

𝑡1
 

 

(C-6) 

Using the fact that 𝐼2 = 2𝐼1, 

 

2
𝐼1

𝑆𝑀 − log𝑒 [1 + 2
𝐼1

𝑆𝑀]

𝐼1

𝑆𝑀 − log𝑒 [1 +
𝐼1

𝑆𝑀]
=

𝑡2

𝑡1
 

 

(C-7) 

Equation C-7 is consistent only when 2 <
𝑡2

𝑡1
< 4 . The left-hand side of C-7 is an 

equation in the variable 
𝐼1

𝑆𝑀
 and it is plotted in Figure B-1.   

 

 
Figure B–1: A plot of equation C-7, where C is a constant used in the iterative procedure. 

 

 

Equation C-4 when plotted is as per Figure B-2. 
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Figure B–2: A plot of equation C-4, where C is a constant used in the iterative procedure. 

 

Chu then extended the Green-Ampt equation to accommodate the constant rainfall (or 

sprinkler) application rate, 𝑟, used by Mein and Larson (1971). He introduced three new 

terms, 𝑇𝑃 (ponding time) and 𝑇𝑆 (initial abstraction time), defined by 

 

𝑇𝑃 =
𝐾 ∗ 𝑆𝑀

𝑟 ∗ (𝑟 − 𝐾)
 (C-8) 

 

𝑇𝑆 =
𝑆𝑀

𝐾
∗ [

𝐾

𝑟 − 𝐾
+ log𝑒 (1 −

𝐾

𝑟
)] (C-9) 

 

𝐶 = 𝑇𝑃 − 𝑇𝑆 (C-10) 

 

So for conditions of a constant application rate, C-7 can be rewritten as 
 

 

2
𝐼1

𝑆𝑀 − log𝑒 [1 + 2
𝐼1

𝑆𝑀]

𝐼1

𝑆𝑀
− log𝑒 [1 +

𝐼1

𝑆𝑀
]

=
𝑡2 − 𝐶

𝑡1 − 𝐶
 

 

(C-11) 

The following iterative procedure is then followed. 

1. Select two data points (𝑡1 , 𝐼1) and (𝑡2 , 𝐼2) so that 𝐼2 = 2𝐼1. 

2. Let C = 0. 

3. Calculate the time ratio  

𝑡2 − 𝐶

𝑡1 − 𝐶
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. 

4. Enter the time ratio into Figure B-1 to find a quantity 

𝑄𝐴 =
𝐼1

𝑆𝑀
 

. 

5. Rearrange to get 

𝑆𝑀 =
𝐼1

𝑄𝐴
 

. 

6. Enter 𝑄𝐴 =
𝐼1

𝑆𝑀
 into Figure B-2 to get a quantity 

𝑄𝐵 =
𝐾(𝑡1 − 𝐶)

𝑆𝑀
 

. 

7. Rearrange to get 

𝐾 =
𝑄𝐵 ∗ 𝑆𝑀

(𝑡1 − 𝐶)
 

. 

8. Calculate a new value for C using equations C-8 and C-9. 

9. Repeat steps 3 – 8 until the values for K and SM become steady. 
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Appendix C - Matlab Code Used in Part 1 and Part 2 of Computer Model 
 

C1. Code for Part 2 of Computer Model 
 

% GAML_Chu_Part2.m 
  
% calls user-defined function GAML_Chu_Part1.m if it is required to 
% determine an infiltration characteristic from runoff data. 
  
clc, clear all, close all 
  
%% get infiltration characteristic equation 
k = menu('Is the infiltration characteristic known?',... 
    'Yes... The coefficients for the power function are known',... 
    'No... It needs to be determined from cumulative infiltration vs time data'); 
  
if k == 2 
    [A,B] = GAML_Chu_Part1( ); % coefficients are for infiltration characteristic, i is mm/hr 
end 
  
if k == 1 
    disp('For a power function of the form i = A*t^B, enter A and B') 
    disp('(units: i(mm/hr), t(hr)') 
    A = input('Enter A: '); 
    B = input('Enter B: '); 
    disp(['The infiltration characteristic equation is']) 
    disp(['  i = ' num2str(A) '*t^' num2str(B)]) 
end 
  
%% get application profile 
  
q = menu('Were 4 Nelson S3000 #44 @ 6psi sprinklers from height of 2.44m, red plate, used at 1.20m 

spacings?',... 
    'Yes',... 
    'No'); 
  
if q == 1 
    can_distances = 0:0.25:6.75; %metres 
    can_depths = [28,2,1.8,1.1,0.9,1.1,1.6,2.3,3.0,3.9,5.2,7.1,8.7,9.6,... 
        11.5,13.8,14.6,12.7,10.0,10.9,19.4,24.1,11.2,3.9,1.9,0.6,0.1,0.0];%mm 
    duration = 0.58; %digital hours 
    plots_wanted = 2; % 2 means 'Yes' (see CU_TRUNK_April20.m) 
    num_sprinklers = 4; % number of sprinkler heads 
    sprinkler_separation = 1.20; %metres 
    v = 36; % metres/hr... equivalent to 30cm/30sec 
elseif q == 2 
    % add ability to custom enter material here. 
end 
  
[ARG,xmax,x] = 

catchcan_grid_NO_WIND_vProject2015(can_distances,can_depths,duration,plots_wanted); 
[ARG_rows,ARG_cols] = size(ARG);     
  
[ARG2,Xcoarse,num] = multiple_sprinklers_vProject2015(ARG,num_sprinklers,sprinkler_separation, 

xmax, plots_wanted,can_distances,can_depths,duration); 
       
%% 
[sizeROW,sizeCOL] = size(ARG2); 
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midCOL = round(sizeCOL/2); 
application_profile = ARG2(:,midCOL); % y-axis in mm/hr, x-axis values to be determined 
  
%% 
r = application_profile; % mm/hr 
r_cm_day = r*24./10; % convert to cm/day 
  
dx = (2*xmax)/(length(r)-1); % distance of each increment on application profile, metres 
dt = dx/v; % at travel speed v (m/hr) this is the time (hours) to travel increment dx 
  
t = 0:dt:(dt*(length(r)-1)); %hours 
t(1) = 0.00001; % remove t = 0 to avoid Inf value for i 
  
i = A*t.^B; % infiltration characteristic mm/hr 
i = i*24; % convert mm/hr to mm/day 
i = i./10 % convert mm/day to cm/day 
  
t = t./24; %convert hours to days 
  
I = zeros(size(i)); 
for n = 2:length(i) 
    I(n) = I(n-1)+i(n-1)*dt; 
end 
  
R = zeros(size(r)); 
for n = 2:length(r) 
    R(n)=R(n-1)+r_cm_day(n-1)*dt; 
end 
  
figure 
plot(t,r_cm_day) 
    grid minor 
    xlabel('time (days)') 
    ylabel('application rate (cm/day)') 
  
start_value = (t(1)+t(end))/12; 
tmp = abs(t-start_value); 
[val idx] = min(tmp); 
  
A1 = [t(idx),R(idx)]; 
A2 = [t(idx),r_cm_day(idx)]; 
  
h=1; 
err = 999; 
while err>0.001 
    h=h+1; 
    clear tmp 
    tmp = abs(i-r(idx)); 
    clear idx idy 
    [val, idx]=min(tmp); 
    A3 = [t(idx),i(idx)]; 
    A4 = [t(idx),I(idx)]; 
    clear tmp 
    tmp = abs(R-I(idx)); 
    [val, idx]=min(tmp); 
    A1_2 = [t(idx),R(idx)]; 
    err = abs(A1(1)-A1_2(1)); 
    A1 = A1_2; 
    A2 = [t(idx),r_cm_day(idx)]; 
    if h>20000 
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        break 
    end 
end     
disp(['A1 = ' num2str(A1)]) 
disp(['A2 = ' num2str(A2)]) 
disp(['A3 = ' num2str(A3)]) 
disp(['A4 = ' num2str(A4)]) 
disp(' ') 
disp(['Time to ponding = ' num2str(A1(1)) 'days' ]) 
disp(' ') 
%% 
figure 
subplot(2,2,1) 
    plot(t,r_cm_day,A2(1),A2(2),'o') 
    axis([0 max(t) 0 max([max(r_cm_day),max(i(2:end))])]); 
    xlabel('t (days)'), ylabel('r (cm/day)') 
    grid 
subplot(2,2,2) 
    plot(t,i,A3(1),A3(2),'o') 
    axis([0 max(t) 0 max([max(r_cm_day),max(i(2:end))])]); 
    xlabel('t (days)'), ylabel('i (cm/day)') 
    grid 
subplot(2,2,3) 
    plot(t,R,A1(1),A1(2),'o') 
    axis([0 max(t) 0 max([max(R),max(I)])]); 
    xlabel('t (days)'), ylabel('R (cm)') 
    grid 
subplot(2,2,4) 
    plot(t,I,A4(1),A4(2),'o') 
    axis([0 max(t) 0 max([max(R),max(I)])]); 
    xlabel('t (days)');  
    ylabel('I (cm)'); 
    grid 
  
%% 
u_p = A3(1); % time of imbibement on i and I curves 
t_p = A1(1); % time to ponding on r and R curves 
offset=find(t==t_p)-find(t==u_p); 
  
