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Abstract

All engineering disciplines are influenced by the global focus on energy consumption re-

duction and sustainability. Due to its resident inefficiency, The ICT sector is of particular

concern, and there has been extensive work to develop sustainability enhancements to

networks and/or network devices. Previous work presented dynamic topology concepts

in which the behaviour and topology of the devices and the network react dynamically

in response to traffic demands, with the intent of placing devices into standby states to

reduce energy consumption. The key aim of this study is to develop a dynamic topology

mechanism implementation; it proposes a testbed environment and corresponding dy-

namic topology mechanism that makes use of two programs: one running on a centralised

controller, and one running on the network nodes. The former determines the optimal

topology based on energy consumption reductions and network traffic, while the latter

uses MPLS to implement the topology. The testbed is used to determine the dynamic

topology mechanism’s effectiveness and impact on network performance, and does so by

subjecting it to controlled variations in network traffic. Quantitative measurements of

the dynamic topology mechanism’s network performance metrics are presented and anal-

ysed relative to baseline measurements. The analysis shows that the dynamic topology

mechanism is quite effective, as the effect on network performance is mostly minimal and

the reaction to network traffic variations is sufficiently swift. The system takes approxi-

mately 30 seconds to react to traffic variations and implement topology changes, and has

negligible effect on jitter, packet loss, and the number of out of order packets. However,

it produces an average increase in delay of 8 ms, the source of which requires further

investigation. This study proves the feasibility of dynamic topology mechanism imple-

mentation, and provides a framework for further development and eventual widespread

deployment.
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Chapter 1

Introduction

The increasing focus on sustainability in modern engineering should be common knowl-

edge for all engineers. Computer systems engineering is no exception, and the broad aim

of this project is to reduce the energy consumption of computer networks through the

use of dynamic network topologies. Telecommunications networks provide fertile ground

for energy consumption improvements, as their design goals are typically limited to re-

silience to link or node failure and the maintenance of services during peak periods; as

a result, networks are mostly under-utilised. The periods of low utilisation can be ex-

ploited to reduce energy consumption by rerouting network traffic and placing nodes and

links into standby states. Dynamic network topologies can satisfy this need, with an

important caveat: the traffic rerouting must facilitate reductions in energy consumption

without a disproportionate degradation of network performance. The effectiveness of dy-

namic topology mechanisms has been theoretically proven through simulation, with one

solution reporting energy consumption reductions of 30-50% (Aldraho & Kist 2011b).

1.1 Project scope and requirements

Previous work related to dynamic topologies for energy consumption reduction in net-

works has been focussed on theoretical performance analysis through the use of models

and simulation and/or ILP solvers (Aldraho & Kist 2010, 2011a,b, Aldraho et al. 2012,

Amaldi et al. 2011, Chu et al. 2011, Cianfrani et al. 2012, Polverini et al. 2015, Yang

et al. 2015, Zhang et al. 2005, 2010). While the results from these simulations and com-
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putations provide a proof of concept, the use of models always contains some form of an

assumption, and is therefore inherently inaccurate to some degree.

This project aims to develop a testbed that extends the previous work — mainly that

of Aldraho & Kist (2011b), Aldraho & Kist (2010), and Polverini et al. (2015) — from

simulation into a physical implementation. The successful development of a testbed will

prove feasibility of implementation of a dynamic topology mechanism in a physical system.

Furthermore, it will facilitate the measurement of the mechanism’s effects on network

performance that are based on a real system, as opposed to simulated systems. This

project also aims to reduce the work required for future implementations that will further

develop dynamic topology mechanisms.

As stated in the project specification, which has been included as appendix A, the main

requirement of the project is to use Linux’s MPLS implementation to develop and test a

dynamic topology mechanism that reacts to changes in network traffic. Another project

specification is the control of the network nodes’ transition between the active and standby

states with the aim of decreasing total network energy consumption. Note that the node

state transitions are performed by modifying the routing information, and the project

does not examine the implementation of standby states. It was previously stated that

network design goals favour resilience to failure and the maintenance of services during

peak periods; this project does not consider the former, but preserves the latter.

The project can be divided into three main requirements: the development of the hard-

ware and software configuration of the testbed, the development of the dynamic topology

mechanism programs, and the measurement of the dynamic topology mechanism’s perfor-

mance. The configuration of the testbed is required to provide the capability that will be

used by the dynamic topology mechanism, and the performance measurement reflects the

suitability of the mechanism’s implementation in a live system. As the implementation

of standby states is not examined, only the network performance is measured.

1.2 Project methodology

As this project contains software development and other elements of uncertainty, such

as the testbed implementation requirements, the development of the dynamic topology

mechanism is based on agile methods that can adapt to changes in specifications. The
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project begins with a review of the current literature to prevent unnecessary rework and

to determine the project’s “user stories”, from which the initial specifications of the dy-

namic topology mechanism testbed are be determined. After the initial research has been

completed, which is detailed in chapter 2, the incremental development, experimentation,

and research can commence. The development is focussed on producing functionality

for the dynamic topology mechanism, and includes the development of the testbed and

the dynamic topology mechanism programs. This often reveals additional functional-

ity and/or component requirements, prompting additional research and experimentation

prior to resuming development.

Once incremental development reaches a point where the testbed is successfully routing

traffic using the dynamic topology mechanism, the focus shifts to performance validation

to determine the suitability of this implementation. The performance validation is aimed

at discerning the dynamic topology mechanism’s effect on network performance, and the

degree to which the project requirements are met. Once the performance validation meth-

ods have been developed, and the dynamic topology mechanism’s performance has been

measured, the system is dismantled to prevent unpredictable use. The procedure that

was used to design the system, and the resultant design itself, are detailed in chapters 3

and 4 respectively, while the testing methodology and associated results and discussion

are shown in chapters 3 and 5 respectively.

1.3 Dissertation overview

This dissertation is organised as follows:

Chapter 2 analyses previous work that relates to the dynamic topology mechanism

Chapter 3 details the methodology used to develop the system and dynamic topology

mechanism, and the performance validation methods used to test the resultant

design

Chapter 4 fully describes the final system design, including the hardware and software

configuration and the programs used to implement the dynamic topology mechanism

Chapter 5 examines the results of system tests and discusses the performance of the

dynamic topology mechanism in terms of the project requirements
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Chapter 6 concludes the dissertation and proposes potential future work related to the

dynamic topology mechanism



Chapter 2

Related Work

There has been significant research into areas directly or indirectly related to this project,

and this chapter contains a review of the current literature. The literature review details

the motivation behind the project, previous implementations of dynamic topology mecha-

nisms, energy aware traffic engineering, the applicability of Multi-Protocol Label Switch-

ing (MPLS), topology optimisation and associated heuristics, traffic matrix calculation

and measurement, and software defined networking.

2.1 Literature review

The energy consumption of the ICT sector is of significant concern; recent attention has

been directed at optimising the design and use of networks and network components

with consideration given to the reduction of energy consumption. The main impetus for

the reduction in energy consumption of network devices is a combination of their large

contribution to the ICT carbon footprint, their current inefficiency, and their role as an

enabling technology for further energy consumption reductions.

2.1.1 Motivation

A 2012 estimate of the ICT sector’s contributions to global carbon emissions was 2% (Koenigs-

mayr & Neubauer 2015), and it is estimated that carbon emissions from network devices

contributes between 30% (Gartner 2007) and 37% (Webb 2008) of ICT emissions. The
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energy consumption of network devices is exacerbated by the almost criminally inefficient

utilisation of telecommunications networks, which typically ranges from <30% (Nede-

vschi et al. 2008) to <50% (Fraleigh et al. 2003); this is due to the over-provisioning

of networks to maintain connectivity and Quality of Service (QoS) during peak periods,

which are present for only short periods in a diurnal traffic cycle (Bolla et al. 2011).

Furthermore, current network devices themselves are also inefficient, with the energy cost

of data transmission at 0.128-0.225 Joules/Byte; compared to the benchmark of 802.11b

radios, which use ∼1.6 µJ/B over a 100m link, the wireless link is 2-3 times more effi-

cient (Gupta & Singh 2003). While the cost per byte of traffic has been decreasing due

to performance improvements, the rate at which line card speeds increase has resulted in

an overall increase in power density (Chabarek et al. 2008).

ICT-based low carbon technological solutions are estimated to reduce 15% of global GHG

emissions by 2020, and the energy-aware focus of ICT is an attempt to secure the enabling

effect of ICT in other sectors (Koenigsmayr & Neubauer 2015). Further to this, increased

energy efficiency of network devices would enable greater deployment, particularly in

developing countries, and allow greater network availability in the event of a disaster

when power is scarce to retain data and connectivity for longer (Gupta & Singh 2003).

It is difficult to market new technologies to the carriers that maintain the internet’s core

infrastructure. They have previously demonstrated satisfaction with over-provisioning,

as well as techniques such as traffic caching and compression, rather than addressing the

root cause (Roberts 2009). If history is any indication of the future of the internet’s core

infrastructure, there will need to be a more robust solution that moves away from these

temporary fixes, which can be seen as analogous to the previous use of VLSM and NAT

to temporarily solve the rapidly decreasing IPv4 address space. However, in order for a

solution to be widely accepted, it should align with the requirements stated in Coiro et al.

(2013):

1. No new communication protocol or new functionalities in current routing and sig-

nalling protocols

2. Interoperability with standard networks

3. Automatic adaptation to network condition

4. No packet loss

5. No congestion even for limited periods
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2.1.2 Energy consumption reduction in computer networks

The approaches to achieving the reduction in energy consumption of network devices are

many and varied, and include the design of networks and network devices, link and node

shutdown and standby, and traffic engineering. Most of them, if not all, either implicitly

or explicitly adhere to the aforementioned requirements, as does the dynamic topology

mechanism described in chapter 4.

Traffic engineering for load balancing and QoS in general

When considering the use of networks, there are several dynamic topology mechanisms

that are not specifically focused on facilitating or directly influencing power consumption

reduction, but which are the foundation for related works.

Traditional routing protocols, such as OSPF, support dynamic reconfiguration after topol-

ogy changes. However, these are not suitable for the implementation of dynamic topolo-

gies as they can take several minutes to converge (Aldraho et al. 2012). MPLS is quite

versatile in terms of traffic engineering, and can provide most of the functionality of

the previously used overlay model, which was implemented to address traffic engineering

shortcomings of conventional IP networks, at low cost and in an integrated manner (El-

walid et al. 1998, Awduche 1999). As these energy aware traffic engineering methods

typically require explicit route definition, the majority of them state that MPLS must be

used. However, as highlighted by Gupta & Singh (2003), consideration needs to be given

to routing protocols (OSPF, EIGRP, IS-IS, RIPv2, etc.) and protocols higher in the OSI

layer when testing the effectiveness of these dynamic topology mechanisms. Suryasaputra

et al. (2005) demonstrates the versatility of the MPLS traffic engineering by using the

NS-2 network simulator to implement explicit routing using MPLS with two different

objectives: maximisation of residual link capacity, and minimisation of network cost in

terms of link weights. The dynamic topology mechanism described in chapter 4 makes

use of MPLS for its low cost and explicit route definition.

The optimisation problem addressed by Zhang et al. (2005) is aimed at determining the

best splitting ratio for multiple paths over a range of circumstances by analysing multiple

traffic matrices and formulating a compromise between the worst-case and average-case

scenarios; it also uses MPLS to implement the resultant optimal configuration. As the
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problem is NP hard for even a single traffic matrix, heuristics presented by Fortz & Thorup

(2000) are used. Similarly, but conversely, the work of Ben Ameur et al. (2002) provides an

optimal routing algorithm that routes the traffic for a pair of nodes along only one path,

defined by an MPLS Label Switched Path (LSP). It uses the shortest path if possible, but

also attempts to maximise the remaining capacity of the links to protect the network in

the event of an increase in traffic. Kvalbein & Lysne (2007) showed an alternative use of

multiple topologies that does not utilise MPLS. Their multiple topologies each have one

or more links excluded to spread traffic across different paths by modifying split ratios.

This method does not use explicit routing, like MPLS does, but simply distributes the

traffic among several logical networks that utilise the same physical network components.

This can respond quickly to traffic dynamics without requiring a demand matrix, but

does not take power reductions into account.

A common aim in the use of dynamic topologies is to ensure the resilience of the network in

the event of link failure. Wang et al. (2010) uses an extension of MPLS called MPLS-ff to

perform reconfiguration of the network when a link failure is detected. It involves an offline

precomputation phase, which takes a few seconds for a 20 node network, and an online

reconfiguration phase. ICMP is used to advertise link failures across the network and

traffic is then distributed among the remaining precomputed alternative links. Hundessa

& Domingo-Pascual (2002) introduces a method for ensuring minimal/no packet loss

during topology changes, but is focused on unplanned changes due to failures rather than

traffic dependent reconfigurations. It uses pre-defined alternate LSPs for a fast switchover,

and uses buffers and link failure detection to minimise packet loss. While this project

does not consider network reliability and failure resilience, the concepts are still useful.

Traffic engineering for energy consumption reduction

One group of methods uses the foundation work shown above and is centred around mod-

ifying the network topology to allow specific energy saving methods. These energy saving

methods include link and/or node shutdown, and several methods have been devised to

allow link and/or node standby, or a combination of both. A unique approach to dy-

namic topologies that indirectly reduces GHG emissions considers the energy production

method used to power the network devices, and aims to reduce the energy consumption

of those powered by high GHG emitting energy sources (Wang et al. 2012). Other meth-



2.1 Literature review 9

ods are more direct and aim to reduce power consumption in general; Chabarek et al.

(2008) proposes power awareness in the design of network devices, the allocation of those

devices in the network, and the use of power aware protocols. Their definition of power

aware protocols includes the use of dynamic topologies to allow network devices and/or

components to move into a state with lower power consumption, and is a common area

of research. Table 2.1 is derived from the work of Coiro et al. (2013), and shows an

overview of a number of energy aware traffic engineering techniques. As can be seen, the

majority of techniques rely on centralised control, many of them can be applied to and/or

require MPLS networks, and are typically routed using a shortest path or flow-based

method; Coiro et al. (2013) also proposes their own energy aware traffic engineering tech-

nique that is distributed and uses MPLS. All these techniques are focused on rerouting

traffic to allow the maximum allowable number of links to be shutdown to reduce energy

consumption, while preserving the functionality of the network as a whole.

The work of Bolla et al. (2011) also aims at reducing power consumption by rerouting

traffic and shutting down unused links, but more explicitly specifies the logical connec-

tion rerouting and line card shutdown methods. It uses a central entity to analyse the

traffic matrix and iteratively remove the line cards with the lowest traffic load and test

whether the network can still support the traffic matrix. It states that the central entity

should be dedicated to collecting traffic load information and consequently applying the

traffic engineering criterion to perform the virtual links’ reconfiguration while meeting

QoS constraints, and that the diurnal fluctuation of traffic is the motivation behind the

selection of only a few reconfiguration thresholds at 25%, 50%, and 75% of maximum

demand. Yang et al. (2015) similarly aims to shut down unused line cards, but focuses

specifically on the minimisation of trunk link utilisation, i.e. single logical links that are

EA-TE Technique Searching Algorithm Operation architecture Network Scenario Routing strategy

(Chiaraviglio et al. 2012) Heuristic, iterative greedy Centralised Pure IP SP

(Cuomo et al. 2012) Heuristic, iterative greedy Centralised Pure IP SP

(Amaldi et al. 2011) Heuristic, iterative greedy, MILP based Centralised Pure IP SP, link weight variation

(Lee et al. 2012) MILP, Lagrangian relaxation Centralised Pure IP SP, link weight variation

(Eramo et al. 2012) Heuristic, SPT exportation Centralised Pure IP Modified SPT

(Zhang et al. 2010) Heuristic, MILP based Centralised IP/MPLS SP + Flow-based

(Takeshita et al. 2012) Exhaustive search Centralised IP/MPLS SP

(Vasi et al. 2011) Not defined Distributed + offline IP/MPLS Flow-based

(Vasi & Kosti 2010) Load adaptation on multiple paths Distributed IP/MPLS Flow-based, multiple paths

(Kim et al. 2012) Ant colony-based next hops selection Distributed Pure IP Destination based

(Coiro et al. 2013) Routing-based, load-dependent link weights Distributed IP/MPLS Flow-based, single path

Table 2.1: Energy Aware Traffic Engineering Techniques (Coiro et al. 2013)
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comprised of several parallel physical links. By minimising trunk utilisation, less parallel

links are required, and line cards can be shutdown. The proposed algorithm is distributed

and uses heuristics and a hop-by-hop routing mechanism to determine the network path.

The work of Pan et al. (2015) is related to the above dynamic topology mechanisms that

aim to minimise the active links, as it describes an enabling technology; it proposes a

modification of the line card boot sequence to drastically reduce boot time, with results

in a 127.27 ms transition from the sleep to active state in their prototype hardware.

Additional techniques have been developed to expand the energy consumption reduction

options to include more than just the minimisation of active links. Chu et al. (2011)

presents a relatively simple method of reducing power consumption during off-peak pe-

riods by using the predicted traffic matrix and topology to determine the set of routers

that can be turned off while satisfying traffic demands. It then determines the explic-

itly defined LSPs to reroute the traffic that would ordinarily traverse the now shutdown

nodes. A variation of this discusses changes to routing decisions, based on network load,

to aggregate traffic over fewer devices and links to put devices to sleep, and suggests

power savings from idle components by either clocking them at a slower rate or putting

them to sleep completely (Gupta & Singh 2003).

Aldraho & Kist (2011b) suggest both an energy saving method for nodes and links and

a method of traffic engineering to allow its implementation, and is the main inspiration

for this project. The traffic matrix is analysed with the aim of maximising the number of

nodes in the a standby state. The network node standby power model is initially described

by Aldraho & Kist (2010), and subsequently developed by the same authors (Aldraho &

Kist 2011b, Aldraho et al. 2012, Aldraho & Kist 2011a) and others (Polverini et al. 2015,

Suryasaputra et al. 2005); it proposes the temporary removal of the routing functionality,

which consumes approximately 80% of a router’s energy and space (Roberts 2009). Note

that when MPLS is used to facilitate the modification of topologies to support this standby

mode, the MPLS-related modules must remain active to maintain labels and forwarding

tables in the standby devices (Aldraho & Kist 2011a).

Aldraho & Kist (2011a) provides a solution for implementation of dynamic networks

using multiple topologies through a number of MPLS label sets, which requires only minor

additions at ingress Label Switch Routers (LSRs). This implementation divides the roles

of LSRs into three functions: Network Management Function (NMF), Topology and Flow

Tracker (TFT), and Power Management Function (PMF). The NMF is the centralised
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optimisation and control of the network, which signals the TFT and PMF on each of the

network’s nodes to control the LSPs and active/standby transitions respectively. This

implementation also uses timers to control the overlap period of the old and new topologies

to minimise the effects on traffic. As further explored by Aldraho et al. (2012), the length

of the timer has minimal impact on the power savings in the network, and is below 1%

for all instances up to and including 10 power state changes in a 24 hour period for a

timer value of 180 seconds.

2.1.3 Topology optimisation and traffic matrices

The solution of the optimisation problems in the vast majority of dynamic topology

mechanisms involve the use of Mixed-Integer Linear Programming (MILP) solvers; the

duration of the solution generation can be in the order of minutes or hours (Aldraho &

Kist 2011b), and the calculation and resultant control implementation typically needs to

be centralised (Gupta & Singh 2003). When testing the effectiveness of these optimised

topologies, OSPF is a common benchmark, as it is widely used (Suryasaputra et al. 2005).

Similarly, this project also uses OSPF routing as the benchmark of the dynamic topology

mechanism’s performance measurements, as described in chapter 3.

In order to respond to the current traffic demands of the network, the optimisation meth-

ods generally require an accurate traffic matrix. Traffic matrices are difficult to measure

in IP networks, but Awduche (1999) shows that statistics derived from MPLS LSP tun-

nels can be used to construct a rudimentary traffic matrix. Schnitter & Horneffer (2004)

stated that the use of MPLS LSP statistics may not be usable for many networks as it re-

quires the logical network to be fully meshed and is not scalable. However, if the nodes all

perform both ingress and egress functions, as is the case in the test networks in the work

of Aldraho & Kist (2011b) and in this project, the logical network is already fully meshed,

and this is a suitable method to directly measure the traffic matrix. As an alternative

to traffic matrix measurement, Ohsita et al. (2010) provides a method to estimate the

traffic matrix using monitored link loads and the paths between source and destination

nodes. This method also includes a reduction in estimation error by performing iterative

calculations during the incremental reconfiguration of the network, the effectiveness of

which is proven by simulation.

As stated by Aldraho et al. (2012), Aldraho & Kist (2011b) and Aldraho & Kist (2011a),
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the optimisation problems are Non-deterministic Polynomial-time (NP) hard, so heuristics

may be required for large networks to find optimal or near optimal solutions for standby

node selection. Aldraho & Kist (2010) presents two such heuristics, which iteratively

transitions active nodes into the standby state until the remaining active links’ utilisation

becomes unacceptable, at which point it restores the latest node. The two heuristics differ

in their determination of node standby priorities: the Lightest Node First (LNF) algorithm

considers the node with the least connections first, while the Least Loaded Node (LLN)

algorithm considers the node that handles the least traffic first. The former outperforms

the latter, and the performance of both decreases sharply compared to the ILP alternative

as traffic load increases. A similar heuristic is presented by Cianfrani et al. (2012), and

further developed by Polverini et al. (2015), that determines the minimum number of

active nodes, places the remaining ones in standby, and determines the standby nodes’

active outgoing link. It is based on the Floyd-Warshall algorithm, and can be solved for a

100 node network in approximately 25 seconds. Their algorithm always outperforms the

Floyd-Warshall node standby heuristic, and is only slightly outperformed by the heuristic

presented by Aldraho & Kist (2010) for networks with utilisations below 25%. However,

note that this algorithm uses a different standby state that uses one outgoing link but

accepts all incoming links; this is similar to the “bridged-local” state defined by Aldraho

& Kist (2011b), while the work of Aldraho & Kist (2010) is based on the “bridged-all”

state in the work of Aldraho & Kist (2011b). This project’s standby state is based on the

aforementioned “bridged-all” state, which has been considered in the implementation of

optimisation heuristics, and the heuristics themselvs are a combination of several of the

aforementioned algorithms.

Wang et al. (2014) examines energy aware traffic engineering specifically in software

defined networks, which is very similar to that performed in physical networks. As with

previously discussed methods, it also focuses on rerouting traffic to shutdown links. Of

note is the scalability, effectiveness, and execution speed of the heuristic algorithm it

presents; it executes much more quickly than the ILP optimisation — 63ms compared to

12hrs for a 25 node network — and gives similar results, and claims that it is scalable to

any network size. The authors do highlight the fact that the network is more vulnerable

to link failures and traffic bursts with the increased traffic load on the remaining active

links, but qualifies this by stating that there is currently no research on energy aware

traffic engineering that also considers reliability.
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2.1.4 Software defined networking and virtualisation

While the physical systems that are utilised in this paper are not dedicated network de-

vices, they maintain the same functionality through Software-Defined Networking (SDN)

and virtualisation. As stated by Bozakov & Papadimitriou (2013, p. 196): ‘The imple-

mented virtual routers are functionally and logically indistinguishable from traditional

routers’. This project uses a design centered on SDN, as described in chapter 4, so the

confirmation of the virtual routers’ effectiveness provides a reassuring precedence.

