

FACULTY OF ENGINEERING AND SURVEYING

DEVELOPMENT OF A RASPBERRY PI BASED, SDI-12

SENSOR ENVIRONMENTAL DATA LOGGER

A dissertation submitted by

Mr James Coppock

Dissertation submitted to the Faculty of Engineering and Surveying in partial

fulfilment of the requirements for the degree of

Bachelor of Engineering

(Electrical and Electronics)

October, 2015

 i-

Abstract

SDI-12 is a powerful tool for sensor networking and environmental data acquisition (EDA).

Sensory networks are employed by many commercial and non-commercial entities across a

wide range of applications to achieve better outcomes for the environment, the investing

parties or the wider community. Monitoring systems can reduce operation costs and improve

quality of products or produce. Many applications for sensor networks are of ethical

significance for example, applications related to sustainable living, education, scientific

research and food production. Despite the potential benefits, whether people adopt a system

is largely dependent on associated costs and complexity. Consequently an inexpensive,

reliable and easy to use system is more likely to be adopted. The Raspberry Pi is a powerful

and inexpensive computing platform for embedded projects which incorporates a 40 pin

general purpose input output (GPIO) header for connecting to digital peripherals, which is

used as the basis of this project.

The prototype SDI-12 logger software is written in C++ and uses an existing Arduino SDI12 C++

library that has been modified for use with the Raspberry Pi computer. The system is

evaluated for its suitability as a simple easy to configure (plug-and-play) type logger.

The SDI-12 software developed, while functional, has only a subset of the features that a

market ready device will need. Future work includes adding control outputs for automation, a

graphical user interface and also leveraging the Raspberry Pi’s network capabilities to allow

remote access for setting and disabling alarms and also for uploading of data to an online

database for remote access.

 ii-

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Health, Engineering &

Sciences, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the

Council of the University of Southern Queensland, its Faculty of Health, Engineering & Sciences

or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this

exercise. The sole purpose of the course pair entitled “Research Project” is to contribute to the

overall education within the student’s chosen degree program. This document, the associated

hardware, software, drawings, and other material set out in the associated appendices should

not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

 iii-

University of Southern Queensland

Faculty of Health, Engineering and Sciences

ENG4111/ENG4112 Research Project

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions set

out in this dissertation are entirely my own effort, except where otherwise indicated and

acknowledged.

I further certify that the work is original and has not been previously submitted for assessment

in any other course or institution, except where specifically stated.

James Coppock

Student Number: 0050067987

 Signature

 Date

jamescoppock
Pencil

jamescoppock
Pencil

 iv-

Acknowledgements

I would like to thank Jeroen van Loon for taking the time to explain the Priva building

management systems and assist my understanding of this industry. I’d like to thank the

director of ICT International Peter Cull who has helped me with the resources that have helped

in construction of this dissertation. I gained a lot of my knowledge about the environmental

monitoring industry from working for this business. I’d like to thank the team of engineers at

ICT International for giving initial advice on software projects. Finally I must thank my

supervisors Dr. Leslie Bowtell and Catherine Hills for their wisdom and guidance.

 v-

Table of Contents

Abstract .. i

Limitations of Use ... ii

Certification of Dissertation ... iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures .. ix

List of Tables ... xi

Abbreviations .. xii

Organisations Cited ... xiii

Chapter 1: Introduction .. 1

1.1 The Problem at Hand .. 1

1.2 Project Aim .. 3

1.3 Objectives .. 4

1.4: Assessment of Consequential Effects / Implications/ Ethics ... 4

1.5 Existing Solutions .. 6

1.5.1 Low Cost Raspberry Pi Based Monitoring Solutions .. 6

1.5.2 Low Cost SDI-12 Loggers .. 7

1.5.3 Building Management Systems .. 7

1.6 Potential Project Outcomes .. 8

1.7 Project Methodology .. 10

1.7.1 Research ... 10

1.7.2 Prototype Implementation .. 10

1.7.3 Software Development .. 11

1.7.4 Final Testing and Evaluating the System .. 12

Chapter 2: Background Information.. 13

2.1 Review of Environmental Monitoring Systems ... 13

2.1.1 Overview of Environmental Sensors .. 13

2.1.2 Smart Sensors ... 14

 vi-

2.1.3 Sensor Networks .. 14

Wired Networks

Wireless Networks

Hybrid Network

2.1.4 Distributed Measurement and Control – Towards Networked Smart Sensors 16

The Smart Sensor Interface Standard (IEEE1451)

2.2 Overview of SDI-12 .. 20

2.2.1 Introduction ... 20

2.2.2 Background .. 20

2.2.3 Electrical Interface ... 20

Line Definitions

Electrical Specifications

2.2.4 Protocol .. 25

Baud Rate and Byte Frame Format

SDI-12 Timing

SDI-12 Commands and Responses

Benefits in Using SDI-12 in Environmental Data Acquisition

2.3 The Raspberry Pi ... 28

2.3.1 Raspberry Pi’s Operating System ... 29

2.3.2 Raspberry Pi Hardware Specifications ... 29

Chapter 3: Hardware Implementation .. 32

3.1 Assessment of both the GPIO and UART Approaches to Implementing SDI-12 32

3.1.1 GPIO ... 32

3.1.2 UART ... 33

3.1.3 Informing the Approach ... 33

3.1.4 Testing the GPIO Suitability .. 34

3.2 Component Selection and Implementation Considerations ... 36

3.2.1 74XX1T45 Series Chip ... 37

3.2.2 74XX240 Series Chip ... 38

3.3 Schematic of Prototype Implementation .. 39

3.4 Implementing and Testing Hardware ... 41

 vii-

Chapter 4: Software Development ... 43

4.1 The Arduino SDI-12 Library Implementation .. 43

4.1.1 Description of Modifications to SDI12.cpp .. 43

4.1.2 Description of the setState(state) Function in the SDI12 library for Defining Five

Communication States .. 44

4.1.3 Waking Up and Talking To Sensors .. 47

4.1.4 Interrupt Service Routine to Read Data into the Buffer .. 50

Overview of Raspberry Pi Interrupts

receiveChar()

4.1.5 Checking for a Valid Response and Reading from the Buffer 54

4.2 Configuration File .. 56

4.2.1 Conceptual Design.. 56

4.2.2 Specification for the Database of SDI-12 Sensors .. 58

4.2.3 Specification for the Configuration File ... 59

4.3 SDI-12 Logger Program ... 61

4.3.1 Broad Overview of Functions Called through the HMI .. 61

4.3.2 Organisation of SDI-12 Logger Program ... 63

4.3.3 Main ... 63

4.3.4 Measurement Handling Functions ... 64

4.3.5 Device Configuration Functions ... 69

4.3.6 Generic Functions .. 71

Chapter 5: Analysis and Performance ... 72

5.1 Analysis of SDI-12 Exchanges .. 72

5.1.1 Test Description ... 72

5.1.2 SDI-12 Data Line Waveform Analysis ... 73

5.1.3 Terminal Command Prompt Analysis ... 75

5.2 Testing of Raspberry Pi SDI12 Logger with Three Sensor Attached 78

Chapter 6: Conclusions and Further Work ... 81

6.1 Achievement of Project Objectives ... 81

6.2 Evaluation of the Logger ... 82

6.3 Further Work ... 83

 viii-

References ... 84

Appendix A: Project Specification ... 86

Appendix B: Project Management .. 88

Appendix B Contents ... 88

Appendix B.1: Risk Assessment ... 89

Appendix B.2: Resource Requirements... 91

Appendix B.3: Project Timeline ... 92

Appendix C: SDI12 C++ Library .. 94

Appendix C Contents ... 94

Appendix C.1: SDI12 Library Header File (SDI12.h) ... 95

Appendix C.2: SDI12.cpp ... 97

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 109

Appendix D Contents .. 109

Appendix D.1: Organisation and Description of SDI12 Logger Program 110

Appendix D.2: main() Function ... 113

Appendix D.3: Measurement Handling Functions .. 114

Appendix D.4: SDI-12 Device Configuration Functions ... 127

Appendix D.4.1 Main Configuration Handler Function ... 127

Appendix D.4.2: Add SDI-12 Device .. 129

Appendix D.5: Generic Functions .. 133

Appendix E: Flowcharts for SDI-12 Logger Functions ... 136

Appendix E Contents_Toc433562070 ... 136

Appendix E List of Figures ... 136

Appendix E.1: Flowchart for main() .. 137

Appendix E.2: Flowchart for dataFileHeadings() ... 138

Appendix E.3: Flowchart for measurementDelay() ... 139

Appendix E.4: Flowchart for takeMeasurment() .. 140

Appendix E.5: Flowchart for sendAndReceive() .. 141

Appendix E.6: Flowchart for deviceConfiguration() .. 142

 ix-

List of Figures

Figure 1 Types of nodes in a sensor network (Bell 2013, p. 27) ... 15

Figure 2 Functional block diagram of IEEE 1451 (Wright & Dillon n.d. p2) 18

Figure 3 Overview of the STIM (IEEE Standards Board 1997) ... 19

Figure 4 Physical context of the SDI-12 interface ... 21

Figure 5 Recommended equivalent SDI-12 circuit (SD1-12 support group 2013, p. 4) 24

Figure 6 Decagon Devices’ low impedance equivalent SDI-12 circuit (Decagon Devices n.d., p.

2) ... 24

Figure 7 Example SDI-12 transmission of character 'a' ... 25

Figure 8 SDI-12 timing (SDI-12 support group 2013, p. 24) .. 26

Figure 9 Raspberry Pi Model A+ (Raspberry Pi Foundation 2015) .. 29

Figure 10 Raspberry Pi 2 Model B (Raspberry Pi Foundation 2015) ... 29

Figure 11 Raspberry Pi pinout (Raspberry Pi 2015) .. 31

Figure 12 Screen shot of the oscilloscope for a test where GPIO toggled at 600 Hz 36

Figure 13 Functional block diagram for the SN74LVC1T45 (Texas Instrument 2014) 37

Figure 14 Functional block diagram for a SN74HCT240 (Texas Instruments 2015) 38

Figure 15 Simplified circuit schematic .. 38

Figure 16 Schematic of prototype implementation .. 40

Figure 17 Schematic with comparator .. 40

Figure 18 Picture of prototype implementation ... 41

Figure 19 Waveform of TXDATAPIN voltage (yellow) and RXDATAPIN (blue) (see figure 16) 42

Figure 20 Waveform of TXDATAPIN voltage (yellow) and voltage at 2Y1 (blue) (see figure 16) 42

Figure 21 Waveform of TXDATAPIN voltage (yellow) and voltage at 1A1 (blue) (see figure 16) 42

Figure 22 Simplified schematic ... 45

Figure 23 Inheritance diagram for waking up, and sending a command to a SDI-12 sensor 47

Figure 24 Flowchart for sendCommand() and wakeSensors() .. 48

Figure 25 Flowchart representation of the writeChar function .. 50

Figure 26 Inheritance diagram for reading data into the buffer .. 53

Figure 27 Flowchart representation of the receiveChar function .. 54

Figure 28 SDI12 functions for checking a valid response and reading from the buffer 55

Figure 29 Overview of functions called and key tasks in SDI-12 logger program 62

file:///C:/Users/jamescoppock/Desktop/ERP2015%20-%20Eng%20Research%20Pro/-%20Documentation%20-%20Written/Dissertations/Dissertaion%20James.docx%23_Toc433873033
file:///C:/Users/jamescoppock/Desktop/ERP2015%20-%20Eng%20Research%20Pro/-%20Documentation%20-%20Written/Dissertations/Dissertaion%20James.docx%23_Toc433873034

 x-

Figure 30 Flowchart of main() ... 64

Figure 31 Flowchart for SDI-12 logging (option 3 from ‘Main’ menu) and flow of external data

 ... 65

Figure 32 Flowchart for dataFileHeadings() .. 66

Figure 33 Flowchart for measurementDelay() .. 67

Figure 34 Data line waveform showing transmission of command ‘?!’ and sensor 73

Figure 35 Oscilloscope display capturing transmission of address query command (?!) 74

Figure 36 Oscilloscope display capturing sensor response to address query command

(6<CR><LF>) .. 74

Figure 37 Data line waveform (yellow) and RXDATAPIN waveform (blue)................................. 74

Figure 38 Data line waveform (yellow) and RXDATAPIN waveform (blue) during sensor

response .. 75

Figure 39 Plot of temperature data from 3 SDI-12 sensor.. 78

Figure E.1 Flowchart for main() ... 137

Figure E.2 Flowchart for dataFileHeadings() ... 138

Figure E.3 Flowchart for measurementDelay() ... 139

Figure E.4 Flowchart for takeMeasurement() ... 140

Figure E.5 Flowchart for sendAndReceive() .. 141

Figure E.6 Flowchart for deviceConfiguration() .. 142

 xi-

List of Tables

Table 1: SDI-12 voltage thresholds (SDI-12 support group 2013, p. 3) 23

Table 2: SDI-12 Command set and response format (SDI-12 support group 2013, p. 8) 27

Table 3: Key for table 3 response characters .. 27

Table 4: GPIO pin voltage threshold ... 31

Table 5 Frequency of delays to 3 GPIO toggle frequencies for a set of minimum pulse width

times. ... 35

Table 6: Minimum and maximum voltage levels for SN74LVC1T45 where, VCCA = 3-.3.6V and

VCCB = 4.5 - 5.5 V .. 37

Table 7: Minimum and maximum voltage levels for SN74HCT240 – referenced to figure 15 ... 39

Table 8 Mode and logic level of Raspberry Pi pins ... 46

Table 9: Erroneous data recorded over 24 hour test period logging at 5 minute intervals 79

Table B.1: Risks in the development stage of the product ... 89

Table B.2: Risks to users of the Raspberry Pi-based SDI-12 logger ... 90

Table B.3a: Timeline (Semester 1) .. 92

Table B.3b: Timeline (Semester 2) .. 93

 xii-

Abbreviations

API: Application Programming Interface

BMS: Building Management System

CRC: Cyclic Redundancy Check

DMC: Distributed Measurement and Control

EDA: Environmental Data Acquisition

EM: Environmental Monitoring

EMS: Energy Management System

GPIO: General Purpose Input Output

HMI: Human Machine Interface

I/O: Input/output

NCAP: Network Capable Application Processor

OOP: Object Oriented Programming

OS: Operating System

SDI-12: Serial Digital Interface at 1200 baud

STIM: Smart Transducer Interface Module

TIM: Transducer Interface Modules

UART: Universal Asynchronous Receiver Transmitter

 xiii-

Organisations Cited

Priva: A company who develop and manufacture building management solutions.

OpenEnergyMonitor project: A group of developers building energy monitoring tools.

YDOC: A manufacturer of low-power data acquisition systems suitable to monitor off-grid or

hard to reach locations.

Decagon Devices: A manufacturer of sensors and data loggers.

Raspberry Pi Foundation: Foundation to advance the education of adults and children in the

field of computer science.

Chapter 1: Introduction 1

Chapter 1: Introduction

1.1 The Problem at Hand

Individuals, small and large businesses enterprise, and governments have and continue to take

from the environment without concern for, desire to address, resources to address or

understanding of the long term impacts (MacKay 2008). The general public are not always

prepared to invest resources (time and money) if there is no obvious return. Sensing networks

have the potential to empower people to understand the environment. Simple control

systems can be used to optimise the variables that have a direct impact on the environment.

There are many sensing network implementations each with advantages and disadvantages

for a specific application class. SDI-12 is a cost effective digital interface for EDA.

A broad range of industry applications are reliant on sensory networking, including;

science/research, building management, quality control, waste management, various

industrial settings, energy supply, public infrastructure, horticulture, agriculture, aviation,

military, mining and boating industries. A Raspberry Pi based SDI-12 logger could be used

within both well-established industry applications and by individuals or groups with non-profit

applications that would benefit society as a whole. The networking capabilities of the

Raspberry Pi increase the potential for use as a data logger.

In modern society, it is important for businesses who harvest raw materials and change the

environment in some way, manufacturers of products or providers of services and individuals

who use the products or services (who create demand) to understand their impact on the

environment.

Sensory networks may be used to provide feedback to automate processes and to empower

people with knowledge. The constraints in setting up a successful sensor network to monitor

and or control the environment or a process include,

1) lack of user resources (e.g. time, budget and expertise)

2) user has a lack of understanding or desire to change the way they use resources

3) product limitations specifically; product capabilities, flexibility, and complexity.

Chapter 1: Introduction 2

The development of a monitoring product should address points 1 and 3. Point two is a

consequential effect of lack of education.

A constraint in time resources includes the time required for a potential user to source a

system that fits the requirement, time in learning the system capabilities, time to setup, install

and test the system and time to process, analyse and use the data. Factors influencing the sale

cost of a commercial logging package include the scale of manufacture, the market size and

competition, the life-cycle management costs, the design features offered, product reliability

etc. A cheap and powerful tool such as the Raspberry Pi can greatly reduce the associated life-

cycle management costs. Lack of user expertise is not easily addressed in the development of

a product which includes difficulties in data analysis, installation requirements and knowledge

of sensors technologies (i.e. what technologies are available for any specific application and

how it is integrated to an existing system).

Point three is the inherent complexity in providing flexibility i.e. mesh networking, or

interfacing to the various wireless sensors with various different protocols, SDI-12 sensors and

4-20mA while keeping the system user friendly. An intuitive graphical user interface will ease

the learning curve for computer based products. Point three requires sufficient research and

development and good engineering design.

There are unlimited applications for sensor networks. The applications of ethical importance

are sustainable living and food production. There is a need for individuals to make changes in

the way we use energy. United Nations Environment Programme (cited in Kumar 2013, p

1329) reports that ‘buildings consume more than 40% of the available global energy and are

responsible for one third of the global greenhouse gas emissions. The main source of green-

house gas emissions is energy consumption’. A life cycle analysis of buildings reveals that 80%

of the energy used over a building life time is through operation and 20% through

manufacture. Monitoring technology can empower people to understand and optimise energy

consumption and generation as well as provide a better environment for occupants

(OpenEnergyMonitor 2015), (Kumar, Kim and Hancke 2013). Monitoring allow full control of

when, how and where energy is used. MacKay (2008) highlights an approach for quantifying

our use of energy in full and then calculating the renewables required to provide that energy.

His book explores the solutions that are available and encourages people to make individual

changes. The main solution is to increase the efficiency of our energy use and to use only

sustainable energy sources to power the desired services.

Chapter 1: Introduction 3

One example of a prime candidate for EDA are commercial greenhouses which are increasing

in popularity across the world. Greenhouses allow for greater control over the growing

environment of plants and can thereby improve food production in marginal environments.

The fact greenhouses are producing more of our food is a direct consequence of a rapidly

expanding food demand and change in food eating habits. Blush Greenhouse in Guyra covers

an area of 20 hectares and greenhouses around the world are reported to be larger than this.

Growers typically monitor soil moisture, electrical conductivity, air humidity, temperature and

control the climate through an automatic climate control. System maintainers need flexibility

in terms of power and communication between logger and sensors. Sensors need to be moved

seasonally and for other reasons.

Personal experience in providing support for environmental monitoring products has found

that acceptance of a technology is partially dependent on design that is intuitive and simple to

setup, install and configure. It is also important to address practical application issues, such as;

minimising wiring and other hardware (sensor network hardware) and maximising the

network coverage in built-up and open environments.

1.2 Project Aim

The aim of this project is to develop a low cost and reliable data logger based on the Raspberry

Pi computing system that will lead to beneficial outcomes for the environment, businesses,

individuals and or communities. The software interface will provide a way of performing basic

configuration of SDI-12 sensors, initiating measurements, obtaining results and storing data to

a ‘.csv’ file. The software will be available for free and should be modular and simple to

understand so that it can be used and modified by others to provide a more fitting solution to

any unique and specific SDI-12 logging requirement. The logging system should be simple

enough to setup from scratch by a customer with basic knowledge of computers, access to a

Raspberry Pi and skills to assemble electrical components that form the SDI-12 sensor

interface.

Chapter 1: Introduction 4

1.3 Objectives

The project will be conducted in the following stages.

Stage 1. Review of environmental monitoring and broad context.

The dissertation investigates the environmental monitoring industry and technologies

specifically focusing on the constraints to implementing flexible sensory networks such

as; sensing requirements, installation requirements, interfacing hardware,

communication channel mediums, communication protocols, environmental

influences on communications, and emerging standards.

Stage 2. Conceptual design.

Review of SDI-12 protocol specification, the Raspberry Pi capabilities and

programming languages.

Stage 3. Development and Test.

 Design and build a hardware interface to implement the SDI-12 protocol. Test.

 Design and code software modules for the SDI-12 protocol interface and data

logger.

 Specify a configuration file format and data storage plan.

 Develop a basic HMI for the data logging system.

1.4: Assessment of Consequential Effects / Implications/

Ethics

As the designer of a product, consideration must be given to the direct and indirect impact it

has on the environment, the user and the general public. Scheiber (2001) reports the purpose

of manufacturing is to provide:

 The most products

 At the lowest possible cost

 In the shortest time

 At the highest possible quality

The impact an electronics products has on the environment includes the global warming

potential resulting from extraction of materials, manufacture, use of and disposal of the unit.

Chapter 1: Introduction 5

The chief environmental concerns related to the electronic manufacturing industry include the

use of energy (electricity), water and nasty chemicals that need to be disposed of particularly

in the process of manufacturing microchips and printed circuit boards. A typical facility

producing semiconductor wafers reportedly uses 240 000 kilowatt hours of electricity and

over 7.5 million litres of water a day. The disposal of the electronics products is inherently

difficult because they are not easily disassembled and contain toxic materials (lead for

example) resulting in large amounts of waste that cannot be recycled. Sustainability of the

industry is a concern due to the risk in polluting the environment.

The software is intended to be distributed for free without any hardware. The Raspberry Pi is

purchased by a customer as a circuit board with no enclosure. Third-party enclosures

developed specifically for the Raspberry Pi are available but an extensive search has not

revealed a water proof model. Water proof enclosures not specifically for the Pi are available

in all shapes and sizes that comply with standards such as IP64 and higher but the customer

would need to mount the Raspberry Pi and cut holes for cables.

As the hardware is third-party and with no intension to sell with software, it is easy to

disregard the consequential effects related to its manufacture. The positive implications of

using a cheap, off the shelf third party computer platform is significant in terms of initial

development costs and overall reduces the life cycle management cost related to;

 Product development

 Manufacturing

 Test

 Service

 Field returns

 The company’s “image of quality”

The negative implication resulting from offering a software solution without the hardware is

that the consumer is required to source, assemble and modify hardware. Sourcing hardware is

can be difficult and without knowledge in handling circuit boards the computer can easily by

fried by ESD. An indirect implication to a solution based on a cheap Raspberry Pi without an

enclosure is that a consumer would possibly place less importance on protection of the

equipment as it could easily be replaced. Less importance on protection has the potential to

result in a high failure rate for example due to corrosion from inadequate protection in

Chapter 1: Introduction 6

outdoor settings or humid environments. In designing of a water proof enclosure, pressure

differences between the inside and outside of the enclosure due to rapid changes in

temperature need to be considered. Pressure difference can draw water inside the unit. A

short-lived computer that is continually replaced will have an impact on the environment.

Quality research and development will ensure a product lasts for a long time and is

competitive. Part of research and development is testing of individual modules under a range

of conditions to identify problems. The statistics on the failure rate of the Raspberry Pi is not

likely to be available or accurate as the customer may not claim the warranty due to its low

cost. An electronics product should be tested for a range of external influencing variables

including temperature extremes, temperature cycling, vibrations, water ingress and more.

1.5 Existing Solutions

The consumer is demanding devices, and systems with better capabilities and high levels of

functionality. Existing monitor solutions, hardware and applications are considered.

1.5.1 Low Cost Raspberry Pi Based Monitoring Solutions

There are many made-for-consumer-kits coming into the market based on either the

Raspberry Pi computer or Arduino microprocessor or both. Both the Arduino and Raspberry Pi

are small, single board computing platforms that simplify the process of producing cheap

devices that sense and control the real world. The Arduino is an open-source computing

platform consisting of a micro-controller board and a development environment for writing

software. This Arduino platform is cheap at around $30, and makes the process of working

with microcontrollers and prototyping easy. The Arduino cannot implement complex programs

because of limitations in memory and computational power. The Raspberry Pi is a computer

which is based on the Broadcom BCM2835, it includes a 900 MHz quad-core ARM Cortex-A7

CPU and a GPU. The Pi delivers a lot of performance per watt and costs around $40. With a

Linux operating system installed on the Raspberry Pi developers are able to program on board

hardware through the application programming interfaces (API). There is some effort required

in learning the Linux operating system required to develop and test software. Both platforms

have general purpose inputs and outputs for sensing and controlling. The wiringPi GPIO utility

from Gordon Henderson assists in the development of software for the Raspberry Pi allowing

Chapter 1: Introduction 7

the state of pins to be checked through simple terminal commands (Henderson 2015). This

program simplifies experimenting with hardware.

The OpenEnergyMonitor project have developed open-source tools for energy monitoring and

analysis. It is a project aimed at empowering people to monitor energy use

(OpenEnergyMonitor 2015). The OpenEnergyMonitor tools are based on both the Arduino and

Raspberry Pi and designed to be a cost effective solution for monitoring energy use. The main

monitoring system consists of sensors connected to an Arduino. Data is transmitted to a

Raspberry Pi wirelessly (using the RFM69CW module) and this information is then stored

locally or remotely for viewing and analysis. It is designed to be easily configured using only

supported systems and supported sensors although anyone can freely use and modify the

software as it is open-source. The system is not currently capable of outputting control signals.

Although it is possible to build the system using an Arduino, a Raspberry Pi and the available

online resources this would not be typical. The consumer kits which are ready to go

preinstalled with software and include a protection case and other electronic hardware are

reasonably priced. The logger base (EmonPi) is $350 and the wireless sensing node is $150

excluding sensors. It would be better for a consumer to have freedom of choice as to what

sensors could be interfaced, and allow some level of control. It does not allow SDI-12 sensors

but offers flexibility in monitoring of indoor environments.

1.5.2 Low Cost SDI-12 Loggers

A search of the internet reveals a small number of low cost loggers capable of SDI-12. One of

the better solutions is the ML-315 data logger manufactured by YDOC with the basic system

costing about $550. Decagon Devices and Campbell Scientific also produce loggers with SDI-12

capabilities. Decagon Devices’ loggers are around $500 but are limited to a maximum of 5

sensors per logger and limited to decagon sensors only. Campbell Scientific offer more

expensive solutions.

1.5.3 Building Management Systems

Priva Group and Schneider Electric are two companies that provide intelligent building

management system (BMS) solutions. Priva develop and manufacture intelligent BMS that

assist in maintaining healthy living and working environments and sustainable energy use.

Priva (2015) indicates the function of their BMS is to:

Chapter 1: Introduction 8

 Optimise energy flows, and provide up-to-date energy use information

 Allow you to monitor and manage the indoor climate, energy, lighting, fire, security,

and other comfort controls.

 Automate processes.

On 23 April 2015, Mr J van Loon, provided me with information about the Priva BMS systems.

He indicates that Priva are able to provide solutions to automate processes in buildings. He

says the Priva BMS solutions have analogue 0-5 volt inputs for connecting analogue sensors.

The Priva BMS is capable of logging the input signals. Priva provide software for configuring

control systems and data viewing remotely. The Priva BMS is a full feature solution but not

aimed at domestic home owners as the solutions are expensive and more robust then needed

in domestic installations. He said that there is potential for using an intermediate control

system between the Priva hardware interface and sensors to make use of smart sensors.

1.6 Potential Project Outcomes

The benefit of a Raspberry Pi based logger over some of the commercial solutions include its

small physical form (it’s about the size of a credit card), the Linux operating system and the

software available for it including development environments, the general purpose

inputs/outputs (GPIO), its network capabilities and its low cost which can potentially be

leveraged by the consumer or a business providing monitoring solutions or solutions to

address unique requirements such as automation. The top of the line Raspberry Pi computer is

available internationally for $35 US + shipping + local taxes and is sold through distributors all

over the world (Raspberry Pi 2015). A consumer kit could be developed to save the consumer

some work and sold for a small profit. The basic system may not need to be sold and a

business could be based on creating solutions to specific applications and unique

requirements such as automation. A simple base design with software modularity will allow

easy modification of the software to suit any particular application.

There are expanding markets and or opening markets for effective low cost EDA/simple

automation systems. These markets include building management systems (or integration into

building management systems as discussed in section Existing Solutions), energy monitoring,

agriculture, simple automation and environmental research industries. Low cost systems open

the potential market to the general public who may be involved in projects related to

sustainable living, production of food, automation of processes, or monitoring and analysing of

Chapter 1: Introduction 9

the environment for comfort and optimisation and many more. Certain small and large

business enterprise will also benefit greatly from low cost solutions. Use of low cost third party

hardware will reduce the manufacturing and testing costs. The lifecycle management of the

Raspberry Pi based system is also simplified and less costly (see section: Assessment of

Consequential Effects / Implications / Ethics).

SDI-12 is good choice in applications where many smart sensors need to be connected to a

single input (Decagon Devices 2015). It is a cost effective way to read data from many sensors.

It simplifies the programming and hardware requirements of the logger. SDI-12 sensors can

measure multiple parameters and return the values in engineered units. SDI-12 sensor are

often produced to return multiple parameter measurements. The complete range of SDI-12

sensors produced by Decagon Devices return between 3 and 6 parameters per sensor. An

example sensor is the Decagon GS3 which measures soil dielectric permittivity (unit: e),

temperature (unit: ℃) and electrical conductivity (unit: dS/m). Smart sensors that take

multiple parameter measurements are particularly cost effective if all multiple parameters are

needed.

Bus based systems allow some flexibility required in the applications areas mentioned but

there are some shortcomings in practical applications that could be addressed to increase the

flexibility and thus acceptance and popularity of the bus based monitoring and SDI-12. A

hybrid wireless SDI-12 host-to-SDI-12 bus is a potential product to address the unique

requirements in field monitoring applications such as large greenhouses where sensors need

to be moved, keeping cables out of the way, fitting systems within the environment and

sending data over long distances. This could be implemented in a variety of environments to

utilise the strengths of both wired and wireless systems. An extensive search does not find an

existing SD1-12 host and slave wireless hybrid adaptions. Bus based system are suited to

indoor and industrial environments. A well designed digital electrical interface should be very

immune to noise that exists within building.

The Raspberry Pi’s networking functionality makes it extremely useful for monitoring over the

internet. People are connected to the internet in more ways through a wider variety of devices

and with the SMART phone have convenient 24/7 access. Alarms can alert an individual via

email or SMS. The Raspberry Pi can be accessed remotely to remove alarms. The Raspberry Pi

has additional on board devices to enable video processing which can be used to provide

visual confirmation about systems.

Chapter 1: Introduction 10

1.7 Project Methodology

This project is underpinned by an experimental methodology. The three key stages of the

project include conceptual design, development and testing of software and hardware. The

software will be developed iteratively with a series of experiments that develop an expanding

body of knowledge. The software is implemented in C++ and consists of; specifying a

configuration file format and modification of C++ Arduino SDI-12 library. The configuration of

the logger channels, and initiating measurements is done through a command line based

human machine interface (HMI).

1.7.1 Research

The research part of the methodology is as follows:

 Research the hardware capabilities of the Raspberry Pi GPIO pins including the driving

and loading limits.

 Assess both the UART and GPIO pin approach to SDI-12 asynchronous serial

communication. Look for existing accounts where the GPIO of a Raspberry Pi is used to

communicate serial data. Inform an approach based on the difficulty and other

advantages and disadvantages identified.

 Review of SDI-12 protocol specifications and capabilities.

o Assess the robustness of the SDI-12 protocol in terms of not error detection.

o Calculate the bus impedances and find the driving and loading limits.

o Identify the commands that will be issued

o Assess the format of a sensor response to each command that will be issued.

 Review literature on C++ and also for developing applications for the Raspberry Pi.