N = zeros(3*length(t),1); 
N(length(t)+1+offset:2*length(t)+offset) = i; 
N(find(N==0)) = 99999; 
N = N(length(t)+1:2*length(t)); 
  
figure 
plot(t,r_cm_day,'k-') 
    axis([0 max(t) 0 max(r_cm_day)]);  
    xlabel('t (days)'), ylabel('r and i (cm/day)') 
    grid 
    hold on 
plot(t,N,'r--') 
    axis([0 max(t) 0 max(r_cm_day)]); 
legend('application rate, r','infiltration capacity, i') 
  
clear val idx 
tmp = abs(r_cm_day-N); 
[val idx]= min(tmp); 
B2 = [t(idx),r_cm_day(idx)]; 
B1 = [t(idx),R(idx)]; 
clear tmp 
tmp = abs(i-r_cm_day(idx)); 
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[val idx]= min(tmp); 
B3 = [t(idx),i(idx)]; 
B4 = [t(idx),I(idx)]; 
  
disp(['B1 = ' num2str(B1) ]) 
disp(['B2 = ' num2str(B2) ]) 
disp(['B3 = ' num2str(B3) ]) 
disp(['B4 = ' num2str(B4) ]) 
disp(' ') 
disp(['Runoff = ' num2str(B1(2)-B4(2)) 'cm' ]) 
disp(' ') 
disp('---------------------------------------------------------') 
 

C2. Code for Part 1 of Computer Model 

 
function [A,B] = GAML_Chu_Part1( ) 
  
q = menu('Test mode?','Yes','No'); 
if q == 1 
    I = [0 
        7.1 
        12.1 
        16.6 
        21.0 
        25.2 
        29.4 
        32.8 
        36.1 
        38.9 
        42.4 
        44.8 
        47.0 
        49.1 
        51.3 
        53.4 
        55.6 
        57.9 
        60.1 
        62.5 
        64.7]'; % mm depth of cumulative infiltration 
    t = 0:3:(length(I)*3-3); % time, minutes 
    r = 150; % mm/hr 
else 
    I = input('Enter cumulative infiltration (mm) values: '); 
    t = input('Enter time values (mins). Leave blank if increments are in 3mins: '); 
    r = input('Enter application rate (mm/hr): '); 
end 
I = I/10; % convert to cm depth 
r = r/10; % convert to cm/hr 
if isempty(t) 
    t = 0:3:(length(I)*3 - 3); 
end 
  
if length(t)~=length(I) 
    error('the vectors for I and t must be equal') 
end 
  
for n = 2:length(t) 
   if t(n)<=t(n-1) 
       error('vector for t must be monotonically increasing') 
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   end 
   if I(n)<I(n-1) 
       error('vector for I must never be decreasing')  
   end 
end 
  
figure 
subplot(2,2,1) 
    plot(t./60,I*10) 
        grid 
        xlabel('time (hours)') 
        ylabel('depth infiltrated (mm)') 
  
I1_SM = 0.01:0.01:100; 
T2mC_T1mC = (2*I1_SM - log(1+2*I1_SM))./(I1_SM - log(1+I1_SM)  ); 
  
subplot(2,2,3) 
    plot(I1_SM,T2mC_T1mC) 
        grid minor 
        xlabel('I1/SM') 
        ylabel('(T2-C)/(T1-C)') 
  
KT1mC_SM = I1_SM - log(1+I1_SM); 
  
subplot(2,2,4) 
    loglog(KT1mC_SM,I1_SM) 
        grid minor 
        xlabel('K(T1-C)/SM') 
        ylabel('I1/SM') 
  
K_2 = 0; 
SM_2 = 0; 
for count = 1:5 
    C = 0; 
    T1 = 3 + (count-1); 
    I1 = interp1(t,I,T1); 
    I2 = I1*2; 
    T2 = interp1(I,t,I2); 
    K = 1; 
    Knew = 2; 
    while abs(K - Knew) > 0.001 
        Knew = K; 
        timeratio = (T2-C)/(T1-C); 
        if or(timeratio > 4,timeratio < 2) 
            disp('Time ratio is not between 2 and 4'); 
        end 
  
        QA = interp1(T2mC_T1mC,I1_SM,timeratio); 
        SM = I1/QA; 
        QB = interp1(I1_SM,KT1mC_SM,QA); 
        K = QB*SM/(T1-C);%cm/min 
        K = K*60; %cm/hr 
        TP = K*SM/(r*(r-K)); 
        TP = TP*60; 
        TS = SM/K*(K/(r-K) + log(1-K/r) ); 
        TS = TS*60; 
        C = TP-TS; 
    end    
K_2(count) = K; % cm/hr 
SM_2(count) = SM; 
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Iplot = linspace(min(I),max(I),100); %cm 
i = K*(1+SM./Iplot); %cm/hr 
  
subplot(2,2,2) 
    plot(Iplot*10,i*10) 
        grid minor 
        xlabel('infiltrated depth, I (mm)') 
        ylabel('infiltration and application rates, i & r (mm/hr)') 
    hold on 
    plot(Iplot*10,r*10*ones(1,length(Iplot)),'r--') 
    legend('infiltration capacity','application rate') 
end 
  
% remove any NAN 
J = find(isnan(K_2)); 
K_2(J) = []; 
SM_2(J) = []; 
  
K = mean(K_2) %cm/hr 
SM = mean(SM_2) 
Iplot = linspace(min(I),max(I),100); %cm 
i = K*(1+SM./Iplot); %cm/hr 
  
figure 
subplot(1,2,1) 
    plot(Iplot*10,i*10) 
        grid minor 
        xlabel('infiltrated depth, I (mm)') 
        ylabel('infiltration capacity, i (mm/hr)') 
         
tplot = interp1(I,t,Iplot); %mins     
subplot(1,2,2) 
    plot(tplot./60,i*10) 
        grid minor 
        xlabel('time (hour)') 
        ylabel('infiltration capacity, i (mm/hr)') 
  
% find the infiltration characteristic by fitting a curve 
if tplot(1) == 0 
    tplot = tplot(2:end); %mins 
    i = i(2:end); %cm/hr 
end 
  
i = i*10; %convert to mm/hr 
tplot = tplot/60; %convert to hrs 
  
p = polyfit(log(tplot),log(i),1); 
A = exp(p(2)); 
B = p(1); 
disp(['The infiltration characteristic equation is']) 
disp(['  i = ' num2str(A) '*t^' num2str(B)]) 
  
x = tplot(1):0.01:tplot(end); %hrs 
y = A*x.^B; % mm/hr 
  
figure 
plot(x,y,tplot,i,'k') 
    grid minor 
  
check = trapz(tplot,i); 
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disp(' ') 
disp(['Total cumulative infiltration = ' num2str(I(end)*10) 'mm' ]) 
disp(['Total area under i vs t curve = ' num2str(check) 'mm' ]) 
  
end %end of function 
 

C3. Further Code for User Written Functions 

 
function [application_rate_grid, xmax,x] = 

catchcan_grid_NO_WIND_vProject2015(can_distances,can_depths,duration,plots_wanted) 
%catch_can_grid_v1.m converts sprinkler catch-can data into 2D grid, Version 1  
% 
%Uses radial spoke sprinkler catch-can data from single spoke, non-windy 
%conditions (later versions will incorporate wind). 
% 
%Input variables: 
% 
%    can_distances       ==> vector, contains the distances along radial  
%                            spoke from the sprinkler at which catch-cans  
%                            are placed (units: metres);  
% 
%    can_depths          ==> vector, contains the depth measurements in each can, 
%                            corresponding to the distance along the radial 
%                            spoke (units: mm). 
%     
%    duration            ==> scalar, duration of catch-can trial (units: digital hours) 
% 
%    plots_wanted        ==> scalar, value must be 1 (for NO, plots are not 
%                            wanted) or 2 (for YES, plots are wanted) 
%     
%Output variables: 
% 
%    application_rate_grid ==>   2D rectangular array that shows the rate of 
%                                application of water at points all around the 
%                                sprinkler (units: mm/hour). 
%    xmax                  ==>    
% 
%    x                     ==>    
  
if can_depths(1) <= 0 
    can_depths(1) = can_depths(2); % deal with problem of no catch-can measure beneath sprinkler head 
end 
  