The use of SDN aligns well with the use of the network devices; SDN using OpenFlow

allows centralised visibility and dynamic reprogrammability, and the use of multiple flow

tables can make flow management more flexible and efficient (Akyildiz et al. 2014). These

characteristics have either been included in the requirements of the traffic engineering de-

sign stated by Aldraho & Kist (2011b), or facilitate the design’s implementation. Akyildiz

et al. (2014) explores a wide range of traffic engineering options that use OpenFlow to

implement SDN. It states that fully meshed LSPs are generally not scalable, but the sim-

plicity of SDN can alleviate the complexities of the MPLS control plane with scalability

and efficiency (Sharafat et al. 2011). Han et al. (2015) explores the effects of packet loss

and routing inconsistencies in OpenFlow switches as a result of flow table modifications.

This is exacerbated by the fact that a single policy modification can translate into multi-

ple potentially parallel and asynchronous updates across different flow tables in a single

device. The solutions proposed are the blocking and draining of the flow, and the use

of a shadow table to which the changes are made and which is swapped with the active

table once configuration is complete. As described in chapter 4, these factors have been

considered in the solution’s design.



Chapter 3

Methodology

The development of the dynamic topology mechanism, and the testbed on which it runs,

followed a defined procedure based on agile project management concepts. This chapter

describes the development methodology and the procedure used to determine the effect of

the dynamic topology mechanism on network performance. The resultant system design

and test results are detailed in chapter 4 and chapter 5, respectively.

3.1 Development methodology

The procedure that has been used to develop the dynamic topology testbed has been

separated into the following phases: research, investigation, and experimentation; incre-

mental development; performance testing; analysis; and decommissioning. The testing

phase is described in the following section, the analysis phase is described in chapter 5,

and the remaining phases are described below.

The two initial phases consumed the majority of the project’s time, as they are related to

the creation of the dynamic topology mechanism and the resolution of issues associated

with the specific technology being used. As described below, the current status of re-

search was first determined, followed by experimentation and investigation to prepare the

system and bestow the functionality required of the dynamic topology mechanism. Once

this was completed, the dynamic topology mechanism’s development could begin, which

was performed using an incremental approach based on the concepts of Agile project
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management and test driven development. Note that the two sub-phases described be-

low were executed in parallel, as the development of the dynamic topology mechanism

often presented problems that had to be solved by additional research, investigation, and

experimentation. The resultant design is detailed in chapter 4.

3.1.1 Research, investigation, and experimentation

The literature review presented in chapter 2 is a product of the initial research to deter-

mine the current status of work regarding dynamic topology mechanism implementation.

From this, the project’s direction was determined, and an initial appraisal of the work

required to achieve the project’s aims could be completed.

From the initial research, the components and capabilities required of the system could

be determined. Once the physical components were selected based on the required func-

tionality, experimentation and further research was performed to develop a software con-

figuration for the system, such that it could support the dynamic topology mechanism.

Once an initial solution for the software configuration was determined, the incremen-

tal development described below could begin. At several points during the incremental

development, further functionality was deemed necessary; to provide a solution for the

software configuration, further investigation, experimentation, and testing was performed.

As such, the system’s underlying software configuration was changing almost as frequently

as the dynamic topology mechanism during development.

3.1.2 Incremental development

A dynamic topology mechanism mainly based on that described by Aldraho & Kist

(2011b) and Aldraho et al. (2012) was developed using an incremental development

methodology based on the concepts of Agile project management (Schwalbe 2014). The

“user stories” were initially defined based on requirements discerned during the literature

review, but were amended when additional requirements were identified as a function of

the project’s progression. An amendment to the list of user stories typically had cascade

effects on the underlying software configuration of the system, and prompted additional

research, investigation, and experimentation, as alluded to above.
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The development of the dynamic topology mechanism was accompanied by an unsched-

uled, coincidental configuration of the test network and overall system. As the develop-

ment methodology also contained elements of test-driven development, the test network

to be used was a main focal point. As such, to test elements of the software, various por-

tions of the network were setup and configured during development. Note, however, that

full setup and configuration of the network was not performed until the dynamic topol-

ogy mechanism’s development had been completed, as the finalisation of the mechanism

prompted the progression to baseline determination, described below.

3.1.3 Decommissioning

Once all the required data had been measured and it was confirmed that no additional

development or testing was required, the network components were dismantled to prevent

unpredictable future use. The likelihood of malicious use is remote, but the precaution

has be taken nonetheless. Setup and testing data has been preserved to allow replication

and further analysis if necessary.

3.2 Performance validation

The system that has been developed using the above procedure must be tested to deter-

mine whether it satisfies the project requirements. This testing is focussed on network

performance, and can be divided into the four sub-phases described below: measurement

method determination, test scenario development, baseline determination, and bench-

marking. A discussion of the results of the tests, along with the results themselves, are

shown in chapter 5.

3.2.1 Measurement method determination

The network performance metrics to be used are determined from common practice (Sim-

sek & Pospiech 2013), and include the latency, jitter, packet loss, and packets received

out of order. These measurements need to be taken for each source/destination node pair

to provide easy comparison between the test scenarios described below. The network’s

traffic matrix is controlled through the generation of traffic using the program “iPerf”,
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which automatically produces a report of the connection’s jitter, packet loss, and packets

received out of order, among other statistics for UDP streams. The standard ping tool

can be used to provide the latency measurement. The programs used to organise the

collection of these network performance data on the hosts and process it on the controller

are detailed in chapter 4.

3.2.2 Test scenario development

Prior to the performance of any testing and the associated results measurement, the

test scenarios first need to be determined. These scenarios are constructed to allow the

collection of performance data that is easily comparable between configurations. Note

that in this context, “configurations” refers to the routing mechanism being used: OSPF,

MPLS, or the dynamic topology mechanism. Each of these are explained in further detail

in the following sections.

As the main focus of the testing is to determine the dynamic topology mechanism’s

performance when compared to conventional routing, the test scenarios are developed

relative to the dynamic topology mechanism and applied to all configurations. The two

key aspects that are controlled are the traffic matrices and the interval between traffic

matrix changes.

The traffic matrices are varied during the measurement interval to determine the effects

of the dynamic topology mechanism during topology changover. To this end, the traffic

matrix progression shown in tables 3.1, 3.2, and 3.3 below is applied to all configurations,

and has been selected to elicit a specific topology selection when the dynamic topology

mechanism is used. As the program used to generate the traffic also provides the majority

of the performance measurements, the traffic matrices are constructed by cumulatively

generating traffic over the test’s duration; this allows network performance measurements

to be taken during topology changeover. To allow adequate time to measure the per-

formance of both the topology changeover and the stable topology, each traffic matrix is

generated for a period of 10 minutes. Figure 3.1 depicts a representation of the cumulative

traffic generation method for a single source/destination node pair.
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Destination node

1 2 3 4 5 6 7 8 Total

S
o
u
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e

n
o
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e

1 - 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.14

2 0.02 - 0.02 0.02 0.02 0.02 0.02 0.02 0.14

3 0.02 0.02 - 0.02 0.02 0.02 0.02 0.02 0.14

4 0.02 0.02 0.02 - 0.02 0.02 0.02 0.02 0.14

5 0.02 0.02 0.02 0.02 - 0.02 0.02 0.02 0.14

6 0.02 0.02 0.02 0.02 0.02 - 0.02 0.02 0.14

7 0.02 0.02 0.02 0.02 0.02 0.02 - 0.02 0.14

8 0.02 0.02 0.02 0.02 0.02 0.02 0.02 - 0.14

Total 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 1.12

Table 3.1: Traffic matrix 1 (Mbps)

Destination node

1 2 3 4 5 6 7 8 Total

S
o
u

rc
e

n
o
d

e

1 - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.35

2 0.05 - 0.05 0.05 0.05 0.05 0.05 0.05 0.35

3 0.05 0.05 - 0.05 0.05 0.05 0.05 0.05 0.35

4 0.05 0.05 0.05 - 0.05 0.05 0.05 0.05 0.35

5 0.05 0.05 0.05 0.05 - 0.05 0.05 0.05 0.35

6 0.10 0.10 0.10 0.10 0.10 - 0.10 0.10 0.70

7 0.05 0.05 0.05 0.05 0.05 0.05 - 0.05 0.35

8 0.05 0.05 0.05 0.05 0.05 0.05 0.05 - 0.35

Total 0.40 0.40 0.40 0.40 0.40 0.35 0.40 0.40 3.15

Table 3.2: Traffic matrix 2 (Mbps)

Destination node

1 2 3 4 5 6 7 8 Total

S
o
u

rc
e

n
o
d

e

1 - 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.70

2 0.10 - 0.10 0.10 0.10 0.10 0.10 0.10 0.70

3 0.10 0.10 - 0.10 0.10 0.10 0.10 0.10 0.70

4 0.10 0.10 0.10 - 0.10 0.10 0.10 0.10 0.70

5 0.10 0.10 0.10 0.10 - 0.10 0.10 0.10 0.70

6 0.10 0.10 0.10 0.10 0.10 - 0.10 0.10 0.70

7 0.10 0.10 0.10 0.10 0.10 0.10 - 0.10 0.70

8 0.10 0.10 0.10 0.10 0.10 0.10 0.10 - 0.70

Total 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 5.60

Table 3.3: Traffic matrix 3 (Mbps)
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Figure 3.1: Traffic generation during system tests

The traffic matrices shown in tables 3.1, 3.2, and 3.3 have been selected based on the

topology selection they will elicit from the dynamic topology mechanism. The topologies

that correspond to the given matrices are shown in figures 3.2, 3.3, and 3.4 below. Note

that grey nodes are those that have been selected to be placed in a standby state, and

which have only two active interfaces: the connection to their access network (not shown),

and a connection to one active node in the network. A full description of the system’s

network and the dynamic topology mechanism is provided in chapter 4, and an analysis

of the traffic measurement accuracy is provided in chapter 5.

 

Figure 3.2: Topology selection from traffic matrix 1
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Figure 3.3: Topology selection from traffic matrix 2

 

Figure 3.4: Topology selection from traffic matrix 3

3.2.3 Baseline determination

This phase was concerned with the collection of data that can be used as a reference point

for the dynamic topology mechanism’s performance analysis, as shown in chapter 5. To

take the measurements, the system was fully setup using the test network and software

configuration detailed in chapter 4. To allow a suitable comparison of the data, minimal

changes were made to the underlying software between tests. The test cases that were

used were based on conventional network operation: all nodes in an active state, traffic

routed using OSPF; all nodes in an active state, traffic routed using MPLS with a static

topology. OSPF routing was selected as it is widely used in current networks, and is

frequently used as a baseline for network performance (Suryasaputra et al. 2005). MPLS

was selected to isolate the effects of the dynamic topology mechanism, which also uses

MPLS.

As the intent is to provide a comparison for the performance of the dynamic topology

mechanism, the same traffic matrices are used for both the baseline determination and

benchmarking, the latter of which is described in general below. For each of the test

configurations, network performance data were collected for a range of traffic matrices,
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as described above.

This phase was withheld until the conclusion of the development phase. This prevents a

premature collection of data that may be made unusable by a change in the underlying

software configuration. Note that the conventional network operation using OSPF could

have been examined very early in the project, as the required software is quite easy to

configure. However, the use of a standard software configuration, i.e. one that can be

used for both conventional network operation using OSPF and for network operation using

the dynamic topology mechanism, allows the performance variations to be attributed to

the differences in network operation, rather than differences in the underlying software

configuration.

3.2.4 Benchmarking

The data to be used in the analysis of the performance of the dynamic topology mechanism

was collected in this phase. There is little explanation required at this point, as the same

procedure is used for the baseline determination, with the key difference being that the

dynamic topology mechanism is used to place nodes in a standby state. The measurements

that were made in this phase are analysed in chapter 5.



Chapter 4

Dynamic Topology Mechanism

and System Design

This chapter describes the final system design that is the result of the incremental de-

velopment and testing outlined in chapter 3. The sections below describe a holistic view

of the system, the specific hardware and software used for the controller and network

nodes, and the dynamic topology mechanism’s operation. Note that the procedure used

to configure the components of the system and a full listing of the dynamic topology

mechanism’s source code are provided as appendix C and appendix B, respectively.

4.1 Overall system functionality and configuration

The system’s logical layout is shown in figure 4.1 below, and is based on Telstra network

AS1221, which has been used as a test network in several studies, namely the work of Al-

draho & Kist (2010) and Aldraho & Kist (2011b). The inter-node links each have speeds

of either 1 or 10 Mbps, with dashed lines in figure 4.1 signifying the former, and solid

lines signifying the latter; the link speeds have been scaled down by a factor of 1,000 from

those in AS1221 to allow the network to be replicated using readily available hardware.

Each node is capable of routing traffic using both OSPF and MPLS, with the latter being

the foundation of the dynamic topology mechanism described below; each node must also

monitor the controller’s current topology selection, and implement topology changes as

appropriate. The hosts connected to the access network of each of the nodes are used to
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Figure 4.1: Logical system layout

simulate a local network of hosts through traffic generation and reception to and from

each of the seven other access networks. The controller connected to node eight constructs

a traffic matrix by monitoring the traffic between each of the node’s access networks, and

uses this data to optimise the network topology. The controller then communicates the

topology change to the nodes as required. Node eight was selected as the controller’s

connection to the network as it is in an active state for 97% of the randomised traffic

matrices applied by Aldraho & Kist (2011b). According to the same work, node 3 was

never in a standby state, but was not selected as the controller’s connection as the total

bandwidth of its connected links is 22 Mbps, while node 8’s total is only 12Mbps.

The hardware and software required to deliver the previously stated functionality, and to

provide a foundation for the operation of the dynamic topology mechanism, is described

below.

4.1.1 Hardware configuration

The hardware configuration is quite straightforward and relies on readily accessible com-

ponents. Each of the eight node and host pairs utilise a single Raspberry Pi model 1B+

with an 8GB SD card for its main memory, and USB to Ethernet adapters to augment the

Raspberry Pi’s standard capability of a single Ethernet connection. It has been proven

that the Raspberry Pi’s do not present processing bottlenecks, and can easily process

the maximum total connected bandwidth of 22 Mbps (Paramanathan et al. 2014). The

controller is a Dell Vostro V13 with no additional hardware, and connects to the network
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through node eight using its on-board Ethernet connection.

Providing power to all eight Raspberry Pis simultaneously required a moderately unique

solution, and relies on a four-way split of the DC provided by two AC/DC converters.

The total energy consumption of all devices at 100% CPU utilisation and all links active,

using the formulae provided by Kaup et al. (2014), is approximately 34.6W, i.e. 6.92A

at 5V; this is evenly divided between the two groups of nodes, nodes 1-4 and nodes 5-8.

While this results in each group of four nodes drawing 3.46A at 5V — 460mA more than

the rated current of the DC adapters — it is modelled on the worst case scenario and is

not likely to occur. The fact that the Raspberry Pi model 1B+ requires 0.5-1W less than

the Raspberry Pi model 1B on which the model was based also reduces the likelihood of

this scenario occurring.

The physical devices utilised by the system are shown in figure 4.2 below, and include the

following components:

• 240V AC General Purpose Outlet: Household G.P.O., provides 240V AC up

to 10A

• AC/DC converter - 5V 3A: Converts the 240V AC from the G.P.O. into 5V

DC with a maximum current draw of 3A, i.e. maximum current draw of 62.5mA at

240V

• 4-way DC power splitter: Splits the single 5.5mm x 2.5mm DC connector given

by the DC adapter to provide four physical 5.5mm x 2.5mm DC connections

• DC power to micro USB adapter: Converts the 5.5mm x 2.5mm DC connector

into a micro USB connector, which can be used to power the Raspberry Pi model

1B+

• Raspberry Pi model 1B+: Physical system that provides the functionality of a

single host and node pair

• USB2.0 10/100Mbps Ethernet adapter: Provides network connectivity; the

Raspberry Pi model 1B+ only has a single on-board 10/100 Ethernet port but four

USB ports

• 8GB micro SD card: Main storage for the Raspberry Pi model B+.
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• Dell Vostro V13: Physical system to provide central controller functionality. Note

that this includes a proprietary AC/DC converter, not shown in figure 4.2

• Ethernet cables: Provides network connectivity between devices. Not shown in

figure 4.2 for simplicity
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Figure 4.2: Physical system layout

4.1.2 Software configuration

The software configuration is slightly more involved than the hardware configuration,

particularly for the nodes and hosts running on the Raspberry Pis, but still uses readily

available components. The requirements are quite specific, as the software configuration

provides a foundation for the capability utilised by the dynamic topology mechanism.

This section details the software configuration of the controller, nodes, and hosts. A full

setup instruction to recreate the controller’s, network nodes’, and hosts’ configuration for

the dynamic topology mechanism is provided as appendix B.

Controller

The controller’s software configuration is quite lightweight, as the majority of the func-

tionality is either provided by the operating system by default, or is provided by the
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dynamic topology mechanism. The operating system and software packages used on the

central controller are listed in table 4.1 below. Note that this is not a comprehensive list

of installed software packages; the dependencies for the packages listed above, in addition

to the operating system’s default packages, were also installed.

Software name Version Description

Ubuntu 14.04.2 Linux operating system.

sFlowTool 3.35 sFlow analyser. Collects sFlow messages.

NTP 1:4.2.6.p5+dfsg-3ubuntu2.14.04.3 Network Time Protocol server.

Table 4.1: Controller software

sFlowtool is used to collect the sFlow messages generated by each of the nodes, which

provide information regarding the source and destination of traffic, and can be used to

calculate demands between source/destination node pairs. The NTP server provides the

software clock synchronisation for the nodes, as an accurate time source is a requirement to

minimise network disruption during the dynamic topology mechanism’s topology changes.

Note that the Quagga routing suite, which provides OSPF and other routing functionality,

is not required, as the controller’s connection to node eight is used as a default gateway,

and node eight advertises the controller’s network via its OSPF configuration.

Network nodes and hosts

The software that provides the required functionality for the network nodes and hosts

is described below, and elaborated further in the explanation of the dynamic topology

mechanism. Note that a single Raspberry Pi is configured as a network node, but also

runs the network host in an LXC container, which is similar to a virtual machine running

the same operating system as its host machine. The network nodes’ software is listed in

table 4.2 below.

The OSPF functionality is provided by the Quagga routing suite, and is used as a baseline

for the dynamic topology mechanism’s performance, as described in chapter 3. The

cURL package is generally useful for command line transfer of files using FTP, but the

tool is not used directly; the cURL libraries are the main requirement, as the dynamic

topology mechanism requires them for the transfer of topology configuration files from

the controller. Somewhat similarly, the Autoconf and Debootstrap packages are not used
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Software name Version Description

Raspbian May 2015 Linux operating system.

Quagga 0.99.22.4-1+wheezy1 BGP/OSPF/RIP routing daemon.

cURL 7.26.0-1+wheezy13 Command line tool for transferring data with URL syntax.

Autoconf 2.69-1 Automatic configure script builder.

LXC 1.1.0 Userspace container object for full resource isolation and resource control.

Debootstrap 1.0.48+deb7u2 Debian bootstrapper.

Open vSwitch 2.4.90 Multilayer software switch.

Wondershaper 1.1a-6 Traffic shaping script.

Table 4.2: Network node software

directly, but are required to install LXC and create the LXC container that will provide

the host’s functionality. The Wondershaper package is simple but vital for the emulation

of Telstra network AS1221, as it applies bandwidth limitations to the inter-node links.

As alluded to in the controller’s software description, NTP synchronisation is required

for the network nodes, but no additional packages are required as NTP is provided by

default in the listed Raspbian distribution.

Open vSwitch is perhaps the most vital component in terms of supporting functionality for

the dynamic topology mechanism, as it provides MPLS traffic processing capability that

can be explicitly programmed. This multilayer switch is programmed using flow tables,

which specify criteria for matching a packet, and the actions to apply to the packet once it

is matched. For normal operation using OSPF, the flow tables are configured to drop all

packets to prevent the generation of duplicate packets in the network. For routing using

MPLS, with or without the dynamic topology mechanism, the flow tables are configured

as shown in figure 4.3, and elaborated upon in section 4.4. This flow table configuration

has been designed to minimise the number of flow table entries that need to be modified

during topology changes. For an n-node network, the n2 entries in table 0 are static, and

only n-1 changes need to be made; for node one’s flow table example shown in figure 4.3,

only the entries in tables 2-8 need to changed. In addition to the MPLS processing, Open

vSwitch also provides traffic statistic reporting by default, which is instrumental to the

dynamic topology mechanism’s traffic monitoring, described in section 4.3 below. Open

vSwitch on each of the nodes samples the traffic it processes and sends sFlow messages

to sFlowTool on the controller.
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Figure 4.3: Flow table configuration example - Node one

The hosts’ software is quite simple, as the only role they perform is traffic generation

and network performance data collection. The hosts’ software configuration is shown in

table 4.3 below.

Software name Version Description

Raspbian May 2015 Linux operating system.

iPerf 2.0.5+dfsg1-2 Traffic generation and measurement.

iputils-ping 3:20121221-5 Tools to test the reachability of network hosts.

Table 4.3: Network host software

To test the performance of the dynamic topology mechanism, the network traffic must

be controlled. This control is attained through traffic generation using iPerf on the host

connected to the node’s access network. All of the metrics used to determine network

performance, as detailed in chapter 3, with the exclusion of latency, are provided by iPerf

by default. To determine the latency during the testing, the ping utility must be installed,
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which is surprisingly not installed by default. The hosts also require NTP synchronisation

to control the traffic generation timing during testing, but this is controlled through the

network node and automatically passed to the LXC container, so no additional software

is required.

To provide insight into the purpose of the network nodes’ and hosts’ software, a dia-

grammatic representation of the relationship between some of the components is shown

below in figure 4.4. The grey lines represent the processing of network traffic for the host

connected to the node’s access network. Communication between the host and the node

is via virtual Ethernet ports, and the traffic is either processed using the routes generated

by Quagga, or by the flows in Open vSwitch. Note that the packets are duplicated, so

Open vSwitch must drop the packet to prevent the duplicates from reaching the network.

 

Raspberry Pi 1B+

Linux Raspbian 3.18

Open vSwitch

Ethernet port

Ethernet port

Quagga

Virtual Ethernet Port

LXC container

Virtual Ethernet Port

iPerf

Figure 4.4: Network node software
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4.2 Dynamic topology mechanism

The dynamic topology mechanism performs functions very similar to that proposed by Al-

draho & Kist (2011b), but incorporates other work (Aldraho & Kist 2010, Aldraho et al.