1.7.2 Prototype Implementation

Hardware is required to translate from Raspberry Pi TTL logic to the SDI-12 data line voltage

levels (0-5.5 V). Prototyping will also involve testing and experimenting with manipulating the

GPIO pins. The prototype part of the methodology is as follows:

 Experiment with the Raspberry Pi GPIO pins and confirm the informed approach to

SDI-12 asynchronous communication is possible.

o Experiment with timing for changing GPIO pins from inputs to outputs.

Chapter 1: Introduction 11

o Investigate the operating system scheduling interruption frequency and

period that the interruption lasts. Write a test program to toggle 1’s and 0’s

and analyse the output using an oscilloscope set to trigger for pulses that are

greater than a set period. If the interruption are severe the UART approach

may be more suitable.

o Investigate and experiment with the Raspberry Pi interrupts.

 Investigate hardware options for performing bi-directional communication and level

shifting from 3.3 volts to 5 volts and from 5 volts to 3.3 volts.

 Design hardware and implement using a breadboard.

 Test hardware. Develop test software which writes toggles a digital HIGH and LOW to

a GPIO pins and analyse the signal using an oscilloscope. Connect any hardware and

test at the output. Load the hardware and retest.

1.7.3 Software Development

With no previous C/C++ programming experience knowledge will be gained through analysing

existing code, experimentation and testing. Face-to-face mentoring is suggested to be a good

way to learn how to program (Agile manifesto 2015). It would be more effective learning to

code through experienced software developers at work or practical based training programs.

The program will be written in C++ using the Geany development environment for Linux which

is installed on the Raspberry Pi. Skills in programming can be developed by writing small test

programs. Individual parts of the C++ code will be tested with a range of input conditions to

ensure each section will work as intended.

 Design and code software modules for the SDI-12 protocol interface and data logger.

o Assess the logical sequences for SDI-12 exchanges, and identify an approach

to:

 Setting states of the GPIO pins for transmitting and listening if this

approach is used. Both GPIO and UART approach would be different.

 Sending commands. (A command is a string of ASCII characters. Each

ASCII character is sent in a frame with 7 data bits, 1 parity bit, a start

and stop bit)

 Receiving ASCII characters

 Specify a configuration file format and data storage plan.

Chapter 1: Introduction 12

o SDI-12 devices do not return extensive information about themselves in

response to the identification command so a user will have to manually

configure the SDI-12 channel by giving it a name, unit, and specifying which

result from that sensor corresponds to it. This information will be stored for

each logger channel in the configuration file.

o Research how to read and write from a file.

o Identify a sequence of configuration file entries that will allow the logger to

perform a measurement from each configured sensor address and return the

parameter(s) to its corresponding channel.

 Develop a main program and command line based HMI for configuring the data logger.

o Use the SDI-12 functions to send the measurement commands to configured

sensors at measurement intervals and append data to the data file.

o Allow basic configuration of sensors.

1.7.4 Final Testing and Evaluating the System

 Test the logger with 3 SDI-12 sensors

o Manipulate the configuration file parameters to see that data is stored

correctly.

o Set the device to log for an extended period of time and analyse the results.

Chapter 2: Background Information 13

Chapter 2: Background Information

The development process must give consideration to the various technologies, techniques and

principles. The first section of this chapter gives background information on environmental

monitoring systems. The second section of this chapter looks at SDI-12. The third section gives

background information on the Raspberry Pi and an assessment of the GPIO driving

capabilities.

2.1 Review of Environmental Monitoring Systems

Major factors that usually rule the development of Environmental Monitoring (EM) systems

are; energy efficiency, cost of the overall system, response time of the sensor module, good

accuracy of the system, adequate signal-to-noise ratio, radio frequency interference/electro-

magnetic interference (RFI/EMI) rejection during varying atmospheric conditions and in

inhomogeneous environments, a user friendly interface with the computer, and complexity

of computation (Kumar et al. 2013).

2.1.1 Overview of Environmental Sensors

SDI-12 was designed for environmental data acquisition (EDA) (SD1-12 support group 2015).

Classification of sensors is conventionally by physical quantity being measured, the conversion

principle, technology used, or by application (Sinclair 2001). Environmental monitoring sensors

can also be classed according to broad physical characteristics of the environment it is

measuring. A sensor can be discriminated as measuring either biotic or abiotic environmental

quantities. Sensors measuring abiotic quantities can be further categorised according to the

physical properties it is measuring for example soils, atmosphere, water and manmade

environments or systems. I.e current through a wire conductor would be a manmade system.

This is not a perfect organisation for example a temperature sensor can exist in all four

categories. An abiotic environment may be related closely to a biotic environment so

environmental sensor distributors may choose to separate sensors by application also.

Examples quantities measured by atmosphere monitoring sensor including light intensity,

radiation, pollution, temperature, noise, humidity, wind-chill, wind direction, wind speed,

oxygen and many more. Physical quantities measured by soil sensors include moisture,

electrical conductivity, temperature, acidity, heat flux and many more.

Chapter 2: Background Information 14

2.1.2 Smart Sensors

An analogue sensor is a transducer that detects a physical, biological, or chemical parameter

and responds with an electrical signal. Electrical signals from a sensor may need to be

conditioned in the sensor. Signal conditioning is a process involving filtering, amplification,

compensation and normalisation. Further processing of the conditioned signal may take place

in the data system such as adaptive noise cancelling, spectrum analysis or any other algorithm

needed for a specific purpose (IEEE Standards Board 1997).

Sensors can integrate microprocessors, ADC’s and other electronics, which are getting smaller,

cheaper and more powerful into the sensor to form a ‘smart’ sensor. A microprocessor in a

sensor may calibrate the sensor, control the sensor measurement, control a process and

measure the process variable(s) and convert raw sensor reading into engineering units (SD1-12

support group 2015). A smart sensor is able to communicate measurements directly to a data

system. The smart sensor makes the job of the application engineer easier by shifting the task

of designing the signal conditioning, and complex process control and measurement functions

to the sensor manufacturer. A smart sensor is able to supply the analogue sensors with any

specific power and voltage requirements using internal regulators that would otherwise be

difficult to do with from the data node. Assuming the digital interface between smart sensor

and the data system is well designed there should not be data corruption due to noise pick up.

Furthermore, smart sensors can be networked.

2.1.3 Sensor Networks

Sensor network are distributed autonomous sensors to monitor physical quantity which

cooperatively pass their data through the network to a main location. The types of nodes in a

sensor network are; sensor nodes, data nodes and aggregator node. Sensor nodes are a

‘smart’ sensor composed of one or more sensors and a communication device and do not

store data. SDI-12 sensors are an example of a sensor node Data nodes are sensor nodes that

store data. Aggregator node are composed of a communication device, a recording device and

no sensors. The three types of nodes in a sensor network are shown in figure 1.

Chapter 2: Background Information 15

Figure 1 Types of nodes in a sensor network (Bell 2013, p. 27)

Data is communicated between nodes either through a wired or wireless medium. Hybrid

systems combine both wireless and wired technologies.

Wired Networks

Many implementations of wired networks are currently available. Digital sensor buses were

developed mainly due to a need in the process and control industry to connect sensors and

transducers directly to digital networks for factory automation and closed loop-control (Write

and Dillon n.d.). Write and Dillon (n.d.) states the ‘large growth in slow speed sensors (for the

measurement of temperature, pressure and position for example) contributed to the

development of digital bus architectures such as Fieldbus, Profibus, LonWorks, and

DeviceNet’. He said that, ‘these systems have drawbacks and problems like bandwidth

limitations, proprietary hardware and the major design work needed to interface with existing

sensors’. Other wired communication protocol implementations include TCP/IP, BASnet,

Modbus and Ethernet. Wired systems in general have drawbacks relating to the need to

purchase and route cables which add costs in installation, maintenance and upgrade.

Wireless Networks

Wireless communication is more versatile than wired communication. Wireless

communication protocol standards such as 802.11 (WiFi), 802.15.1 (Bluetooth), 802.15

4(ZigBee & XBee) are some of the options. Radio performance is affected by obstacles in and

around the transmission path. ZigBee devices can transmit data over long distances by passing

data through a mesh network of intermediate devices to reach more distant ones.

Chapter 2: Background Information 16

Hybrid Network

Hybrid networks combine both wired and wireless medium. An example maybe an interface

for SDI-12 logger-to-SDI-12 sensor/bus. The slave interface at the sensor site would power the

sensors from an internal battery or external source and provide the SDI-12 protocol messaging

and timing. The master interface can be powered from the host (logger). This would allow use

of SDI-12 solutions for more widely distributed monitoring applications. An SDI-12 bus can be

routed to a well position wireless SDI-12 slave module providing a lot of flexibility.

2.1.4 Distributed Measurement and Control – Towards

Networked Smart Sensors

Applications for control systems can take several forms. The most notable control

environments are segregated (or individual), centralised, or distributed control (Lee &

Schneeman 2000, p. 623). The segregated (or individual) control functions as a standalone

system in a non-networked environment. An individual control node may control one or more

processes which will be application specific. The centralised and distributed control forms

function in Distributed Measurement and Control (DCM) environments. The centralised

control form is where a master controller directly controls slave nodes on a network. The

process connection is thorough the slave nodes. The distributed control form is where sensor

information is sent to a networked nodes through a controller gateway(s). A distributed

networked node is able to process information on the network and make a control decision. A

distributed control networked node has distributed intelligence.

Further work outside the scope of this project involves the development of the Raspberry Pi

logger to work as a node at the process control level in a DMC environment. The Suitability of

the Raspberry Pi as a process control node of DMC environment will depend on measurement

and control requirements, overall system frameworks and technologies used.

The Smart Sensor Interface Standard (IEEE1451)

The distributed measurement and control industry is migrating away from proprietary

hardware and software in favour of open source systems and standardised approaches (LEE

& Schneeman 2000, p. 621).

Chapter 2: Background Information 17

The ‘IEEE standard for smart sensor transducer interface for sensors and actuators’ (IEEE

1451), is a standard to define common interfaces for connecting transducers to

microprocessor based systems, instruments and field networks.

IEEE Standards Board (1997, p. iii) states, the main objectives of the IEEE 1451.2 standard are

to:

 Enable plug and play at the transducer level by providing a common

communication interface for transducers.

 Enable and simplify the criteria of networked smart transducers.

 Facilitate support of multiple networks.

IEEE Standards Board (1997, p. iii) states: ‘The existing fragmented sensor market is seeking

ways to build low-cost, networked smart sensors.’ There are many implementations of the

control network each with its own strengths and weaknesses for a specific application class.

IEEE Standards Board (1997, p. iii) reports that, ‘interfacing sensors to all the control networks

and supporting a wide variety of protocols represents a significant and costly effort to

transducer manufacturers’. Existing control networks include digital bus protocols such as

Fieldbus, Profibus, LonWorks, Modbus and DeviceNet, TCP/IP, LonWorks, BASnet, Ethernet

and many more. Wireless protocols used include WiFi, Bluetooth, ZigBee & XBee. The IEEE

1451 standard objective is to develop an interface standard that will ‘isolate the choice of

transducer from the choice of networks’ (IEEE Standards Board 1997, piii).

Transducer manufacturers may produce a sensor which can interface to one or more of the

control networks or may even adopt a proprietary communications interface that limit the

data available to higher-level networks. The Smart Sensor Interface Standard (IEEE 1451)

defines a common interface for connecting transducers to control networks. It is implemented

at the lowest level of an industrial automation environment, the process connection level, and

the next level up, the distributed intelligence level. The application level is the third and final

level which is not defined in the IEEE 1451 standard. A functional block diagram of IEEE 1451 is

given in figure 2 and shows 5 functional sub-sections of the IEEE 1451 standard.

Chapter 2: Background Information 18

Figure 2 Functional block diagram of IEEE 1451 (Wright & Dillon n.d. p2)

The first section of the IEEE 1451 standard specifies an interface for connecting the transducer

interface modules (TIM’s i.e. STIM, TBIM, MMI and WTIM) in figure 2 to a network that

performs network communications to transducers for performing data conversion. The NCAP

is a network node (see section: Distributed Measurement and Control). The transducer(s)

which are connected to the TIM’s may be analogue or digital. Analogue and digital sensor data

is converted using analogue-to-digital converters (ADC) and digital input/output (DI/O) ports.

Data can also be transmitted wirelessly between transducer and TIM as specified in the IEEE

1451.5 subsection. Figure 3 shows the context of a Smart Transducer Interface Module (STIM)

as specified in IEEE 1451.2. A STIM module contains Transducer Electronic Data Sheets (TEDS),

logic to implement the transducer interface, transducer measurement interface and any signal

conditioning. The STIM can accommodate 255 channels. Wright & Dillon (n.d., p. 5) said ‘the

success of IEEE 1451 depends on the development of the TIM’s to meet individual needs and

special applications’. The IEEE 1451 standard specifies a TEDS to be stored within the TIMs.

TEDS are blocks of information stored in non-volatile memory within a TIM that describe a

transducer. The IEEE 1451 standard does not specify the signal conditioner and data

conversion functions, TEDS reader function or transducer measurement interface. It is possible

to develop a STIM specifically for SDI-12 sensors which return a single parameter

measurement to a STIM channel, however, further investigation is needed to determine

whether SDI-12 sensors that return multiple parameter measurements can be connected to a

STIM channel.

Chapter 2: Background Information 19

Figure 3 Overview of the STIM (IEEE Standards Board 1997)

Chapter 2: Background Information 20

2.2 Overview of SDI-12

This section describes an interface between data loggers (data nodes) and microprocessor

based sensors (sensor nodes).

2.2.1 Introduction

SDI-12 stands for Serial Digital Interface at 1200 baud. SDI-12 is a three wire serial digital

interface providing a means for transferring measurements taken by an SDI-12 sensor to a

data node for environmental data acquisition. The SDI-12 standard defines an electrical

interface, protocols and timing (SD1-12 support group 2013). The protocol describes the

normal data retrieval operation on the SDI-12 bus using a command set specified in the

standard. SDI-12 sensors are an intelligent microprocessor based sensor which use SDI-12 to

talk with data nodes. Only the data node can initiate communications. While all SDI-12 sensor

must conform to the SDI-12 specification, it is not a plug and play type system. Detailed

knowledge of the sensor such as the amount of data the sensor is returning and the order in

which the data is returned is required to configure it.

2.2.2 Background

The SDI-12 protocol grew out of a need for a low power, standard serial interface for serial-

data acquisitioning (SD1-12 support group 2015). The first version of SDI-12 specification was

created in 1988 with input from a group of companies that were operating in the

environmental monitoring industry but mostly written by Campbell Scientific. SDI-12 has been

refined over the years but remains backward compatible with earlier versions. The SDI-12

support group maintains the SDI-12 standard (SD1-12 support group 2015).

2.2.3 Electrical Interface

The SDI-12 protocol defines a multi-drop, multi-parameter interface. Multi-drop means that

one or more SDI-12 sensors are connected on a single cable as shown in figure 4. Sharing a

communication wire is often called a ‘bus’. Multi-parameter means each of the SDI-12 sensors

is capable of measuring one or more parameter and returning multiple values to the data

node.

Chapter 2: Background Information 21

Figure 4 Physical context of the SDI-12 interface

Each sensor on the multisensory bus has a unique address with a maximum of 62 addresses on

the bus. SD1-12 support group (2013) specifies that an SDI-12 bus with 10 sensors would limit

the maximum cable length per sensor to 60 meters but indicates that using fewer sensors

means a longer length of cable per sensor is possible. This means that 10 SDI-12 sensors could

be placed anywhere within a 60 meter radius of the data node if the cable goes directly

between each sensor and the data node. Decagon Devices produce SDI-12 sensors with a ‘low

impedance’ variant of the equivalent circuit recommended in the SDI-12 specification

(Decagon Devices n.d.). Decagon Devices (n.d., p. 5) states that ‘this allows for up to 62

sensors to be connected onto the bus at one time instead of the 10 that is stated in the

standard’. The recommended equivalent circuit and the Decagon Devices ‘low impedance’

variant are discussed in the serial data line section below. The complete range of Decagon

Devices’ SDI-12 compatible sensors also specify a different logic HIGH requirement which also

allows more SDI-12 sensors to be connected to the bus. The Decagon Devices SDI-12 sensor

digital input variant is also discussed in the serial data line section below.

Line Definitions

The SDI-12 communication is done over a single data line. The 3 physical connection are,

1) 12-volt line

2) a ground line

3) a serial data line

Electrical Specifications

Chapter 2: Background Information 22

12-Volt Line

a) The voltage on the 12-volt line shall be between 9.6 V and 16 V with respect to the

ground line under maximum sensor load of 0.5 A.

b) The data node is expected to be able to supply a maximum sensor load power 0.5

amperes. The SDI-12 protocol initiates communication by waking all sensors on

the SDI-12 bus therefore the 12 volt line must power all devices at once for a small

period of time. While all devices do not take a measurement at this time or at

once it is possible that the SDI-12 control circuit in the sensor (typically consisting

of a micro-processor or FPGA) may need up to 50 mA, however, for low power

sensors using low power 8 bit microprocessors it is likely to be less than 50 mA.

The complete range of Decagon Devices’ SDI-12 compatible sensors

(approximately 10 in total) require between 10 and 25 mA of current during a

measurement and up to 0.3 mA quiescent (Decagon Devices 2015).

c) An SDI-12 sensor may use separate power supply as necessary.

Ground Line

a) The ground line must be connected to the data node circuit ground and an earth

ground at the data node. The sensor circuit ground is connected to the ground

line. The sensor circuit ground is usually isolated from ground (frame or earth).

b) The ground line should be large enough so that a maximum voltage drop along

line between sensor and data node is 0.5V for combined sensor current drain.

Serial Data Line

Logic Levels

Digital signals representing data and control signals can be either a one or zero and are

represented physically by two voltage levels. The term logic HIGH refers to a HIGH voltage

level for either positive or negative logic. The SDI-12 data line uses negative logic. Events are

associated with changing logic, a LOW-HIGH transition shall be referred to as a positive edge

and a HIGH-LOW transition a negative edge. The serial data line use a single bi-directional data

line with three states. The SDI-12 data transmission logic and voltage levels are shown in table

1. Bi-directional means there is two-way communication on a shared data line, which is

possible using precisely timed signal conditioning. Decagon Devices is a sensor manufacturer

that produce SDI-12 sensor which have a lower binary HIGH than those specified in table 2.

Decagon produced SDI-12 sensors that read a low asserted between 2.8V and 3.9V. On 24

June 2015, Mr M Galloway, assured me that this does allows more sensors to be connected to

the bus.

Chapter 2: Background Information 23

Table 1: SDI-12 voltage thresholds (SDI-12 support group 2013, p. 3)

Condition Binary State Voltage range

marking 1 -0.5 to 1.0 volts

spacing 0 3.5 to 5.5 volts

conditioning undefined 1.0 to 3.5 volts

Drive and Loading

The recommended SDI-12 equivalent circuit is shown in figure 5. This allows a maximum of 10

sensors to be connected on the bus. For a bus with 10 sensors connected the AC impedance

seen by the transmitter is approximately 4.1kΩ∠-58°. The AC impedance is calculated using a

sinusoidal approximate to the digital square wave at frequency 1200Hz which is an

approximate to the SDI-12 baud data rate of 1200 baud. When the transmitter is driving

towards a HIGH state (MAX 5.5V transmitter output) it must be capable of sourcing a

maximum of 1.33 mA. The voltage on the data line with 10 sensors connected would be

approximately 3.6 volts if driven at 1200 Herts. This is at its lower HIGH voltage specification

(see table 1) while the transmitter output is at its upper specification (5.5V). Extra loss not

accounted for includes the impedance between bus and sensor, conductor line resistance and

stray capacitance on the data line. The 10 sensor limit specified in the SDI-12 standard leaves

no tolerance and requires a transmitter outputting 5.5 V. The DC impedance seen by the

transmitter with 10 sensor is 19.3kΩ thus the transmitter driving a HIGH state would only need

source 285μA but this is unrealistic.

Chapter 2: Background Information 24

Figure 5 Recommended equivalent SDI-12 circuit (SD1-12 support group 2013, p. 4)

The Decagon Devices ‘low impedance’ variant on the recommended equivalent circuit is

shown in figure 6. This circuit has a lower DC impedance in comparison to the DC impedance

of the recommended circuit but a higher AC impedance at 1200 Hz. For a bus with 10 sensors

connected the AC impedance seen by the transmitter is approximately 9.9kΩ∠-9°. When the

transmitter is driving towards a HIGH state (5.5V) it must be capable of sourcing 540 μA, which

is much less than required if sensor use the recommended equivalent circuit. The voltage on

the data line with 10 low impedance variant SDI-12 sensors connected would be

approximately 4.72 volts if driven at 1200 Hz. The capacitive reactance of the Decagon low

impedance variant equivalent circuit is reduced and so current and voltage are almost in

phase. This may increase the slew rate. The DC impedance seen by the transmitter is 10kΩ.

Figure 6 Decagon Devices’ low impedance equivalent SDI-12 circuit (Decagon Devices n.d., p. 2)

Voltage Transitions

The slew rate on the SDI-12 serial data line must not be greater than 1.5 volts per

microsecond.

Chapter 2: Background Information 25

2.2.4 Protocol

The SDI-12 communication is done over a single data line (the ‘serial data line’) via precisely-

timed signal conditioning, resulting in an exchange of ASCII characters as defined by the

standard. The SDI-12 protocol allows for a maximum of 62 sensors to be connected to the bus.

Sensor measurements are triggered by protocol command. Communication is addressed

specifically to each sensor. Each sensor requires a unique ASCII character address. The valid

addresses are ASCII characters 0-9, a-z and A-Z giving a total of 62 unique addresses. To add

more than one SDI-12 sensor to a system the address of each sensor should be changed while

no other sensors are connected to the bus.

Baud Rate and Byte Frame Format

The SDI-12 protocol sends characters at 1200 baud. Each byte frame has 1 start bit, 7 data bits

(LSB first), 1 parity bit (even parity) and 1 stop bit. For even parity, the number of bits whose

value is 1 are counted. If that total is odd, the parity pit is set to 1, making the total count of

1's in the set an even number. If the count of 1's in a given set of bits is already even, the

parity value remains 0. The SDI-12 protocol uses negative logic. An example of a transmission

of character ‘a’ is shown in figure 7. The 7 bit binary code for ASCII character ‘a’ is 110 0001.

Figure 7 Example SDI-12 transmission of character 'a'

SDI-12 Timing

All SDI-12 commands and response must adhere to the timing diagram given in figure 8.

Chapter 2: Background Information 26

Figure 8 SDI-12 timing (SDI-12 support group 2013, p. 24)

The maximum time for a sensor response to all but the concurrent measurement is 380 ms.

The SDI-12 interchanges follow the general pattern presented here:

1) The data node wakes all sensors by placing a break on the SDI-12 bus. ‘Break’ is the

name of a command for a continuous spacing for at least 12 milliseconds. There is

no upper limit on the break period. A sensor must wake within 100 ms after

detecting the break.

2) The data node sets the data line to marking (logic LOW) for at least 8.33 ms. A

sensor can go back to sleep after 100ms of marking so the upper limit on marking

can be say 90ms.

3) The data node announces an SDI-12 command (see table 3) to a specific sensor and

immediately waits for the reply.

4) If the addressed sensor is awake and has detected the command it will set the data

line to marking for 8.33 ms immediately followed by the transmission of the

command response. The response must begin within 15 ms of receiving the

command stop bit of the last byte . If there are other sensors on the bus and detect

an invalid address they must return to standby.

5) The data node captures the response. If the response is not received the data node

will retry after a minimum of 16 ms has passed since the last stop bit of the

command but no longer than 87 ms. At least two more retries will be attempted

with at least one being 100 ms from the transition from break to marking.

Chapter 2: Background Information 27

SDI-12 Commands and Responses

A subset of the SDI-12 commands and sensor responses are given in table 2. The commands

listed in table 2 will be issued by the prototype Raspberry Pi logger which will allow automatic

configuration of SDI-12 sensors and logging of configured sensors. The first character of all

command issued by a data logger and the first character in the sensor response is the sensor

address. The last character of every command is always an exclamation mark (!). The final

characters of all sensor responses are carriage return and line feed (<CR><LF>). Sensor that

comply with the latest standard have a variant command that includes a three character CRC

with the response. These variants may be implemented in the future.

Table 2: SDI-12 Command set and response format (SDI-12 support group 2013, p. 8)

Command Name Command String Response

Address Query ?! a<CR><LF>

Send Identification aI! allccccccccmmmmmmvvvxxxxxxxxxxxxx<CR><LF>

Send Data aD0-9! a<value(s)<CR><LF>

Start Measurement aM! atttn<CR><LF>

Table 3: Key for table 3 response characters

Key Meaning

a Address

I SDI-12 version number

c 8-character vendor identification

m 6-characters indicating sensor model number

n Number of data values being returned

t Time in seconds until data will be ready (when service request should be issued)

v 3-character sensor version number

<value(s)>

pd.d

P – polarity sign

d- numeric digits before the decimal place

. – decimal point (optional)

d – numeric digits after the decimal point

<CR><LF> Terminates the response

Chapter 2: Background Information 28

Benefits in Using SDI-12 in Environmental Data Acquisition

Using SDI-12 provides considerable benefits, which include plug-and-play modularity,

availability of a growing number of SDI-12 sensors, one data logger port for connecting

different sensors and the benefits of smart sensors as outlined in the section ‘Smart Sensors’.

In essence using SDI-12 will simplify the process of installing and configuring sensors. Using

SDI-12 sensor nodes simplifies the hardware requirements of the data node as the

measurement channels and signal conditioning is part of the sensor. SDI-12 sensors may

control a complex process and measure the process variable(s) which are used to determine

the desired quantity. An example of this might be measuring the sap flow in a tree using the

heat ratio method. Heat is input via a probe and the upstream and downstream temperature

is recorded over time from which sap flow can be calculated. Assuming the SDI-12 digital

interface is well designed there should not be data corruption due to noise pick up. The

disadvantage to SDI-12 is the more sensors you have on a bus the more difficult it will be to

isolate a faulty sensor and restore the sensor network.

2.3 The Raspberry Pi

The Raspberry Pi is a small and inexpensive personal computer developed and manufactured

by the Raspberry Pi Foundation which first released the computer to the public in 2012

(Raspberry Pi Foundation 2015). Two Raspberry Pi models have been released, “Model A” and

“Model B”. The current Model A revision is the Raspberry Pi model A+ which is recommended

for embedded projects. Model A is shown in figure 9. The current Model B revision is the

Raspberry Pi 2 Model B and it costs $44 AU (element14 2015). Model B is shown in figure 10.

The Raspberry Pi Foundation provide Debian Linux ARM distributions for download. The

Raspberry Pi has a large range of inputs and outputs available to interact with the

environment. This provides the perfect set of factors allowing people to build cheap devices

and learn about technology.

Chapter 2: Background Information 29

2.3.1 Raspberry Pi’s Operating System

The Raspbian operating system (a Linux distribution) is not a real time system and any thread

can be interrupted by the OS. While it is possible to code a bare metal version of logging

firmware for the Raspberry Pi that would be strictly real-time it would require a lot of

development. The Raspberry Pi kernel has useful features to manage a program (or thread)

that can be leveraged to interface with the outside world. The Linux kernel allows an interrupt

to be detected on any GPIO input as a rising or falling edge transition and the main program

can continue to run while waiting for an interrupt.

2.3.2 Raspberry Pi Hardware Specifications

The Raspberry Pi has most on board devices found on a typical personal computer, including;

HDMI port, USB ports, micro SD Card port, and an Ethernet port. It is a small but capable

computer. The Model A+ is less suitable for use as a logger as it does not include an Ethernet

port and is thus not considered as an alternative. The Specification for the Raspberry Pi 2

Model B are highlighted here.

Broadcom BCM2836 - System on Chip (SoC) (CPU, GPU, DSP, SDRAM, 1 USB port)

The Raspberry Pi is based on the Broadcom BCM2836 SoC, which was designed for multimedia

processing applications (Raspberry Pi 2015). The Raspberry Pi 2’s CPU is a 900 MHz quad-core

ARM Cortec-A7. It has 1 GB SDRAM RAM which it shares with the GPU.

Figure 10 Raspberry Pi 2 Model B (Raspberry Pi
Foundation 2015)

Figure 9 Raspberry Pi Model A+ (Raspberry Pi Foundation
2015)

Chapter 2: Background Information 30

Dimensions

The Raspberry Pi is 85.6 mm x 56.5 mm (about the size of a credit card).

Ethernet Port

The Raspberry Pi’s network readiness maybe leveraged to make use of existing internet

hardware to get information to a BMS interface. The Raspberry Pi can be connected into a

Router or Network switch. A USB Wi-Fi transmitter device can be connected as an alternative

way of connecting it to the internet.

Power Supply Requirements

The Raspberry Pi is powered through the micro USB-type B port. It requires a supply of 5 volt.

The current drawn by the Raspberry Pi depends on what is connected to it therefore it is

recommended that a PSU is current limited. It is recommended that the Raspberry Pi 2 is

supplied using a power supply unit with a capacity of 1.8 A (Raspberry Pi 2015). Without any

peripherals (bare-board) the active current consumption is up to 500 mA. The maximum total

USB peripheral current draw is 600 mA. The maximum current that can be supplied through

the 5V GPIO power pin safely is 1.3 Amps (1.8 A – 0.5 A) without any other peripherals connect

i.e. monitor, keyboard, mouse etc. A powered USB hub can be connected to the Pi USB hub

when required.

General Purpose Input Output (GPIO) Pins

The Raspberry Pi 2 has a 40 pin header allowing connection of the GPIO’s of the BCM2836 SoC

to digital devices. These pins can be programmed as either inputs or output. The mapping of

this header is shown in figure 11. This is a representation of the header as viewed looking

above. BCM are the Broadcom pins of which there are 28 in total. The BCM pins are also

referred to as GPIO and have the same numbering. The GPIO pins can draw a maximum

combined current of 50 mA safely. An individual pin can draw a maximum of 16 mA safely

(Raspberry Pi 2015). These pins are not current limited. The GPIO voltage are 3.3 V and there is

no over voltage protection on the board. To interface anything will require an external board

with buffers, level conversion and analogue circuits. The pins cannot drive a capacitive circuit.

Chapter 2: Background Information 31

Figure 11 Raspberry Pi pinout (Raspberry Pi 2015)

The GPIO pin voltage thresholds are given in table 4. The GPIO when set as an input can be

configured as a Schmitt trigger, with input hysteresis. With hysteresis there are different

threshold voltages for rising and falling transition but these are not actually specified by in the

Broadcom BCM2835-ARM-Peripherials datasheet (Broadcom 2012).

Table 4: GPIO pin voltage threshold

Output LOW voltage (VOL) < 0.7 V

Output HIGH voltage (VOH) > 2.6 V

Input LOW voltage (VIL) < 0.8 V - > 0 V

Input HIGH voltage (VIH) > 2.0 V - < 3.3 V

RTC

The Raspberry Pi can keep time while powered on only. Networked Raspberry Pi’s will update

their RTC automatically on start-up (Raspberry Pi 2015). Non-networked units will need to

have their RTC updated manually. Updating the RTC via the internet saves some cost to the

consumer but is unsuitable for many stand-alone applications. An RTC can be added if the

device is running as a standalone system.

Chapter 3: Hardware Implementation 32

Chapter 3: Hardware Implementation

This chapter outlines the design process for the SDI-12 electrical interface. The first section of

this chapter looks at two different approaches to the implementing SDI-12 and informs an

approach based on the advantages and disadvantages of both. The second section of this

chapter investigates hardware options for level shifting the SDI-12 exchanges. The third

section presents the schematic and the fourth and final section of the chapter outlines a series

of functional test and results.