% create grid of zeros to receive the interpolated catch-can data 
resolution = 40; % this is used to set the resolution of the final grid 
if min(can_distances) == 0 
    first = 0; 
else 
    first = 0.01; 
end 
x = linspace(first,max(can_distances),resolution); 
x = unique(x); 
xmax = x(end); 
L = 2*length(x)-1; 
M = zeros(L);  
% interpolate catch-can depths along radial spoke 
for row_index = 1:L 
    for col_index = 1:L 
        if and(row_index < ceil(L/2),col_index < ceil(L/2)) 
            xi = x(ceil(L/2)-col_index); 
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            yi = x(ceil(L/2)-row_index); 
            distance = sqrt(xi^2+yi^2); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance);  
        elseif and(row_index < ceil(L/2),col_index > ceil(L/2)) 
            xi = x(col_index-ceil(L/2)); 
            yi = x(ceil(L/2)-row_index); 
            distance = sqrt(xi^2+yi^2); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance); 
        elseif and(row_index > ceil(L/2),col_index < ceil(L/2)) 
            xi = x(ceil(L/2)-col_index); 
            yi = x(row_index-ceil(L/2)); 
            distance = sqrt(xi^2+yi^2); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance); 
        elseif and(row_index > ceil(L/2),col_index > ceil(L/2)) 
            xi = x(col_index-ceil(L/2)); 
            yi = x(row_index-ceil(L/2)); 
            distance = sqrt(xi^2+yi^2); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance); 
        elseif and(row_index == ceil(L/2),col_index == ceil(L/2)) 
            distance = 0; 
            M(row_index,col_index) = can_depths(1); 
        elseif and(row_index == ceil(L/2),col_index < ceil(L/2)) 
            distance = x(ceil(L/2)-col_index); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance); 
        elseif and(row_index == ceil(L/2),col_index > ceil(L/2)) 
            distance = x(col_index-ceil(L/2)); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance); 
        elseif and(row_index < ceil(L/2),col_index == ceil(L/2)) 
            distance = x(ceil(L/2)-row_index); 
            M(row_index,col_index) = interp1(can_distances, can_depths,distance); 
        elseif and(row_index > ceil(L/2),col_index == ceil(L/2)) 
            distance = x(row_index - ceil(L/2));   
            M(row_index,col_index) = interp1(can_distances, can_depths,distance);  
        end 
            
        if M(row_index,col_index) < 0 
            M(row_index,col_index) = 0; 
        end 
         
    end 
end 
  
M(isnan(M)) = 0;  % replace NaN's with zeros 
M = M/duration; 
application_rate_grid = M; 
  
end 
 

 
function [ ARG2,Xcoarse,num ] = multiple_sprinklers_vProject2015( 

ARG,num_sprinklers,sprinkler_separation, xmax, plots_wanted, can_distances,can_depths,duration ) 
% User-defined function that overlaps multiple identical sprinklers and 
% produces a new ARG (Application Rate Grid). 
% 
% number of sprinklers must be greater than 1 for this function 
% Inputs    ARG                     ==> 2D array, 'Application Rate Grid', of 
%                                       sprinkler application rates (mm/hr) 
%           num_sprinklers          ==> scalar value, number of sprinklers  
%                                       being modelled. Must be integer >= 2  
%           sprinkler_separation    ==> scalar value, distance between  
%                                       sprinklers, metres (model assumes  
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%                                       sprinklers are equally spaced) 
%           xmax                    ==> scalar value, the maximum catch-can 
%                                       distance (metres) from the 
%                                       sprinkler head. 
%           plots_wanted            ==> scalar value, must be either 1 
%                                       (plots not wanted) or 2 (plots are 
%                                       wanted) 
% 
% Outputs   ARG2                    ==> 2D array, a new Application Rate 
%                                       Grid of sprinkler application rates 
%                                       (mm/hr) after the effect of 
%                                       sprinkler overlap is accounted for 
  
if num_sprinklers < 2 
    error('num_sprinklers must be greater than one for the multiple_sprinklers_vApril_7th.m function'); 
end 
  
if sprinkler_separation <= 0 
    error('sprinkler_separation must be greater than zero'); 
end 
  
% if too many sprinklers involved then it causes problems with memory 
n1 = ceil(2*xmax/sprinkler_separation); 
n2 = num_sprinklers; 
n = min(n1,n2); 
num = n; 
[ARGrows,ARGcols] = size(ARG); 
  
X = linspace(-1*xmax, xmax, ARGcols); 
Y = linspace(-1*xmax, xmax, ARGrows); 
[XX,YY] = meshgrid(X,Y); 
  
step = 0.1; % metres (ie. to nearest 10cm) 
Xfine = -1*xmax:step:xmax; 
Yfine = -1*xmax:step:xmax; 
d = 1/step; 
sprinkler_sep_fine = round(sprinkler_separation*d)/d; 
shift = ceil(sprinkler_sep_fine/step); 
  
[XXfine,YYfine] = meshgrid(Xfine,Yfine); 
ARGfine = interp2(XX,YY,ARG,XXfine,YYfine); 
  
clear XX, clear YY 
clear Xfine, clear Yfine 
clear XXfine, clear YYfine 
clear step, clear d, clear sprinkler_sep_fine 
  
[ARGfine_rows,ARGfine_cols] = size(ARGfine); 
%ARGfine_cols2 = ARGfine_cols + shift*(n-1); 
ARGfine_cols2 = ARGfine_cols + shift*(num_sprinklers-1); 
ARGfine_rows2 = ARGfine_rows; 
  
M = zeros(ARGfine_rows2,ARGfine_cols2); 
M(:,1:ARGfine_cols) = M(:,1:ARGfine_cols) + ARGfine; 
  
for c = 1:(num_sprinklers-1) 
    M(:,(c*shift+1):(ARGfine_cols+c*shift) ) = M(:,(c*shift+1):(ARGfine_cols+c*shift)) + ARGfine;  
end 
  
% convert M back to more reasonable size ARG2 
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ratio_cols_to_rows = ARGfine_cols2/ARGfine_rows2; 
ARGcols_coarse = round(ratio_cols_to_rows * ARGcols); 
Xcoarse = linspace(-1*xmax,ratio_cols_to_rows*xmax,ARGcols_coarse); 
Ycoarse = linspace(-1*xmax,xmax,ARGrows); 
[XXcoarse,YYcoarse] = meshgrid(Xcoarse,Ycoarse); 
  
W = linspace(-1*xmax,ratio_cols_to_rows*xmax,ARGfine_cols2); 
R = linspace(-1*xmax,xmax,ARGfine_rows2); 
[XX,YY] = meshgrid(W,R); 
  
ARG2 = interp2(XX,YY,M,XXcoarse,YYcoarse); 
size(ARG2); 
ARG2max = max(max(ARG2)); 
  
if plots_wanted == 2 
    figure('units','normalized','outerposition',[0 0 1 1]); 
         
    subplot(2,2,1) 
        plot(can_distances,can_depths,'o-') 
        title('Catch-can measurements') 
        xlabel('Horizontal distance from sprinkler head (m)') 
        ylabel('Depth of water in catch-can (mm)') 
        grid 
        %xloc = max(can_distances)* 1/3; 
        yloc = max(can_depths)*1/15; 
        xloc = 0.2; 
        test_mins = fix(duration*60); 
        test_sec = (duration*60 - test_mins)*60; 
        text(xloc,yloc,['Duration of test = ' num2str(test_mins) 'min ' num2str(test_sec) 'sec']); 
    subplot(2,2,2) 
        mesh(X,Y,ARG); 
        axis([-xmax, xmax, -xmax, xmax, 0, ARG2max]); 
        caxis([0, ARG2max]); 
        title('Application rate for single sprinkler'); 
        ylabel('Distance from sprinkler head (m)'); 
        xlabel('Distance from sprinkler head (m)'); 
        zlabel('Application Rate (mm/hr)'); 
        colorbar 
    
    subplot(2,2,3) 
        mesh(Xcoarse,Ycoarse,ARG2); 
        caxis([0, ARG2max]); 
        title(['Pattern of application for ' num2str(n) ' sprinklers with ' num2str(sprinkler_separation) ' metres 

separation']); 
        ylabel('Distance from line of sprinkler heads (m)'); 
        xlabel('Distance from first sprinkler head (m)'); 
        zlabel('Combined Application Rate (mm/hr)');    
        colorbar 
    subplot(2,2,4) 
        mesh(Xcoarse,Ycoarse,ARG2); 
        caxis([0, ARG2max]); 
        title(['Pattern of application for ' num2str(n) ' sprinklers with ' num2str(sprinkler_separation) ' metres 

separation']); 
        ylabel('Distance from line of sprinkler heads (m)'); 
        xlabel('Distance alone line of sprinklers from first sprinkler head (m)'); 
        zlabel('Combined Application Rate (mm/hr)');   
        view(0,90); 
        colorbar 
end 
end 
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Appendix D - Selected Laboratory Sprinkler Data 
 

67 laboratory sprinkler tests were undertaken and recorded in an Excel file. This Excel 

file can be obtained by contacting the author.  

 

Appendix D only contains the data from 10 of the sprinkler tests whose results were of 

particular relevance to the project. The particular tests are (after the naming convention 

of Section 4.1.1) 

 

1. Sred6_44 

2. Sred10_18 

3. Sred10_32 

4. Sred15_26 

5. Sred20_14 

6. Sred20_38 

7. Sred25_44 

8. Sred30_38 

9. Syellow20_21 

 

The raw catch-can data is presented as well as radial leg profiles. Note that for each test 

a catch-can was located directly beneath the sprinkler head itself (the ‘zero point’). 

