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Abstract 
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Introduction 

Stormwater runoff from urban catchment areas is a leading contributor to water quality pollution which can 

result in limitations on urban development. Engineering systems used for the treatment of stormwater 

runoff, use in most cases, non-renewable resources. Biochar or charcoal is a renewable resource and is 

being investigated as a filtration media for stormwater cleanup. 

 

Background 

Currently engineering systems are available to control the volume of runoff after a storm event from urban 

catchments and influence the runoff water quality. In these engineered systems the water is not only slowed 

down, but also, physical, chemical and microbial processes are utilized for the removal of unwanted 

contaminants. An organic medium being researched for the use of stormwater cleanup is Biochar. Biochar 

is a form of charcoal produced through the thermochemical conversion of organic materials or biomass. 

The biomass remaining after pyrolysis is a fine-grained, highly porous material which gives the material 

large amounts of surface area resulting in a highly adsorbent material. 

 

Methodology 
The use of Biochar for improving stormwater water quality has been growing worldwide with product 

developers and researchers working to prove, advance science and markets of this emerging material. This 

thesis has been compiled using research material collated from various sources which provides insight into 

the use of Biochar geostructures for urban stormwater cleanup. Collectively, the material contained within 

this thesis represents research already undertaken by other parties; however it will provide information on 

emerging technologies using biochar. 

 

Key Outcomes 

Initial trials using biochar as a medium for improving stormwater quality for urban runoff has provided 

positive results. Additional research is required to determine cost effective, easy maintainable and to 

monitor performance versus economic considerations for the use of biochar geostructures. Research using 

enzyme additives to improve biochar performance is emerging. 

 

Further Work 
The next stage is the use of biochar as a medium for different geostructures for urban stormwater water 

cleanup and record the results of the reduction of heavy metals, herbicides and organics in stormwater. 

 

Conclusions 

The use of Biochar for improving stormwater water quality in urban catchments is in its infancy for 

practical testing. The different biomass used to create Biohar has an effect on its performance for 

improving stormwater runoff quality. Research is continuing to evolve to determine whether enzymes can 

be used to improve the performance of Biochar. 
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1. Introduction 
 

Urban development increases the diversity and amount of pollutants discharged into 
Australia’s natural water bodies. In urban and suburban areas, most of the land surface is 
covered impervious areas such as buildings, pavement and compacted landscapes with 
impaired drainage systems. These surfaces do not allow rainfall runoff to penetrate into the 
ground which results in an increase in volume and velocity of stormwater runoff. In addition, 
pollutants from urban runoff include heavy metals, herbicides and organics which can have a 
devastating effect on natural water bodies and ecosystems located downstream. These 
pollutants can harm fish and wildlife populations, kill native vegetation, result in foul 
drinking water, and make recreational areas unsafe and unpleasant. 

Development leads to an increase in the amount of pollutants which emulate from an urban 
area. Sediment from construction sites can end up in streams and rivers, choking plant and 
animal life. Oil, grease and toxic chemicals from vehicles can leak onto roads and parking 
lots which wash into stormwater infrastructure during rain events. Viruses, bacteria and 
nutrients from pet waste and failing septic systems, can enter storm drains that discharge into 
wetlands, streams, or rivers. Fertilizers and pesticides, if not applied properly, can wash off 
lawns. Pesticides are often found in higher concentrations in urban areas than in agricultural 
areas (USGS, 1995). Household cleaning products and heavy metals from roofs can wash 
into stormwater systems if not disposed of properly. Many pollutants also bind to the 
sediment, so when sediment washes away it takes the pollutants with it. All of these 
pollutants can wash away when it rains and end up in streams, rivers, lakes, estuaries, or 
ground water. 

Best management practices and engineering systems have been developed over the years to 
mitigate the negative impacts of stormwater runoff from urban catchments. However many 
are based on volume control such as detention systems (Kumar et al. 2012; Lloyd et al. 2002) 
where the main function is to separate suspended solids. Also, as runoff does not infiltrate 
into the ground and may leave the watershed, reduction in recharge of groundwater can occur 
(Birch et al. 2005; Datry et al. 2003; Dierkes et al. 2006). In most cases, detention systems 
occupy large areas which are not practical in all circumstances and do not address the wide 
range of contaminants which are present in stormwater runoff. As such engineering systems 
have resulted in filtration systems being implemented in detention systems to improve 
stormwater runoff quality which can separate total suspended solids (TSS) as well as 
removing contaminants from surface runoff. Filtration materials should be readily available, 
easily replaceable and inexpensive (McArdle et al. 2011; Reddy 2013). 

Several studies have focused on the various potential of using biochar as a filtration material 
for urban stormwater cleanup. Biochar is a charcoal like product resulting from the 
thermochemical conversion of organic materials or biomass in an oxygen limited 
environment in a process called pyrolysis. Biochar’s pores give the material extraordinary 
amounts of surface area, often exceeding 400 m2/g. This surface area makes biochar a highly 
adsorbent material. Biochar’s incredible porosity and surface area provides biochar with a 
high capacity to adsorb a wide variety of contaminants from water. Worldwide research into 
the use of biochar as a filtration medium shows that biochar can effectively reduce 
contaminants including heavy metals, organics, chemical and oxygen demand (COD and 
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BOD), nutrients and totals suspended solids (TSS) from stormwater discharge from urban 
environments. 
 
In stormwater, pollutant capture research into biochar geostructures are constantly evolving 
and being tested for their effectiveness and viability. Used on its own, mixed with other 
components, and/or amending biochar using enzyme additives, applications using biochar for 
the filtration of stormwater include; biochar filtration media in roof downpipe units used in 
above ground vaults; replacement media in existing treatment systems such as sand filters; 
direct application in bioretention or swale systems; filtration socks and slings; and filters in 
basins. 
 

1.1 Study Aims 

 
The main aim of this study is to investigate the use of biochar geostructures as a filtration 
media for urban stormwater runoff; including the latest research into emerging techniques 
and practices using biochar to improve stormwater runoff quality. 

1.2 Study Objectives 

 
The need for renewable resources to be implemented in engineering solutions in 
conjunction with the positive effect on both soil structure and microbial habitat, 
conducting research into the use of biochar geostructures to improve urban stormwater 
runoff was the objective of this study. 
 
It has also been determined that different biochar produced, depending on originating 
biomasses, pyrolysis temperatures and processing time (Bracmort, 2010); will have 
significant influence in the results for removing different pollutants within urban 
stormwater runoff. Emerging research in the use of enzyme based products is evolving 
which demonstrates that the technology is technically capable of remediating water bodies 
(Scott, 2010) contaminated with the most common pollutants. Enzyme research has been 
funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) 
however has not progressed to enzyme trials with solid structures such as biochar; it does 
provide emerging research to be investigated as part of this dissertation. 
 
Numerous engineering treatment systems have been devised to remove pollutants from 
stormwater runoff from urban development. In most cases, these systems remove different 
pollutants more successfully than others; additionally different treatment systems utilise 
non-renewable, expensive resources that are not easily maintainable. The objectives of this 
dissertation research are as follows: 
 

� To determine the pollutants found in stormwater directed from urban development; 

� To determine the effectiveness of the use of biochar for urban stormwater water 

cleanup; and 

� To develop geostructures utilising biochar for stormwater water cleanup which are 

feasible for the urban environment. 
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2. Background 
 
The initial discovery of biochar was in the Amazon regions of Central Amazonia, Brazil, 

Peru, Columbia, Southern Venezuela, and Guianas, through the discovery of Terra preta soils 

(Glaser and Birk, 2012). Patches of dark-coloured soils were found by researchers which are 

known as Anthropogenic Dark Earths (ADE) or terra preta (de Indio) and they exhibit 

different soil properties in comparison to most soils discovered in the region. The ADE was 

found to contain large stocks of stable soil organic matter (SOM) with high nutrient levels 

(Glaser, 2007 and Glaser et al., 2001). Archaeological evidence showed that terra preta 

formation at the Upper Xingu region and in Central Amazonia ranged between 60 and 1640 

AD (Heckenberger et al., 2003). The image shown in Figure 1 below shows a poor oxisol on 

the left and in the middle the oxisol transformed into terra preta. 

 

Figure 1 – Left a poor Oxisol, and middle an oxisol transformed into Terra Preta, (Image: 

Ecostewardblog) 

 

It was found that ADE provided a model for sustainable agriculture in humid regions and for 

soils which exhibit a low capacity to retain nutrients. The existence of ADE has been known 

for more than 100 years and has resulted in emerging agricultural techniques for the 

formation of terra preta soil used to reclaim degraded areas used for intensive agriculture 

(Glaser, 2007). In addition, the high stability of SOM in ADE has proven that carbon can be 

sequestered for long periods in soils which have the potential to combine sustainable 

agriculture with long-term carbon dioxide sequestration. The stability of the ADE and 

properties resulting in increased fertility in soils is attributed to the biochar content within the 

SOM (Glaser and Birk, 2012). 
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It is difficult to define terra preta due to the variation between different locations as well as 

differences due to differences in time and land use structure. In general, typical terra preta is 

defined as soil characterized by a several decimetre-thick topsoil horizon with high levels of 

SOM, biochar, and nutrients which contains archaeological artefacts of pre-Columbian origin 

(Glaser and Birk, 2012). This lends itself to the difference in properties resulting in biochar 

which is highly dependent on the type of biomass used to produce the biochar. The result of 

the biomass used to produce the biochar lends itself to its physical and chemical properties 

thought to be responsible for many of its beneficial qualities. 

2.1 Biochar Production 

 
The manufacturing process used for producing biochar is similar to the production of 

charcoal which uses a pyrolysis process. Even where different biomasses are used, the 

pyrolysis process is used for the most common production of biomass. See Figure 2 below 

which details the method for the production of biochar. 

 

Figure 2 – Biochar Production Diagram (Image: Lehmann, J. Frontiers in Ecology and the Environment. 

2007;5(7):381-387) 

 

Pyrolysis production uses the thermal decomposition of biomass in an oxygen-free 

environment (Dominquez et al., 2007) where slow pyrolysis of the biomass occurs under 

moderate temperatures (500 °C), with vapour residence times of around 10 to 20 seconds 

(Brown, 2009). Figure 3 below outlines the method of pyrolysis for the production of 

biochar. 
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Figure 3 – Pyrolysis Process for Biochar Production (Image: Pacific Pyrolysis) 

 
The biomass used for biochar production is any material which is from a biological source. 

Biomasses used include non-commercial wood and wood waste, manure, solid waste, non-

food energy crops, construction scraps, yard trimmings, methane digester residues or 

grasses. Biomass is typically worthless as it is a renewable resource generated typically 

from waste, but is costly to dispose of; but it is regarded as a valuable resource for biochar 

production. Tip fees, overloading landfills, open burning and pollution are avoided as 

biomass is processed into an efficient, indigenous, sustainable and value-added product for 

urban, rural agriculture and forest communities. Depending on the size and capacity of the 

pyrolysis furnace, heat and power are generated and available as an alternative clean 

energy resource for residential, commercial, industrial and community applications. 

2.2 Biochar Characteristics 

Lehmann et al. defined biochar as a carbon-rich fine-grained, porous substance, which is 

produced by thermal decomposition of biomass under oxygen-limited conditions and at 

relatively low temperatures (<700 °C). The pyrolysis process results in a progressive 

decrease in the oxygen content of the biomass and an increased in its carbon content. The 

characteristics of biochar will be affected by the biomass used to produce the biochar and 

the preparation temperature during pyrolysis. Different source materials (biomass) used 

show different properties of surface area, porosity and the overall function of the biochar. 

A higher pyrolysis temperature results in an increased surface area and carbonized fraction 

of biochar leading to a high sorption capability for pollutants. 

Biochar’s physical characteristics can be both directly and indirectly related to the way in 

which it affects soil systems. Different soils each have their own distinct physical 

properties depending on the nature of the mineral and organic matter from which they are 

derived (Brady and Weil, 2008). When biochar is added to soil, the physical nature of the 
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soil is altered including the depth, texture, structure, porosity and consistency, pore-size 

distribution, particle-size distribution, density and packing.  