3.1 Assessment of both the GPIO and UART Approaches to

Implementing SDI-12

SDI-12 communications relies on precise signal conditioning resulting in an exchange of ASCII

characters in frames with 7 data bits, 1 parity bit, a start bit and a stop bit at 1200 Baud. Two

possible approaches to interface the Raspberry Pi to SDI-12 sensors are, 1) the GPIO pins 2)

the UART. In both approaches hardware is required to level shift between the Raspberry Pi TTL

logic and the SDI-12 voltage levels.

3.1.1 GPIO

Henderson (2015) reports that the Raspberry Pi 2 is capable of toggling a GPIO pin 0 and 1 at a

frequency of 9.6 MHz using his wiringPi C/C++ library functions (with no overclocking). By

setting a delay period after each transition a GPIO pin is capable of transmitting and receiving

serial data at 1200 baud. The major disadvantage of this approach is the possibility of un-

reliable data exchanges due to the Raspbian operating system sharing system resources with

other threads which may result in intermittent read and write control.

In the event that the OS de-schedules the process while transmitting a command it is highly

likely that the data received by the sensor will be invalid and in this case the sensor will not

respond. The command will subsequently be re-issued by the logger to the sensor. There are

just twenty SDI-12 commands in total which are 3, 4 or 5 ASCII characters in length (including

the sensor address). The first character of a command is always the sensor address and the

final character is always an exclamation mark (!). Any interruption to an outgoing command

Chapter 3: Hardware Implementation 33

will result in a different combination of the 3, 4 or 5 characters. When considering a command

that is 3 ASCII characters (excluding the address) such as the measurement commands, there

will be three 10 bit frames or a total of 30 bits resulting in 232 possible bit combinations. With

only 20 valid bit combinations the likelihood of receiving an incorrect command is small.

Additionally, the parity bit and stop bit must also be valid.

The inherent risk in receiving the incorrect sensor response is greater as the response length is

variable (up to 35 characters (350 bits)) and only the first 10 bits and the last 20 bits of the

response are known. All frames of a sensor response must have a valid start and stop bit.

Certain commands including the send measurement command can also request a 3 character

CRC code which will provide assurance the data is valid. Only sensors compliant with the latest

SDI-12 specification version 1.3 (2013) implement the CRC feature.

The advantage of the GPIO pin approach over the UART approach is that multiple SDI-12 buses

are possible, i.e. as many as there are GPIO pins available on the Raspberry Pi.

3.1.2 UART

The Raspberry Pi has one externally accessible Universal Asynchronous Receiver/Transmitter

(UART) on pins BCM14 (TXD) and BCM15 (RXD) that is capable of performing SDI-12 exchanges

with additional hardware. The UART sends and receives serial data and performs timing and

parity checking. The UART transmits and receives one bit at a time at a specific rate using

hardware such as bit shift registers that get timing from the system clock. The UART approach

is inherently safer than the GPIO approach.

A consideration for implementing the UART approach is that the idle state of the UART is a

logic HIGH whereas the idle state of the SDI-12 bus is a logic LOW (Broadcom 2012). This will

not be a significant problem as the hardware required to level shift the incoming and outgoing

signals can also invert the signals.

3.1.3 Informing the Approach

After extensive investigation into the UART approach, it is dropped in favour of the GPIO

approach because some design concepts with the UART approach remain unanswered and

successful outcome could not be guaranteed. Confirmation with an approach would be

possible by experimenting with the UART and hardware but is considered to be a risk due to

Chapter 3: Hardware Implementation 34

time constraints and unknown work load. The unanswered problems to address for the UART

approach are:

1) How to send a wake sensors command (12 ms break (logic HIGH) and 8.33 ms

marking (logic LOW)). The break is longer than a 10 bit frame (8.33 ms). It would

not be possible to send a break using the UART TX unless it is possible to disable

the stop bit generation at the end of the frame (logic low).

2) How to level shift between the Raspberry Pi UART TX pin to the SDI-12 voltage

levels. Any hardware used to level shift and drive the SDI-12 bus must be capable

of being put into a high impedance state when the SDI-12 logger is listening for a

response from a sensor on a bi-directional line. As the UART is somewhat

automatic it may be a challenge to know exactly when the UART starts and

finishes sending a command to the sensor. If the time the transmission finishes is

known, the driver can be put into a high impedance state.

3.1.4 Testing the GPIO Suitability

Before proceeding with the GPIO approach experimentation is undertaken to detect the

nature of the interruptions. The test aims to approximate the frequency of the interruptions

and the length of time the interruptions last. The piHiPri() function from the wiringPi library is

tested also. piHiPri() is a function that sets the priority of a process anywhere from low (1) to

high (99).

A test program written in C toggles a GPIO pin at three frequencies (5 MHz, 2.5 kHz and 600

Hz) and the pin state is analysed with an oscilloscope which is set to trigger on a positive pulse

with width greater than α. The number of re-triggers are recorded in table 5 for a test duration

of 2 minutes with increasing values of α starting at 50 μs and where the process is given both

low and high priority using piHiPri(). Two test conditions are implemented which vary the

demand on the CPU from minimal to high. The minimal demand condition is equivalent to the

demand to which the logger is expected to run in the field and it is when only the background

(or daemon) programs are running i.e. those of which are part of the Raspbian OS. The high

demand condition is when multiple user application are running simultaneously with the test

program. The user applications is a web browser that is continually being refreshed and

another GPIO application running continually. The interruptions are observed to be

predictable under these test conditions and the test duration of two minutes long enough to

give accurate results that are repeatable. As the oscilloscope trigger will only happen on

Chapter 3: Hardware Implementation 35

positive or negative pulse width that is greater than α, the actual number of interruptions for

each test should be interpreted as double the value given in table 5.

Table 5 Frequency of delays to 3 GPIO toggle frequencies for a set of minimum pulse width times.

α

(a positive pulse width

greater than α will re-

trigger the oscilloscope)

Test

conditions

– demand

placed on

the CPU

Test 1 - toggle at

9 MHz (no delay)

Test 2 - toggle at

2.5 kHz (200μs

delay)

Test 3 - toggle at

600 Hz (830μs

delay)

Low

Priority

(1)

High

Priority

(99)

Low

Priority

(1)

High

Priority

(99)

Low

Priority

(1)

High

Priority

(99)

> 50 μs High

Demand

> 1000 > 500 - - - -

> 100 μs High

Demand

> 1000 > 100 - - - -

> 200 μs High

Demand

> 1000 3 - - - -

> 500 μs High

Demand

> 50 0 > 500 > 100 - -

> 500 μs Minimal

Demand

1 0 > 100 0 - -

> 1 ms

(1.25 bts at 1200 baud)

High

Demand

> 40 2 > 500 > 35 > 1000 120

> 1 ms

(1.25 bits at 1200 baud)

Minimal

Demand

0 0 27 0 80 0

> 1.26 ms

(1.5 bits at 1200 baud)

High

Demand

40 0 > 500 0 > 500 60

> 1.26 ms

(1.5 bits at 1200 baud)

Minimal

Demand

0 0 20 0 70 0

> 1.66 ms

(2 bits at 1200 baud)

High

Demand

30 0 > 500 0 > 500 20

> 1.66 ms

(2 bits at 1200 baud)

Minimal

Demand

1 0 50 0 60 0

> 2.49 ms

(3 bits at 1200 baud)

High

Demand

24 0 > 350 0 > 500 0

> 2.49 ms

(= 3 bits at 1200 baud)

Minimal

Demand

2 0 23 0 30 0

The results in table 5 show that that by giving the process a high priority using the piHiPri()

function from the wiringPi library the number of interruption can be significantly reduced. The

results in test 2 and 3 also show that a slower toggle frequency experiences more frequent

Chapter 3: Hardware Implementation 36

interruptions than the case of maximum toggle frequency with similar priority. The results

show significant interruptions for test 3 with high priority that last 1.66 ms (equal to double

the toggle delay) when there is high demand. This is an indication that the GPIO approach may

fail if there is a high demand on the CPU, however if the SDI-12 exchange failed the command

would be re-issued. Figure 12 shows a screenshot from the oscilloscope for the test where the

GPIO is toggled at 600 Hz. The oscilloscope has captured a positive pulse width of 2.08 ms

which was a result of the operating system de-scheduling the process momentarily.

Figure 12 Screen shot of the oscilloscope for a test where GPIO toggled at 600 Hz

3.2 Component Selection and Implementation

Considerations

The SDI-12 exchanges occur on bi-directional data line and so any hardware used to level shift

and drive the SDI-12 bus (outgoing transmission) must be capable of being put into a high

impedance state for when the SDI-12 logger is listening for a response from a sensor. A HIGH

on the SDI-12 bus is between 3.5 and 5.5 V and to achieve the maximum number of sensors on

the SDI-12 bus the data line should be driven close to 5V (5.5V if possible). The 74XX1T45 and

the 74XX240 series chips are assessed for suitability.

Chapter 3: Hardware Implementation 37

3.2.1 74XX1T45 Series Chip

The 74XX1T45 series chips are a single-bit dual supply bus transceiver with configurable

voltage translation and 3-state outputs (it is not available in a dual inline package for

breadboard prototype). Figure 13 shows a functional block diagram for the SN74LVC1T45.

Texas Instruments (2014) states the ‘logic levels of the direction-control (DIR) input activate

either the B-port outputs or the A-port outputs. The device transmits data from the A bus to

the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-

port outputs are activated.’ The high voltage level at each port is dependent on the supply

voltage VCCA or VCCB. VCCA and VCCB accept any voltage from 1.65 V to 5.5 V.

Figure 13 Functional block diagram for the SN74LVC1T45 (Texas Instrument 2014)

Table 6 shows minimum and maximum expected voltage levels for two supply voltages that

would allow exchanges between the Raspberry Pi and SDI-12 sensors. In this case port A is

connected to the Raspberry Pi and port B is connected to the SDI-12 bus. The voltage levels in

table 6 are for when port A supply voltage (VCCA) is between 3 and 3.6 V and port B (VCCB) is

between 4.5 and 5.5 V.

Table 6: Minimum and maximum voltage levels for SN74LVC1T45 where, VCCA = 3-.3.6V and VCCB = 4.5 - 5.5 V

 Port A connected to

RPi data pin. (RPi logic

HIGH voltage is: 3.3 V)

Port B connected to SDI-

12 bus. (Max Logic HIGH

SDI-12 voltage is: 5.5V)

Min Max Min Max

VIH 2 V 5.5 V 3.15 V 5.5 V

VIL 0 V 0.8 V 0 V 1.65 V

VOH

(IOH = -24 mA)

2.4 V 3.3 V 4.2 V 5.5 V

VOL

(IOH = 24 mA)

0 V 0.55 V 0 V 0.55 V

Chapter 3: Hardware Implementation 38

3.2.2 74XX240 Series Chip

The 74XX240 chips are an octal buffer and line driver with 3-state outputs available in a PDIP-

20 package. Figure 14 shows a function block diagram. Texas Instruments (2003) states; ‘the

74HCT240 devices are organized as two 4-bit buffers/drivers with separate output-enable

(𝑂𝐸̅̅ ̅̅) inputs. When 𝑂𝐸̅̅ ̅̅ is low, the SN74HCT240 passes inverted data from the A inputs to the Y

outputs’. When 𝑂𝐸̅̅ ̅̅ is high, the outputs are in the high-impedance state.

Figure 14 Functional block diagram for a SN74HCT240 (Texas Instruments 2015)

Figure 15 shows a simplified circuit diagram to implement the 74XX240 series chip. Additional

components are required if this chip is used.

Figure 15 Simplified circuit schematic

The state of four GPIO pins will allow exchanges on the SDI12 bus. Table 7 shows minimum

and maximum expected voltage levels for the separate 4 bit buffer/drivers. The SN74HCT240

input are TTL compatible and the output is CMOS compatible. The red entries are

incompatible with either the Raspberry Pi or SDI-12 voltage levels. Other 74XX240 series chips

are available with both input and outputs that are either CMOS or TTL compatible.

Chapter 3: Hardware Implementation 39

Table 7: Minimum and maximum voltage levels for SN74HCT240 – referenced to figure 15

 1Y1 2A1 1A1 2Y1

 Min Max Min Max Min Max Min Max

VIH - - 2 V 3.3 V 2 V 3.3 V - -

VIL - - 0 V 0.8 V 0 V 0.8 V - -

VOH

(IOH =-6 mA)

3.84 V 5 V - - - - 3.84 V 5 V

VOL

(IOL =6 mA)

0 V 0.33 V - - - - 0 V 0.33 V

3.3 Schematic of Prototype Implementation

As the Texas Instruments SN74HCT240 is available in a PDIP package it chosen for the

prototype implementation over the alternatives including the SN74LVC1T45. The schematic

given in figure 16 was drawn using XCircuit. The voltage divider consisting of a 66 kΩ and 130

kΩ resistor may not be a suitable solution for lowering the voltage level for the input 1A1 of

the SN74HCT240 (TTL compatible input) and will need to be tested. The voltage divider may

not be suitable due to the low current through the 68 kΩ resistor making the input to 1A1

more susceptible to noise. The minimum current through the 68 kΩ resistor for a logic HIGH

state is:

 𝐼68𝑘(𝑚𝑖𝑛) ~
𝑉𝑏𝑢𝑠(𝑚𝑖𝑛)

𝑅1 + 𝑅2
 =

3.5

198k
 = 17μA (3. 1)

I68k(min) given in equation 3.1 is small but acceptable. The input voltage level at 1A1 for the

maximum logic HIGH state voltage on the SDI-12 bus is given in 3.2. V1A1(max) is just less than

the 3.3 V maximum threshold for the SN74HCT240.

 𝑉1𝐴1(max) =
𝑉𝑏𝑢𝑠(𝑚𝑎𝑥) 𝑅1

𝑅1 + 𝑅2
 =

5 × 130k

130k + 68k
 = 3.28 V (3. 2)

The lowest incoming SDI-12 voltage level that will be recognised as a logic HIGH is:

 𝑉𝑏𝑢𝑠(𝑚𝑖𝑛) =
𝑉1𝐴1(min) (𝑅1 + 𝑅2)

𝑅1
 =

2 × 198k

130k
 = 3.0 V (3. 3)

Chapter 3: Hardware Implementation 40

Where V1A1(min) is the minimum input voltage for the SN74HCT240 (see: table 7). Any voltage

level on the SDI-12 bus above 3 volts (equation 3.3) will be recognised as a logic HIGH. Future

designs may not use the SN74HC240 series chip but if they do a comparator with

hysteresis will be used to lower the voltage instead of a voltage divider. An

implementation using a comparator without hysteresis is shown in figure 17.

Figure 16 Schematic of prototype implementation

Figure 17 Schematic with comparator

Chapter 3: Hardware Implementation 41

3.4 Implementing and Testing Hardware

The hardware is assembled on a breadboard and tested using an oscilloscope. Figure 18 gives

a picture of the prototype implementation.

Figure 18 Picture of prototype implementation

A test program written in C toggles BCM 17 (TXDATAPIN - see figure 16) of the assembled

prototype shown in figure 18 at 600 Hz (no sensors connected). BCM 22 (RXDATAPIN) is set as

an input and BCM 27 (RXENABLE) and BCM 4 (TXENABLE) are setup in output mode with logic

LOW. When output enable pin of the SN74HCT240 is presented a logic LOW the output is the

inverse of the input, when presented a logic HIGH the output is in a high impedance state.

Figure 19 gives a screen shot from the oscilloscope where the yellow waveform is the

TXDATAPIN voltage (2A1) and the blue waveform is the RXDATAPIN voltage. Figure 19 shows

that logic HIGH of the RXDATAPIN is about 3 volts and so will be read as a logic HIGH by the

Raspberry Pi.

Chapter 3: Hardware Implementation 42

Figure 19 Waveform of TXDATAPIN voltage (yellow) and RXDATAPIN (blue) (see figure 16)

Figure 20 shows two waveforms, the yellow waveform is the TXDATAPIN voltage and the blue

waveform is voltage at 2Y1 (see figure 16). Figure 20 shows that logic HIGH of the SDI-12 bus is

driven at approximately 5 volts.

Figure 20 Waveform of TXDATAPIN voltage (yellow) and voltage at 2Y1 (blue) (see figure 16)

Figure 21 shows two waveforms, the yellow waveform is the TXDATAPIN voltage and the blue

waveform is voltage at 1A1 (see figure 16). Figure 21 shows that the logic HIGH from the SDI-

12 bus (5V) is received as 3.2V and compatible with the SN74HCT240 input voltage thresholds.

Figure 21 Waveform of TXDATAPIN voltage (yellow) and voltage at 1A1 (blue) (see figure 16)

Chapter 4: Software Development 43

Chapter 4: Software Development

The software is written in C++ using the Geany development environment for Linux which is

installed on the Raspberry Pi. An Arduino SDI12 C++ library written by Kevin Smith has been

modified for use with a Raspberry Pi. Before the main SDI-12 logger program is written all the

functions of the modified Arduino SDI-12 library are tested extensively to ensure the functions

works as intended. The first section of this chapter describes the Arduino SDI-12 library

implementation. The second section of this chapter outlines the configuration file format. The

third section gives a description of the SDI-12 logger program including the measurement

handling and device configuration functions.

4.1 The Arduino SDI-12 Library Implementation

The SDI-12 library was originally authored by Kevin M. Smith for an Arduino based logger. The

Arduino SDI-12 library has been modified for use in the Raspberry Pi based logger. The

modified C++ code is listed in Appendix C and acknowledges the author as either James

Coppock or Kevin Smith. The first section describes modifications to the SDI12 library. The next

five sections gives a description of the most important member functions of the SDI12 C++

library.

4.1.1 Description of Modifications to SDI12.cpp

New SDI12 library member functions have been written and some original ones modified. New

member functions are listed below with a brief description.

CRCheck() – public function to check the second last character in the buffer is a carriage return

<CR> without consuming (without regressing the index to the buffer tail).

LFCheck() – public function to check the last character in the buffer is a line feed <LF> without

consuming (without regressing the index to the buffer tail).

overflowStatus() - returns the overflow status.

parityErrorStatus() - returns parity error status. The original code did not check for parity error

on the incoming transmission. If parity is incorrect for a received frame the parityError status

is set and the interrupt is disabled.

Chapter 4: Software Development 44

Modifications were done to four member functions. A brief description of the function and

modification is given below.

flush() – original function clears the buffers contents by setting the index for both buffer head

and tail back to zero. Modification resets the status of the buffer overflow status and parity

error status to ‘false’.

setState() - the original function defines the state of one data pin and enables or disables the

interrupts. Modifications to this function define the state of four pins with additional changes

made to the enabling and disabling of interrupts. A global state variable is also added to each

state which is set to ‘false’ in all but the LISTENING state. This variable is checked by the

handleInterrupt() function when an interrupt is triggered.

receiveChar() – the original function reads the bit stream from the SDI-12 bus and enters the

ASCII character into a buffer without checking for parity error or stop bit state. The original

code skipped the stop bit however this allows an additional means of checking a frame to the

parity however this increase the number of bits and if the last bit (stop bit) only is invalid all

data is invalid. A parity check and stop bit check is added to the original code. If either a parity

error or incorrect stop bit is read by the receiveChar function the parity error status is set to

true and the state is set to DISABLED (interrupt is disabled). The delay timing is optimised by

approximating the overhead in various stages of the code so that the line states is read at the

beginning of a bit, allowing more room for error if extra delay is imposed of the process.

writeChar() – original function writes a ASCII character to the bus. A new method for

calculating parity bit was implemented.

4.1.2 Description of the setState(state) Function in the SDI12

library for Defining Five Communication States

setState(state) is a private function within the SDI12 class that sets the mode and logic state

of four Raspberry Pi pins used in SDI-12 exchanges and also enables or disables interrupts on

the RX data pin. Five ‘state’ parameters taken in a setState(state) function are

INTERRUPTENABLE, HOLDING, TRANSMITTING, LISTENING and DISABLE. The original library

defined four valid states. The original library used one single digital I/O pin of an Arduino. The

Raspberry Pi pins are 3.3 volt and can supply 16 mA from a single pin safely (pins are not

current limited). The SDI12 exchanges are implemented using four Raspberry Pi pins

connected to the SN74HCT240 inverting tristate buffer line driver as shown in the simplified

schematic in figure 22.

Chapter 4: Software Development 45

Figure 22 Simplified schematic

The five ‘state’ parameters in the setState(state) function are described below.

The INTERRUPTENABLE state enables the falling edge interrupt on the RX data pin. This is a

new state not part of the original library. The original library enabled and disabled the

interrupts when changing between the DISABLED, HOLDING, TRANSMITTING, and LISTENING

states however this was not possible using the wiringPi library for enabling and disabling

interrupts. The wiringPi interrupt function was found to have an unacceptable overhead when

going from disabled interrupt in TRANSMITTING state to an enabled interrupt in the LISTENING

state. Instead of enabling and disabling interrupt in the various states the interrupt is enabled

once when command is sent to begin exchanges and then disabled after all exchanges have

finished. In all but LISTENING state the RX data pin is isolated from the SDI-12 bus by driving

the 1𝑂𝐸̅̅ ̅̅ pin of the SN74HCT240 HIGH so that 1Y1 is in a high impedance state. When the RX

data pin is isolated from the SDI-12 bus the interrupt will not be triggered.

The HOLDING state is set before sending a command on the SDI-12 bus or after a failed

communication attempt due to noise. A HOLDING state holds the line to logic LOW so all

sensors are in a quiescent state (ready to receive). The SDI12 standard specifies that SDI12

compatible sensor can go into a quiescent state after 100 ms of line LOW (therefore command

should be sent before 100 ms). When in the HOLDING state the RX data pin is isolated from

the SDI-12 bus. 2𝑂𝐸̅̅ ̅̅ is driven LOW so that the output 2Y1 is the inverted logic at 2A1. The TX

data pin is driven HIGH and the SDI12 data line is driven LOW.

In the TRANSMITTING state, the RX data pin is isolated from the SDI-12 bus so that the

transmission will not trigger an interrupt. 2𝑂𝐸̅̅ ̅̅ is driven LOW so that the output 2Y1 is the

inverted logic at 2A1. The TX data pin transmits the SDI-12 command 1 character at a time in

10 bit frames with a start bit, 7 data bits (inverted logic LSB first), 1 parity bit and a stop bit.

Chapter 4: Software Development 46

In the LISTENING state a response from a sensor is anticipated. When a sensor responds while

in the LISTENING state the start bit will trigger an interrupt which is handled by the interrupt

service routine. 2𝑂𝐸̅̅ ̅̅ is driven HIGH so that the output 2Y1 is in a high impedance state. 1𝑂𝐸̅̅ ̅̅

pin of the SN74HCT240 is driven LOW so that 1Y1 is the inverted input.

The DISABLED state isolates the Raspberry Pi from the SDI-12 bus by driving 2𝑂𝐸̅̅ ̅̅ and 1𝑂𝐸̅̅ ̅̅

HIGH so that 1Y1 and 2Y1 are in a high impedance state. The falling edge interrupt on the RX

data pin is disabled.

The mode and logic level of the four Raspberry Pi pins in the 5 states is summarised in table 8.

Table 8 Mode and logic level of Raspberry Pi pins

State RXDATAPIN

Mode: Input

RXENABLE

Mode: Output

TXDATPIN

Mode: Output

TXENABLE

Mode: Output

INTERRUPTENABLE Input (pullup resistor)

Enable falling interrupt

HIGH HIGH LOW

HOLDING Input (pullup resistor)

Falling interrupt enabled

HIGH HIGH LOW

TRANSMITTING Input (pullup resistor)

Falling interrupt enabled

HIGH VARYING LOW

LISTENING Input (pullup resistor)

Falling interrupt enabled

LOW Don’t Care HIGH

DISABLED Input (pullup resistor)

Disable falling interrupt

HIGH Don’t Care HIGH

In the Raspberry Pi implementation of the SDI12 library the sequence of states for each

exchange of information is;

INTERRUPTENABLE → TRANSMITTING → LISTENING → DISABLED

The command is sent in the TRANSMITTING state and a variable length response is received in

the LISTENING state. Each response is checked before sending subsequent commands as it is

expected that some commands will be resent multiple times.

Chapter 4: Software Development 47

4.1.3 Waking Up and Talking To Sensors

The sequence of public function calls inherited from the SDI12 library that complete an

exchange with an SDI-12 sensor (private SDI12 function calls excluded) are as follows;

 begin() → sendCommand(cmd) → end()

Implementation of the Raspberry Pi SDI12 library is as follows; one command is sent to the

sensor and after a predefined time period the interrupt is disabled (end() function) and the

error status of the response is checked (see section: 4.1.6 Checking for a valid response). If the

error status is true the buffer is flushed and command resent otherwise the buffer is read

before flushing and proceeding with next command. The variable length time period is

dependent on the specific command sent. Where a command sequence must be sent, a delay

between commands is determined through an initial command which queries the time delay

before subsequent commands in the sequence are sent. The inheritance diagram given in

figure 23 shows function calls between the ‘sendAndReceive()’ function (see section: 4.3.2

Generic functions) and the SDI-12 object that result in an exchange with an SDI-12 sensor. The

function names on the arrows are inherited from the object it is pointing to. The sequence of

commands shown in figure 23 will result in one command being sent to a single sensor

address. The setState function was described in the previous section (see section: 4.1.2

Description of setState function).

Figure 23 Inheritance diagram for waking up, and sending a command to a SDI-12 sensor

Chapter 4: Software Development 48

A description of four functions shown in figure 23 that result in the transmission of a

command is given.

begin() is a public function within the SDI12 class that begins the functionality of the SDI-12

object. It sets the state of pins to the INTERRUPTENABLE state which enable the falling edge

interrupt on the RX data pin.

sendCommand(string cmd) is a public function within the SDI12 class that sends out the

character of the String cmd one by one to the data line.

wakeSensors() is a private function that is called by sendCommand(). The state is set to the

TRANSMITTING state. wakeSensors() will wake the sensors on the SDI-12 bus by placing

spacing (HIGH voltage level) for a minimum of 12 milliseconds (no upper limit specified in

standard). This is followed by a marking (logic LOW) for at least 8.33 ms with an upper limit of

about 90 ms. Allowing extra time on the minimum, the break is held for 14 ms and the

marking for 10 ms. Figure 24 gives a flow chart for both the public sendCommand function and

the private wakeSensors function.

Figure 24 Flowchart for sendCommand() and wakeSensors()

Chapter 4: Software Development 49

writeChar(uint8_t out) is a private function that is called by the sendCommand function to

write characters one at a time to the data line. There are four steps to the transmission.

1 –Calculate the parity bit. The original code used a function from the parity.h library to

calculate the parity. I have used an alternate algorithm that calculates the number of 1's in the

7 data bits. The parity bit with the data bits should have an even number of ones for even

parity. The algorithm returns the even parity bit as either 0 (even number of 1's) or 1 (odd

number of 1's). The parity algorithm merges the first 4 bits with the last 4 bits of the byte

containing a 7 bit ASCII code using an XOR operation. As shown below the parity of two bits is

computed with an XOR operation.

 (0 XOR 0) -> 0

 (0 XOR 1) -> 1

 (1 XOR 0) -> 1

 1 XOR 1) -> 0

Now with four bits there are 16 possible values for the even parity bit. The hexadecimal

number 6996 (0110 1001 1001 0110 binary) represents the correct even parity for the 16

possible 4 bit combinations. Shifting 0x6996 to the right by the number represented by the

four bits leaves the relevant parity bit in bit position 0. A zero in bit position 0 means there is

an even number of ones and a 1 means an odd number of ones in the ASCII code.

2 – Send the start bit and delay 820 μs. The start bit is a 1 on the SDI12 data line. Writing a

LOW to the TX data pin will cause the SN74HCT240 to output a HIGH. A LOW is written to the

TX data pin for 820 μs.

3 –Send the payload (7 data bits of the ASCII character plus the parity bit) least significant bit

first and inverse logic. This is accomplished using a bitwise AND operations on a moving mask

(00000001) --> (00000010) --> (00000100)... and so on. An if statement determines whether a

1 or 0 should be sent.

 if(out & mask){
 digitalWrite(_txDataPin, HIGH);
 }
 else{

 digitalWrite(_txDataPin, LOW); }
4 – Send the stop bit (‘0’) by writing the TXDATAPIN HIGH for 820 μs.

Figure 25 gives a flow chart for the writeChar function.

Chapter 4: Software Development 50

Figure 25 Flowchart representation of the writeChar function

4.1.4 Interrupt Service Routine to Read Data into the Buffer

This section gives an overview of the Raspberry Pi interrupts and functions from the SDI-12

library that reads asynchronous data in 10 bit frames from the data line, checks the parity and

enters valid data into a buffer.

Overview of Raspberry Pi Interrupts

The Raspberry Pi kernel provides a rising or falling edge interrupt on the GPIO. The interrupt

service runs as a thread separate to the main program. Two wiringPi C/C++ library interrupt

functions are assessed. The difference in the two interrupt functions is, one stalls and waits for

Chapter 4: Software Development 51

a rising, falling or both rising and falling edge to trigger the interrupt and the other allows the

main program to continue until the edge transition triggers an interrupt service routine (ISR)

which is any function.

For both functions the pin interrupt must be enabled or disabled. The pin interrupt is enabled

either through the GPIO Utility or alternatively with the wiringPiISR() function described

below. An application named the ‘GPIO Utility’ created by Gordon Henderson (Henderson

2015) is used in testing the wiringPi C/C++ functions from the terminal command prompt. The

wiringPi C/C++ library of functions provide a simple approach to controlling of the GPIO pins

such as reading the digital voltage on a pin setup as an input or changing the mode of a GPIO

pin to input or output. With the GPIO Utility installed the command entered into the Linux

terminal command prompt to enable or disable the interrupt on a GPIO pin (export pin as an

interrupt) is:

 gpio edge <pin> rising/falling/both/none

The edge detection can be set for a rising edge, falling edge, or both. A program can send a

command to the terminal command prompt through a ‘system call’. A system calls is a

function in the C library stdlib.h. A system call example which will disable the interrupt

through the terminal command prompt is;

 system ("gpio edge 17 none");

The two wiringPi C/C++ library interrupt functions are described below.

1) waitForInterrupt(int pin, int timeOut) - when called, the program will stall and wait for

the interrupt on the GPIO pin taken as one of the parameters. The timeOut parameter

gives a time in milliseconds before the program resumes if no interrupt occurs. An integer

value -1 for the timeOut parameter will cause the program to wait for ever. The pin must

be initialised for interrupts before calling the waitForInterrupt function. The pin can be

initialised using the system call method. If the pin interrupt is not initialised (exported) the

program will exit when waitForInterrupt() function is called with error. If the pin interrupt

is initialised but disabled (edge = 'none') the program will stall when the waitForInterrupt

function is called and will only continue after a specified timeout period (parameter

timeOut).

Chapter 4: Software Development 52

2) wiringPiISR(int pin, int edgeType, void(*function)(void)) - registers a function to receive

interrupts. wiringPiISR() exports the pin as an input with either a rising, falling or both by

specifying edgeType parameter as either INT_EDGE_FALLING, INT_EDGE_RISING,

INT_EDGE_BOTH or INT_EDGE_SETUP. There is no disabling of the interrupt routine with

this function. To disable the ISR function on the exported pin a system call is used i.e.

system ("gpio edge pin none").

When an interrupt is triggered, it is cleared in the register before calling the function and

so when a subsequent interrupt fires it will be captured. The wiringPiISR() function cannot

be called on any one pin more than once; doing so will result in the ISR function being

called multiple times when an interrupt is triggered. When wiringPiISR is called, the pin will

be set up as an input and the pullup and pulldown resistor state will remain. There is a bug

in the wiringPiISR function where the first interrupt after calling wiringPiISR (exporting a

pin) will cause the *function to be called twice.

wiringPiISR is the better choice and allows more flexibility in programming but has to be

enabled and disabled using the system call approach.