Separate radial leg profiles were plotted to include the zero point and exclude the zero 

point. Also, for each sprinkler test a plot of Christiansen’s Uniformity (CU) versus 

sprinkler head spacing was produced and has been included here too. 
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Nelson S3000 #44 @ 6psi (red plate) 

 

 

Nozzle 44 1/128ths

Pressure 6 PSI (53kPa	Big	Gauge)

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 24/06/15

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.58 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 45.2857 m3

Flow	Meter	@	END 46.4040 m3

Av.	Flow	Rate 31.9 L/min

Av.	Flow	Rate 8.4 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 3 m/s

Instantaneous	Flow	Rate 0.53 L/s @	time 0:01:00

Instantaneous	Flow	Rate 0.53 L/s @	time 0:16:00

Instantaneous	Flow	Rate 0.53 L/s @	time

Av.	Instantaneous	Flow	Rate 0.530 L/s

Equivalent	Av.	Flow	Rate 31.8 L/min

Equivalent	Av.	Flow	Rate 8.40 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 31.52 L/min

Flow	Rate	per	3TN	Nozzle	Chart 8.33 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 15

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 15

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g (up	to	1kg)

Yes (May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

0:35:01

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #44 @ 6psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 1484     1484 28 47.9 

0.25 24.4 21.7 18.5 22 2 4.3 

0.50 14.1 17.9 13.6 15.2 1.8 3.0 

0.75 8.7 7.5 12.7 9.6 1.1 1.9 

1.00 9.2 7.6 7.8 8.2 0.9 1.6 

1.25 9.4     9.4 1.1 1.9 

1.50 13.6     13.6 1.6 2.7 

1.75 20.2     20.2 2.3 4.0 

2.00 25.9     25.9 3.0 5.1 

2.25 33.7     33.7 3.9 6.7 

2.50 44.8     44.8 5.2 8.9 

2.75 61.4     61.4 7.1 12.2 

3.00 75.7     75.7 8.7 15.0 

3.25 83.5     83.5 9.6 16.5 

3.50 99.4     99.4 11.5 19.7 

3.75 119.3     119.3 13.8 23.6 

4.00 126.2     126.2 14.6 25.0 

4.25 110.4     110.4 12.7 21.8 

4.50 86.4     86.4 10.0 17.1 

4.75 94.6     94.6 10.9 18.7 

5.00 167.9     167.9 19.4 33.2 

5.25 208.7     208.7 24.1 41.3 

5.50 97.2     97.2 11.2 19.2 

5.75 34.0     34.0 3.9 6.7 

6.00 16.5     16.5 1.9 3.3 

6.25 5.3     5.3 0.6 1.0 

6.50 0.7     0.7 0.1 0.1 

6.75 0.0     0.0 0.0 0.0 

7.00 0.0     0.0 0.0 0.0 

7.25 0.0     0.0 0.0 0.0 

7.50 0.0     0.0 0.0 0.0 

7.75 0.0     0.0 0.0 0.0 

8.00 0.0     0.0 0.0 0.0 

8.25 0.0     0.0 0.0 0.0 

8.50 0.0     0.0 0.0 0.0 

8.75 0.0     0.0 0.0 0.0 

9.00 0.0     0.0 0.0 0.0 
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Nelson S3000 #44 @ 6psi (red plate) 
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Nelson S3000 #18 @ 10psi (red plate) 

 

  

Nozzle 18 1/128ths

Pressure 10 PSI

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 110 mm

Catch-can	lip	thickness 6 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 25/05/15

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.78 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 18.8834 m3

Flow	Meter	@	END 19.2001 m3

Av.	Flow	Rate 6.8 L/min

Av.	Flow	Rate 1.8 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity m/s

Instantaneous	Flow	Rate 0.114 L/s @	time 0:03:13

Instantaneous	Flow	Rate 0.113 L/s @	time 0:23:10

Instantaneous	Flow	Rate 0.112 L/s @	time 0:38:00

Av.	Instantaneous	Flow	Rate 0.113 L/s

Equivalent	Av.	Flow	Rate 6.8 L/min

Equivalent	Av.	Flow	Rate 1.79 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 6.6 L/min

Flow	Rate	per	3TN	Nozzle	Chart 1.75 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 20

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 19

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g (up	to	1kg)

Yes (May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

0:46:44

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #18 @ 10psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 2812     2812 53 68.0 

0.25 40 39 43 41 4 5.5 

0.50 27 37 30 31.6 3.3 4.3 

0.75 26 18 21 21.7 2.3 2.9 

1.00 18 17 21 18.5 1.9 2.5 

1.25 21.6     21.6 2.3 2.9 

1.50 24.7     24.7 2.6 3.3 

1.75 26.7     26.7 2.8 3.6 

2.00 27.7     27.7 2.9 3.7 

2.25 26.2     26.2 2.8 3.5 

2.50 24.6     24.6 2.6 3.3 

2.75 27.9     27.9 2.9 3.8 

3.00 29.7     29.7 3.1 4.0 

3.25 30.0     30.0 3.2 4.1 

3.50 28.9     28.9 3.0 3.9 

3.75 28.0     28.0 2.9 3.8 

4.00 28.3     28.3 3.0 3.8 

4.25 35.0     35.0 3.7 4.7 

4.50 46.4     46.4 4.9 6.3 

4.75 68.2     68.2 7.2 9.2 

5.00 67.9     67.9 7.1 9.2 

5.25 49.5     49.5 5.2 6.7 

5.50 21.6     21.6 2.3 2.9 

5.75 3.9     3.9 0.4 0.5 

6.00 0.6     0.6 0.1 0.1 

6.25 0.7     0.7 0.1 0.1 

6.50 0.3     0.3 0.0 0.0 

6.75 0.9     0.9 0.1 0.1 

7.00 0.2     0.2 0.0 0.0 

7.25 0.0     0.0 0.0 0.0 

7.50 0.0     0.0 0.0 0.0 

7.75 0.0     0.0 0.0 0.0 

8.00 0.0     0.0 0.0 0.0 

8.25 0.0     0.0 0.0 0.0 

8.50 0.0     0.0 0.0 0.0 

8.75 0.0     0.0 0.0 0.0 

9.00 0.0     0.0 0.0 0.0 
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Nelson S3000 #18 @ 10psi (red plate) 
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Nelson S3000 #21 @ 10psi (red plate) 

 

  

Nozzle 21 1/128ths

Pressure 10 PSI

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.4 m

Height	catch-cans 0.1 m

Effective	Height 2.3 m

Catch-can	Diameter 110 mm

Catch-can	lip	thickness 6 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 4/05/15

(hh:mm	24hr)

Time	Start 13:47

Time	Finish 14:36

Total	Time 0:49

1:00:00

0.82 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START m3

Flow	Meter	@	END m3

Av.	Flow	Rate 0.0 L/min

Av.	Flow	Rate 0.0 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity m/s

Instantaneous	Flow	Rate L/s @	time

Instantaneous	Flow	Rate L/s @	time

Instantaneous	Flow	Rate L/s @	time

Av.	Instantaneous	Flow	Rate #DIV/0! L/s

Equivalent	Av.	Flow	Rate #DIV/0! L/min

Equivalent	Av.	Flow	Rate #DIV/0! US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 9 L/min

Flow	Rate	per	3TN	Nozzle	Chart 1.06 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 15

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 15

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g (up	to	1kg)

Yes (May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #21 @ 10psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth Application Rate 

(m) (g) (g) (g) Mass (g) (mm) (mm/hr) 

0.00 1597     1597 30 36.8 

0.25 39 50 41 43 5 5.6 

0.50 45 47 45 45.7 4.8 5.9 

0.75 24 24 28 25.3 2.7 3.3 

1.00 27 19 23 23.0 2.4 3.0 

1.25 22     22.0 2.3 2.8 

1.50 23     23.0 2.4 3.0 

1.75 25     25.0 2.6 3.2 

2.00 28     28.0 2.9 3.6 

2.25 29     29.0 3.1 3.7 

2.50 29     29.0 3.1 3.7 

2.75 31     31.0 3.3 4.0 

3.00 31     31.0 3.3 4.0 

3.25 32     32.0 3.4 4.1 

3.50 31     31.0 3.3 4.0 

3.75 29     29.0 3.1 3.7 

4.00 29     29.0 3.1 3.7 

4.25 30     30.0 3.2 3.9 

4.50 40     40.0 4.2 5.2 

4.75 63     63.0 6.6 8.1 

5.00 94     94.0 9.9 12.1 

5.25 86     86.0 9.0 11.1 

5.50 60     60.0 6.3 7.7 

5.75 37     37.0 3.9 4.8 

6.00 9     9.0 0.9 1.2 

6.25 1     1.0 0.1 0.1 

6.50 0     0.0 0.0 0.0 

6.75 0     0.0 0.0 0.0 

7.00 0     0.0 0.0 0.0 

7.25 0     0.0 0.0 0.0 

7.50 0     0.0 0.0 0.0 

7.75 0     0.0 0.0 0.0 

8.00 0     0.0 0.0 0.0 

8.25 0     0.0 0.0 0.0 

8.50 0     0.0 0.0 0.0 

8.75 0     0.0 0.0 0.0 

9.00 0     0.0 0.0 0.0 

9.25 0     0.0 0.0 0.0 

9.50 0     0.0 0.0 0.0 

9.75 0     0.0 0.0 0.0 

10.00 0     0.0 0.0 0.0 

10.25 0     0.0 0.0 0.0 
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Nelson S3000 #21 @ 10psi (red plate) 
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Nelson S3000 #32 @ 10psi (red plate) 

 

  

Nozzle 32 1/128ths REPEAT	1

Pressure 10 PSI (82kPa	Big	Gauge)

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 18/06/15 REPEAT	TEST

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.81 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 39.6234 m3

Flow	Meter	@	END 40.6777 m3

Av.	Flow	Rate 21.6 L/min

Av.	Flow	Rate 5.7 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 2.03 m/s

Instantaneous	Flow	Rate 0.36 L/s @	time 0:01:00

Instantaneous	Flow	Rate 0.36 L/s @	time 0:06:00

Instantaneous	Flow	Rate 0.36 L/s @	time 0:42:00

Av.	Instantaneous	Flow	Rate 0.360 L/s

Equivalent	Av.	Flow	Rate 21.6 L/min

Equivalent	Av.	Flow	Rate 5.71 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 21.5 L/min