Biochar is increasingly receiving attention for its ability to be used as a filtration medium 

for urban stormwater water clean-up due to its characteristics. However the type of 

pollutants removed is dependent on the sorption capabilities of biochar which is directly 

related to the temperature and material used its production. The increase of pyrolysis 

temperature results in an increase of surface area of biochar which assists in higher 

sorption of chemicals. For example, charcoal made from wheat residue at 500-700°C was 

well carbonized and its surface area was relatively high (>300 m2/g), whereas chars 

formed at 300-400°C were partially carbonized and had a lower surface area (<200 m2/g); 

the former exhibiting higher sorption capabilities (Chun, 2004). 

Studies have shown that biochar has the ability to absorb metals (Kolodynska et al., 2012; 

Park, et al., 2011; and Inyang et al., 2012), herbicides (Sun et al., 2012) and pesticides (Yu 

et al., 2011). The benefits associated with biochar’s characteristics allow it to be neutral to 

alkaline pH which raises the pH of acidic soils and can eliminate or reduce the 

requirement for the addition of lime (Lehmann, 2009). In addition biochar has a low bulk 

density which reduces soil compaction, as a high surface area and pore space, provides 

substrate for soil microbes, has a high cation exchange capability, increases water 

retention and decreases nutrient leaching which reduces fertilizer additives and can treat 

stormwater run-off. 

2.3 Biochar for Stormwater Management 

Excess runoff from precipitation that appears as streams and lakes is the result of surface 
water from rainfall events. Mean annual precipitation in Australia is approximately 
465mm per year; where 87% is lost through evapotranspiration). The water quality from 
rainfall runoff is a major concern for government agencies due to a range of characteristics 
concerned with the physical and chemical properties of materials dissolved or suspended 
in water. These can include dissolved gases, organic materials, heavy metals, pesticides, 
acid levels, temperature, colour and turbidity. Urban development leads to a higher rate 
and quantity of runoff due to an increase in impervious areas and loss of groundwater 
recharge. The additional runoff results in an increase in contaminants entering the drainage 
systems and natural waterways; in some cases exceeding that of raw sewage. Sediment 
particles in water serve as a media to transport other pollutants such as plant nutrients, 
pesticides, toxic metals, bacteria and viruses. 
 
In order to reduce the environmental impacts of urban development, low impact 
development (LID) structures such as bio-infiltration ponds and vegetated filter strips are 
implemented within developments to capture and remove harmful pollutants present in 
urban stormwater run-off. Although a variety of suspended and dissolved pollutants are 
readily removed by LID structures, certain nutrient pollutants, heavy metals and pesticides 
are not consistently removed. Therefore, designers are continually evaluating 
economically viable substrates that can be added to existing LID structures that are cost 
effective, sustainable and enhance the removal of pollutants. 
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Potential benefits of incorporating biochar, a soil amendment, into wetland reclamation 
have been investigated due to the positive research conducted to date. Problems exist 
where poor soil characteristics such as sandy, low organic matter with low pH levels are 
encountered or where sites hydrology is poor due to insufficient water due to location 
and/or due to drought. As biochar is a carbon based material the carbon stores in biochar 
are stable for hundreds of years which create a carbon sink in the soil. This occurs as the 
pyrolysis process used to create biochar stabilizes the carbon and captures gases that 
would otherwise be released into the environment through natural decomposition. Early 
studies using biochar suggest that an amended soil mix can improve the water quality 
discharged from urban development (Kolodynska et al., 2012; Park, et al., 2011; and 
Inyang et al., 2012). Biochar increases the water holding capacity of the soil, which has 
important implications for the stormwater runoff reduction potential from urban 
catchments. Results so far indicate that biochar has excellent potential as a low-cost 
amendment to soil to improve downstream water quality.  
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3. Literature Review 
 
In order to determine the results of using biochar geostructures for urban stormwater water 

cleanup, research regarding the studies and experimentation using biochar has been 

conducted. Biochar is a renewable resource which is a cheap alternate as a filtration medium 

utilised in stormwater geostructures due to its structure consisting of pores which makes 

biochar a highly adsorbent material. Biochar’s incredible porosity and surface area provides 

biochar with a high capacity to adsorb a wide variety of contaminants from water. 

Research has been conducted on biochar by many academics, students, and other 

professionals. A great deal of research on biochar has been on an experimental or 

environmental basis which is still in its infancy. This does not preclude the relevance of these 

papers; some findings and uses are helpful in using biochar geostructures for urban 

stormwater water cleanup. For example, Scott. et al. (2010) thesis on an initial field trial with 

an enzyme-based product, demonstrating that the technology is technically capable of 

remediating water body contaminants. Kolodynska et al. (2012) found that a biochar 

amended soil mix had a positive effect on improving stormwater runoff from urban 

development as it had the ability to absorb heavy metals. Furthermore, research conducted by 

Chun (2004) testing different biomasses used to create biochar had a significant effect on the 

sorption capabilities; in particular work by Brady and Weil (2008) has verified biochar’s 

physical characteristics can be both directly and indirectly related to the way in which it 

affects soil systems. 

However, to maximize the relevance of this literature review to the rest of the thesis 

conducted on biochar, it was necessary to apply a sorting process to the publications and 

resources identified as primary research. Because the biochar literature is so diverse and the 

term “biochar” is relatively new, it was necessary to filter the search in order to determine the 

documents which documented using biochar for stormwater cleanup. Throughout the 

screening process, it was noted that a majority of publications identified during the search 

were taken from organizational groups interested in biochar, such as the Australia and New 

Zealand Biochar Researchers Network and the International Biochar Initiative; which 

provided many publications used as resources, but also relevant links and contacts for the 

information provided within this thesis.  

Significant work has been conducted by Lehmann (2012) which characterized the absorption 

on a variety of biochar. This has led to the literature review being conducted on the toxic and 

organics remediated with biochar. Reviewed research shows that a substantial amount of 

toxic organics are sorbed by biochar. These include such heavy metals as copper, zinc, lead, 

cadmium, chromium, and mercury; herbicides such as Atrazine, Acetochlor, Clopyralid, 

Fipronil, Glyphosate, Simazine, Trifluralin, Diuron; nutrient leaching such as Phosphorous 

and Nitrogen; removal of hydrocarbons; and Pesticides and Fungicides such as Pyrimethanil, 

Lindance, Isoproturon, Endosulfan, Clhorpyrifos and Carbofuran. Park et al (2011) evaluated 

the effectiveness of biochar at immobilizing metals in soil. It resulted in the conclusion that 

biochar is effective in the uptake and immobilization of heavy metals. This has provided the 
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interest in using biochar as a filtration medium for stormwater cleanup for urban development 

runoff. 

It is well documented by that biochar helps with re-vegetation and environmental 

remediation. Low impact designs using biochar in rain gardens, biofilters, storm drains and 

roof drains has been tested and is now growing as a filtration media marketed for its 

longevity, cost effectiveness and the fact it is a renewable resource. Using biochar 

geostructures for urban stormwater water cleanup is still in its infancy, however testing 

experiments continue with promising results.  

The CSIRO in Australia is conducting research into the use of enzymes for the treatment of 

biochar. Scott et al (2010) examined the use of bioremediation in a field trial with an enzyme-

based product to demonstrate the remediation of water bodies contaminated with a common 

herbicide. The study concluded that the enzyme was successful in removing the herbicide and 

that further studies were required to analyze the further potential of improving production of 

farming crops. Providing the catalyst for further research being conducted as part of this 

thesis for using enzymes for the treatment of biochar and implementing field trials to gauge 

what is required to make enzyme  treated biochar successful and commercially viable. 

3.1 Urban Stormwater Pollutants 

Urban stormwater runoff has been the subject of intensive research since the inception of 

the River Murray Waters Agreement which was signed in 1914 by New South Wales, 

Victoria, and South Australia. The arrangements set out in the River Murray Waters 

Agreement remain largely unchanged until the commencement of the Water Act. The 

Environment Protection Agency (EPA) works to protect Australian waters, which includes 

creeks, streams, rivers, coastal waters, groundwater and aquifers, from the adverse impacts 

of pollution. The EPA samples monitoring sites across the country and measures water 

quality in relation to the environmental values that are to be protected which are set out in 

the EPA’s Environment Protection (Water Quality) Policy 2003. 

Urban stormwater is the leading source of water pollution due to human activities resulting 

in water quality impairment to ocean shoreline waters and one of the leading causes of 

pollution in estuaries across Australia. Urban stormwater is also a significant source of 

impairment in rivers and lakes and contributes to wetland degradation. The increase in 

volume of stormwater runoff from urban catchments along with the concentration of 

pollutants within the runoff has impaired urban watersheds physically, chemically, and 

biologically (Walsh et al, 2005). The degree and impacts to water bodies is significant; it 

affects water quality, water quantity, habitat and biological resources, public health, and 

the aesthetic appearance of waterways. There are four main types of stormwater 

pollutants. 
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� Litter, such as: 

• Cigarette butts 

• Cans 

• Paper or plastic bags 
� Chemical Pollution, such as: 

• Household detergents 

• Petroleum products 

• Oils 

• Fertilisers 
� Natural Pollution, such as: 

• Leaves 

• Garden clippings 

• Animal waste 

• Human waste 
� Sediment Pollution, such as: 

• Soil erosion from building and farming sites 

• Road and paved surfaces. 
 
The Department of Environment and Heritage’s, Introduction to Urban Stormwater 

Management in Australia document outlines the major issues for urban stormwater systems 
for managing stormwater quality are as follows: 
 

� Visual Water Quality 

� Contaminants and Nutrient Control 

• Suspended Solids 

• Nutrients 

• Oxygen Demanding Materials 

• Micro-organisms 

• Toxic Organics 

• Toxic Trace Metals 

• Oils and Surfactants 

• Litter 

• Algal Blooms 
� Management Interventions 

� Community Benefits 

� Source Control 

� Interception during the passage of contamination 

� Management of receiving waters 

 
The Council of Australian Governments representing Commonwealth, State, Territory and 
Local Government in Australia has adopted a National Water Quality Management 
Strategy (NWQMS). This Strategy includes a major focus on water quality linked to 
Ecological Sustainable Development, which aims “To achieve sustainable use of the 
nation’s water resources by protecting and enhancing their quality while maintaining 
economic and social development”. 

Skinner et al (2009) detailed that estimated diffuse pollutant loads from urban 
development were higher than that from rural and undeveloped catchment areas. Nitrogen 
and phosphorus export coefficients (mass/area/wet season) were up to 12 times higher 
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from urban catchments in comparison to undeveloped and rural land. Sediment 
coefficients were 8 times higher, whereas metal loads (lead, zinc, and copper) were more 
than 10 times higher from urban catchments when compared to undeveloped land. With 
ever growing populations future developments will result in increasing pollution which 
will result in an intensifying burden on receiving waterways. The table below details the 
export coefficients for urban and non urban catchments. 

Pollutant 

Contaminant Sources 

Non-urban Urban 

TN (kg/ha) 3.2 9.9 

TP (kg/ha) 0.12 1.0 

Al (g/ha) 3800 50000 

As (g/ha) 2.2 11 

Cd (g/ha) 0.93 1.9 

Cr (g/ha) 8.5 44 

Cu (g/ha) 13 200 

Ni (g/ha) 4.3 13 

Pb (g/ha) 4.1 270 

Zn (g/ha) 71 890 

TSS (kg/ha) 110 730 

VSS (kg/ha) 32 200 

Table 1 – Average wet season export coefficients for urban and non-urban land uses (Source: Skinner et 

al 2009). 

Pollutants which are associated with urban stormwater runoff which are harmful to 

receiving waters fall into common categories outlined by Horner et al, (1994) which are 

outlined below. 

3.1.1 Suspended Solids 

Solids are one of the one common pollutants found in urban stormwater. Solids 

originate from many sources including the erosion of pervious surfaces and dust, litter 

and other particles deposited on impervious surfaces from human activities and the 

atmosphere. Waterway bank erosion and erosion at construction sites are also major 

sources of suspended solids transported in stormwater. Suspended solids have two main 

constituents which are organics derived primarily from sewage and inorganics which 

are primarily derived from surface runoff. Frequent rain events where the volume and 

velocities of runoff are intensified by urban development result in mobilisation of 

sediments within urban water systems, triggering bank erosion, channel incision and 

disruption of biota (Walsh et al, 2005). The turbidity in water resulting from suspended 

solids reduces light penetration in water which affects the growth of aquatic plants. 