Enabling and disabling the interrupt

Testing of the system call method of enabling and disabling an interrupt find the system call

takes about 10 ms. The overhead is unacceptably long so the interrupt is enabled once at the

beginning of a send command and disabled after receiving the response as opposed to

disabling when transmitting and enabling when listening. This is possible because the pin of

the SN74HCT240 which is connected to the RXDATAPIN can be put into a high impedance state

isolating it from the bus when not in LISTENING state.

receiveChar()

The inheritance diagram given in figure 26 shows the sequence of function calls after a start

bit triggers an interrupt. The interrupt service routine (handleInterrupt) passes responsibility

for the interrupt to the receiveChar function which reads data into the buffer. The function

names on the arrows belongs to the object it is pointing to. In this section a description of the

receiveChar function is given.

Chapter 4: Software Development 53

Figure 26 Inheritance diagram for reading data into the buffer

handleInterrupt() is the function registered by the wiringPiISR function as the interrupt service

routine for RXDATAPIN. handleInterrupt() is a static member function of the SDI-12 class

library. The function is initialised in the main program using the wiringPi function wiringPiISR().

handleInterrupt() will pass of responsibility for interrupt to the receiveChar function.

handleInterrupt is declared as the interrupt service routine vector with the following function

call:

 wiringPiISR (RXDATAPIN, INT_EDGE_FALLING, SDI12∷handleInterrupt);

receiveChar() is a private function that is called by the handleInterrupt function. receiveChar()

reads asynchronous data in 10 bit frames into the buffer. This takes place over a series of steps

outlined below.

1. Check the start bit is a logic LOW. There may have been a false trigger of the interrupt

2. Declare a variable for the incoming char as an unsigned integer of 8 bit (uint8_t)

3. Delay the a small delay period (800 μs)

4. Read the 7 data bits plus the parity bit

5. Check the stop – if stop bit LOW set _parityError = true and disable interrupt

6. Check for parity error – if parity error set _parityError = true and disable interrupt

7. Enter 7 bit ASCII character into buffer

The original receiveChar function did not include a parity error check or stop bit check. A

wiringPi C/C++ library function is used to read whether or not the line state is HIGH or LOW.

Chapter 4: Software Development 54

The function is; int digitalRead(int pin). Figure 27 gives a flow chart for the receiveChar

function.

Figure 27 Flowchart representation of the receiveChar function

4.1.5 Checking for a Valid Response and Reading from the Buffer

Figure 28 below shows public functions inherited from the SDI12 class that are used to check

the validity of a sensor response read into the and read contents out of the buffer.

Chapter 4: Software Development 55

Figure 28 SDI12 functions for checking a valid response and reading from the buffer

Available() reveals the number of characters in the buffer and can be used to make a decision

about the data. For some commands the exact number of characters in the response is known

while others are variable length responses. Variable length response will have a minimum

response length. If the number of characters is less than that expected the buffer is flushed

and command resent otherwise further checks made or data read from buffer one character

at a time using read().

parityError() and overflowStatus() reveals the status of the _parityError and _bufferOverflow.

If the error status is true the buffer is flushed and command resent otherwise further checks

made or data read from buffer one character at a time using read().

LFCheck() and CRCheck() check the last two character in the buffer are a carriage return and

line feed. If either the line feed or carriage return is not available the buffer is flushed and

command resent otherwise further checks made or data read from buffer one character at a

time using read().

Chapter 4: Software Development 56

4.2 Configuration File

4.2.1 Conceptual Design

In order for the logger to perform its main function (to retrieve one or more parameter values

from each sensor connected to the SDI-12 bus and store values to a data file) without having

to re-enter the logging session parameters at the start of a session, key parameters are stored

to a configuration file “loggerconfiguration.txt” which can either be read or modified manually

or through the configuration interface. Each parameter returned by a multi-parameter sensor

is assigned a channel number. Channel numbers are sequential integers starting with channel

one. The configuration file is modified when a new sensor is added or removed from the SDI-

12 bus, the mapping of channel numbers to configured sensor parameters is changed, and the

measurement interval is changed. The configuration file is read from before initiating a

measurement sequence to determine configured sensor addresses and which channel number

the parameter values belongs to. The configuration file also holds the channel names which

are appended to the data file at the start of a logging session.

To modify a specific line of the configuration file with software the contents of the file before

the line to be modified will be re-written to a new file then the modified line(s) appended to

the bottom of the new file, after which any remaining lines from the old data file that are

needed should be appended to the bottom of the new file. The information in the

configuration file will be organised into separate entries with markers for each section. When

line(s) of text within a section is modified the whole section will be re-written.

The first key consideration in the configuration file format development is, how a parameter

from a specific sensor address is mapped with a logging channel so that it can be used.

Ultimately, any parameter from any specific sensor address can be assigned with any channel

number from one to the total number of configured channels. Further consideration to the

format is given to how the sensors are to be added and configured. As SDI-12 devices do not

return extensive information about themselves in response to the identification command a

user will have to manually configure the SDI-12 channel by giving it a name, unit, and

specifying which result from that sensor corresponds to it. A user may add a sensor to the

logger by carefully modifying the configuration file manually. Alternatively a sensor may be

added using the HMI. Two approaches to adding a sensor through the HMI are considered and

outlined below. In both approaches it is assumed the address of the sensor is known and

Chapter 4: Software Development 57

unique. If the address is not known it could be found using the “address query” command

before configuring it (only one sensor to be connect to the bus when issuing the “address

query” command). If the address is not unique it can be changed using the “change address”

command.

HMI approach 1 to adding an SDI-12 sensor. In this approach the SDI-12 sensor does not need

to be connected to the logger. A HMI would be developed that asks the user to enter the

address of the SDI-12 sensor to be configured and the name and unit of each parameter in the

order that the parameters are returned. The information needed would be available from the

sensor datasheet.

HMI approach 2 to adding an SDI-12 sensor. In this approach the SDI-12 sensor not yet

configured is connected to the SDI-12 port. A database of information about SDI-12 sensors is

kept locally on the Raspberry Pi which can easily be updated by a user for any new sensor. The

database holds details about a sensor such as the name and unit for each parameter in the

order that the parameters are returned by the sensor. The software will send a “send

identification” command to the SDI-12 sensor not yet configured. The “send identification”

command returns the sensor model number, vendor code, and the SDI-12 specification

version number that it is compatible with. The software parses the database of SDI-12 sensors

file for the sensor model and vendor ID and automatically configures the sensor by assigning

each parameter a channel number.

Approach 2 is preferred as it is the easiest way to quickly add a new sensor from the user’s

perspective. Approach 2 is fully specified in the next section (section 4.2.2). When a sensor is

added the channel numbers are assigned automatically where the first parameter returned by

the sensor being added will take the next sequential channel number (next sequential channel

number = the total number of configured channels + 1), if a second parameter is returned by

the sensor it takes the next sequential number and so on. Therefore the channel numbers are

assigned to a particular sensor parameter by the order that the sensor is added and by the

order the result is returned. All parameters returned by a sensor address must be assigned a

logger channel. Future implementation will allow reordering the channels and removing any

channels from the configured list. To change the order of the channels the configuration file

would need to be deleted and sensors added in the correct order.

Chapter 4: Software Development 58

4.2.2 Specification for the Database of SDI-12 Sensors

The SDI-12 sensor database holds key information on the sensor as specified below and is

considered simple enough for a user to update with new sensors. A send identification

command (<a>I!) can be sent to the sensor address which will return:

 up to an 8 character company name i.e. DECAGON

 up to a 6 character sensor model number i.e. GS3

The database will be parsed for the sensor model key with a value field which holds the

number of parameters returned by the sensor. A unique key can be formed for each

parameter with value that specifies the name and unit of the parameter.

; *********************** SDI-12 sensor database *****************************

; Key values that can be extracted from the database includes;

; 1) Number of parameter returned by the sensor

; 2) The name and unit of the parameters returned in correct order as

; returned by the sensor

;

; *************** Description of the database structure **********************

;

; For each SDI-12 sensor added to the database there will be one line with

; structure defined by SensorInfEntry 1 and at least one line with structure

; defined by SensorInfEntry 2 below.

;

; SensorInfEntry 1 – consists of a single line for each new sensor

; SensorInfEntry 1: <x1> = <y1>

; 'x1' is the sensor model, it is up to 6 ASCII character, and is case

; sensitive e.g. 'GS3'

; 'y1' is the number of parameters returned by the sensor.

; KEY 'x1' is checked by addChannels() function.

; VALUE 'y1' is read by addChannels() function.

;

; SensorInfEntry 2 – consists of a single line entry for each parameter

; returned by the sensor.

; SensorInfEntry 2: <x2>_N<z2> = <y2> (<w2>)

; 'x2' is the sensor 'model'.

; 'z2' is the order of parameter returned from sensor where 1 = first

; parameter returned.

; 'y2' is the name of the parameter returned.

; 'w2' is the units of the parameter returned.

; VALUES is read by addChannels() function.

;

; The database currently has a GS3 and 5TM sensors entered as an example of

; the correct entry structure. The GS3 is a Decagon Devices sensor for

; measuring soil moisture, temperature, and electrical conductivity.

; The 5TM is Decagon Devices sensor for measuring soil moisture & temperature.

; ***************************** Database Entries ****************************

GS3 = 3

GS3_N1 = Dielectric (e)

GS3_N2 = Temperature (deg.C)

GS3_N3 = Electrical Conductivity (uS/cm)

5TM = 2

5TM_N1 = Dielectric (e)

5TM_N2 = Soil Temperature (deg.C)

Chapter 4: Software Development 59

4.2.3 Specification for the Configuration File

The information in the configuration file is organised into sections with entries of a specific

category identified with markers at the start and end of the section so that the all entries

within the section maybe modified when changes are made to the channel configuration.

There are 8 configuration file sections with entries that allow adding SDI-12 sensors and

logging. The configuration file as presented below is configured with 3 SDI-12 sensors. The

three SDI-12 sensors that have been configured to the logger are 2x GS3 and 1x 5TM. Certain

entries exist for purpose of defining unique keys in other sections of the configuration file.

; ************************* Configuration File *******************************

; This is the logger config file that is written to when a new sensor is added

; or removed and read from before initiating a measurement. There are 8 unique

; entries in the config file that specify the logger configuration.

; An entry of the form: E<x>=:

; is a ConfigFileEntry marker that marks the beginning of a new entry type.

; An entry of the form: E<x>=::

; is a ConfigFileEntry marker that marks the end of a new entry type.

; When a sensor is added or removed from the config file using the logger

; configuration menu information will be added, modified or removed within the

; section marker (entry category). 'x' is an integer from 1 to 8 that

; specifies the entry type. Note: the ';' character represents the start of a

; comment. It is placed at the beginning of a line when no key = value

; structure is in place i.e. a line with only a comment. The general structure

; is

; key = value ; comment

; Each entry is described in detail below.

; ConfigFileEntry 1 - is a single line entry.

; ConfigFileEntry 1: ChanConfigChange = <y1>

; 'y1' is equal to yes or no. yes means that a change has occurred in the

; logger configuration since the last logging session. This will mean

; the channel names will be appended to the bottomof the .csv file and the

; value changed from 'yes' to 'no'.

; KEY 'ChanConfigChang' is checked in measurementHandler()

; VALUE 'y1' is checked in measurementHandler() if 'yes' new channel names are

; written at the bottom of the data file and the value 'y1' is changed to 'no'

; VALUE 'y1' is assigned 'yes' in addChannels() after changing channel config.

E1=: ; Start section 1

ChanConfigChange=no

E1=:: ; End section 1

; ConfigFileEntry 2 - is a single line entry.

; ConfigFileEntry 2: ConfiguredAddresses = <y2>

; 'y2' is an integer representing the number of sensors with unique addresses

; that have been configured.

; VALUE 'y2' is checked in takeMeasurement()

E2=: ; Start section 2

ConfiguredAddresses=3

E2=:: ; End section 2

Chapter 4: Software Development 60

; ConfigFileEntry 3 - is a single line entry.

; ConfigFileEntry 3: MeasurementInt = <y3>

; 'y3' is an integer value equal to the measurement interval (in minutes).

; Valid 'y3' values are 2, 5, 10 or 20.

; VALUE 'y3' is checked in measurementDelay()

E3=: ; Start section 3

MeasurementInt=2

E3=:: ; End section 3

; ConfigFileEntry 4 - is a single line entry.

; ConfigFileEntry 4: NoOfConfigChannels = <y4>

; 'y4' is an integer value that is equal to the number of configured channels.

; VALUE 'y4' is checked in addChannels() function

; VALUE 'y4' is checked in measurementHandler() function

E4=: ; Start section 4

NoOfConfigChannels=8

E4=:: ; End section 4

; ConfigFileEntry 5 - exists for each new sensor that is added to the logger.

; ConfigFileEntry 5: a<x5> = <y5>

; 'x5' is an integer starting at 1 (assigned to the first sensor added

; to the configuration list) up to the value in key "ConfiguredAddresses".

; 'y5' is the address of the first sensor added. The next entry will be for

; the second sensor added and so on.

; VALUES 'y5' are checked in takeMeasurement()

E5=: ; Start section 5

a1 = 6

a2 = A

a3 = 8

E5=:: ; End section 5

; ConfigFileEntry 6 - exists for each new sensor that is added to the logger.

; ConfigFileEntry 6: add<x6> = <y6>

; 'x6' is the sensor address "0 - 9", "a to 'z' or 'A to 'Z'.

; 'y6' is the number of parameters returned from that address.

; KEY 'x6' is checked by checkAddress() function.

E6=: ; Start section 6

add6 = 3

addA = 2

add8 = 3

E6=:: ; End section 6

; ConfigFileEntry 7 - exists for each parameter returned for each address.

; ConfigFileEntry: add<x7>P<z7> = <y7>

; 'x7' is the sensor address "0 - 9", "a to 'z' or 'A to 'Z'.

; 'z7' is the parameter return order (first result returned = 1, second = 2,

and so on)

; 'y7' is the assigned channel for result (first result returned = next

available channel)

E7=: ; Start section 7

add6P1 = 1

add6P2 = 2

add6P3 = 3

addAP1 = 4

addAP2 = 5

add8P1 = 6

add8P2 = 7

add8P3 = 8

E7=:: ; End section 7

Chapter 4: Software Development 61

; ConfigFileEntry 8 - exists for each channel number. The unique key holds a

; value with sensor address, channel name and unit. This entry specifies a

; channel heading in the datafile. Note the address is stored in front of the

; name and unit in to identify so that datafile results belong to which can be

; linked to a specific sensor.

; ConfigFileEntry: CH<x8>n = <z8>_<y8> (<w8>)

; 'x8' is the channel number

; 'z8' is the address of the sensor.

; 'y8' is the name of the channel parameter

; 'w8' is the unit of the channel parameter

; VALUE is read by dataFileHeading().

E8=: ; Start section 8

CH1n = 6_Dielectric (e)

CH2n = 6_Temperature (Deg.C)

CH3n = 6_Electrical Conductivity (uS/cm)

CH4n = A_Dielectric (e)

CH5n = A_Soil Temperature (Deg.C)

CH6n = 8_Dielectric (e)

CH7n = 8_Temperature (Deg.C)

CH8n = 8_Electrical Conductivity (uS/cm)

E8=:: ; End section 8

4.3 SDI-12 Logger Program

The Raspberry Pi logger software consists of the main C++ source code file ‘SDI12Logger.cpp’

and three non-standard C++ libraries. The three required C++ libraries are;

 SDI12.cpp (see section 4.1, authored by Kevin Smith available at

https://github.com/StroudCenter/Arduino-SDI-12),

 Parser.cpp (authored by Sarmanu available at

http://www.dreamincode.net/forums/topic/183191-create-a-simple-

configuration-file-parser/),

 wiringPi.h (authored by Gordon Henderson available at

https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install/).

After building knowledge and understanding of the SDI-12 library the program is developed

from the bottom up. This section gives a description of the SDI12 Logger program. The

SDI12Logger.cpp program listing is given in appendix D.

4.3.1 Broad Overview of Functions Called through the HMI

The SDI12 Logger program has functions that perform measurement handling and a partially

complete set of functions that perform SDI-12 device configuration tasks. Figure 29 gives a

https://github.com/StroudCenter/Arduino-SDI-12
http://www.dreamincode.net/forums/topic/183191-create-a-simple-configuration-file-parser/
http://www.dreamincode.net/forums/topic/183191-create-a-simple-configuration-file-parser/
https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install/

Chapter 4: Software Development 62

flowchart that shows a sequence of functions called and key tasks performed. The function

names are given in green text on the connectors preceding the description of tasks. The blue

text on the connectors between blocks shows that the function call is in response to a input.

Figure 29 Overview of functions called and key tasks in SDI-12 logger program

Chapter 4: Software Development 63

4.3.2 Organisation of SDI-12 Logger Program

Functions within the SDI-12 Logger program are organised under four sections. The four

section of code are;

1) Main

2) Measurement Handling Functions

3) SDI-12 Device Configuration Functions

4) Generic Functions

Generally the set of functions in each section complete a task or set of task as initiated by a

user input. The ‘main’ section contains the main function which is the first function called after

starting the SDI-12 logger program. The ‘measurement handling’ section contains the

functions called when main menu option 3 (‘Start Logging’) is selected by the user. The ‘device

configuration’ section contains functions called when main menu option 2 (‘SDI-12 Device

Configuration’) is selected. The ‘generic’ section contains functions common to two or more

sections.

4.3.3 Main

The ‘main’ section has one function named main() described below. A flowchart of this

function is presented in figure 30.

main() - the first function called in a C/C++ program. The task of this function is to setup and

initialise the pin states, output ‘main menu’ options to the terminal command prompt and call

the generic function getInteger(). getInteger() is responsible for returning a valid user input

(see section 4.3.5: Generic functions).

Chapter 4: Software Development 64

Figure 30 Flowchart of main()

4.3.4 Measurement Handling Functions

Functions in the measurement handling section with addition to the generic ‘sendAndReceive’

function perform the task of logging. To initiate the logging session from the ‘Main’ menu

(assuming the logger has been pre-configured), user enters option 3 (‘Start Logging’). The

measurement handling functions include;

 dataHeadings()

 measurementDelay()

 takeMeasurement()

The ‘sendAndReceive’ function is called from the ‘takeMeasurement’ function twice for each

configured sensor. The first time it is called it sends the ‘start measurement’ command and

the second time it sends a ‘send data’ command. Figure 31 below gives a basic flowchart of

Chapter 4: Software Development 65

showing functions called when option three is selected from the ‘Main’ menu. The flowchart

shows the flow of external data between the functions, configuration file and data file.

Figure 31 Flowchart for SDI-12 logging (option 3 from ‘Main’ menu) and flow of external data

This section gives a detailed description of the three measurement handling functions.

Chapter 4: Software Development 66

dataFileHeadings() - a function called from main() when menu option 3 is selected. Figure 32

gives a flowchart for the ‘dataFileHeadings’ function. The sequence of key tasks performed is:

 Check if any channels are configured, if not return to main menu.

 Checks the logger configuration file to see if any channels have been added since the

last logging session. If a change has been made new channel headings are appended

to the bottom of the existing data file and configuration file subsequently updates. A

channel headings string begins with ‘Date,Time,’ and is followed by a string of comma

separated channel names. Channel names have the following structure (<address of

sensor>_<parameter name> (<parameter units>)).

Figure 32 Flowchart for dataFileHeadings()

Chapter 4: Software Development 67

measurementDelay() - a function called from dataFileHeadings(). Key tasks performed are:

 Retrieve measurement interval from configFileEntry 3. Valid measurement intervals

are 2, 5, 10, and 20 minutes.

 Call takeMeasurement() on a specific minute and second of the hour. Reference time

is hh:mm:ss = hh:00:00. E.g. if a measurement interval is every 5 minutes and logging

is started at 5:06:10 the takeMeasurement function will be called at 5:10:00 followed

by 5:15:00 and so on.

 Append a string of data to the bottom of the datafile. The first two comma separated

values are <current date> and <current time>, followed by a string of comma

separated channel values returned from takeMeasurement().

Figure 33 presented below gives a flowchart for the ‘measurementDelay’ function

Figure 33 Flowchart for measurementDelay()

Chapter 4: Software Development 68

takeMeasurement() - a function called from measurementDelay(). This function is responsible

for getting channel data from configured sensor. The sequence of key tasks performed are:

 Read the number of configured addresses from configFileEntry 2.

 LOOP 1 (outer loop) – repeats for each configured sensor address in order they are

added to configuration file.

o Find address of next sensor by creating a sequential key for configFileEntry 5 and

extract value.

o Find number of parameters returned by the sensor by creating a unique key in the

configuration file using the address of the sensor (key = add<a> where, ‘a’ is the

address).

o Create a ‘start measurement’ command string (aM!) where ‘a’ is the address of the

sensor.

o Call sendAndReceive(myCommand, delaymSec, noChars, address), where function

parameters ‘myCommand’ is the ‘start measurement’ command, delaymSec is the

minimum delay time for response based on the maximum number of characters

returned, noChars is the minimum number of characters returned (some

responses are variable in length), address is the address of sensor. The

sendAndReceive function sends the command and checks for a valid response. The

sensor response is returned to takeMeasurement from sendAndReceive() as either

valid or invalid. A valid response to command is atttn<CR><LF>, where ttt is the

time in seconds until the sensor will have measurement data ready. ‘a’ ad ‘n’ are

not used.

o If invalid response “comm error” is printed to the corresponding channels data and

program continues at LOOP 1 incrementing to next address.

o If response was valid, the delay is converted to an integer and delay time set.

o LOOP 2 (inner loop) – repeats if multiple ‘send data’ commands need to be sent to

the current sensor address to get all data.

 Create a ‘send data’ command (aDx!) where ‘a’ is the address of the sensor

and ‘x’ is a sequential number starting at 1. The response to this command is

a<values><CR><LF>. The values field is up to 35 characters and each

parameter of a multi-parameter sensor is of variable length up to a maximum

of 9 characters which includes a polarity sign. Multiple parameters values are

returned in a values field and the number of parameter values returned is

Chapter 4: Software Development 69

unknown. That is an unknown number of parameter values are returned in

each ‘send data’ command.

 The sensor response is returned to takeMeasurement from

sendAndReceive() as valid or invalid.

 If invalid response, “No Value Returned” printed to the corresponding

channels data and program continues at LOOP 1 incrementing to next

address.

 If valid response, each parameter is extracted by searching for ‘+’ or ‘-‘

polarity signs.

 If the polarity count is equal to the total number of parameter returned by

the sensor, the channel values are recorded and program continues at LOOP

1 incrementing to next address. If the polarity count is not equal to the total

number of parameter returned by the sensor, the channel values are

recorded and program continues at LOOP 2 incrementing to ‘x’ in the ‘send

data’ command.

A flowchart for the ‘takeMeasurement’ function is given in appendix E.

4.3.5 Device Configuration Functions

The most important configuration feature is an HMI for adding SDI-12 sensors to the logger

configuration. Functions presented in the device configuration section with addition to the

generic ‘sendAndReceive’ function will perform this feature. To add an SDI-12 sensor to the

logger configuration from the ‘Main’ menu, user enters option 2 (‘SDI-12 Device

Configuration’), then from the ‘Device Configuration’ menu, user enters 2(‘Add SDI-12

Device’). Functions called in add SDI-12 device include;

 deviceConfiguration()

 checkAddress()

 addChannels()

This section gives a detailed description of the three device configuration functions.

deviceConfiguration() - a function called from main() when ‘Main’ menu option 2 is selected.

The sequence of key tasks performed are:

Chapter 4: Software Development 70

 Output ‘device configuration menu’ options to the terminal command prompt.

 Call the generic getInteger() function. getInteger() is responsible for returning a valid

user input to the terminal command prompt (see section 4.3.5: Generic functions).

 If option 2 is entered (‘Add SDI-12 Device’) the generic sendAndReceive function is

called

 Create a ‘query address’ command string (?!).

 Call generic sendAndReceive(myCommand, delaymSec, noChars, address), where

function parameters ‘myCommand’ is the ‘query address’ command, delaymSec is the

minimum delay time for response with 3 characters (i.e. delaymSec = (0.833us x 10 x

3)+25 = 50 ms), noChars is the minimum number of characters returned (three

characters for ?! command), address is unknown and is passed is a fake address. The

sendAndReceive function sends the command and checks for a valid response. The

sensor response is returned to deviceConfiguration from sendAndReceive() as either

valid or invalid.

 If address is used return to ‘device configuration’ menu.

 If address is not used call checkAddress(address) to check the configuration file to see

if the sensor address is already being used by another configured sensor.

 Create a ‘send identification’ command string (aI!) where, ‘a’ is the sensor address.

 Call generic sendAndReceive(myCommand, delaymSec, noChars, address), where

function parameters ‘myCommand’ is the ‘send identification’ command, delaymSec is

the minimum delay time, noChars is the minimum number of characters returned (35

for aI! command). The sendAndReceive function sends the command and checks for a

valid response. The sensor response is returned to deviceConfiguration from

sendAndReceive() as either valid or invalid. A valid response to command is

a<CR><LF>, where ‘a’ is the address of the sensor.

 Display sensor model to command prompt and output 1. Yes or 2. No and wait for

user response.

 If sensor model is not correct return to ‘device configuration’ menu.

 If correct model is displayed call addChannels(model address) which searches the

searches the database for the sensor model and adds sensor to the configuration file.

A flowchart for this function is given in appendix E.

Chapter 4: Software Development 71

addChannels(model, address) – the fourth function called from deviceConfiguration() that

performs the main task when option 2 (‘Add SDI-12 Device’) of the ‘device configuration’

menu is selected. The function adds a new SDI-12 sensor to the configuration file taking a 6

character sensor model and a single character sensor address as parameters. The function

rewrites the logger configuration file adding or modifying lines within each section of the

configuration file. This function searches the sensor database (see section: 4.2.2 Specification

for the database of SDI-12 sensors) and extracts the parameter names and unit for each

parameter in order that they are returned. Add channels combines the address of the sensor

with the parameter names and unit ad adds it to the configuration file.

4.3.6 Generic Functions

This section gives a description of the most important generic function.

sendAndReceive(command, delay, noChars, address) – a function called to send an SDI-12

command (function parameter) to the SDI12 bus and delay for a period (function parameter)

before checking a valid response and reading from the buffer. Public functions from the SDI-12

library described in section 4.1.5 are called to check a valid response and read buffer contents.

If data is not valid the command is resent to the sensor otherwise the function returns a valid

response. A flowchart for this function is given in appendix E.

Chapter 5: Analysis and Performance 72

Chapter 5: Analysis and Performance

The first section of this chapter demonstrates a simple SDI-12 exchange captured with an

oscilloscope and through the terminal command prompt. The second section of this chapter

presents some data obtained during the testing of the logger with three sensor attached.

5.1 Analysis of SDI-12 Exchanges

In this section the SDI12Logger program is tested. The data line voltage is analysed using an

oscilloscope and the program terminal command output is presented.

5.1.1 Test Description

An address query (?!) command is sent to an SDI-12 sensor for analysis of the signal voltages

and timing at key points. The 7 bit ASCII code for the two characters in the ‘address query’

command ‘?’ and ‘!’ are provided below for reference.

? = 63 (Decimal) = 011 1111 (Binary).

! = 33 (Decimal) = 010 0001 (Binary) .

The LSB for the binary representation is given on the right side of the page. The even parity bit

is not shown but would be 0 for both. An SDI-12 sensor with address set as 6 will respond to

an address query command with 6<CR><LF>. The 7 bit ASCII code for the three characters in

the response are as follows:

 6 = 54 (Decimal) = 011 0110 (Binary).

CR = 13 (Decimal) = 000 1101 (Binary).

LF = 10 (Decimal) = 000 1010 (Binary).

The expected sequence of SDI-12 data line states during the transmission of the command is

given below.

 1 0000 0011 0 (?) → 1 0111 1011 0 (!) (5.1)

Chapter 5: Analysis and Performance 73

The first bit in the asynchronous command (first bit is the start bit of frame with ‘?’ character)

is shown on the left of the page. The start bit of a frame is shown in blue text, stop bits in red,

even parity bits in green and data bits in black. Data bits are sent using inverse logic with least

significant bit first. The expected sequence of data line states during the response is given

below.

1 1001 0011 0 (6) → 1 0100 1110 0 (CR) → 1 1010 1111 0 (LF) (5.2)

5.1.2 SDI-12 Data Line Waveform Analysis

Figure 34 shows the bus data line signal as captured with an oscilloscope. The main time scale

division is 10 ms and the voltage division is 1 volt. The command voltage is close to 4.5 V and

the response about 3.7 volts. The minimum SDI-12 data line voltage is 3.5 volts so the sensor is

performing to specification.

Figure 34 Data line waveform showing transmission of command ‘?!’ and sensor
 response 6<CR><LF>

The oscilloscope triggered on the first logic HIGH (left side of the screen). The first logic HIGH

followed by logic LOW is the wakeup sequence to wake the sensor on the bus. By the end of

the wakeup sequence (duration of 14ms + 10 ms) the sensor must be ready to receive the

command. From figure 34 the sensor response starts approximately 7.5 seconds after

command finishes with a stop bit. The maximum time as specified in the standard is 15 ms and

so the sensor is working to specification. Figure 35 shows the command waveform only which

includes two 10 bit frames, and figure 36 shows three 10 bit frames of the sensor response

Chapter 5: Analysis and Performance 74

only. The main time scale division and voltage scale for the oscilloscope in figure 35 and 36 is 1

ms and 1 V respectively. The waveforms are a match to binary sequence in 5.1 and 5.2.

Figure 35 Oscilloscope display capturing transmission of address query command (?!)

Figure 36 Oscilloscope display capturing sensor response to address query command (6<CR><LF>)

Figure 37 gives both the SDI-12 data line waveform (yellow) and the RXDATAPIN waveform

(blue) captured for the address query test. It shows both the command and response.

Figure 37 Data line waveform (yellow) and RXDATAPIN waveform (blue)

Chapter 5: Analysis and Performance 75

Figure 37 shows that at the end of the command signal the blue waveform rises and is

interpreted as the SN74HCT240 output pin connected to the RXDATAPIN (1Y1) is enabled and

so RXDATAPIN is the inverse of the input waveform. The blue line can be seen to return to

logic LOW towards the end of the oscilloscope when the state is changed from listening to

disabled. Figure 38 shows the sensor response part of the waveform presented in figure 37

only. The RXDATAPIN voltage are the inverse of the bus voltages.

Figure 38 Data line waveform (yellow) and RXDATAPIN waveform (blue) during sensor response

5.1.3 Terminal Command Prompt Analysis

During the development of the software it was necessary to track the program execution for

diagnostics purposes and analysis. Key diagnostic are printed to the terminal command

prompt. The information captured for the address query test is shown below. To perform the

test the user enters option 2 in ‘Main’ menu and option 2 in ‘Device Configuration’ menu.

Main Menu - Enter an integer from '0' to '3' and press enter.

 0. Exit Setup

 1. SDI-12 Channels (not started)

 2. SDI-12 Device Configuration (partially completed)

 3. Start Logging (working - partially complete)

please enter a valid number

2

deviceConfiguration() called

SDI-12 Device Configuration Menu

Only one SDI-12 device should be connected to the SDI-12 bus 3

Enter an integer from '0' to '2' and press enter.

 0. Return to Main Menu

Chapter 5: Analysis and Performance 76

 1. Change address of SDI-12 sensor (not started)

 2. Add SDI-12 device (partially complete)

please enter a valid number

2

sendAndReceive() called

Constructor() Called

flush() called

begin() Called

setState = INTERRUPTENABLE

String sent to SDI12 bus:?!

sendCommand() called

wakeSensors() Called

SetState = TRANSMITTING

sendCommand() Next Character out is: ?

writeChar() Next character out is: ?

sendCommand() Next Character out is: !

writeChar() Next character out is: !