Flow	Rate	per	3TN	Nozzle	Chart 5.63 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 16

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 16

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g(up	to	1kg)

Yes(May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

0:48:43

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #32 @ 10psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 2594     2594 49 60 

0.25 55.0 44.0 34.0 44 5 6 

0.50 36.5 37.6 40.1 38.1 4.4 5.4 

0.75 32.6 41.4 27.5 33.8 3.9 4.8 

1.00 36.3 47.5 29.4 37.7 4.4 5.4 

1.25 38.9 32.5 44.4 38.6 4.5 5.5 

1.50 42.6 44.1 39.2 42.0 4.8 6.0 

1.75 46.9 45.4 45.9 46.1 5.3 6.6 

2.00 46.9 45.9 47.6 46.8 5.4 6.7 

2.25 48.2 48.6 48.3 48.4 5.6 6.9 

2.50 50.9 50.6 50.9 50.8 5.9 7.2 

2.75 55.0 54.1 55.3 54.8 6.3 7.8 

3.00 59.3     59.3 6.8 8.4 

3.25 62.1     62.1 7.2 8.8 

3.50 59.8     59.8 6.9 8.5 

3.75 52.8 53.6 51.6 52.7 6.1 7.5 

4.00 46.9 48.0 47.1 47.3 5.5 6.7 

4.25 44.5 44.6 44.3 44.5 5.1 6.3 

4.50 43.8 44.8 43.8 44.1 5.1 6.3 

4.75 43.5 43.6 43.6 43.6 5.0 6.2 

5.00 42.4 42.5 41.8 42.2 4.9 6.0 

5.25 42.5 42.5 43.3 42.8 4.9 6.1 

5.50 62.0     62.0 7.2 8.8 

5.75 104.4     104.4 12.1 14.8 

6.00 140.0     140.0 16.2 19.9 

6.25 134.4     134.4 15.5 19.1 

6.50 75.4     75.4 8.7 10.7 

6.75 21.5     21.5 2.5 3.1 

7.00 6.7     6.7 0.8 1.0 

7.25 1.4     1.4 0.2 0.2 

7.50 0.0     0.0 0.0 0.0 

7.75 0.0     0.0 0.0 0.0 

8.00 0.0     0.0 0.0 0.0 

8.25 0.0     0.0 0.0 0.0 

8.50 0.0     0.0 0.0 0.0 

8.75 0.0     0.0 0.0 0.0 

9.00 0.0     0.0 0.0 0.0 
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Nelson S3000 #32 @ 10psi (red plate) 
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Nelson S3000 #26 @ 15psi (red plate) 

 

  

Nozzle 26 1/128ths

Pressure 15 PSI

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.4 m

Height	catch-cans 0.1 m

Effective	Height 2.3 m

Catch-can	Diameter 110 mm

Catch-can	lip	thickness 6 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 14/05/15

(hh:mm	24hr)

Time	Start 14:28

Time	Finish 15:12

Total	Time 0:44

1:00:00

0.73 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START m3

Flow	Meter	@	END m3

Av.	Flow	Rate 0.0 L/min

Av.	Flow	Rate 0.0 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity m/s

Instantaneous	Flow	Rate L/s @	time

Instantaneous	Flow	Rate L/s @	time

Instantaneous	Flow	Rate L/s @	time

Av.	Instantaneous	Flow	Rate #DIV/0! L/s

Equivalent	Av.	Flow	Rate #DIV/0! L/min

Equivalent	Av.	Flow	Rate #DIV/0! US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 17.1 L/min

Flow	Rate	per	3TN	Nozzle	Chart US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 14

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 13

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g (up	to	1kg)

Yes (May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #26 @ 15psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 4280     4280 81 109.9 

0.25 52 55 53 53 6 7.7 

0.50 51 61 50 54.0 5.7 7.7 

0.75 50 51 51 50.7 5.3 7.3 

1.00 39 34 39 37.3 3.9 5.4 

1.25 41     41.0 4.3 5.9 

1.50 47     47.0 4.9 6.7 

1.75 54     54.0 5.7 7.7 

2.00 52     52.0 5.5 7.5 

2.25 48     48.0 5.1 6.9 

2.50 46     46.0 4.8 6.6 

2.75 44     44.0 4.6 6.3 

3.00 42     42.0 4.4 6.0 

3.25 40     40.0 4.2 5.7 

3.50 39     39.0 4.1 5.6 

3.75 39     39.0 4.1 5.6 

4.00 37     37.0 3.9 5.3 

4.25 39     39.0 4.1 5.6 

4.50 39     39.0 4.1 5.6 

4.75 39     39.0 4.1 5.6 

5.00 38     38.0 4.0 5.5 

5.25 38     38.0 4.0 5.5 

5.50 42     42.0 4.4 6.0 

5.75 50     50.0 5.3 7.2 

6.00 61     61.0 6.4 8.8 

6.25 68     68.0 7.2 9.8 

6.50 63     63.0 6.6 9.0 

6.75 45     45.0 4.7 6.5 

7.00 23     23.0 2.4 3.3 

7.25 6     6.0 0.6 0.9 

7.50 1     1.0 0.1 0.1 

7.75 0     0.0 0.0 0.0 

8.00 0     0.0 0.0 0.0 

8.25 0     0.0 0.0 0.0 

8.50 0     0.0 0.0 0.0 

8.75 0     0.0 0.0 0.0 

9.00 0     0.0 0.0 0.0 
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Nelson S3000 #26 @ 15psi (red plate) 

 

 

 

 

 

 

 

  



157 
 

Nelson S3000 #14 @ 20psi (red plate) 

 

  

REPEAT	1

Nozzle 14 1/128ths

Pressure 20 PSI (143kPa	Big	Gauge)

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 12/06/15 REPEAT	TEST

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.58 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 35.6827 m3

Flow	Meter	@	END 35.8805 m3

Av.	Flow	Rate 5.7 L/min

Av.	Flow	Rate 1.5 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 0.53 m/s

Instantaneous	Flow	Rate 0.094 L/s @	time 0:01:00

Instantaneous	Flow	Rate 0.093 L/s @	time 0:17:00

Instantaneous	Flow	Rate 0.094 L/s @	time 0:28:00

Av.	Instantaneous	Flow	Rate 0.094 L/s

Equivalent	Av.	Flow	Rate 5.6 L/min

Equivalent	Av.	Flow	Rate 1.48 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 5.63 L/min

Flow	Rate	per	3TN	Nozzle	Chart 1.49 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 15

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C)

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g(up	to	1kg)

Yes(May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

0

Brand

Measurement	Increments

Tolerance	Checked?

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

0:34:46

(h:mm:ss)

Total	Time	(digital)
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Nelson S3000 #14 @ 20psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 3808     3808 72 124 

0.25 27 32 33 31 4 6 

0.50 16 21 16 18 2 4 

0.75 16 18 16 17 2 3 

1.00 19 18 19 19 2 4 

1.25 20 20 20 20 2 4 

1.50 21 21   21 2 4 

1.75 20 20 21 20 2 4 

2.00 20 20 20 20 2 4 

2.25 20 19 20 20 2 4 

2.50 21 20 20 20 2 4 

2.75 22 21 22 22 3 4 

3.00 23 23 23 23 3 5 

3.25 24 25 24 24 3 5 

3.50 24 25 24 24 3 5 

3.75 23     23 3 5 

4.00 20     20 2 4 

4.25 17     17 2 3 

4.50 15     15 2 3 

4.75 13     13 2 3 

5.00 12     12 1 2 

5.25 9     9 1 2 

5.50 4     4 0 1 

5.75 0     0 0 0 

6.00 0     0 0 0 

6.25 0     0 0 0 

6.50 0     0 0 0 

6.75 0     0 0 0 

7.00 0     0 0 0 

7.25 0     0 0 0 

7.50 0     0 0 0 

7.75 0     0 0 0 

8.00 0     0 0 0 

8.25 0     0 0 0 

8.50 0     0 0 0 

8.75 0     0 0 0 

9.00 0     0 0 0 
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Nelson S3000 #14 @ 20psi (red plate) 
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Nelson S3000 #38 @ 20psi (red plate) 

 

  

Nozzle 38 1/128ths REPEAT	2

Pressure 20 PSI (150kPa	Big	Gauge)

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 18/06/15 REPEAT	TEST

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.69 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 37.4223 m3

Flow	Meter	@	END 39.2524 m3

Av.	Flow	Rate 44.5 L/min

Av.	Flow	Rate 11.8 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 4.18 m/s

Instantaneous	Flow	Rate 0.74 L/s @	time 0:01:00

Instantaneous	Flow	Rate 0.74 L/s @	time 0:06:00

Instantaneous	Flow	Rate 0.74 L/s @	time 0:54:00

Av.	Instantaneous	Flow	Rate 0.740 L/s

Equivalent	Av.	Flow	Rate 44.4 L/min

Equivalent	Av.	Flow	Rate 11.73 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 42.7 L/min

Flow	Rate	per	3TN	Nozzle	Chart 11.3 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 16

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 16

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g(up	to	1kg)

Yes(May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

0:41:06

(h:mm:ss)

Total	Time	(digital)

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #38 @ 20psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth Application Rate 

(m) (g) (g) (g) Mass (g) (mm) (mm/hr) 