2012, Polverini et al. 2015) in addition to original work. The operation of the dynamic

topology mechanism relies on two programs: one on the controller, and one on each of

the nodes. These programs, in addition to the programs written to test the system, are

explained in detail in the following sections, and outlined below:

1. Controller: Monitor network traffic

2. Controller: Optimise network topology

• Focus on energy consumption reduction through the use of router standby

states

• Ensure link utilisation does not rise above a threshold value for any of the links

• Apply optimisation heuristics

3. Controller/Nodes: Communicate the topology change

4. Nodes: Implement the topology change

5. Repeat

4.3 Controller program operation

The controller’s dynamic topology mechanism program sequentially and iteratively per-

forms four main functions: network traffic monitoring, traffic matrix generation, topology

optimisation, and topology communication. These are each explained in detail below,

along with pseudocode that corresponds to the source code that has been included as

appendix C.

4.3.1 Network traffic monitoring and traffic matrix generation

As the nodes in the network are logically fully meshed, with every node possessing a path

to the seven other nodes, the traffic matrix can be directly constructed from the traffic
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data statistics for each of the 56 source/destination node pairs. The traffic data statistics

are calculated by the controller program using a stream of sFlow messages. The stream

is piped from sFlowTool, which collects the sFlow messages from each nodes’ instance of

Open vSwitch. The command used to do so is shown below:

daniel@controller:~$ sflowtool -l | sudo ./controller

The use of the -l switch formats the sFlow messages in the stream as comma-separated

values, an example of which is shown below:

FLOW,192.168.80.1,9,4,9a3a524b5b22,fe960a04a4d4,0x0800,0,0,

192.168.80.100,192.168.10.1,17,0x00,64,37156,5001,0x00,1516,1498,32

The fields that are underlined in the above example are those used to construct the traffic

matrix. These fields contain the agent IP address (i.e. reporting node’s IP address),

the source and destination IP addresses of the traffic, the traffic’s packet size, and the

sampling rate, respectively.

The controller program captures and analyses each sFlow message, and uses its data to

determine the traffic demands of the network, which are used to directly construct the

traffic matrix. The sFlow messages are captured for an interval of at least 15 seconds,

which is measured to µs resolution for use in the traffic calculation. At the conclusion of

the measurement interval, the traffic demands are calculated for each source/destination

pair using the following formula:

Traffic demand (Mbps) =
n× λ× α× 8

1, 000, 000× τ
(4.1)

In equation 4.1 above:

• n = number of samples captured during interval τ

• λ = sampling rate (packets/sample)

• α = packet size (bytes)

• τ = measurement interval (seconds)

To improve the calculation’s resilience to momentary fluctuations in network traffic, the

traffic demand calculation uses data gathered over two measurement intervals, i.e. 30

seconds. Another measure, which aims to minimise the processing burden and to prevent

duplicate processing of traffic, is to only capture sFlow messages if the agent and desti-

nation are on the same network, i.e. traffic is destined for the reporting node or its access

network. The accuracy of the network traffic monitoring implementation is examined in

chapter 5.
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4.3.2 Topology optimisation

Once the traffic matrix has been constructed, the controller program can then attempt to

optimise the topology with the aim of minimising the energy consumption of the network

by maximising the number of nodes in the standby state. The topology optimisation

algorithm is relatively simple and has been influenced by the work of Aldraho & Kist

(2010) and Polverini et al. (2015). The general concept is to iteratively select a node

to be placed into the standby state and calculate the predicted effect on the network

links’ utilisation. If the result of placing the node in standby forces any link utilisation

above a threshold value, or if any node is isolated from the network, the node is restored

and optimisation is reattempted until no options remain. To allow sufficient capacity

to withstand increases in network traffic and inaccuracies in traffic matrix calculation,

the threshold value of 70% link utilisation has been selected. Note that the optimisation

algorithm only performs calculations, and does not impact the network until the topology

selection has been finalised.

As previously stated, while the optimisation is focused on reducing energy consumption,

the implementation of standby states, similar to those described by Polverini et al. (2015)

and Aldraho et al. (2012), and the measurement of their effect on the network has been left

as future work. In this implementation, the standby state is only implemented through

the modification of traffic processing, which is detailed in the explanation of the network

node program’s operation.

The optimisation algorithm uses the traffic matrix and an implementation of Dijkstra’s

algorithm to determine the link utilisation for a topology with all nodes active; link

weights are determined using equation 4.2 below:

Link weight =
10

Link bandwidth (Mbps)
(4.2)

To provide data to the optimisation heuristics, the shortest paths are examined to deter-

mine the frequency of each node’s use as a transit node. The least used node is selected

as a candidate to be placed in standby; as the standby node must maintain only a single

connection to the network, the link to the most used adjacent node is preserved and all

others are logically removed from the standby node. The node’s traffic load is calculated

as the node’s total connected link traffic load, and is used to resolve any conflicts, i.e if

two nodes have identical and maximum or minimum usage in the network. The nodes’

adjacencies are temporarily updated and the link utilisations are recalculated using the



4.3 Controller program operation 33

traffic matrix and the modified topology; the topology is also examined to ensure none of

the nodes have been isolated. As previously alluded to, the topology’s failure criteria are

the utilisation of any of the links rising above the threshold value of 70%, or the isolation

of any of the nodes from the network. If either of the failure criteria are met, the latest

topology modifications are reversed and the node that was in standby is omitted from the

set of standby candidates. The optimisation algorithm executes until it has attempted

to place each node into standby, and the resultant topology is written to a local file to

prepare it for communication and implementation.

Note that the dynamic topology mechanism can be disabled by providing any number

of command line arguments to the controller’s program. Disabling the dynamic topoogy

mechanism simply produces a topology configuration file that has all nodes active and

uses shortest path routing. This functionality was included to enable measurement of the

second baseline described in chapter 3: all nodes in an active state, traffic routed using

MPLS with a static topology.

4.3.3 Topology communication

Once the optimised topology has been written to a local file, it is compared to the current

topology; if there are differences between the two topologies, the oldest is overwritten, and

the topology change is communicated to the nodes. The topology change is not directly

communicated to the nodes, and relies on the nodes monitoring the modification time

of the controller’s topology configuration file, as described in the following section. The

topology configuration file contains the next hop node for each source/destination node

pair, and is comprised of eight rows of eight comma-separated values; the rows signify

source nodes and the fields in the rows signify destination nodes. An example of the

topology configuration file’s contents is shown in listing 4.1 below.

Listing 4.1: Topology configuration file example

1,7,7,7,7,7,7,7,

7,2,3,3,3,7,7,3,

8,2,3,8,5,8,8,8,

8,8,8,4,8,8,8,8,

3,3,3,3,5,3,3,3,

7,7,7,7,7,6,7,7,

1,2,8,8,8,6,7,8,

7,3,3,4,3,7,7,8,
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In the above, you can see that nodes one, four, five, and six have been placed in standby

for this topology, as the next hop for all destinations is the same for a single source.

Note that if the source and destination are equal, i.e. along the diagonal from top-left

to bottom-right, the next hop is the current node, and the value is ignored in the nodes’

program.

After the optimised topology has been written to a local file, it is compared line-by-

line with the topology file currently being used. If any line is different, the old file is

overwritten, which has the appearance of updating the file contents and modification

time from the nodes’ perspective, which prompts each of them to pull the new topology

configuration file. The network node program operation description covers the use of the

file modification times and data in further detail, but it is evident that the nodes and the

controller’s software clocks must be synchronised, as previously described in the software

configuration.

4.3.4 Pseudocode

The source code for the controller’s dynamic topology mechanism program is provided

as appendix C, and is shown below as pseudocode for the purpose of clarity. There are

two components to the controller’s program; the main program, and the optimisation

algorithm.

Main program

1. Define measurement interval and topology configuration filename, and declare vari-

ables

2. Initialise adjacency matrix with full topology

3. Capture measurement start time

4. Enter infinite loop

(a) Clear sFlow data from last captured message

(b) Get sFlow message from stream input

(c) Process sFlow message
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i. Dump unwanted sFlow message fields

ii. Get the node number of the message agent

A. Continue to next sFlow message capture if the node number is not one

of the expected values.

iii. Dump unwanted sFlow message fields

iv. Get the node number of the traffic’s source

A. Continue to next sFlow message capture if the node number is not one

of the expected values.

v. Dump unwanted sFlow message fields

vi. Get the node number of the traffic’s destination

A. Continue to next sFlow message capture if the node number is not one

of the expected values

vii. Dump unwanted sFlow message fields

viii. Get the traffic’s packet size

ix. Dump unwanted sFlow message fields

x. Get the sFlow sampling rate

(d) If the agent and destination nodes are equal, multiply the packet size by

the sample rate and add it to the current traffic count for the correspond-

ing source/destination pair.

(e) Measure the time difference between now and the measurement start time

(f) If the time difference is greater than the measurement interval, construct the

traffic matrix and optimise the topology

i. Capture a new measurement start time

ii. Use the current and previous traffic counts, the current and previous time

differences, and equation 4.1 to calculate the traffic demand for every

source/destination node pair

iii. Store the current traffic count and time difference as the previous traffic

count and time difference

iv. Display the traffic matrix at standard output

v. Create a new, empty topology configuration file

vi. Run the topology optimisation algorithm and write the output to the new

file

vii. Compare the new topology with the current topology
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viii. If the files are identical, delete the new file, otherwise, overwrite the old

file with the new file

(g) Return to the start of the loop

Optimisation algorithm

1. Store the traffic matrix, adjacency list, output filename, and dynamic topology

mechanism deactivation switch state (all passed by value from calling function)

2. Determine number of nodes in the network, initialise link utilisation threshold, and

declare variables

3. Set all nodes to be active

4. Calculate shortest path for each source/destination node pair using Dijkstra’s algo-

rithm

5. Use the traffic matrix and the shortest paths to determine the traffic load on each

link

6. Calculate the traffic loading on each node as the sum of the traffic load on all

connected links

7. Use the link traffic load and link bandwidths to calculate the link utilisation per-

centage

8. Find maximum link utilisation percentage

9. If the dynamic topology mechanism is not disabled, loop while the maximum link

utilisation is less than the threshold value

(a) Break the loop if attempts have been made to place each node in standby

(b) Clear the previously calculated node and link traffic loads

(c) Set the variable that tracks the reachability of the nodes to false (guarantees

at least one execution of the loop below)

(d) Loop while the link utilisation is above the threshold or one or more nodes are

unreachable

i. Use the shortest paths to determine the frequency of each node’s use as a

transit node
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ii. From the set of nodes that are candidates for standby, find the node that

is used as a transit node the least. Use the nodes’ traffic load to resolve

any conflicts

iii. Break the loop if a least used node cannot be determined

iv. Remove the node from the set of nodes that are candidates for standby

v. Store the node’s adjacency information. This is only used if placing the

node in standby has to be reversed

vi. From the set of nodes adjacent to the node to be placed in standby, find

the node that is used as a transit node the most. Use the nodes’ traffic

load to resolve any conflicts

vii. Update the adjacency matrix of the node to be placed in standby and all

its adjacent nodes

viii. Recalculate shortest paths for new topology

ix. Recalculate the traffic load on each link

x. Recalculate the link utilisation percentage

xi. Find maximum link utilisation percentage

xii. Test if all nodes are reachable from every node

xiii. If the link utilisation is above the threshold or one or more nodes are

unreachable, reverse the actions taken to modify the adjacency matrix

and return to the start of the loop

(e) Recalculate the traffic load on each link

(f) Recalculate the link utilisation percentage

(g) Find maximum link utilisation percentage

(h) Return to the start of the loop if the maximum link utilisation is less than the

threshold value

10. Write the next hop in the shortest path for each source/destination node pair to

the specified output file

4.4 Network node program operation

The network nodes’ dynamic topology mechanism program initialises the Open vSwitch

configuration that provides MPLS functionality, ensures the host connected to the access
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network is running, and iteratively checks for topology updates and implements the topol-

ogy change via Open vSwitch flow table entry modifications if required. The components

of the network nodes’ program are explained in detail below, along with pseudocode that

corresponds to the source code that has been included as appendix C.

4.4.1 System initialisation

The system initialisation is extremely important for the operation of the dynamic topology

mechanism, as it sets the foundation for the swift, synchronised reconfiguration of the

network. The same program runs on all eight nodes, but with actions varying slightly for

each node, so the program must first determine which node it is running on. It does this

by examining the node’s hostname, which is in a standard format of “nodeX” where “X”

is a digit between one and eight. Another key element is synchronisation, with all nodes

using NTP to synchronise with the controller.

The final and arguably the most important action during node initialisation is the config-

uration of Open vSwtich. Once it has been confirmed that Open vSwtich and the LXC

container are running, or started if necessary, the MAC addresses of the LXC container’s

interface and the node’s interface to the LXC container are retrieved. These MAC ad-

dresses are important as they allow the flow table entries to be configured to process

traffic destined for the node’s access network, i.e. destined for the access network’s host

running in the LXC container. Using these MAC addresses and the node number, the

Open vSwitch flows can be setup as previously described in section 4.1.2 and shown in

figure 4.3. The flow table configuration can be divided into five different categories: out-

put handling flow tables, firewall flows, and transit, terminating, and originating traffic

processing flows, .

Originating traffic processing flows

As the nodes perform MPLS ingress and egress actions, they act as the barrier between

the IP network of their access network and the MPLS network between the nodes. The

traffic coming from the node’s access network will be IP traffic with a destination of one

of the other nodes’ access networks. The node must push an MPLS label onto the packet,

set the label as per the network’s convention, and send the packet to the relevant output
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handling flow table. The label numbering convention used in the network is quite simple,

and is based on the source and destination node numbers. For example, a packet with

the label “306” has originated from node three and is destined for node six. An example

of a set of originating traffic processing flows for node four are shown in listing 4.2 below.

Listing 4.2: Originating traffic processing flows example (node four)

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.10.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :401,

goto_table :1

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.20.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :402,

goto_table :2

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.30.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :403,

goto_table :3

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.50.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :405,

goto_table :5

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.60.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :406,

goto_table :6

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.70.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :407,

goto_table :7

table=0,priority =1000 , in_port=1,dl_type =0x0800 ,nw_dst

=192.168.80.0/24 , actions=push_mpls :0x8847 ,set_mpls_label :408,

goto_table :8

In the above:

• table=0 is the first table that is examined for an entry that matches the packet

• in_port=1 is the Open vSwitch port that corresponds to the node’s virtual Ethernet

port connected to the LXC container

• dl_type=0x0800 matches to IP packets

• nw_dst=192.168.10.0/24 matches to a specific destination network

• push_mpls:0x8847 changes the protocol form IP to MPLS

• set_mpls_label:401 sets the packet’s MPLS label value

• goto_table:1 resubmits the packet for processing by another flow table, which in

this implementation is one of the output handling flow tables
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Transit and terminating traffic processing flows

The transit and terminating traffic processing flows are identical for every node, as they

simply provide a match for every possible MPLS label in the system, and define the

output handling flow table to be used. A snippet of the 56 flow table entries that fall into

this category are shown in listing 4.3 below.

Listing 4.3: Transit and terminating traffic processing flows snippet

...

table=0,priority =500, dl_type =0x8847 ,mpls_label =401, actions=

goto_table :1

table=0,priority =500, dl_type =0x8847 ,mpls_label =402, actions=

goto_table :2

table=0,priority =500, dl_type =0x8847 ,mpls_label =403, actions=

goto_table :3

table=0,priority =500, dl_type =0x8847 ,mpls_label =405, actions=

goto_table :5

table=0,priority =500, dl_type =0x8847 ,mpls_label =406, actions=

goto_table :6

table=0,priority =500, dl_type =0x8847 ,mpls_label =407, actions=

goto_table :7

table=0,priority =500, dl_type =0x8847 ,mpls_label =408, actions=

goto_table :8

table=0,priority =500, dl_type =0x8847 ,mpls_label =501, actions=

goto_table :1

table=0,priority =500, dl_type =0x8847 ,mpls_label =502, actions=

goto_table :2

table=0,priority =500, dl_type =0x8847 ,mpls_label =503, actions=

goto_table :3

table=0,priority =500, dl_type =0x8847 ,mpls_label =504, actions=

goto_table :4

table=0,priority =500, dl_type =0x8847 ,mpls_label =506, actions=

goto_table :6

table=0,priority =500, dl_type =0x8847 ,mpls_label =507, actions=

goto_table :7

table=0,priority =500, dl_type =0x8847 ,mpls_label =508, actions=

goto_table :8

...

In the above:

• table=0 is the first table that is examined for an entry that matches the packet

• dl_type=0x8847 matches to MPLS packets

• mpls_label:401 matches to a specific MPLS label value

• goto_table:1 resubmits the packet for processing by another flow table, which in

this implementation is one of the output handling flow tables
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Output handling flow tables

The output handling flow tables are the only ones that are modified when the topology

change is implemented. The network traffic does not directly match with the output

handling flow tables, and must first be processed by one of the flow table zero entries.

Each output handling flow table only contains one entry, and apart from the flow table

that handles traffic destined for the current node, they only perform two actions. These

are described in further detail in section 4.4.3, and the initial entry only performs normal

processing, which results in the packets being dropped as the system cannot process MPLS

packets. The flow table that handles traffic destined for the current node is more detailed;

it pops the MPLS label, which converts the packet back to IP, modifies the source and

destination MAC addresses to be the node’s interface to the LXC container and the LXC

container’s interface address respectively, and outputs the packet on the access network

interface. An example of the initial set of output handling flow tables for node four are

shown in listing 4.4 below.

Listing 4.4: Initialised output handling flow tables example (node four)

table=1, actions=normal

table=2, actions=normal

table=3, actions=normal

table=4, actions=pop_mpls :0x0800 ,mod_dl_src :11:22:33:44:55:66

mod_dl_dst :66:55:44:33:22:11 , 1

table=5, actions=normal

table=6, actions=normal

table=7, actions=normal

table=8, actions=normal

In the above:

• table=1 specifies the table number, which corresponds to the destination node

• As there are no match criteria, all packets sent to the table are matched

• actions=normal sends the packet to the OS for normal processing. As the packet

must be an MPLS packet to reach this point, and the OS cannot process MPLS

packets, this has the same effect as dropping the packet

• pop_mpls=0x0800 removes the MPLS packet and changes the protocol to IP

• mod_dl_src:11:22:33:44:55:66 changes the source MAC address to that spec-

ified. In this implementation, the address of the node’s interface to the access

network, i.e. the virtual interface to the LXC container, is used

• mod_dl_dst:66:55:44:33:22:11 changes the destination MAC address to that
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specified. In this implementation, the address of the host connected to the node’s

access network, i.e. the LXC container’s interface to the node, is used

• 1 specifies the output Open vSwitch port. In this implementation, port 1 is the

connection to the access network

Firewall flows

As previously described in section 4.1.2, any remaining packets, i.e. packets that can be

processed by Quagga, must be dropped. Any actions other than dropping the packet will

almost certainly result in duplicate packets in the network, as the packet will be processed

by both Open vSwtich and Quagga. The single flow table entry that acts as a firewall on

all nodes to prevent the duplicate packets from entering the network is shown in listing 4.5

below.

Listing 4.5: Firewall flow table entry

table=0, priority=5, actions=drop

In the above:

• table=0 is the first table that is examined for an entry that matches the packet

• priority=5 places the entry at a higher priority to the default “catch-all” entry

that forwards the packet for normal processing

• As there are no match criteria, all packets that have not matched another entry are

matched

• actions=drop discards the packet and prevents any further processing

4.4.2 Topology change monitoring and communication

As previously described in section 4.3, the controller does not send topology updates to

the nodes, the nodes must monitor the controller for topology changes. The controller

overwrites its topology configuration file and updates the file modification time whenever

there is a topology change; for the nodes to be aware of topology changes, they must

repeatedly pull the modification time of controller’s topology configuration file and com-

pare it to the modification time of their local copy of the file. This implementation uses

cURL to retrieve the file header, which contains the modification time. If the controller’s
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copy is newer than the local copy, the node retrieves the updated file and implements the

topology change, as described below. Otherwise, the node sleeps for five seconds before

checking the modification times again.

This implementation uses cURL to get the topology configuration file from the controller;

if cURL is unsuccessful, the node sleeps for 2.5 seconds before trying again. Once the file

has been successfully retrieved from the controller, the modification time is updated to

ensure it matches that of the controller’s copy, and the node proceeds to implement the

topology change.

4.4.3 Topology change implementation

Once the node’s topology configuration file has been updated, the topology change can

be implemented. This must be synchronised across the network to minimise disruptions

to the network traffic. As previously discussed, the flow tables have been constructed to

minimise the number of changes that need to be made to implement topology changes.

The output processing flow tables are modified to align with the next hops specified in

the topology configuration file. The impact of topology changes on network performance

is discussed in chapter 5.

The use of timers for topology changeover, as discussed by Aldraho et al. (2012), has

been replaced by a flow table configuration changeover at synchronised using NTP. The

topology changeover is synchronised to the closest five second interval to swiftly react

to topology changes while still allowing sufficient time for all nodes to synchronise. The

accuracy of NTP synchronisation is heavily dependant on the number of hops between

the server and the client (Machizawa & Iwama 2013). The absolute worst case scenario

in this project’s network is a distance of eight hops, which results in a synchronisation

accuracy of approximately ±250µs.

Once time has advanced to the topology changeover time, the topology change is imple-

mented by modifying the output processing flow tables, which requires information from

the topology configuration file and the node’s interfaces. The topology configuration file

states the next hop for each destination for all source and destination node pairs. The

node must retrieve the relevant data from the file, and then convert the next hops into

output ports. Due to the addressing scheme used in this implementation, the interface’s



4.4 Network node program operation 44

Interface Port number

veth0 1

eth0 2

eth1 3

eth2 4

eth3 5

Table 4.4: Relationship between node interfaces and Open vSwitch port numbers

IP addresses can be examined to determine the neighbouring node connected to each

interface. The interfaces must finally be converted to Open vSwitch port numbers before

they can be used to update the flow tables; due to the port numbering scheme used in

this implementation, shown in table 4.4, this is a simple task. The output processing flow

tables can then be updated to correspond with the new topology; an example is shown

below in listing 4.6

Listing 4.6: Output handling flow tables after topology change example (node four)

table=1, actions=dec_mpls_ttl ,3

table=2, actions=dec_mpls_ttl ,3

table=3, actions=dec_mpls_ttl ,3

table=4, actions=pop_mpls :0x0800 ,mod_dl_src :11:22:33:44:55:66

mod_dl_dst :66:55:44:33:22:11 , 1

table=5, actions=dec_mpls_ttl ,3

table=6, actions=dec_mpls_ttl ,3

table=7, actions=dec_mpls_ttl ,3

table=8, actions=dec_mpls_ttl ,3

In the above:

• table=1 specifies the table number, which corresponds to the destination node

• As there are no match criteria, all packets sent to the table are matched

• dec_mpls_ttl decrements the MPLS packets time to live (TTL) counter

• 1 specifies the output Open vSwitch port

• pop_mpls=0x0800 removes the MPLS packet and changes the protocol to IP

• mod_dl_src:11:22:33:44:55:66 changes the source MAC address to that spec-

ified. In this implementation, the address of the node’s interface to the access

network, i.e. the virtual interface to the LXC container, is used

• mod_dl_dst:66:55:44:33:22:11 changes the destination MAC address to that

specified. In this implementation, the address of the host connected to the node’s
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access network, i.e. the LXC container’s interface to the node, is used

4.4.4 Pseudocode

The source code for the node’s dynamic topology mechanism program is provided as

appendix C, and is shown below as pseudocode for the purpose of clarity. There are three

components to the node’s program; the main program, the initialisation and topology

implementation functions, and the cURL functions.