Silts and clay suspended particles smooth the bottom of waterways causes disruption to 
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the habitats for fish and bottom dwelling organisms. Additionally metals, phosphorous 

and other organics are absorbed and transported via suspended solids in water which 

leads to slow leaching of toxins and nutrients into waterways. Typical concentration of 

suspended solids in urban runoff is substantially higher than that in treated wastewater 

(Bastian, 1997). 

3.1.2 Pesticides and Herbicides 

The EPA describes agricultural pollution problems as one of the most pervasive causes 

of urban stormwater water quality problems. The primary pollutants from non-irrigated 

croplands are sediment, nutrients, pesticides and herbicides. Losses of pesticides and 

herbicides applied to urban lands to control insects and weeds amount to an average of 

5% of the applied pesticides (Novotny, 1995). Most of the pollution as a result of this 

loss ends up as pollution of groundwater due to leaching and surface waters such as 

rivers, streams and oceanic systems. This is compounded if rainfall occurs shortly after 

the application of pesticides and herbicides where the losses can be substantial, 

resulting in death to aquatic life. Herbicides for weed control are the most used 

pesticides where a study in the USA in 1980 found that approximately 200,000 tons of 

herbicides and 140,000 tons of insecticides were used; since 1980 these uses have 

doubled. Pesticides and herbicides elevate the chemical pollution in groundwater 

beyond acceptable levels. Startling levels of nitrate contamination of groundwater and 

surface water sources have been documented in eastern and central Europe. Zakova et 

al, 1993 documented damaging impacts in the use of fertilizers in the Czech Republic 

in two important water supply reservoirs. Nitrate levels detected in streams feeding the 

reservoirs have increased by 600% in the last 25 years, from approximately 5mg of 

NO3 per litre in 1965 to 30mg of NO3 per litre in 1995. A clear relationship was 

established between the fertilizer applications and nitrate concentration in the streams. 

Pesticides are also responsible for the contamination in groundwater and surface waters 

where atrazine was found in central Wisconsin, and the Po River Valley in Italy 

(Novotny, 1995). 

3.1.3 Nitrogen and Phosphorus 

Nitrogen and phosphorus are the primary nutrients of concern in urban stormwater. The 

major sources of nutrients in urban stormwater are urban landscape runoff (such as 

fertilisers, detergents, and plant debris), atmospheric deposition, and failing septic 

systems (Terrene Institute, 1996). Animal waste is also a major source of nutrient 

contamination in urban stormwater (EPA, 2010). Nitrogen and phosphorus can 

determine the tropic status and amount of algal biomass produced in a water system. A 

high proportion of nutrients in water increase primary biological proactivity which 

results in excessive growth of algae that leads to nuisance algal blooms and eutrophic 

conditions. The negative effect of decomposing algae is the form of sediment oxygen 

demand which depletes dissolved oxygen concentrations, which can cause fish and 

marine organisms to perish (Dowsett, 1994). Walker (1987) stated that “cause-effect 

relationships linking urban development to lake and reservoir eutrophication are well 
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established,” and that “urban watersheds typically export 5 to 20 times as much 

phosphorus per unit per year, as compared to undeveloped watersheds in a given 

region.” 

3.1.4 Micro-organisms 

Micro-organisms are a potential public health threat when they are present in contact 

waters. Bacteria and viruses found in soil and decaying vegetation, and faecal bacteria 

from sewer overflows, failing septic tanks and animal waste, are common contaminants 

found in stormwater after heavy rainfall (Terrene Institute, 1996). Pathogens and micro-

organisms, including bacteria, viruses and faecal coliforms, cause water borne diseases 

that can cause serious health risks such as cholera, typhoid, infectious hepatitis and 

gastrointestinal diseases (Dowsett, 1994). The Environmental Protection Authority’s, 

Nationwide Urban Runoff Program (NURP) evaluated 17 sites for 156 storm events 

which concluded that coliform bacteria was present at high levels in urban stormwater 

runoff which exceeded EPA water quality criteria during and immediately after large 

rainfall events.  

3.1.5 Polycyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) describe chemicals that are often found 

together in groups of two or more. PAHs are found naturally in the environment but 

they can also be man-made. In their purest form, PAHs are solid and are created when 

products like coal, oil, gas, and garbage are burned but the burning process is not 

complete. PAHs form when complex organic compounds are exposed to high 

temperatures or pressures. 

 

Petroleum hydrocarbons found in urban stormwater are usually sources from parking 

lots, roadways, leaking storage tanks, vehicular emissions, and incorrect disposal of 

waste oil. Petroleum hydrocarbons found in stormwater runoff include oil and grease 

and compounds such as benzene, toluene, ethyl benzene and a variety of polynuclear 

aromatic hydrocarbons (PAHs); which are known for their severe toxicity even at low 

levels (Schueler, 1987). Research conducted (Shepp, 1996) measured the petroleum 

hydrocarbon levels in urban runoff from a number of impervious areas which found 

that the number of traffic generation was directly associated with the concentration of 

hydrocarbons present in stormwater, ranging 0.7 to 6.6 mg/l. Considering the maximum 

concentration of petroleum hydrocarbons for protection of fisheries is 0.01 to 0.1 mg/l 

(Shepp, 1996), these levels exceed the maximum concentrations recommended for the 

protection of drinking water supplies and protection of aquatic life. Population growth 

as a result of increased urban sprawl has been proven to correlate with increased traffic 

activity which is directly related for the high levels of PAHs found in urban runoff and 

the consequent dilapidation of water quality in downstream water systems. 
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3.1.6 Heavy Metals 

Heavy metals, industrial and agricultural chemicals can have a severe impact on 

humans and aquatic life. Atmospheric deposition where gases and particulates are 

released to the atmosphere from combustion sources such as motor vehicle emissions, 

slash burning, and industrial sources, which contain nitrogen, sulphur, and metal 

compounds; eventually settle to the earth’s surface as dust or fall in rain, snow and fog. 

A major finding of the NURP study found: 

“Heavy metals (especially copper, lead and zinc) are by far the most prevalent priority 

pollutant constituents found in urban runoff. End-of-pipe concentrations exceed EPA 

ambient water quality criteria and drinking water standards in many instances. Some 

of the metals are present often enough and in high concentrations to be potential 

threats to beneficial users.” 

A major study of the quality of urban stormwater (Bannerman et al, 1996) found that 

mean concentrations of metals, particularly copper and zinc, exceeded the water quality 

criteria for cold water fish communities; another study thesised lead and zinc levels 

from urban runoff of 100 to 500 times the concentration in ambient water (Pitt, 1995). 

 

3.2 Sources of Pollutants 

Stormwater runoff from urbanised areas is generated from a number of sources such as 

residential areas, commercial and industrial areas, roads, and bridges. This urbanised land 

use consists of rooftops, streets and parking areas and when land is developed from its 

natural groundcover ecosystem to an urbanized land, the developed surfaces do not have 

the ability to pond and infiltrate water which produces runoff during storm events. Water 

which under normal conditions previously infiltrated into the soil and was converted to 

groundwater, ponded in natural depressions in the land such as creeks and rivers, utilised 

by plants and evaporated or transpired into the atmosphere is now converted directly into 

surface runoff. 

The climate of a region can have a significant impact on not only the quantity of 

stormwater runoff but also the quality. Factors such as the frequency, intensity and storm 

duration can all be contributing to the quality of stormwater runoff in urban areas. In areas 

where there are significant amounts of atmospheric deposition of particulates, urban 

stormwater runoff can contain high concentrations of total suspended solids, metals, and 

nutrients. Areas which have infrequent rainfall can have a high concentration of pollutants, 

mainly from “hot spots” such as large carparking areas, roadways and industrial 

developments. The infrequent rainfall tends to generate high intensity rainfall events over 

a short period of time which results in large amounts of suspended solids being located in 

stormwater runoff. Specific geographical factors can influence the nature and components 

which are found in stormwater runoff. This includes the soil types, slope of land, land use 
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and amount of imperviousness of the stormwater runoff which can contribute to the 

quality of runoff that is discharged from a specific area. 

The Department of Environment and Heritage’s, Introduction to Urban Stormwater 

Management in Australia details the concerns associated with the wet weather peak 

overflow problems from sewage pipes into stormwater drains which discharges into 

natural waterways is a significant problem in most Australian cities. Water penetrates the 

sewerage system from illegal stormwater connections from structures, surface runoff into 

sewer manholes, and from damaged infrastructure. The volume of water exceeds the 

capacity of the sewage system causing overflow discharges into waterways. Studies in the 

Sydney area indicate that there are up to 6,000 overflow points that are capable of 

discharging raw sewage into stormwater systems. 

Sidhu (2013) assessed the concurrence of human sewage contamination in urban 

stormwater runoff using microbial source tracking (MST) and chemical source tracking 

(CST). Out of 23 stormwater samples, 21 samples (91%) were positive for six to eight 

sewage related MST and CST markers, respectively. Additionally high prevalence of other 

enteric viruses were also found to be present in the stormwater samples which can pose 

significant health risks for humans. 

The Environmental Protection Authority’s, Nationwide Urban Runoff Program (NURP) 

outlines the following sources of contaminants in urban stormwater runoff which have 

been tabulated below: 

Contaminant Contaminant Sources 

Sediment and Floatables Streets, lawns, driveways, roads, construction activities, 
atmospheric deposition, drainage channel erosion 

Pesticides and Herbicides Residential lawns and gardens, roadsides, utility right of 
ways, commercial and industrial landscaped areas, soil 

wash off. 

Organic Materials Residential lawns and gardens, commercial landscaping, 
animal wastes. 

 

Metals Vehicles, bridges, atmospheric deposition, industrial 
areas, soil erosion, corroding metal surfaces, combustion 

processes. 

Oil and Grease/Hydrocarbons Roads, driveways, parking areas, vehicle maintenance 
areas, petrol stations, illicit dumping to stormwater 

drains. 
 

Bacteria and Viruses Lawns, roads, leaking sewer pipelines, sanitary sewer 
cross-connections, animal wastes, septic systems. 

 

Nitrogen and Phosphorus Lawn fertilizers, atmospheric deposition, vehicle 
exhaust, soil erosion, animal waste, detergents. 

Table 2 – Sources of Contaminants in Urban Stormwater Runoff 

Motor vehicle emissions, crankcase oil leaks, vehicle tyre wearing and asphalt road 

surfaces are all sources of chemical containments found in urban stormwater runoff. 
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Heavy metals such as copper, lead, and zinc and polycyclic aromatic hydrocarbons 

(PAHs) are widespread in urban stormwater which raises concerns due to their toxicity to 

aquatic organisms and the environment (Hoffman et al 1984; Walker et al 1999). Other 

sources of heavy metals and PAHs include fire emissions, spillage and dumping of 

contaminants, and corrosion of roofing and rainwater tank materials (Brown, 2005). 

Among many non-point pollution sources, road runoff is one of the major sources of 

pollutants contributing to urban stormwater (Aryal et al, 2005). Studies conducted in 

Europe indicate that the components of road surface degradation are common constituents 

of urban runoff where up to 0.05-0.10 inch of pavement surface is worn away from a 

roadway each year. Surface deposits on roads contain toxic micropollutants such as heavy 

metals and PAHs (Barbos and Hvitved, 1999; Berbee et al, 1999). During rain events the 

surface micropollutants are washed off the road surface and discharged into pipe networks 

associated with urban development which ends up in aquatic environments. Gupta and 

Saul, 1996 identified that the initial runoff, or “first flush”, is where the pollutant 

concentration is at its most high. Many researchers (Sartor and Boyd, 1972; Hoffman et al, 

1984; Lau, 2005) have documented runoff pollutants associated with road runoff. Barret et 

al, 1998 outlines that in road runoff, suspended solids are considered as one of the major 

pollutants due to their susceptibility for micropollutants to attach to them. High PAH 

concentration has been documented by Shinya et al, 2000 in the early stages of stormwater 

runoff from road surfaces, where according to Pitt et al, 1995 the pollutant accumulating 

behaviour is dependent on suspended solids particle size. Krein and Schorer, 200 thesised 

that higher molecular weight PAHs attached to coarse particle fraction. 