0.00 4059     4059 76 112 

0.25 53.9 62.7 66.6 61 7 10 

0.50 55.4 56.7 55.0 55.7 6.4 9.4 

0.75 49.1 48.0 47.2 48.1 5.6 8.1 

1.00 45.4 39.5 49.6 44.8 5.2 7.6 

1.25 49.8     49.8 5.8 8.4 

1.50 59.6     59.6 6.9 10.0 

1.75 83.4     83.4 9.6 14.1 

2.00 116.6     116.6 13.5 19.7 

2.25 129.2     129.2 14.9 21.8 

2.50 118.9     118.9 13.7 20.0 

2.75 114.1     114.1 13.2 19.2 

3.00 112.8     112.8 13.0 19.0 

3.25 113.0     113.0 13.0 19.1 

3.50 113.8     113.8 13.1 19.2 

3.75 111.6     111.6 12.9 18.8 

4.00 107.6     107.6 12.4 18.1 

4.25 102.4     102.4 11.8 17.3 

4.50 96.3     96.3 11.1 16.2 

4.75 87.2     87.2 10.1 14.7 

5.00 77.2 77.9 77.0 77.4 8.9 13.0 

5.25 69.6 70.2 69.5 69.8 8.1 11.8 

5.50 65.3 65.3 64.7 65.1 7.5 11.0 

5.75 64.5 63.5 64.1 64.0 7.4 10.8 

6.00 64.4 64.5 64.0 64.3 7.4 10.8 

6.25 66.5 66.2 67.1 66.6 7.7 11.2 

6.50 68.6 67.3 68.8 68.2 7.9 11.5 

6.75 71.0 70.0 72.4 71.1 8.2 12.0 

7.00 65.6 65.2 68.0 66.3 7.7 11.2 

7.25 47.4 47.3 48.5 47.7 5.5 8.0 

7.50 23.7     23.7 2.7 4.0 

7.75 8.1     8.1 0.9 1.4 

8.00 1.4     1.4 0.2 0.2 

8.25 0.0     0.0 0.0 0.0 

8.50 0.0     0.0 0.0 0.0 

8.75 0.0     0.0 0.0 0.0 

9.00 0.0     0.0 0.0 0.0 

9.25 0.0     0.0 0.0 0.0 

9.50 0.0     0.0 0.0 0.0 

9.75 0.0     0.0 0.0 0.0 

10.00 0.0     0.0 0.0 0.0 

10.25 0.0     0.0 0.0 0.0 
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Nelson S3000 #38 @ 20psi (red plate) 
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Nelson S3000 #44 @ 25psi (red plate) 

 

  

Nozzle 44 1/128ths

Pressure 25 PSI

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 2/06/15

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.56 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 23.9887 m3

Flow	Meter	@	END 26.2888 m3

Av.	Flow	Rate 68.8 L/min

Av.	Flow	Rate 18.2 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 6.5 m/s

Instantaneous	Flow	Rate 1.14 L/s @	time

Instantaneous	Flow	Rate 1.14 L/s @	time

Instantaneous	Flow	Rate 1.13 L/s @	time

Av.	Instantaneous	Flow	Rate 1.137 L/s

Equivalent	Av.	Flow	Rate 68.2 L/min

Equivalent	Av.	Flow	Rate 18.02 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 64.3 L/min

Flow	Rate	per	3TN	Nozzle	Chart 17 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 14

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 16

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g(up	to	1kg)

Yes(May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Tolerance

ml

Sprinkler	Settings

or
Stopwatch	Time

0:33:26

(h:mm:ss)

Total	Time	(digital)

0.1

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #44 @ 25psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 3743     3743 70 127 

0.25 45.0 68.0 55.0 56 6 12 

0.50 52.0 65.0 45.0 54.0 6.2 11 

0.75 48.0 38.0 60.0 48.7 5.6 10 

1.00 47.0 42.0 54.0 47.7 5.5 10 

1.25 53.0     53.0 6.1 11 

1.50 57.0     57.0 6.6 12 

1.75 72.0     72.0 8.3 15 

2.00 96.0     96.0 11.1 20 

2.25 128.0     128.0 14.8 27 

2.50 149.0     149.0 17.2 31 

2.75 143.0     143.0 16.5 30 

3.00 133.0     133.0 15.4 28 

3.25 132.0     132.0 15.2 27 

3.50 132.0     132.0 15.2 27 

3.75 133.0     133.0 15.4 28 

4.00 132.0     132.0 15.2 27 

4.25 131.0     131.0 15.1 27 

4.50 127.0     127.0 14.7 26 

4.75 122.0     122.0 14.1 25 

5.00 121.0     121.0 14.0 25 

5.25 113.0     113.0 13.0 23 

5.50 100.0     100.0 11.5 21 

5.75 89.0     89.0 10.3 18 

6.00 79.0     79.0 9.1 16 

6.25 69.0     69.0 8.0 14 

6.50 61.0     61.0 7.0 13 

6.75 53.0     53.0 6.1 11 

7.00 43.0     43.0 5.0 9 

7.25 28.0     28.0 3.2 6 

7.50 14.0     14.0 1.6 3 

7.75 6.5     6.5 0.8 1 

8.00 0.7     0.7 0.1 0 

8.25 0.2     0.2 0.0 0 

8.50 0.0     0.0 0.0 0 

8.75 0.0     0.0 0.0 0 

9.00 0.0     0.0 0.0 0 
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Nelson S3000 #44 @ 25psi (red plate) 
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Nelson S3000 #38 @ 30psi (red plate) 

 

  

Nozzle 38 1/128ths

Pressure 30 PSI

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Red

Height	sprinkler 2.54 m

Height	catch-cans 0.1 m

Effective	Height 2.44 m

Catch-can	Diameter 105 mm

Catch-can	lip	thickness 0.5 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 2/06/15

(hh:mm	24hr)

Time	Start

Time	Finish

Total	Time 	

1:00:00

0.65 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START 26.5805 m3

Flow	Meter	@	END 28.7072 m3

Av.	Flow	Rate 54.7 L/min

Av.	Flow	Rate 14.5 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity 5.1 m/s

Instantaneous	Flow	Rate 0.91 L/s @	time 0:01:00

Instantaneous	Flow	Rate 0.91 L/s @	time 0:17:00

Instantaneous	Flow	Rate L/s @	time

Av.	Instantaneous	Flow	Rate 0.910 L/s

Equivalent	Av.	Flow	Rate 54.6 L/min

Equivalent	Av.	Flow	Rate 14.43 US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 52.3 L/min

Flow	Rate	per	3TN	Nozzle	Chart 13.8 US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 15

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 15

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g(up	to	1kg)

Yes(May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

Total	Time	(digital)

Sprinkler	Settings

or
Stopwatch	Time

0:38:53

(h:mm:ss)

Tolerance

0

Brand

Measurement	Increments

Tolerance	Checked?
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Nelson S3000 #38 @ 30psi (red plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 4462     4462 84 130 

0.25 98.0 57.0 70.0 75 9 13 

0.50 85.0 58.0 50.0 64.3 7.4 11 

0.75 51.0 74.0 44.0 56.3 6.5 10 

1.00 56.0 52.0 65.0 57.7 6.7 10 

1.25 68.0     68.0 7.9 12 

1.50 76.0     76.0 8.8 14 

1.75 94.0     94.0 10.9 17 

2.00 114.0     114.0 13.2 20 

2.25 135.0     135.0 15.6 24 

2.50 146.0     146.0 16.9 26 

2.75 139.0     139.0 16.1 25 

3.00 130.0     130.0 15.0 23 

3.25 126.0     126.0 14.6 22 

3.50 125.0     125.0 14.4 22 

3.75 125.0     125.0 14.4 22 

4.00 125.0     125.0 14.4 22 

4.25 123.0     123.0 14.2 22 

4.50 118.0     118.0 13.6 21 

4.75 110.0     110.0 12.7 20 

5.00 104.0     104.0 12.0 19 

5.25 95.0     95.0 11.0 17 

5.50 84.0     84.0 9.7 15 

5.75 76.0     76.0 8.8 14 

6.00 69.0     69.0 8.0 12 

6.25 64.0     64.0 7.4 11 

6.50 58.0     58.0 6.7 10 

6.75 51.0     51.0 5.9 9 

7.00 45.0     45.0 5.2 8 

7.25 34.0     34.0 3.9 6 

7.50 22.0     22.0 2.5 4 

7.75 9.4     9.4 1.1 2 

8.00 2.1     2.1 0.2 0 

8.25 0.0     0.0 0.0 0 

8.50 0.0     0.0 0.0 0 

8.75 0.0     0.0 0.0 0 

9.00 0.0     0.0 0.0 0 
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Nelson S3000 #38 @ 30psi (red plate) 
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Nelson S3000 #21 @ 20psi (yellow plate) 

 

  

Nozzle 21 1/128ths

Pressure 20 PSI

Sprinkler	Type S3000 (Grey	Cap)

Plate	Colour Yellow

Height	sprinkler 2.4 m

Height	catch-cans 0.1 m

Effective	Height 2.3 m

Catch-can	Diameter 110 mm

Catch-can	lip	thickness 6 mm

Zero	Pt	Can	Diameter 260 mm

Date	&	Duration

Test	Date: 11/05/15

(hh:mm	24hr)

