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Abstract 

Conveyor belts are a critical part of many large mining and materials processing 

operations.  Monitoring systems exist for almost every component of these belts 

except for the belt rollers themselves.  In a typical conveyor system, there can 

be hundreds and often thousands of rollers in operation, and their performance 

is vital to the overall performance of the conveyor system. 

This project developed a self-contained monitoring platform which can be 

integrated within each roller.  The platform operates wirelessly and is self-

powered, meaning it can be sealed inside the roller and does not require 

maintenance or external hardware. 

The sensor platform monitors the RPM, vibration signature and temperature of 

the bearings within each roller.  Temperature and vibration monitoring were 

successfully tested, however RPM measurement was not included in the final 

function set of the platform. 

Using a wireless mesh, the sensor platform demonstrated a range of almost fifty 

metres when transmitting through a steel conveyor roller.  The transmitted data 

correctly represented the state of the bearing in terms of its temperature and 

vibration. 

By implementing real-time, online monitoring of the conveyor rollers in a 

materials transport system, the sensor platform is expected to reduce the costs 

of down time and improve safety for maintenance personnel. 
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Chapter 1  

 

Introduction 

The many moving parts in conveyor systems make inspections and maintenance 

tedious as well as hazardous.  In addition, the high rate of materials transfer of 

most conveyor belts means that any down time of the system translates into 

significant production losses. 

While many parts of a conveyor system, such as the belt itself and the drive 

motors and gears, can be monitored from a single sensor location each, the 

conveyor rollers or “idlers” require many more sensors in many more locations.  

This is because the idlers are spaced out along the length of the belt, so to 

achieve individual monitoring of each idler, an independent, local sensor for 

monitoring is needed for each unit. 

To make monitoring each conveyor roller feasible, this project aims to develop 

a zero maintenance device, designed to fit within a roller and monitor relevant 

performance metrics.  The device will be self-powered and capable of wireless 

communication, with the intent that minimal external components are required 

to enable the system to function. 

Rather than complicate or add extra management needs to an already complex 

conveyor system, this project aims to develop a low-cost add-on to applicable 

systems to provide a useful stream of data while operating invisibly within that 

system.  
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1.1 Objectives 

To achieve the aims of the project and deliver an appropriate solution, a set of 

objectives were specified.  Guided by the initial Project Specification, these 

objectives are: 

 Document the inspection and maintenance challenges faced by conveyor 

system operators.  This includes the cost of downtime and repairs when 

idler components fail. 

 Research the current solutions available to monitor conveyor idlers. 

 Document the common failure modes of conveyor idlers. 

 Determine the performance metrics of conveyor idlers to monitor to 

enable performance measurement and failure prediction. 

 Survey the market and select a sensor platform to monitor conveyor belt 

rollers.  Given the wide range of embedded processing platforms, one 

should be selected to satisfy the power and space restrictions of this 

project, while offering enough flexibility and capacity for future upgrades. 

 Design and construct a suitable power supply system.  The power system 

should be able to support the operation of the sensor and charge a backup 

battery when in normal running mode, as well as draw power from the 

battery in standby mode. 

 Select and implement a wireless communication system.  This system 

must be capable of wireless meshing, self-configuration and healing, and 

support potentially hundreds of wireless transmitters/receivers. 

 Test and evaluate the performance of the system by analysing the output 

data. 

 Discuss the financial viability of the monitoring solution, by estimating 

the initial investment costs and maintenance costs compared to the 

benefits of improved belt roller monitoring.  
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1.2 Project Scope 

This project involves the development of a remote monitoring system applicable 

to belt conveyors, and the hardware and software for the sensor platform only.  

A single pair of sensor platforms will be built for testing purposes. 

1.3 Justification 

Maintenance and monitoring are an important part of industrial operations, and 

although they can be expensive undertakings, the cost of unplanned downtime 

and the resulting loss of production can be even higher.  After working on-site 

at many coal mines around Queensland and New South Wales, it is apparent 

that many conveyors are in a state of disrepair due to the cost of stopping 

production to inspect them, combined with the cost of labour to perform the 

inspection. 

In terms of production at a typical mine, a major conveyor belt shutdown can 

cost millions of dollars per day.  A copper mine, for example, can extract 5,670 

tons of ore per hour, which equates to $320,000 of copper and molybdenum per 

hour (Schools 2015).  A shutdown for just a couple of hours can vastly impact 

the mine’s income.  Another case study, undertaken by Fenner Dunlop (2015), 

investigates the cost of a single day of lost production at Anglo Coal’s Moranbah 

North coal mine.  It is estimated that such an event would equate to over one 

million dollars in lost production. 

An additional concern is personnel safety.  Conveyors have many moving parts, 

known as “pinch-points”, which are a hazard to employees inspecting or working 

nearby an operational belt.  The statistics claim that 57 percent of conveyor-

related accidents occur during cleaning or maintenance tasks, and not through 

regular work routines (Giraud, Massé & Schreiber 2004). 

By developing a system which enables remote, unmanned monitoring, and early 

fault detection of conveyor roller failure, the costs of maintenance and 

monitoring may be reduced. 



 
 

 

Chapter 2  

 

Literature Review  

In this section, the knowledge gained in the process of developing a conveyor 

belt health monitoring solution has been assembled.  It represents a summary of 

the “state of the art” of conveyor monitoring and in particular, Bearing Condition 

Monitoring (BCM).  

BCM is an important component of this project as this field covers the real-time 

monitoring of bearings and the diagnosis of their health by comparing measured 

data with manufacturer supplied data or other known values.  To better 

understand this topic, research into the important aspects of bearing monitoring 

systems, the approaches used and the challenges faced was conducted. 

The first section, over page, includes background information to give the project 

context and illustrate the conveyor belt systems which could benefit from this 

work. 
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2.1 Background 

The process of transporting objects or materials from one place to another is 

fundamental to many commercial operations and is a well-established, mature 

industry.  This section reviews the conveyor types relevant to this project, the 

problems those conveyors face and the health monitoring solutions currently 

available. 

Not all conveyor systems use rollers, therefore the project’s uses (and this review) 

are limited to Belt-On-Roller (BOR) systems.  Despite this limitation, it should 

be noted that each BOR system tends to use at least 50-200 rollers, and systems 

using thousands of rollers are common.  Therefore, the project has significant 

scope for deployment within this subset of the conveyor industry alone.  In the 

following section, the components of BOR systems are covered in more depth. 

2.1.1 Configurations of belt conveyor systems 

Of the many types of conveyors, the belt-on-roller arrangement is the type used 

most commonly for materials transport applications.  They have remained 

virtually unchanged for 150 years and are typically used for carrying materials 

long distances with a single motor (McGuire 2010). 

The main types of BOR systems are flat-belt, trough-belt and pipe-belt, and in 

each type, combinations of rollers are used to support and shape the belt.  The 

belt itself is typically a flexible sandwich of rubber, Teflon, PVC and urethane; 

the exact combination of these is dependent on the material being transported. 

Depending on the length and power requirement of the conveyor system, the 

belt may be driven by a single motor, or a motor at either end, and sometimes 

there may be driven rollers along the belt’s length.  Typically, a belt conveyor 

consists of load bearing rollers which support the belt and material in the 

direction of transport, and another set of rollers located above or below the first 

set support the belt as it travels, un-laden, in the opposite or “return” direction. 

  



2.1 Background    6 
 
To aid in differentiating types of belt conveyors, diagrams have been included 

below.  Figure 2.1, below, shows the arrangement of a flat-belt conveyor.  In this 

arrangement, the load bearing belt slides along a set of rollers, and below this, 

the belt returns on another set of rollers (which are most likely fewer and further 

between than the top set, as they are not load bearing). 

 

Figure 2.1: Cross-section of belt-on-roller conveyor (McGuire 2010, p. 37) 

The most common variation on the above arrangement, and the type most often 

used for conveying loose materials (McGuire 2010), is the troughed-belt 

conveyor, illustrated below in Figure 2.2.  Instead of a flat area for material to 

ride on, this conveyor type relies on another set of rollers at each edge of the top 

belt to bend the belt up to create a trough.  The main advantage of troughed-

belt conveyors is that the belt can be installed on uneven ground, enabling them 

to turn corners and travel up and down hills. 

 

 

Figure 2.2: Simplified troughed belt conveyor design (McGuire 2010, p. 63) 
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The image below (Figure 2.3) shows a trough conveyor’s ability to be curved as 

well as travel up and down an incline.  This image also highlights the complexity 

involved in manually inspecting many conveyor systems, as they can be several 

kilometres long, on elevated platforms, and be hard to access for visual 

assessment. 

 

Figure 2.3: Troughed belt conveyor (BEUMER 2012) 

The other, less common variation on the trough conveyor is the pipe conveyor.  

A cross-section of the pipe conveyor is shown by Figure 2.4, in which the rollers 

can be seen on all sides, causing the belt edges to overlap and form a pipe. 

McGuire (2010) explains that this type of conveyor, although being more 

expensive to install and maintain, can climb steeper angles than the standard 

troughed-belt and can navigate tighter horizontal and vertical curves. 

 

Figure 2.4: Cross section of a pipe conveyor (McGuire 2010, p. 66) 
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2.1.2 Roller Failure Modes 

For this project, a roller is considered to have failed when it has either stopped 

rotating, i.e. experienced seizure, or has been externally worn enough to result 

in fracture and therefore be at risk of damaging the belt it supports.  These are 

the extreme failure modes, and in reality, a roller causing excessive vibration or 

noise should be replaced before it reaches these stages of failure. 

Conveyor belt rollers, being mechanically simple devices, experience failure in 

their only moving interfaces, those being the bearings and the outside of the 

roller.  Located at either end of the central axle, a pair of bearings supports the 

outer shell or “drum” of the roller, so that it can be spun by the belt, which rests 

on the roller.  Figure 2.5, below, presents a cut away view of one end of a typical 

roller.  On the central shaft, a bearing is shown which attaches to the end cap.  

The steel outer shell is also attached to the end cap.  As can be seen below, 

much of the centre of the roller is hollow, and it is in this space that the 

monitoring system is designed to operate. 

 

Figure 2.5: Cut away of a roller end (Rulmeca, 2013) 

The first failure mode, which is the wearing through of the roller outer shell, 

leading to structural collapse, is the result of a combination of manufacturing 

error and in-service wear.  Research by Watson and Niekerk (1989) discusses the 

wear issues caused by out-of-balance rollers, the measure of which is their Total 

Indicated Runout (TIR).  This factor is not discussed by more modern day 
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research by Zhao (2011), however, which blames misalignment of the rollers with 

the belt as being a cause of failure.  The resulting transverse movement of the 

belt across the roller creates vastly more wear than pure rolling friction would 

create.  The difference in the conclusions of each paper is hypothesised to be due 

to the improvement in manufacturing techniques since 1989, leading to the 

likelihood of out-of-balance rollers diminishing (but the likelihood of manual 

misalignment staying the same). 

The second failure mode, where the roller seizes completely, is attributable to 

the failure of its internal bearings.  However, the cause of bearing failure is not 

due to the bearings simply reaching their end-of-life (known as their “service” 

life).  As the SKF information page on “Bearing life and load ratings” explains, 

failures due to raceway spalling (which is more likely to be the result of a 

manufacturing defect) are very rare events (SKF 2015).  According to SKF, 

bearing failure is significantly more likely to be the result of corrosion, improper 

mounting or tolerances, contamination, moisture or failure of the lubrication 

system.  As a bearing manufacturer, this does not come as a surprise, that 

bearing issues are blamed on the implementation of the bearing and not the 

manufacturing. 

Fortunately for SKF, the literature supports their claims.  Articles by Zhao 

(2011) and Reicks (2006) point to breaching of the bearing seal, repeated impacts 

and contamination as common causes of conveyor roller failure.  These articles 

only discuss the environmental aspects of roller wear, but the human factor is 

an important consideration as well.  As found in a reliability investigation by 

Hughes (2004), at particular installation where the Maximum Time Between 

Failure (MTBF) had dropped to 2.5 weeks, the root cause was found to be over-

lubrication and incorrect training of servicing personnel. 