Main program

1. Define interrupt handler that removes Open vSwitch configuration and deletes the

local topology configuration file

2. Define the time to wait between modification time checks, the controller’s URL to

pass to cURL, and the configuration filename and declare variables

3. Determine the current node by examining the last character of the hostname

4. Force the software clock to synchronise with the controller’s NTP server

5. Start and initialise the LXC container and Opn vSwitch

6. Enter infinite loop

(a) Use cURL to get the modification time of the controller’s topology configura-

tion file

(b) Test if the remote file’s modification time is later than the local file’s modifi-

cation time

(c) If the remote file is newer:

i. Attempt to get the topology configuration file from the controller

ii. If unsuccessful, wait for half the defined period of time and return to the

start of the loop

iii. If successful, update the modification time of the local topology configu-

ration file and implement the topology change

(d) If the remote file is not newer:

i. Wait for the defined period of time
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(e) Return to the start of the loop

Initialisation

1. Store the current node number (passed by value from calling function)

2. Check for presence of PID files to determine if Open vSwitch is running

3. If Open vSwitch is not running, start it

4. Check if the LXC container is running

5. If the LXC container is not running, start it

6. Get the MAC address of the LXC container’s interface using the ARP cache

7. Get the MAC address of the node’s interface that connects to the LXC container

using the interface’s address file

8. Add the default output handling flow tables to Open vSwitch

9. Add the transit and terminating traffic processing flows to flow table zero of Open

vSwitch

10. Modify the output handling flow table for terminating traffic using the node current

number and LXC container and node MAC addresses

11. Add the originating traffic flows to flow table zero of Open vSwitch using the current

node number

12. Add the firewall flow to flow table zero of Open vSwitch

Topology change implementation

1. Store the topology configuration filename and current node number (passed by value

from calling function)

2. Declare variables

3. Get current time

4. Determine topology change time
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5. Retrieve the next hop node number for each destination node from the configuration

file

6. Use the interfaces’ IP addresses to determine which node each interface connects to

7. Convert the next hop node number from the configuration file into an interface

number for each destination node

8. Convert the interface number into an Open vSwitch port number for each destina-

tion node

9. Wait until the local time equals the topology change time

10. Modify the output processing flow tables using the port numbers for each destination

node

4.5 System testing programs

In addition to the dynamic topology mechanism’s normal operation, there are two small

programs that have been created to meet the testing requirements specified in chapter 3.

One program runs inside the LXC container and is used to generate the traffic for the tests

and collect the network performance data, while the other program simply collates the

testing data. The source code for these two programs are shown in listings C.9 and C.10

respectively.

4.5.1 Host traffic generation

The host does not directly control the operation of the dynamic topology mechanism,

but instead controls the generation of traffic to simulate the access network, which in

turn results in topology changes when the dynamic topology mechanism is used. Traffic

generation has been automated to allow synchronisation with other nodes, facilitate the

collection of network performance data for all eight nodes, and to allow replication of tests

with varying configurations, as described in chapter 3. The traffic generation program

runs on the host connected to the node, i.e. it runs in the LXC container, and behaves

differently depending on which node it is connected to.
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The traffic generation is controlled by three files, with the demands stated in each of the

files cumulatively applied to the network with changes made incrementally and spaced

ten minutes apart: the first matrix is applied for 30 minutes, the second matrix is applied

for 20 minutes after a delay of 10 minutes, and the third matrix is applied for 10 minutes

after a delay of 20 minutes. The resultant demand matrix progression is as specified in

chapter 3.

The synchronisation of the hosts uses the same method as the nodes: the software clock

is synchronised with the controller’s clock, the current time is captured, and the test is

started at the closest 30 second interval. However, the LXC container does not need to

synchronise its software clock, as it inherits its timing from the node, which has already

been synchronised with the controller.

As there are three traffic generation matrices, which are simultaneously applied to the

network for the third and final testing interval, three instances of iPerf server are required

to receive traffic generated by the seven other hosts. For traffic generation, each host

runs seven instances of iPerf clients, which are connected to servers running on the seven

other hosts. To facilitate processing of the testing data, the iPerf clients output data as

comma-separated values and redirect their output to files with the following naming con-

vention: (source node)-(destination node) (traffic generation matrix).iperf.

For example, the iPerf statistics from the traffic between nodes one and six for the second

traffic generation matrix would be named 1-6 2.iperf. While iPerf statistics provide

the majority of the required network performance metrics, ping is used to determine the

delay. For each interval on each node, the seven other hosts are pinged, and the out-

put is redirected to files with a naming convention almost identical to that of the iPerf

files: (source node)-(destination node) (testing interval).ping. For example,

the ping statistics between nodes one and six for the second testing interval would be

named 1-6 2.ping.

At the conclusion of the test, each host transfers their 42 testing data files to the controller.

Once every node has transferred their files, the controller has 336 files to process; the files

are processed using the program described in the following section.
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4.5.2 Network performance measurement

As a result of the system test, each host generates 42 files that contain the network

performance data for the full suite of tests, resulting in a total of 336 files that must be

processed to determine the system’s performance. The files are collated on the controller,

and the processing of the files is relatively easy to program due to the standardised nature

of the filenames and the data they contain. The naming convention for the files is based

on the source node, destination node, testing interval, and program used to produce the

data.

When the traffic is generated using iPerf, the switch -y c is used to output the reports as

comma-separated values; this makes the extraction of the relevant data fields from the file

very easy. Similarly, the ping tests have a standard format from which the delay statistics

are easily extracted. Examples of these files generated by iPerf and ping are shown in

listings 4.7 and 4.8 respectively.

Listing 4.7: iPerf output file example (4-2 3.iperf)

20151018094601 ,192.168.40.100 ,50021 ,192.168.20.100 ,50021 ,3 ,0.0 -600.5

,3752910 ,49999

20151018094601 ,192.168.20.100 ,50021 ,192.168.40.100 ,50021 ,3 ,0.0 -600.5

,3752910 ,50000 ,1.116 ,0 ,2553 ,0.000 ,0

In listing 4.7 above, the two lines are the statistics reported by the client and the server.
The latter is the entry of interest, as it contains the data we wish to extract; the extra fields
it reports are the connection’s jitter, lost packets, total packets, lost packet percentage,
and out of order packets.

Listing 4.8: Ping output file example (4-2 3.ping)

PING 192.168.20.100 (192.168.20.100) 56(84) bytes of data.

--- 192.168.20.100 ping statistics ---

600 packets transmitted , 600 received , 0% packet loss , time 599760

ms

rtt min/avg/max/mdev = 1.613/2.061/3.962/0.238 ms

Once the data has been extracted from the files, it is collated into a system report, which

shows the system’s delay, jitter, packet loss, and packets received out of order for every

source/destination node pair across the three test scenarios.



4.5 System testing programs 50

4.5.3 Pseudocode

The source code for the host traffic generation and network performance measurement

programs have been provided as appendix C, and are shown below as pseudocode for the

purpose of clarity.

Host traffic generation

Note that this program runs on the host, i.e. the LXC container,

1. Define the traffic generation matrix filenames to be used and declare variables

2. Use the last character of the hostname to determine the node the host is connected

to

3. Extract the traffic generation data relevant for this host from the traffic generation

matrix files for all three testing intervals

4. Determine the local time and test start time to synchronise with other nodes

5. Wait until the start time

6. Prepare for traffic reception from other hosts

7. For each of the three testing intervals

(a) Start traffic generation to all other hosts using the traffic generation matrix

that corresponds to this testing interval. The traffic generation is set to run

for an integer multiple of the testing interval; the first matrix is run for three

intervals, the second matrix is run for two intervals, and the third matrix is

run for one interval.

(b) Start the ping to all other hosts. The ping is set to run for one testing interval

(c) Wait for one testing interval, then progress to the next testing interval. If all

tests have been performed, end

Network performance measurement

1. Define the filed numbers of the iPerf data of interest and declare variables
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2. For every iPerf statistic file, dump unwanted data and extract the jitter, loss and

out of order packet statistics

3. For every ping statistic file, dump unwanted data and extract the average round

trip time

4. Print the collated data to standard output



Chapter 5

Results

This chapter aims to determine the effectiveness of the dynamic topology mechanism

specified in chapter 4 by presenting an analysis of network performance measurements and

a discussion of their implications. The measurements have been provided as appendix D,

and were taken when the system specified in chapter 4 was tested using the procedure

described in chapter 3 through the use of the testing programs detailed in chapter 4.

5.1 Analysis

The network performance measurements were captured for three configurations: traffic

routed using OSPF with all nodes active in a static topology, traffic routed using MPLS

with all nodes active in a static topology, and traffic routed using MPLS with a topol-

ogy controlled by the dynamic topology mechanism. For the remainder of this chapter,

these three configurations will be referred to simply as “OSPF”, “MPLS”, and “DTM”

respectively.

In the following sections, the effect of the dynamic topology mechanism on network per-

formance will be analysed for each of the metrics that have been measured: delay, jitter,

packet loss, and number of out of order packets. The OSPF and MPLS configurations

have been selected as the point of reference, and the measurements taken from these

configurations form a baseline against which the DTM measurements can be compared.

Each configuration’s set of measurements is comprised of three distinct scenarios. For
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the measurements taken using iPerf — jitter, packet loss, and out of order packets —

the scenarios correspond to the three instances of iPerf used to generate the traffic, as

explained in chapter 3. To allow the effects of the topology changeover to be captured,

the three scenarios cover varying durations and network traffic levels, which makes it

difficult to analyse a single configuration’s data in isolation. It is therefore preferable to

limit the analysis of the measurements to variations between configurations. This is not

the case for the delay, as the scenarios correspond to each of the three intervals where

traffic generation is constant, which allows the delay to be compared between scenarios

in addition to the comparison between configurations.

One of the dynamic topology mechanism’s requirements is the measurement of demands

between every source/destination node pair, as described in chapter 4. To provide an

indication of the effectiveness with which the system can respond to changes in network

demands, the accuracy of the demand measurements is analysed below.

5.1.1 Delay

Figure 5.1 shows the delay for each of the three configurations’ three scenarios. The mea-

surements for the OSPF and MPLS baseline configurations are almost identical between

scenarios, and range from 1.17 ms to 2.9 ms with an average of 1.7 ms. This is to be

expected for the small, eight node network, and provides a point of reference for the DTM

measurements. The full suite of minimum, average, and maximum values is shown below

in table 5.1.

Overall, the DTM’s measurements are approximately 8 ms greater than the baseline.

Scenario one’s measurements are only slightly higher than the baseline, which could be

attributed to greater path lengths due to five nodes being in the standby state. It is a

reasonable assumption that the DTM’s delay measurements would decrease with increas-

ing network traffic; the path between nodes becomes less circuitous due to the dynamic

topology mechanism decreasing the number of nodes in the standby state. However, as

can be seen in table 5.1 and figure 5.1, the inverse is true. The reason behind the increased

delay merits further investigation, but could potentially be a decrease in the performance

of the ping used to measure the delay rather than of the network itself. The ping used to

measure the delay sends ICMP packets, which are commonly classed as low priority and

are typically the first to be affected by increases in network load. The increasing range of
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the values with increasing traffic, most notably between DTM scenarios two and three,

may support this reasoning, as the greater variability could indicate the uncertain nature

of the traffic’s effect on the delivery of ICMP packets.

Delay (ms)

Minimum Average Maximum

O
S

P
F

Scenario 1 1.169 1.677 2.727

Scenario 2 1.200 1.727 2.800

Scenario 3 1.200 1.795 2.900

M
P

L
S

Scenario 1 1.167 1.668 2.718

Scenario 2 1.200 1.718 2.800

Scenario 3 1.200 1.779 2.900

D
T

M

Scenario 1 2.869 6.952 12.901

Scenario 2 6.100 9.266 13.00

Scenario 3 7.200 13.132 22.000

Table 5.1: Delay measurement summary

 

Figure 5.1: Network performance measurements — Delay
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5.1.2 Jitter

The system’s jitter measurements are shown in figure 5.2 for all configurations and sce-

narios. The baseline measurements are mostly random and centred around ∼0.5 ms with

a few outliers extending up to 2.1 ms. The same is true for the DTM measurements, with

less frequent but slightly larger outliers, reaching as far as 3.1 ms. The full suite of min-

imum, average, and maximum values are provided in table 5.2 below. The baseline and

DTM are quite comparable, implying that the dynamic topology mechanism has little to

no impact on the system’s jitter, with any variation in measurements safely attributable

to the random nature of the system.

Jitter (ms)

Minimum Average Maximum

O
S

P
F

Scenario 1 0.079 0.409 1.300

Scenario 2 0.091 0.502 1.100

Scenario 3 0.230 0.713 1.900

M
P

L
S

Scenario 1 0.100 0.394 1.200

Scenario 2 0.120 0.422 1.400

Scenario 3 0.210 0.700 2.100

D
T

M

Scenario 1 0.170 0.457 3.100

Scenario 2 0.140 0.453 1.200

Scenario 3 0.130 0.584 2.200

Table 5.2: Jitter measurement summary
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Figure 5.2: Network performance measurements — Jitter

5.1.3 Packet loss

The percentage packet loss for all configurations and scenarios is shown below in figure 5.3.

Similar to the jitter shown above, the packet loss is comparable across all configurations;

the majority of the measurements are zero, with a few randomly distributed outliers.

Note that due to the measurement method, a direct comparison cannot be made between

scenarios. Scenario three is the shortest duration and lowest traffic, scenario two is twice

as long and has roughly double the traffic, and scenario one is three times as long and has

five times the traffic; therefore, scenario three needs to lose fewer packets to experience

the same percentage loss as the other scenarios. The number of non-zero packet loss

instances and the total packet loss percentages for each scenario are shown in table 5.3

below. One interpretation of the results is that the dynamic topology mechanism actually

reduces the system’s jitter, as the DTM measurements for each scenario are comparable

to the minimum values for the entire baseline. However, this is likely to be a coincidence

caused by the random nature of the system. Whatever the case may be, the results show

that the dynamic topology mechanism has no negative effect on the system’s jitter.
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Packet loss

Non-zero count Sum (%)

O
S

P
F

Scenario 1 6 0.262

Scenario 2 5 0.147

Scenario 3 1 0.330

M
P

L
S

Scenario 1 3 0.099

Scenario 2 2 0.130

Scenario 3 6 0.603

D
T

M

Scenario 1 3 0.099

Scenario 2 1 0.033

Scenario 3 2 0.209

Table 5.3: Packet loss measurement summary

 

Figure 5.3: Network performance measurements — Packet loss

5.1.4 Out of order packets

The number of packets received out of order was zero for all configurations, and has

therefore not been graphed. While it may initially seem pointless to report these results,

the rationale remains the same as for the other metrics: the baseline provides a point of

reference to determine the effect of the dynamic topology mechanism. The fact that there
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is no variation between the baseline and the DTM measurements shows that the dynamic

topology mechanism has no negative effect on the ordering of packets.

5.1.5 Traffic demands

In order to optimise the distribution of nodes in the standby state, the dynamic topology

mechanism relies on the measurement of the demands between every source/destination

node pair. Each of the nodes use sFlow messages to report the traffic demands, which

is part of Open vSwitch. As the OSPF configuration uses Quagga rather than Open

vSwitch to route traffic, measurements can only be examined for the MPLS and DTM

configurations. The use of measurements from MPLS and DTM allows the impact of the

topology changes to be examined in addition to the overall accuracy of the measurements.

The total demand measurements taken from the MPLS and DTM configurations, com-

pared with the expected values, are shown in figure 5.4. There is no discernible difference

between the two sets of data, so it is likely that the dynamic topology mechanism has no

effect on the traffic demand measurement accuracy. The majority of the measured values

are approximately 10% greater than the expected value, and the system takes 30 seconds

for the measurements to adequately reflect the traffic variations. The cause of the positive

error is unknown, but the 30 second lag is due to the measurement method, which uses

the values collected over the past two 15 second measurement intervals. The percentage

error of each of the individual demand measurements were averaged for each point in

time, and are shown in figure 5.5. The peak values coincide with the traffic changes due

to the measurement method’s lag, and the values decrease with increasing demand.
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Figure 5.4: Network performance measurements — Total demand

 

Figure 5.5: Network performance measurements — Average percent demand error
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5.2 Discussion

Holistically speaking, the dynamic topology mechanism is quite acceptable, as it does not

disproportionately affect the performance of the system when compared to the OSPF and

MPLS baseline. While not a requirement for its operation, the mechanism could be im-

proved by reducing its effect on delay and increasing the inter-node demand measurement

accuracy.

The accuracy of the inter-node demands is vital to the operation of the dynamic topology

mechanism, as it provides the data used to optimise the distribution of nodes in the

standby state while ensuring the link utilisations remain below the threshold value of

70%. The total demand typically experiences an error of +10%, with the individual

measurements’ error ranging from ±40% to ±10% and decreasing as demand increases.

The operation of the dynamic topology mechanism is not affected by this inaccuracy if the

change in demand over time is sufficiently large, but the fluctuation of the measured values

could result in erroneous topology changes. Additional research is required to determine a

solution that provides a sufficient increase in accuracy, but a preliminary suggestion is to

increase the sFlow sampling rate on the nodes. The inter-node demand measurements also

experience a 30 second lag, which has both positive and negative effects. Most obviously,

the lag has a negative effect on the mechanism’s reaction time. However, this is reasonably

minor, and may be mitigated by a reduction in unnecessary topology changes caused by

traffic oscillating around a constant value. Additional research is required to determine

the lag’s effects.

The analysis above shows that the dynamic topology mechanism has negligible impact on

the the majority of network performance metrics. There was no effect on the number of

out of order packets, and the jitter and packet loss is either comparable to the baseline

or attributable to the random nature of the system. However, the increase in delay is

significant when the size of the network is considered. Furthermore, while the delay in

the scenario with the least network traffic is in line with expectations, the delay’s increase

with increasing network traffic is not. The correlation between increasing traffic and

delay may in fact prove to be a causative relationship, but requires additional research.

While the increased delay is an unwanted side effect, the values can still be considered

reasonable, and the overall impact on the system is likely to be minimal in practice. This

is supported by the effects on the other network performance metrics, or lack thereof.



Chapter 6

Conclusion

This project has satisfied its aims and provided a foundation for future work towards the

development of dynamic network topologies. This chapter details the project’s achieve-

ments as they relate to the aims stated in chapter 1, and the potential future work to

further build upon the concepts this project develops.

6.1 Project aims and achievements

As stated in chapter 1, this project aimed to contribute to the reduction of energy con-

sumption in computer networks by exploiting the common under-utilisation of their de-

vices. The energy consumption reductions are achieved through the use of node standby

states, which require the use of dynamic network topologies. As a contribution to the pre-

vious development of dynamic topology mechanisms, the key aspect of this project was

the development of a dynamic topology mechanism implementation and its associated

tested. This builds on the previous dynamic topology mechanism work, proves feasibility

of implementation in a physical system and provides measurements of the mechanism’s

effects on network performance that are based on a real system, as opposed to simulated

systems. This project also reduces the work required for future implementations that will

further develop dynamic topology mechanisms.

The dynamic topology mechanism implementation described in chapter 4 modifies the

network’s topology based on the current network demands with the aim of placing the
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maximum number of nodes into a standby state while preventing the link utilisation from

rising above a threshold value. The testbed is comprised of a network of eight Raspberry

Pi model 1B+ devices acting as network nodes, which are connected to replicate a version

of Telstra network AS1221 with link speeds scaled down by a factor of 1,000. Each node

runs one of the two dynamic topology mechanism programs developed during this project.

The second program runs on the centralised controller, a Dell laptop connected to one of

the network nodes. A summary of the interaction between each program is shown below:

1. Controller: Monitor network traffic

2. Controller: Optimise network topology using heuristics

3. Controller/Nodes: Communicate the topology change

4. Nodes: Implement the topology change

5. Repeat

The network nodes route traffic using MPLS, and use Open vSwitch to provide the MPLS

processing functionality. Topology changes are implemented by modifying Open vSwitch’s

flow tables, which have been configured to minimise the number of modifications required.

Open vSwitch has also been configured to send traffic statistics to the controller using

sFlow messages. The controller analyses sFlow messages to determine the demands be-

tween each of the source/destination node pairs, and uses the resultant traffic matrix for

topology optimisation. The focus of optimisation is the maximisation of the number of

nodes in the standby state, while ensuring none of the network’s link utilisations exceed

the threshold value of 70%. Heuristics are used to simplify the optimisation, which is

performed based on traffic measurements every 15 seconds, and the optimised topology

is communicated to the nodes if a change has occurred.

Two additional programs were developed to facilitate testing of the network and the

collation of the data produced by the tests, both of which are described in chapter 4.

The testing program runs on the virtual hosts connected to the nodes; it generates the

required traffic and outputs network performance statistics to a group of files. The second

program analyses the 336 files and collates the data into a single report on the network’s

performance.

The analysis of network performance metrics shown in chapter 5 concludes that this

project’s dynamic topology mechanism’s performance is within acceptable limits, but can

be improved in a few areas. There is no negative effect on the jitter, packet loss, and out of
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order packets, but the delay is increased by a substantial amount. While the delay would

have a negligible effect on the system’s usability and could be considered reasonable in

other circumstances, it is uncharacteristically large for the network’s size. The delay also

increases with increasing network load, which contradicts the initial expectation; the paths

between the nodes become less circuitous with increasing traffic, as the dynamic topology

mechanism reduces the number of nodes in the standby state. The accuracy of the traffic

demand measurement, while sufficient for the dynamic topology mechanism’s operation,

is also somewhat lacking, with errors ranging from ±40% to ±10%. The mechanism still

functions with this error, but this may be due to the large variations in network demand

that have been selected for the test conditions. As the mechanism is so dependent on

the demand measurements, an increase in accuracy should improve its effectiveness and

reduce the likelihood of erroneous topology changes.

6.2 Project limitations and future work

There are some areas of the project that require additional development, and others that

can be used as the foundation for future work. The list below provides an overview of

these areas:

Delay reduction: As alluded to above, the increase in delay caused by the dynamic

topology mechanism is uncharacteristically large. Additional research is required to

determine and rectify the cause of the increased delay.

Traffic measurement accuracy improvement: Also alluded to above, an increase in

accuracy is likely to improve the effectiveness of the dynamic topology mechanism.

Failure recovery and reliability: Like most of the work on energy consumption re-

duction in networks, this project does not consider failure recovery and reliability.

Future work could include this as a consideration in the topology selection and

overall system design.

Optimisation heuristic development: The optimisation heuristic has been developed

based on several others, and its performance has not been measured. This project’s

dynamic topology mechanism could be relatively easily modified to utilise a more

effective heuristic algorithm.



6.2 Project limitations and future work 64

Implement standby states: The project has omitted the implementation of standby

states, and has simply modified the node’s behaviour to reflect the effect of the

standby state on the network. As with the above point, this project’s dynamic

topology mechanism could be modified relatively easily to incorporate the use of

standby states once their implementation has been developed.