SetState = LISTENING

handleInterrupt() called........................

receiveChar() called

Pin level LOW:

Pin level HIGH:

Pin level HIGH:

Pin level LOW:

Pin level HIGH:

Pin level HIGH:

Pin level LOW:

Pin level LOW:

newChar in ASCII: 6

ReceiveChar() parity of newChar (0 = even, 1 = odd): 0

handleInterrupt() called........................

receiveChar() called

invalid start bit

handleInterrupt() called........................

receiveChar() called

Pin level HIGH:

Pin level LOW:

Pin level HIGH:

Pin level HIGH:

Pin level LOW:

Pin level LOW:

Pin level LOW:

Pin level HIGH:

newChar in ASCII:

ReceiveChar() parity of newChar (0 = even, 1 = odd): 0

handleInterrupt() called........................

receiveChar() called

invalid start bit

handleInterrupt() called........................

receiveChar() called

Pin level LOW:

Pin level HIGH:

Pin level LOW:

Pin level HIGH:

Pin level LOW:

Pin level LOW:

Pin level LOW:

Pin level LOW:

newChar in ASCII:

ReceiveChar() parity of newChar (0 = even, 1 = odd): 0

Chapter 5: Analysis and Performance 77

handleInterrupt() called........................

receiveChar() called

invalid start bit

end() Called

SetState = DISABLED

available() called

Number of characters in buffer: 3

parityError() called

overflowStatus() called

LFCheck() called

CRCheck() called

sendAndReceive() valid response after: 0 resend attempts

flush() called

Destructor() called

SetState = DISABLED

deviceConfiguration() Address of sensor is: 6

checkAddress() called

checkAddress() configFileEntry6 key is: add6

Address of sensor connected is used by another configured sensor. The

address of the sensor must be changed before the sensor can be added.

SDI-12 Device Configuration Menu Options

Only one SDI-12 device should be connected to the SDI-12 bus 3

Enter an integer from '0' to '2' and press enter.

 0. Return to Main Menu

 1. Change address of SDI-12 sensor (not started)

 2. Add SDI-12 device (partially complete)

please enter a valid number:

The test where an address query command is sent to a sensor is repeated 30 times and in all

cases the correct address was returned without the program having to resend the command.

Some of the diagnostics captured (shown above) are highlighted in green for further

explanation. After the first character is successfully received from the sensor (ASCII char 6) by

the ISR function (receiveChar()), the program returns to the sendAndReceive() function where

it continues a predefined delay period. The first handleInterrupt() called is because the

wiringPiISR() function clears the interrupt register at the start of an ISR, meaning that if a

falling edges transition occurs while servicing an interrupt the interrupt is registered and a

subsequent handleInterrupt() is called immediately after finishing the routine. As the first

instance of handleInterrupt() finds an invalid start bit it is re-reading the stop bit from the

previous frame which indicates that the timing of the receiveChar() function is good. It is

preferable to read the pin state at the beginning of the RXDATAPIN bit transitions.

Chapter 5: Analysis and Performance 78

5.2 Testing of Raspberry Pi SDI12 Logger with Three

Sensor Attached

The logger is tested with three sensors including two Decagon GS3’s measuring soil moisture,

temperature, and electrical conductivity and a Decagon 5TM measuring soil moisture and

temperature. With all these parameters being logged there are 8 configured channels. The

logger was tested for 75 hours with logging interval of 5 minutes. The datafile grew to 880

lines of data over the test period. All three sensor are left sitting on a carpet surface for the

duration of the test. As the parameter measurement values are not expected to change

dramatically the errors in the datafile can easily be spotted. Channels 2, 5 and 7 (temperature

parameters returned by the 3 sensor) are plotted (figure 39). Some erroneous data specifically

very large numbers had to be removed before plotting so that the data trend can be observed.

These values appear as a zero instead. These results are obviously unacceptable.

Figure 39 Plot of temperature data from 3 SDI-12 sensor

Of the 880 lines of data entered into the datafile during the test, 63 are found to contain

erroneous entries (7%). A mix of erroneous values and diagnostic error messages are present

in the datafile. Table 9 gives a modified version of the datafile where all the good lines of data

have been removed and erroneous entries highlighted.

0

5

10

15

20

25

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

6
2

5

6
5

1

6
7

7

7
0

3

7
2

9

7
5

5

7
8

1

8
0

7

8
3

3

8
5

9

Series1 Series2 Series3

Chapter 5: Analysis and Performance 79

Table 9: Erroneous data recorded over 24 hour test period logging at 5 minute intervals

Date Time 6
Dielec-
tric
 (e)

6
Temper-
ature
(Deg.C)

6
Electrical
Conducti-
vity
(uS/cm)

A
Dielec-
tric
(e)

A Soil
Tempera-
ture
(Deg.C)

8
Dielect-
ric (e)

8
Tempera-
ture
(Deg.C)

8 Electrical
Conductivity
(uS/cm)

24/10/2015 13:35:00 1.77 15.8 1 1.12 16.5 1.53 16.9 1

24/10/2015 17:50:00 1.8 19.6 1 1.12 20.9

No
Result
Error

No Result
Error

No Result
Error

24/10/2015 20:05:00 1.81 20.6 1 1.11 21.6 1.59 214 1

24/10/2015 20:30:00

Comm.

Error

Comm.

Error

Comm.

Error

1.13 21 1.54 20.9 1

24/10/2015 21:00:00 1.71 19.4 1.12 20.6 1.56 20.5 1

24/10/2015 22:45:00 1.74 18.5 1 1.11 19.6 1.59 197 1

25/10/2015 0:25:00 1.64 169 1 1.11 17.7 1.55 17.7 1

25/10/2015 2:45:00 1.68 15.7 Q 1.11 16 1.57 16.2 1

25/10/2015 2:50:00 1.74 15.7 2 1.11 15.9 1.59 16.2 1

25/10/2015 3:05:00 1.66 15.6 1 1.1 15.7

No
Result
Error

No Result
Error

No Result
Error

25/10/2015 3:20:00 1.69 15.3 1 1.11 15.5

No
Result
Error

No Result
Error

No Result
Error

25/10/2015 3:40:00 172 15 1 1.11 15.3 1.55 15.5 1

25/10/2015 4:00:00 1.61 14.8 1.1 15 1.59 15.2 1

25/10/2015 4:20:00 1.61 14.4 1 1.11 5.2 1.58 15.1 1

25/10/2015 7:45:00 1.7 13.5 1 109 14 1.57 14 1

25/10/2015 8:40:00 1.66 14.1 1 1.1 14.6

No
Result
Error

No Result
Error

No Result
Error

25/10/2015 12:05:00

Corrupt
value
Error

Corrupt
value
Error 1.11 17.4 1.56 16.9 1

25/10/2015 13:20:00 1.67 17.9 1 1.11 190 1.57 18.3 1

There are a range of errors captured in the data file. These errors are described below.

Corrupt value Error – this error occurs when the number of polarity signs in the values field of

the sensor response to a ‘send data’ command is not equal to the number of parameters

returned by the sensor. The sensors used in testing the logger should return all parameters in

the first ‘send data’ command. For this error to occur there must not have been a parity error

or incorrect stop bit, and the last two character <LF> and <CR> valid. The number of these

errors in all 2640 sensor queries was 11.

Comms Error – this error occurs after 10 failed attempts at receiving a valid response to the

‘start measurement’ command (7 character response expected). The error may be due to

Chapter 5: Analysis and Performance 80

hardware or due to the operating system interrupting the receiveChar() function. For this error

to occur all responses must have been invalid i.e. a parity error, incorrect stop bit or one of the

last two character <LF> and <CR> not valid.. The number of these errors in all 2640 sensor

queries was 2.

No Result Error – this error occurs after 10 failed attempts at receiving a valid response to the

‘send data’ command (between 12 and 30 characters in response expected). The error may be

due to hardware or due to the operating system interrupting the receiveChar() function. For

this error to occur all responses must have been invalid. The number of these errors in all 2640

sensor queries was 12.

One incorrect parameter – this is not a diagnostic message but a single incorrect character is

read. For this error to occur there must not have been a parity error or incorrect stop bit, and

the last two character <LF> and <CR> valid. The number of these errors in all 2640 sensor

queries was 41.

As expected the ‘no result error’ occurs more than the ‘comms error’ because the response to

‘send data’ command is longer than the ‘start measurement’ command. The fact a valid

response cannot be read after 10 resend attempts is a concern because not even the CRC can

reduce these errors. The resend attempts can be increased from 10 to 20. The precise timing

of the receiveChar() function should be optimised.

Chapter 6: Conclusions and Further Work 81

Chapter 6: Conclusions and Further

Work

6.1 Achievement of Project Objectives

Stage 1 objective - a review of environmental monitoring. It is apparent that SDI-12 is a good

choice for many data logging requirements. Setting up a network requires an SDI-12

compatible data logger, SDI-12 compatible sensors and setup of a bus. SDI-12 provides

benefits which include plug and play modularity and a growing number of SDI-12 compatible

sensors. A problem in the distributed measurement and control (DMC) industry is lack of

standardisation which is addressed by IEEE 1451. Sensor manufacturers may opt to produce

sensors that can be interfaced to IEEE 1451 compatible transducer interface module (TIM)

because of the significant market opportunity. Development of a STIM (smart transducer

interface module) for SDI-12 or any other digital or analogue sensor is a potential future

project. A sensor plus STIM system for integration into an IEEE 1451 network capable

application processor is much more complex then setting up an SDI-12 network. SDI-12 is a

good fit for many projects. Another project idea is development of a hybrid wireless SDI-12

host-to-SDI-12 bus to give full flexibility for many common application such as green houses.

The selection of a logger is likely to be influenced by whether wired or wireless sensors are

needed and on the desired or available protocol.

Stage 2 objectives - conceptual design and background information. All stage 2 objectives are

achieved. Adopting the GPIO pin approach for the SDI-12 digital interface, there is an inherent

risk of unreliable exchanges as the Raspberry Pi schedules the processes including the daemon

programs. A subset of the commands are chosen that will allow configuration of the logger

through the HMI and logging of configured sensors. This subset of commands chosen are

compatible with all SDI-12 sensors (including those based on earlier versions of the SDI-12

specification). Individual measurement commands are supported. Concurrent measurement

commands and cyclic redundancy check (CRC) commands are not supported.

Chapter 6: Conclusions and Further Work 82

As the sole software developer and no previous experience in programming the conceptual

design is a process of experimentation. The conceptual design of the software modules

requires some skills and knowledge of the programming language (C/C++) and software

structure and also some experience in modular programming would be beneficial. In

retrospect a bottom up approach would have worked, starting with the most fundamental

concept to understand. In this project, the first concept to understand in the GPIO approach is

how to write bits of a variable holding an ASCII character to the sensors and add bits to

another variable as read from the asynchronous serial data line. As this concept and other

smaller concepts were not obvious an experimental approach was needed.

Stage 3 objectives – development and test. All stage three objectives are achieved. An open

source Arduino SDI-12 library was analysed and it was determined that it could be modified

for use with the Raspberry Pi based logger. The hardware was designed and tested using an

oscilloscope. The configuration file was developed to allow configuration and data logging. The

main configuration feature allows a user to add a new SDI-12 sensors through the HMI.

6.2 Evaluation of the Logger

The aim was to create a low cost and reliable data logger that is simple to use. While the

Raspberry Pi and the SDI-12 sensors are reliable there is a high rate of bad data being recorded

to the datafile. There needs to be further work to assess the suitability of the GPIO method.

The configuration process though the HMI is straight forward for anyone with experience in

using the Raspberry Pi command line. The user will need to execute the program using the

command prompt and navigate the HMI. The Raspberry Pi logger would be appropriate in a

range of application where it can be powered continuously with about 4 watts and can be

protected from its environment. In developing the software there was no signs that the

Raspberry Pi computer was not up to the challenge of running continuously for long periods of

time.

Chapter 6: Conclusions and Further Work 83

6.3 Further Work

While the logger is functional, the rate of errors in the datafile is unacceptable. Considering an

SDI-12 sensor can return 1 to 9 parameters but say typically a sensor returns 3 parameters, the

response to a ‘send data’ command will return between 12 and 30 chars. If the received data

is invalid the command is resent to the sensor up to 10 times (until a valid response is

received). Adding a diagnostic column to the data file for each sensor where the number of

times the ‘start measurement’ command is sent to each sensor can be recorded would provide

a means of assessing the overall performance of the logger. If the ‘send data’ command is

consistently being sent around 10 times, then implementing the ‘send data’ command with a

CRC may not be an appropriate solution. If the commands are consistently being sent around

the maximum number of times, then the timing of the receiveChar() function should also be

checked and optimised. However, it is likely that the erroneous data issues could be addressed

by implementing the CRC ‘send data’ command. The CRC ‘send data’ command should be

implemented and tested. If the test is unsuccessful the UART approach should be considered.

If test is successful the basic features should be finished. Consideration may also be given to

developing a more marketable product. Further work includes:

 Finish the HMI to allow full configuration of sensors and changing channels. The HMI

needs to display the list of configured channel names.

 Develop a graphical user interface possibly using QT development environment if can

successfully install it on the Raspberry Pi.

 Leverage the network capabilities of the Raspberry Pi. Allow remote access to the

logger for setting and disabling alarms. Develop an SQL database for remote access of

data.

 Look at security applications for the logger, leveraging the video processing and

networking capabilities. A camera could be installed and accessed remotely for real-

time security to provide assess a security threat.

 Make full use of all commands and use the most appropriate command for any

particular sensor. The most appropriate command will depend on what version of the

SDI-12 specification the sensor complies with.

References 84

References

Arduino 2015, Arduino, viewed 2 March 2015, <http://www.arduino.cc/>.

Bell, C 2013, Beginning sensor networks with Arduino and Raspberry Pi, Apress, California.

Boehm, B & Turner, R 2004, ‘Balancing agility and discipline: Evaluating and integrating Agile

and Plan-driven methods’, Software Engineering, 2004. ICSE 2004. Proceedings of the 26th

International Conference on Software Engineering (ICSE’04), proceedings of a meeting held 23-

28 May, IEEE, pp.718-719.

Broadcom Corporation 2012, Broadcom BCM2835 ARM Peripherals, datasheet, Broadcom

Corporation, Cambridge, viewed 1 July 2015,

<http://www.farnell.com/datasheets/1521578.pdf>.

Brooks, FP 1987, ‘No silver bullet: Essence and accidents of software engineering’, Computer,

vol. 20, no. 4, pp. 10-19.

Decagon Devices 2015, Decagon Devices, Pullman, Washington, viewed 27 June 2015,

<http://www.decagon.com/>.

Decagon Devices n.d., 5TM integrators Guide for Serial and SDI-12 Communications, Decagon

Devices, Pullman, Washington DC, viewed 27 June 2015,

<http://manuals.decagon.com/Integration%20Guides/5TM%20Integrators%20Guide.pdf>.

Element14 2015, Element14, Sydney, NSW, viewed 20 June 2015,

<http://au.element14.com/>.

Hać, A 2003, Wireless sensor network designs, John Wiley & Sons, Chichester, West Sussex.

Henderson, G 2015, Gordon Henderson, viewed 1 July 2015,

< https://projects.drogon.net/raspberry-pi/wiringpi/ >

IEEE Standards Board 1997, IEEE standard for a smart transducer interface for sensors and

actuators – transducer to microprocessor communication protocols and transducer electronic

data sheet (TEDS) formats, IEEE std 1451.2-1997, IEEE Standards Board, New York.

IEEE Standards Board 2003, IEEE standard for a smart transducer interface for sensors and

actuators – Digital communication and transducer electronic data sheet (TEDS) formats for

distributed multidrop systems, IEEE std 1451.3-2003, IEEE Standards Board, New York.

Kumar, A, Kim, H & Hancke GP 2013, ‘Environmental monitoring systems: A review’, IEEE

Sensors Journal, vol. 13, April, pp. 1329-1339.

Lee, KB & Schneeman, RD 2000, ‘Distributed measurement and control based on the IEEE 1451

smart transducer interface standards’, IEEE Transactions on Instrumentation and

Measurement, vol. 49, no. 3, pp. 621-627.

References 85

Mackay, DJC 2008, Sustainable energy without the hot air, UIT, Cambridge.

OpenEnergyMonitor project 2015, OpenEnergyMonitor project, viewed 28 May 2015,

<http://openenergymonitor.org/emon/>.

Priva 2015, Priva, De Lier, Netherlands, viewed 28 May 2015

<http://www.privagroup.com/en>.

Raspberry Pi Foundation 2015, Raspberry Pi Foundation, United Kingdom, viewed 30 May

2015, <https://www.raspberrypi.org/>.

Raspberry Pi Foundation 2015, Raspberry Pi 2 Model B, Raspberry Pi Foundation, UK, viewed

28 May 2015, <https://www.raspberrypi.org/>.

Raspberry Pi Foundation 2015, Raspberry Pi 1 Model A+, Raspberry Pi Foundation, UK, viewed

28 May 2015, <https://www.raspberrypi.org/>.

Scheiber SF 2001, Building a successful board test strategy, 2nd edn, Newnes, Oxford.

SDI-12 Support Group 2013, SDI-12 a serial-digital interface standard for microprocessor-based

sensors version 1.3, SDI-12 specification, version 1.3, SDI-12 Support Group, Utah, viewed 20

March 2015, <http://www.sdi-12.org/index.php>.

SDI-12 Support Group 2015, SDI-12 Support Group, SDI-12 Support Group, Utah, viewed 26

June 2015 <http://www.sdi-12.org/index.php>.

Sinclair, IR 2001, Sensors and transducers, 3rd edn, Newnes, Oxford.

Texas Instruments 2014, SN74LVC1T45 single-bit dual-supply bus transceiver with configurable

voltage translation and 3-state outputs, datasheet, Texas Instruments, Dallas, Texas, viewed

24 July 2015, < http://www.ti.com/product/sn74lvc1t45 >.

Texas Instruments 2014, SN54HCT240, SN74HCT240 octal buffers and line drivers with 3-state

outputs, datasheet, Texas Instruments, Dallas, Texas, viewed 24 July 2015, <

http://www.ti.com/lit/ds/symlink/sn74hct240.pdf>.

United Nations Environmental Programme - Sustainable Buildings and Climate Initiative 2009,

Buildings and climate change summary for decision-makers,UNEP-SBCI, Paris, Viewed 31 May

2015, <http://www.unep.org/sbci/pdfs/SBCI-BCCSummary.pdf>.

Write, B & Dillon M n.d., Application of IEEE P1451 ‘smart transducer interface standard’ in

condition based maintenance, viewed 31 May 2015,

<http://www.utdallas.edu/~venky/WP/Smart%20Transducer%20interface%20std%20in%20CB

M(very%20good%20paper).pdf>.

YDOC 2015, YDOC, Almere, Netherlands, viewed 29 May 2015, <http://www.your-data-our-

care.com/>.

Appendix A: Project Specification 86

Appendix A: Project Specification

Appendix A: Project Specification 87

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project

PROJECT SPECIFICATION

FOR: JAMES MACLEAN COPPOCK

TOPIC: Development of a Raspberry Pi based, SDI-12 sensor environmental

data-logger

SUPERVISORS: Dr Leslie Bowtell

Catherine Hills

ENROLMENT: ENG 4111 – S1, 2015

ENG 4112 – S2, 2015

PROJECT AIM: Develop a Raspberry Pi based data-logger which will interface with

SDI-12 sensor used in the environmental monitoring industry.

PROGRAMME: (Issue B, 14 March 2015)

1. Research Raspberry Pi operating system, programming languages,

capabilities and I/O ports.

2. Research SDI-12 standards.

3. Design and build a hardware interface to implement the SDI-12 protocol.

Test.

4. Specify a configuration file format and data storage plan.

5. Design and code software modules for the SDI-12 protocol interface and

data logger.

6. Develop a basic HMI for the data logging system.

7. Investigate the use of FTP, SAMBA file server or Apache web server to

facilitate network access to data files.

8. Submit an academic dissertation on the research.

As time permits

9. Develop code to configure SDI-12 devices.

10. Develop a graphical user interface for the system.

11. Add the data to an SQL database to allow remote access.

Appendix B: Project Management 88

Appendix B: Project Management

Appendix B Contents

Appendix B Contents .. 88

Appendix B.1: Risk Assessment ... 89

Appendix B.2: Resource Requirements... 91

Appendix B.3: Project Timeline ... 92

Appendix B: Project Management 89

Appendix B.1: Risk Assessment

The project requires some hardware modification to an existing computer platform. The

Raspberry Pi computer is a low voltage device (5V) and therefore consumers are able to run

power cables. Typically the Pi is connected to 240 Vac through other third party devices. A low

voltage circuit failure could result in other circuits failing and risk although low, of high voltage

at the Raspberry Pi. Providing flexibility in design by allowing battery power will minimise the

risk to consumers.

Table B.1:10 Risks in the development stage of the product

Risk Identification Risk

Evaluation

Risk Control

Short circuiting components

on the Raspberry Pi

computer when prototyping

to the point of combustion

of components or heating,

with risk of burns, toxic

fume inhalation causing

physical health problems

and damage to property.

Moderate - Take precautions when using tools or test equipment

not too short components. Use appropriate test leads

i.e. small probes with small form for probing small

components (separation).

- Mount circuit board on a solid prototyping platform

(design).

- Ensure a clear work bench and area for working on

electronics.

- Ensure good circuit connections i.e. good jumper lead

connections, minimise length of jumper leeds.

- Test Pi GPIO voltages are as expected when wiring

new circuits.

- Disconnect power when not working on the platform.

- Have a fume extractor on standby.

- If smoke is observed disconnect equipment from

power and allow time for smoke to dissipate.

- Have a fire extinguisher and smoke alarm if work area

contains fire hazards.

- Work clear from flammable liquids like chemicals.

Burns to myself directly

from soldering or fire from

using a soldering iron with

risk to others and property.

Low - Use a clear work space.

- Use a fume extractor.

- Use a fire extinguisher.

- Have a source of cold water to apply to the sight of

burn.

Electric shock from using

equipment powered from

mains 240 Vac power

Low - Make sure RCD are installed in premise.

- Make sure equipment is earthed.

- Wear adequate footwear with insulated soles.

- Work on rubber or insulated mats to isolate the body

from the floor.

- Be aware of signs of wear in portable equipment,

broken leads, sparks and unusual noise.

- Have rescue action plan. Turn of power.

Appendix B: Project Management 90

Table B.2:11Risks to users of the Raspberry Pi-based SDI-12 logger

Risk Identification Risk

Evaluation

Risk Control

Mains voltage power adaptor

device failure resulting in high

voltage on Raspberry Pi circuit

board. Risk of electrocution.

Low - Consider using a plastic case. Install

protection equipment such as RCDs.

Installing and powering equipment

in field application is more

dangerous than on a work bench.

It is not easy to route cables so

that they are safe and protected. If

power cables are damaged there

will be a risk of burns, toxic fume

inhalation causing physical health

problems and damage to property.

Moderate - Only low voltage installations should be

carried out by unqualified consumer. The

customer needs to be informed of risks and

best practices (Administration).

- Low voltage power cables should be

protected (separation).

- Power supplies should be protected from its

installation environment (separation).

- Recommend purchasing battery powered

sensors and radio interfaces for longer

cabling requirements (administration).

Unintended connection of SDI-12

hardware interface may result in

component overheating to point of

fire and or heating. Fumes may not

have an odour or be visible. Risk of

burns, toxic fume inhalation

causing physical health problems

and damage to property.

Low - Consumer versions of the SDI-12 interface

hardware should physically fit to the

Raspberry Pi platform in only the intended

way (design).

- Look at how to minimise issues in software

(design).

Connecting GPIO outputs and

ground to other systems inputs

with a different ground potential

causing heating or fire. Risk of

burns, toxic fume inhalation

causing physical health problems

Low - GPIO outputs should be optically isolated

from other systems (design).

Exposed circuit components on

board is at risk of short circuit by

conducting materials that come in

contact to it resulting in faults

causing fire and heating. Risk of

burns, toxic fume inhalation

causing physical health problems

Moderate - A case designed to protect components

(design).

Appendix B: Project Management 91

Appendix B.2: Resource Requirements

The following equipment is needed for development of a prototype Raspberry Pi based, SDI-12

logger. All equipment is easily obtained from suppliers at the begging of the project.

- Raspberry Pi 2 Model B. This is the latest version of the model B which has an upgrade

in RAM size and processor speed. This will be important for developing applications on

the Raspberry Pi and running multiple processes at once. The system will be more

responsive than all previous versions of the Raspberry Pi.

- SD card for Raspberry Pi memory, HDMI computer monitor, USB keyboard, USB mouse

and USB WiFi for connecting the Raspberry Pi to the internet.

- Powered USB hub for powering USB devices connected to the Raspberry Pi.

- Prototype board to securely mount the Raspberry Pi. A single platform which includes

a bread board and space to mount the Pi will allow effective and safe prototyping.

- 2.54 mm jumper cables terminated in a male and female 2.54mm header connection.

- Serial terminal for engineering and debugging the SDI-12 implementation on the

Raspberry Pi from a Windows machine such as ‘Realterm’. ‘Minicom’ is installed on

the Raspberry Pi to verify what is received on the serial terminal.

- USB to serial cable for debugging.

- Oscilloscope, multimeter, soldering iron, wire cutters and miscellaneous electronic

components.

- SDI-12 sensors for testing.

If the Raspberry Pi was to become hard to source it would threaten the viability of the project.

A second Raspberry Pi was purchased as a backup. Both the oscilloscope and USB to serial

cable are considered required equipment for testing and debugging.

Appendix B: Project Management 92

Appendix B.3: Project Timeline

Table B.3a:12 Timeline (Semester 1)

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Starting 2
 M

ar

9
 M

ar

1
6

 M
ar

2
3

 M
ar

3
0

 M
ar

6
 A

p
r

1
3

 A
p

r

2
0

 A
p

r

2
7

 A
p

r

4
 M

ay

1
1

 M
ay

1
8

 M
ay

2
5

 M
ay

1
 J

u
n

8
 J

u
n

1
5

 J
u

n

2
2

 J
u

n

2
9

 J
u

n

6
 J

u
l

1
3

 J
u

l

Tasks

Project Allocation 11-Mar

Project Specification 19-Mar

Research

Purchase Equipment

Setup Raspberry Pi

Become Familiar with
Linux OS, and
commandline

Trial IDE's and
experiment with
programming language

Find Programming
Libraries for Raspberry
Pi, interrupts and GPIO

Preliminary Repot

Preliminary Report Due 3-Jun

Design and code SDI-12

Develop a script and
test SDI-12 sensor or
Debug and test with
RealTherm terminal

Design and build
hardware

Specify configuration
file format

Design main program

Draft Dissertation Due

Dissertation
Submission

Milestones

Equipment Obtained

Research & experiment
with programming
languages

Write test program in
C++ that controls the
GPIO

Start writing progress
report

Appendix B: Project Management 93

Table B.3b:13 Timeline (Semester 2)

Week 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Starting 2
0

 J
u

l

2
7

 J
u

l

3
 A

u
g

1
0

 A
u

g

1
7

 A
u

g

2
4

 A
u

g

3
1

 A
u

g

7
 S

ep

1
4

 S
ep

2
1

 S
ep

2
8

 S
ep

5
 O

ct

1
2

 O
ct

1
9

 O
ct

2
6

 O
ct

2
 N

o
v

9
 N

o
v

Tasks

Research

Design and code SDI-
12

Develop a script and
test SDI-12 sensor or

Design and build
hardware

Specify configuration
file format

Design main program

Draft Dissertation Due 16-Sep

Dissertation
Submission 29-Oct

Milestones

Hardware design
complete

Experiment with SDI12
library and testing

Testing logger

Writing dissertation

Appendix C: SDI12 C++ Library 94

Appendix C: SDI12 C++ Library

This appendix gives the modified Arduino SDI-12 C++ library originally authored by

Kevin Smith (available at https://github.com/StroudCenter/Arduino-SDI-12) used in

the Raspberry Pi SDI-12 logger program which is listed in appendix D. The Author of

the code and comments is acknowledge within the comments section of both the

header ‘SDI12.h’ and the source code ‘SDI12.cpp’.

Appendix C Contents

Appendix C Contents ... 94

Appendix C.1: SDI12 Library Header File (SDI12.h) ... 95

Appendix C.2: SDI12.cpp ... 97

Appendix C: SDI12 C++ Library 95

Appendix C.1: SDI12 Library Header File (SDI12.h)

/* ================================ Raspberry SDI-12 =========================== (James Coppock)

This SDI-12 library was originally authored by Kevin M. Smith for an Arduino based logger. It
has been modified by James Coppock for a Raspberry Pi based logger which according to the
attribution and licences section below is allowed. New SDI12 member functions have been written
for this Raspberry Pi implementation including:
 - CRCheck()
 - LFCheck()
 - advanceBufferHead()
 - overflowStatus()
 - parityErrorStatus()

Modifications were done to the following member functions.

- setState() - setstate() defines the state of four pins in this implementation. The
original implementation only defined the state of one data pin which
is possible because the Arduino digital pins are 5 volt which is
compatible with SDI-12.

 - receiveChar() - Added a parity check
 - writeChar() - Included an algorithm to add a parity bit.

Some of the section heading comments are the original authors and some are written by myself. I
have written the name of the author of the section heading comment in brackets at the top right
hand corner of major section heading. If the section heading comments are both my work and
Kevin’s my words and those of Kevin's are enclosed in brackets with either initials 'JMC:' or
'KMS:' at the beginning.

Where in function comments are my own or parts of the SDI12 class have been modified or new
functions included they are identified through out using my initials. Program modifications are
followed by a comment with my initial (JMC) at the beginning of the comment.

/* ================================= Arduino SDI-12 ==============================(Kevin Smith)

Arduino library for SDI-12 communications to a wide variety of environmental sensors. This
library provides a general software solution, without requiring any additional hardware.

================================= Attribution & License ================================

Copyright (C) 2013 Stroud Water Research Centre Available at
https://github.com/StroudCenter/Arduino-SDI-12

Authored initially in August 2013 by:

 Kevin M. Smith (http://ethosengineering.org)
 Inquiries: SDI12@ethosengineering.org

based on the SoftwareSerial library (formerly NewSoftSerial), authored by:
 ladyada (http://ladyada.net)
 Mikal Hart (http://www.arduiniana.org)
 Paul Stoffregen (http://www.pjrc.com)
 Garrett Mace (http://www.macetech.com)
 Brett Hagman (http://www.roguerobotics.com/)

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA

Appendix C: SDI12 C++ Library 96

#ifndef SDI12_h
#define SDI12_h
 // Required Libraries
#include <string> // Use with C++ style strings (std string)
#include <errno.h>
#include <stdlib.h> // Gives the system function for system calls. system("....");
#include <inttypes.h> // libraries for uint8_t (unsigned character 8 bits), int8_t
(Signed character 8 bits), int16_t (short int (2 bytes)), int32_t (4 bytes) int64 (long int (8
bytes))
#include <iostream> // uses cin and cout for input and output

// Include the wiringPi library Authored by Gordon Henderson. The library give some simple
functions for controlling the setting the state of the Raspberry Pi pins, writing a HIGH or LOW
to the pin or reading digital voltage.
#include <wiringPi.h>

class SDI12 {
private:
 static void setState(uint8_t state); // set the state of the SDI12 objects
 void wakeSensors(); // Used to wake up all sensors on the SDI12 bus
 void writeChar(uint8_t out); // sends a char out on the data line
 static inline void receiveChar(); // used by the ISR to grab a char from data line

public:
 SDI12(uint8_t txEnable, uint8_t txDataPin, uint8_t rxEnable, uint8_t rxDataPin); //
constructor
 ~SDI12(); // destructor
 void begin(); // enable SDI-12 object
 static void end(); // disable SDI-12 object
 void forceHold(); // sets line state to HOLDING
 void sendCommand(std::string cmd); // sends the String cmd out on the data line
 bool overflowStatus(); // (JMC: returns the overflow status)
 bool parityErrorStatus(); // (JMC: returns parity error status)
 int available(); // returns the number of bytes available in
buffer
 bool LFCheck(); // (JMC: Checks the last character in the
buffer is a <LF>)
 bool CRCheck(); // (JMC: Checks the last character in the
buffer is a <CR>)
 int peek(); // reveals next byte in buffer without
consuming)
 void flush(); // resets the circular buffer head and tail,
resets the Overflow and parity error status
 int read(); // returns next byte in the buffer (consumes)
 void advanceBufHead(int advance); // (JMC: advance the buffer head)
 static inline void handleInterrupt(); // intermediary ISR function

};

#endif

Appendix C: SDI12 C++ Library 97

Appendix C.2: SDI12.cpp

* =================================== Raspberry SDI-12 ======================= (James Coppock)

This SDI-12 library was originally authored by Kevin M. Smith for an Arduino based logger. It
has been modified by James Coppock for a Raspberry Pi based logger which according to the
attribution and licences section below is allowed. New SDI12 member functions have been written
for this Raspberry Pi implementation including:
 - CRCheck()
 - LFCheck()
 - advanceBufferHead()
 - overflowStatus()
 - parityErrorStatus()

Modifications were done to the following member functions.