Evidently, ensuring continued operation of a conveyor system is no simple task, 

as it requires not only suitably designed and specified rollers, but a well-

maintained installation which includes an understanding of the servicing 

required and trained workers capable of carrying out this maintenance.  During 

normal operation the conveyor system must be regularly inspected to find rollers 

beginning to show signs of the failure modes discussed. 
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2.1.3 Existing roller monitoring techniques 

Current solutions to monitoring conveyors are largely manual methods which 

require one or two personnel to be physically near the roller under investigation.  

The methods used rely on hand-held tools which measure and analyse heat, 

vibration, acoustic emissions or a combination of these. 

An example of such a device is the BearingChecker, made by SPM Instruments.  

This handheld unit is specifically designed for bearing inspections and it uses 

the Shock Pulse Method (SPM) to detect bearing faults.  It also includes an 

infrared sensor for “hot spot” detection and can be used as an “electronic 

stethoscope” to detect acoustic anomalies (SPM 2015).  The product is shown in 

Figure 2.6. 

 

Figure 2.6: The handheld BearingChecker (SPM 2015) 

In many cases, conveyor rollers are difficult to access (Janse van Rensburg 2013) 

and so for a completely non-contact approach, several products are available 

which use infrared (IR) thermography to capture “hot spots”.  These are areas 

of the roller which are significantly higher than the surrounding areas.  Figure 

2.7 shows a product made by FLIR, the E6, which has a thermal sensitivity of 

less than 0.06 °C and an accuracy of ± 2 °C (FLIR 2015).  When using such a 

device, the relative temperatures of nearby rollers must also be measured, to 

determine whether the “hot spot” is due to environmental conditions or is a sign 

of early bearing failure. 
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Figure 2.7: FLIR E6 handheld IR camera (FLIR 2015) 

Until very recently, there were no known inspection solutions which offered 

remote monitoring of individual rollers.  This changed in August 2015 when a 

Sydney-based company named Vayeron released their “Smart-Idler” product.  

The product has the same goals as the Roller Sensor Platform and is also 

intended to be a self-powered, wireless monitoring system which is integrated 

inside the roller.  The one advantage the Smart Idler (Figure 2.8) has over this 

project is the inclusion of Radio Frequency IDentification (RFID) within the 

roller to enable its serial number and service history to be extracted directly 

(without using the wireless mesh network). 

 

Figure 2.8: The Smart Idler from Vayeron (AIMEX 2015) 
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2.1.4 Benefits of remote monitoring 

There are many benefits to implementing the remote monitoring of processes 

and plant.  The benefits applicable to conveyor belts are highlighted below: 

 Statistics about conveyor operations, e.g. tonnage/hour 

A remotely monitored roller network could maintain current and past 

records of the RPMs of each roller.  From this record, the belt speed can 

be determined and estimates of production rates calculated. 

 Improved safety; no physical access required 

The majority of current inspection techniques require the inspector to be 

located within reach of the conveyor.  As mentioned in Section 1.3, these 

non-standard practices are the most likely to cause injuries.  By keeping 

personnel physically separated from the conveyer belt but still able to 

access its health and performance information, less chance of injury exists. 

 Up to date data 

Rather than sorting through hundreds or often thousands of conveyor 

roller maintenance records, a digital system can monitor roller age and 

determine expected lifespan remaining.  Alerts could be set up to provide 

warnings about ageing rollers. 

 Prevents damage to the belt and reduces the risk of fire 

By catching developing faults early, planned maintenance could be 

carried out, well before the risk of the roller either seizing or fracturing 

and causing belt wear and/or tearing. 

 Maintains efficiency for lower overall power use 

Fewer seized rollers translates into less energy used to drive the belt and 

lower environmental impact, especially in terms of noise (Yusong & 

Lodewijks 2011). 
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2.2 Bearing Condition Monitoring 

Found in almost all machinery with moving and rotating parts, bearings are 

fundamental to the operation of many machines.  When used and protected 

appropriately, they can have long service lives, but the consequences of their 

failure can often be equipment damage and production losses. 

 

Figure 2.9: Ball bearing (SKF 2010) 

Bearings generally consist of four components, the inner race, outer race, roller 

and cage.  Each race is a ring, and between the inner and outer races sit the 

rollers, which are rolling elements (steel balls, in the case of non-thrust bearings) 

held in place by the cage.  By placing rollers between two rings, bearings can 

carry load and eliminate friction (El-Thalji & Jantunen 2015). 

Whether due to design error or manufacturing error, bearings are known to fail.  

A past study conducted by the Motor Reliability Working Group found that 

bearing failure (in electrical motors) was the cause of 41% of all break downs 

(IEEE 1985).  Although the data in this study was collected in 1982, it is still 

relevant today as the mechanical construction of rotating machinery relies on 

the same components.  What has changed, however, is the availability of 

electronic, digital monitoring systems in miniaturised packages which can be 

deployed at low cost. 
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2.2.1 Collecting bearing data 

In recent years, new approaches have been developed for Bearing Condition 

Monitoring (BCM).  The monitoring techniques relevant to conveyor idlers are 

based on either acoustic, vibration, or temperature inspection.  Although Zhou, 

Habetler and Harley (2007) present other monitoring techniques such as 

chemical analysis, laser monitoring and electrical current monitoring, these are 

outside the scope of this review.  For rolling element bearings, vibration and 

temperature are the most direct indicators of bearing failure (Yusong & 

Lodewijks 2011); these methods will be explored further. 

When in operation, bearings should maintain a constant temperature.  If 

damaged or worn, the moving part of the bearing will often experience increased 

friction, resulting in higher temperature (Scott et al. 2011).  Using this principle, 

a healthy temperature range can be established and variations from this would 

be considered signs of trouble. 

Much of the literature is focused on the application of BCM to existing machines, 

which have been designed without consideration for BCM.  Due to the need for 

sensors to be tightly mounted to, and integrated with, monitored bearings, and 

because bearings are often sealed or hard to access, BCM is difficult to 

implement as an afterthought. 

Of the considered monitoring approaches, vibration monitoring is most affected 

by mounting location.  A review by Zhou, Habetler and Harley (2007) is 

particularly critical of this monitoring technique.  In their review, they list the 

need for internal access to the machine, the need for many sensors, the need for 

expert mounting of sensors and the fact that sensors fail as disadvantages of 

vibration monitoring.  However, if a machine was designed by the Original 

Equipment Manufacturer (OEM) to be compatible with vibration sensors, this 

would negate most of their criticisms except for the claim that sensors fail (faster 

than bearings).  Once again, these sensors would be easier to access and replace 

if their location had been planned early in the machine’s design phase. 

In reality, many candidate machines were operating long before BCM became a 

viable option, and retrofitting these machines is a difficult task.  Vibration 

sensors need to be mounted essentially on the bearing race itself.  Typically, this 
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is not possible, so sensors are mounted on the bearing housing.  Acoustic 

emissions sensors, while similar in operating principle to vibration sensors, have 

slightly more mounting flexibility, as they do not have to be mechanically linked 

to the bearing under measurement, but mounting them in close proximity to the 

bearing is still vital.   

Sensor location is also important for temperature sensing.  When considering 

temperature monitoring using a thermocouple, for example, mounting on the 

bearing housing makes the sensor slow to respond to changes within the bearing 

itself (Scott et al. 2011).  Where possible, direct contact with the bearing race is 

preferable.  It could be inferred then, that in all cases, mounting a sensor further 

away from the bearing race itself would reduce the responsiveness of the sensor 

to bearing emissions and make it more affected by other signal sources, i.e. 

“noise”. 

By approaching the monitored bearing from the inside, rather than the outside, 

this project expects to be able to circumvent most of the aforementioned 

challenges.  The sensor platform is located within the sealed or “clean” side of 

the roller enclosure, which should mean that most existing roller designs could 

easily be modified to give direct access to the bearing races.  Additionally, 

vibration sensors can mount directly to the shaft supporting the bearing, which 

should yield a signal relatively unpolluted by other sources of vibration. 

Even with a clean signal source, sensor data is cannot be analysed in its raw 

form.  Vibration signal data, especially, requires some processing before analysis 

can begin. This processing is covered in the following section. 
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2.3 Signal processing  

Simply collecting and storing the data produced by sensors does not constitute 

a BCM solution.  The data must be processed, to yield features of interest, and 

this signal processing is one of the major, challenging aspects of machine 

condition monitoring (Goyal & Pabla 2015). 

Data processing can be a complex link in the monitoring system chain.  As shown 

below, in Figure 2.10, this step is one of four main steps in the system.  From 

left to right, the system begins with raw sensor input, which for this project is 

from a temperature or vibration sensor.  This data must then be acquired and 

stored for enough time to collect a dataset to be processed.  To perform this 

function, a microcontroller (with on-board memory) would be used.  The next 

step is the processing of the data, which includes filtering, sampling, and can 

involve transformation to the frequency domain.  Once a suitable data set is 

obtained, this needs to be interpreted to diagnose the state of the bearing.  This 

can be as simple as comparison with a pre-calculated value (model-based 

approach), or it can involve Artificial Neural Networks (ANNs), expert systems, 

fuzzy logic or Support Vector Machines (SVMs) (El-Thalji & Jantunen 2015). 

 

 

Figure 2.10: Vibration data analysis process 

 

Much literature has been produced discussing signal processing techniques, and 

all the reviewed articles agreed on the advantages and drawbacks of each 

technique.  Only literature discussing vibration sensor data processing was 

reviewed, as although temperature data will require some processing as well, a 

time-based average measurement is expected to be sufficient.  A short overview 

of the common signal processing techniques is included in the next section. 
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2.3.1 Statistical Models 

This category of signal processing methods includes the oldest and therefore 

computationally simplest analysis techniques.  These methods are based in the 

time domain (as opposed to the frequency domain) and include parameters such 

as average, Root-Mean-Square (RMS), crest factor and kurtosis.  Both El-Thalji 

and Jantunen (2015) and Goyal and Pabla (2015) claim that these are the 

methods most commonly used by current vibration monitoring systems. 

By trending, or storing computed values over an extended period of time, a data 

set is produced which can then be analysed for signs of bearing failure.  For 

example, if the RMS vibration speed increased over time but bearing rotation 

speed remained constant, this may signify a developing fault. 

More involved measures, such as kurtosis, analyse the shape of the waveform in 

terms of its “spikiness”.  Kurtosis of a given dataset is defined as the ratio of the 

fourth moment and the second moment (variance) squared.  Sawalhi and 

Randall (2011) found that the kurtosis of a vibration signature increased linearly 

as the defect size grew, so this can be a good method to use for early fault 

detection.  However, the kurtosis value begins to plateau as the fault grows and 

so this technique is best for narrow bandwidth use at high frequencies, where 

the fault can be caught early. (El-Thalji & Jantunen 2015). 

2.3.2 Fast Fourier Transform 

Using vibration data collected in the time domain, analysis can be performed on 

the peak frequencies present in the data by using a Fast Fourier Transform 

(FFT) to view the signal in the frequency domain.  As discussed by Norton and 

Karczub (2003), bearing element rotations generate a set of discrete frequencies, 

based on the bearing’s geometry and its rotational speed.  By analysing the 

vibration data in the frequency domain, it can be seen whether these discrete 

frequencies are present.  If present, each frequency can represent a developing 

fault in the inner or outer races, the bearing cage or the rolling elements 

themselves.  Once the peak frequencies are known, the data interpretation stage 

can be as straightforward as matching these frequencies to the bearing 

manufacturer supplied data to determine the location of the fault. 
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Like the other processing methods, a pure FFT computation is not ideal for 

extracting features of interest from real-world signals.  Multiple authors point 

out that an FFT is unsuitable for non-stationary signals (i.e. noisy signals) and 

it results in a loss of time information, so that signal change over time cannot 

be determined.  A simple improvement which addresses these issues is the Short 

Time Fourier Transform (STFT), which breaks up the data into much smaller 

time windows and performs a standard FFT on each window (Goyal & Pabla 

2015), thereby capturing the variation in signal over time.  