Energy consumption measurement: As this project did not include the implemen-

tation of standby states, the dynamic topology mechanism’s effect on energy con-

sumption was not analysed. The implementation of standby states would allow the

determination of the mechanism’s effect on energy consumption.

Longevity analysis: A side effect of energy consumption reduction may be increased

network equipment life. Once standby states have been implemented, future work

could include an analysis of the resultant mean time between failure, failure modes,

and other longevity metrics.

Specialised hardware development: The prototype nature of the implementation prompted

the selection of the readily available Raspberry Pi for the network nodes, and the

scaling down of link bandwidths by a factor of 1,000. The use of specialised rout-

ing hardware, rather than hobby computers repurposed as routers, would allow for

a more accurate analysis of the dynamic topology mechanism’s effects on network

performance and energy consumption.
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Appendix B

Software configuration instruction

As described in section 4.1.2, the configuration instructions below can be used to recre-

ate the controller’s, network nodes’, and hosts’ configuration for the dynamic topology

mechanism.

B.1 Controller configuration

The following procedure was performed on a Dell Vostro V13 laptop to install the software

required for the operation of the dynamic topology mechanism controller.

1. Install Ubuntu 14.04.2

2. Make sure all packages are up-to-date and install extra packages

sudo apt-get update && sudo apt-get -y --force-yes upgrade

sudo apt-get install ftp autoconf libtool git

libcurl4-openssl-dev ntp

3. Install sFlowtool

git clone https://github.com/sflow/sflowtool.git

cd sflowtool-3.36

automake && autoconf

./configure && make && make install

4. Modify /etc/network/interfaces
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sudo vi /etc/network/interfaces

auto eth0

allow-hotplug eth0

iface eth0 inet static

address 192.168.254.100

5. Configure the current timezone

sudo dpkg-reconfigure tzdata

6. Configure NTP to synchronise to local clock

sudo vi /etc/ntp.conf

server 127.127.1.0

fudge 127.127.1.0 stratum 10

7. Configure hostname

sudo vi /etc/hosts

127.0.1.1 controller

sudo vi /etc/hostname

controller

sudo /etc/init.d/hostname.sh

8. Configure connection to network

sudo ifconfig eth0 192.168.254.100

B.2 Network nodes and hosts configuration

The following procedure was performed on each of the eight Raspberry Pi model 1B+

computers to install the software required for the operation of the system’s nodes and

hosts, and allows them to support the dynamic topology mechanism.

1. Flash SD card with Raspbian image

2. Boot once, expand filesystem when prompted, reboot

3. Make sure all packages are up-to-date and install extra packages

sudo apt-get update && sudo apt-get dist-upgrade

sudo apt-get install ftp autoconf libtool quagga ncurses-dev bc
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automake libcap-dev libcurl4-openssl-dev graphviz debhelper

python-zopeinterface dh-autoreconf libssl-dev python-all

python-qt4 python-twisted-conch debootstrap wondershaper

sudo apt-get -f -y --force-yes install

4. Configure hostname (example given for node 7)

sudo vi /etc/hosts

127.0.1.1 node7

sudo vi /etc/hostname

node7

sudo /etc/init.d/hostname.sh

5. Update Raspberry Pi firmware

cd /opt

sudo git clone git://github.com/raspberrypi/firmware.git

cd firmware/boot && sudo cp -r * /boot

cd ../modules && sudo cp -r * /lib/modules

sudo rm -r /opt/firmware

6. Clone Raspbian kernel source (for LXC container build)

sudo mkdir /opt/raspberrypi

cd /opt/raspberrypi

sudo git clone git://github.com/raspberrypi/linux.git

7. Compile kernel with options set for LXC container communication

cd /opt/raspberrypi/linux

sudo make bcmrpi defconfig

sudo make menuconfig

Device Drivers → Network Device Support →

Virtual Ethernet pair device → Enabled

sudo make && sudo make modules install

cd /opt/raspberrypi && sudo git clone

git://github.com/raspberrypi/tools.git

cd tools/mkimage && sudo python ./imagetool-uncompressed.py

/opt/raspberrypi/linux/arch/arm/boot/Image

sudo cp kernel.img /boot/

sudo shutdown -r now
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8. Install the latest LXC (Don’t use apt-get)

sudo mkdir /opt/lxc && cd /opt/lxc

sudo git clone https://github.com/lxc/lxc.git && cd lxc

sudo ./autogen.sh && sudo ./configure

sudo make && sudo make install

sudo rm -r /opt/lxc

9. Configure interfaces (example given for node 7)

sudo vi /etc/network/interfaces

auto eth0

allow-hotplug eth0

iface eth0 inet static

address 192.168.17.7

auto eth1

allow-hotplug eth1

iface eth1 inet static

address 192.168.67.7

auto eth2

allow-hotplug eth2

iface eth2 inet static

address 192.168.27.7

auto eth3

allow-hotplug eth3

iface eth3 inet static

address 192.168.78.7

10. Configure Quagga (example given for node 7)

sudo vi /etc/quagga/zebra.conf

hostname RouterPi

password router

enable password router

interface lo

interface veth0

ip address 192.168.70.1/24

interface eth0

ip address 192.168.17.7/24
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interface eth1

ip address 192.168.67.7/24

interface eth2

ip address 192.168.27.7/24

interface eth3

ip address 192.168.78.7/24

sudo vi /etc/quagga/ospfd.conf

hostname RouterPi

password router

enable password router

router ospf

network 192.168.70.0/24 area 0

network 192.168.17.0/24 area 0

network 192.168.67.0/24 area 0

network 192.168.27.0/24 area 0

network 192.168.78.0/24 area 0

sudo chown quagga /etc/quagga/ospfd.conf

sudo chgrp quagga /etc/quagga/ospfd.conf

sudo chown quagga /etc/quagga/zebra.conf

sudo chgrp quagga /etc/quagga/zebra.conf

sudo vi /etc/quagga/daemons

zebra=yes

ospfd=yes

11. Enable IP forwarding

sudo vi test

1

sudo mv test /proc/sys/net/ipv4/ip forward

sudo vi /etc/sysctl.conf

net.ipv4.ip forward=1

12. Install Open vSwitch

git clone https://github.com/openvswitch/ovs && cd ovs

dpkg-checkbuilddeps

./boot.sh && ./configure && make && sudo make install

sudo mkdir -p /usr/local/etc/openvswitch
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sudo ovsdb-tool create /usr/local/etc/openvswitch/conf.db

vswitchd/vswitch.ovsschema

13. Create LXC container (example given for node 7)

sudo vi /etc/fstab

lxc /sys/fs/cgroup cgroup defaults 0 0

sudo mount -a

sudo LD LIBRARY PATH=/usr/local/lib SUITE=wheezy

MIRROR=http://archive.raspbian.org/raspbian

lxc-create -n host7 -t debian

-- --packages=iperf,iputils-ping

sudo vi /usr/local/var/lib/lxc/host7/config

lxc.start.auto = 1

lxc.start.delay = 5

lxc.network.type = veth

lxc.network.veth.pair = veth0

lxc.network.flags = up

lxc.network.script.up = /etc/lxc/ovsup

lxc.rootfs = /usr/local/var/lib/lxc/host7/rootfs

lxc.network.ipv4 = 192.168.70.100/24

lxc.network.ipv4.gateway = 192.168.70.1

lxc.include = /usr/local/share/lxc/config/debian.common.conf

lxc.utsname = host7

lxc.arch = armhf

sudo mkdir /etc/lxc

sudo vi /etc/lxc/ovsup

#!/bin/bash

BRIDGE="br0"

ovs-vsctl --may-exist add-br $BRIDGE

ovs-vsctl --if-exists del-port $BRIDGE $5

ovs-vsctl add-port $BRIDGE $5

ovs-vsctl set interface $5 ofport request=1

ifconfig $5 192.168.70.1

sudo chmod 777 /etc/lxc/ovsup

14. Set timezone and configure NTP to get time from controller
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sudo dpkg-reconfigure tzdata

sudo vi /etc/ntp.conf

server 192.168.254.100 prefer

sudo service ntp stop && sudo ntpd -gq && sudo service ntp start

15. Apply traffic shaping to interfaces (example given for node 7)

sudo wondershaper eth0 10000 10000

sudo wondershaper eth1 1000 1000

sudo wondershaper eth2 1000 1000

sudo wondershaper eth3 1000 1000

16. Initial Open vSwitch configuration (example given for node 7)

sudo ovsdb-server

--remote=punix:/usr/local/var/run/openvswitch/db.sock

--remote=db:Open vSwitch,Open vSwitch,manager options

--pidfile --detach

sudo ovs-vsctl --no-wait init

sudo ovs-vswitchd --pidfile --detach

sudo ovs-vsctl del-br br0

sudo ovs-vsctl add-br br0 -- set bridge br0 datapath type=netdev

sudo ovs-vsctl set bridge br0

other-config:datapath-id=0000000000000007

sudo ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow11,

OpenFlow12,OpenFlow13,OpenFlow14,OpenFlow15

sudo ovs-vsctl add-port br0 eth0

sudo ovs-vsctl set interface eth0 ofport request=2

sudo ovs-vsctl add-port br0 eth1

sudo ovs-vsctl set interface eth1 ofport request=3

sudo ovs-vsctl add-port br0 eth2

sudo ovs-vsctl set interface eth2 ofport request=4

sudo ovs-vsctl add-port br0 eth3

sudo ovs-vsctl set interface eth3 ofport request=5

sudo ovs-ofctl add-flow br0 "priority=5, actions=drop"

sudo ovs-vsctl -- --id=@sflow create sflow agent=veth0

target=\"192.168.254.100:6343\" header=128 sampling=8

polling=0 -- set bridge br0 sflow=@sflow
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17. Set IP addresses (example given for node 7)

sudo ifconfig eth0 192.168.17.7

sudo ifconfig eth1 192.168.67.7

sudo ifconfig eth2 192.168.27.7

sudo ifconfig eth3 192.168.78.7



Appendix C

Dynamic Topology Mechanism

Source Code

The operation of the dynamic topology mechanism is detailed in chapter 4. The source

code shown below corresponds to four programs: the controller’s dynamic topology mech-

anism program, the nodes’ dynamic topology mechanism program, the hosts’ traffic gen-

eration program, and the controller’s traffic statistic collation program.

C.1 Controller program’s source code

This program is used on the controller to monitor the network traffic, select the appro-

priate topology, and communicate it to the network nodes. It uses the output of sFlow,

which is piped to the program on the command line as follows:

daniel@controller:∼$ sflowtool -l | sudo ./controller

To execute the program with the dynamic topology mechanism disabled, any number of

command line arguments can be provided, an example of which is shown below:

daniel@controller:∼$ sflowtool -l | sudo ./controller nodtm

The code listings below show the main program, responsible for traffic monitoring and

calling the optimisation function, and the optimisation algorithm itself. Compilation of

the program was performed using g++ as follows:

daniel@controller:∼$ g++ traffic.cpp topology.cpp -o controller
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C.1.1 Main program

The controller’s main program shown in listing C.1 performs the following functions:

• Processing of the sFlow message stream input

• Construction of the traffic matrix using statistics from sFlow messages

• Calling of the optimisation function

• Checking if a topology change has occurred, and communicating the change if re-

quired

Listing C.1: Controller main program C++ source code

#include <iostream >

#include <iomanip >

#include <string >

#include <sstream >

#include <vector >

#include <stdlib.h>

#include <sys/time.h>

#include <fstream >

#include <bitset >

#include <cstring >

#include "topology.h"

using namespace std;

typedef unsigned long long timestamp_t;

static timestamp_t get_timestamp (){

struct timeval now;

gettimeofday (&now , NULL);

return now.tv_usec + (timestamp_t)now.tv_sec * 1000000;

}

int main(int argc , const char * argv []) {

int MEASURE_INTERVAL = 15;// interval in seconds between traffic

calculations

int NUM_NODES = 8;// number of nodes in network

//node numbers represented as their matrix indices

int N1 = 0; int N2 = 1; int N3 = 2; int N4 = 3;

int N5 = 4; int N6 = 5; int N7 = 6; int N8 = 7;

fstream configNew , configOld;

string configFilename = "./ topology.conf";

int i,j, agent , source , dest , packetSize , sampleRate;

vector <int > trafficCountCurrent(NUM_NODES*NUM_NODES);// traffic

count for each S-D pair (this interval)

vector <int > trafficCountLast(NUM_NODES*NUM_NODES);// traffic

count for each S-D pair (previous interval)

vector <double > traffic(NUM_NODES*NUM_NODES);// traffic for each



C.1 Controller program’s source code 82

S-D pair

double tdiff , totalTraffic;

double tdifflast = 0;

string input , dumpstr , lineOld , lineNew , line;

char tempchar;

stringstream tempstr;

adjacency_list_t adjacency_list(NUM_NODES);

timestamp_t t0;//used to calculate measurement interval

bool topologyChange;

// initialise adjacency matrix (adjacent node , link weight)

adjacency_list[N1]. push_back(neighbor(N2 , 10));

adjacency_list[N1]. push_back(neighbor(N6 , 10));

adjacency_list[N1]. push_back(neighbor(N7 , 1));

adjacency_list[N2]. push_back(neighbor(N1 , 10));

adjacency_list[N2]. push_back(neighbor(N3 , 10));

adjacency_list[N2]. push_back(neighbor(N7 , 10));

adjacency_list[N3]. push_back(neighbor(N2 , 10));

adjacency_list[N3]. push_back(neighbor(N4 , 10));

adjacency_list[N3]. push_back(neighbor(N5 , 1));

adjacency_list[N3]. push_back(neighbor(N8 , 1));

adjacency_list[N4]. push_back(neighbor(N3 , 10));

adjacency_list[N4]. push_back(neighbor(N8 , 10));

adjacency_list[N5]. push_back(neighbor(N3 , 1));

adjacency_list[N5]. push_back(neighbor(N6 , 10));

adjacency_list[N6]. push_back(neighbor(N1 , 10));

adjacency_list[N6]. push_back(neighbor(N5 , 10));

adjacency_list[N6]. push_back(neighbor(N7 , 10));

adjacency_list[N7]. push_back(neighbor(N1 , 1));

adjacency_list[N7]. push_back(neighbor(N2 , 10));

adjacency_list[N7]. push_back(neighbor(N6 , 10));

adjacency_list[N7]. push_back(neighbor(N8 , 10));

adjacency_list[N8]. push_back(neighbor(N3 , 1));

adjacency_list[N8]. push_back(neighbor(N4 , 10));

adjacency_list[N8]. push_back(neighbor(N7 , 10));

// initialise traffic counts

for (i=0;i<trafficCountCurrent.size();i++){

trafficCountCurrent[i] = 0;

trafficCountLast[i] = 0;

}

// capture start time

t0 = get_timestamp ();

while (1) {

// clear data from last capture

totalTraffic = 0;

tempstr.str(string ());

tempstr.clear();

// capture traffic data

getline(cin ,line);
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tempstr << line;

getline(tempstr ,line ,’,’);

//skip processing if sFlow message is not a flow sample

if(strcmp(line.c_str() ,("FLOW"))==0){

//get agent node number

getline(tempstr ,dumpstr ,’.’);//dump first octet of

agent address

getline(tempstr ,dumpstr ,’.’);//dump second octet of

agent address

getline(tempstr ,line ,’.’);// capture third octet of

agent address

agent = atof(line.c_str ());

if (agent %10 != 0){// discard message if the agent is an

unexpected value

continue;

}

agent /= 10;

// Unwanted data

getline(tempstr ,dumpstr ,’,’);//dump remainder of agent

address

getline(tempstr ,dumpstr ,’,’);//dump input port

getline(tempstr ,dumpstr ,’,’);//dump output port

getline(tempstr ,dumpstr ,’,’);//dump source mac

getline(tempstr ,dumpstr ,’,’);//dump dest mac

getline(tempstr ,dumpstr ,’,’);//dump ethertype

getline(tempstr ,dumpstr ,’,’);//dump in vlan

getline(tempstr ,dumpstr ,’,’);//dump out vlan

//get source node number

tempstr.get(tempchar);

if (tempchar ==’-’){// discard message if the source IP

is not specified

continue;

}

getline(tempstr ,dumpstr ,’.’);//dump first octet of

source address

getline(tempstr ,dumpstr ,’.’);//dump second octet of

sourse address

getline(tempstr ,line ,’.’);// capture third octet of

source address

source = atof(line.c_str());

if (source %10 != 0){// discard message if the source is

an unexpected value

continue;

}

source /= 10;

getline(tempstr ,dumpstr ,’,’);//dump remainder of source

address

//get destination node number

getline(tempstr ,dumpstr ,’.’);//dump first octet of dest

address

getline(tempstr ,dumpstr ,’.’);//dump second octet of

destaddress

getline(tempstr ,line ,’.’);// capture third octet of dest

address

dest = atof(line.c_str());
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if (dest %10 != 0){

// cout << "Halting message processing\n\n";

continue;

}

dest /= 10;

getline(tempstr ,dumpstr ,’,’);//dump remainder of dest

address

// unwanted data

getline(tempstr ,dumpstr ,’,’);//dump IP protocol

getline(tempstr ,dumpstr ,’,’);//dump IP TOS

getline(tempstr ,dumpstr ,’,’);//dump IP TTL

getline(tempstr ,dumpstr ,’,’);//dump TCP/UDP source port

getline(tempstr ,dumpstr ,’,’);//dump TCP/UDP dest port

getline(tempstr ,dumpstr ,’,’);//dump TCP flags

// unwanted data

getline(tempstr ,line ,’,’);//dump packet size

//get IP packet size

getline(tempstr ,dumpstr ,’,’);// capture IP packet size

packetSize = atof(line.c_str ());

//get sampling rate

getline(tempstr ,line);// capture sampling rate

sampleRate = atof(line.c_str ());

// increment relevant S/D traffic counter

if (agent==dest) trafficCountCurrent [(source -1)*

NUM_NODES +(dest -1)] += (packetSize*sampleRate);

//find time since last calculation

tdiff = (double)(( get_timestamp () - t0)/1000000.0L);

// Calculate traffic rates if the measurement interval

has passed

if (tdiff >= MEASURE_INTERVAL){

// capture new start time

t0 = get_timestamp ();

// calculate traffic demands using samples from last

two intervals

for (i=0;i<trafficCountCurrent.size();i++){

traffic[i] = (double)(( trafficCountCurrent[i] +

trafficCountLast[i]) * 8 / (tdiff+tdifflast

) / 1000000.0L);

}

//store time difference

tdifflast = tdiff;

//store samples from last interval

trafficCountLast = trafficCountCurrent;

// reinitialise traffic counters and show current

traffic

cout << "= = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = = = = = = = = = = = = =
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= = = = = = = = = = = = = = = = = = = = =\n";

cout << "Traffic (Mbps): \n" << setprecision (2) <<

left;

for (i=0;i<trafficCountCurrent.size();i++){

trafficCountCurrent[i] = 0;

cout << " " << (int)(i/NUM_NODES)+1 << "-"

<< (i%NUM_NODES)+1 << ": " << setw (6) <<

traffic[i] << " Mbps";

if (i%NUM_NODES ==7)

cout << "\n";

totalTraffic = totalTraffic + traffic[i];

}

cout << "Total Traffic (Mbps): " << totalTraffic;

cout << "\n- - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - -\n";

// create new topology file

system (("sudo touch " + configFilename + ".new").

c_str ());

system (("sudo chown daniel " + configFilename + ".

new").c_str());

system (("sudo chgrp daniel " + configFilename + ".

new").c_str());

//write config to new topology file

//If argc > 1, the dynamic topology mechanism will

be disabled

topology_select(traffic , adjacency_list ,

configFilename + ".new", argc);

//Open config files

configNew.open(( configFilename + ".new").c_str ());

if (configNew.fail()){

cout << "Error opening " << configFilename << "

.new\n";

return 1;

}

configOld.open(configFilename.c_str ());

if (configOld.fail()){

//In case the file doesn’t exist , try to create

it and try again

system (("sudo touch " + configFilename).c_str()

);

configOld.open(configFilename.c_str ());

if (configOld.fail()){

cout << "Error opening " << configFilename

<< "\n";

return 1;

}

}

//check if the current topology matches the new

topology (prevents unneccessary processing by

the nodes)

topologyChange = false;

while (! configOld.eof() && !configNew.eof()){
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getline(configOld ,lineOld);

getline(configNew ,lineNew);

if (strcmp(lineOld.c_str(),string ().c_str())==0

|| strcmp(lineOld.c_str(),lineNew.c_str())

!=0){

topologyChange = true;

break;

}

}

configOld.close ();

configNew.close ();

if (topologyChange){

// overwrite old config file

cout << "Updating topology\n";

system (("sudo mv " + configFilename + ".new " +

configFilename).c_str());

}

else{

cout << "No topology change\n";

system (("sudo rm " + configFilename + ".new").

c_str ());

}

cout << "= = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = = = = = = = = = =\n";

}

}

}

return 0;

}

C.1.2 Optimisation algorithm header

Listing C.2 simply shows the optimisation algorithms’ header file.