Educational programs must be implemented to make the public aware of the pollution 

issues associated with irresponsible disposal of waste products. For example, the 

Environment Protection Authority (EPA) of New South Wales estimates the amount of 

dog faeces washing into Sydney’s rivers from stormwater drains each year would fill more 

than 10 Olympic-sized swimming pools. The Department of Environment and Heritage’s, 

Introduction to Urban Stormwater Management in Australia suggests the use of labelling 

stormwater pits to indicate the waterway that is impacted by this stormwater drain entry 

may provide a simple solution to a major problem. 

 

3.3 Existing Geostructures for Urban Stormwater Cleanup 

A number of documents are available in Australia which relate to existing geostructures 

that are available for urban stormwater cleanup. As part of the Austroads publications, 

guidelines were released for the treatment of stormwater runoff for roads (Wong et al, 

2003), which provided an update of earlier guidelines (Wong et al, 2000). Although the 

document is primarily focussed on stormwater sensitive urban design for roads, it provides 

guidance on the design of swales, bioretention systems, infiltration systems and wetlands; 

including case studies for different regions throughout Australia. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 25 
 

In 1999 the Queensland Water Recycling Strategy released a Stormwater Recycling 

Background Study which was prepared by WMB Oceanics Australia (WBM, 1999). This 

study investigated the status of stormwater recycling in Queensland, interstate and 

overseas. This document identified advantages, disadvantages and potential benefits of 

stormwater recycling practices however it did not provide definitive guidance into the 

adoption of stormwater re-use measures. 

The Cooperative Research Centre (CRC) for Catchment Hydrology published a thesis by 

Lloyd et al. (2002) which outlines key considerations in the planning, design and 

assessment of stormwater sensitive urban design. The thesis outlines both non-structural 

and structural measures, emphasising the significance of modelling practices to assess the 

performance of the proposed structures to be used. The guidelines identified best 

management practices (BMP) of structural measures to be applied for stormwater sensitive 

urban design which is outlined in Table 3 below. 
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Structural BMP Allotment Streetscape or precinct 
Open Space networks or 

regional scale 

Diversion of runoff to garden beds    

Rainwater tank/ reuse scheme (ie garden 
watering, toilet flushing)    

Sediment trap    

Infiltration and collection system 
(biofiltration system)    

Infiltration system    

Native vegetation, mulching, drip irrigation 
schemes    

Porous pavement    

Buffer strip    

Constructed wetland    

Dry detention basin    

Litter trap (side entry pit trap)    

Pond and sediment trap    

Swale    

Lake    

Litter trap (gross pollutant trap)    

Rehabilitation waterway    

Reuse scheme (ie open space irrigation and 
toilet flushing) 

   

Urban forest    

Table 3 – Application of structural best management practices for stormwater sensitive urban design 

(Source: Lloyd et al, 2002) 
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The Institute for Sustainable Resources at Monash University compiled an inventory of 

integrated stormwater treatment and re-use practices in Australia in order to develop a 

record of systems used for collection, treatment, storage and distribution of general 

stormwater runoff (Hatt et al., 2004). The document detailed the regulation, performance, 

construction, operation, maintenance, implementation, and cost benefits of these systems. 

However as mentioned above, this document provided a review of current practices 

without providing any guidance for future practices to be used for urban stormwater 

cleanup. 

The basic approach to urban stormwater cleanup is to use nature as a model and filter 

rainfall at the source. This is achieved by sequenced implementation of runoff prevention 

strategies, runoff mitigation strategies, and treatment controls to remove pollutants. The 

filtration process is where stormwater is passed through a filter media to remove solids 

and other pollutants. The gradation of the media, irregularity of the shape, porosity, and 

surface roughness characteristics all influence solids removal. Other pollutants such as 

nutrients and metals are removed through chemical and/or biological processes. Filtration 

systems can be designed as large scale geostructures to remove pollutants at the end of a 

system, or configures in decentralized small-scale stormwater inlets to allow stormwater 

runoff to be treated close to its source without additional collection or conveyance 

infrastructure. 

There are a limited number of journals, conference and technical papers which address 

integrated stormwater treatment for urban environments however existing literature is 

generally specific to particular systems. Most of these systems can be found on various 

Australian research institutions, Local Government websites and relevant Water 

Association documents. 

The basic processes to manage stormwater include pretreatment, filtration, infiltration, and 

storage for reuse. The approach to site development and stormwater management is to 

create a sustainable site that mimics the undeveloped hydrologic and pollutant properties 

emulating from a site. In order to develop geostructures utilising new and emerging 

products it is important to research the performance of some of the existing geostructures 

installed for urban stormwater cleanup. It is important to note that as part of this 

dissertation it is not possible to review the performance of every different type of 

geostructures available for urban stormwater cleanup, but rather provide an overview of 

the typical systems used and their performance. 

3.3.1 Filtration – Engineered Landscaping 

Engineered landscape practises are an example of geostructures which can be utilised to 

effectively remove pollutants from urban stormwater runoff. This type of filter is used 

where site conditions are difficult such as where clay soils are encountered, the water 

table is high, steep grade levels, soils that are contaminated, and site which discharge 

high pollutant loads. As engineered landscape filters can be integrated into the 

landscape this type of filter is considered both functional and aesthetically pleasing. 
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Pollutants are removed by filtration through the grass, sedimentation, adsorption to soil 

particles, and infiltration through the soil (Field and Sullivan, 2003). 

Tree box filters and enhanced biofiltration systems that utilise biological and 

engineered media are typically designed to treat small catchment areas that can be 

combined with underground infiltration. A biofiltration system operates where the 

grasses and vegetation within the geostructure “filter” the stormwater as it flows over 

them (EPA, 1999). High flow rates from a catchment will bypass the biofilter so that 

the tree box filter treats the initial runoff with high pollutant concentrations. The types 

of trees used should be suitable for the climate conditions of the area to be installed and 

should have a non-aggressive root structure. Leinster (2004) studied the construction 

costs associated with bioretention systems in greenfield developments as follows: 

• Bioretention systems greater than 100m2 in area: $125-$150/m2 (including 

vegetation); 

• Bioretention systems less than 100m2 in area: $225-$275/m2 (including 

vegetation); 

• Swale Bioretention systems: $100-$120/ linear metre (including vegetation). 

Raingardens are utilised to filter pollutants from stormwater whilst also acting as a 

system to detain peak flows of stormwater from entering the drainage system and as an 

infiltration system. The main function of a raingarden is to capture stormwater runoff 

from hardstand areas such as roads, and roofs via downpipes during rainfall events. A 

raingarden not only slows the peak runoff of a rain event from a hardstand area but it 

also acts as a filter. This filtration is achieved via layers of gravel, and sandy soil which 

filtrates pollutants such nitrogen, phosphorus and fertilizers (Davis et al, 2009). 

Microorganisms in the soil degrade pollutants to reduce toxic leaching into 

groundwater. Plants are installed within the raingarden which further aid in the uptake 

of pollutants from the stormwater which provide a visually appealing, non-impact 

stormwater control; adding to the streetscape of a developed urban area. 

Vegetated Swales are open vegetated open drains which provide stormwater filtration 

prior to discharge to downstream drainage systems and/or receiving water bodies 

(Wong et al., 2000). Treatment of pollutants relies heavily on dispersed flows which 

have low hydraulic loading which is severely reduced in high flow channelized 

systems. The table below provides a broad estimate of overall performance for a range 

of pollutants which are indicative only and not to be regarded as prescriptive. Filtration 

which is also promoted within vegetated swales has not been taken into consideration in 

the values provided in the table below. 
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Pollutant 
Expected removal 

(mean annual load) 
Comments 

Litter and organic matter Very High (>90%) Should be almost 100% removal, provided there is 
adequate vegetation cover, and flow velocities are 

controlled (below 0.5m/s). 

TSS 60% - 80% Assumes low level of infiltration. Will vary with 
varying particle size distribution. 

TN 25% - 40% Dependant on speciation and detention time. 
 

TP 30% - 50% Dependant on speciation and particle size 
distribution. 

Coarse sediment Very high (>90%) Assumes re-suspension and scouring is prevented, 
by controlling inflow velocities to <0.8m/s, and 

maintaining dense vegetation. 
 

Oil and grease n/a No reliable data available. 
 

Faecal coliforms n/a No reliable data available. 
 

Heavy metals 20% - 60% Highly variable: dependent on particle size 
distribution, ionic charge, detention time, etc. 

Table 4 – Pollutant Removal Estimates for Vegetated Swales and Filter Strips (Source: Fletcher et al, 

2003) 

Ponds, wetlands and sediment basins are obviously constructed differently; they operate 

using similar mechanisms such as flow attenuation, sedimentation and filtration to 

remove contaminants from urban stormwater. The change in wetland performance is 

due to the relationships of key factors of the systems such as hydraulic loading and 

input concentration which vary in the flow processes which influence stormwater flow 

and quality. The table below provides a summary of the typical range performance for 

stormwater wetlands, ponds and sedimentation basins. 
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Pollutant 
Expected removal 

(mean annual load) 
Comments 

Litter and organic matter Very High (>95%) 
(s,p,w) 

Subject to appropriate hydrologic control. Litter and 
coarse organic matter should ideally be removed in 

an aerobic environment PRIOR to a pond or 
wetland, to reduce potential impacts on BOD. 

TSS 60% - 85% (p) 
65% - 95% w) 
50% - 80% (s) 

Depends on particle size distribution 

TN 30% - 70% (p) 
40% - 80% w) 
20% - 60% (s) 

Dependant on speciation and detention time. 
 

TP 50% - 80% (p) 
60% - 85% w) 
50% - 75% (s) 

Dependant on speciation and particle size 
distribution. Will be greater where a high proportion 

of P is particulate. 

Coarse sediment Very high (>95%) Subject to appropriate hydrologic control. 
 

Oil and grease n/a Inadequate data to provide reliable estimate, but 
expected to be >75%. 

 

Faecal coliforms n/a Inconsistent data. 
 

Heavy metals 50% - 85% (p) 
55% - 95% w) 
40% - 70% (s) 

Quite variable: dependant on particle size 
distribution, ionic charge, attachment to sediment 

(vs % soluble), detention time, etc. 
Ponds (p), Wetlands (w), Sedimentation Basins (s) 

Table 5 – Summary of Expected Pollutant Removal by Ponds, Wetlands and Sedimentation Basins 

(Source: Fletcher et al, 2003) 

The annual maintenance costs associated with wetlands in greenfield developments 

were estimated at 2% of the total construction cost. The total cost for wetland 

construction in Penrith NSW based on 10 years experience were estimated at $500,000 

per ha of surface areas for design and construction, and approximately $10,000 per ha 

per annum for routine maintenance in the first two (2) years (2% of design and 

construction cost) followed by $5,000 per ha per annum for routine maintenance 

thereafter (1% of design and construction cost); then major corrective maintenance 

every ten (10) years (5% of construction cost), Hunter, 2003. It is also recommended 

that the macrophyte zone of a wetland should be replaced every 20-50 years at a cost of 

50% of the initial construction cost (Fletcher et al., 2002). 

3.3.2 Media Filters 

Sand filters are one of the most common types of geostructures used for urban 
stormwater cleanup due to their relatively small size and their ability to remove 
challenging pollutants such as solids, soluble heavy metals, oils and grease, and total 
nutrients. Sand filter geostructures are also favoured due to the ability of using 
sustainable media as filtration. Sand filters are designed to capture and treat a water 
quality volume from urban catchments which must be maintained periodically to 
restore the system to its full efficiency and effectiveness. The maintenance 
requirements and frequency of sand based filters are dependant of the pollutant load 
characteristics associated with the site being treated.  



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 31 
 

A sand filter and storage basin with a catchment area of 60,000m2, a sand filter size of 

32m2, and a ‘storage plus filter area’ of 150m2  constructed in Sydney (Gibbs, 2003) 

estimated cost $167,815 to construct; which was calculated to cost $1,500 per m2 of 

sand filter including storage capacity. Newcastle City Council (2002) estimated that the 

construction cost for a sand filter treating approximately 5,000m2 was $36,153 

including site establishment, survey, design, and supervision costs. 