2.3.3 Wavelet Transform 

Operating in a similar fashion to FFT transforms, Wavelet transforms use a 

family of functions which satisfy certain requirements (the wavelets) instead of 

sine and cosine functions (as in an FFT) to transform the signal.  The surveyed 

literature, from Vidakovic and Mueller (1991), Goyal and Pabla (2015) and El-

Thalji and Jantunen (2015) agrees that this approach is a good compromise 

between the time and frequency views of the signal.  Additionally, the wavelet 

transform can represent many classes of function with much fewer basis functions 

than sine and cosine basis functions, which is very useful for data compression. 

There exist two methods for calculating a wavelet transform, which are Discrete 

Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT).  The 

difference in each approach relates to how the scaling factor is chosen. 

2.3.4 Hilbert-Huang Transform 

Developed specifically to analyse real-world data, i.e. nonlinear and 

nonstationary processes, the Hilbert-Huang Transform (HHT) gives sharper 

results than the traditional methods to obtain time-frequency-energy 

representation (Huang, Wu & Long 2008).  The HHT is a convolution between 

Hilbert Spectral Analysis and Empirical Mode Decomposition. 

Many authors agree that some of the other advantages of the HHT are its 

computational efficiency as well as avoidance of issues relating to time and 

frequency resolution.  However, Peng, Tse and Chu (2005) noted that there are 

some shortcomings in the HHT approach, which can be minimised by using a 

Wavelet Packet Transform (WPT) before applying the HHT. 
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2.3.5 Sampling Rate Requirements 

In order to capture features of interest in the vibration data signal, a minimum 

sampling rate must be achieved.  Too low a sampling rate results in an aliased 

sample output which does not accurately represent the input. 

Typically, designers turn to the Nyquist-Shannon sampling theorem, but this 

guideline is often misused (Wescott 2015).  The theorem states that as long as 

you sample faster than double the highest frequency component of the spectrum, 

then an accurate representation of the signal can be obtained.  While this is a 

good starting point, it is preferable to start with a much higher sampling rate 

and, based on the nature of the signal, reduce the rate as much as possible while 

still satisfying the demands on the output signal.  For this project, and the 

bearings sizes used, there are unlikely to be signals greater than 500 Hz (SKF 

2010) of interest, therefore a sample rate of over 1 kHz will be desirable. 

2.4 International Standards 

In the field of vibration monitoring, many engineering standards have been 

produced that describe the sensor types to use, sensor mounting locations and 

data processing techniques.  The primary standards are discussed in this section. 

The first series of standards are the ISO 10816:1995 series.  These cover the 

vibration measurement of machines on non-rotating parts.  Most of the 

guidelines in this standard are not applicable to this project, as they are intended 

for steam turbines and generators above 15 kW.  The “general guidelines”, which 

is the first standard in the set, is much too general to be much use.  It does 

mention the recommended sensor mounting locations but only for the 

measurement on non-rotating parts of horizontal machines.  The diagram of the 

mounting locations is included over page, as Figure 2.11.  Although basic, this 

diagram is duplicated by several other standards. 

A more thorough standard on the topic of vibration monitoring is ISO 

13373:2005.  This series covers the approaches to signal measurement and 

processing in greater detail, and provides a more up-to-date summary of the 

current analysis techniques in use.  The standard also includes a guide to help 

choose an analysis technique, based on the machine type and size to be 

monitored. 
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Figure 2.11: Transducer locations for vibration measurements (ISO 1995) 

Another relevant standard is ISO 18431:2007, which covers the major approaches 

to signal processing in depth.  This standard was an informative guide to the 

different analyses that can be performed on a data set. 

Compared to other literature, the reviewed standards do not contribute much 

useful information or direction which is relevant to this project.  This is largely 

because the standards are intended for large machines, which (traditionally) 

would have been the only size for which it was worth deploying an expensive 

commercial monitoring system. 

Therefore, the standards have been used as a guideline rather than a rule, and 

the optimum locations of sensors will be determined experimentally to suit this 

specific application of vibration monitoring. 

 

 



 
 

 

Chapter 3  

 

Methodology 

In this chapter, the approach to satisfying the project objectives is detailed.  

These objectives are: 

1. Establish the characteristics of conveyor rollers which indicate their 

health.  

2. Design a sensor platform to collect and broadcast these characteristics. 

3. Test the performance of the system by analysing output data. 

In essence, the Roller Sensor Platform (RSP) project can be broken into four 

stages: research, design, build and finally, test.  At each project stage, a 

particular methodology was adopted, and the details of each approach will be 

explored in further detail. 

Additionally, project considerations such as the project timeline and the 

potential risks during project execution are included. 
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3.1 Research Methodology 

The first stage of the project involved an investigation into the components, 

operation and health indicators of conveyor belts, which was undertaken in the 

previous chapter. 

When conducting this research, efforts were made to ensure the referenced 

material was suitable for use in a formal research capacity.  This meant using 

research that was typically not more than fifty years old, and if older than this, 

scrutinizing it carefully to ensure it was still relevant.  This relatively long time 

period was chosen based on the largely mechanical nature of conveyors and their 

components, and the expectation that little has changed in the construction of 

bearings over this length of time.  This assertion was supported by McGuire 

(2010), who wrote that little had changed in belt conveying systems for 150 

years.  For the other research topics, e.g. (digital) wireless sensors and (digital) 

signal processing, much of the research has only been undertaken in the last 

three decades, which makes old, superseded research unlikely to be a concern. 

The next criterion when evaluating research was its level of professionalism, in 

terms of its quality and peer reviews.  Many articles were found which appeared 

to have been published in a journal but which were poorly written and had no 

evidence of a peer review process.  Such articles were discarded and instead, 

articles which were either written by well known, prolific authors in the field or 

articles found in respected publications were referenced. 

Finally, local research material was sought (whenever possible) to aim to meet 

the project objectives with a solution which is applicable to local needs.  The 

exact requirements of any solution would vary with region and industry, and 

with a view to implementing this product in an Australian coal mine, the issues 

and environment of these operations were kept in mind when evaluating the 

relevancy of research material. 
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3.2 Design Methodology 

As a proof-of-concept device, the RSP will be built using Commercial Off The 

Shelf (COTS) components as opposed to custom made assemblies of electrical 

components.  Although this design approach leads to a solution which is not as 

integrated or compact as it could be, nor ready for field trials, it reduces the 

development and troubleshooting time.  A large component of this project is the 

software development to poll data from connected sensors and transmit it 

wirelessly, and for this programming work it is important to have a hardware 

platform which is stable, well tested and well documented.  A processing 

platform and/or a power supply built from scratch is unlikely to provide this so 

a COTS based approach was chosen instead. 

To solve the problem of remote signal monitoring, data processing can either be 

performed locally on each RSP or centrally, by broadcasting the raw data to a 

central server.  Both topologies have their merits, however, the decision was 

made to perform as much processing on-board as possible.  This distributed 

processing approach reduces the strain on the wireless network and the central 

server.  The decision was also influenced by the claim by Huang et al. (2015) 

that there is currently no bandwidth-efficient method to broadcast raw vibration 

data across a wireless network. 

As the RSP is a new concept, it is important that its design can be accessed and 

improved on by others.  This design goal meant that a commonly used hardware 

platform was preferred over an obscure one, and a programming language in 

widespread use was sought over a language with a niche market or specific 

application. 

The following sections detail the design decision process and the resulting 

components chosen for the RSP.  
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3.3 Processing Platform Selection 

To select an appropriate Micro Controller Unit (MCU) board on which to base 

the test platform, the following factors were taken into consideration: 

 Accessibility: the platform should be easy to use and program, be 

thoroughly documented, and easy to obtain. 

 Compatibility: the platform should be compatible with a wide range of 

readily available sensors, wireless transceivers and other peripherals to 

enable straightforward integration. 

 Cost: The platform should be low cost as it is for an early proof of concept 

investigation only. 

 Temperature requirements: Within a conveyor belt roller, it is assumed 

to be a sealed and therefore dry and dust free environment, so the MCU 

does not need to be waterproof.  However, it may have to handle high 

operating temperatures.  The maximum possible temperature (before the 

bearing begins to fail, and hence damage to the roller starts to occur) is 

typically 120 °C (SKF 2010). 

 Physical size:  The platform must fit within a mock-up of a mid-size 

roller, between the roller and the shaft.  Ideally, size should be as small 

as possible. 

 Power use: Due to limited battery capacity, the platform should draw as 

little power as possible.  This in turn reduces load on the dynamo and 

the conveyor system as a whole.  A platform which accepts 5 Volt input 

will be suitable. 

 Clock Speed: Conveyor belts can reach speeds of 9 m/s (Yusong & 

Lodewijks 2011).  Therefore, to measure RPM, the MCU will have to 

read a sensor at a minimum rate per second (Hertz).  For example, for a 

conveyor speed v = 9 m/s, and a roller diameter of D = 100 mm (worst-

case, i.e. smaller and faster than many conveyor rollers), the roller will 

spin at: 

𝑛𝑅𝑂𝐿𝐿𝐸𝑅 =
𝑣𝐶𝑂𝑁𝑉𝐸𝑌𝑂𝑅

𝜋 𝑥 𝐷
=

9

𝜋 𝑥 0.1
= 28.6 𝑟𝑒𝑣.  𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑             (3.1) 
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If the roller rotates at up to 28.6 revolutions per second, this equates to 

a read rate of 28.6 Hz.  The other speed requirement is for vibration 

frequency detection.  Using the Nyquist-Shannon sampling theorem as a 

guideline, the sample rate should be at least double the frequency of 

interest.  If the commonly used set of roller bearing tend to generate 

frequency signals at less than 500 Hz (SKF 2015), then the sample rate 

must be at least 1 kHz.  As most modern MCUs operate in the MHz 

range, these clock speed goals should be easily achievable. 

 Vibration requirements: The board may have to survive long-term 

impacts and shocks, and should be able to be securely mounted to 

minimise the potential for damage to occur. 

 SRAM: In order to read, store and compute a high-resolution set of 

vibration measurements, significant amount of SRAM may be required.  

For the initial prototype, the program may not be fully optimised and 

may use more memory than necessary. 

 EEPROM: Only very few variables will be required to be stored in non-

volatile memory.  This may be parameters such as the roller ID, and 

possibly a status indicator so that if powered on individually, the roller’s 

state could be determined without a link to the network.  In summary, 

the available EEPROM on most MCUs is unlikely to be restrictive. 

 IO: The input/output requirements of the RSP are simple.  Assuming a 

worst-case requirement of 3 vibration sensors with 1 analogue channel 

each, 3 temperature sensors with 1 analogue channel each, 2 digital 

channels for wireless interface, and 2 digital channels for LED indication, 

the total requirements are 5 analogue and 4 digital channels. 

Based on these requirements, the chosen MCU board is the Arduino Fio.  It is 

based on the ATmega328 MCU, has a compact, minimalist design with few extra 

components, yet it can accept 3.3-12 Volts input power supply and includes 

sufficient interface channels.  The Fio also includes a lithium polymer battery 

charging circuit, and a connector for XBee devices, which makes attaching a 

range of wireless transceivers a straightforward task. 
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Below is a summary of the MCU board requirements, compared to the Fio’s 

features: 

Table 3.1: MCU Requirements vs Features 

Requirement Capability 

Greater than 1 kHz clock 
speed 

8 MHz 

Operation in up to 120 
degrees C environment 

-40 to 85 degrees (MCU only) (Atmel 
2014) 

Low power 
Up to 360 mW (MCU only) (Atmel 
2014) 

5 Volt power input 3.3-12 V (Arduino.cc 2014) 

6 analogue IO pins 8 

4 digital IO pins 14 

Potentially large amount of 
SRAM 

2 kB 

Small amount of EEPROM 1 kB 

Small size 28 x 65 x 5 mm (L x W x H) 

Easy to program MCU 
ATmega328 programmable in 
C/Arduino 
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3.4 Peripheral Component Selection 

To support the MCU platform, a range of input devices (sensors), output devices 

(RF transceiver) and power sources (battery and dynamo) are required.  The 

process behind the selection of each process is detailed below. 