- setState() - setstate defines the state of four pins in this implementation. The
original implementation only defined the state of one data pin which
is possible because the Arduino digital pins are 5 volt which is
compatible with SDI-12.

 - receiveChar() - Added a parity check
 - writeChar() - Included an algorithm to add a parity bit.

Some of the section heading comments are the original authors and some are written by myself. I
have written the name of the author of the section heading comment in brackets at the top right
hand corner of major section heading. If the section heading comments are both my work and
Kevin’s my words and those of Kevin's are enclosed in brackets with either initials 'JMC:' or
'KMS:' at the beginning.

Where in function comments are my own or parts of the SDI12 class have been modified or new
functions included they are identified through out using my initials. Program modifications are
followed by a comment with my initial (JMC) at the beginning of the comment.

*/

/*================================= Arduino SDI-12 =============================== (Kevin Smith)

Arduino library for SDI-12 communications to a wide variety of environmental sensors. This
library provides a general software solution, without requiring any additional hardware.

============================= Original Attribution & License ===================== (Kevin Smith)

Copyright (C) 2013 Stroud Water Research Centre Available at
https://github.com/StroudCenter/Arduino-SDI-12

Authored initially in August 2013 by:

 Kevin M. Smith (http://ethosengineering.org)
 Inquiries: SDI12@ethosengineering.org

based on the SoftwareSerial library (formerly NewSoftSerial), authored by:
 ladyada (http://ladyada.net)
 Mikal Hart (http://www.arduiniana.org)
 Paul Stoffregen (http://www.pjrc.com)
 Garrett Mace (http://www.macetech.com)
 Brett Hagman (http://www.roguerobotics.com/)

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA

Appendix C: SDI12 C++ Library 98

==================================== Code Organization ========================= (Kevin Smith)

0. Includes, Defines, & Variable Declarations
1. Buffer Setup
2. Data Line States, Overview of Interrupts
3. Constructor, Destructor, SDI12.begin(), and SDI12.end()
4. Waking up, and talking to, the sensors.
5. Reading from the SDI-12 object. available(), peek(), read(), flush()
6. Interrupt Service Routine (getting the data into the buffer)
*/

/* ===== 0. Includes, Defines, and Variable Declarations ======= (Kevin Smith and James Coppock)
(KMS:
 0.1 - Include the header file for this library.
 0.2 - defines the size of the buffer
 0.3 - defines value for DISABLED state
 0.4 - defines value for ENABLED state
 0.5 - defines value for DISABLED state
 0.6 - defines value for TRANSMITTING state
 0.7 - defines value for LISTENING state
)
(JMC: 0.8 - defines value for ENABLEINTERRUPT state.)

(KMS: 0.9 - Specifies the delay for transmitting bits. (JMC: 1200 Baud equates to 833us but

with system calls the actual time was measured using an oscilloscope to be
805us.)

)
(JMC: 0.10 to 0.13 are new reference variables.
 0.10 - a reference to the pin that connects to the SN74HCT240 output enable pin. This

pin puts the TX data pin on the output of the SN74HCT240 in a high impedance
state.)

 0.11 - a reference to the TX data pin. This pin is connected to an input of the
 SN74HCT240.)
 0.12 - a reference to the pin that connects to one of the SN74HCT240 output enable

pin. This pin puts the output of the SN74HCT240 connected to the RX data pin of
the Pi in a high impedance state.)

0.13 - a reference to the RX data pin. This pin is connected to an output of the
SN74HCT240.)

)
(KMS: 0.14 - holds the buffer overflow status.)
(JMC: 0.15 - a new reference variable which holds the parity error status.
)
*/

#include </home/pi/Desktop/SDI12.h> // 0.1 header file for this library
#define _BUFFER_SIZE 75 // 0.2 - max buffer size
#define DISABLED 0 // 0.3 value for DISABLED state
#define ENABLED 1 // 0.4 value for ENABLED state
#define HOLDING 2 // 0.5 value for DISABLED state
#define TRANSMITTING 3 // 0.6 value for TRANSMITTING state
#define LISTENING 4 // 0.7 value for LISTENING state
#define INTERRUPTENABLE 5 // (JMC: 0.8 value for ENABLEINTERRUPT state)
#define SPACING 805 // 0.9 bit timing in microseconds

uint8_t _txEnable; // (JMC: 0.10 reference to the pin that connects to one of

 the SN74HCT240 output enable pins)
uint8_t _txDataPin; // (JMC: 0.11 reference to the tx data pin)
uint8_t _rxEnable; // (JMC: 0.12 reference to the pin that connects to one of the
 SN74HCT240 output enable pins)
uint8_t _rxDataPin; // (JMC: 0.13 reference to the rx data pin)
bool _bufferOverflow; // 0.14 buffer overflow status
bool _parityError; // (JMC: 0.15 parity error status)

Appendix C: SDI12 C++ Library 99

/* ================================ 1. Buffer Setup ============================ (Kevin Smith)

The buffer holds the ascii characters from the SDI-12 bus. Characters are read into the buffer
when an interrupt is received on the data line. The buffer uses a circular implementation with
pointers to both the head and the tail. The circular buffer is defined with the size of the
buffer and two pointers;

- One to the start of data
- One to end of data

When a pointer reaches the end of the buffer it jumps back to the start.

1.1 - Define a maximum buffer size (in number of characters).
1.2 - Declare a character array of the specified size.
1.3 - Index to buffer head. (JMC: Buffer head is the index to first character in. The index is
 declared as uint8_t type which is an unsigned 8-bit integer, can map from 0-255.)
1.4 - Index to buffer tail. (JMC: Buffer tail is the index to 1 position advanced of the last
 character unless empty.)
*/

// See section 0.2 above. // 1.1 - max buffer size
char _rxBuffer[_BUFFER_SIZE]; // 1.2 - declare an array (buffer for incoming ascii
characters)
uint8_t _rxBufferHead = 0; // 1.3 - index of buff head
uint8_t _rxBufferTail = 0; // 1.4 - index of buff tail

/* ==================================== 2. Data Line States ================== (James Coppock)

The original library specified 4 states. The original library used 1 single digital I/O pin of
an Arduino. The Arduino pins are 5 volts and can supply 20 mA of current. The voltage of the
Arduino pin is compatible with SDI-12 voltage and 20 mA is plenty to drive at least 10 sensor.
The Raspberry Pi pins are 3.3 volt and can supply 16 mA from a single pin safely (the pins are
not current limited). The data pin(s) must be connected to some hardware to interface the
Raspberry Pi to the SDI-12 bus. The best way to do this is by having two data pins, one TX data
pin and one RX data pin and connecting to a SN74HCT240 inverting tristate buffer line driver.

All communications are initiated by the Raspberry Pi. The state of the line is set to 1 of 5
states.

 RXDATAPIN RXDATAPIN RXENABLE TXDATAPIN TXENABLE

 (BCM 22) (BCM 22) (BCM 27) (BCM 17) (BCM 4)

 Input Input Output Output Output

State Interrupt Mode LEVEL Level Level Level

 (240 1Y1) (240 1Y1) (240 1OE) (240 2A1) (240 2OE)

HOLDING Falling pulup HIGH HIGH LOW

TRANSMITTING Falling pulup HIGH Vary LOW

LISTENING Falling pulup LOW Dont Care HIGH

DISABLED Disable pulup HIGH Dont care HIGH

INTERRUPTENABLE Enable Fall Pulup HIGH HIGH LOW

* NOTE: OE HIGH means output of SN74HCT240 in high impedance state.

--| Sequencing |------------------------------------

INTERRUPTENABLE --> TRANSMITTING --> LISTENING --> TRANSMITTING --> LISTENING --> -->
DISABLED

-----------------------------------| Function Descriptions |-----------------------------------

2.1 - A private function, sets the state of 4 pins that connect to the tri state buffer and line
driver with separate output enable pins. The 5 states are given in the table above which are
HOLDING, TRANSMITTING, LISTENING, DISABLED and INTERRUPTENABLE. 4 of the five states were
defined in original code but all the code of this member function is changed. The functions used
to write a HIGH or LOW on any pin, and the interrupt enable and disable are from the wiringPi
library.

2.2 - A public function which forces a "HOLDING" state. This function is called after a failed
communication due to noise or to place line into a low impedance state before initiating
communication with a sensor.

Appendix C: SDI12 C++ Library 100

// 2.1 - sets the state of the SDI-12 object. (JMC: All setState() function code has been
modified to control SN74HCT240 using wiringPi libraries as mentioned in section 2 comments
above)
void SDI12::setState(uint8_t state){
 if(state == HOLDING){ // If HOLDING
 //std::cout << "SetState = HOLDING" << "\n";
 digitalWrite(_rxEnable, HIGH); // State of 240 output 1 in high impedance
 digitalWrite(_txDataPin, HIGH); // Set TX pin HIGH level (txDataPin = BCM17)
 digitalWrite(_txEnable, LOW); // Set State of 240 output 2 'driving' state
 return;
 }
 if(state == TRANSMITTING){ // If Transmitting
 //std::cout << "SetState = TRANSMITTING" << "\n";
 digitalWrite(_rxEnable, HIGH); // State of 240 output 1 high impedance
 digitalWrite(_txEnable, LOW); // State of 240 output 2 is driving state
 return;
 }
 if(state == LISTENING) { // If LISTENING - All interrupts enabled also set the pullup resistor
 //std::cout << "SetState = LISTENING" << "\n";
 digitalWrite(_txEnable, HIGH); // State of 240 output 2 (TX output) is driving state
 digitalWrite(_rxEnable, LOW); // State of 240 output 1 (RX input) is high impedance
 return;
 }
 if(state == DISABLED) { // If state==DISABLED. Pin interrupt disabled.
 //std::cout << "SetState = DISABLED" << "\n";
 // Only necessary to disable if using ISR routine.
 system ("gpio edge 22 none"); // Disable rising edge interrupt detection on RXDATAPIN
 digitalWrite(_rxEnable, HIGH); // State of 240 output 1 (RX input) is high impedance
 digitalWrite(_txEnable, HIGH); // State of 240 output 2 (TX output) is driving state
 return;
 }
 if(state == INTERRUPTENABLE) { // If state==INTERRUPT. Enables pin interrupt.
 //std::cout << "SetState = INTERRUPTENABLE"<< "\n";//
 pullUpDnControl(_rxDataPin, PUD_UP); // Set RX Pin with pull down resistors enabled
 system ("gpio edge 22 falling"); // Enable rising edge interrupt detection on RXDATAPIN
 pullUpDnControl(_rxDataPin, PUD_DOWN);// Triggers the first interrupt which has a bug and
triggers two. Both these need to be ignored.
 pullUpDnControl(_rxDataPin, PUD_UP);// Triggers the first interrupt which has a bug and
triggers two. Both these need to be ignored.
 delay(1);
 digitalWrite(_rxEnable, HIGH); // State of 240 output 1 in high impedance
 digitalWrite(_txDataPin, HIGH); // Set TX pin HIGH level (txDataPin = BCM17)
 digitalWrite(_txEnable, LOW); // Set State of 240 output 2 'driving' state
 return;
 }
 else { // Error message due to unexpected value.
 std::cout << "Error: SetState = unknown check script for mistake" << "\n";//
 //std::cout << state << "\n";
 std::cout << unsigned(state) << "\n";
 }
}

// 2.2 - forces a HOLDING state.
void SDI12::forceHold(){
 //std::cout << "ForceHold() called\n";
 setState(HOLDING);
}

Appendix C: SDI12 C++ Library 101

================================= 3. Constructor, Destructor, SDI12.begin(), SDI12.end(),
parityErrorStatus(), and overflowStatus()====================== (Kevin Smith and James Coppock)

(KMS: 3.1 - The constructor requires a four parameter, which are the four pins to be used for

the data line. When the constructor is called it resets the buffer overflow status
to FALSE (JMC: and resets the parity overflow status to false and assigns the pin
numbers txEnable, txDataPin, rxEnable and rxDataPin to private variables

 "_txEnable", "_txDataPin", "_rxEnable" and "_rxDataPin".)
)

(KMS: 3.2 - When the destructor is called, it's main task is to disable any interrupts that had

 been previously assigned to the pin, so that the pin will behave as expected when
 used for other purposes. This is achieved by putting the SDI-12 object in the
 DISABLED state.

 3.3 - begin() - public function called to begin the functionality of the
 SDI-12 object. It has no parameters as the SDI-12 protocol is fully
 specified (e.g. the baud rate is set).

 3.4 - end() - public function called to temporarily cease all functionality
 of the SDI-12 object. It is not as harsh as destroying the object with the
 destructor, as it will maintain the memory buffer.
)
(JMC: 3.5 - parityErrorStatur() - new public function called to return the parity error status.
)

(KMS: 3.6 - overflowStatus() - public function called to return the overflow error status
)

// 3.1 Constructor (JMC: Modified function parameters)
SDI12::SDI12(uint8_t txEnable, uint8_t txDataPin, uint8_t rxEnable, uint8_t rxDataPin) {
 //std::cout << "Constructor() Called\n";
 _rxBufferHead = _rxBufferTail = 0; // initialise buffer pointer
 _bufferOverflow = false; // initialise buffer overflow
 _parityError = false; // (JMC: initialise parity error)
 _txEnable = txEnable; // (JMC: assign pin number to private variables)
 _txDataPin = txDataPin; // (JMC: assign pin number to private variables)
 _rxEnable = rxEnable; // (JMC: assign pin number to private variables)
 _rxDataPin = rxDataPin; // (JMC: assign pin number to private variables)
}

// 3.2 Destructor
SDI12::~SDI12(){
 //std::cout << "Destructor () called\n";
 setState(DISABLED);
}

// 3.3 Begin - public function sets rising edge interrupt on RX datapin.
void SDI12::begin() {
 //std::cout << "begin() Called\n";
 setState(INTERRUPTENABLE);
}

// 3.4 End - public function
void SDI12::end() {
 //std::cout << "end() Called\n";
 SDI12::setState(DISABLED);
}

// (JMC: 3.5 - new public function returns the parity error status).
bool SDI12::parityErrorStatus(){
 //std::cout << "parityError() called\n";
 return(_parityError);
}

//3.6 - public function returns the overflow status.
bool SDI12::overflowStatus() {
 //std::cout << "overflowStatus() called\n";
 return(_bufferOverflow);
}

Appendix C: SDI12 C++ Library 102

/* ========= 4. Waking up, and talking to, the sensors. =========(Kevin Smith and James Coppock)

------------------------------------| Function Descriptions |----------------------------------

(JMC: 4.1 - wakeSensors() - original function (private) that is called by the public sendCommand

function. wakeSensors() will wake the sensors on the SDI-12 bus by placing spacing
(HIGH voltage level) for a minimum of 12 milliseconds (no upper limit specified in
standard). This is followed by a marking (logic LOW) for at least 8.33 ms (the upper
limit to marking is about 90 ms). As the SDI-12 sensors are permitted to sleep after
100 ms of marking. Allowing some extended time on the minimum, the break is held for
14.161 ms and the marking for 10 ms. The state is initially set to the transmitting
state.

)

(JMC: 4.2 - writeChar(uint8_t out) - slightly modified private function, that outputs a single

ASCII character to the SDI-12 bus. Each 10 bit frame that is sent out has 7 data
bits, (LSB first) 1 start bit, 1 parity bit (even parity), and 1 stop bit. The SDI-
12 protocol uses negative logic. An example a transmission of character 'a' is

 shown below. The binary representation of ASCII 'a' is 110 0001.

 The SDI12 line voltage for char 'a' is;
 _ _ _ _ _ _
 |s|d|d d d d|d d e f|
 | || |_ _ _ _|

 d = 7 data bits
 s = 1 start bit
 e = 1 parity bit
 f = 1 stop bit
)

There are four steps to the transmission

(JMC: 4.2.1 -The original code used an a function from the parity.h header to calculate the
 parity. I have used an alternate algorithm. The algorithm calculates the number of
 1's in the 8 bit frame with one parity bit and seven data bits. The algorithm returns
 _evenParityBit is either 0 (even number of 1's) or 1 (odd number of 1's). The frame
 should have an even number of ones for even parity.

 The code merges the first 4 bits with the last 4 bits using an XOR operation. As can
 be seen below the parity of two bits is computed with an XOR operation.
 (0 XOR 0) -> 0
 (0 XOR 1) -> 1
 (1 XOR 0) -> 1
 (1 XOR 1) -> 0
 Now with four bits we are left with 16 possible values for _evenParityBit. Shifting
 0x6996 to the right by _evenParityBit number of times leaves the relevant bit in bit
 position 0. A 0 for even and a 1 for odd parity.
)

(JMC: 4.2.2 - slightly modified code to send the start bit. The start bit is a 1 on the SDI12
 data line. The original code sent HIGH however writing a LOW to the TX data pin will
 cause the SN74HCT240 to output a HIGH, so a LOW is written to the TX data pin for 820
 us.
)
(KMS: 4.2.3 - (JMC: Slightly modified code switches the HIGH for LOW and LOW for HIGH)
 Send the payload (the 7 character bits and the parity bit) least significant bit
 first. This is accomplished bitwise AND operations on a moving mask (00000001) -->
 (00000010) --> (00000100)... and so on. This functionality makes use of the '<<='
 operator which stores the result of the bit-shift back into the left hand side.

 If the result of (out & mask) determines whether a 1 or 0 should be sent.

 if(out & mask){
 digitalWrite(_txDataPin, HIGH);
 }
 else{
 digitalWrite(_txDataPin, LOW);
 }

 4.2.4 - Slightly modified code to send the stop bit. The stop bit is always a '0', so we

Appendix C: SDI12 C++ Library 103

 simply write the dataPin HIGH for 820 microseconds.

 4.3 - sendCommand(String cmd) - original public function that sends out a String byte by
 byte the data line.
)
*/

// 4.1 - private function that wakes up the entire sensor bus.
void SDI12::wakeSensors(){
 setState(TRANSMITTING);
 digitalWrite(_txDataPin, LOW);
 delayMicroseconds(14161);
 digitalWrite(_txDataPin, HIGH);
 delayMicroseconds(10000);
}

// 4.2 - private functionp that writes a character out on the data line (JMC: function modified)
void SDI12::writeChar(uint8_t out) {
 //std::cout << "Next Character out writeChar\n";
 //std::cout << out << "\n"; // 4.2.1 - 1 byte with 7 bit ASCII character and with
even parity bit in MSB
 uint8_t _evenParityBit; // (JMC: code written to calculate the parity bit)
 _evenParityBit = out; // (JMC: code written to calculate the parity bit)
 _evenParityBit ^= out >> 4; // (JMC: code written to calculate the parity bit)
 _evenParityBit &= 0x0F; // (JMC: code written to calculate the parity bit)
 _evenParityBit = ((0x6996 >> _evenParityBit) & 1);// (JMC: code written to calculate the
parity bit)
 out |= (_evenParityBit<<7);

 digitalWrite(_txDataPin, LOW); // 4.2.2 - start bit
 delayMicroseconds(820);

 for (uint8_t mask = 0x01; mask; mask<<=1){ // 4.2.3 - send payload
 if(out & mask){
 digitalWrite(_txDataPin, HIGH);
 }
 else{
 digitalWrite(_txDataPin, LOW);
 }
 delayMicroseconds(SPACING);
 }
 digitalWrite(_txDataPin, HIGH); // 4.2.4 - stop bit
 delayMicroseconds(820);
}

// 4.3 - Public function that sends out the characters of the String cmd, one by one
void SDI12::sendCommand(std::string cmd){
 //std::cout << "sendCommand Called\n";
 wakeSensors(); // wake up sensors
 for (unsigned i = 0; i < cmd.length(); i++){
 //std::cout << "Next Character out - sendCommand() \n";
 //std::cout << cmd[i] << "\n"; // outputs variable (Note cout << (unsigned char))
 writeChar(cmd[i]); // write each characters
 }
 setState(LISTENING); // listen for reply
}

Appendix C: SDI12 C++ Library 104

/* ============= 5. Reading from the SDI-12 object. ============(Kevin Smith and James Coppock)

(KMS: 5.1 - available() - (JMC: original public function that) returns the number of characters
 available in the buffer. To understand how:
 _rxBufferTail + _BUFFER_SIZE - _rxBufferHead) % _BUFFER_SIZE;
 accomplishes this task, we will use a few examples.

 To start take the buffer below that has _BUFFER_SIZE = 10. The message "abc" has
 been wrapped around (circular buffer).

 _rxBufferTail = 1 // points to the '-' after c
 _rxBufferHead = 8 // points to 'a'

 [c] [-] [-] [-] [-] [-] [-] [-] [a] [b]

 The number of available characters is (1 + 10 - 8) % 10 = 3

The '%' or modulo operator finds the remainder of division of one number by
another. In integer arithmetic 3 / 10 = 0, but has a remainder of 3. We can only
get the remainder by using the the modulo '%'. 3 % 10 = 3. This next case
demonstrates more clearly why the modulo is used.
rxBufferTail = 4 // points to the '-' after c

 _rxBufferHead = 1 // points to 'a'

 [a] [b] [c] [-] [-] [-] [-] [-] [-] [-]
 The number of available characters is (4 + 10 - 1) % 10 = 3

 If we did not use the modulo we would get either (4 + 10 - 1) = 13 characters
 or (4 + 10 - 1) / 10 = 1 character. Obviously neither is correct.

 If there has been a buffer overflow, available() will return -1.
)
(JMC: 5.2 - new public function that checks the last character in the buffer is a <LF> without
 consuming. The buffer tail is the index to 1 position advanced of the last
 character in thus the last char is _rxBufferTail-1 LF = 0000 1010 = 10(dec)
)
(JMC: 5.3 - new public function that checks the second last character in the buffer is a <CR>
 without consuming. The buffer tail is the index to 1 position advanced of the
 last character in thus the second last char is:

_rxBufferTail-2 CR = 0000 1101 = 13(dec)
)
(KMS: 5.4 - peek() - (JMC: original public function that) allows the user to look at the

character that is at the head of the buffer. Unlike read() it does not consume
the character (i.e. the index addressed by _rxBufferHead is not changed).
peek() returns -1 if there are no characters to show.

 5.5 - flush() is a modified public function that clears the buffers contents by setting

the index for both buffer head and tail back to zero. (JMC: new code also resets
the status of the buffer overflow and parity error variables.)

 5.6 - read() returns the character at the current head in the buffer after incrementing

the index of the buffer head. This action 'consumes' the character, meaning it
cannot be read from the buffer again. If you would rather see the character, but
leave the index to head intact, you should use peek();

)
(JMC: 5.7 - advanceBufHead() - new public function that advances the buffer head. This function

is used if only a certain part of the response from the sensor is needed. It
saves reading all characters into the program and then discarding them.

)
*/

// 5.1 - public function that reveals the number of characters available in the buffer -
int SDI12::available() {
 //std::cout << "available() called\n";
 if(_bufferOverflow) return -1;
 return (_rxBufferTail + _BUFFER_SIZE - _rxBufferHead) % _BUFFER_SIZE;
}

// (JMC: 5.2 - new public function that checks the last character in the buffer is a <LF>
without consuming)
bool SDI12::LFCheck() {

Appendix C: SDI12 C++ Library 105

 //std::cout << "LFCheck() called\n";
 if (_rxBufferHead == _rxBufferTail) return false; // Empty buffer? If yes, 0
 int LF = _rxBuffer[_rxBufferTail-1];
 // Otherwise, read from "tail" (last character in)
 if (LF == 10) {
 //std::cout << "Last character is a linefeed <LF>! \n";
 return true;
 }
 return false;
}

// (JMC: 5.3 - new public function that checks the second last character in the buffer is a <CR>
without consuming)
bool SDI12::CRCheck() {
 //std::cout << "CRCheck() called\n";
 if (_rxBufferHead == _rxBufferTail) return false; // Empty buffer? If yes, 0
 int CR = _rxBuffer[_rxBufferTail-2];
 if (CR == 13) { // Otherwise, check the second last character in buffer)
 return true;
 }
 return false;
 }
}

// 5.4 - public function that reveals the next character in the buffer without consuming
int SDI12::peek() {
 if (_rxBufferHead == _rxBufferTail) return -1; // Empty buffer? If yes, -1
 return _rxBuffer[_rxBufferHead]; // Otherwise, read from "head"
}

// 5.5 - a public function that clears the buffer contents, resets the status of the buffer
overflow and parrity error variables.
void SDI12::flush() {
 //std::cout << "flush() called\n";
 _rxBufferHead = _rxBufferTail = 0;
 _bufferOverflow = false;
 _parityError = false;
}

// 5.6 - reads in the next character from the buffer and moves the index ahead. (JMC: This is
FIFO opperation)
int SDI12::read() {
 _bufferOverflow = false;
 //reading makes room in the buffer
 if (_rxBufferHead == _rxBufferTail) return -1; // Empty buffer? If yes, -1
 uint8_t nextChar = _rxBuffer[_rxBufferHead]; // Otherwise, grab char at head
 _rxBufferHead = (_rxBufferHead + 1) % _BUFFER_SIZE; // increment head. modulo will reset
the _rxBufferHead to 0 when _rxBufferHead = bufferSize - 1
 return nextChar; // return the char
}

// (JMC: 5.7 - new public function that advances the buffer head)
void SDI12::advanceBufHead(int advance) {
 //std::cout << "advanceBufHead() called \n";
 //std::cout << "initial buffer head position" << (int)_rxBufferHead << "\n";
 _rxBufferHead = _rxBufferHead + advance;
 //std::cout << "new buffer head position" << (int)_rxBufferHead << "\n";
 }

Appendix C: SDI12 C++ Library 106

/* ================== 6. Interrupt Service Routine ============= (James Coppock & Kevin Smith)

(JMC:
 The original receiveChar() function did not include a parity check. I have modified the
 code to include a parity error check. Most of the timing delays were changed to decrease
 the chance of missing a bit when the operating system de-scheduled the thread.

 wiringPi library functions used:
 int digitalRead(int pin) - function returns the value read on the given pin. It will be
 HIGH or LOW (1 or 0) depending on the logic level at the pin (Gordons Projects 2015).
)

(KMS:
 We have received an interrupt signal, what should we do?

 6.1 - function passes of responsibility to the receiveChar() function.

 6.2 - This function quickly reads a new character from the data line in to the buffer.
 It takes place over a series of key steps.

 6.2.1 - Check for the start bit. If it is not there, interrupt may be from interference
 or an interrupt we are not interested in, so return.

 6.2.2 - Make space in memory for the new character "newChar".

 6.2.3 - Wait half of a SPACING to help centre on the next bit. It will not actually be
 centred, or even approximately so until delayMicroseconds(SPACING) is called
 again.

 6.2.4 - For each of the 8 bits in the payload, read whether or not the line state is

HIGH or LOW. We use a moving mask here, as was previously demonstrated in the
writeByte() function.

 The loop runs from i=0x1 (hexadecimal notation for 00000001) to i<0x80

(hexadecimal notation for 10000000). So the loop effectively uses the
 masks following masks: 00000001
 00000010
 00000100
 00001000
 00010000
 00100000
 01000000 and their inverses.

 Here we use an if / else structure that helps to balance the time it takes to
 either a HIGH vs a LOW, and helps maintain a constant timing.

 6.2.5 - Skip the stop bit.

(JMC:
 6.2.6 - The original code skipped the parity bit with a delay of 830 microseconds. Due
 to the number of parity errors that would come up the parity check was needed.

 The algorithm calculates the number of 1's in the 8 bit frame with one parity
 bit and seven data bits. The algorithm returns _evenParityBit is either 0 (even

number of 1's) or 1 (odd number of 1's). The frame should have an even number of
ones for even parity.

 The code merges the first 4 bits with the last 4 bits using an XOR
 operation. As can be seen below the parity of two bits is computed with
 an XOR operation.
 (0 XOR 0) -> 0
 (0 XOR 1) -> 1
 (1 XOR 0) -> 1
 (1 XOR 1) -> 0
 Now with four bits we are left with 16 possible values for _evenParityBit
 Shifting 0x6996 to the right by _evenParityBit number of times leaves the

relevant bit in bit position 0. 6996 (Hex) = 0110 1001 1001 0110 (bin) which
gives the 16 possibilities for the parity. A 0 for even and a 1 for odd parity

 If a parity error is picked up parityError status is set to true and the state
 is set to disabled. The interrupts will be disabled also.
)

Appendix C: SDI12 C++ Library 107

(KMS:
 6.2.7 - Check for an overflow. Check if advancing the index to most recent buffer entry

(tail) will make it have the same index as the head (in a circular fashion). If
there is an overflow a character will not be stored and hence will not overwrite
buffer head

 6.2.8 - Save the byte into the buffer if there has not been an overflow, and then
 advance the tail index.
)

// 6.1 - public static function that passes off responsibility for an interrupt to the
receiveChar() function.
inline void SDI12::handleInterrupt(){
 if (_parityError == true) {
 std::cout << "handleInterrupt() error: parity error is true: \n";
 return;
 }
 receiveChar();
}

// 6.2 - private function that reads a new character into the buffer (JMC: function modified
// to do parity error check on each received).
inline void SDI12::receiveChar() {
 //std::cout << "receiveChar() called \n";

 if (digitalRead(_rxDataPin)==0) { // 6.2.1 - Is the start bit LOW? a HIGH
indicates a false trigger of interrupt

 uint8_t newChar = 0; // 6.2.2 - Declare and initialise variable for
char.

 delayMicroseconds(20); // 6.2.3 - sets a small delay period after the
falling edge of the start bit was detected

 for (uint16_t i=0x1; i<=0x80; i <<= 1) { // 6.2.4 - read the 7 data bits (for i = 1 to
0100 0000 (<<= bitshift assignment))
 delayMicroseconds(800); // (800) // Delay 800 us. This seems to work better than
a full symbol period of 830 us.
 uint8_t noti = ~i; // ~ Bitwise NOT operator
 if (!digitalRead(_rxDataPin)) { // If pin level is LOW (NOTE ! is Logical NOT
operator)
 std::cout << "Pin level LOW: " << "\n";
 newChar &= noti;
 }
 else { // Else pin level is HIGH
 std::cout << "Pin level HIGH: " << "\n";
 newChar |= i; // |= Bitwise inclusive OR assignment operator
 }
 }

 uint8_t newChar2 = newChar;
 newChar2 &= 0x7F;

 delayMicroseconds(650); //(650) // 6.2.5 - Skip the stop bit.