Listing C.2: Optimisation algorithm C++ header

// Adapted from <http :// rosettacode.org/wiki/Dijkstra ’s_algorithm >

// Source code retrieved 05 OCT15

#ifndef TOPOLOGY_H

#define TOPOLOGY_H

#include <iostream >

#include <vector >

#include <string >

#include <list >

#include <limits >

#include <set >

#include <utility >

#include <algorithm >

#include <iterator >

#include <cmath >
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#include <iomanip >

#include <queue >

#include <sstream >

#include <fstream >

using namespace std;

typedef int vertex_t;

typedef double weight_t;

const weight_t max_weight = numeric_limits <double >:: infinity ();

struct neighbor {

vertex_t target;

weight_t weight;

neighbor(vertex_t arg_target , weight_t arg_weight)

: target(arg_target), weight(arg_weight) { }

};

typedef vector <vector <neighbor > > adjacency_list_t;

void DijkstraComputePaths(vertex_t source , const adjacency_list_t &

adjacency_list , vector <weight_t > &min_distance , vector <vertex_t >

&previous);

list <vertex_t > DijkstraGetShortestPathTo(vertex_t vertex , const

vector <vertex_t > &previous);

int topology_select(vector <double > traffic , adjacency_list_t ,

string configFilename , int argc);

vector < vector < list <vertex_t > > > path_calc(adjacency_list_t);

vector <double > calc_link_traffic(vector <double > traffic , vector <

vector < list <vertex_t > > > path);

vector <double > calc_link_util(vector <double > linkTraffic ,

adjacency_list_t adjacency_list);

void display_traffic(vector <double > linkTraffic , vector <double >

linkUtil , vector <double > nodeLoad);

#endif

C.1.3 Optimisation algorithm

The optimisation algorithm used by the controller’s main program is shown in listing C.1

and performs the following functions:

• Use the traffic matrix input to determine the link utilisation

• Apply optimisation heuristics to iteratively place nodes into the standby state until
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the link utilisation rises above 70% or a node is cutoff from the network

• Output the optimised topology to the controller’s main program

Listing C.3: Optimisation algorithm C++ source code

// Adapted from <http :// rosettacode.org/wiki/Dijkstra ’s_algorithm >

// Source code retrieved 05 OCT15

#include "topology.h"

using namespace std;

int topology_select(vector <double > traffic , adjacency_list_t

adjacency_list , string configFilename , int args) {

unsigned int NUM_NODES = adjacency_list.size();

unsigned int i,j,k;

int leastUsed , mostUsed , targetNode , options;

vector <int > transitUsage(NUM_NODES);

list <vertex_t >:: iterator pos;

double minUsage = numeric_limits <double >:: infinity ();

double minLoad = numeric_limits <double >:: infinity ();

int maxUsage = 0;

int maxLoad = 0;

bool connected = 0;

vector < vector <neighbor > > nodeStorage;

double THRESHOLD = 70;//link utilisation threshold

double maxUtil;

vector <double > linkTraffic(NUM_NODES*NUM_NODES);// traffic on

each link in Mbps

vector <double > linkUtil(NUM_NODES*NUM_NODES);// traffic on each

link in % utilisation

vector < vector < list <vertex_t > > > path(NUM_NODES);// paths

between each S/D node pair (bidirectional)

vector <double > nodeLoad(NUM_NODES);//sum of each node’s

connected link’s traffic

vector <bool > active(NUM_NODES);

stringstream outputString;

fstream config;

// Initial path computation with all nodes present/active

for (i=0;i<NUM_NODES;i++) active[i]=1;

path = path_calc(adjacency_list);

// Calculate link usage in Mbps from traffic matrix and paths

linkTraffic = calc_link_traffic(traffic , path);

// Calculate node load

for (i=0;i<linkTraffic.size();i++) nodeLoad[i/NUM_NODES] +=

linkTraffic[i];

// Calculate link utilisation percentage
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linkUtil = calc_link_util(linkTraffic , adjacency_list);

//Find max link utilisation percentage

maxUtil = 0;

for (i=0;i<linkUtil.size();i++){

if (linkUtil[i] > maxUtil)

maxUtil = linkUtil[i];

}

//Skip optimisation if dynamic mechanism is disabled (defined

on command line)

if (args ==1){

while (maxUtil < THRESHOLD){

connected = 0;

options = 0;

for (i=0;i<NUM_NODES;i++){

options += active[i];

}

if (options == 0) break;

// Clear residual node traffic data and calculate node

load

for (i=0;i<nodeLoad.size();i++) nodeLoad[i] = 0;

for (i=0;i<linkTraffic.size();i++) nodeLoad[i/NUM_NODES

] += linkTraffic[i];

// Until all nodes are connected

while (! connected || maxUtil > THRESHOLD){

options = 0;

for (i=0;i<NUM_NODES;i++){

options += active[i];

}

if (options == 0) break;

//Clear residual data

for (i=0;i<NUM_NODES;i++) transitUsage[i] = 0;

// Determine how many times each node is used in a

shortest path

for (i=0;i<NUM_NODES;i++){

for (j=0;j<NUM_NODES;j++){

for (pos=path[i][j]. begin();pos!=path[i][j

].end();pos ++){

transitUsage [*pos ]++;

}

}

}

//find least used node

minUsage = numeric_limits <double >:: infinity ();

minLoad = numeric_limits <double >:: infinity ();

leastUsed = 9999;

for (i=0;i<NUM_NODES;i++){

if (active[i] && transitUsage[i] <= minUsage){

minUsage = transitUsage[i];

leastUsed = i;

}

else if (active[i] && transitUsage[i] ==

minUsage && nodeLoad[i] < minLoad){
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minLoad = nodeLoad[i];

leastUsed = i;

}

}

if (leastUsed == 9999){//no candidates for removal

break;

}

// Remove the node as a candidate for future removal

active[leastUsed] = 0;

options --;

//Store adjacency information in case node removal

has to be reversed

nodeStorage.push_back(adjacency_list[leastUsed ]);

for (i=0;i<adjacency_list[leastUsed ].size();i++){

nodeStorage.push_back(adjacency_list[

adjacency_list[leastUsed ][i]. target ]);

}

//find most used adjacency to least used node

maxUsage = 0;

maxLoad = 0;

mostUsed = 9999;

for (i=0;i<adjacency_list[leastUsed ].size();i++){

if (transitUsage[adjacency_list[leastUsed ][i].

target] > maxUsage){

maxUsage = transitUsage[adjacency_list[

leastUsed ][i]. target ];

mostUsed = adjacency_list[leastUsed ][i].

target;

}

else if (transitUsage[adjacency_list[leastUsed

][i]. target] == maxUsage && nodeLoad[

adjacency_list[leastUsed ][i]. target] >

maxLoad){

maxLoad = nodeLoad[adjacency_list[leastUsed

][i]. target ];

mostUsed = adjacency_list[leastUsed ][i].

target;

}

}

cout << "\tRemoving node " << leastUsed +1 << "\t(

Keep node " << mostUsed +1 << " adjacency)\n";

// Remove all but one adjacency from node to be

removed

for (i=0;i<adjacency_list[leastUsed ].size();i++){

targetNode = adjacency_list[leastUsed ][i].

target;

if (targetNode != mostUsed){

// Remove adjacencies from other nodes

for (j=0;j<adjacency_list[targetNode ].size

();j++){

if (adjacency_list[targetNode ][j].

target == leastUsed){

for (k=j ; k<adjacency_list[

targetNode ].size() -1 ;k++){
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adjacency_list[targetNode ][k] =

adjacency_list[targetNode ][

k+1];

}

adjacency_list[targetNode ]. pop_back

();

j--;

}

}

// Remove adjacencies from node to be

removed

for (j=i ; j<adjacency_list[leastUsed ].size

() -1 ;j++){

adjacency_list[leastUsed ][j] =

adjacency_list[leastUsed ][j+1];

}

adjacency_list[leastUsed ]. pop_back ();

i--;

}

}

// calculate new paths between nodes

path = path_calc(adjacency_list);

// Calculate link usage in Mbps from traffic matrix

and paths

linkTraffic = calc_link_traffic(traffic , path);

// Calculate link utilisation percentage

linkUtil = calc_link_util(linkTraffic ,

adjacency_list);

//Find max link utilisation percentage

maxUtil = 0;

for (i=0;i<linkUtil.size();i++){

if (linkUtil[i] > maxUtil)

maxUtil = linkUtil[i];

}

//test if each node can reach all other nodes

for(i=0;i<path.size();i++){

for (j=0;j<path[i].size();j++){

//if a node is unreachable , the path is

simply the destination node

//Therefore , if a node is reachable , the

start of the path will be the source

node

connected = (i == *(path[i][j]. begin ()));

if (! connected) break;

}

if (! connected) break;

}

//Add node back into topology if one of more nodes

are unreachable , or if the utilisation is over

the threshold

if (! connected || maxUtil > THRESHOLD) {

cout << "\t\tAdding removed node back in";
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if(maxUtil > THRESHOLD){

if (! connected) cout << " (Utilisation over

threshold AND one or more nodes

unreachable)\n";

else cout << " (Utilisation over threshold)

\n";

}

else cout << " (One or more nodes unreachable)\

n";

//Add the removed node back into the network

adjacency_list[leastUsed] = nodeStorage [0];

for (i=0;i<adjacency_list[leastUsed ].size();i

++){

adjacency_list[adjacency_list[leastUsed ][i

]. target] = nodeStorage[i+1];

}

path = path_calc(adjacency_list);

}

//Clear the node storage for future use

while(nodeStorage.size() > 0) nodeStorage.pop_back

();

}

// Calculate link usage in Mbps from traffic matrix and

paths

linkTraffic = calc_link_traffic(traffic , path);

// Calculate link utilisation percentage

linkUtil = calc_link_util(linkTraffic , adjacency_list);

//Find max link utilisation percentage

maxUtil = 0;

for (i=0;i<linkUtil.size();i++){

if (linkUtil[i] > maxUtil)

maxUtil = linkUtil[i];

}

//If no candidates remain , exit the loop

if (options == 0) break;

}

}

// Write topology to config file

config.open(configFilename.c_str());

if (config.fail()){

cout << "Error opening " << configFilename << "\n";

return 1;

}

for (i=0;i<path.size();i++){

for (j=0;j<path[i].size();j++){

if (i!=j){

pos = path[i][j]. begin();

pos++;

config << *pos +1;

}

else config << i+1;

config << ",";
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}

if (i<path.size() -1) config << "\n";

}

config.close ();

return 0;

}

vector < vector < list <vertex_t > > > path_calc(adjacency_list_t

adjacency_list){

unsigned int i,j;

unsigned int NUM_NODES = adjacency_list.size();

vector <weight_t > min_distance;// minimum distance between S/D

node pair (not used)

vector < vector <vertex_t > > previous(NUM_NODES);//used in path

calculation

vector < vector < list <vertex_t > > > path(NUM_NODES);//paths

between each S/D node pair (bidirectional)

for (i=0;i<NUM_NODES;i++) DijkstraComputePaths(i,

adjacency_list , min_distance , previous[i]);

for (i=0;i<NUM_NODES;i++){

for (j=0;j<NUM_NODES;j++){

path[i]. push_back(DijkstraGetShortestPathTo(j, previous

[i]));

}

}

return path;

}

vector <double > calc_link_traffic(vector <double > traffic , vector <

vector < list <vertex_t > > > path){

unsigned int i, j;

unsigned int NUM_NODES = (int)sqrt(( double)traffic.size());

vector <double > linkTraffic(NUM_NODES*NUM_NODES);// traffic on

each link in Mbps

list <vertex_t >:: iterator pos1 , pos2;

for (i=0;i<NUM_NODES;i++){

for (j=0;j<NUM_NODES;j++){

pos1 = path[i][j].begin ();

pos1 ++;

pos2 = pos1;

pos1 --;

while (pos2!=path[i][j].end()){

linkTraffic[NUM_NODES *(* pos1) + *pos2] += traffic[

NUM_NODES*i + j];

pos1 ++;

pos2 ++;

}

}

}

return linkTraffic;

}

vector <double > calc_link_util(vector <double > linkTraffic ,

adjacency_list_t adjacency_list){

unsigned int NUM_NODES = (int)sqrt(( double)linkTraffic.size());
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unsigned int i,j;

vector <double > linkUtil(NUM_NODES*NUM_NODES);

for (i=0;i<NUM_NODES;i++){

for (j=0;j<adjacency_list[i].size();j++){

linkUtil[NUM_NODES*i + adjacency_list[i][j]. target] = (

linkTraffic[NUM_NODES*i + adjacency_list[i][j].

target] * adjacency_list[i][j]. weight) * 10;

}

}

return linkUtil;

}

void DijkstraComputePaths(vertex_t source , const adjacency_list_t &

adjacency_list , vector <weight_t > &min_distance , vector <vertex_t >

&previous){

int n = adjacency_list.size();

min_distance.clear();

min_distance.resize(n, max_weight);

min_distance[source] = 0;

previous.clear ();

previous.resize(n, -1);

set <pair <weight_t , vertex_t > > vertex_queue;

vertex_queue.insert(make_pair(min_distance[source], source));

while (! vertex_queue.empty ()){

weight_t dist = vertex_queue.begin ()->first;

vertex_t u = vertex_queue.begin ()->second;

vertex_queue.erase(vertex_queue.begin());

// Visit each edge exiting u

const vector <neighbor > &neighbors = adjacency_list[u];

for (vector <neighbor >:: const_iterator neighbor_iter =

neighbors.begin();

neighbor_iter != neighbors.end();

neighbor_iter ++)

{

vertex_t v = neighbor_iter ->target;

weight_t weight = neighbor_iter ->weight;

weight_t distance_through_u = dist + weight;

if (distance_through_u < min_distance[v]) {

vertex_queue.erase(make_pair(min_distance[v], v));

min_distance[v] = distance_through_u;

previous[v] = u;

vertex_queue.insert(make_pair(min_distance[v], v));

}

}

}

}

list <vertex_t > DijkstraGetShortestPathTo(

vertex_t vertex , const vector <vertex_t > &previous)

{

list <vertex_t > path;

for ( ; vertex != -1; vertex = previous[vertex ])
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path.push_front(vertex);

return path;

}

C.2 Network nodes program’s source code

This program is used on each of the network nodes to monitor the topology configuration

and implement local configuration changes as required. It is a standalone program and

does not take any arguments, as shown below for node four:

daniel@node4:∼$ ./monitor

The code listings below show the main program, the initialisation and configuration func-

tions, and the cURL functions. The main program calls the initialisation function, mon-

itors the topology configuration, and calls the topology change implementation function

if required. The cURL functions are used to obtain topology information from the con-

troller. Compilation of the program was performed using g++ as follows:

daniel@node4:∼$ g++ PiMain.cpp raspi config.cpp libcurl.c -o monitor

-lcurl

C.2.1 Main program

The nodes’ main program shown in listing C.4 performs the following functions:

• Calls the initialisation function to ensure the starting configuration is the same for

all nodes

• Perpetually checks whether the config file on the controller has been updated using

the cURL functions

• If the controller’s topology file is newer than the node’s, the new config file is pulled

from the controller using the cURL functions

• Once the new config file is received, calls the topology implementation function

Listing C.4: Raspberry Pi main program C++ source code

#include <stdio.h>

#include <stdlib.h>

#include <iostream >
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#include <unistd.h>

#include <time.h>

#include <string >

#include <sstream >

#include <fstream >

#include <signal.h>

#include <vector >

#include "libcurl.h"

#include "raspi_config.h"

#include <sys/time.h>

using namespace std;

void int_handler(int x){

cout << "\nRemoving config from OpenVswitch bridge ...";

cout.flush();

system("sudo ovs -ofctl del -flows br0");

system("sudo ovs -ofctl add -flow br0 \" table=0, priority=0,

actions=normal \"");

system("sudo ovs -ofctl add -flow br0 \" table=0, priority=5,

actions=drop\"");

cout << "done\n";

cout.flush();

cout << "Removing ./ topology.conf ...";

cout.flush();

system("sudo rm ./ topology.conf");

cout << "done\n\n";

cout.flush();

exit (1);

}

int main(){

signal(SIGINT ,int_handler);

unsigned int checkWait = 1000 * 1000 * 2.5;//time to wait

between checks (in us)

string controllerURL = "ftp ://192.168.254.100/";

string configFilename = "./ topology.conf";

time_t remoteModTime (0);

time_t localModTime (0);

struct tm* remoteModtm;

int status , node;

ifstream inputFile;

char tempchar;

stringstream tempstr;

// determine node number

inputFile.open("/etc/hostname");

if (inputFile.fail()){

cout << "Error opening /etc/hostname .\n";

return 1;

}

inputFile.seekg(-2,ios::end);

inputFile.get(tempchar);

tempstr << tempchar;

tempstr >> node;
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inputFile.close();

cout << "Current node: " << node << "\n";

// Force NTP synchronisation

system (("sudo service ntp stop && sudo ntpd -gq && sudo service

ntp start"));

// Start and initialise OpenVswitch

status = OVS_init(node);

if (status){

cout << "Error while initialising OpenVswitch. Exiting now

.\n";

exit(status);

}

cout << "Config update monitor now running .\n";

for (;;){

cout << "\tGetting remote mod time\n";

//get controller ’s file modification time

remoteModTime = curl_get_info(configFilename.c_str (),

controllerURL.c_str());

//if remote newer than local , apply config

if (remoteModTime > localModTime){

cout << "\tUpdating local topology config file (" <<

configFilename << ")\n";

//Wait until trying again if the get failed

if(curl_get(configFilename.c_str(),controllerURL.c_str

())) {

cout << "\tCould not get remote topology config

file.\n";

usleep(checkWait /2);

continue;

}

// Update local modification time

remoteModtm = localtime (& remoteModTime);

tempstr.str(string ());

tempstr.clear();

tempstr << "sudo touch " << configFilename << " -d \""

<< (remoteModtm ->tm_year +1900) << "-" << (

remoteModtm ->tm_mon +1) << "-" << remoteModtm

->tm_mday << " "

<< remoteModtm ->tm_hour << ":" << remoteModtm ->

tm_min << ":" << remoteModtm ->tm_sec << "\""

;

system(tempstr.str().c_str());

localModTime = remoteModTime;

// Implement topology change

cout << "\tImplementing topology change\n";

raspi_config(configFilename , node);

}

else {

//wait for next config check

cout << "No config change. Sleeping for " << checkWait
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/1000/1000 << " seconds\n";

usleep(checkWait);

}

}

return 0;

}

C.2.2 Initialisation and topology implementation header

Listing C.5 simply shows the initialisation and topology implementation algorithms’

header file.

Listing C.5: Raspberry Pi initialisation and configuration C++ header

#ifndef RASPI_CONFIG_H

#define RASPI_CONFIG_H

#include <string >

#include <iostream >

#include <fstream >

#include <sstream >

#include <stdio.h>

#include <stdlib.h>

#include <vector >

#include <sys/types.h>

#include <sys/stat.h>

#include <ifaddrs.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <ctime >

#include <sys/time.h>

using namespace std;

int raspi_config(string configFilename , int node);

string get_lxc_mac(int node);

int OVS_start ();

int OVS_init(int node);

int LXC_start(int node);

#endif

C.2.3 Initialisation and topology implementation

The initialisation and topology implementation algorithms used by the nodes’ main pro-

gram is shown in listing C.6 and performs the following functions:
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• Check if Open vSwitch is running and start if necessary

• Prepare Open vSwitch by configuring it with baseline flows that are required for all

topologies

• Configure the topology-specific flows based on the current node and the selected

topology

Listing C.6: Raspberry Pi initialisation and configuration C++ source code

#include "raspi_config.h"

using namespace std;

int raspi_config(string configFilename , int node){

int NUM_NODES = 8;

short activeNodes;

int i, j, port;

int status = 0;

stringstream tempstr;

ifstream inputFile;

string line;

vector <int > nextHops(NUM_NODES);

vector <int > interfaces (4);

vector <int > outputPorts(NUM_NODES);

struct ifaddrs* ifAddrStruct = NULL;

struct ifaddrs* ifa = NULL;

void * tmpAddrPtr = NULL;

bool flag;

timeval t0 , t1;

struct tm* now;

struct tm* change;

// synchronise topology change using system clock

//get local time

gettimeofday (&t0 , NULL);

now = localtime (&t0.tv_sec);

change = localtime (&t0.tv_sec);

// Output current time

cout << "\t\tCurrent time: ";

if (now ->tm_hour < 10) cout << "0";

cout << now ->tm_hour << ":";

if (now ->tm_min < 10) cout << "0";

cout << now ->tm_min << ":";

if (now ->tm_sec < 10) cout << "0";

cout << now ->tm_sec << ":";

if (t0.tv_usec /1000 < 1000) cout << "0";

if (t0.tv_usec /1000 < 100) cout << "0";

if (t0.tv_usec /1000 < 10) cout << "0";

cout << t0.tv_usec /1000 << "\n";

// determine test start time - closest 5s interval

if (change ->tm_sec < 5)

change ->tm_sec = 10;

else if (change ->tm_sec >= 5 && change ->tm_sec < 10)

change ->tm_sec = 15;
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else if (change ->tm_sec >= 10 && change ->tm_sec < 15)

change ->tm_sec = 20;

else if (change ->tm_sec >= 15 && change ->tm_sec < 20)

change ->tm_sec = 25;

else if (change ->tm_sec >= 20 && change ->tm_sec < 25)

change ->tm_sec = 30;

else if (change ->tm_sec >= 25 && change ->tm_sec < 30)

change ->tm_sec = 35;

else if (change ->tm_sec >= 30 && change ->tm_sec < 35)

change ->tm_sec = 40;

else if (change ->tm_sec >= 35 && change ->tm_sec < 40)

change ->tm_sec = 45;

else if (change ->tm_sec >= 40 && change ->tm_sec < 45)

change ->tm_sec = 50;

else if (change ->tm_sec >= 45 && change ->tm_sec < 50)

change ->tm_sec = 55;

else if (change ->tm_sec >= 50 && change ->tm_sec < 55){

change ->tm_sec = 0;

change ->tm_min ++;}

else if (change ->tm_sec >= 55){

change ->tm_sec = 5;

change ->tm_min ++;}

if (change ->tm_min >= 60){

change ->tm_hour ++;

change ->tm_min -= 60;

}

if (change ->tm_hour >= 24)

change ->tm_hour -= 24;

t1.tv_sec = mktime(change);

t1.tv_usec = 0;

// Output change time

cout << "\t\tChange time: ";

if (change ->tm_hour < 10) cout << "0";

cout << change ->tm_hour << ":";

if (change ->tm_min < 10) cout << "0";

cout << change ->tm_min << ":";

if (change ->tm_sec < 10) cout << "0";

cout << change ->tm_sec << ":";

if (t1.tv_usec /1000 < 1000) cout << "0";

if (t1.tv_usec /1000 < 100) cout << "0";

if (t1.tv_usec /1000 < 10) cout << "0";

cout << t1.tv_usec /1000 << "\n";

//Open config file

inputFile.open(configFilename.c_str ());

if (inputFile.fail()){

cout << "Error opening " << configFilename << "\n";

return 1;;

}

// discard lines of the config file until the current node’s

entry is reached

for (i=0;i<node -1;i++) getline(inputFile ,line);

//get next hop for each destination

for (i=0;i<NUM_NODES;i++){

getline(inputFile ,line ,’,’);

nextHops[i] = atof(line.c_str ());



C.2 Network nodes program’s source code 101

}

inputFile.close();

//Get IP addresses of each interface

getifaddrs (& ifAddrStruct);

for (ifa = ifAddrStruct; ifa != NULL; ifa = ifa ->ifa_next) {

// check it is IP4 and an ethernet port

if (ifa ->ifa_addr ->sa_family == AF_INET && ifa ->ifa_name [0]

== ’e’) {

tmpAddrPtr = &(( struct sockaddr_in *) ifa ->ifa_addr)->

sin_addr;

char addressBuffer[INET_ADDRSTRLEN ];

inet_ntop(AF_INET , tmpAddrPtr , addressBuffer ,

INET_ADDRSTRLEN);

if (addressBuffer [8] == addressBuffer [11])

interfaces[atoi(&ifa ->ifa_name [3])] = atoi(&

addressBuffer [8]) %10;

if (addressBuffer [9] == addressBuffer [11])

interfaces[atoi(&ifa ->ifa_name [3])] = atoi(&

addressBuffer [8]) /10;

}

}

if (ifAddrStruct != NULL) freeifaddrs(ifAddrStruct);

// convert next hop node number to interface number using IP of

interfaces

for (i=0;i<nextHops.size();i++){

if (nextHops[i]== node){

outputPorts[i] = 1;

continue;

}

for (j=0;j<interfaces.size();j++){

if (interfaces[j]== nextHops[i]) outputPorts[i] = j+2;

}

}

//wait until local time == change time

cout << "\t\tWaiting for topology change time\n\t\t" << ((t1.

tv_sec - t0.tv_sec) + (t1.tv_usec - t0.tv_usec)/1000000) <<

" seconds until start";

while((t1.tv_sec - t0.tv_sec)*1000 + (t1.tv_usec - t0.tv_usec)

/1000 > 0){

gettimeofday (&t0 , NULL);

if (int((t1.tv_sec - t0.tv_sec) + (t1.tv_usec - t0.tv_usec)

/1000000) % 30 == 0){

if (flag){

cout << "\n\t\t" << (t1.tv_sec - t0.tv_sec) + (t1.

tv_usec - t0.tv_usec)/1000000 << " seconds until

start";

flush(cout);

flag = 0;

}

}

else if (int((t1.tv_sec - t0.tv_sec) + (t1.tv_usec - t0.

tv_usec)/1000000) % 3 == 0){

if (flag){

cout << ".";

flush(cout);
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flag = 0;

}

}

else flag =1;

}

cout << "\n";

//use next hop OVS port numbers to update OVS flows

for (i=0;i<NUM_NODES;i++){

if(i!=node -1){

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << "sudo ovs -ofctl mod -flows br0 \" table=" << i

+1 << ", actions=dec_mpls_ttl ," << outputPorts[i] <<

"\"";

status = system(tempstr.str().c_str());

}

}

if (status){

cout << "Error modifying transit traffic ’s flows\n";

exit(status);

}

return 0;

}

int OVS_init(int node){

int status = OVS_start ();//Start OpenVswitch

if (status){

cout << "Error while starting OpenVswitch. Aborting

initialisation .\n";

exit(status);

}

int i,j;

char tempchar;

stringstream tempstr;

string lxcmac , intmac;

ifstream inputFile;

string intFilename = "/sys/class/net/veth0/address";

// Start the host (runs in an LXC container)

LXC_start(node);

//get LXC conatiner ’s MAC address

lxcmac = get_lxc_mac(node);

//get interface to LXC container ’s MAC address

inputFile.open(intFilename.c_str ());

if (inputFile.fail()){

cout << "Error opening " << intFilename << ".\n";

return 1;

}

getline(inputFile ,intmac);
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cout << "Initialising OpenVswitch configuration :\n\tOutput

handling flows ...";

cout.flush();

// Output handling tables - Initialised as normal operation ,

modified later using config file

for (i=1;i<=8;i++){

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << "sudo ovs -ofctl add -flow br0 \" table=" << i << "

actions=normal \"";

status = system(tempstr.str().c_str());

if (status){

cout << "Error adding output tables\n";

return status;

}

}

cout << "done.\n\tTransit and terminating traffic flows ...";

cout.flush();

// Transit and terminating traffic

for (i=1;i<=8;i++){

for (j=1;j<=8;j++){

if (i != j){

tempstr.str(string ());//clear string stream for use

tempstr.clear();

tempstr << "sudo ovs -ofctl add -flow br0 \" table=0,

priority =500, dl_type =0x8847 , mpls_label=" << j

<< "0" << i << ", actions=goto_table:" << i << "

\"";

status = system(tempstr.str().c_str());

if (status){

cout << "Error adding transit/terminating flows

\n";

return status;

}

}

}

}

// Terminating traffic output flow (won’t change when topology

changes)

//In a real network , this wouldn ’t work , as it would direct all

traffic to a single host (same MAC).