3.4.1 Dynamo selection 

To power the RSP during normal operation, a dynamo will be used to remove 

the dependency on batteries.  During normal RSP operation, the dynamo should 

be able to both power the platform and at trickle charge the battery.  A small, 

6 V DC motor (made by Mabuchi Motor Co.) was chosen to be used as a 

dynamo, as it is listed as being a 6 V motor which can output 0.8 W to 4.5 W.  

As the MCU requires only 360 mW, and the MAX1555 battery charging circuit 

requires up to 1 W, this dynamo should be able to support devices both easily.  

Due to the output voltage of the dynamo varying according to RPM, a voltage 

regulator circuit will be required to provide stable power for the MCU. 

3.4.2 Power regulation 

Under normal operating conditions, the RPM of the roller and the dynamo will 

be constant, resulting in a constant voltage supply from the dynamo.  However, 

in over-speed or under-speed conditions, the voltage will vary and will need 

regulation, which can be performed by a Zener diode.  Using a voltage regulator 

and a circuit to control power delivery, the RSP will be able to be powered 

without interruption, whether using generated power or power from a battery. 

3.4.3 Battery selection 

The range of battery technologies on the market are many and varied, but for 

simplicity and reliability, the optimal choice is a Lithium-Ion cell.  Their light 

weight, good energy density, stable voltage output, simple charging process 

makes them an easy technology to implement.  However, they can fail 

dangerously under certain conditions (like overcharging and overheating), and 

in certain industrial operations (e.g. underground coal mines) they are banned 
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outright.  For production use, more investigation into a Sealed Lead Acid (SLA) 

rechargeable battery would be undertaken.  Although not the most compact (i.e. 

energy-dense) type of battery, these batteries are easy to charge using a “trickle” 

system, and are not known to explode or catch fire when malfunctioning.  Since 

an MCU board with a built-in Lithium-Ion charger was found, this battery 

technology was chosen for the prototype. 

3.4.4 Wireless module selection 

The concept behind this sensor platform describes a form of wireless network 

topology known as a mesh.  In this arrangement, each roller system can talk to 

each neighbouring roller, in order to pass data through and on to the mesh 

gateway, which connects all the rollers to the outside world.  To demonstrate 

this concept, the chosen wireless module is the XBee PRO Series 2.  This module 

comes with inbuilt meshing capability and requires minimal configuration to 

create a resilient, wireless mesh network.  The module operates at 2.4 GHz, is 

listed as cable of transmitting over distances up to 120 m at a power output of 

2 mW, and can scale to networks of thousands of nodes. 

3.4.5 Temperature sensors 

When choosing a temperature sensor, several considerations were made.  Factors 

such as measurement range, accuracy, interface complexity and cost were 

considered in the decision to use a digital IC sensor, instead of an analogue 

thermistor, thermocouple or a Resistance Temperature Detector (RTD).  This 

was primarily because of the advantages a digital interface has over analogue, 

the main advantage being that the Analog-to-Digital Convertor (ADC) of the 

MCU is not required.  Since using the ADC is a relatively slow task, this frees 

the MCU to continue with the rest of the program.  Using a digital interface 

also reduces MCU channel requirements, as the chosen IC, the DS18B20 from 

Maxim Integrated, works on a “one-wire” bus, allowing multiple sensors to be 

connected to the same digital channel.  With less pins required, and no ADC 

needed, a simpler MCU could be used in future RSP versions. The selected IC 

can read temperatures from -55 °C to +125 °C with an accuracy of ± 0.5 °C. 
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3.4.6 Vibration sensors 

The type of vibration sensor to be used is a Micro Electrical-Mechanical System 

(MEMS) accelerometer.  This type has advantages over other vibration sensor 

technologies as it is very compact, can measure a wide range of frequencies, is 

reliable and can have high sensitivity (Goyal & Pabla 2015). Accelerometers 

with analogue or digital interfaces are available, and a digital interface was 

chosen as it is more resilient against signal interference and again, does not 

require the ADC of the MCU.  The chosen accelerometer, the ADXL345 from 

Analog Devices, offers three axes of measurement, with the ability to measure ± 

16 g along each axis, and can survive a shock of up to 10,000 g.  The sensor 

returns data in a 16-bit, twos complement format.  Some tuning and adjustment 

of mounting location and orientation will be required in order to detect the 

suitable range of frequencies for bearing health monitoring. 

3.4.7 Drive motor 

To simulate conveyor operation, the roller will be driven by an external motor.  

The motor used is from a vacuum cleaner, which is a “universal” motor.  This 

type of motor is advantageous as it can be powered by AC or DC current, at a 

range of voltages.  Rotational speed must be limited by an external load, to 

prevent motor “runaway”, and the motor requires significant airflow for cooling.  

Using the speed control (also taken from a vacuum cleaner) the RPM of the 

roller will be able to be adjusted to simulate different operating speeds. 

3.4.8 Indicator LEDs 

The proof-of-concept system includes externally visible indicator LEDs which 

can be used to diagnose the health of the roller.  These LEDs will be controlled 

by the RSP to show a red light if the roller is determined to be unhealthy, and 

a green light when operating normally. 
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3.5 Software Selection 

The majority of modern, general purpose microcontrollers are designed to be 

programmed using the C/C++ programming language.  Its widespread use 

makes learning and sharing work easy and with this in mind, an MCU designed 

to be programmed in C was selected (the Atmel ATmega328).  Many examples 

of the Arduino project are based on this series of MCUs, and include a bootloader 

and an Integrated Development Environment (IDE) which simplifies the coding, 

debugging, compiling and loading of the program onto the MCU.  With this in 

mind, an MCU with an Arduino bootloader was found, due to its simplicity and 

full compatibility with C programming. 

In the long-term, a “pure” C program would be preferred, but this would be an 

easy conversion from the Arduino approach.  Existing libraries which make 

interfacing with sensors easier are available, and these will be used so that data 

collection and evaluation of the sensors’ suitability can begin as early as possible. 

3.6 Software Design 

The approach taken to programming an embedded system should be carefully 

considered to ensure the system can meet performance, responsiveness and 

reliability requirements.  Fortunately, in the case of the RSP, program 

requirements are simple, and there are no user interaction considerations to 

make.  Additionally, the system does not have high performance demands, and 

can sample and process data to provide regular, but not necessarily real-time, 

information. 

While some embedded systems must be programmed to operate in a time-

dependant way, and must avoid delays in program loops (e.g. in a system flying 

an aircraft, where program delays could result in control command delays and 

therefore a bumpy or jerky response), the RSP does not have this requirement.  

Therefore, each program action can be programmed as a separate function, 

which returns the data it gathers when it is ready.  In effect, the central program 

passes control to each sub-routine, which passes control back when it is ready. 
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3.6.1 Program PDL 

Initially, the operation of the program can be mapped out using Program 

Descriptive Language (PDL), which uses plain English to summarise the steps 

involved in running the program.  The parts of the program are shown below in 

Figure 3.1. 

 

Figure 3.1: PDL for monitoring platform  

BEGIN 

 Initialise ports,serial 

 ID = roller identification number 

 DO FOREVER 

  RPM = CALL getRPM 

  FREQ = CALL calcFREQ 

  TEMP1, TEMP2 =  readTEMP 

  UPTIME = current time 

  OUTPUT = CALL formatDATA 

  TRANSMIT OUTPUT 

  WAIT 10 seconds 

 ENDDO 

END 

 

BEGIN/getRPM 

 WHILE no RPM tick is detected 

  wait for tick 

 ENDWHILE 

 previous time = current time 

 WHILE no RPM tick is detected 

  wait for tick 

 ENDWHILE 

 time elapsed = current time – previous time 

 RPM = 3600 / time elapsed 

 RETURN RPM 

END/getRPM 

 

BEGIN/calcFREQ 

 FOR i = 1 to i = n 

  READ X axis from sensor 

  store value to data 

  increment i 

 ENDFOR 

 FREQ = calculated vibration parameter from data 

 RETURN FREQ 

END/calcFREQ 

 

BEGIN/readTEMP 

 TEMP1 = READ TEMP SENSOR 1 

 TEMP2 = READ TEMP SENSOR 2 

 RETURN TEMP1 and TEMP2 

END/readTEMP 

 

BEGIN/formatDATA 

 OUTPUT = START, ID, FREQ, TEMP1, TEMP2, RPM, UPTIME, END 

 RETURN OUTPUT 

END/formatDATA 
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3.6.2 Output Format 

In order for the data from the sensor platforms to be recorded in a central 

location, the format of the transmitted data must be defined and must remain 

consistent from platform to platform.  Essentially, the data from the RSPs must 

be broadcast in packets that follow the conventions common to other 

communications protocols.  Typically, a packet contains a start header, and end 

header, and the data is located in-between.  Many protocols also make use of a 

checksum to determine if the data has been transmitted without error.  However, 

transmission error handling is performed by the wireless radios, and for this 

project, this will suffice. 

The transmitted packet will contain the values shown below by Table 3.2.  As 

shown, the transmission begins with a START command, to inform the receiving 

program that data is to follow.  Next, the ROLLER ID is included, to assign the 

following values to the correct entity in the central database.  The measured 

data is included in the next fields, and the packet is terminated with an END 

command. 

Table 3.2: Output data packet structure 

START 
ROLLER 

ID 

VIBRATION 

DATA 
TEMP1 TEMP2 RPM UPTIME END 

 

3.6.3 Vibration Analysis Approach 

Several techniques of analysing vibration data were discussed in Chapter 2, 

however, not all of these techniques are feasible on the hardware selected for the 

sensor platform.  Generally, the time domain-based approaches are 

computationally simpler and have lower memory requirements.  However, the 

literature review highlighted the significant advantages of signal analysis in the 

frequency domain.  Therefore, multiple approaches will be attempted.  In order 

from most desirable to least desirable, these are the FFT, kurtosis, or a simple 

RMS energy measurement of the vibration data. 
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3.7 Performance validation 

Rather than be based entirely in theory, this project includes practical testing 

and measurement of the Roller Sensor Platform in a simulated environment.  

The tests will measure the RSP’s capability in terms of the accuracy and 

resolution of its measurements, as well as the range of its wireless component.  

Due to the scope of this project, a full scale test with tens of wireless nodes is 

not possible, neither is an evaluation of the RSP’s long-term reliability.  

However, by undertaking the following measurements, its initial suitability can 

be determined, as can the direction further testing should take. 

3.7.1 Test setup 

Using readily available construction materials, a mock-up of the environment 

within a conveyor belt roller will be constructed.  The design will attempt to 

simulate the conditions and signals that the RSP would experience if installed 

in an operational conveyor system.  

To view the transmitted data, a computer will be setup with a wireless 

transceiver configured as the Coordinator (gateway), and the serial port of the 

transceiver will be monitored.  The input sensors will then be connected to the 

MCU to verify their operation, and confirm the program is correctly reading and 

transmitting data.  Once the RSP is programmed and functioning, it will be 

installed on the roller mock-up.  This platform consists of a tube rotating around 

an axle, driven externally by a motor.  The RSP will be setup to monitor one 

bearing on the axle as well as the RPM of the roller shell.  As the vibration 

sensor will be attached to the axle rather than in the plane of the bearing itself, 

it does not strictly adhere to international standards for vibration measurement.  

However, these standards are intended for machines with stationary outer shells 

and rotating axles, whereas in the case of the roller, this relative movement is 

reversed.  Hence the standard is partially applicable, as in accordance with the 

standards, measurements are being taken from non-rotating parts.  Experimental 

results will determine whether this arrangement is suitable. 
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Below, in Figure 3.2, is a diagram of the test platform design.  The design 

consists of a steel roller shell (grey), mounted to a steel shaft with a bearing at 

either end.  The components of the RSP are shown located within the roller, and 

the roller itself is driven by an external motor. 