3.3.3 Infiltration 

Infiltration systems are a type of belowground geostructures such as chambers, 

perforated pipes and vaults. Belowground geostructures are favoured as they allow 

infiltration to occur without occupying large land area that could be used as developed 

land or land that is required to be preserved. This type of geostructures minimises the 

impact on the land while providing an efficient groundwater recharge system which is 

incorporated to meet detention requirements for an urban development. However it is 

important to note where stormwater runoff is from a commercial or residential area 

with a higher potential for metal or organic contamination, infiltration may not be 

appropriate in areas where groundwater is used as a source of drinking water due to 

contaminant migration (Schueler, 1987). 

 

Pollutant 
Expected removal 

(mean, range) 
Comments 

Litter and organic matter 100% Expected to trap all gross pollutants, except during 
high-flow bypass. 

TSS 65% - 99% Pre-treatment required to reduce clogging risk. 

TN 50% - 70% Dependant on speciation and state (soluble or 
particulate). 

 

TP 40% - 80% Dependant on speciation and state (soluble or 
particulate). 

Coarse sediment 95% - 100% May pose a clogging risk. These systems should 
have pre-treatment to remove coarse sediment prior 

to entry into the filter media. 
 

Oil and grease n/a Inadequate data to provide reliable estimate, but 
expected to be >75%. 

 

Faecal coliforms n/a Inadequate data. 

Heavy metals 50% - 95% Dependent on form (soluble or particulate). 

Table 6 – Pollutant Removal Estimates of Infiltration and Bioretention Systems (Source: Fletcher et al, 

2003) 

The construction cost of an infiltration trench is estimated at $60-$80/m3 of trench 

(assuming a 1m wide by 1m deep trench), (Fletcher et al, 2003). Whereas Earthtech 
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Engineering Pty Ltd in Melbourne estimated in 2003 that an estimate for construction 

costs of $46-$48 per linear metre is used. 
 

3.3.4 Gross Pollutant Traps (GPT) 

Research in the effectiveness of GPTs does not provide substantial data in relation to 

the removal efficiency of pollutants but rather focus on the load captured during a 

certain rainfall event. This deficiency in available data has be noted by Allison et al., 

(1998) where Australian Runoff Quality guidelines detail gross pollutant and sediment 

traps, however do not provide typical performance data (Allison and Pezzaniti, 2003). 

The table below provides data derived from a review by Fletcher et al, (2004), which 

includes rationale and estimates for pollutant removal estimates for GPTs. 

Pollutant 
Expected removal 

(mean annual load) 
Comments 

Litter and organic matter 10% - 30% Depends on effective maintenance, specific design 
(hydraulic characteristics etc). 10% where trap 

width is equal to channel width, 30% where width is 
3 or more times channel width. 

TSS 0 – 10% Depends on hydraulic characteristics, will be higher 
during low flow. 

TN 0% (negligible) Transformation processes make prediction difficult. 
 

TP 0% (negligible) TP trapped during stormflows may be re-released 
during inter-event periods, due to anoxic conditions. 

Coarse sediment 10% - 25% Depends on hydraulic characteristics; will be higher 
during low flow. 

 

Oil and grease 0 – 10% Majority of trapped material will be that attached to 
organic matter and coarse sediment. 

 

Faecal coliforms unknown  

Heavy metals 0% (negligible)  

Table 7 – Pollutant Removal Estimates for Gross Pollutant Traps (Source: Fletcher et al, 2003) 

The NSW EPA (2002) developed a spreadsheet to provide an approximate of unit 

prices for a wide range of proprietary GPTs. The costs are outlined in Table 8 below. 
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Manufacturer Capital Cost Maintenance Costs 

Rocla Downstream Defender $12,000 - $36,000 $20 per ha per month (suction cleaning) 

Stream Guard (catch basin insert) $290 $200 per annum 

Stream Guard (passive skimmer) $60 $200 per annum 
 

Enviropod (100-500 micron screen) $40-$620 $200 per annum 

Ecosol RSF100 $430-$903 $200 per annum  

CSR Humes Humceptor $10,000-$50,000 $20 per ha per month (suction cleaning) 
 

Rocla Cleansall $20,000-$150,000 $14,400 per annum 

Ecosol RSF 1000 $4,000-$12,000 $12 per ha per month 

Baramy $15,000-$40,000 $12 per ha per month 

CSR Humegard $18,000-$51,000 $14,400 per annum 

Trash Racks (Hornsby Shire Council) $2,117/ha $708 per annum, $42 per ha 

Table 8 – Approximate Capital Cost and Typical Maintenance Cost for a range of Proprietary Gross 

Pollutant Traps (Source: NSW EPA, 2002) 

 

3.3.5 Porous Pavements 

Porous pavements are a type of pavement geostructures which promote infiltration to 

the underlying soil or to a dedicated storage reservoir below the pavers. Porous pavers 

are monolithic or modular; where monolithic pavers include porous concrete and 

porous pavement; and modular pavers include porous pavers made of a porous material 

or constructed which a gap between each paver, or as modular lattice type structures. 

Porous pavements are laid ontop of medium which aids in the filtration of pollutants 

such as sand or fine gravel, usually underlain by a layer of geotextile fabric with coarse 

aggregate below. Porous pavements have advantages of stormwater management by 

improving water quality through filtering, interception and biological treatment; 

however they are prone to clogging and are expensive (EPA, 1993). The table below 

provides a summary of pollutant removal by porous pavements. 
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Pollutant 

Expected 

concentration 

reduction (+ 

range) 

Comments 

Total Suspended Solids 80 (70-100)  

Total Nitrogen 65 (60-80) Will decrease with proportion dissolved. 
 

Total Phosphorus 60 (40-80) Will decrease with proportion dissolved. 

Hydrocarbons/Oils/Grease 85 (80-99) Depends on level of microbial activity. 
 

BOD - Inadequate data 
 

Pb, Cu, Cd, Zn, Ni 75 (40-90) Will decrease with proportion dissolved. 

Litter - Litter will simply ‘wash off” 

Pathogens - Inadequate data 
 

Table 9 – Summary of expected porous pavement performance (Source: Fletcher et al, 2003) 

Boral in NSW in 2003 outlined the following costing for permeable paving based on 

five types of design: 

• Permeable paving allowing infiltration - $111/m2 

• Permeable paving over sealed subgrade, allowing water collection: $119/m2 

• Augmentation with permeable paving (i.e. mixing permeable with normal 

pavers): $98/m2 

• Permeable paving with asphalt: $67/m2 

• Permeable paving with concrete slab: $90/m2. 

 

3.3.6 Technology Systems 

A number of engineered technology systems are available for use of urban stormwater 

cleanup. These systems include water quality inlets, hydrodynamic devices, filtration 

devices etc. which incorporate combinations of filter media, hydrodynamic sediment 

removal, oil and grease removal, or screening to remove pollutants from stormwater. 

This literature review does not detail vendor-supplied systems and other proprietary 

devices due to lack of peer reviewed performance data for these systems. Technology 

systems such as oil/grit separators or oil/water separators consist of one or more 

chambers that promote sedimentation of course materials and separation of oil from 

stormwater (Field and Sullivan, 2003). Many modern separators include screens to 

retain debris, sand filters to provide additional removal of finer suspended solids, 

and/or coalescing units to promote oil and water separation (Pitt et al, 1999). These 
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types of systems are used in areas where stormwater runoff has a high probability of 

containing high concentrations of oils and other toxic organic pollutants that are 

difficult to treat (Pitt et al, 1999). 

 

3.4 Biochar for Urban Stormwater Cleanup 

In order to determine the results of using biochar geostructures for urban stormwater water 

the research was conducted to identify the performance of biochar for urban stormwater 

cleanup from current practice. Biochar is a low cost, renewable resource and highly 

efficient sorbent material, which is being used for removal of various kinds of pollutants 

(Lehmann et al. 2009; Chen et al. 2011). The recalcitrant and alkaline nature of biochar 

has been well documented to remove pollutants in water (Lehmann et al. 2006).  

3.4.1 Effects of Different Biomass 

Biomass is defined as a once living organic matter such as crops, plants, marine organic 

waste, solid waste, and sewage (Demirbas, 2000). Under different heat conditions the 

cellular structure of the organic matter is broken down macromolecules fuse together 

creating stable aromatic structures, micro to nano-sized pores and producer gas 

(Bridgewater et al, 1999). The physiochemical properties of biochar produced, such as 

composition, particle size, and pore size depends on the biomass used (Sparkes and 

Stoutjesdijk, 2011). These properties have a profound effect on the performance of the 

biochar used for urban stormwater cleanup. 

Biochar has a high surface area and porosity where the latter is sourced from the 

restructuring of the carbon molecules and the release of organic matter. The pore sizes 

of biochar differ depending on the biomass used to create the biochar where the large 

surface area provided by micropores within the biochar structure allow for large 

absorptive capacities, as well as retention (Downie et al, 2009). The biochar surfaces 

are located within nanometer-sized pores that contain reactive sorption sites, where 

contaminants become trapped indefinitely. The cation retention of fresh biochar is 

relatively low compared to biochar which has aged in soil, and limited results exist 

which clearly identify under what conditions and over what period of time biochar 

develops it adsorbing properties. 

Biochar derived from various biomass show different properties as outlined in Table 10 

below. 
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Parent 

material 

Temp 

(°C) 

SAa 

(m2 

g−1) 

TPV 

(mg/g)b or 

MPA 

(m2/g)c 

Adsorbate Effect Ref. 

Pine needle 

100 0.65 NDd 

NAPH, NB, 
m-DNB 

  
  
  
  

The concentration of adsorption in the 
order of P100 < P200 < P300 < P400 

< P500 < P600 < P700 
  
  
  
  

Chen, 2008 

400 112.4 0.0442b 

500 236.4 0.0952b 

600 206.7 0.0764b 

700 490.8 0.186b 

Cotton 
seed hulls 

350 
4.7 ± 
0.8 

ND 
Ni2+, Cu2+, 
Pb2+, Cd2+ 

  
  
  

Total concentration of soluble metal 
ions in soil interstitial waters in the 

order of: CH350 < CH500 ≈ CH650 < 
CH800 

  
  
  

Uchimiya, 
2011 

500 0 ND 

650 434 ± 3 0.007 ± 0c 

800 322 ± 1 274 ± 1c 

Oak wood 
350 450   ND 

  
ND 

  
Nguyen, 

2011 600 642   

Corn stover 
350 293   ND 

  
ND 

  
Nguyen, 

2009 600 527   

Broiler 
litter 

manure 

350 
59.5 ± 
19.7 

0c 
Ni2+, Cd2+ 

  
350BL < 700BL 

  
Uchimiya, 

2010 
700 

94.2 ± 
5.1 

41.8 ± 2.0c 

Soybean 
stalk 

300 144.14 

ND 
  
  
  
  

Methylene 
blue 

  
  
  
  

The amount of methylene blue 
sorption in the order of BC300 < 

BC400 < BC500 < BC600 < BC700 
  
  
  
  

Kong, 2011 

400 138.76 

500 152.98 

600 179.03 

700 250.23 

a   SA means BET specific surface area 

b  TPV means total pore volume 

c  MPA means micropore area 

d  ND means not determined 

Table 10 – Influence of parent materials and pyrolysis temperatures on surface area and porosity of 

biochar 

Throughout recent decades the development of biochar from low cost adsorbent 

biomass has gained momentum for their superior ability to remove a broad type of 

agrochemical pollutants dissolved in aqueous solutions. Experiments by De Wilde et al. 

(2009) to determine the effectiveness of different biomasses for biochar production 

such as cow manure, straw, willow chopping, soil, coconut chips, garden waste 

compost, and peat mix for leaching of herbicides such as metalaxyl, isoproturon, 

linuron, lenacil, bentazone and isoxaben; it was concluded that the adsorption capacity 

of the biochar was directly correlated with the organic carbon content, CaO content and 

the cation exchange capacity of the biomass. 

Most recently Rojas et al. (2014) investigated the use of biochar derived from 

sunflower seed shell, rice husk, composted sewage sludge and soil for the potential of 
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their adsorbent qualities for removal of herbicides such as atrazine, alachlor, endosulfan 

sulphate and trifluralin molecules from water solutions. The maximum removal 

efficiency of 73.9% resulted when 1 gram of rice husk was used with 50 ml of pesticide 

solution. Njoku et al. (2014) investigated the use of sky fruit husk biomass for biochar 

production as a sorbent for the removal of the herbicide bentazone; which resulted in 

positive results due to the large surface area derived from the sky fruit husk. 