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << "sudo ovs -ofctl mod -flows br0 \" table=" << node << "

, actions=pop_mpls :0x0800 ,mod_dl_src:" << intmac << ",

mod_dl_dst:" << lxcmac << " ,1\"";

status = system(tempstr.str().c_str());

if (status){

cout << "Error modifying terminating traffic processing

flow\n";

exit(status);

}

cout << "done.\n\tOriginating traffic flows ...";

cout.flush();

// Originating traffic
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for (i=1;i<=8;i++){

if (i != node){

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << "sudo ovs -ofctl add -flow br0 \" table=0,

priority =1000 , in_port=1, dl_type =0x0800 , nw_dst

=192.168." << i << "0.0/24 , actions=push_mpls :0x8847

, set_mpls_label:" << node << "0" << i << ",

goto_table:" << i <<"\"";

status = system(tempstr.str().c_str());

if (status){

cout << "Error adding originating flows\n";

return status;

}

}

}

// Firewall to prevent double -handling by both OVS and Quagga

status = system("sudo ovs -ofctl add -flow br0 \" table=0,

priority=5, actions=drop\"");

if (status){

cout << "Error adding firewall flow\n";

return status;

}

cout << "done.\n";

cout.flush();

return 0;

}

int OVS_start (){

// Check if OVS is running , start it if required

cout << "Checking if OpenVswitch is running ...";

cout.flush();

struct stat buffer;

int status = 0;

string ovsdbFilepath = "/usr/local/var/run/openvswitch/ovsdb -

server.pid";

string vswitchdFilepath = "/usr/local/var/run/openvswitch/ovs -

vswtichd.pid";

// check if ovsdb -server.pid AND ovs -vswtichd.pid exist

if(stat(ovsdbFilepath.c_str(), &buffer) && stat(

vswitchdFilepath.c_str(), &buffer)){

cout << "no.\ nStarting OpenVswitch ...";

cout.flush ();

status = system("sudo ovsdb -server --remote=punix:/usr/

local/var/run/openvswitch/db.sock --remote=db:

Open_vSwitch ,Open_vSwitch ,manager_options --pidfile --

detach");

status = status + system("sudo ovs -vsctl --no -wait init");

status = status + system("sudo ovs -vswitchd --pidfile --

detach");

if (status){

cout << "\nError starting OpenVswitch\n";

return status;

}

cout << "done.\n";

}
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else

cout << "yes.\n";

return 0;

}

int LXC_start(int node){

stringstream tempstr;

int status = 0;

cout << "Checking if LXC container \"host" << node << "\" is

running ...";

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << "sudo LD_LIBRARY_PATH =/usr/local/lib lxc -info -n

host" << node << " | grep STOPPED";

if (! system(tempstr.str().c_str())){// system returns ’0’ if

host is stopped

cout << "no.\ nStarting LXC container \"host" << node << "

\"...";

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << "sudo LD_LIBRARY_PATH =/usr/local/lib lxc -start -

n host" << node;

status = system(tempstr.str().c_str());

if (status){

cout << "failed :(\n";

return status;

}

cout << "done.\n";

}

else

cout << "yes.\n";

return 0;

}

string get_lxc_mac(int node){

ifstream inputFile;

string arpFilename = "/proc/net/arp";

stringstream tempstr;

string line , dump , lxcmac;

vector <string > ipaddr (4);

int i;

inputFile.open(arpFilename.c_str ());

if (inputFile.fail()){

cout << "Error opening " << arpFilename << ".\n";

return "0";

}

tempstr.str(string ());

tempstr << "ping 192.168." << node << "0.100 -w 1 >/dev/null";

//ping lxc container to ensure there is an entry in the ARP

table

system(tempstr.str().c_str());
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while (! inputFile.eof()){

// clear string stream

tempstr.str(string ());

tempstr.clear();

//Get line of file for processing

getline(inputFile ,line);

tempstr << line;

// store IP field for processing

tempstr >> ipaddr [0];

// store remainder of line to free string stream

getline(tempstr ,line);

tempstr.str(string ());

tempstr.clear();

// divide IP address into octets

tempstr << ipaddr [0];

for(i=0;i<ipaddr.size();i++){

getline(tempstr ,ipaddr[i],’.’);

}

// check if this table entry is for the LXC container

if (192== atof(ipaddr [0]. c_str()) && 168== atof(ipaddr [1].

c_str()) && (node *10)==atof(ipaddr [2]. c_str ()) && 100==

atof(ipaddr [3]. c_str())){

// retrieve the remainder of the line

tempstr.str(string ());

tempstr.clear();

tempstr << line;

tempstr >> dump;// discard ’HW type’ field

tempstr >> dump;// discard ’flags’ field

tempstr >> lxcmac;// store ’HW address ’ field for LXC

container

break;

}

}

if (lxcmac ==""){

cout << "MAC address of LXC container not found :(\n";

return "0";

}

inputFile.close ();

return lxcmac;

}

C.2.4 cURL implementation header

Listing C.7 simply shows the cURL implementation algorithms’ header file.

Listing C.7: cURL C header

#ifndef LIBCURL_H

#define LIBCURL_H

#include <stdio.h>
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#include <curl/curl.h>

#include <string >

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <errno.h>

#include <unistd.h>

#include <cstring >

#include <stdlib.h>

#include <stdarg.h>

#include <time.h>

char* concat(int , ...);

int curl_get(const char*,const char*);

time_t curl_get_info(const char*,const char*);

#endif

C.2.5 cURL implementation

The cURL functions shown in listing C.8 allow the nodes to retrieve topology information

from the controller, and performs the following functions:

• Provides an interface to get files from an FTP server

• Provides an interface to get the modification time of a file on an FTP server

Listing C.8: cURL C source code

#include "libcurl.h"

char* concat(int count , ...){

va_list ap;

int i;

// Find required length to store merged string

int len = 1; // room for NULL

va_start(ap, count);

for(i=0 ; i<count ; i++)

len += strlen(va_arg(ap , char*));

va_end(ap);

// Allocate memory to concat strings

char *merged = (char*) calloc(sizeof(char),len);

int null_pos = 0;

// concatenate strings

va_start(ap, count);

for(i=0 ; i<count ; i++)

{

char *s = va_arg(ap , char*);

strcpy(merged+null_pos , s);
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null_pos += strlen(s);

}

va_end(ap);

return merged;

}

struct FtpFile {

const char *filename;

FILE *stream;

};

static size_t my_fwrite(void *buffer , size_t size , size_t nmemb ,

void *stream){

struct FtpFile *out=( struct FtpFile *) stream;

if(out && !out ->stream) {

// open file for writing

out ->stream=fopen(out ->filename , "wb");

if(!out ->stream)

return -1; // failure , can’t open file to write

}

return fwrite(buffer , size , nmemb , out ->stream);

}

int curl_get(const char* infilename ,const char* inURL){

CURL *curl;

CURLcode res;

struct FtpFile ftpfile ={

infilename , // name to store the file as if successful

NULL

};

char* fullURL = concat(2,inURL ,infilename);

curl_global_init(CURL_GLOBAL_DEFAULT);

curl = curl_easy_init ();

if(curl) {

curl_easy_setopt(curl , CURLOPT_URL ,fullURL);

curl_easy_setopt(curl , CURLOPT_USERPWD , "daniel:password");

curl_easy_setopt(curl , CURLOPT_WRITEFUNCTION , my_fwrite);//

Define our callback to get called when there’s data to

be written

curl_easy_setopt(curl , CURLOPT_WRITEDATA , &ftpfile);// Set

a pointer to our struct to pass to the callback

// execute defined cURL

res = curl_easy_perform(curl);

// Error handling

if(CURLE_OK != res) fprintf(stderr , "cURL get: Error %s\n",

curl_easy_strerror(res));

}

// Cleanup

if(ftpfile.stream) fclose(ftpfile.stream);

curl_easy_cleanup(curl);

curl_global_cleanup ();
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free(fullURL);

return (int)res;

}

static size_t throw_away(void *ptr , size_t size , size_t nmemb , void

*data){

(void)ptr;

(void)data;

return (size_t)(size * nmemb);

}

time_t curl_get_info(const char* infilename ,const char* inURL){

CURL *curl;

CURLcode res;

long filetime = -1;

time_t file_time = (time_t)0;

char* fullURL = concat(2,inURL ,infilename);

const char *filename = strrchr(fullURL , ’/’) + 1;

curl_global_init(CURL_GLOBAL_DEFAULT);

curl = curl_easy_init ();

if(curl) {

curl_easy_setopt(curl , CURLOPT_URL , fullURL);

curl_easy_setopt(curl , CURLOPT_USERPWD , "daniel:password");

curl_easy_setopt(curl , CURLOPT_NOBODY , 1L);//Don’t download

the file data

curl_easy_setopt(curl , CURLOPT_FILETIME , 1L); //Ask for

filetime

curl_easy_setopt(curl , CURLOPT_HEADERFUNCTION , throw_away);

// No header output

// Suppress standard output (otherwise dumps file info)

int normal , bit_bucket;

fflush(stdout);

normal = dup (1);

bit_bucket = open("/dev/null", O_WRONLY);

dup2(bit_bucket , 1);

close(bit_bucket);

// execute defined cURL

res = curl_easy_perform(curl);

// restore standard output

fflush(stdout);

dup2(normal , 1);

close(normal);

if(CURLE_OK == res) {

//file modificaiton time processing

res = curl_easy_getinfo(curl , CURLINFO_FILETIME , &

filetime);

if(( CURLE_OK == res) && (filetime >= 0)) {

file_time = (time_t)filetime;

}

}

// Error handling
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else fprintf(stderr , "cURL get info: Error %s\n",

curl_easy_strerror(res));

}

// cleanup

curl_easy_cleanup(curl);

free(fullURL);

curl_global_cleanup ();

// Return file modification time

return file_time;

}

C.3 System testing program’s source code

While not directly related to the operation of the dynamic topology mechanism, the two

programs below provide a function that is vital to the project: testing of the system and

collection of testing data. One program runs on each of the eight virtual hosts connected to

the nodes, and synchronises traffic generation for the test scenarios described in chapter 3.

The second program runs on the controller, and collates the 336 individual files into a

single test report.

C.3.1 Host traffic generation

The program shown in listing C.9 is used to control the traffic on the network during

testing, and performs the following functions:

• Determine test start time and synchronise with other hosts

• Generate network traffic as per the testing requirements

• Capture network performance statistics

The program was compiled using g++ as follows:

daniel@node4:∼$ g++ host.cpp -o host

The resultant standalone program takes no command line input or arguments, as shown

below for host four:

daniel@host4:∼# ./host
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Listing C.9: Traffic generation C++ source code

#include <iostream >

#include <ctime >

#include <string >

#include <sstream >

#include <fstream >

#include <vector >

#include <stdlib.h>

#include <unistd.h>

#include <sys/time.h>

using namespace std;

int main(){

timeval t0 , t1;

struct tm* now;

struct tm* start;

bool flag = 1;

ifstream inputFile;

stringstream nodestr , tempstr;

vector <string > trafficFile (3);

vector < vector <double > > traffic (3);

string line , trafficstr;

string controllerURL = "ftp ://192.168.254.100/";

int node ,i,j;

int interval = 10*60; // testing interval in seconds

char tempchar;

// Traffic generation matrix filenames

trafficFile [0] = "./1. matrix";

trafficFile [1] = "./2. matrix";

trafficFile [2] = "./3. matrix";

// determine node number

inputFile.open("/etc/hostname");

if (inputFile.fail()){

cout << "Error opening /etc/hostname .\n";

return 1;

}

inputFile.seekg(-1,ios::end);

inputFile.get(tempchar);

nodestr << tempchar;

nodestr >> node;

inputFile.close();

//get this node’s traffic from matrix files

for (i=0;i<3;i++){

inputFile.open(( trafficFile[i]).c_str ());

for (j=0;j<8;j++){

getline(inputFile ,line);

if(j==node -1) break;

}

tempstr.str(string ());// clear string stream for use

tempstr.clear();

tempstr << line;

for (j=0;j<8;j++){

getline(tempstr ,trafficstr ,’,’);

traffic[i]. push_back(atof(trafficstr.c_str()));
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}

inputFile.close ();

}

//get local time

gettimeofday (&t0 , NULL);

now = localtime (&t0.tv_sec);

start = localtime (&t0.tv_sec);

// Output current time

cout << "Current time: ";

if (now ->tm_hour < 10) cout << "0";

cout << now ->tm_hour << ":";

if (now ->tm_min < 10) cout << "0";

cout << now ->tm_min << ":";

if (now ->tm_sec < 10) cout << "0";

cout << now ->tm_sec << ":";

if (t0.tv_usec /1000 < 1000) cout << "0";

if (t0.tv_usec /1000 < 100) cout << "0";

if (t0.tv_usec /1000 < 10) cout << "0";

cout << t0.tv_usec /1000 << "\n";

// determine test start time - closest 30s interval

if (start ->tm_sec < 15)

start ->tm_sec = 30;

else if (start ->tm_sec >= 15 && start ->tm_sec < 45){

start ->tm_sec = 0;

start ->tm_min ++;}

else if (start ->tm_sec >= 45){

start ->tm_sec = 0;

start ->tm_min ++;}

if (start ->tm_min >= 60){

start ->tm_hour ++;

start ->tm_min -= 60;

}

if (start ->tm_hour >= 24)

start ->tm_hour -= 24;

t1.tv_sec = mktime(start);

t1.tv_usec = 0;

// Output start time

cout << "Start time: ";

if (start ->tm_hour < 10) cout << "0";

cout << start ->tm_hour << ":";

if (start ->tm_min < 10) cout << "0";

cout << start ->tm_min << ":";

if (start ->tm_sec < 10) cout << "0";

cout << start ->tm_sec << ".";

if (t1.tv_usec /1000 < 100) cout << "0";

if (t1.tv_usec /1000 < 10) cout << "0";

cout << t1.tv_usec /1000 << "\n";

//wait until local time == start time

cout << "Waiting for test start time\n" << ((t1.tv_sec - t0.

tv_sec) + (t1.tv_usec - t0.tv_usec)/1000000) << " seconds
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until start";

while((t1.tv_sec - t0.tv_sec)*1000 + (t1.tv_usec - t0.tv_usec)

/1000 > 0){

gettimeofday (&t0 , NULL);

if (int((t1.tv_sec - t0.tv_sec) + (t1.tv_usec - t0.tv_usec)

/1000000) % 30 == 0){

if (flag){

cout << "\n" << (t1.tv_sec - t0.tv_sec) + (t1.

tv_usec - t0.tv_usec)/1000000 << " seconds until

start";

flush(cout);

flag = 0;

}

}

else if (int((t1.tv_sec - t0.tv_sec) + (t1.tv_usec - t0.

tv_usec)/1000000) % 3 == 0){

if (flag){

cout << ".";

flush(cout);

flag = 0;

}

}

else flag =1;

}

cout << "\n";

// start iperf server for traffic reception

tempstr.str(string ());// clear string stream for use

tempstr << "iperf -s -p 5000" << (node -1) << " -B 192.168." <<

node << "0.100 -u &";

system(tempstr.str().c_str());

tempstr.str(string ());// clear string stream for use

tempstr << "iperf -s -p 5001" << (node -1) << " -B 192.168." <<

node << "0.100 -u &";

system(tempstr.str().c_str());

tempstr.str(string ());// clear string stream for use

tempstr << "iperf -s -p 5002" << (node -1) << " -B 192.168." <<

node << "0.100 -u &";

system(tempstr.str().c_str());

for (i=0;i<traffic.size();i++){

for (j=0;j<traffic[i].size();j++){

if (j!=(node -1)){

//start iperf clients for traffic generation

tempstr.str(string ());//clear string stream for use

tempstr.clear();

tempstr << "iperf -c 192.168." << (j+1) *10 << ".100

-p 500" << i << j << " -B 192.168." << node <<

"0.100 -t " << interval *(3-i) << " -b " <<

traffic[i][j] << "M -u -y c >./" << node << "-"

<< j+1 << "_" << i+1 << ".iperf &";

system(tempstr.str().c_str());

//start ping

tempstr.str(string ());//clear string stream for use

tempstr.clear();
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tempstr << "ping 192.168." << (j+1) *10 << ".100 -w

" << interval << " -q >./" << node << "-" << j+1

<< "_" << i+1 << ".ping &";

system(tempstr.str().c_str());

}

}

//wait until test finishes

usleep (1000*1000* interval);

}

cout << "\n==============================================\n";

cout << "TEST FINISHED";

cout << "===============================================\n";

return 0;

}

C.3.2 Controller traffic statistic collation

The program shown in listing C.10 is used to collate the data from the host traffic gen-

eration program. The program was compiled using g++ as follows:

daniel@controller:∼$ g++ measure.cpp -o measure

The resultant standalone program takes no command line input or arguments, but relies

on the host data files being present in the local directory. An example execution is shown

below:

daniel@controller:∼$ ./measure

Listing C.10: Test data processing C++ source code

#include <iostream >

#include <string >

#include <sstream >

#include <fstream >

#include <vector >

#include <stdlib.h>

#include <iomanip >

using namespace std;

int main(){

int NUM_NODES = 8;

int FIELDS = 14;

int JITTER = 9;

int LOSS = 12;

int ORDER = 13;

int i, j, k, m;

ifstream inputFile;

stringstream tempstr;

string line , temp , dump;
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vector <double > delay(NUM_NODES*NUM_NODES);

vector <double > jitter(NUM_NODES*NUM_NODES);

vector <double > loss(NUM_NODES*NUM_NODES);

vector <double > order(NUM_NODES*NUM_NODES);

vector < vector <double > > delayFull , jitterFull , lossFull ,

orderFull;

for (i=0;i<3;i++){

for (j=0;j<NUM_NODES;j++){

for (k=0;k<NUM_NODES;k++){

if (j!=k){

//Get statistics from iperf files

tempstr.str(string ());

tempstr.clear();

tempstr << "./" << (j+1) << "-" << (k+1) << "_"

<< (i+1) << ".iperf";

inputFile.open(tempstr.str().c_str ());

if (inputFile.fail()){

cout << "Failed to open file " << tempstr.

str() << "\n\n";

return 1;

}

tempstr.str(string ());

tempstr.clear();

while(getline(inputFile ,line)){temp = line;}

tempstr << temp;

for (m=0;m<FIELDS;m++){

getline(tempstr ,temp ,’,’);

if (m== JITTER) jitter[NUM_NODES*j + k] =

atof(temp.c_str());

if (m==LOSS) loss[NUM_NODES*j + k] = atof(

temp.c_str());

if (m==ORDER) order[NUM_NODES*j + k] = atof

(temp.c_str ());

}

inputFile.close ();

//Get statistics from ping files

tempstr.str(string ());

tempstr.clear();

tempstr << "./" << (j+1) << "-" << (k+1) << "_"

<< (i+1) << ".ping";

inputFile.open(tempstr.str().c_str ());

if (inputFile.fail()){

cout << "Failed to open file " << tempstr.

str() << "\n\n";

return 1;

}

tempstr.str(string ());

tempstr.clear();

while(getline(inputFile ,line)){temp = line;}

tempstr << temp;

tempstr >> temp;// discard unwanted data

tempstr >> temp;// discard unwanted data

tempstr >> temp;// discard unwanted data
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getline(tempstr ,temp ,’/’);// discard unwanted

data

getline(tempstr ,temp ,’/’);//get the average

round trip time

delay[NUM_NODES*j + k] = atof(temp.c_str ());

inputFile.close ();

}

}

}

delayFull.push_back(delay);

jitterFull.push_back(jitter);

lossFull.push_back(loss);

orderFull.push_back(order);

for(j=0;j<delay.size();j++){

delay[j] = 0;

jitter[j] = 0;

loss[j] = 0;

order[j] = 0;

}

}

for (i=0;i<delayFull.size();i++){

cout << "= = = = = = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = =\n";

cout << " SCENARIO " << i+1 << "\n";

cout << "= = = = = = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = = = = = = = = = = = = = = = = =

= = = = = = = = = = = = =\n";

cout << "Average round trip time (ms):\n";

for (j=0;j<delayFull[i].size();j++){

cout << "\t" << (int)(j/NUM_NODES)+1 << "-" << (j%

NUM_NODES)+1 << ": " << setw (5) << delayFull[i][j];

if (j%NUM_NODES ==7)

cout << "\n";

}

cout << "\n- - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - -\n";

cout << "Jitter (ms):\n" << setprecision (2);

for (j=0;j<jitterFull[i].size();j++){

cout << "\t" << (int)(j/NUM_NODES)+1 << "-" << (j%

NUM_NODES)+1 << ": " << setw (5) << jitterFull[i][j];

if (j%NUM_NODES ==7)

cout << "\n";

}

cout << "\n- - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - -\n";

cout << "Packet loss (%):\n";

for (j=0;j<lossFull[i].size();j++){

cout << "\t" << (int)(j/NUM_NODES)+1 << "-" << (j%

NUM_NODES)+1 << ": " << setw (5) << lossFull[i][j];

if (j%NUM_NODES ==7)

cout << "\n";

}



C.3 System testing program’s source code 117

cout << "\n- - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - -\n";

cout << "Packets received out of order (count):\n";

for (j=0;j<orderFull[i].size();j++){

cout << "\t" << (int)(j/NUM_NODES)+1 << "-" << (j%

NUM_NODES)+1 << ": " << setw (5) << orderFull[i][j];

if (j%NUM_NODES ==7)

cout << "\n";

}

}

return 0;

}



Appendix D

Network performance

measurements

As detailed in chapter 3, the network performance measurements were captured for three

configurations: traffic routed using OSPF with all nodes active in a static topology, traffic

routed using MPLS with all nodes active in a static topology, and traffic routed using

MPLS with a topology controlled by the dynamic topology mechanism. The demand

measurement accuracy for the MPLS and dynamic topology mechanism configurations

are also given. Chapter 5 provides an analysis of these results.