 

Figure 3.2: Test Platform Design (with one end removed) 

3.7.2 RPM Accuracy Test 

This test will use an external, commercially available laser tachometer to verify 

the data output by the RSP.  By setting the drive motor to several different 

speeds, the readings can be compared to confirm that the RSP accurately reports 

RPM across a range of rotational speeds. 

3.7.3 Heat Test 

Due to high speed rotation, the inner bearing race is expected to exhibit a rise 

in temperature.  For this test, the bearing may have to be attached to a shaft 

rotating at higher speeds than the roller could rotate at, in order to view a 

temperature response.  By comparing the ambient temperature to the bearing 

temperature, the operation and placement of the sensors can be tested. Using an 

infrared thermometer, the ambient temperature will be compared to the sensor 

reading to confirm its accuracy. 

  

1. MCU board 

2. Dynamo 

3. Mounting platform 

4. Bearing 

5. Axle 

6. Battery 

7. Drive motor 

8. Drive belt 

9. Platform base 
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3.7.4 Vibration test 

Live data from the RSP will be collected while in operation, including data 

recorded from the on-board vibration sensors.  To determine if these sensors are 

effectively tuned and installed, a range of faults will be simulated.  These could 

include attaching a weight to one side of the roller to simulate an imbalance 

while in operation.  Depending on bearing selection, it may be possible to 

intentionally damage the inside race of a bearing to determine the system’s 

ability to detect such a defect.   

Detailed analysis of vibration data is outside the scope of this project but it is 

important that the vibration sensors are fit for purpose and capable of supplying 

the raw data required for fault analysis.  The main benchmarks of their 

performance are their ability to measure at a sufficiently high resolution, and a 

mounting location which accurately reflects the behaviour of the bearing.  

3.7.5 Wireless range test 

The final test will consist of estimating the wireless range of the RSP.  During 

normal operation, each roller is unlikely to be further away than two meters 

from the roller next to it.  However, the impact of the roller’s construction 

material as well as the spacing of network receivers needs to be gauged.  Firstly, 

as the RSP transceiver is located within the roller shell, the radio signals will 

have to travel through the roller (and most likely through the shell of another 

roller) before they will reach another transceiver.  Whether the roller is 

constructed from steel or a composite material will significantly change wireless 

propagation range.  Secondly, the roller network will require at least one bridge 

transceiver, connecting the rollers to the outside world.  The maximum 

transmission distance from roller to receiving bridge will indicate the ratio of 

bridges to rollers required.  Although, in theory, the network should easily scale 

to thousands of nodes, there is still an ideal limit to how many rollers should 

connect to one bridge and how many rollers the data from one roller will have 

to travel through in order to reach the bridge.  By gauging the performance of 

the wireless modules, ideal design limitations can be determined to ensure the 

system performs as expected. 



 
 

 

Chapter 4  

 

Hardware Implementation 

Using the specified parts and interfaces from the previous chapter, the sensor 

platform was assembled according to the requirements of each device.  This 

section details the process of defining the electrical requirements of the circuitry 

so that the different components could be interfaced with one another, as well 

as the construction of the test platform. 

 

 

 

Figure 4.1: RSP sensors and main board, pre-installation 
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4.1 Input Devices 

Several sensors were connected to the MCU to enable it to measure the 

environment around it.  All sensors (apart from the Light Dependant Resistor) 

used a digital bi-directional interface to exchange data with the MCU, and in 

order for these data buses to function, some external components are required. 

4.1.1 Accelerometer 

The digital accelerometer (ADXL345) can use either Serial Peripheral Interface 

(SPI) or the I2C standard to communicate.  For this project, I2C was chosen as 

it requires less wiring than SPI, and although its effective throughput is less 

than SPI it easily meets the needs of the intended application. 

For proper operation, external pull-up resistors are required (NXP 2014).  Their 

values are based on the capacitance of the electrical bus.  For this design, the 

capacitance of the wires, pins and connections is considered low, as according to 

their respective datasheets, the capacitances for the ATmega328 and the 

ADXL345 are both 10 pF.  Using NXP’s UM10204 I2C-bus specification and user 

manual (2014) a safe RP value of 10 kΩ was chosen.  A diagram from the 

ADXL345 user manual is included below (Figure 4.2), which shows how to 

interface the sensor with the MCU. 

 

Figure 4.2: I2C Connection Diagram (Analog Devices 2015) 
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4.1.2 Temperature Sensors 

The digital temperature sensors use Maxim’s “1-Wire Bus System” to exchange 

data with the MCU.  The advantage of this communications bus is that it only 

requires one wire connection to the sensor, along with a ground connection.  The 

sensor is cable of powering itself off the bus connection, known as “parasitic 

power”.  For this project, the single-wire approach was not necessary, and to 

avoid the limitations it places on the operation of the sensor, a connection to 

the power rail was included. 

To function correctly, a pull-up resistor is required between VDD (the supply 

rail) and the DQ (data pin) of the DS18B20.  The value recommended by Maxim 

is a 4.7 kΩ resistor.  The connection method is shown below, in Figure 4.3. 

 

Figure 4.3: Powering the DS18B20 with an External Supply (Maxim 2008) 

4.1.3 Light Dependant Resistor 

This input device is being used as a simple beam-break detector.  This means 

that light intensity information is not important, only full-on or full-off states.  

To use the Light Dependant Resistor (LDR) a simple voltage divider was setup 

using a pull-down resistor, i.e. the LDR connects to the +3.3 V rail, and the 

other side of the LDR connects to an analogue input on the MCU, as well as a 

4.7 kΩ resistor which in turn connects to ground.  Therefore in full-on (beam 

not broken) state the voltage will be about half 3.3 V, while in full-off state the 

detected voltage will be close to ground. 
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4.1.4 DC Generator 

To harness power from the rotation of the conveyor belt roller, a small, DC 

motor was used as a generator by coupling its driveshaft to the inside wall of 

the spinning roller.  However, DC motors operating as generators will output a 

voltage proportional to their RPM, which could exceed the voltage ratings of 

the digital circuitry being powered by the motor.  In addition, generated power 

can be noisy, which could result in unstable behaviour if supplied directly to an 

MCU.  Using the simple circuit shown below in Figure 4.4, the DC motor was 

connected to the Fio board which has a Low Drop Out (LDO) voltage regulator 

on-board as well as a battery charging IC. 

 

Figure 4.4: DC Generator circuit 

The circuit above employs some basic components to protect the powered circuit 

from the DC motor, M1.  First, a rectifier diode D1 is included, to prevent 

damage caused by the motor being driven in reverse, as this would reverse the 

polarity applied to U1, the voltage regulator.  Next, a Zener diode D2 has been 

included, with a Zener voltage of 12 V.  This prevents the motor from over-

volting the regulator, which can only accept up to 15 V. Finally, a small 

capacitor has been included to reduce the electrical noise of the circuit, which is 

generated by the commutator brushes within the DC motor.  By supplying this 

voltage range to the regulator, it will output a constant 3.3 V to the MCU, as 

well as supply the MAX1555 IC (not shown) which charges the battery. 
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4.2 Output Devices 

The other side of the functions performed by the RSP consists of the devices 

which output data.  This may be simply to measure RPM or to transmit streams 

of values wirelessly; the details of these devices are included below. 

4.2.1 Wireless 

In order to function as a remote sensor platform, the RSP must wirelessly 

transmit the data it collects to a receiver.  This function is performed by the 

Digi XBee radio transceiver.  By interfacing with the ATmega328 (the MCU) 

through its standard serial connection, the transceiver can act as a wireless serial 

link, which means that no special communication protocols are required in order 

to send and receive data.  As the Fio board includes a header designed to fit the 

XBee radio, including connecting to its power and serial data pins, no special 

wiring was required either. 

Using the Zigbee meshing protocol, the XBee radio communicates with 

neighbouring radios to exchange data in and out of the mesh network.  This is 

done externally to the MCU, which has no direct control over this function.  The 

Zigbee protocol defines three different possible roles for any single radio; each 

can either be a Coordinator, Router or End Device.  Usually, there is only one 

Coordinator per network, as it functions as the bridge to the outside world (Digi 

International 2014).  In Figure 4.5, below, an external data collection terminal 

is shown connecting to the mesh network Coordinator.   

Other radios in the network function as Routers, which can not only send and 

receive their own data, but can forward the data from their neighbours on 

through the network, in order to reach the Coordinator.  Finally, some radios 

can function as End Devices, which only access the network in order to transmit 

their own data; they do not route the data of other radios.  In this project, all 

RSPs function as Routers in order to pass data up and down the length of the 

conveyor belt.  At one end, or in the middle of the conveyor belt, a Coordinator 

radio would be situated, to provide the connection to remotely monitor the whole 

system. 
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Figure 4.5: Zigbee Mesh Topology 

To establish a wireless mesh network, configuration of the wireless radio 

hardware is minimal.  The main requirements are that one radio functions as a 

Coordinator, and the other functions as a Router.  This requires different 

firmware on each radio, which can be changed using Digi’s XCTU software 

(shown below in Figure 4.6).  The next requirement is that both radios share 

the same Personal Area Network IDentification (PAN ID), which was set to 11 

as shown below.  Once these settings are loaded, the radios establish a link and 

serial data can be transmitted (at the default baud rate of 9600 bps). 

 

Figure 4.6: XCTU Software Interface (Coordinator radio shown) 
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4.2.2 Infra-Red LED 

Although technically not outputting any data, the IR LED was connected to a 

digital output pin on the MCU so that the LED could be disabled when not in 

use, and to correctly size the current limiting resistor R6 the calculations below 

were necessary.  By setting the output pin to a HIGH state, there will be very 

little voltage drop across the LED, resulting in no light emitted (reducing energy 

use when necessary). 

To calculate the minimum value of R6, the MCU pin HIGH state was considered, 

as in this state the LED must be guaranteed to be off.  From the datasheet, the 

MCU could output an output high (VOH) of as low as 2.3 V, when using a supply 

voltage (VS) of 3.3 V. To reduce power use, the current through the LED (ILED) 

is limited to half of the MCU pin current to 20 mA.  Therefore, to find the 

minimum value of R6, the calculation is: 

(𝑉𝑆 − 𝑉𝑂𝐻)

𝐼𝐿𝐸𝐷
=

(3.3 − 2.3)

20𝑥10−3
= 50 Ω 

Next, the maximum value of R6 was found.  This is important when the LED 

should be switched on, and in this state the MCU pin will be LOW.  To fully 

illuminate, the IR LED requires a voltage of (VLED) 1.5 V, and from the MCU 

datasheet, the output low (VOH) could be as high as 0.6 V.  The maximum value 

for R6 can be found by: 

(𝑉𝑆 − 𝑉𝐿𝐸𝐷 − 𝑉𝑂𝐿)

𝐼𝐿𝐸𝐷
=

(3.3 − 1.5 − 0.6)

20𝑥10−3
= 60 Ω 

Therefore, a standard value from the E24 resistor series of 56 Ω was chosen. 

4.2.3 Electrical Schematic 

A complete circuit diagram has been included in Appendix B, Figure B.1. 
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4.3 Test Platform 

The roller test platform was intended as a close approximation of a real-world 

conveyor belt roller to be used to evaluate the critical functions of the RSP.  The 

original design of the test platform is shown in Figure 3.2.  The first part of the 

test platform to be constructed was the roller itself, which consisted of the 

following components: 

 300 mm x 100 mm (OD) x 5 mm thick galvanised steel tube 

 10 mm galvanised steel rod (as the axle) 

 95 mm x 20 mm circular pine sections for the roller end caps 

 Two 10 mm flange roller bearings 

The assembled roller is shown below, in Figure 4.7.  Note that the end cap has 

been reversed, in order to show the bearing.  Under normal testing the sensors 

were located near the inner race of the bearing which is usually on the inside of 

the roller along with the rest of the RSP. 