It has been well documented that urban stormwater runoff can carry chemical and 

nutrients into aquifers. Many factors affect the adsorption properties of biochar which 

besides the type and chemical structure of the biomass a number of physico-chemical 

factors affect the adsorption efficiency of biochar. Gupta et al, (2001) studied the 

behaviour of pesticides for different pH conditions. It was determined that pH had a 

substantial effect of the adsorption capacity of the biochar due to the change in 

pesticide solubility and uptake capacity over its surface. Increasing pH levels had a 

positive effect which was observed by El Bakouri et al. (2009) where raising pH levels 

decreased biosorption efficiency of endosulfan sulphate using biomass of bamboo 

canes, date stones, peanut shells, and avocado stones. 

3.4.2 Biochar Hydrology 

Research has been conducted to determine the water uptake and water movement 

through biochar (Gray, 2014). Some of this research has been focussed on the ability of 

the inner ports of the biochar to store water, and the water movement through the tiny 

pore spaces within the biochar structure. The physical parameters experimented include 

pore size, total porosity along with the biochar repelling water and having an affinity 

for water. The experimentation focussed on the main factors of the type of biomass 

used to create the biochar and the temperature at which the biochar is produced. Results 

indicated that the highest temperature used to create the biochar had the highest water 

holding capacity. Additionally the difference in biochars used affected the ability of the 

biochar to hold water which may have been due to water being repelled. 

Few researchers have investigated the effects of biochar to erosion. Researchers such as 

Cheng et al, (2008), Nguyen et al. (2008, 2010), Cheng and Lehmann (2009) note that 

large amounts of biochar are lost during stormwater runoff. Rumpel et al, (2006) 

documented significant black carbon content in eroded sediments sampled at the outlet 

of a watershed which was twice of that found in the original soil. This provides 

evidence that biochar is more susceptible to erosion that natural occurring soils in some 

instances. Wang et al, (2013) conducted small scale column experiments to determine 

the effects of erosion to biochar which resulted in “diffusion-like” movement of the 

biochar. It was not apparent as to the specific mechanisms which resulted in the 

diffusion-like movement, however it was suspected that either the relatively dense sand 

used in the experiments displaced the light biochar or that buoyancy forces may have 

been acting on the biochar (Wang et al, 2013). 
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3.4.3 Does the Science Support the Claims 

Biochar has been widely evaluated for its high ability to adsorb pollutants in order to 

determine its effectiveness in the application of biochar geostructures for urban 

stormwater cleanup. In recent decades researchers have observed increases in aquatic 

primary production which is attributed to increased nitrogen and phorphorus 

supplementation, resulting in eutrophication (Nixon, 1995; Boesch, 2002) which can 

have negative effects on animals, humans, and aquatic species (Bates et al, 1991). It has 

been determined that nitrogen and phosphorus over supplementation is a leading cause 

of impaired waters. Biochar has been extensively documented as an environmental 

sorbent which can reduce nitrogen and phosphorus leaching from soils (Lehmann et al, 

2003), Ammonium (NH4
+) (Ding et al, 2010), Nitrate (NO3

–) (Ohe et al, 2003) and 

Phosphate (PO4 –P) from aqueous solution (Yao et al, 2011). 

Research has proven biochar’s ability to sorb molecules in soil, including pesticides 

(Yu et al, 2006), hydrophobic organic molecules (Smernik, 2005), plant leaf extracts 

(Peietikainen et al, 2000), and to inhibit growth of microorganisms (Warnok et al, 

2007) which has an ability to assist in the breakdown of faecal traces in stormwater 

runoff. This follows research conducted by Ozeszczuk et al, (2012) to determine the 

influence of biochar on freely dissolved polycyclic aromatic hydrocarbons (PAHs) in 

sewage sludge; which concluded that biochar was effective at reducing PAH pore-water 

concentrations. 

Biochar’s ability to retain more nutrients coincides with the fact that nutrient loss 

through leaching can be reduced. This has been proven in the laboratory (Dunish et al, 

2007; Noval et al, 2009; Laird et al, 2010; Singh et al, 2010) and green house studies 

with plants found that biochar addition to a tropical soil led to a reduction in leaching of 

ammonium (NH4
+), calcium (Ca), and magnesium (Mg) (Lehmann et al, 2003). Beck et 

al, 2010 studied the effect of changes in stormwater runoff quality and quantity for 

greenroof water and its ability to retain nutrients in soil. Experimentation was carried 

out using prototype trays as greenroof models with planted sedum and ryegrass with 

barren soil trays used as controls. Using a rain simulator it was determined that the 

addition of biochar to greenroof soil resulted in increased water retention and a 

significant decrease in discharge of total nitrogen, total phosphorus, nitrate, phosphate, 

and organic carbon from tray samples. 

Biochar based contaminant filters is one of the most promising geostructures for the 

removal of contaminants from urban stormwater runoff. The Biochar Demonstration 

Project for pollution remediation for Sweet Home, Oregon conducted experiments on a 

Water Treatment Plant was submitted by the Family Forests of Oregon in 2014. The 

project evaluated the potential of locally available biochar products to remove water-

borne pollutants contained in treated outflow wastewater from a wastewater treatment 

plant in Sweet Home, Oregon. Although this project did not relate to experimentation 
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of biochar for removal of pollutants from urban stormwater it does provide interesting 

data for the removal of similar pollutants found in stormwater. Wastewater samples 

were collected and tested to establish the baseline pollutant levels from the wastewater 

treatment plant. The water samples were then passed through filters containing biochar, 

made from forest biomass, and biochar blended with a range of materials including 

compost, oyster shells, perlite, iron filings, and steel wool. The samples were then 

tested post-treatment to determine the performance of contaminate removal. The 

following tables outline the results obtained. 

Media Mixture Biochar Source % Biochar Components 

1 #1 100% 100% biochar 

2 #1 75% 25% compost 

3 #1 75% 25% oyster 

4 #1 75% 12.5% compost, 12.5% oyster 

5 #2 100% 100% biochar 

6 #2 75% 25% perlite 

7 #2 75% 12.5% perlite, 12.4% oyster 

8 #1 87.5% 12.5% iron rust 

9 #2 87.5% 12.5% iron rust 

10 #1 75% 12.5% iron rust, 12.5% oyster 

11 #1 75% 12.5% iron rust 

12 #1 87.5% 12.5% steel particles 

13 #2 87.5% 12.5% steel particles 

14 #1 75% 12.5% steel particles, 12.5% oyster 

15 #2 75% 12.5% steel particles, 12.5% oyster 

Biochar sources #1 and #2 had similar levels of organic carbon and mineral ash, however a substantially 

higher pH in biochar #2. 

Table 11 – Media mixtures used in nutrient and heavy metal removal experiments (Source: Family 

Forests of Oregon, 2014) 

  



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 40 
 

 

Media Mixture 
Ammonia 

% removed 

Nitrate 

% removed 

Phosphate 

% removed 

Copper 

% removed 

Zinc 

% removed 

1 9.1% -1.2% 3.5% 96.8% 7.5% 

2 -63.6% 3.3% -0.5% 100% 99.7% 

3 45.5% -6.1% 14.5% 98.2% 44.3% 

4 27.3% -2.5% 7.6% 99.5% 67.1% 

5 27.3% -3.5% 4.4% 97.4% 6.5% 

6 9.1% -4.5% 6.1% 97.2% 7.6% 

7 9.1% -2.6% 7.6% 96% 17% 

8 -9.1% 15.3% 6.1% - - 

9 27.3% 12.4% 2.1% - - 

10 -9.1% 13.5% 8.7% - - 

11 27.3% 12.7% 22.8% - - 

12 40% -0.8% 97% 99% 98.4% 

13 96% 3.1% 97% 96.3% 93.1% 

14 44% 0.8% 97% 96.3% 93.6% 

15 35% 3.8% 97% 96.8% 94.1% 

Table 12 – Removal rates by biochar media (Source: Family Forests of Oregon, 2014) 

 

 

Figure 4 – Copper and zinc removal rates for biochar based filtration media mixtures (Image: Pacific 

Pyrolysis) 
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The laboratory results outlined above show that biochar based filters are effective as 

filtration media to remove contaminates from polluted water, however it is important to 

note that the media mix is required to be designed for specific pollutants. 

Figure 5 below outlines the results of experimentation conducted by Al-Anbara et al., 

(2008) for different filtration media used for the removal of pollutants from urban 

stormwater samples. The results clearly show that the use of biochar (GAC denoted for 

biochar) as a filtration media in test samples provided positive results. Overall biochar 

and zeolite provided the most positive results for pollutant removal over the entire filter 

media used. It is important to note that no one filter media provided 100% removal of 

all pollutants, and a combination of biochar and zeolite used as filter media for 

pollutant removal provided further removal rates of pollutants from urban stormwater. 

This is positive research for the use of biochar to be used in combination with other 

filter media for improved pollutant removal from urban stormwater. 

 

 

Figure 5 – Biochar vs Other Filtration Media (Source: Al-Anbara et al, 2008) 

 

The herbicide atrazine is used widely throughout the world and is also documented as a 

widespread groundwater and surface water contaminant. Biochar has proven ability to 

sorb organic compounds and research by Delwiche (2013) experimented to determine 

biochar impacts on atrazine leaching in different soil conditions. The research 

determined that biochar additions in undisturbed soil columns did not significantly 

reduce atrazine leaching however peak groundwater atrazine concentrations were 53% 

lower in field experimentation. This concluded that biochar application to soils has the 

ability to decrease peak atrazine leaching; however varied soil conditions, mainly in 

favoured flow paths, reduced its ability. 

Liqiang Cui et al. (2013) experimented with pymetrozine, an insecticide widely used in 

China, which concluded that biochar derived from different biomass had great potential 

to adsorb pymetrozine. However a number of parameters during the experimentation 

had an impact on adsorption, namely the pH of solution, contact time, initial 

concentration of the ions and temperature. The results showed that the biochar had 

adsorbed the pymetrozine by both physical adsorption and partial chemical ion 
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exchange; which shows the effects different forms of biochar (derived from different 

biomass) can have on insecticides. 

 

3.5 Biochar Existing Geostructure Research 

To date, extensive experimentation using biochar in the laboratory has been conducted. 

Limited field trial experimentation has been conducted to determine the effect of using 

biochar for the removal of urban stormwater pollutants. Field trials are necessary as it 

provides site specific results which can be documented to evaluate the short and long term 

effects of pollutant removal using biochar. 

The Hope Mine project in Colorado saw a research team install the world’s first fully 

scaled biochar reclamation trial at the historic silver mine in Aspen, Colorado. Biochar 

was added as a soil amendment derived from dead pine tree biomass which was applied to 

the mine waste rock piles. This was conducted to increase the moisture content to 

revegetate the steep slope stock piles which had zero irrigation, 35 degree slopes and only 

80 continuous frost free days. The result was overwhelming in that in less than 1 year (11 

months) the stock piles were visually covered in substantial vegetation. This provides 

positive results outlining the potential of biochar used as a soil medium for revegetation to 

assist with reduced soil erosion and the ability of biochar to aid plant life in poor soil types 

with low water exposure. This field trial provides results which show biochar will assist 

with improved stormwater quality due to the filtration of stormwater via bioretention 

methods. 

Several field studies have been conducted using biochar as a soil amendment; an 

interesting study conducted Ground level, Inc. investigated the potential benefits of 

incorporating biochar as a soil amendment for wetland reclamation. The location selected 

for the study had poor soil characteristics which were sandy, containing low organic 

matter and low pH levels. Additionally the site does not receive sufficient water due to 

large drought periods. Water quality degradation is also an issue due to pollutants found in 

the stormwater runoff from the agricultural areas. The purpose of the study was to find a 

cost-effective and sustainable tool to improve current restorations practices and increase 

plant survival and growth to decrease restoration management time and cost. The goal of 

the research was to find the biochar application method and rate that will significantly 

increase tree survival and growth while still being cost effective. 

The application methods used were disking the biochar into the soil and hand filling the 

planting hole with biochar. The disking application of the biochar into the soil provides 

long term tree growth and contributes to the establishment of ground cover vegetation 

where large areas are covered for stormwater runoff treatment; however this method 

requires a large amount of biochar to be used and requires the use of heavy equipment. 