The network performance measurements are each comprised of three scenarios, as de-

scribed in chapter 5. The three values in each of the table’s cells correspond to the

measurements for these three scenarios, with the top being scenario one and the bottom

being scenario three.
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D.1 OSPF baseline

The tables below show the delay, jitter, packet loss, and out of order packet measurements

taken for the configuration where traffic is routed using OSPF with all nodes active in a

static topology.

Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 1.202 1.922 2.727 1.931 1.21 1.194 1.937

- 1.2 2 2.8 2 1.2 1.2 2

- 1.3 2.1 2.9 2.1 1.3 1.3 2.1

2

1.169 - 1.203 1.932 1.934 1.97 1.224 2

1.2 - 1.2 2 2 2 1.3 2.1

1.2 - 1.3 2.1 2 2.1 1.3 2.1

3

1.915 1.202 - 1.205 1.17 1.904 1.968 1.219

2 1.2 - 1.2 1.2 2 2 1.2

2 1.3 - 1.3 1.3 2 2.1 1.3

4

2.718 1.953 1.182 - 1.906 2.715 1.956 1.2

2.8 2 1.2 - 2 2.8 2 1.2

2.9 2.1 1.3 - 2 2.9 2.1 1.3

5

1.916 1.905 1.179 1.913 - 1.184 1.925 1.922

2 2 1.2 2 - 1.2 2 2

2 2 1.2 2 - 1.3 2.1 2.1

6

1.202 1.977 1.887 2.721 1.182 - 1.235 1.935

1.2 2 2 2.8 1.2 - 1.3 2

1.3 2.1 2 2.9 1.3 - 1.3 2.1

7

1.178 1.209 1.984 1.942 1.918 1.201 - 1.211

1.2 1.3 2.1 2 2 1.3 - 1.2

1.2 1.3 2.1 2.1 2.1 1.3 - 1.3

8

1.92 2.012 1.19 1.209 1.926 1.95 1.203 -

2 2.1 1.2 1.2 2 2 1.2 -

2.1 2.1 1.3 1.3 2.1 2.1 1.3 -

Table D.1: OSPF baseline — Delay (ms)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0.24 0.37 0.56 0.77 0.28 0.13 0.18

- 0.88 0.28 0.81 0.39 0.34 0.24 0.16

- 0.31 0.46 0.68 0.57 0.46 0.55 0.46

2

0.24 - 0.12 0.88 0.26 0.16 0.18 0.45

0.49 - 0.11 0.98 0.26 0.33 0.28 0.68

0.6 - 0.24 1 0.25 0.88 1.9 0.68

3

0.36 0.4 - 0.36 0.28 0.3 0.23 0.21

0.56 1 - 0.92 0.84 0.34 1 0.72

0.41 0.34 - 1.2 0.96 0.56 0.7 0.25

4

0.76 0.74 0.36 - 0.33 0.69 0.31 0.14

1 0.62 0.54 - 1.1 0.4 0.2 0.21

0.62 0.97 0.76 - 0.33 0.44 0.65 0.45

5

0.46 0.56 0.079 0.29 - 0.74 0.32 0.73

0.31 0.57 0.35 0.72 - 0.091 0.19 0.34

0.9 0.88 0.5 0.48 - 1.7 0.74 0.44

6

0.35 0.46 0.24 0.43 0.29 - 0.26 0.18

0.47 0.53 0.26 0.42 0.22 - 0.2 0.3

0.55 0.52 0.91 0.65 0.86 - 0.49 0.23

7

0.35 0.56 0.24 0.32 0.52 0.21 - 0.2

0.79 0.2 0.72 0.84 0.66 0.13 - 0.23

0.46 0.36 0.98 0.84 1.1 0.32 - 0.72

8

0.74 0.65 1.3 0.87 0.8 0.24 0.21 -

0.62 0.51 0.16 0.74 0.96 0.72 0.2 -

1.5 1 1.6 0.81 1.6 0.59 0.49 -

Table D.2: OSPF baseline — Jitter (ms)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

2

0 - 0.033 0 0 0 0 0

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

3

0 0.065 - 0 0 0 0 0.033

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

4

0 0 0.033 - 0 0.065 0 0

0 0.033 0 - 0 0 0 0

0 0 0 - 0 0 0 0

5

0 0 0 0 - 0 0 0

0 0 0.033 0.033 - 0 0 0

0 0 0 0 - 0 0 0

6

0 0 0 0 0 - 0 0.033

0 0 0 0.024 0 - 0 0.024

0 0 0 0 0 - 0 0.33

7

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

8

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

Table D.3: OSPF baseline — Packet loss (%)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

2

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

3

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

4

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

5

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

6

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

7

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

8

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

Table D.4: OSPF baseline — Out of order packets (count)
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D.2 MPLS baseline

The tables below show the delay, jitter, packet loss, and out of order packet measurements

taken for the configuration where traffic is routed using MPLS with all nodes active in a

static topology.

Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 1.187 1.904 2.707 1.877 1.207 1.183 1.892

- 1.2 1.9 2.8 2 1.2 1.2 2

- 1.3 2 2.9 2 1.3 1.3 2

2

1.18 - 1.209 1.918 1.912 1.942 1.239 1.957

1.2 - 1.2 2 2 2 1.2 2

1.2 - 1.3 2.1 2 2.1 1.3 2.1

3

1.901 1.206 - 1.207 1.188 1.892 1.949 1.216

2 1.2 - 1.2 1.2 2 2 1.2

2 1.3 - 1.3 1.3 2 2.1 1.3

4

2.704 1.914 1.206 - 1.869 2.708 1.97 1.207

2.8 2 1.2 - 1.9 2.8 2 1.2

2.9 2 1.2 - 2 2.9 2.1 1.3

5

1.898 1.889 1.189 1.867 - 1.195 1.893 1.888

2 2 1.2 2 - 1.2 2 2

2 2 1.2 2 - 1.2 2 2

6

1.208 1.949 1.899 2.718 1.167 - 1.214 1.927

1.2 2 2 2.8 1.2 - 1.2 2

1.3 2.1 2 2.9 1.2 - 1.3 2.1

7

1.296 1.216 1.959 1.939 1.902 1.208 - 1.212

1.2 1.3 2 2 2 1.2 - 1.3

1.3 1.3 2.1 2.1 2 1.3 - 1.3

8

1.935 1.943 1.193 1.221 1.895 1.929 1.228 -

2 2 1.2 1.3 2 2 1.3 -

2.1 2.2 1.3 1.3 2 2.1 1.3 -

Table D.5: MPLS baseline — Delay (ms)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0.19 0.4 0.51 0.33 0.29 0.16 0.14

- 0.29 0.2 0.54 0.34 0.46 0.12 0.17

- 0.79 0.94 0.72 0.57 1.8 0.23 0.81

2

0.1 - 0.18 0.16 0.28 0.19 0.43 0.21

1.4 - 0.34 0.93 0.19 0.43 0.34 0.42

1.3 - 1.3 0.83 0.69 0.48 1.3 0.4

3

0.27 0.15 - 1.2 0.37 0.51 0.26 0.47

0.35 0.85 - 0.17 0.52 0.85 0.38 0.21

0.52 0.74 - 2.1 1.7 0.51 0.43 0.43

4

0.87 0.26 0.21 - 0.91 0.22 0.85 0.19

0.34 0.23 0.31 - 0.34 0.48 0.48 0.21

0.54 0.72 0.26 - 0.42 0.59 1.6 0.67

5

0.27 0.44 0.31 0.42 - 0.11 0.16 0.36

0.24 0.34 0.3 0.31 - 0.36 0.15 0.38

0.76 0.72 0.22 1.5 - 0.49 0.23 0.49

6

0.24 0.45 0.19 0.71 0.47 - 0.19 0.33

0.35 0.19 0.26 0.53 0.15 - 0.36 0.27

0.41 0.52 0.21 0.34 0.59 - 0.3 0.72

7

0.19 0.12 0.36 0.93 0.8 0.59 - 0.26

0.95 0.69 0.25 1 0.26 0.22 - 0.62

0.49 0.57 0.7 1.3 0.58 0.41 - 0.33

8

1 0.29 0.28 0.75 0.42 0.73 0.4 -

0.32 0.94 0.8 0.71 0.26 0.35 0.2 -

0.51 0.41 0.86 0.51 0.56 0.49 0.61 -

Table D.6: MPLS baseline — Jitter (ms)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0 0 0 0.033 0 0 0

- 0 0 0 0 0 0.065 0

- 0 0 0 0 0 0 0.039

2

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0.065

0 - 0 0 0 0 0 0

3

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

4

0 0 0.033 - 0 0 0 0

0 0 0 - 0 0 0 0

0.078 0 0 - 0.039 0 0 0

5

0 0 0 0 - 0.033 0 0

0 0 0 0 - 0 0 0

0 0.078 0 0 - 0.039 0 0

6

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

0 0 0 0.33 0 - 0 0

7

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

8

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

Table D.7: MPLS baseline — Packet loss (%)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

2

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

3

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

4

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

5

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

6

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

7

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

8

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

Table D.8: MPLS baseline — Out of order packets (count)
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D.3 Dynamic topology mechanism

The tables below show the delay, jitter, packet loss, and out of order packet measurements

taken for the configuration where traffic is routed using MPLS with a topology controlled

by the dynamic topology mechanism.

Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 6.032 7.747 5.423 10.645 5.068 5.606 11.295

- 13 10 12 13 7.4 6.3 9

- 8.4 18 15 22 7.5 7.8 13

2

5.413 - 7.511 4.987 12.883 6.416 5.507 7.386

11 - 6.7 8.5 8.8 9.9 12 9.5

9 - 10 17 15 9.3 8.3 16

3

9.842 8.506 - 3.973 4.969 7.154 9.213 7.358

9.4 7.2 - 7.3 6.2 9.3 10 7.6

20 8.5 - 11 8.7 12 20 14

4

5.644 4.651 3.206 - 5.395 6.335 4.542 2.869

12 8.3 7 - 9.5 10 11 6.2

13 15 10 - 15 19 13 8.4

5

9.081 11.318 5.114 5.538 - 8.407 9.285 7.807

13 9.6 7.5 10 - 8.7 11 10

20 14 13 15 - 7.4 21 15

6

5.989 6.586 8.111 5.703 12.901 - 5.121 10.424

7.7 9.9 9.3 12 6.9 - 6.6 11

7.2 9.7 14 22 7.8 - 8.2 14

7

5.528 5.078 10.723 6.194 7.622 6.016 - 5.513

6.1 12 9.8 9.5 11 7.4 - 8.8

8.1 8.6 15 13 21 8.9 - 13

8

9.519 7.891 5.673 2.97 6.848 7.275 5.499 -

9.7 8.8 8.2 6.6 10 11 8.7 -

14 14 15 8.6 16 16 12 -

Table D.9: Dynamic topology mechanism — Delay (ms)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0.18 0.42 0.31 0.6 0.26 0.43 0.41

- 0.46 0.22 0.39 0.43 0.29 0.31 0.24

- 0.37 0.22 0.7 1.3 0.34 0.87 0.56

2

0.29 - 0.3 0.31 1.7 0.33 0.2 0.28

0.36 - 0.42 0.44 0.42 1.1 0.24 0.35

0.65 - 0.2 0.59 0.33 0.27 0.24 0.5

3

0.3 0.17 - 0.83 0.38 0.36 0.43 0.39

0.82 0.21 - 0.77 0.34 0.24 0.38 0.35

0.29 0.2 - 0.53 2.2 0.64 0.79 0.85

4

0.27 0.69 0.26 - 0.23 0.3 0.23 0.29

0.43 0.2 0.77 - 0.72 0.23 0.46 0.55

0.36 1 0.13 - 0.38 0.94 0.75 0.75

5

0.33 0.17 0.5 0.53 - 0.24 0.28 0.26

0.36 0.65 0.22 0.55 - 0.6 0.21 0.39

0.4 0.38 0.36 0.55 - 0.88 0.39 0.51

6

0.41 0.38 0.43 0.37 0.76 - 0.27 0.27

0.14 0.31 0.24 0.57 0.41 - 0.34 0.17

0.33 1.3 0.26 0.6 0.32 - 0.52 0.22

7

0.31 0.25 0.83 0.51 0.32 0.45 - 0.22

0.28 0.26 0.35 0.71 0.46 0.58 - 0.45

0.58 0.47 0.41 0.42 0.4 1.2 - 0.56

8

0.28 0.68 0.47 0.76 3.1 0.6 0.44 -

0.39 0.29 1.2 0.57 0.63 0.8 1.1 -

0.9 0.56 0.81 0.44 0.58 0.65 0.75 -

Table D.10: Dynamic topology mechanism — Jitter (ms)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0 0 0 0 0 0 0

- 0 0.033 0 0 0 0 0

- 0 0 0 0 0 0 0

2

0 - 0 0 0.033 0 0 0

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

3

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

4

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

5

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

0 0 0 0 - 0.039 0 0

6

0 0 0 0 0 - 0.033 0

0 0 0 0 0 - 0 0

0 0 0 0.17 0 - 0 0

7

0 0 0.033 0 0 0 - 0

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

8

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

Table D.11: Dynamic topology mechanism — Packet loss (%)
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Destination node

1 2 3 4 5 6 7 8

S
o
u

rc
e

n
o
d

e

1

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0

2

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

0 - 0 0 0 0 0 0

3

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

0 0 - 0 0 0 0 0

4

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

0 0 0 - 0 0 0 0

5

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

0 0 0 0 - 0 0 0

6

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

0 0 0 0 0 - 0 0

7

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

0 0 0 0 0 0 - 0

8

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

Table D.12: Dynamic topology mechanism — Out of order packets (count)
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D.4 Traffic demand measurement accuracy

Table D.13 below shows measurements related to the traffic demand measurement accu-

racy for the MPLS and dynamic topology mechanism configurations. The expected and

measured total traffic values are shown, in addition to the average error of the individual

link measurements for each time sample.

Total network demand (Mbps) Average error (%)

Time (min) Expected MPLS DTM MPLS DTM

0:00 1.1 0.3 0.5 100 100

0:15 1.1 0.8 1.2 75.1 58.8

0:30 1.1 1.3 1.3 35.9 34.2

0:45 1.1 1.3 1.3 30.9 37.1

1:00 1.1 1.2 1.3 30.5 29.5

1:15 1.1 1.2 1.3 31.6 33.3

1:30 1.1 1.3 1.4 28.9 35.4

1:45 1.1 1.3 1.3 33.3 35.9

2:00 1.1 1.3 1.3 33.5 29.5

2:15 1.1 1.4 1.3 37.4 35.1

2:30 1.1 1.3 1.3 33.5 34.1

2:45 1.1 1.2 1.2 34.9 34.5

3:00 1.1 1.2 1.3 29.3 28

3:15 1.1 1.2 1.3 31.2 33.1

3:30 1.1 1.3 1.3 29.9 35.1

3:45 1.1 1.4 1.4 36.9 36.9

4:00 1.1 1.3 1.4 36.4 40.9

4:15 1.1 1.3 1.3 31.4 38.6

4:30 1.1 1.3 1.3 32.7 33.4

4:45 1.1 1.3 1.3 32.5 28.7

5:00 1.1 1.3 1.3 36.1 32.6

5:15 1.1 1.4 1.2 29.2 33.2

5:30 1.1 1.3 1.3 38.7 26.5

5:45 1.1 1.3 1.4 41.8 32.2

Table D.13: Total measured traffic and measurement error (continued on next page)
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Total network demand (Mbps) Average error (%)

Time (min) Expected MPLS DTM MPLS DTM

6:00 1.1 1.3 1.3 30.2 35.7

6:15 1.1 1.4 1.3 28.1 32.4

6:30 1.1 1.4 1.3 36.7 32.4

6:45 1.1 1.4 1.3 37.3 35.9

7:00 1.1 1.3 1.4 37.5 34.4

7:15 1.1 1.3 1.3 32.9 32.6

7:30 1.1 1.3 1.3 33.8 34.6

7:45 1.1 1.3 1.3 36.2 32.9

8:00 1.1 1.3 1.3 36.7 30.3

8:15 1.1 1.3 1.4 32.9 34.1

8:30 1.1 1.3 1.3 30.4 35.8

8:45 1.1 1.4 1.3 30.4 32.1

9:00 1.1 1.2 1.3 33.4 34.2

9:15 1.1 1.2 1.3 25.6 35.6

9:30 1.1 1.3 1.3 23.7 31.7

9:45 1.1 1.3 1.4 28.9 34.2

10:00 3.2 1.7 2.5 57.6 55.5

10:15 3.2 2.7 3.4 46.3 23.9

10:30 3.2 3.5 3.4 20.6 20.9

10:45 3.2 3.6 3.6 20.5 19.4

11:00 3.2 3.4 3.6 21.4 19.5

11:15 3.2 3.4 3.4 19.1 22

11:30 3.2 3.4 3.3 19.3 22.7

11:45 3.2 3.3 3.5 18.3 16.4

12:00 3.2 3.3 3.5 18.1 18.8

12:15 3.2 3.4 3.5 19.1 21.5

12:30 3.2 3.4 3.4 21.5 19.4

12:45 3.2 3.1 3.5 20.3 20.6

13:00 3.2 3.2 3.6 19.8 21.5

13:15 3.2 3.3 3.7 16.6 22.7

13:30 3.2 3.4 3.5 17.3 22.2

Table D.13: Total measured traffic and measurement error (continued on next page)
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Total network demand (Mbps) Average error (%)

Time (min) Expected MPLS DTM MPLS DTM

13:45 3.2 3.4 3.5 16 19.6

14:00 3.2 3.2 3.6 20.2 22

14:15 3.2 3.1 3.5 19.7 21.4

14:30 3.2 3.2 3.5 17.1 20.8

14:45 3.2 3.2 3.4 16.1 22

15:00 3.2 3.2 3.5 18.1 20.6

15:15 3.2 3.4 3.4 15 16.9

15:30 3.2 3.5 3.3 17.3 17.8

15:45 3.2 3.4 3.4 20.4 18.7

16:00 3.2 3.4 3.4 18.7 16.4

16:15 3.2 3.4 3.3 18.9 16.9

16:30 3.2 3.3 3.4 14 19.3

16:45 3.2 3.3 3.6 16.4 19.3

17:00 3.2 3.4 3.7 17.9 21.1

17:15 3.2 3.3 3.5 16.6 24.7

17:30 3.2 3.3 3.4 17.2 21.4

17:45 3.2 3.5 3.5 15.9 19.1

18:00 3.2 3.4 3.6 17.1 18.5

18:15 3.2 3.5 3.5 16.3 24.7

18:30 3.2 3.4 3.4 20.7 23.3

18:45 3.2 3.1 3.6 19.6 19.4

19:00 3.2 3.2 3.6 19.2 21.5

19:15 3.2 3.3 3.6 21.7 20.7

19:30 3.2 3.4 3.5 18.8 20.3

19:45 3.2 3.3 3.5 17.3 18.8

20:00 5.6 3.6 4.8 43 43

20:15 5.6 5.1 6 38.1 19.1

20:30 5.6 6.2 6.2 16.7 15.3

20:45 5.6 6.1 6.2 15.5 18.7

21:00 5.6 5.9 6 15.2 15.7

21:15 5.6 6.1 5.9 12.5 14.7

Table D.13: Total measured traffic and measurement error (continued on next page)
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Total network demand (Mbps) Average error (%)

Time (min) Expected MPLS DTM MPLS DTM

21:30 5.6 6 5.9 18.5 15.9

21:45 5.6 6 6 19.6 15.8

22:00 5.6 6 5.9 17.4 15.7

22:15 5.6 5.8 6 16.3 14.2

22:30 5.6 5.7 6.2 14.3 14.9

22:45 5.6 5.7 6.2 12.7 18

23:00 5.6 5.9 6 15.7 17.5

23:15 5.6 5.8 6 16.9 16.6

23:30 5.6 5.8 6.1 14.8 15.9

23:45 5.6 6 5.9 13.8 17.3

24:00 5.6 6 5.9 15.3 15.3

24:15 5.6 6.2 6.2 14.4 14.3

24:30 5.6 6.1 6.1 16.4 17.1

24:45 5.6 6 6.1 14.4 13.7

25:00 5.6 6 6.1 14.3 13

25:15 5.6 6 5.9 15.2 16.1

25:30 5.6 5.9 5.9 15.5 12.4

25:45 5.6 5.9 6 14.5 12.9

26:00 5.6 5.9 6 14.8 15.6

26:15 5.6 6 5.9 18.8 17.5

26:30 5.6 6.2 6 13.6 14.1

26:45 5.6 6 6.1 16.1 16.1

27:00 5.6 6 6.1 14.4 15.3

27:15 5.6 6.1 5.9 13.3 15

27:30 5.6 6.1 6 12.1 14.6

27:45 5.6 6.1 6.1 15.5 14.1

28:00 5.6 6 6 14.8 14.4

28:15 5.6 6 6.3 13.7 14.3

28:30 5.6 6.1 6 15.4 15.9

28:45 5.6 6.1 6 16.9 12.1

29:00 5.6 6 6.2 16.1 14.9

Table D.13: Total measured traffic and measurement error (continued on next page)
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Total network demand (Mbps) Average error (%)

Time (min) Expected MPLS DTM MPLS DTM

29:15 5.6 6.1 6.3 14.4 16.7

29:30 5.6 5.9 6.3 16.5 15.7

29:45 5.6 5.8 6 13.2 15.5

30:00 5.6 5.8 6 13.4 13.1

Table D.13: Total measured traffic and measurement error
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