Time	Start 11:46

Time	Finish 12:32

Total	Time 0:46

1:00:00

0.77 hrs

Flow	Rates

KENT	FLOWMETER

Flow	Meter	@	START m3

Flow	Meter	@	END m3

Av.	Flow	Rate 0.0 L/min

Av.	Flow	Rate 0.0 US	GPM

ABB	MAGMASTER	ELECTROMAGNETIC	FLOWMETER

Velocity m/s

Instantaneous	Flow	Rate L/s @	time

Instantaneous	Flow	Rate L/s @	time

Instantaneous	Flow	Rate L/s @	time

Av.	Instantaneous	Flow	Rate #DIV/0! L/s

Equivalent	Av.	Flow	Rate #DIV/0! L/min

Equivalent	Av.	Flow	Rate #DIV/0! US	GPM

NELSON	SUPPLIED	FLOW	VALUES	FOR	GIVEN	NOZZLE	+	PRESSURE

Flow	Rate	per	3TN	Nozzle	Chart 12.7 L/min

Flow	Rate	per	3TN	Nozzle	Chart US	GPM

Environment

Test	Location? Lab	(Indoors)

Solar	Irradiance? No

Wind? No

Wind	Speed	(kph) 0

Dry	Bulb	Air	Temp	(deg	C) 17

Wet	Bulb	Air	Temp	(deg	C) n/a

Water	Temp	(deg	C) 15

Relative	Humidity	 n/a

Av.	Hourly	Loss	to	Evaporation

on	10.0mL	sample	in	catch-can

Scales

Digitech

0.01g (up	to	1kg)

Yes (May	2015)

<0.03%

Pressures

Gauge	1	(Primary) Wika	Mechanical	(-100	-	250kPa)

Gauge	2	(Secondary) (0	PSI	-	60	PSI)

0

Brand

Measurement	Increments

Tolerance	Checked?

Tolerance

Sprinkler	Settings

or
Stopwatch	Time

(h:mm:ss)

Total	Time	(digital)
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Nelson S3000 #21 @ 20psi (yellow plate) 

 

 Mass    

Distance Can 1 Can 2 Can 3 Average Depth 

Application 

Rate 

(m) (g) (g) (g) 

Mass 

(g) (mm) (mm/hr) 

0.00 6475     6475 122 159.1 

0.25 67 65 63 65 7 8.9 

0.50 70 68 72 70.0 7.4 9.6 

0.75 76 73 70 73.0 7.7 10.0 

1.00 48 51 50 49.7 5.2 6.8 

1.25 59     59.0 6.2 8.1 

1.50 59     59.0 6.2 8.1 

1.75 54     54.0 5.7 7.4 

2.00 47     47.0 4.9 6.5 

2.25 45     45.0 4.7 6.2 

2.50 46     46.0 4.8 6.3 

2.75 44     44.0 4.6 6.0 

3.00 42     42.0 4.4 5.8 

3.25 41     41.0 4.3 5.6 

3.50 42     42.0 4.4 5.8 

3.75 45     45.0 4.7 6.2 

4.00 45     45.0 4.7 6.2 

4.25 47     47.0 4.9 6.5 

4.50 47     47.0 4.9 6.5 

4.75 50     50.0 5.3 6.9 

5.00 50     50.0 5.3 6.9 

5.25 39     39.0 4.1 5.4 

5.50 22     22.0 2.3 3.0 

5.75 17     17.0 1.8 2.3 

6.00 16     16.0 1.7 2.2 

6.25 17     17.0 1.8 2.3 

6.50 19     19.0 2.0 2.6 

6.75 20     20.0 2.1 2.7 

7.00 17     17.0 1.8 2.3 

7.25 10     10.0 1.1 1.4 

7.50 4     4.0 0.4 0.5 

7.75 1     1.0 0.1 0.1 

8.00 0     0.0 0.0 0.0 

8.25 0     0.0 0.0 0.0 

8.50 0     0.0 0.0 0.0 

8.75 0     0.0 0.0 0.0 

9.00 0     0.0 0.0 0.0 
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Nelson S3000 #21 @ 20psi (yellow plate) 
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Appendix E: Field Data 
 

Raw data from the nine pairs of field tests using the sprinkler infiltrometer (bucket 

infiltrometer) in Test A and the mobile sprinkler rig in Test B are tabled here. 
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Test 1A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 28 28 0.00003 0.4 8.5

6 234 262 0.00026 4.1 13.7

9 250 512 0.00051 8.0 18.7

12 230 742 0.00074 11.6 24.0

15 170 912 0.00091 14.3 30.2

18 180 1092 0.00109 17.1 36.3

21 190 1282 0.00128 20.1 42.2

24 194 1476 0.00148 23.1 48.1

27 152 1628 0.00163 25.5 54.6

30 184 1812 0.00181 28.4 60.6

33 230 2042 0.00204 32.0 65.9

36 222 2264 0.00226 35.5 71.3

39 217 2481 0.00248 38.9 76.8

42 253 2734 0.00273 42.9 81.7

45 282 3016 0.00302 47.3 86.2

48 311 3327 0.00333 52.2 90.2

51 270 3597 0.00360 56.4 94.9

54 260 3857 0.00386 60.5 99.7

57 196 4053 0.00405 63.5 105.6

60 174 4227 0.00423 66.3 111.7

Test 1B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

2000 3.6 0.6 44 6
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Figure E–1: I vs t plot for Test 1A. 
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Test 2A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 26 26 0.00003 0.4 8.5

6 162 188 0.00019 2.9 14.9

9 190 378 0.00038 5.9 20.8

12 194 572 0.00057 9.0 26.6

15 211 783 0.00078 12.3 32.2

18 212 995 0.00100 15.6 37.8

21 263 1258 0.00126 19.7 42.6

24 268 1526 0.00153 23.9 47.3

27 296 1822 0.00182 28.6 51.5

30 260 2082 0.00208 32.6 56.4

33 323 2405 0.00241 37.7 60.2

36 340 2745 0.00275 43.0 63.8

39 344 3089 0.00309 48.4 67.3

42 338 3427 0.00343 53.7 70.9

45 341 3768 0.00377 59.1 74.4

48 340 4108 0.00411 64.4 78.0

51 331 4439 0.00444 69.6 81.7

54 338 4777 0.00478 74.9 85.3

57 328 5105 0.00511 80.0 89.1

60 337 5442 0.00544 85.3 92.7

Test 2B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

3050 5.4 0.6 44 6
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Figure E–2: I vs t plot for Test 2A. 
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Figure E–3: I vs t plot for Test 3A. 

 

 

Test 3A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 5 5 0.00001 0.1 8.8

6 130 135 0.00014 2.1 15.7

9 231 366 0.00037 5.7 21.0

12 225 591 0.00059 9.3 26.3

15 366 957 0.00096 15.0 29.5

18 274 1231 0.00123 19.3 34.1

21 275 1506 0.00151 23.6 38.7

24 280 1786 0.00179 28.0 43.2

27 285 2071 0.00207 32.5 47.6

30 315 2386 0.00239 37.4 51.6

33 278 2664 0.00266 41.8 56.1

36 311 2975 0.00298 46.6 60.2

39 300 3275 0.00328 51.3 64.4

42 291 3566 0.00357 55.9 68.7

45 284 3850 0.00385 60.4 73.1

Test 3B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

5200 9.2 0.6 44 6
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Figure E–4: I vs t plot for Test 4A. 

Test 4A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 76 76 0.00008 1.2 7.7

6 317 393 0.00039 6.2 11.6

9 337 730 0.00073 11.4 15.3

12 387 1117 0.00112 17.5 18.1

15 374 1491 0.00149 23.4 21.1

18 384 1875 0.00188 29.4 24.0

21 350 2225 0.00223 34.9 27.4

24 337 2562 0.00256 40.2 31.0

27 360 2922 0.00292 45.8 34.3

30 372 3294 0.00329 51.6 37.4

33 352 3646 0.00365 57.2 40.7

36 346 3992 0.00399 62.6 44.2

39 331 4323 0.00432 67.8 47.9

42 343 4666 0.00467 73.1 51.5

45 344 5010 0.00501 78.5 55.0

Test 4B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

8150 14.5 0.6 44 6
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Figure E–5: I vs t plot for Test 6A. 

 

Test 5A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 50 50 0.00005 0.8 8.1

6 190 240 0.00024 3.8 14.0

9 311 551 0.00055 8.6 18.1

12 284 835 0.00084 13.1 22.5

15 275 1110 0.00111 17.4 27.1

18 260 1370 0.00137 21.5 31.9

21 267 1637 0.00164 25.7 36.6

24 256 1893 0.00189 29.7 41.5

27 214 2107 0.00211 33.0 47.1

30 250 2357 0.00236 36.9 52.1

33 253 2610 0.00261 40.9 57.0

36 253 2863 0.00286 44.9 61.9

39 253 3116 0.00312 48.8 66.9

42 293 3409 0.00341 53.4 71.2

45 251 3660 0.00366 57.4 76.1

Test 5B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

6100 10.8 0.6 32 6
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Figure E–6: I vs t plot for Test 6A. 