Whereas hand filling application of biochar into the soil around the plant provides for 

initial tree establishment assistance as the biochar is concentrated around the tree base 

which requires no heavy equipment and less biochar being required. However this method 
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does not assist in ground cover establishment therefore providing less stormwater runoff 

filtration and less long term tree growth assistance due to the small amount of biochar 

used. 

Biochar was used in sand biofilters for industrial stormwater filtration in the Port of 

Tacoma, West Hylebos Pier Log Yard. Due to debarking treatments to ensure pests are not 

transported across oceanic waters, the stormwater runoff from the facility carried high 

pollutants loads which were difficult to control. Faced with the possibility of the 

operations being closed, the Port designed and constructed a $2.7 million treatment 

facility. A number of runoff treatment approaches for the site including transferring flow 

to the local municipal wastewater treatment plant, wetlands, and other advanced treatment 

methods. The port chose to mimic nature’s own filtering processes as it provided the most 

cost-effective solution and achieved the desired result. A pilot study was implemented to 

evaluate the adequacy of biofiltrations for treating polluted runoff, which resulted in the 

construction and implementation of the full biofiltration system onsite. The entire system 

constructed was 183 metres long and 14 metres wide. The system consists of four filtration 

stages which consist of two pretreatment stages of pea gravel and sand amended with 

biochar; and two biofiltration stages which consist of sand amended with compost planted 

with vegetation, and sand amended with compost planted with vegetation. Each filtration 

stage is layered on pea gravel ontop of a layer of drain rock which consists of underdrain 

pipes to collect the filtered stormwater flows.  Monitored parameters have been reduced 

by 92% for zinc, 81.3% for copper, 94% for turbidity, and 85% for total suspended solids. 

Figure 6 below shows the monitoring results for pre and post treatment of the filtration 

system. 

 

Figure 6 – Monitoring results for pre and post treatment for filtration system at West Hylebos Log Yard 

(Source: Port of Tacoma) 
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The use of biochar in green roof media has been successfully trialled by Cao et al, 2014. 

Using 30% of biochar in scoria roof media was proven to increase plant water availability 

by 16%. Beck et al, 2011, conducted field trials for green roofs by adding 7% biochar to 

scoria based media which improved the effluent runoff with 70% reduction in Nitrates, 

40% reduction in Phosphates and 70% reduction of organics; compared to an un-amended 

control green roof. 

An interesting field trial conducted at the Port of Port Townsend boatyard, named Boat 

Haven supported an initial laboratory testing procedure to determine the most effective 

biochar based treatment media to remove the most common pollutants found in the 

stormwater being generated from the site; namely copper and zinc. Some of the highest 

zinc sources for pollutants from the site and from galvanized roofs and chain link fences 

where the levels in the stormwater exceed site discharge permit requirements. Laboratory 

experiments were designed to test different biochar mixtures for metals removal from the 

site stormwater runoff which investigated both flow rate and metals removal 

characteristics. The experiments were compared to that of the untreated stormwater runoff 

being captured from the site. Both flow rate and metals removal data was used to select the 

most effective mixture using biochar to be implemented in the field trial. Following the 

laboratory testing a pilot project was installed at the site in April 2014, which consisted of 

the installation of the downpipe from one of the structures from the site to an in-ground 

sand filter with a biochar based media. Results from the field trial were positive as the zinc 

levels were reduced by over 99%. A similar field trial for an industrial roof downpipe 

system discharging into a biochar media mixture in a large plastic container has been 

conducted in Vancouver, WA. The system has been in use for 3 years and has resulted in 

49-63% copper removal, 31-67% lead removal, and 49-98% zinc removal for stormwater 

runoff from the industrial roof system. 

 

3.6 Enzymatic Bioremediation 

World dependence in the use of herbicides to improve primary production has resulted in 

groundwater and surface water bodies being polluted by the most commonly used group of 

herbicides known as triazines. Within the group of triazine herbicides one of the most 

widely used in Australia is called atrazine. Even when atrazine is used at the 

recommended levels the herbicide migrates into waterways having detrimental impacts on 

aquatic life and humans; symptoms such as headaches and nausea to more chronic 

illnesses such as cancer and endocrine disruption have appeared from animal studies. 

Studies of cities in the farm belts of the United States of America has revealed spikes in 

the levels of atrazine in the drinking water supplies which exceed the health limit set up by 

the Environmental Protection Agency. 

Research into the use of biological agents (bioremediation) to remove triazine from the 

environment using genetically modified organisms (bacterium called Escherichia coli) 
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was trialled, however was not successful due to the high level of regulation and ecological 

uncertainties surrounding using genetically modified organisms. However researchers at 

NewWater with a vision of cleaning atrazine from drinking water have had successful 

trials with a group of bacterium called arthrobacter which feeds on atrazine. The 

organisms are effective in that they can consume their weight in atrazine every two 

seconds, which results in 50 grams of organisms consuming 50 grams of atrazine every 

two minutes. Using these organisms’ researchers are developing a water filter that exploits 

the appetite of the organism. The filters would operate differently to current water filters in 

that they do not capture the atrazine, but rather break down the atrazine into harmless 

substances. The concept has also been tested in the field where a truck spill resulted in 

atrazine contaminating a field in South Dakota. A researcher from the laboratory using the 

enzyme arthrobacter offered the enzyme at the site which had eaten the atrazine to a level 

that the EPA certified the soil as clean. It was a good demonstration that the bacteria 

would work outside of the laboratory as up to 1,000 pounds of the atrazine that had 

polluted the soil was removed (Wackett, 2005). To date, resistance from regulators to 

approve the use of genetically modified organisms has stalled their use as larger scaled 

tests are to be conducted to obtain government approvals. The drawback in using living 

organisms for urban stormwater cleanup is that they require ideal conditions to thrive, 

where in some regions where long periods of drought occur, the organisms cannot survive; 

therefore making them ineffective. 

As a result, CSIRO Entomology scientists have been working on an enzyme based 

remediation alternative which involves the use of non-living organisms. The CSIRO group 

conducted a large scale trial of an enzyme based product in the sugar growing region of 

northern Queensland. The trial has shown that water bodies contaminated with the most 

common triazine herbicide, atrazine can be successfully remediated using enzymes. In 

order to develop the enzyme, the CSIRO group found specific bacteria that fed on atrazine 

and then identified the enzymes within the bacteria which converted the atrazine to non-

toxic by products (Scott, 2009). The enzyme was then modified in a laboratory so that it 

was suitable for large scale applications and mass production. The trial captured water 

runoff from an irrigated sugar field into a holding dam with irrigation tailwater treated 

with a concentration of atrazine. Water samples were taken prior to the addition of the 

enzyme, and then the enzyme was evenly spread across the surface of the holding dam by 

hand. Initially there was a short delay prior to any atrazine reduction, which was most 

likely due to the mixing of the enzyme with the water in the dam; however within the first 

four hours the concentration of the atrazine in the water was reduced by 90 per cent. It is 

also worth mention that the trial identified that enzyme degraded in the environment as it 

stopped working after 24 hours of being applied to the water in the dam. Therefore further 

long term field studies are required to determine the longterm efficiency removal of 

pesticide removal using enzymatic bioremediation techniques. 

As documented earlier within this thesis, the different use and production techniques for 

biochar development produces varied results for specific pollutants removed in aqueous 

solutions. That is, not one type of biochar will successfully remove all pollutants in 
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stormwater samples. This is the same for enzymatic bioremediation. Specific enzymes 

have varied efficiency removal results for different pesticides. This is due to the chemical 

diversity used in pesticide development; where the biochemistry of pesticide 

bioremediation requires a large range of catalytic mechanisms to neutralise the toxicity of 

the pesticide which therefore requires a wide range of enzyme classes. Table 13 below 

provides a summary of enzymes that have the potential or proven application in the 

bioremediation of pesticides. 

 

Enzyme 

Enzyme 

Commission 

(E.C.) 

Source 

Organism(s) 

Cofactor 

Requirements 
Documented Target 

Pesticide(s) 

Current 

Bioremediation 

Strategies 

Employed 

Gox 1.5.8 

Pseudomonas sp 
LBr; 

Agrobacterium 
strain T10 

Flavin (FAD) Glyphosate In planta 

Esd 1.13.14 
Mycobacterium 

sp. 
Flavin and 

NADH 
Endosulfan and 

Endosulfate 
Not yet in use 

Ese 1.13.14 Arthrobacter sp Flavin (FMN) 
Atrazine, Norfluazon and 

Chlortoluron 
Not yet in use 

Cyp1A1/1A2 1.14 Mammalian (Rat) 
Heme and 

NADN 
Linuron, Chlortoluron 

and Isoproturon 
In planta 

Cyp76B1 1.14 
Helianthus 

tuberosus 

Heme and 
NADN 

Linuron, Chlortoluron 
and Isoproturon 

In planta 

P450cam 1.14 
Pseudomonas 

putida 

Heme and 
NADN 

Hexachlorobenzene and 
Pentachlorobenzene 

Transgenic 
Sphingobium 

chlorophenolicum 

TOD 1.14.12 
Pseudomonas 

putida 

Fe2+ and 
NADH 

Trifluralin herbicides 
Not yet in use 

against pesticides 

E3 3.1.1 Lucilia cuprina None 
Synthetic pyrethroids and 

phosphotriester 
insecticides 

Not yet in use 

OPH/OpdA 3.1.8 

Agrobacterium 

radiobacter; 

Pseudomonas 

diminuta; 

Flavobacterium 

Fe2+ and Zn2+ Phosphotriester 
insecticides 

Free-enzyme 
bioremediation 

LinB 3.8.1 
Sphingobium sp.; 
Sphingomonas sp. 

None 
Hexacholorcyclohexane 

(β- and δ-isomers) 

Bioaugementatation 
with Sphingobium 

indicum 

AtzA 3.8.1 
Pseudomonas sp. 

ADP 
Fe2+ 

Chloro-s-triazine 
herbicides 

In planta and GM 
bacteria 

TrzN 3.8.1 Nocardioides sp. Zn2+ 
Chloro-s- triazine 

herbicides 
Not yet in use 

LinA 4.5.1 
Sphingobium sp.; 
Sphingomonas sp. 

None 
Hexachlorocyclohexane 

(γ- isomer) 

Bioaugementatation 
with Sphingobium 

indicum 

TfdA 3.8.1 
Ralstonia 

eutropha 

α- 
ketoglutarate 

and Fe2+ 

2,4-
Dicholorophenoxyacetic 

acid and 
pyridyloxyacetate 

herbicides 

In planta 

DMO 1.13 
Pseudomonas 
maltophilia 

NADH and a 
Rieske Fe-S 

centre 
Dicamba In planta 

Table 13 – Different enzyme removal of specific pesticides (Scott et al. 2008) 

 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 47 
 

4. Methodology 
 
Protecting natural water bodies and ecosystems has been identified by governments as a main 

priority due to the increasing urban development having a significant impact on water quality 

pollution. Strict conditions are being applied to urban developments in an attempt to reduce 

stormwater pollutants such as heavy metals and organics from entering into waterways. As a 

result research has been conducted on biochar and its effect on being implemented in 

geostructures to improve urban stormwater pollution to achieve an acceptable stormwater 

quality being discharged from developments. This thesis focuses on the efficiency of biochar 

as a filtration media for stormwater and the on-going research being conducted on different 

biochar media sourced from different biomass and the effect of emerging methods such as the 

use of enzymes for the treatment of biochar. 

Using biochar geostructures for urban stormwater water cleanup will change the water quality 

thus proving biochar’s effectiveness for stormwater remediation. Due to its sorption 

properties as well as its positive effect as a soil additive, experimental results show that 

biochar can be utilised as a renewable filtration medium (Lehmann, 2009). Options derived 

from the review of literature and current practices using biochar within this thesis will be 

collated to determine full scale field studies which can be implemented to test biochar’s 

pollution removal efficiency. With this information options for developing engineering 

geostructures which can be implemented in order to document the practicality in using 

biochar for the removal of pollutants in urban stormwater and to determine the long term 

efficiencies of the pollutant removal using biochar. 