 // New code. Experiment with delay above.
 if (digitalRead(_rxDataPin)==0) { // JMC: 6.2.5 - Is the stop bit LOW? a LOW
indicates an incorrect stop bit (inverted logic)
 std::cout << "receiveChar() Incorrect stop bit: - parityError set to true and interrupt
disabled \n";
 _parityError = true; // JMC:
 SDI12::end(); // JMC: Disable interrupt
return; // JMC:
}

 // (JMC: 6.2.6 - Check for parity error.
 uint8_t _evenOrOdd; // JMC
 _evenOrOdd = newChar; // JMC
 _evenOrOdd ^= newChar >> 4; // JMC
 _evenOrOdd &= 0x0F; // JMC
 _evenOrOdd = ((0x6996 >> _evenOrOdd) & 1); // JMC

Appendix C: SDI12 C++ Library 108

 std::cout << "ReceiveChar() calculated parity of newChar (0 = even, 1 = odd): " <<
unsigned(_evenOrOdd) << "\n";

 if (_evenOrOdd == 1) { // (JMC: Check for parity error)
 std::cout << "receiveChar() Parity error: - parityError set to true - check parityError()
\n";
 _parityError = true;
 SDI12::end();
 return;
 }

 newChar &= 0x7F; // Set the most significant bit (Parity bit) to
0 leaving the 7 bit ASCII character.

 if ((_rxBufferTail + 1) == _rxBufferHead) { // 6.2.7 - Overflow? If not, proceed.
 _bufferOverflow = true; // bufferOverflow status set and newChar is not
stored
 std::cout << "Buffer full - check overflowStatus() " << "\n";
 } else { // 6.2.8 - Save char, advance tail.
 _rxBuffer[_rxBufferTail] = newChar;
 _rxBufferTail = (_rxBufferTail + 1) % _BUFFER_SIZE; // increments buffer tail and resets to
0 if _rxBufferTail+1 == BUFFERSIZE
 }
 }
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 109

Appendix D: Complete SDI12 Logger

Program Listing (Excluding SDI12

Library)

Appendix D Contents

Appendix D Contents .. 109

Appendix D.1: Organisation and Description of SDI12 Logger Program 110

Appendix D.2: main() Function ... 113

Appendix D.3: Measurement Handling Functions .. 114

Appendix D.4: SDI-12 Device Configuration Functions ... 127

Appendix D.4.1 Main Configuration Handler Function ... 127

Appendix D.4.2: Add SDI-12 Device ... 129

Appendix D.5: Generic Functions .. 133

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 110

Appendix D.1: Organisation and Description of SDI12

Logger Program

/* ========================= Raspberry SDI12Logger Program Organisation ========================
This file ‘SDI12Logger.cpp’ and three non-standard C++ libraries make up the Raspberry Pi
logger. SDI12Logger.cpp has working functions that perform measurement handling and partially
complete functions to perform device configuration including adding a new SDI-12 device to the
logger configuration. Functions are grouped under four sections. Functions that are common to
both the measurement handling and device configuration processes are put into the generic
functions section.

1. main Function

1) main()

2. Measurement Handling Functions include:

1) dataHeadings()
2) measurementDelay()
3) takeMeasurement()

 Functions in the measurement handling section with addition of the generic ‘sendAndReceive’
 function performs the task of initiating a measurement sequence and logging of data. The
 sequence of menu options to initiate the logging session from the ‘main’ menu (assuming the
 logger has been pre-configured) takes place with a single user input, the user enter keys 3
 when in the ‘main’ menu.
 Functions called for a logging session include:

1) main() → see section: main() Function
2) dataHeadings()
3) measurementDelay()
4) takeMeasurement()
5) sendAndReceive() → see section: Generic Functions (returns measurement time)
6) sendAndReceive → see section: Generic Functions (returns measurement data)

3. SDI-12 Device Configuration Functions include

1) deviceConfiguration()
2) checkAddress()
3) getSensorModel()
4) addChannels()

 Functions in the SDI-12 device configuration section perform two main tasks however only 1 is
 Complete. The first task with addition of the generic ‘sendAndRecieve’ function performs the
 task of adding an SDI-12 device to the logger configuration. Only one sensor must be connected
 to the logger. The sequence of menu options to add an SDI-12 device to the configuration from
 the main menu takes place over two user inputs, the user enter keys 2 when in the ‘main’ menu
 followed by key 2 when in the ‘device configuration’ menu.
 Functions called to add an SDI-12 device include:

1) main() → see section: ‘main() Function’
2) deviceConfiguration()
3) sendAndReceive() → see section: Generic Functions (returns address)
4) checkAddress()
5) getSensorModel()
6) addChannels()

4. Generic Functions include:

1) sendAndReceive()
2) getInteger()

=== Attribution ==
Authored in 2015 by James Coppock for major project undertaken as part of the requirements of a
Bachelor of Engineering. Project titled:
Development of a Raspberry Pi based, SDI-12 sensor environmental data logger

---------------------------| SDI12 Library Function To Write and Send | ------------------------

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 111

To write characters to the SDI-12 data line and receive chars the sequence of functions called
are:
 1. begin() → setState(INTERRUPTENABLE)

 2. sendCommand(string: cmd) → wakeSensors() → setState(TRANSMITTING)
 → writeChar(uint8_t)
 → writeChar(uint8_t)
 →
 → writeChar(uint8_t) → setState(LISTENING)
If sensor replies:
 1. handleInterrupt() → receiveChar()
 2. handleInterrupt() → receiveChar()
 ..
 n. handleInterrupt() → receiveChar()

The receiveChars() function puts the characters into the buffer.

After delay period.

 1. available()
 2. parityError()
 3. overflowStatus()
 4. LFCheck()
 5. CRCheck()
 6. read()

---------------------- Reference for Interpreting Oscilloscope Display -------------------------

 NOTE when reading from the oscilloscope left of screen is the start bit. Some common binary
 responses that can be checked on the oscilloscope.

The address query command (?!) on an oscilloscope screen is.
1 0000 0011 0 (?) 1 0111 1011 0 (!)
Where
 ? = 33 (Dec) = 011 1111 ← LSB (parity bit not shown)
 ! = 63 (Dec) = 010 0001 ← LSB (parity bit not shown)

GS3 response to an address query command (a<CR><LF>) on oscilloscope screen (assuming sensor
address ‘a’ = 6 is:
 1 1001 0011 0 (Dec. = 6) 1 0100 1110 0 (carriage return) 1 1010 1111 0 (line feed)
Where;
 6 = 54 (Dec) = 011 0110 ← LSB (parity bit not shown)
 CR = 13 (Dec) = 000 1101 ← LSB (parity bit not shown)
 LF = 10 (Dec) = 000 1010 ← LSB (parity bit not shown)
*/

/* ======================= 0. Includes, Defines, and Variable Declarations =====================

0.1 - Include the SDI12 library Authored by Kevin Smith for the Arduino and modified by myself
 for use with the Raspberry Pi.
0.2 - Include the file parser library shared on dream in code web site
 <http://www.dreamincode.net/forums/topic/183191-create-a-simple-configuration-file-parser/>
0.3 - Include the wiringPi library Authored by Gordon Henderson. The library give some simple
 functions for controlling the setting the state of the Raspberry Pi pins, writing a HIGH
 or LOW to the pin or reading digital voltage.

0.4 - Standard C++ libraries.
0.4.1 - Use with C++ style strings (std string)
0.4.2 - Defines macro for reporting error conditions.
0.4.3 - Gives the system function for system calls. system("....");
0.4.4 - libraries for uint8_t (unsigned character 8 bits), int8_t (Signed character 8 bits),
 int16_t (short int (2 bytes)), int32_t (4 bytes) int64 (long int (8 bytes))
0.4.5 - gives cin and cout for input and output
0.4.6 - Stream class to operate on strings

0.5 - Defines the BCM pin number connected to output enable of SN74HCT240 (2OE)
0.6 - Defines the BCM pin number connected to input 2A1 of the SN74HCT240
0.7 - Defines the BCM pin number connected to output enable of SN74HCT240 (1OE)
0.8 - Defines the BCM pin number connected to output 1Y1 of the SN74HCT240
0.9 - Global variable that is a number of characters entered into the character array for a
 given sensor response. The name of the characters array is 'response'. 'response' and
 '_charsAvailable' are initialised in sendAndReceive().

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 112

*/

// Required Libraries
#include "SDI12.cpp" // 0.1
#include </home/pi/Desktop/Parser.h> // 0.2
#include <wiringPi.h> // 0.3
 // 0.4
#include <string> // 0.4.1
#include <errno.h> // 0.4.2
#include <stdlib.h> // 0.4.3
#include <inttypes.h> // 0.4.4
#include <iostream> // 0.4.5
#include <sstream> // 0.4.6
// Variable declarations and defines
#define TXENABLE 4 // 0.5
#define TXDATAPIN 17 // 0.6
#define RXENABLE 27 // 0.7
#define RXDATAPIN 23 // 0.8

int _charsAvailable; // 0.9

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 113

Appendix D.2: main() Function

/* main() - function that gives a menu of configuring options. The menu options are:
 0. Exit setup
 1. SDI-12 channels (not started)
 2. SDI-12 device configuration (partially complete)
 3. Start Logging (Complete)

*/

int main ()
{

 // INITIALISATION
 // Setup wiring pi
 if (wiringPiSetupGpio () < 0) { //Setup using BCM pin numbers
 std::cout << "Error: Unable to setup wiringPi\n";
 return 1;
 }
 //Initialise state of two Output enable control pin of the SN74HCT240 (OE1 and OE2).
 pinMode(RXENABLE, OUTPUT); // RXENABLE (BCM 27) set output
 digitalWrite(RXENABLE, HIGH); // State of 244 output 1 (connected to RPi RX
input) in high impedance state (RXENABLE = BCM 27)
 pinMode(TXENABLE, OUTPUT); // TXENABLE (BCM 4) set output
 digitalWrite(TXENABLE, HIGH); /State of 240 output 2 (connected to SDI-12 bus

 // in high impedance state (TXENABLE=BCM 4)
 pinMode(TXDATAPIN, OUTPUT); // TXDATAPIN (BCM 17) set output

Initialise the interrupt service routine function on the 'RXDATAPIN' - The interrupt function
handleInterrupt() is a static member function from the SDI-12 class library. The function is
called after detecting a falling edge on RXDATAPIN.
 wiringPiISR (RXDATAPIN, INT_EDGE_FALLING, SDI12::handleInterrupt);
 pullUpDnControl(RXDATAPIN, PUD_UP); // Set RX Pin with pull down resistors enabled
 system ("gpio edge 23 none"); // Note: system calls use BCM pins numbers.
This disables interrupt on RXDATAPIN

 // Main menu loop
 for (;;) {
 if (piHiPri(1) < 0) { // Programming Priority between 1 and 99 (99 is the highest)
 std::cout << "Error: Unable to set priority low in main() \n”;
 }
 std::cout << "\nSDI-12 Device Configuration Menu Options\n";
 // Output 'Main Menu' options.
 std::cout << "Enter an integer from '0' to '3' and press enter.\n";
 std::cout << “0. Exit Setup\n 1. SDI-12 Channels (not started)\n 2. SDI-12 Device
Configuration (partially completed)\n 3. Start Logging\n";
 // getInteger() - a function that waits for a user to enter a valid input '0' to '3'
 int myNumber = getInteger(0, 3);

 if (myNumber == 0) { // Exit setup
 std::cout << "You entered 0\n";
 return 0;
 }
 if (myNumber == 1) { // SDI-12 channels
 std::cout << "You entered 1\n";
 viewChannels();
 }
 if (myNumber == 2) { // SDI-12 device configuration
 std::cout << "You entered 2\n";
 deviceConfiguration();
 }
 if (myNumber == 3) { // Start Logging
 std::cout << "You entered 3\n";
 dataFileHeadings();
 }
 }

return 0;

}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 114

Appendix D.3: Measurement Handling Functions

/* dataFileHeadings() - a function called from main() when menu option 3 is selected. This
function takes measurements from the sensor addresses within the loggerconfiguration.txt file.
The results returned from the sensor will be stored in the appropriate channel.

When this function is first called this function checks to see if a datafile exists and if not
creates one. If the datafile exists it checks the loggerconfiguration.txt to see if any channels
have been added since the last logging session. When a change in channel configuration has been
made the value of the key ChanConfigChange is 'yes'. If the value is 'yes' a new channel names
are written to the .csv at the bottom of the existing data file and the value 'y1' is reset to
'no'.
*/

void dataFileHeadings() {
 std::cout << "measurementHandler() called\n";
 std::string line;
 // Declare myfilein as ifstream and this file can be read from the same as using cin
 std::ifstream myfilein ("loggerconfiguration.txt"); // read and write.
 size_t lineNo = 0;

 if (myfilein.is_open()) {
 // the while loop keeps extracting lines, until EOF is found.
 while (std::getline (myfilein, line)) {
 lineNo++;
 std::string temp = line;
 // Checks line for 'ChanConfigChange' and if it exists outputs line with ChanConfigChange'
 // exists.
 if (line.find("ChanConfigChange") != line.npos) {
 // Check if line = 'chanConfigChange=yes'. If true new channel names are printed at the
 // bottom of the existing datafile and 'ChanConfigChange' is given a new value = 'no'.
 // Logging is started
 if (line.find("ChanConfigChange=yes") != line.npos) {
 myfilein.close();
 // Rewrite loggerconfiguration.txt file changing line 'ChanConfigChange=yes' to

 ChanConfigChange=no
 std::string strReplace = "ChanConfigChange=yes"; // line to replace
 std::string strNew = "ChanConfigChange=no"; // New line
 std::ifstream myfilein ("loggerconfiguration.txt"); // file to read from.
 std::ofstream myfileout ("temp.txt"); // temporary file to write too
 if (myfilein.is_open() || myfilein.is_open()) {
 std::string strTemp;
 // the while loop extracts lines of loggerconfiguration.txt and prints each line to

 a new file 'temp.txt'. When line = "ChanConfigChange=yes" is found the new line =
 "ChanConfigChange=no" is printed.
 while (std::getline (myfilein,strTemp)) {
 if(strTemp == strReplace){
 strTemp = strNew;
 }
 strTemp += "\n";
 myfileout << strTemp;
 }
 myfilein.close();
 myfileout.close();
 // Delete original config file "loggerconfiguration.txt".
 remove("loggerconfiguration.txt");
 // rename "temp.txt" to "loggerconfiguration.txt".
 rename("temp.txt", "loggerconfiguration.txt");
 std::cout << "value for key 'ChanConfigChange' is set to yes \n";

 // Check if there are channels configured in the logger config file
'loggerconfiguration.txt'.
 ConfigFile lccfg("loggerconfiguration.txt");
 // getValueOfKey() - function from the parse.h library will return a key value for
 // the key 'NoOfConfigChannels'. The key value will be an integer representing the
 // number of configured channels. The value is returned as type 'int'.
 int noConfigChannels = lccfg.getValueOfKey<int>("NoOfConfigChannels");
 if (noConfigChannels <= 0) {
 std::cout << "No channels currently configured. Add channels in the main menu
through option 2. 'SDI-12 device configuration' \n";

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 115

 return;
 }
 // Channel exist in configuration list
 else {
 std::cout << "Number of configured channels is: " << noConfigChannels<< "\n";
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
Create a string of channel names seperated by commas and write to the bottom of the data file.
 if (myfileout.is_open()) {
 // Initialise string variable of channel names with date and time.
 std::string chanNames = "Date,Time";
 // append additional channel names.
 for(int x=1; x <= noConfigChannels; x++) {
 // convert channel number (int) to a string.
 std::stringstream ss;
 ss << x;
 // Create a key for ConfigFileEntry8 that specifies a channel name and unit in
 // the config file 'loggerconfiguration.txt'.
 std::string str = "CH"+ss.str()+"n";
 // getValueOfKey() - will return a key value = channel name and unit
 std::string chanNames_new = lccfg.getValueOfKey<std::string>(str);
 chanNames = chanNames + "," + chanNames_new;
 //std::cout << "Channel Name: " << chanNames << "\n";
 }
 // Prints heading to datafile.csv
 myfileout << chanNames << std::endl;
 myfileout.close();
 // call measurementDelay() function which initiates a measurement on time
 measurementDelay();
 return;
 }
 else {
 std::cout << "Error: Unable to open datafile.csv in measurementHandler() \n";
 myfileout.close();
 return;
 }
 }
 }
 else {
 std::cout << "Error: Unable to open file 'temp.txt' or 'loggerconfiguration.txt' \n
 myfilein.close();
 myfileout.close();
 return;
 }
 }

 // Check if line = 'ChanConfigChange=no'. If true data can be logged with current

// channel headings.
 if (line.find("ChanConfigChange=no") != line.npos) {
 std::cout << "ChanConfigChange=no \n";
 myfilein.close();
 // call measurementDelay() function
 measurementDelay();
 return;
 }
 else{
 std::cout << "Error: key = value error in loggerconfiguration.txt. Key =
'ChanConfigChange' but value should be 'yes' or 'no' with no white space. \n";
 myfilein.close();
 return;
 }
 }
 }
 std::cout << "Error: Did not find the key 'ChanConfigChange' in the configuration file) \n";
 return;
 }

 else {
 std::cout << "Error: Unable to open file loggerconfiguration.txt in measurementHandler() \n"
 return;
 }
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 116

/* measurementDelay() - a function called from dataFileHeadings() that delays the measurement
so that it occurs at a specific minute and second of the hour depending on what the measurement
interval is. The measurement will always occur referenced from hh:mm:ss = hh:00:00. Valid
measurement intervals are 2, 5, 10, and 20 minutes. These measurement intervals are specified in
configFileEntry 3 within 'loggerconfiguration.txt'.
*/

void measurementDelay() {
 std::cout << "measurementDelay() called \n";
 // Get the measurement interval from the logger config file 'loggerconfiguration.txt'.
 ConfigFile lccfg("loggerconfiguration.txt");
 // getValueOfKey() - function from the parse.h library will return a
 // key value for the key 'MeasurementInt'. The key value will be an
 // integer representing measurement interval in minutes. Possible values
 // are 2, 5, 10 or 20 minutes.
 int measurementInt = lccfg.getValueOfKey<int>("MeasurementInt");

 time_t rawtime;
 struct tm * timeinfo;
 char hms_buffer [50]; // buffer for holding the current time returned from
localtime() in hours:minutes:second hh:mm:ss
 char date_buffer [50]; // buffer holding the date returned from localtime() in format
DD/MM/YYYY
 int sec;
 int secs_to_next_minute;
 int min;
 int minute_delay;

 std::string data; // Variable that holds the next line of the csv file.

 for(;;) {
 // Get an initial time in seconds and minutes to set a sleep count
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 sec = timeinfo->tm_sec; //
 min = timeinfo->tm_min;
 secs_to_next_minute = 60 - sec;

 // For 2 minutes measurement interval
 if (measurementInt == 2) {
 // measurement points are done on every second minute from reference mm:ss = mm:00, where
mm can be 00, 02, 04 .., 58
 if(min%2 == 1) {
 // Minutes is divisible by 2 with a remainder. (delay = secs_to_next_minute)
 std::cout << "measureInt = 2 -1 \n";
 // Put the process in a sleep state while waiting to take next measurement.
 sleep(secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime); // Get current time and date
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo); // Store time
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo); // Store date
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 117

 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 piHiPri(1) // Programming priority between 1 and 99 (99 the highest)
 continue;
 }
 else {
 // Minutes is an divisable by 2. (Delay = 1 minutes + secs_to_next_minute)
 std::cout << "measureInt = 2 -2 \n";
 // Put the process in a sleep state while waiting to take next measurement.
 sleep(60 + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 piHiPri(1) // Programming priority between 1 and 99 (99 the highest)
 continue;
 }
 }

 // For 5 minutes measurement interval
 if (measurementInt == 5) {
 // measurement points are done on every 5th minute from reference mm:ss = mm:00, i.e. mm
can be 00, 05, 10 .., 55
 if (min%5 != 0) {

std::cout << "measureInt = 5 -1 \n";
 // Minutes is divisable by 5 with a remainder. (delay = 4-(min Mod 5) +
secs_to_next_minute)
 minute_delay = (4 - (min%5))*60;
 // Put the process in a sleep state while waiting to take next measurement.
 sleep(minute_delay + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 118

 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 if (piHiPri(1) < 0){ // Programming Priority between 0 and 99 (99 is the highest)
 std::cout << "Error: Unable to set priority low in main() \n" ;
 }
 continue;
 }
 if (min%5 == 0){
 std::cout << "measureInt = 5 -2 \n";
 // Minutes is an divisable by 5. (Delay = 4 minutes + secs_to_next_minute)
 // Put the process in a sleep state while waiting to take next measurement.
 sleep(240 + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 if (piHiPri(1) < 0){ // Programming Priority between 0 and 99 (99 is the highest)
 std::cout << "Error: Unable to set priority low in main() \n" ;
 }
 continue;
 }
 }

 // For 10 minutes measurement interval
 if (measurementInt == 10) {
 // measurement points are done on every 10th minute from reference mm:ss = mm:00, i.e mm
can be 00, 10, 20 .., 50
 if (min%10 != 0) {

std::cout << "measureInt = 10 -1 \n";
 // Minutes is divisable by 10 with a remainder. (delay = 9-(min Mod 10) +
secs_to_next_minute)
 minute_delay = (9 - (min%10))*60;
 // Put the process in a sleep state while waiting to take next measurement.
 sleep(minute_delay + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 119

 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 piHiPri(1) // Programming Priority between 0 and 99 (99 is the highest)
 continue;
 }
 if (min%10 == 0){
 std::cout << "measureInt = 10 -2 \n";
 // Minutes is divisable by 10. (Delay = 9 minutes + secs_to_next_minute) Put the process
 // in a sleep state while waiting to take next measurement.
 sleep(540 + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 piHiPri(1) // Programming Priority between 0 and 99 (99 is the highest)
 continue;
 }
 }

 // For 20 minutes measurement interval
 if (measurementInt == 20) {
 // measurement points are done on every 20th minute from reference mm:ss = mm:00, where mm
can be 00, 20, 40
 if (min%20 != 0) {

std::cout << "measureInt = 20 -1 \n";
 // Minutes is divisable by 20 with a remainder. (delay = 19-(min Mod 20) +
secs_to_next_minute)
 minute_delay = (19 - (min%20))*60;
 // Put the process in a sleep state while waiting to take next measurement.
 sleep(minute_delay + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 120

 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 piHiPri(1) // Programming Priority between 0 and 99 (99 is the highest)
 continue;
 }
 if (min%20 == 0){

std::cout << "measureInt = 20 -2 \n";
// Minutes is divisable by 29. (Delay = 19 minutes + secs_to_next_minute) Put the
// process in a sleep state while waiting to take next measurement.

 sleep(1140 + secs_to_next_minute);
 time (&rawtime);
 timeinfo = localtime (&rawtime);
 strftime (hms_buffer,50,"%H:%M:%S",timeinfo);
 strftime (date_buffer,50,"%d/%m/%Y",timeinfo);
 // Create string with date and time seperated by a comma
 data = (std::string)date_buffer + "," + (std::string)hms_buffer;
 // Get data from each channel
 std::string data2 = takeMeasurement();
 // data = new line to append to csv file
 data = data + "," + data2;
 std::cout << "new data: " << data << "\n";
 // Open data file
 std::ofstream myfileout ("datafile.csv", std::ios::app); // datafile to write to
 // Print csv data to data file.
 if (myfileout.is_open()) {
 std::cout << "Opened datafile.csv. New data is written to the file. \n";
 // print data to file
 myfileout << data << std::endl;
 myfileout.close();
 }
 else {
 std::cout << "Error: Unable to open datafile.csv from measurementDelay() \n";
 myfileout.close();
 exit(EXIT_FAILURE);
 }
 sleep(20); // sleep for 20 seconds incase of inaccuracy in the sleep command.
 piHiPri(1) // Programming Priority between 0 and 99 (99 is the highest)
 continue;
 }
 }

 else {
 std::cout <<"Error: Measurement interval specified in ConfigFileEntry3 should be 2, 5, 10
or 20.”
 return;
 }
 }
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 121

// takeMeasurement() – CURRENTLY LIMITED TO SENSORS THAT RETURN ALL PARAMETERS IN RESPONSE
/* takeMeasurement() - a function called from measurementDelay() that reads the addresses of
sensors and channel information that is stored in loggerconfiguration.txt after through the
deviceConfiguration menu. Each address is sent a measurement command. This function returns a
string of channel parameter values separated by commas to measurementDelay() printing to
datafile.csv.
*/

std::string takeMeasurement() {
 std::cout << "measurementDelay() called \n";

 if (piHiPri(99) < 0) { // Programming Priority between 0 and 99 (99 is the highest)
 std::cout << "Unable to set priority High in takeMeasurement()\n" ;
 }

 // Declare variable for storing csv results
 std::string channelData = ""; // csv channel data from all sensor addresses
 std::string channelDataN = ""; // csv channel data from a single sensor address

 // Construct ConfigFile object named lccfg for parsing loggerconfiguration.txt.
 ConfigFile lccfg("loggerconfiguration.txt");

 // keyExists() - function from the Parse.h library that checks if ConfigFileEntry2 key
'ConfiguredAddresses' exists in the loggerconfiguration.txt file.
 if (lccfg.keyExists("ConfiguredAddresses")) {
 // getValueOfKey() - function from the parse.h library will return a key value for the key
 // 'ConfiguredAddresses'. The key value will be an integer representing the number of
 // configured addresses.
 int noAddresses = lccfg.getValueOfKey<int>("ConfiguredAddresses");
 std::cout << "Number of configured address is:" << noAddresses << "\n";
 // loop executed for each unique sensor address
 for (int x=1; x<=noAddresses; x++) {
 // convert integer x to a string.
 std::stringstream ss;
 ss << x;
 // Create a key for ConfigFileEntry5 that specifies address of sensors
 std::string str = "a"+ss.str();

 if(lccfg.keyExists(str)) {
 // getValueOfKey() - will return a key values 'y5' = addresses of sensors in order they

// were added to config file.
 std::string address = lccfg.getValueOfKey<std::string>(str);
 // Create a key for ConfigFileEntry6 that specifies the number of parameters returned by

// the each sensor address
 str = "add"+address;
 if(lccfg.keyExists(str)) {
 // getValueOfKey() - will return a key values 'y6' = number of parameters for the

 current sensor address.
 int parameters = lccfg.getValueOfKey<int>(str); // NOT USED
 // Construct start measurement command (aM!) where 'a' is the sensor address
 std::string myCommand = address+"M!";

 // The response from sensor is atttn<CR><LF> where
 // a - is the sensor address
 // ttt - the time in seconds, until the sensor will have the measurements ready

// n - the number of measurement values the sensor will return in one or more send
// data commands.

 // The number of character returned for a start measurement command is 7.
 int noChars = 7; // number of character in the response.

 // The delay must allow enough time for 7 characters to be received
 // The minimum delay is (833us x 10 X 7) + 15ms = 73.31ms.
 int delaymSec = 84; // Delay in seconds
 // sendAndReceive() - a function that that sends the command and returns the sensor
 // responses. It takes the command, a minimum delay time for the response in

 // milliseconds, the minimum number of characters in the response and the sensor
 // address as inputs.

 // Pointer to array
 char *startMeasurement;
 startMeasurement = sendAndReceive(myCommand, delaymSec, noChars, address);

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 122

 // This if statement breaks the loop if a "Comms Error" occurred. Error may be due to
 // hardware or noise. It may also occur if the sensor is not connected or if there is
 // short circuit on the SDI-12 bus. It may also occur if the time value was read
 // incorrectly. It is not likely to be the OS scheduling as the command is resent
 // multiple times. The error message is printed to the data file, and the 'start
 // measurement' command is sent to the next sensor address.
 if (_charsAvailable == -1) {
 channelDataN = "Comm. Error";
 for (int i=1; i <= (parameters-1); i++) {
 channelDataN = channelDataN + ",Comm. Error";
 }
 if (x == 1){
 channelData = channelDataN;
 }
 else {
 channelData = channelData + "," + channelDataN;
 }
 // std::cout << "channel data 1: " << channelData << "\n";
 std::cout << "Error communicating with sensor at address: " << address << "\n";
 continue;
 }

 // Get the first three character out of the array of received characters. The received
 // characters are the response to the 'start measurement' command and are put into a
 // string. The first three characters excluding the address character of a 'start
 // measurement' command are 'ttt', which is the time in seconds till data is available
 // from the sensor. After a delay of ttt seconds the data can be retrieved with a
 // 'send data' command.
 std::string ttt_string = "";
 for (int i=0; i<=2; i++) {
 char c = startMeasurement[i];
 ttt_string += c;
 }
 // Convert 'ttt' to an integer representing the time in seconds until the measurement
is ready.
 std::string str = ttt_string;
 std::istringstream ss(str);
 int ttt_int;
 ss >> ttt_int;

 // Convert the 'n' part of the 'start measurement' response from a 'char' to an 'int'
 // and check that it corresponds to the number of character that is specified in the
 // config file for that sensor. If not an error is sent to display and the number of
 // parameter specified in the config file is used.
 char n_char = startMeasurement[3];
 int n_int = n_char - '0';
 // Check if the number of
 if (n_int != parameters) {
 std::cout << "Error: The number of parameters returned by sensor at address '" <<
address << "' is not equal to the number specified in the config file <takeMeasurement()>\n";
 }
 // Set a delay of 'ttt' seconds.
 sleep(ttt_int);

 // Send data command (aD<x>!) is sent to the sensor. The 'x' value is initially 0 but
 // subsequent send data commands may be needed if the values of all parameter do not
 // fit within the maximum of 35 characters available for <value> field. The maximum
 // number of characters in a data value is 9 therefore 3 parameters will fit in one
 // response. If a sensor returns more than 3 parameters 'x' will be incremented and
 // the new send data command sent. The for loop sends the 'send data' command with
 // incrementing 'x'. When all the data is received the loop is exited.
 for (int y=0; y <= parameters-1; y++){ // use this line

 // Convert incrementing 'send data' command number 'x' to a 'string' type.
 std::stringstream ss1;
 ss1 << y;
 // Construct a send data command aD<x>! with sensor address.
 myCommand = address+"D"+ss1.str()+"!";
 std::cout << "sendMeasurement command: " << myCommand << "\n";
/*
 //The response of a sensor to a 'send data' command is
 // a<values><CR><LF> where

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 123

 // a - is the sensor address
 // values - pd.d
 // p - the polarity sign (+ or -)
 // d - numeric digits before the decimal place
 // . - the decimal place (optional)
 // d - numeric digits after the decimal point.

 // The maximum number of characters in the <values> field is 35.
 // The maximum nuber of character for a single parameter is 9
 // (includes a polarity sign + 7 digits + the decimal point)
 // The minimum number of characters for a single parameter is 2
 // (includes a polarity sign + 1 digit (decimal is optional))

 // A multi-paramneter sensor will return at least three parameters within a single
 // 'send data' command.