Test 6A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff infiltration

for period cumulative cumulative cumulative cumulative

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 163 163 0.00016 3 6

6 182 345 0.00035 5 12

9 198 543 0.00054 9 18

12 236 779 0.00078 12 23

15 246 1025 0.00103 16 28

18 233 1258 0.00126 20 34

21 223 1481 0.00148 23 39

24 225 1706 0.00171 27 44

27 202 1908 0.00191 30 50

30 235 2143 0.00214 34 55

33 192 2335 0.00234 37 61

36 200 2535 0.00254 40 67

39 140 2675 0.00268 42 74

42 166 2841 0.00284 45 80

45 185 3026 0.00303 47 86

Test 6B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

5100 9.1 0.6 44 6
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Figure E–7: I vs t plot for Test 7A. 

Test 7Ae Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 94 94 0.00009 1.5 7.4

6 211 305 0.00031 4.8 13.0

9 222 527 0.00053 8.3 18.4

12 217 744 0.00074 11.7 23.9

15 265 1009 0.00101 15.8 28.7

18 249 1258 0.00126 19.7 33.7

21 243 1501 0.00150 23.5 38.8

24 229 1730 0.00173 27.1 44.1

27 205 1935 0.00194 30.3 49.8

30 208 2143 0.00214 33.6 55.4

33 199 2342 0.00234 36.7 61.2

36 192 2534 0.00253 39.7 67.1

39 254 2788 0.00279 43.7 72.0

42 240 3028 0.00303 47.5 77.1

45 231 3259 0.00326 51.1 82.4

Test 7Be

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

5850 10.4 0.6 44 6
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Figure E-83: I vs t plot for Test 8A. 

 

Test 8A Application Rate: 178 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 110 110 0.00011 1.7 7.2

6 119 229 0.00023 3.6 14.2

9 176 405 0.00041 6.3 20.4

12 275 680 0.00068 10.7 24.9

15 206 886 0.00089 13.9 30.6

18 233 1119 0.00112 17.5 35.9

21 197 1316 0.00132 20.6 41.7

24 218 1534 0.00153 24.0 47.2

27 230 1764 0.00176 27.7 52.4

30 185 1949 0.00195 30.6 58.4

33 172 2121 0.00212 33.2 64.7

36 205 2326 0.00233 36.5 70.3

39 248 2574 0.00257 40.3 75.4

42 246 2820 0.00282 44.2 80.4

45 251 3071 0.00307 48.1 85.4

Test 8B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

6000 10.7 0.61 44 6
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Figure E-9: I vs t plot for Test 9A. 

 

 

  

Test 9A Application Rate: 150 mm/hr

Plot Area: 0.0638 m2

t runoff runoff runoff runoff cumulative

for period cumulative cumulative cumulative infiltration

(min) (ml) (ml) (m3) (mm) (mm)

0 0 0 0 0 0

3 14 14 0.00001 0.2 7.3

6 81 95 0.00010 1.5 13.5

9 145 240 0.00024 3.8 18.7

12 132 372 0.00037 5.8 24.2

15 166 538 0.00054 8.4 29.1

18 187 725 0.00073 11.4 33.6

21 194 919 0.00092 14.4 38.1

24 250 1169 0.00117 18.3 41.7

27 212 1381 0.00138 21.6 45.9

30 195 1576 0.00158 24.7 50.3

33 188 1764 0.00176 27.7 54.8

36 224 1988 0.00199 31.2 58.8

39 196 2184 0.00218 34.2 63.3

42 200 2384 0.00238 37.4 67.6

45 207 2591 0.00259 40.6 71.9

Test 9B

Total Total Speed of Nozzle Size Pressure

Runoff Runoff Rig

(ml) (mm) (m/min) (3TN) (psi)

4950 8.8 0.61 44 6
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Appendix F - Project Administration 
 

F1. Project Risk Management 

 
Separate risk assessments were conducted for the laboratory work and for the field work. 

 

Z113 Hydraulics Lab Risk Assessment 

 

Hazards 

1. Wet floor: The risk of slipping was assessed as ‘possible’ with possibly minor injury from a fall. 

Thus the risk level was deemed MODERATE. Existing controls included built-in drainage and 

non-slip floor surface. Additional controls to put in place included placing ‘Wet Floor’ signage in 

prominent positions; wear sturdy footwear with non-slip tread; reduce size of wet area by 

screening off the sprinkler head; and no running. 

2. Pump machinery: The risk of injury from moving pump machinery was assessed as ‘unlikely’ 

with possibly moderate injury. Thus the risk level was deemed LOW. Existing controls included 

housing the pumps in a separate pump room, or housing the smaller pump within a protective 

cover that prevents contact with any moving parts. Additional controls to put in place include 

locating the smaller pump away from trafficked areas and away from work spaces.  

3. Electrical equipment: The risk of electrical injury was assessed as ‘unlikely’ with possible major 

or catastrophic consequences. Thus the risk level was deemed moderate. Existing controls include 

USQ tagged and tested electrical pumps and leads being used; IP67 switch boxes in place where 

electrical pumps need to be switched on/off; weather-proof powerpoint covers where leads are 

plugged in. Additional controls include routing power leads so that they are not lying in water at 

any time and are behind screens so that they are not splashed; turning off power leads which are 

not in use. 

 

Field Work 

 

Hazards 

1. Pump machinery: The risk of injury from moving pump machinery was assessed as ‘unlikely’ 

with possibly moderate injury. Thus the risk level was deemed LOW. Existing controls include 

housing the pump within a protective cover that prevents contact with any moving parts. 

Additional controls to put in place include locating the pump behind a chain fence so that it cannot 

be accessed except by person’s possessing a key.  

2. Electrical supply to pump: The risk of electrical injury was assessed as ‘unlikely’ with possible 

major or catastrophic consequences. Thus the risk level was deemed MODERATE. Existing 

controls include having safety switches on the power box; having the power sockets housed inside 

weather-proof casings that are positioned well above the ground; having the electrical box fenced 

off so that persons passing by cannot interact with the equipment; using USQ tagged and tested 

leads and pumps. Additional controls include positioning pumps well away from where water from 

the sprinklers will be spraying; keeping power leads and connections away from where the ground 

may become wet. 

3. Tall test rig: The risk of falling during construction is assessed as possible with minor 

consequences. Thus the risk level is deemed MODERATE. There are no existing controls. 

Additional controls are to assemble as much of the test rig at ground level first; use a sturdy step 

ladder with an assistant to stabilise the ladder; design the test rig so that mimimal work is required 

from the ladder; limit the test rig to approx. 3m total height so that the height stood on the step 

ladder will not need to exceed 1.6m.  

4. Cold weather: The risk of hypothermia due to cold weather and getting wet from spraying 

sprinklers is assessed as ‘rare’ with possible insignificant injury. Thus the risk level is deemed 

LOW. No controls are in place. Additional controls include not performing outdoor tests in windy 

conditions; rain jacket and rain pants.  
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F2. Project Planning: Timelines, Resource Requirements 
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F3. Consequential Effects of the Project 

 
Four hypothetical scenarios are envisaged to possibly follow from the project. Whilst Scenario 1 

is clearly preferred, the consequential effects of both Scenarios 1 and 3 are agreeable.  

 

Scenario 1 

The proposed model and the results and conclusions are valid and accurate AND the 

report is used as its purpose was intended by the author (i.e. as an educational exercise, 

as per the report’s disclaimer). 

 

Possible Consequences 

A reader of the dissertation might well become interested in the model, results and 

conclusions but will understand that the production of the dissertation was an educational 

exercise at an undergraduate level and thus may be without the rigor or controls that 

should characterise published work at higher levels or in a professional context. The ideas 

and positive results reported in the dissertation may, however, legitimately act as an 

impetus for further study and research into the topic area, either by the author or by a 

reader. 

 

Scenario 2 

The proposed model and the results and conclusions are valid and accurate AND the 

report is not used as its purpose was intended by the author (i.e. as an educational exercise, 

as per the report’s disclaimer). 

 

Possible Consequences 

The results and conclusions might end up being inappropriately applied to ‘real-life’ 

situations either directly by the author, by recommendation to another person, or through 

hear-say. However, a) the results and conclusions reported in the dissertation might be 

peculiar to the particular testing scenario; b) assumptions may have been made explicitly, 

implicitly or even unwittingly, that render the results and conclusions inappropriate for 

many ‘real-life’ applications; c) the dissertation probably is unlikely to feature the rigor 

and controls to ensure the quality and reliability of the results and conclusions. 

Inappropriate use of the contents of the study may end up being of little consequence, but 

it is conceivable that physical and financial losses and a loss of reputation to those who 

names have been associated with the study could result. 

 

  



190 
 

Scenario 3 

The proposed model and the results and conclusions are not valid or accurate AND the 

report is used as its purpose was intended by the author (i.e. as an educational exercise, 

as per the report’s disclaimer) 

 

Possible Consequences 

The value of this study (as an educational exercise) lies in the process learned rather than 

the results per se. Thus the consequence in Scenario 3 can still be positive for the author 

of the study. Also, in this Scenario, if the project serves to demonstrate that the proposed 

model does not, in fact, work then this may be of benefit to others who might be 

considering the same.  

 

Scenario 4 

The proposed model and the results and conclusions are not valid or accurate AND the 

report is not used as its purpose was intended by the author (i.e. as an educational exercise, 

as per the report’s disclaimer). 

 

Possible Consequences 

Clearly this is the worst Scenario and would conceivably only occur as a result of poor 

judgement and foolishness on the part of the person using the report. The potential 

consequences may reflect those of Scenario 2, but could well be worse.   

  



191 
 

 