 

Figure 4.7: Mock-up of the test roller 

Unfortunately, early testing of the roller showed that above a low rotation speed 

the roller was very unbalanced and would not only be likely to break any mount 

it was attached to, but the excessive vibration may affect the vibration sensor 

readings.  Therefore the decision was made to test sensors individually, rather 

than as a whole system installed within the roller shell.  
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4.3.1 Temperature Sensor Mounting 

Guided by the literature, the temperature sensors were installed as close to the 

inner race of the bearing as possible.  This should give the quickest response to 

changes in the bearing temperature.  As the sensors cannot be seen in the actual 

mounting (due to heat shrink shrouding), a sensor location has been drawn on 

the image of the bearings used (Figure 4.8, below).  The second temperature 

sensor is in free air within the roller shell, so that it can be used as a reference 

to compare the increase in temperature at the bearing. 

 

Figure 4.8: Mounting location of temperature sensor 

4.3.2 Vibration Sensor Mounting 

As previously mentioned in Section 3.7.1, the vibration sensor (accelerometer) 

was mounted to the roller axle.  Using a rigid coupling, the sensor was mounted 

vertically so that the radial direction (outward from the axle) would align with 

the x-axis of the sensor.  Figure 4.9, below, shows the sensor arrangement. 

 

Figure 4.9: Vibration sensor mounting 



 
 

 

Chapter 5  

 

Software Implementation 

The programming of the Roller Sensor Platform was a major component of this 

project.  Not only does the software code poll sensors for data and then format 

and transmit this data, but it pre-processes some of it to reduce the load on the 

communications network. 

To test the limits of the RSP, secondary programs were written to perform 

specific functions outside the normal operation of the system.  These test 

programs targeted certain sub-systems of the Platform to evaluate their 

performance and find the limits of their operation.  This helped identify 

weaknesses in the design and areas where re-configuration was needed, or future 

improvements could be made. 

The details of the test programs are included in this chapter, as well as an 

overview of the main program. 
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5.1 Test Programs 

The details of the test programs used to evaluate the real-world performance of 

the RSP are included in this section. 

5.1.1 Wireless Range Test Program 

The wireless range of the RSP is an important measure of the network 

performance which can be expected from the system.  If reliable wireless 

communication can be demonstrated in similar conditions to those found in a 

real-world conveyor belt, the method of wireless communication used for this 

project can be considered a viable option for future use.  However, if the effect 

of the steel shell of the roller results in intermittent data transmissions, then the 

design will require modification to account for this. 

The test program listing is included in Appendix C, Figure C.2.  This test 

represents one approach to evaluating the wireless capability of the XBee radios.  

As explained the listing description, the program transmits a steadily increasing 

number, and the results are recorded on the other end of the wireless link.  A 

linear increase in value indicates a good connection, while sudden jumps in the 

transmitted value indicates that some transmissions were lost. 

For this program to operate as expected, firmware settings of the XBee radios 

had to be modified to prevent the radio buffering data until the link was restored.  

Although this feature may be desirable in normal operation, it was disabled for 

this test so that the true nature of the wireless reliability could be determined. 

5.1.2 Accelerometer Read Rate 

As the RSP records vibration data from the vibration sensors, it is important 

that these readings occur at a regular, known rate.  Without a reliable timescale, 

performing analyses on the data to extract frequency features would not be 

possible. 

The rate at which readings can be taken must be more than twice as fast as the 

highest frequency component of interest.  This is the guideline set out by the 
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Nyquist-Shannon sampling theorem, but as discussed in Section 2.3.5, a much 

higher sample rate is desirable.  To find the limits of the current implementation 

of the ADXL345 accelerometers and the I2C bus, this program performs five 

hundred sequential reads of the accelerometer, and records the microseconds 

elapsed between starting each read and writing it to the storage array.  The time 

elapsed between each sample is then stored next to the sample in the array, and 

the whole process repeats every two seconds.  Each array is transmitted through 

the serial link in order to view the results.  The full code listing of this program 

is included in Appendix C, Figure C.3 and Figure C.4. 

5.2 Final Program 

The program which runs the sensor platform is responsible for reading in data 

from the attached sensors, processing this data, and then transmitting it in the 

pre-defined data format through the serial port.  As the serial port is connected 

to the XBee radio, this data is transmitted to the Coordinator radio of the 

wireless network.  For the full code listing, refer to Appendix C, Figure C.5 to 

Figure C.7. 

In order to function, the final program only makes use of three external libraries.  

These are “Wire.h”, “OneWire.h” and “DallasTemperature.h”.  Respectively, 

these are used to control the I2C bus, Maxim’s OneWire protocol bus, and the 

last library handles interfacing with the DS18B20 temperature sensors.  Once 

each of the peripheral devices have been initialised, the program initiates a read 

from each sensor in turn.  Before the vibration data is formatted and transmitted 

it is processed on the RSP itself. 

Instead of transmitting the raw vibration data, the RSP processes it so that the 

nature of the vibration can be represented by a single number.  This number is 

the kurtosis excess of the signal.  Although using an FFT on the collected dataset 

was investigated, the memory requirements were more than the chosen MCU 

could handle.  Kurtosis excess is calculated identically to kurtosis, except that 

it is normalised by subtracting three from the final value.  The output then 

represents the difference from the normal distribution (which has a kurtosis 

value of three). 
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The kurtosis excess of the dataset is calculated by the function “VIB_calc”.  This 

function is based on the work of Vogelaar (1995), who demonstrated a 

straightforward approach to calculating the kurtosis value iteratively.  The 

function below (Figure 5.1) performs the calculation given by the formula for 

excess population kurtosis: 

𝐾 =

∑ (𝑋𝑖 − 𝑋𝑎𝑣𝑔)
4𝑛

𝑖=0

(∑ (𝑋𝑖 − 𝑋𝑎𝑣𝑔)
2

   
𝑛

𝑖=0
)

2                              (5.1) 

 

Using the sampled dataset, which is an array of 500 values (each being 2 bytes 

in length), the first step is to calculate the mean of the dataset.  Next, to find 

the variance, the square of the difference from the mean is divided by the sample 

size.  The square root of this value is used to find the standard deviation.  As 

the kurtosis variable contains the fourth moment about the mean, it is divided 

by the second moment squared to find the kurtosis, and finally, a value of three 

is subtracted to find the kurtosis excess. 

 

Figure 5.1: Code Listing of the Kurtosis function 

// Returns Kurtosis excess of the data set 

float VIB_calc() { 

  // Declare variables 

  float sum = 0.0; 

  float sqr_diff = 0.0; 

  float sdev = 0.0; 

  float kurtosis = 0.0; 

  // Find the mean of the data set 

  for (int i = 0; i < SAMP_SIZE; i++){ 

    sum += roller_vib[i]; 

  } 

  float mean = sum / (float) SAMP_SIZE;      

  // Find the mean of the data set 

  for (int i = 0; i < SAMP_SIZE; i++){ 

    sqr_diff = (roller_vib[i] - mean) * (roller_vib[i] - mean); 

    sdev += sqr_diff; 

    kurtosis += sqr_diff * sqr_diff; 

  } 

  // Use variance to find standard deviation 

  sdev = sqrt(sdev / (float) (SAMP_SIZE - 1) ); 

 

  // Prevent a division by zero 

  if (sdev == 0.0){ 

    kurtosis = 0.1; 

  } 

  else { 

    // Calculate kurtosis value 

    kurtosis = (kurtosis/(sdev*sdev*sdev*sdev* (double) SAMP_SIZE))-3.0; 

  } 

return kurtosis; 
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For reference, the main program loop is shown below in Figure 5.2.  The main 

loop is relatively simple, as all the sensor interfacing is completed by separate 

functions.  The main activity of the loop below is the formatting of the serial 

output string.  As specified in Section 3.6.2, the output string consists of a 

“START” command, followed by the sensor platform’s unique identification, 

followed by the data and terminated with an “END” command.  For the server 

to interpret the output string, it would look for the start command followed by 

space delimited values terminated with the end signal. 

 

Figure 5.2: Main program loop 

Using the Arduino Integrated Development Environment (IDE), each program 

could be loaded into the MCU as necessary to undertake system testing.  The 

results of this testing are detailed in the next section. 

 

// Main program loop 

void loop() { 

 

  int RPM = 2400; // Sample RPM value 

  int bearing_temp = read_temp(BEARING_SENS_NO); 

  int internal_temp = read_temp(INTERNAL_SENS_NO); 

  VIBdata();          // Read vibration sensors 

  Serial.print("START "); 

  Serial.print(ROLLER_ID); 

  Serial.print(" "); 

  Serial.print(VIB_calc()); 

  Serial.print(" "); 

  Serial.print(bearing_temp); 

  Serial.print(" "); 

  Serial.print(internal_temp); 

  Serial.print(" "); 

  Serial.print(RPM); 

  Serial.print(" "); 

  Serial.print(millis()); 

  Serial.print(" "); 

  Serial.println("END");   

  // Output delay to conserve bandwidth 

  delay(500); 

} 

 



 
 

 

Chapter 6  

 

Results 

This chapter discusses the data gathered by the sensor platform, how this data 

was obtained and whether it met the requirements of the project.  Using the pre-

defined testing procedures and testing software, the performance of the hardware 

and software was evaluated. 

Output from the RSP was recorded primarily using the Arduino IDE’s built-in 

Serial Monitor function, which emulates a serial link with the MCU through the 

computer’s USB port.  On the other end of this link is an external USB to serial 

converter, as the Fio board has no USB capability, only the MCU’s built-in 

Universal Synchronous Asynchronous Receiver Transmitter (USART) port.  For 

wireless radio testing, this converter was removed and the XBee radio card 

installed.  Likewise, a serial to USART adapter was use to connect the XBee 

Coordinator radio (Figure 6.1) directly to the host computer. 

Test results are included in the next few sections. 

 

 

 

Figure 6.1: XBee Coordinator Radio 

 

 



6.1 Temperature Response    51 
 
 

6.1 Temperature Response 

In order to test the temperature sensors individually, their original mounting 

location had to be adjusted.  Due to the low rotation speed of the roller assembly, 

a temperature response could not be observed.  To see a temperature increase, 

the roller shaft was mounted to an electric power drill, so that the shaft could 

be spun at high speed.  The drawback to this approach was that the sensor had 

to be relocated to the outer (stationary) race of the bearing, as shown below in 

Figure 6.2. 

 

Figure 6.2: Actual location of temperature sensor 

 

Initially, the bearing temperature response remained static.  However, after 5 

seconds of being run on a shaft at about 1400 RPM, the measured temperature 

started to rise.  The results transmitted by the bearing temperature sensor have 

been graphed below, in Figure 6.3.  While the ambient temperature remains 

almost constant, the bearing temperature rises and plateaus at 28 degrees 

Celsius.  Using an IR thermometer, a matching reading was taken of the bearing 

outer race housing. 

 

This test showed that the temperature sensors were performing as expected, and 

that the bearing sensor would respond to changes in bearing state.  Under real-

world conditions, the temperature response of the bearing is likely to be more 
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dramatic, as it would be bearing load, more friction would exist between the 

rolling elements and the races. 

 

Figure 6.3: Temperature response of the bearing sensor 

6.2 Accelerometer Read Rate 

This test was performed to find the frequency sampling limitations of the current 

hardware setup.  Using the program explained in Section 5.1.2, the accelerometer 

was polled 10 times, and the time taken for each reading was computed by the 

program and listed to next to each read value.  The output is shown in Figure 

6.4 (below). 

 

Figure 6.4: Read rate program output 
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As shown in the program output, the time between read rates is consistently 

about 500 microseconds.  Even when the accelerometer is shaken or rotated 

(shown by larger, smaller and negative values) the read times remain almost the 

same. 