 // the maximum number of character returned from send data command is 38. If a valid
 /response is returned but no data is returned the sensor has aborted the measurement
*/
 // the minimum number of character returned is 3. The response
 // by the sensor when no results are available is a<CR><LF>
 // noChars is the minimum number of chars returned.
 noChars = 3;

 // The delay must allow enough time for up to 35 characters to be received + the
 // address and <CR><LF>. The maximum time to receive 41 possible chars is 357 ms
 if ((8.33 * ((parameters * 9) + 3)) + 15 <= 357) {
 delaymSec = (0.833 * 10 * ((parameters * 9) + 3)) + 15;
 }
 else {
 delaymSec = 357; // Delay in milliseconds
 }

 // sendAndReceive() - a function that that sends the command and returns the sensor
 // responses. It takes the command, a minimum delay time for the response in
 // milliseconds, the minimum number of characters in the response and the sensor
 // address as inputs.
 // Pointer to array
 char *measurementRX;
 measurementRX = sendAndReceive(myCommand, delaymSec, noChars, address);

 //this if statement breaks the loop if a "No Result Error" occurred. Error may occur
 // due to bad communication due to hardware issues or noise. It is not likely to be
 // the OS scheduling as the command is resent multiple times. The error message is
 // printed to the data file.
 if (_charsAvailable == -1) {
 channelDataN = "No Result Error";
 for (int i=1; i <= (parameters-1); i++) {
 channelDataN = channelDataN + ",No Result Error";
 }
 if (x == 1){
 channelData = channelDataN;
 }
 else {
 channelData = channelData + "," + channelDataN;
 }
 std::cout << "channel data 0: " << channelData << "\n";
 break;
 }

 // ********************** this part of code is not complete ************************
 // If this if statement is true the sensor is returning a valid response without the
 // <values> field on second or higher iteration. There may have been a corruption of
 // values specifically polarity signs in the previous iterations that has resulted
 // in further iteration of the 'send data' command, which would result in no further

 // vales being returned. If true the loop is broken.
 // In current implementation the program should never get here and is not complete.
 if (_charsAvailable == 0 && y > 0) {
 std::cout << "Error: Unexpected iteration attempt for test sensors used \n";
 break;
 }

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 124

 // If this if statement is true the sensor is returning a valid response without
 // returning the <values> field on the first iteration. The logger may have obtained
 // the wrong time value in the 'start measurement' command, or the sensor may not
 // have results ready by the time it indicated.
 if (_charsAvailable == 0 && y == 0) {
 std::cout << "Error: No <values> field after the first iteration of a 'send data'
command \n";
 channelDataN = "No value returned";
 for (int i=1; i <= (parameters-1); i++) {
 channelDataN = channelDataN + ",No value returned";
 }
 // This if statement checks if this is the result from the first configured sensor
address
 if (x == 1){
 channelData = channelDataN;
 }
 else {
 channelData = channelData + "," + channelDataN;
 }
 std::cout << "channel data 1: " << channelData << "\n";
 break;
 }

 int polaityCount = 0;
 int polarityPosition[parameters+2];
 std::string value_string = "";
 char c;
 // If this if statement is true the sensor is returning a valid response with a
 // <values> field on the first 'send data' command iteration. If true the values are
 // extracted and appended to the new datafile line separated by a commas.
 if (_charsAvailable > 0 && y == 0) {
 std::cout << "chars are available in first iteration. \n";
 // This if statement tests if the first character is a polarity sign
 if (measurementRX[0] == '+' || measurementRX[0] == '-') {
 polaityCount = 1;
 polarityPosition[polaityCount] = 0;
 // This for loop counts the number of polarity signs and the positions of the
 // polarity signs within the array of received characters.
 for (int i=1; i<= _charsAvailable-1; i++){
 if (measurementRX[i] == '+' || measurementRX[i] == '-') {
 polaityCount = polaityCount+1;
 polarityPosition[polaityCount] = i;
 }
 if(measurementRX[i] == 0x0D){
 // std::cout << "carriage return at element i = " << i << "\n";
 polaityCount = polaityCount+1;
 polarityPosition[polaityCount] = i;
 }
 }
 // this if statement tests if the number of polarity signs is equal to the
 // number of parameter returned by the sensor. If true all parameters have been
 // returned in the first send data iteration. If true no further 'send data'

// command iterations are needed.
 if (polaityCount-1 == parameters){
 // this for loop extracts the values from the array of character received from
 // the sensor. It will extract all parameter values that are expected to be
 // returned by the sensor.
 for (int i=1; i<=parameters; i++) { // for 1 to 3
 value_string = "";
 // this if statement tests if a parameter values polarity signs is equal to
 // '-'. If the polarity is equal to '-' the polarity sign is printed to the

 // data file.
 if (measurementRX[polarityPosition[i]] == '-') {// if measurementRX[i] = '-'
 if (i==1){
 // if measureementRX[0] = '-'
 for (int k=0; k<=polarityPosition[2]-1; k++) {
 c = startMeasurement[k];
 value_string += c;
 }
 channelDataN = value_string;

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 125

 }
 else { // measurementRX[i>0] = '-'
 for (int k=polarityPosition[i]; k<=polarityPosition[i+1]-1; k++) {
 c = startMeasurement[k];
 value_string += c;
 }
 channelDataN = channelDataN + "," + value_string;
 }
 }

 // Else the polarity signs is equal to '+'. When the polarity is equal to
 // '+' the polarity sign is not printed to the data file.
 else {
 // measureementRX[i] = '+'
 if (i==1) {
 for (int k=1; k<=polarityPosition[2]-1; k++) {
 c = startMeasurement[k];
 value_string += c;
 }
 channelDataN = value_string;
 //std::cout << "value_string 3: " << value_string << " channelDataN 3:
" << channelDataN << "\n";
 }
 else {
 for (int k=polarityPosition[i]+1; k<=polarityPosition[i+1]-1; k++) {
 c = startMeasurement[k];
 value_string += c;
 }
 channelDataN = channelDataN + "," + value_string;
 //std::cout << "value_string 4: " << value_string << " channelDataN 4:
" << channelDataN << "\n";
 }
 }
 }
 if (x == 1){
 channelData = channelDataN;
 }
 else {
 channelData = channelData + "," + channelDataN;
 }
 std::cout << "channel data 2: " << channelData << "\n";
 break;
 }

 // ********************* this part of code is not complete *********************
 // else the number of polarity signs in the first iteration of the 'send data'
 // command is not equal to the number of parameters expected to be returned by
 // the sensor. Values should be extracted from the array of received characters
 // and further 'send data' command iterations are initiated by continuing the
 // for loop. The sensor used for testing measurement functions should return
 // all parameter values in the first 'send data' iteration.
 else {
 std::cout << "Error: The number of polarity signs extracted in the first
iteration is not equal to the number \n";
 std::cout << " parameters returned by the sensor. The sensors used in
testing this logger should return \n";
 std::cout << " all parameters in the first iteration, therefore a
corrupt value has been received.\n";
 for (int i=1; i <= (parameters-1); i++) {
 channelDataN = channelDataN + ",Corrupt value Error";
 }
 // This if statement checks if this is the result from the first configured
sensor address
 if (x == 1){
 channelData = channelDataN;
 }
 else {
 channelData = channelData + "," + channelDataN;
 }
 std::cout << "channel data 3: " << channelData << "\n";
 break;
 }

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 126

 }

 // else the first character was not a '+' or '-' character, therefore corrupt
 // characters are present. No result are recorded in this implementation.
 else {
 channelDataN = "Error: The first character was not a '+' or '-' character,
therefore a corrupt value has been receive";
 channelDataN = "Corrupt value Error";
 for (int i=1; i <= (parameters-1); i++) {
 channelDataN = channelDataN + ",Corrupt value Error";
 }
 // This if statement checks if this is the result from the first configured
sensor address
 if (x == 1){
 channelData = channelDataN;
 }
 else {
 channelData = channelData + "," + channelDataN;
 }
 std::cout << "channel data 4: " << channelData << "\n";
 break;
 }
 }

 // ******************** This part of code is not complete *************************
 // If this if statement is true the sensor is returning a valid response with the
 // <values> field on the second or higher iteration. Values should be extracted from
 // the array of received characters. The sensor used for testing measurement
 // functions should return all parameter values in the first 'send data' iteration.

 // This section of code is not yet complete. It is not needed unless sensor return
 // <values> over multiple 'send data' command iterations. \
 if (_charsAvailable > 0 && y > 0) {

 std::cout << "Chars are available in second iteration \n";
 std::cout << "Error: All values should be received in the first 'send data'
iteration for the GS3 and 5TM. \n";
 std::cout << "Error: Even if there is data corruption it should not reach this
point. \n";
 }
 }
 }

 else {
 // Unable to find configFileEntry6 key add<x6>
 std::cout << "Error: Unable to find ConfigFileEntry6 key 'add<x6>' = '" << str << "'
in loggerconfiguration.txt in takeMeasurement() \n";
 exit(EXIT_FAILURE);
 }
 }
 else {

// Unable to find ConfigFileEntry5 key a<x5>
std::cout << "Error: Unable to find ConfigFileEntry5 key 'a<x5>' = '" << str << "' in

loggerconfiguration.txt from takeMeasurement() \n";
 exit(EXIT_FAILURE);
 }
 }
 }
 else {
 // Unable to find ConfigFileEntry2 key 'ConfiguredAddresses'
 std::cout << "Error: Unable to find ConfigFileEntry2 Key 'ConfiguredAddresses' in
loggerconfiguration.txt. \n";
 exit(EXIT_FAILURE);
 }
 std::cout << "channel data 5: " << channelData << "\n";
 return channelData;
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 127

Appendix D.4: SDI-12 Device Configuration Functions

Appendix D.4.1 Main Configuration Handler Function

/* deviceConfiguration() - a function called from main() that gives a menu of configuring
options and performs the tasks by calling other functions which return . Menu options are:
 0. Return to Main Menu
 1. Change address of SDI-12 sensor (Feature not written)
 2. Add SDI-12 device (Partially Complete)
*/

void deviceConfiguration() {
 std::cout << "deviceConfiguration() called \n";
 piHiPri(99) // Set thread to the highest priority(99)

 for (;;) {
 std::cout << "\nSDI-12 Device Configuration Menu Options\n";
 std::cout << "Only one SDI-12 device should be connected to the SDI-12 bus 3\n";
 // Outputs Device configuration options.
 std::cout << "Enter an integer from '0' to '2' and press enter.\n";
 std::cout << “0. Return to Main Menu\n 1. Change address of SDI-12 sensor (not started)\n 2.
Add SDI-12 device (partially complete)\n";
 // getInteger() waits for user to enter a valid input between '0' to '2'
 int myNumber = getInteger(0, 2);

 // If "0" - return to main menu
 if (myNumber == 0) {
 std::cout << "You entered 0\n";
 return;
 }

 // If "1" - proceed with SDI-12 sensor address change
 if (myNumber == 1) {
 std::cout << "You entered 1\n";
 }

 // if "2" - proceed with adding SDI-12 device
 if (myNumber == 2) {
 std::cout << "You entered '2': Add SDI-12 Device\n";

 // getAddress()-function that gets the address of a SDI-12 sensor that is connected to bus
 // the electrical interface of the logger
 char address = getAddress();
 // if "address = |" - a valid sensor address was not returned. Program waits for user to
 // re-select from menu options.
 if (address == '|') {
 std::cout << "Unable to get a valid sensor address after 6 retry\n";
 }
 // if address is not = | - a valid sensor address was returned. Program continues.
 else {
 std::cout << "Address of sensor from deviceConfiguration() is: " << address << "\n";
 // if a valid address was returned the config file is checked to see if it in use by

// another sensor on a configured channel. checkAddress() - function will return a
// 'true' if address is not in use or 'false' if address is in use.

 if (checkAddress(address) == true) {
 std::cout << "Address of sensor connected is not used by another previously configured
sensor. \n" ;
 // getSensorModel() - function that sends a "send identification" command to the

 // sensor address and returns the model of the sensor
 std::string model = getSensorModel(address);
 if (model == "Error") {
 std::cout << "Unable to get a valid sensor model number after 6 retry attempts\n";
 }

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 128

 else {
 for (;;) {
 // User confirms sensor model output to command window.
 std::cout << "\n Is the sensor model '" <<model<< "' the correct sensor model?
Enter '0' or '1' and press enter.\n\n";
 std::cout << “0. No\n 1. Yes\n\n";
 // Wait for user to enter a valid input between '0' to '1'.
 int myNumber = getInteger(0, 1);
 if (myNumber == 1) { // User pressed '1'.

 // addChannels() - a function that finds information on the sensor in the
 // sensorinformation.txt file and adds the channels to the logger
 // configuration.txt file.

 // Convert 'char' type address to a 'string' type address.
 std::stringstream ss;
 std::string add; // variable ‘add’ will hold the address as a ‘char’ type
 ss << address;
 ss >> add;
 int finishAdd = addChannels(model,add);
 if (finishAdd == 1) {
 // back to deviceConfiguration()
 std::cout << "Sensor channels successfully added \n";
 }
 else if (finishAdd == 0) {
 std::cout << "Sensor model was not found in the database
(SensorInformation.txt) \n";
 std::cout << "Information about the sensor should be entered in the
SensorInformation.txt \n";
 std::cout << "file before the sensor can be configured to a channel.
Information should be \n";
 std::cout << "available from the sensor manufacturer";
 }
 else { // implies finishAdd = "-1" -Error occurred in adding the sensor
 std::cout << "Error occurred in adding sensor \n";
 }
 break;
 }
 else { // User pressed '0'.
 std::cout << "return to Device configuration menu \n";
 break;
 }

 }
 }
 }
 else {
 std::cout << "\n Address of sensor connected is used by another configured sensor.
The address of the sensor must be changed before the sensor can be added. \n";
 }
 }
 }
 }
 }

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 129

Appendix D.4.2: Add SDI-12 Device

/* checkAddress() – second function called from deviceConfiguration() when option 2 is
selected (Add SDI-12 Device). This function checks if the address of a new added SDI-12 sensor
is in the configured list before adding. This function searches for the key:
 add<a>
where 'a' is the sensor address. If it is found the address must be changed before adding the
sensor and if not the sensor can be added. Function will return a 'true' if address is not in
use or 'false' if address is in use.
*/

bool checkAddress(char address) {
 std::cout << "checkAddress() called \n";
 // Construct and ConfigFile object named cfg for parsing loggerconfiguration.txt.
 ConfigFile lccfg("loggerconfiguration.txt");

 // Convert 'char' type address to a 'string' type address.
 std::stringstream ss;
 std::string a; // a is the variable that will hold the converted char address
 ss << address;
 ss >> a;
 std::string key = "add"+a;
 std::cout << "key" << key << "\n";
 // keyExists() - function from the Parse.h library that searches for
 // the loggerconfiguration.txt file for 'add<x>' where x is the address
 // the new sensor.
 if (lccfg.keyExists(key)) {
 return false;
 }
 else {
 return true;
 }
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 130

/* getSensorModel() - third function called from deviceConfiguration() that sends an
Identification command (<a>I!) where 'a' is a sensor address returned from getAddress(). The
sensor will respond with:
 allccccccccmmmmmmvvvxxx<CR><LF>

To configure the sensor from the database of SDI-12 sensors automatically the six character
model number is extracted from the response. The model number will be character 12 through to
17.

All checks are made to minimise the chance of an error due to the scheduling system of the Linux
OS. All characters received are checked for parity errors plus the carriage return and line feed
characters are checked. If there is an error detected the command is re-sent to the sensor

*/

std::string getSensorModel(char address) {
 std::cout << "getSensorModel() called\n";
 std::cout << "Address of sensor from getSensorModel() is: " << address << "\n";
 // Covert a 'char' type address to a 'string' type address.
 std::stringstream ss;
 std::string a; // ‘a’ is the ‘char’ address converted to 'string' type.
 ss << address;
 ss >> a;

 // Command aI! is the send identification command where 'a' is the sensor address
 std::string myCommand = a+"I!";

 // Construct an SDI12 object named mySDI12
 SDI12 mySDI12(TXENABLE, TXDATAPIN, RXENABLE, RXDATAPIN);
 // Initialise variable to count the number of times the command is sent to the sensor.
 int retryAttempt = 0;

 //Allow 6 attempts at retrieving a valid SDI-12 model. A valid address is registered when no
 //parity errors exist in the sensor response and the <LF> and <CR> characters end the response
 //as specified in the SDI-12 standard.
 while (retryAttempt <= 5) {
 // begin() - function from the SDI-12 library that sets the state prior to outputting a
 // command sequence. The rising edge interrupt is set to enabled but the receive pin is
 // isolated from the bus.
 mySDI12.begin();
 // outputs variable (Note cout << (unsigned char))
 std::cout << "String sent to SDI12 bus:" << myCommand << "\n";
 mySDI12.sendCommand(myCommand);
 // The maximum number of character returned for a send identification command is 35. The delay
 // must allow enough time for 35 characters to be received so that the carriage return and
 // line feed can be checked. The minimum delay is 833us x 10 X 35 = 291ms.
 delay(310);

 // available() - function from the SDI12 library that checks the number of character in the
 // buffer. It is expected to be between 22 and 35 characters returned for a send
 // identification command. 13 character including those for the sensor serial number field are
 // optional.
 int charsInBuffer = mySDI12.available();
 if (charsInBuffer > 20) {
 std::cout << "Number of characters in buffer" << mySDI12.available() << "\n";
 // Checks for a parity error (false = no parity error)
 if (mySDI12.parityErrorStatus() == false) {
 std::cout << "No parity error \n";
 // Checks for a buffer overflow (false = no overflow)
 if (mySDI12.overflowStatus() == false) {
 std::cout << "No buffer overflow\n";
 // Checks that a line feed <LF> character ended the sensor response
 if (mySDI12.LFCheck() == true) {
 std::cout << "Last character is a linefeed (LF)! \n";
 // Checks that a carriage return <CR> character came before the line feed character
 if (mySDI12.CRCheck() == true) {
 std::cout << "Second last character is a carriage return (CR)! \n";
 // Reads the address returned
 char add = mySDI12.read();
 if (add == address) {
 std::cout << "Address is a match with that sent \n";
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 131

 // advance buffer head 10 positions to position of first 6 character "sensor
model" field entry in the buffer.

 mySDI12.advanceBufHead(10);
 std::string model = "";
 for (int i=0; i<=5; i++) {
 char c = mySDI12.read();
 // checks the next character is a space if space do not add to string.
 if (c == ' ') {
 std::cout << "Model number character not added: " << c<< "\n";
 }
 else {
 std::cout << "Model number character added: " << c<< "\n";
 model += c;
 std::cout << "buffer: " << model << "\n";
 }
 }
 return model; // Need to change this.
 }
 else {
 ++retryAttempt;
 std::cout << "address received is not the sensor address sent out with command! \
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt << "\n
 mySDI12.flush();
 }
 }
 else {
 ++retryAttempt;
 std::cout << "Second last character is not a carriage return (CR)! \n";
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt << "\n’
 mySDI12.flush();
 }
 }

 else {
 ++retryAttempt;
 std::cout << "Last character is not a linefeed (LF)! \n";
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();

 }
 }
 else {
 ++retryAttempt;
 std::cout << "overflowStatus error\n";
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else{
 ++retryAttempt;
 std::cout << "parityErrorStatus error \n";
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else {
 ++retryAttempt;
 std::cout << "Not enough characters available\n";
 std::cout << "Address Query Command Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }

 std::cout << "Unable to get sensor address after 6 resend attempts! \n";
 return "Error";
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 132

// addChannels() - NOT COMPLETE - START HERE TO FINISH ADD SDI-12 DEVICE
/* addChannels() - a function called from deviceConfiguration() when option 2 is selected (Add
SDI-12 Device). This function searches a configuration file "sensorinformation.txt" which
contains SDI-12 sensor information on the sensor model. The sensor model was found using the
getSensorModel() function. The model parameter is used in this function. The program searches
the file and if the sensor model is found the sensor parameters can be assigned to a channel.
The information needed:
 1) Number of parameter returned by the sensor
 2) The order of results returned from sensor
 3) The name of the parameters returned
 4) The units of the parameters returned

These details for a sensor would be available from sensor manufacturers. The information on a
sensor can be added to the sensorinformation.txt file by manually by any user. The .txt file
provides a means of configuring the sensor without having to enter information every time a new
sensor is added to the logger.
*/

int addChannels(std::string model, std::string address) {
 std::cout << "addChannels() called\n";
 // Construct and ConfigFile object named sicfg for parsing sensorinformation.txt.
 ConfigFile sicfg("sensorinformation.txt");

 // Construct ConfigFile object named lccfg for parsing loggerconfiguration.txt.
 ConfigFile lccfg("loggerconfiguration.txt");

 // keyExists() - function from the Parse.h library that checks if the sensor model name exists
 // as a key in the sensorinformation.txt file.
 if (sicfg.keyExists(model)) {
 std::cout << "Sensor model exists! \n";
 // getValueOfKey() - function from the parse.h library will return a key value for the key =
 // sensor model in the sensorinformation.txt file. The key value will be an integer
 // representing the number of parameters returned from the attached sensor model. The value
 // is returned as an 'int' type.
 int noParameters = sicfg.getValueOfKey<int>(model);
 // Note the value is returned as an int and not a string here
 // getValueOfKey() - will return a key value where key is the "NoOfConfigChannels" from the
 // loggerconfiguration.txt file. The key value will be an integer number representing the
 // number of channels the logger has configured.
 int noChannels = lccfg.getValueOfKey<int>("NoOfConfigChannels");

 std::cout << "Channels are not added to the config file for sensor model '" <<model<<"' at
address '" << address << "' because the addChannels() function is not finished.\n";

 // Important....... Need to set the value of ChanConfigChange to yes in
 // loggerconfiguration.txt after adding the channel.
 }
 else {
 std::cout << "Attached sensor model does not exist within 'sensorinformation.txt' \n"
 }
 return 1;
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 133

Appendix D.5: Generic Functions

/* sendAndReceive() - a function called from takeMeasurements() that sends the command and
returns the sensor response as a char array. It takes the command, a minimum delay time for the
response in milliseconds, the minimum number of characters in the response and the sensor
address as inputs.

A valid response is registered when no parity errors exist in the sensor response and the <LF>
and <CR> characters end the response as specified in the SDI-12 standard.
*/
 char* sendAndReceive(std::string myCommand, int delaymSec, int noChars, std::string address) {
 std::cout << "sendAndReceive() called \n";

 // Construct an SDI12 object named mySDI12
 SDI12 mySDI12(TXENABLE, TXDATAPIN, RXENABLE, RXDATAPIN);
 // Initialise variable to count the number of times the command is sent to the sensor.
 int retryAttempt = 0;
 // Allow 10 attempts at retrieving a valid response
 while (retryAttempt <= 10) {
 // begin() - function from the SDI-12 library that sets the state prior to outputting a
 // command sequence. The rising edge interrupt is set to enabled
 mySDI12.begin();
 if(retryAttempt >=1) {
 // Delay 30ms to clear any noise
 delay(30);
 }
 // outputs the SDI-12 command sent to the sensor
 std::cout << "String sent to SDI12 bus:" << myCommand << "\n";
 mySDI12.sendCommand(myCommand);
 // set delay in milliseconds using the function input parameter delaymSec
 delay(delaymSec);

 // available() -function from the SDI12 library that checks the number of character in buffer
 int charsInBuffer = mySDI12.available();

 if (charsInBuffer >= noChars) {
 std::cout << "Number of characters in buffer" << charsInBuffer << "\n";
 // Checks for a parity error (false = no parity error)
 if (mySDI12.parityErrorStatus() == false) {
 // Checks for a buffer overflow (false = no overflow)
 if (mySDI12.overflowStatus() == false) {
 // Checks that a line feed <LF> character ended the sensor response
 if (mySDI12.LFCheck() == true) {
 // Checks that a carriage return <CR> character came before the line feed character
 if (mySDI12.CRCheck() == true) {
 // Reads the address returned
 char add = mySDI12.read();
 // Convert variable add from char type to string type
 std::stringstream ss;
 std::string addN; // ‘addN’ is the address (type 'char') to be converted to a
'string' type.
 ss << add;
 ss >> addN;
 // Check the first character is the address that the command was sent to.
 if (addN == address) {
 std::cout << "Address is a match with that sent \n";
 // If this if statement evaluates to true the send command and receive characters
 // sequence is started again as the sensor measurement may have been aborted
 if (charsInBuffer == 3 && retryAttempt <= 2) {
 ++retryAttempt;
 std::cout << "Error: Sensor response has no <values> field indicating the and
may have been aborted - Sequence restarted \n";
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 continue;
 }

 if (charsInBuffer == 3 && retryAttempt <= 5) {
 std::cout << "Error: Sensor response has no <values> field after 2 attempts. May
not be any data left or measurement aborted by sensor. \n";

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 134

 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 _charsAvailable = 0;
 static char response[1] = {'@'};
 return response;
 }
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 // store response excluding the address in a character array (max response is 75
chars)
 static char response[75];
 std::string response_str = "";
 for (int i=0; i<=(charsInBuffer-2); i++) {
 //for (int i=0; i<=(noChars-4); i++) {
 char c = mySDI12.read();
 //std::cout << "Character output from buffer are: " << c << "\n";
 response_str += c;
 response[i] = c;
 }
 // Global variable that is an integer number representing the number of characters
 // in the array 'response'.
 _charsAvailable = charsInBuffer-1;
 return response;
 }
 else {
 ++retryAttempt;
 std::cout << "Error: address received is not the sensor address sent in command!\n”
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else {
 ++retryAttempt;
 std::cout << "Error: Second last character is not a carriage return (CR)! \n";
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else {
 ++retryAttempt;
 std::cout << "Error: Last character is not a linefeed (LF)! \n";
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else {
 ++retryAttempt;
 std::cout << "Error: overflowStatus error\n";
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else{
 ++retryAttempt;
 std::cout << "Error: parityErrorStatus error \n";
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 else {
 ++retryAttempt;
 std::cout << "Error: Not enough characters available\n";
 std::cout << "sendAndReceive Retry Attempt Number: " << retryAttempt << "\n";
 mySDI12.flush();
 }
 }
 std::cout << "Error: Unable to get valid response after 6 resend attempts! \n";
 // return the error response
 _charsAvailable = -1;
 static char response[1] = {'?'};
 return response;
}

Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library) 135

/* getInteger() - a function called after a menu option is displayed. The function accepts a
minimum and maximum integer as function parameters. Any character that is an integer outside of
'min' and 'max' or any other entered string of characters will result in invalid entry and
program will continue to wait for a valid entry
*/

int getInteger(int min, int max){
 //std::cout << "getInteger() called\n";
 // Get a valid input
 int myNumber = 0;
 std::string input = "";

 while (true){
 std::cout << "please enter a valid number: \n";
 std::getline(std::cin, input);
 // This code converts from a string to a number safely
 std::stringstream myStream(input);
 //
 if (myStream >> myNumber && myNumber >= min && myNumber <=max){
 return myNumber;
 }
 }
}

Appendix E: Flowcharts for SDI-12 Logger Functions 136

Appendix E: Flowcharts for SDI-12

Logger Functions

Appendix E Contents_Toc433562070

Appendix E Contents ... 136

Appendix E List of Figures ... 136

Appendix E.1: Flowchart for main() .. 137

Appendix E.2: Flowchart for dataFileHeadings() .. 138

Appendix E.3: Flowchart for measurementDelay()... 139

Appendix E.4: Flowchart for takeMeasurment() .. 140

Appendix E.5: Flowchart for sendAndReceive() .. 141

Appendix E List of Figures

Figure E.1 Flowchart for main() .. 137

Figure E.2 Flowchart for dataFileHeadings() .. 138

Figure E.3 Flowchart for measurementDelay() .. 139

Figure E.4 Flowchart for takeMeasurement() .. 140

Figure E.5 Flowchart for sendAndReceive().. 141

Appendix E: Flowcharts for SDI-12 Logger Functions 137

Appendix E.1: Flowchart for main()

Figure E.140 Flowchart for main()

Appendix E: Flowcharts for SDI-12 Logger Functions 138

Appendix E.2: Flowchart for dataFileHeadings()

Figure E.241 Flowchart for dataFileHeadings()

Appendix E: Flowcharts for SDI-12 Logger Functions 139

Appendix E.3: Flowchart for measurementDelay()

Figure E.342 Flowchart for measurementDelay()

Appendix E: Flowcharts for SDI-12 Logger Functions 140

Appendix E.4: Flowchart for takeMeasurment()

Figure E.443 Flowchart for takeMeasurement()

Appendix E: Flowcharts for SDI-12 Logger Functions 141

Appendix E.5: Flowchart for sendAndReceive()

Figure E.544 Flowchart for sendAndReceive()

Appendix E: Flowcharts for SDI-12 Logger Functions 142

Appendix E.6: Flowchart for deviceConfiguration()

Figure E.645 Flowchart for deviceConfiguration()

	DISSERTATION SUBMISSION FORM
	Title Page
	Abstract
	Limitations of Use
	Certification of Dissertation
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Organisations Cited
	Chapter 1: Introduction
	1.1 The Problem at Hand
	1.2 Project Aim
	1.3 Objectives
	1.4: Assessment of Consequential Effects / Implications/ Ethics
	1.5 Existing Solutions
	5.1 Low Cost Raspberry Pi Based Monitoring Solutions
	1.5.2 Low Cost SDI-12 Loggers
	1.5.3 Building Management Systems

	1.6 Potential Project Outcomes
	1.7 Project Methodology
	1.7.1 Research
	1.7.2 Prototype Implementation
	1.7.3 Software Development
	1.7.4 Final Testing and Evaluating the System

	Chapter 2: Background Information
	2.1 Review of Environmental Monitoring Systems
	2.1.1 Overview of Environmental Sensors
	2.1.2 Smart Sensors
	2.1.3 Sensor Networks
	2.1.4 Distributed Measurement and Control – Towards Networked Smart Sensors

	2.2 Overview of SDI-12
	2.2.1 Introduction
	2.2.2 Background
	2.2.3 Electrical Interface
	2.2.4 Protocol

	2.3 The Raspberry Pi
	2.3.1 Raspberry Pi’s Operating System
	2.3.2 Raspberry Pi Hardware Specifications

	Chapter 3: Hardware Implementation
	3.1 Assessment of both the GPIO and UART Approaches to Implementing SDI-12
	3.1.1 GPIO
	3.1.2 UART
	3.1.3 Informing the Approac
	3.1.4 Testing the GPIO Suitability

	3.2 Component Selection and Implementation Considerations
	3.2.1 74XX1T45 Series Chip
	3.2.2 74XX240 Series Chip

	3.3 Schematic of Prototype Implementation
	3.4 Implementing and Testing Hardware

	Chapter 4: Software Development
	4.1 The Arduino SDI-12 Library Implementation
	4.1.1 Description of Modifications to SDI12.cpp
	4.1.2 Description of the setState(state) Function in the SDI12 library for Defining Five Communication States
	4.1.3 Waking Up and Talking To Sensors
	4.1.4 Interrupt Service Routine to Read Data into the Buffer
	4.1.5 Checking for a Valid Response and Reading from the Buffer

	4.2 Configuration File
	4.2.1 Conceptual Design
	4.2.2 Specification for the Database of SDI-12 Sensors
	4.2.3 Specification for the Configuration File

	4.3 SDI-12 Logger Program
	4.3.1 Broad Overview of Functions Called through the HMI
	4.3.2 Organisation of SDI-12 Logger Program
	4.3.3 Main
	4.3.4 Measurement Handling Functions
	4.3.5 Device Configuration Functions
	4.3.6 Generic Functions

	Chapter 5: Analysis and Performance
	5.1 Analysis of SDI-12 Exchanges
	5.1.1 Test Description
	5.1.2 SDI-12 Data Line Waveform Analysis
	5.1.3 Terminal Command Prompt Analysis

	5.2 Testing of Raspberry Pi SDI12 Logger with Three Sensor Attached

	Chapter 6: Conclusions and Further Work
	6.1 Achievement of Project Objectives
	6.2 Evaluation of the Logger
	6.3 Further Work

	References
	Appendix A: Project Specification
	Appendix B: Project Management
	Appendix B Contents
	Appendix B.1: Risk Assessment
	Appendix B.2: Resource Requirements
	Appendix B.3: Project Timeline

	Appendix C: SDI12 C++ Library
	Appendix C Contents
	Appendix C.1: SDI12 Library Header File (SDI12.h)
	Appendix C.2: SDI12.cpp

	Appendix D: Complete SDI12 Logger Program Listing (Excluding SDI12 Library)
	Appendix D Contents
	Appendix D.1: Organisation and Description of SDI12 Logger Program
	Appendix D.2: main() Function
	Appendix D.3: Measurement Handling Functions
	Appendix D.4: SDI-12 Device Configuration Functions
	Appendix D.4.1 Main Configuration Handler Function
	Appendix D.4.2: Add SDI-12 Device

	Appendix D.5: Generic Functions

	Appendix E: Flowcharts for SDI-12 Logger Functions
	Appendix E Contents
	Appendix E List of Figures
	Appendix E.1: Flowchart for main()
	Appendix E.2: Flowchart for dataFileHeadings()
	Appendix E.3: Flowchart for measurementDelay()
	Appendix E.4: Flowchart for takeMeasurment()
	Appendix E.5: Flowchart for sendAndReceive()
	Appendix E.6: Flowchart for deviceConfiguration()