With this fast read rate, it would appear the MCU can perform a read from the 

ADXL345 at a rate of 2 kHz.  Unfortunately, this is not the case.  According to 

the accelerometer datasheet, using the default I2C bus speed of 100 kHz results 

in an effective Output Data (OD) rate of 200 Hz, while using a faster bus speed 

of 400 kHz an OD of 800 Hz can be achieved (Analog Devices 2015).  To achieve 

the faster data rate, the Arduino I2C interface speed was set to 400 kHz, and the 

ADXL345 was set to sample at 800 Hz accordingly. 

Although the current method of polling the accelerometer can perform a read 

every 500 microseconds, it is actually reading the same data at times, as the 

ADXL345 has not yet stored a new measurement. 

Despite the convenience of the I2C bus, the more mature SPI interface can 

perform significantly faster (Analog Devices 2015).  This bus can run at clock 

speeds of 5 MHz, which enables an output data rate of 3200 Hz.  For a more 

capable hardware setup, the SPI bus could be used to capture much higher 

resolution vibration data. 

6.3 Vibration Detection 

To gauge the implemented vibration detection technique’s ability to monitor 

vibration, the installed accelerometer was measured in three states: at rest, under 

normal motor operation, and under heavy vibration.  Using the kurtosis values 

being output by the RSP, a graph was generated of each case.  A sample of the 

serial output is shown below, in Figure 6.5. 

 

Figure 6.5: Monitoring platform serial output 

START 02A3C9 -0.09 29 29 2400 3805 END 

START 02A3C9 -0.12 29 29 2400 4366 END 

START 02A3C9 -0.02 29 29 2400 4927 END 

START 02A3C9 -0.31 29 29 2400 5488 END 

START 02A3C9 0.12 29 29 2400 6049 END 

START 02A3C9 -0.13 29 29 2400 6610 END 

START 02A3C9 0.00 29 29 2400 7172 END 
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Due to the limitations of the testing equipment available, vibration verification 

tests were relatively basic, and the aim of the test was to verify that the kurtosis 

value increased with an increase in vibration.  By spinning the roller end cap 

(while it was attached to the roller axle) with a smooth wheel, and next with a 

pitted wheel, radial vibration was simulated and the results collected. 

 

Figure 6.6: Vibration Measurement Results 

The results of the vibration tests are shown in Figure 6.6 (above).  With no 

movement of the accelerometer, a certain amount of noise is present.  This noise 

has an average value of K = 0.16 (over one minute).  When the bearing was 

rotating around the axle under normal operating conditions, the measured 

kurtosis value increased as shown by the dashed line.  The average value 

increased to K = 0.93.  When exposed to irregular rotation, and frequent impacts 

and bumps, the average increased to K = 3.51 and as shown by the dotted line, 

some peaks are much higher than this. 

While the kurtosis of the signal seems to reflect the presence of vibration in the 

bearing, the memory requirements of the program limit each sample window to 

a short period.  Each sample consists of 500 data points, sampled at 800 Hz, 

which equates to 625 milliseconds worth of data.  For a full roller revolution to 

be captured, the roller would have to be rotating at 5760 RPM, which is highly 

unlikely.  Without a longer sample time, some parts of the rotational cycle will 
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not be recorded.  However, if the final values were averaged over time, the short 

window may eventually cover all parts of the roller cycle as long as it remains 

out of phase with the roller rotational frequency. 

6.4 RPM Accuracy 

The intent of this test was to validate the RSP’s speed sensing capability.  

Originally, a hand-held laser tachometer was planned to be used to validate the 

results.  Unfortunately, this piece of test equipment was unable to be obtained, 

and so the RPM component of the program was not completed.  A DC motor 

can be used to sense RPM (as any DC motor will provide a voltage out 

proportional to its RPM) and this was investigated, however, in the time 

permitted this testing solution could not be explored further. 

6.5 Wireless Range Test 

The wireless performance of the XBee radios was tested to determine the reliable 

wireless range that could be expected.  Using the program code described in 

Section 5.1.1, a pair of radios was tested at several distances apart.  The test 

program is a simple function which transmits a steadily increasing value (the 

uptime of the MCU) and any sudden jumps in the value are a sign that 

transmissions have been missed.  As there is no known way to obtain typical 

wireless performance benchmarks such as signal strength, transmission errors 

and retries or noise floor information from the XBee radios, this approach was a 

simple way to test the radios in practice. 

To simulate communication from one conveyor belt roller to another, one radio 

was placed in the sealed steel tube.  The tube was then located at varying 

distances from the receiver radio, and the value of the received serial data was 

recorded.  



6.5 Wireless Range Test    56 
 
 

 

Figure 6.7: Wireless test results 

The collected data is shown above, in Figure 6.7.  Each dataset was plotted from 

a different start time, so that all three could be shown on one figure.  

Remarkably, it took a distance of 50 m between both radios before packet loss 

was evident.  This is shown by the solid line, which does not increase linearly 

like the other two measurements but instead has steps along its length where 

the in-between packets have been lost. 

Significantly worse performance was expected from the XBee radios.  Not only 

do they operate at 2.4 GHz, which is a very crowded frequency band, full of 

interfering devices, but each radio is only rated for 2 mW.  This low power was 

not expected to reach to the distances shown above, especially when 

broadcasting from within a solid steel roller. 
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Chapter 7  

 

Conclusion 

In this final section, the project outcomes are evaluated against the project 

objectives, and future work to improve the effectiveness of the solution is 

discussed.  
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7.1 Project Summary 

To achieve the project objectives, the development process consisted of the 

research, design, build and test stages.  In the first stage, a need for better 

conveyor belt monitoring was found, not only for financial reasons but for the 

safety of personnel.  The current market solutions were found lacking and only 

one (very recent) product offered remote monitoring. 

With literature to support an understanding of the failure modes of rollers and 

how to monitor for signs of failure, work began on a design capable of remotely, 

autonomously and cheaply collecting conveyor roller metrics and transmitting 

them to a central server.  The system is based on the ZigBee mesh network 

protocol which enables each conveyor roller to pass along the data of its 

neighbouring rollers. 

To ensure the Roller Sensor Platform (RSP) could operate in a maintenance-

free way and in a sealed environment, a power harvesting system was designed.  

This system uses the rotational energy of the roller to generate electricity to 

power the RSP and its battery.  This system was not tested as the RPM required 

to generate a significant amount of power was beyond the speed that the test 

bed roller could handle. 

Results of tests performed on different aspects of the system were completed.  

Some results, like the effective read rate of the vibration sensor, highlighted 

significant room for improvement.  However, the system detection of vibration 

was successful, and with more in-depth testing the full capability of the kurtosis 

method could be explored.  An outstanding result in terms of the wireless signal 

range was achieved, as this was shown to reach much further than expected.  

With a transmission distance of just under 50 m before signal loss occurred (even 

when operating from within a steel tube), the XBee radios showed great potential 

to handle operation in a noisy, more interference prone environment. 

In summary, this project only represents the beginning of the investigation into 

the potential for low cost, readily-available sensors and embedded systems to 

have a large impact in improving the safety and efficiency of industrial 

operations.  
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7.2 Future Work 

To develop the RSP further into a more robust, capable and reliable system, 

there are many opportunities for future work.  Given more time on the project, 

the very next step would be to optimise the data processing algorithm used to 

analyse vibration data.  In its current form, the data processing demands more 

memory than the MCU can provide as it stores the entire data set before 

performing any analysis.  Instead, a better approach is to manipulate the 

calculations so that they can be done incrementally, without needing the 

complete dataset.  With the experience gained from optimising the current time-

domain implementation, a frequency-domain approach could be investigated to 

determine if the hardware is capable of performing such an analysis. 

Better computational efficiency would allow higher resolution sampling, which 

would push the limits of the I2C bus used to interface with the accelerometer.   

A future development would see this replaced with the SPI bus which is fully 

compatible with the hardware and allows a much higher output data rate. 

For a longer-term study, the reliability of MEMS based sensors would be worth 

further investigation.  Plenty of literature discusses their suitability and all the 

applications this sensor type could have in the condition monitoring field, yet 

their long-term performance is yet to be evaluated. 

Several improvements could be made to the communications protocol used 

between the RSPs and the central server.  This project simply developed a 1-

way data transfer.  Ideally, the RSPs would be aware of whether their data had 

been received or not, and this would require implementing a type of 

ACKnowledge (ACK) signal from the server when it received transmitted data.  

Additionally, plenty of work could be completed on a software interface to 

monitor, control and store the data from the RSPs in a central location. 

Finally, the concept of “crowd-sourcing” is worth investigating.  Using a 

multitude of RSPs in the field, baselines for temperature, vibration signal and 

RPM could be established, and using this approach, error states diagnosed.  This 

technique may be much easier than computing FFTs and other traditional signal 

analysis methods.
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Figure B.1: Electrical Schematic of the Sensor Platform 
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C.1 Wireless Range Test Code 

 

Figure C.2: Code listing for wireless range testing 

 

 

 

 

/********************************************************************** 

                   ROLLER SENSOR PLATFORM - WIRELESS TEST 

 

Author:       David Cooper 

Student No.:  0050025878 

Date:         20/09/15 

Version:      1.4 

 

The program below transmits an incrementing number through the serial  

port. The number itself is not important, but its linear increase is.   

Any irregularities signify lost data packets.  To stop the Xbee  

buffers over-flowing, the program stops sending data if the  

Clear-To-Send pin is set HIGH by the Xbee.  Output can be viewed a  

serial terminal. 

 

FILE: xbee_test2.ino 

**********************************************************************/ 

 

// Declare variables 

unsigned long time;     // Stores MCU runtime 

const int CTSpin = 2;   // Set pin for CTS signal 

 

// Main program loop 

void setup(){ 

  pinMode(CTSpin, INPUT); 

  digitalWrite(CTSpin, HIGH); 

  Serial.begin(9600); 

} 

void loop(){ 

  time = millis(); // Assign current runtime to time variable 

  if ((digitalRead(CTSpin)) == LOW) {    

    Serial.println(time);         //Prints time since program started 

  } 

  if ((digitalRead(CTSpin)) == HIGH){ // Stop TX if buffer full 

    delay(1000); 

  } 

  // Wait a tenth of a sec so the system has time to TX the last number 

  delay(100); 

} 
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C.2 Accelerometer Test Code 

 

Figure C.3: Code Listing for Accelerometer Test, Part 1 

  

/********************************************************************** 

               ROLLER SENSOR PLATFORM - ACCELEROMETER TEST 

 

Author:       David Cooper 

Student No.:  0050025878 

Date:         21/09/15 

Version:      1.0 

 

The program below makes a set of readings from 1 or 2 connected 

accelerometers as fast as possible.  The time elapsed between each 

read is stored next to the read value.  As the accelerometer is 

expected to be mounted vertically, only the X axis data is captured. 

 

FILE: accel_test1.ino 

**********************************************************************/ 

 

#include <Wire.h> 

 

#define VSENS_U1 (0x1D)    //first ADXL345 device address 

#define VSENS_U2 (0x53)    //second ADXL345 device address 

#define R_BYTES (6)        //num of bytes to read each time 

#define SAMP_SIZE (10)    // Dataset size 

 

// Define global variables 

 

byte v_data[R_BYTES] ;      //Buffer for saving data read from a VSENS 

int roller_vib[SAMP_SIZE];  //Create array for dataset 

//Location of axis-acceleration-data register on the ADXL345 

int regAddress = 0x32;       

 

// Program setup 

void setup() { 

  Wire.begin();        // Start I2C bus 

  Serial.begin(9600);  // Start serial bus 

  delay(1000);         // Allow the accelerometer to stabilise 

  VSENS_w(VSENS_U1, 0x2C, 15); // Set the sample rate to 800 Hz 

  //Turn on measurement mode on the vibration sensors 

  VSENS_w(VSENS_U1, 0x2D, 24);    

 // VSENS_w(VSENS_U2, 0x2D, 24); 

} 

 

// Main program loop 

void loop() { 

   

  VIBdata();          // Read vibration sensors 

  //Send the x y z values as a string to the serial port 

  for (int i = 0; i < SAMP_SIZE; i++) { 

    Serial.print(roller_vib[i]); 

    Serial.print(" "); 

    } 

  Serial.println(); 

  //Output delay is needed in order not to clog the port 

  delay(2000); 

} 

 

//-------Functions------- 

 

// Write value val to address register on VSENS 

void VSENS_w(int device, byte address, byte val) { 

   Wire.beginTransmission(device);      //start transmission to device  

   Wire.write(address);                 // send register address 

   Wire.write(val);                     // send value to write 

   Wire.endTransmission();              //end transmission 

} 

 

// Read num bytes starting from address register on VSENS and stores  

// in array v_data 

void VSENS_r(int device, byte address, int num, byte v_data[]) { 
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Figure C.4: Code Listing for Accelerometer Test, Part 2 

  

//-------Functions------- 

 

// Write value val to address register on VSENS 

void VSENS_w(int device, byte address, byte val) { 

   Wire.beginTransmission(device);      //start transmission to device  

   Wire.write(address);                 // send register address 

   Wire.write(val);                     // send value to write 

   Wire.endTransmission();              //end transmission 

} 

 

// Read num bytes starting from address register on VSENS and stores  

// in array v_data 

void VSENS_r(int device, byte address, int num, byte v_data[]) { 

  Wire.beginTransmission(device);     // start transmission to VSENS  

  Wire.write(address);                // send address to read from 

  Wire.endTransmission();             // end transmission 

  Wire.beginTransmission(device);     // restart transmission to VSENS 

  Wire.requestFrom(device, num);      // request num bytes from VSENS 

  int i = 0; 

  while(Wire.available())     // Repeat while data is available 

  {  

    v_data[i] = Wire.read();  // Receive a byte 

    i++; 

  } 

  Wire.endTransmission();     // End transmission 

} 

 

//Reads accelerometers and formats values into x, y, and z 

void VIBdata() { 

  int x1 = 0, y1 = 0, z1 = 0;   

  int x2 = 0, y2 = 0, z2 = 0; 

  int i; 

  for (i = 0; i < SAMP_SIZE; i++) { 

    unsigned long starttime = micros(); // Record the start time 

    VSENS_r(VSENS_U1, regAddress, R_BYTES, v_data); // Read accel 1 

    x1 = (((int)v_data[1]) << 8) | v_data[0];    

    y1 = (((int)v_data[3])<< 8) | v_data[2]; 

    z1 = (((int)v_data[5]) << 8) | v_data[4]; 

   

//  VSENS_r(VSENS_U2, regAddress, R_BYTES, v_data); // Read accel 2 

//  x2 = (((int)v_data[1]) << 8) | v_data[0];    

//  y2 = (((int)v_data[3])<< 8) | v_data[2]; 

//  z2 = (((int)v_data[5]) << 8) | v_data[4]; 

     

    roller_vib[i]=x1; // Only record the X axis data 

    i++; 

   // delayMicroseconds(1500); 

    roller_vib[i]=micros()-starttime; // Calculate elapsed time 

  } 

} 
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C.3 Monitoring Platform Code 

 

Figure C.5: Monitoring Platform Code Listing, Part 1 

/********************************************************************** 

               ROLLER SENSOR PLATFORM - CONTROL CODE 

 

Author:       David Cooper 

Student No.:  0050025878 

Date:         25/10/15 

Version:      2.0 

 

The program below reads data from the attached temperature and  

acceleration sensors, and calculates the kurtosis of the vibration 

data set.  This data is then transmitted using a pre-defined data 

format to a central server. 

 

FILE: rsp_v2.ino 

**********************************************************************/ 

 

#include <Wire.h> 

#include <OneWire.h> 

#include <DallasTemperature.h> 

 

#define VSENS_U1 (0x1D)       // first ADXL345 device address 

#define VSENS_U2 (0x53)       // second ADXL345 device address 

#define R_BYTES (6)           // num of bytes to read each time 

#define SAMP_SIZE (500)       // Dataset size 

#define ROLLER_ID ("02A3C9")  // Example ID of the roller 

#define ONE_WIRE_BUS 8        // Define the temp sensors pin 

#define BEARING_SENS_NO 0     // Index of the bearing temp sensor 

#define INTERNAL_SENS_NO 1    // Index of the internal temp sensor 

 

// Define global variables 

 

byte v_data[R_BYTES] ;      // Buffer for saving data read from a VSENS 

int roller_vib[SAMP_SIZE];  // Create array for dataset 

char tx_buff[64];           // Buffer to format data before sending 

//Location of axis-acceleration-data register on the ADXL345 

int regAddress = 0x32;       

OneWire oneWire(ONE_WIRE_BUS); // Setup a oneWire instance 

DallasTemperature sensors(&oneWire); // Pass onewire to Dallas Temp. 

 

// Program setup 

void setup() { 

  Wire.begin();        // Start I2C bus 

  Serial.begin(9600);  // Start serial bus 

  delay(1000);         // Allow the accelerometer to stabilise 

  VSENS_w(VSENS_U1, 0x2C, 15); // Set the sample rate to 800 Hz 

  //Turn on measurement mode on the vibration sensors 

  VSENS_w(VSENS_U1, 0x2D, 24);    

 // VSENS_w(VSENS_U2, 0x2D, 24); 

  

  sensors.begin();   // Initialise the temp sensors 

 } 
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Figure C.6: Monitoring Platform Code Listing, Part 2 

// Main program loop 

void loop() { 

 

  int RPM = 2400; // Sample RPM value 

  int bearing_temp = read_temp(BEARING_SENS_NO); 

  int internal_temp = read_temp(INTERNAL_SENS_NO); 

  VIBdata();          // Read vibration sensors 

  Serial.print("START "); 

  Serial.print(ROLLER_ID); 

  Serial.print(" "); 

  Serial.print(VIB_calc()); 

  Serial.print(" "); 

  Serial.print(bearing_temp); 

  Serial.print(" "); 

  Serial.print(internal_temp); 

  Serial.print(" "); 

  Serial.print(RPM); 

  Serial.print(" "); 

  Serial.print(millis()); 

  Serial.print(" "); 

  Serial.println("END");   

  // Output delay to conserve bandwidth 

  delay(500); 

} 

 

//-------Functions------- 

 

// Write value val to address register on VSENS 

void VSENS_w(int device, byte address, byte val) { 

   Wire.beginTransmission(device);      //start transmission to device  

   Wire.write(address);                 // send register address 

   Wire.write(val);                     // send value to write 

   Wire.endTransmission();              //end transmission 

} 

 

// Read num bytes starting from address register on VSENS and stores  

// in array v_data 

void VSENS_r(int device, byte address, int num, byte v_data[]) { 

  Wire.beginTransmission(device);     // start transmission to VSENS  

  Wire.write(address);                // send address to read from 

  Wire.endTransmission();             // end transmission 

  Wire.beginTransmission(device);     // restart transmission to VSENS 

  Wire.requestFrom(device, num);      // request num bytes from VSENS 

  int i = 0; 

  while(Wire.available())     // Repeat while data is available 

  {  

    v_data[i] = Wire.read();  // Receive a byte 

    i++; 

  } 

  Wire.endTransmission();     // End transmission 

} 

// Reads accelerometers and formats values into x, y, and z 

void VIBdata() { 

  int x1 = 0, y1 = 0, z1 = 0;   

  int x2 = 0, y2 = 0, z2 = 0; 

  int i; 

  for (i = 0; i < SAMP_SIZE; i++) { 

    VSENS_r(VSENS_U1, regAddress, R_BYTES, v_data); // Read accel 1 

    x1 = (((int)v_data[1]) << 8) | v_data[0];    

    y1 = (((int)v_data[3])<< 8) | v_data[2]; 

    z1 = (((int)v_data[5]) << 8) | v_data[4]; 
 



Appendix C  73 
 

 

 

Figure C.7: Monitoring Platform Code Listing, Part 3 

 

//  VSENS_r(VSENS_U2, regAddress, R_BYTES, v_data); // Read accel 2 

//  x2 = (((int)v_data[1]) << 8) | v_data[0];    

//  y2 = (((int)v_data[3])<< 8) | v_data[2]; 

//  z2 = (((int)v_data[5]) << 8) | v_data[4]; 

     

    // Delay to prevent same data being read again from the ADXL345 

    delayMicroseconds(300); 

    roller_vib[i]=x1; // Only record the X axis data 

  } 

} 

 

// Returns Kurtosis of the data set 

float VIB_calc() { 

  // Declare variables 

  float sum = 0.0; 

  float sqr_diff = 0.0; 

  float sdev = 0.0; 

  float kurtosis = 0.0; 

  // Find the mean of the data set 

  for (int i = 0; i < SAMP_SIZE; i++){ 

    sum += roller_vib[i]; 

  } 

  float mean = sum / (float) SAMP_SIZE;      

  // Find the mean of the data set 

  for (int i = 0; i < SAMP_SIZE; i++){ 

    sqr_diff = (roller_vib[i] - mean) * (roller_vib[i] - mean); 

    sdev += sqr_diff; 

    kurtosis += sqr_diff * sqr_diff; 

  } 

  // Use variance to find standard deviation 

  sdev = sqrt(sdev / (float) (SAMP_SIZE - 1) ); 

 

  // Prevent a division by zero 

  if (sdev == 0.0){ 

    kurtosis = 0.1; 

  } 

  else { 

    // Calculate kurtosis value 

    kurtosis = (kurtosis/(sdev*sdev*sdev*sdev* (double) SAMP_SIZE))-3.0; 

  } 

 

return kurtosis; 

 

} 

// Read temperature sensor values 

float read_temp(byte index) { 

  sensors.requestTemperatures(); // Start reading temperatures 

  // Convert to degrees Celsius 

  return ((sensors.getTempCByIndex(index)-32.0)/1.8); 

} 
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Risk Analysis 

 

A risk analysis was performed for the project task work.  This includes 

constructing the prototype platform and operation during the testing phase. 

Table D.1: Risk Analysis 

Description of 
Hazard 

Risk 
Rating 

Controls in place 
Managed 
risk 
rating 

Electrical shock. 19 

De-energise all circuits prior to 
work. Inspect wiring fully before 
connection to mains power.  Keep 
body away from high voltage parts 
of the circuit. 

15 

High speed 
rotating cutting 
parts, i.e. power 
tools. 

14 

Plan task before beginning.  Keep 
hands and body away from cutting 
tool edges.  Unplug power tool 
when not in use.  Wear eye 
protection at all times. 

13 

Entanglement 
with rotating 
parts. 

12 

Stand back from test platform 
while in operation.  Only touch 
controls and on/off switch.  Avoid 
loose clothing. 

6 

Projectiles 
thrown off 
spinning parts. 

9 
Wear eye protection when test 
platform is operating.  Stand back 
along axis of rotation. 

3 

Hot motors and 
bearings. 

16 
Allow parts to cool before accessing 
them.  Use IR heat sensor to check 
part has cooled. 

4 

Laser radiation. 10 
Point laser tachometer away from 
face at all times. 

4 
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Table D.2: Risk Analysis Legend 

 

 

 

Consequence Likelihood 

Keyword 
Description Safety 
Health & Hygiene 

Almost 
Certain 

Likely Possible Unlikely Rare 

Catastrophic 

-Fatality or 
Disability 
-Huge Financial 
Loss 

Extreme 
25 

Extreme 
24 

Extreme 
23 

High 
19 

Medium 
15 

Major 

-Lost time Injury 
-Loss of production 
-Major Financial 
Loss 

Extreme 
22 

Extreme 
21 

High 
18 

Medium 
14 

Medium 
13 

Moderate 
-Medical treated 
injury 
-High financial loss 

Extreme 
20 

High 
17 

Medium 
12 

Medium 
11 

Low 
6 

Minor 
-First Aid Injury 
-Medium financial 
loss 

High 
16 

Medium 
10 

Medium 
9 

Low 
5 

Low 
4 

Insignificant 
-No injuries 
-Low financial loss 

Medium 
8 

Medium 
7 

Low 
3 

Low 
2 

Low 
1 
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Project Timeline 
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Figure E.8: RSP Project Timeline 
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