Interest in biochar has been growing internationally with engineers, scientists, and researches 

working to validate the use of biochar for stormwater water cleanup. The potential uses of 

biochar include water treatment, carbon sequestration, soil amendment, re-vegetation, and 

being utilised in bio-retention systems. Due to the strict regulations being imposed on urban 

development, increasing interest is evolving for alternative filtration media that can 

successfully remove certain pollutants from stormwater. 

In order to determine the results of using biochar geostructures for urban stormwater water a 

review of the research conducted to date was compiled. This was a critical component of this 

thesis as it provides a basis to collate the work carried out using biochar and allows a way 

forward for the type of geostructures that will be effective in practise due to the current 

results obtained by researchers. As an example, a study into biochar to determine the 

saturated hydraulic conductivity and methoylene blue sorption characteristics as applied to 

storm water treatment; Morrow (2013) concluded that high velocity passing through the 

biochar did not affect the hydraulic flow of the stormwater which shows promise for large 

amounts of stormwater being able to flow through a geostructures system containing biochar. 

However, it was also concluded in the study by Morrow (2013) that the contaminants would 

most likely not adsorb onto the biochar unless the retention time was increased to allow the 

contaminants time to adsorb into the biochar. This shows that biochar would work more 

effectively as part of a larger stormwater system such as part of a rain garden or a 
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biofiltration system to help reduce the stormwater flow through the system allowing for 

longer retention time. Additionally it was determined that by reducing the size of the biochar 

would also decrease the macro-porosity while at the same time reduce the velocity of water 

flow through a system utilising biochar. 

4.1 Biochar Development for Specific Characteristics 

With many potential raw materials (biomass) used for biochar production and the multiple 

positive attributes of each, biochar remains a mystery. The specific desirable properties of 

the different biochar produced is a basis for aspiring research programs on what specific 

pollutants can be removed from urban stormwater runoff. Biochar has properties and 

molecular structures that possess unique adsorption properties for vapour and liquid phase 

organic molecules. 

The biomass material used for producing biochar will affect the physical structure, texture, 

porosity, particle size distribution and density of the final product. The manufacturing 

process used to create biochar is the pyrolysis process where the conditions of the 

production can be altered to change the product characteristics. Pyrolysis temperature 

processes at temperatures above 500˚C produce biochar that have a higher resistance to 

weathering, due to the higher surface areas and aromatic structure (Kim, 2003). The higher 

surface areas lead to greater pore formation which allows more areas for the binding of 

nutrients and provides more areas for microorganisms to thrive. Larger pore sizes also 

allows for increased binding of cations and anions which provide nutrients for plants and 

soil organisms. Additionally pore formation influences the binding of macronutrients such 

as nitrogen and phosphorus which provides great benefits in reducing the eutrophication 

process in creek and river systems. 

Biochar produced at lower temperatures (<500˚C) are able to better retain nutrients, and 

the ability for higher reactivity in soil providing added benefits for soil fertility purposes. 

This not only assists with soil fertility due to the nutrients being less mobile in biochar so 

that they last longer in the soil, but also as biochar provides the added benefit of reducing 

leaching and volatilization over longer periods of time instead of polluting groundwater 

and waterways. As there are advantages and disadvantages for biochar production at both 

high and low temperatures, the optimum temperature for biochar production is mostly set 

at 500˚C. 

This leads to the conclusion that biochar created at high temperatures are well suited for 

bioretention geostructures for urban stormwater cleanup due to their ability to adsorb 

pollutants due to the large pore size and structure. These large pores sizes within the 

biochar structure also provides greater nutrient and water sorption capabilities which 

provide an ideal environment for wetland plant life to be sustained longer during drought 

periods and for increased nutrient uptake. This is especially important in sandy soils which 

have poor nutrient retainment and water holding capacity. 

The selection of the type of biomass used to manufacture biochar is dependent on the type 

of contaminants being targeted within urban stormwater runoff. Section 3.4.1 within this 
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thesis provides examples of the different types of biomass used for biochar manufacture 

and its effect of specific pollutant removal based on literature currently available. For the 

purposes of batch experimentation which is conducted as part of this thesis, biochar 

derived from hardwood biomass was sourced online from Dolph Cooke, founder of the 

organisation named Biochar Industries Australia. Biochar derived from hardwood was 

chosen due to the large surface area and large pore structure that is a result of the biochar 

manufactured from hardwood. Additionally the hardwood biomass used to manufacture 

the biochar is readily available and produces less soluble minerals, reducing the potential 

to contribute to the pollution of the batch experiments conducted in the field. 

 

4.2 Biochar as a Soil Amendment 

Biochar is often referred to as an amendment to improve soil quality. Improvements 

include improved biological nitrogen fixation and nutrient retention (Chan et al, 2007), to 

reduce pesticides in plants (Yu et al, 2009; Kookana, 2010), control of phytotoxic heavy 

metals (Uchimiya et al, 2010), a decrease in nitrogen and phosphorous pollution 

(Lehmann et al, 2006). The carbon in biochar can be resistant to decomposition when 

placed in soil and can persist for hundreds or even thousands of year, hence interest in the 

utilisation of biochar as a soil amendment (Roberts, 2010). The specific impacts on the 

soil vary from the biomass used to create the biochar or using different pyrolysis 

conditions to create the biochar (Singh et al, 2010; Uchimiya et al, 2010). The main 

purpose of using biochar as a soil amendment is its ability to sequester carbon as it is more 

stable than that of biomass (Lehmann, 2007), where its application to soil enhances soil 

fertility and crop productivity. However it is important to review literature on how the 

above mentioned properties are advantageous in using biochar as a soil amendment for use 

in geostructures for the potential of urban stormwater cleanup. 

Biochar has been investigated as a soil amendment to date, due its ability to reduce 

greenhouse gas emissions as the carbon stores in biochar are stable for hundreds of years 

which creates a carbon sink in the soil. Due to the pyrolysis process for making biochar, 

carbon in stabilised and captures gases that would normally be released into the 

environment through natural decomposition such as CO2, Methane, and Nitrous Oxide 

(Lehmann and Joseph, 2009). Advantages of using the biochar as a soil amendment in 

field studies are due to its characteristics of being neutral to alkaline pH where biochar 

raises the pH level of acidic soils and eliminates and/or reduces the lime requirements for 

soil (Lehmann and Joseph, 2009). The low bulk density of biochar also reduces soil 

compaction which aides in improving the sorption of water into the soil and provides ideal 

conditions for plant species to grow due to improved root penetration, which also reduces 

fertilizer need. This provides the ability for nutrients to be retained in soil and remain 

available for plant species by adsorption of minerals and organic matter. Biochar does not 

have the ability to change the mineralogy of soil; however it does have the ability to 

change the amount of soil organic matter to aid in adsorbing cations per unit carbon, 

retaining exchangeable and therefore plant available nutrients in the soil (Lehmann, 2007). 

This makes biochar a unique substance for use as a soil amendment for wetlands, 
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biofiltration systems and other natural open space infiltration methods used for urban 

stormwater cleanup due to its ability to promote vegetation growth while decreasing 

pollution volumes due to nutrient uptake by the vegetation within these systems. 

The use of biochar geostructures for urban stormwater cleanup by incorporating the 

biochar as a soil amendment would be useful for data extraction to determine the longevity 

of biochar after many years of its application in the ground. Little is known of the effects 

of weathering and the reactions that occur after the application of biochar to soils (Singh 

and Cowie, 2009; Kuzyakov et al, 2009). The ageing of biochar takes place from the 

moment it has been manufactured, and continues once it is applied to the ground which is 

governed by conditions of moisture (Nguyen and Lehmann, 2009) and temperature 

(Cheng and Lehmann2009; Nguyen and Lehmann 2009). Some biochars may decompose 

rapidly in soils, while others are maintained for thousands of years; therefore more 

information is required to study the behaviour of biochar in soil and the effects the 

changes will have on the pollution removal in urban stormwater runoff. 

 

4.3 Batch Experimentation 

The biochar geostructures outlined within this thesis are derived based on the information 

provided from experimental work conducted by researchers to date and have been 

extensively collated to obtain a methodology of field experimentation to remove pollutants 

from urban catchments. Biochar selection for specific sites and the type of geostructures 

used will primarily be most successful when based on batch tests. As such the 

methodology used for this thesis will consider the use of batch experimentation for the 

type of biochar geostructures to be implemented on a specific site for urban stormwater 

cleanup. 

In order to conduct experimentation as part of this thesis a batch experiment was 

conducted using a biochar geostructure for urban stormwater cleanup. The batch 

experimentation was conducted as research has shown that different biomass used to 

create biochar, the process used to manufacture the biochar (i.e. pyrolysis temperature), 

the type of pollutants to be targeted for removal, soil types, and the environmental 

conditions of a site; all have an effect on the performance of biochar for the removal of 

pollutants from urban stormwater runoff. 

For the purposes of this study the site chosen was a 100 lot residential development 

located in Griffith NSW (Figure 7). The catchment of the development area is 115 km2 

and comprises of a mixture of low and high density residential allotments which are 

predominately developed. The different surface types within the development (such as 

roof, roads, driveways, lawn areas etc.) influence the timing and volume of runoff that 

reaches the drainage channel system at the end of the developed area. The residential area 

is part of a new residential zone area which has the potential to be an example of the way 

in which the use of biochar geostructures can be implemented to improve the pollutant 

loads discharging from the developed area. 
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Figure 7 – Locality Map of Experimentation Conducted 
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It is well documented that urbanisation has one of the greatest impacts of any land-use on 

catchment runoff. Urban developments have large areas of hard impervious surfaces such 

as roads and roofs that limit infiltration into the ground. This results in a greater volume of 

runoff and greater pollutant loads entering the drainage systems. The residential 

development used for the research areas incorporates an underground trunk stormwater 

drainage system along with overland surface flow from the development drains to a 

designed detention basin system which is planted with kikuyu grass. The design of the 

detention system has been sized to cater for pre and post development flows from the site. 

This reduces the time for stormwater flows to leave the catchment and enter into the 

downstream drainage channel system of the development which results in lower flows and 

longer during peaks in the channel flows. 

Discharge from the residential development drains to the detention basin which enters the 

downstream drainage system. The downstream drainage channel system, is part of a 

network of drainage channel systems which discharge into the end drainage wetland 

system located south of the city of Griffith. The pollutant runoff volumes play an 

important part in determining the health of the drainage systems in Griffith and it is this 

premise that the methodology for this dissertation takes into consideration for 

experimentation work. As such it is the immediate drainage channel system which the 

subject development discharges into which will be the focus of designing a system 

utilising biochar as a soil amendment for a biofiltration system to remove pollutant 

loadings from the runoff generated from the development. Samples of stormwater runoff 

into the drainage system will be taken and a series of tests will be conducted to determine 

the effect biochar added as a soil amendment will have on the reduction of pollutants from 

the water. 
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Figure 8 – Study Area Drainage Channel retention system, where a 100 residential lot development 

discharges stormwater runoff. 

 

The area chosen for the design system to be implemented within the drainage channel 

system is shown in Figure 8 above, and the discussion section of the dissertation examines 

how the pollutant runoff concepts discussed within the previous sections of the thesis can 

be put into practise to improve the immediate environment. 

The value of this work is the use of actual stormwater taken from the end system of the 

100 residential lot development in Griffith NSW, whereas similar studies consider only a 

synthetic matrix to emulate stormwater qualities of pollutants (Liu et al., 2005, Trowsdale 

et al., 2007). Additionally, soil from the subject site will also be used for the batch 

experimentation in order to determine the suitability of using biochar geostructures for this 

system; and the testing of different media parameters which has the greatest result in 

pollutant removal. 

As such it was the intention of this thesis for experimentation to be conducted in order to 

substantiate the system proposed to be used at the site. The addition of biochar to 

stormwater treatment systems will change the physical properties and activity present 

within the soil, resulting in increased retention of pollutants allowing microbial activities 

to change the toxins within the soil to less invasive chemical structures on the 

environment. Through the research conducted on the effective results of biochar in 

removing pollutants in laboratory settings, along with the need for improved sustainable 

resources for use in geostructures for urban stormwater cleanup in field trials, combining 

the two research areas is a logical direction for the research conducted as part of this 

thesis. 
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It is known that different biomasses used to produce biochar, along with the different 

pyrolysis temperatures used in the manufacture of biochar; have different results in 

different pollutant removal. As such the research aim for this thesis is to conduct batch 

experiments using stormwater and soil samples from an urban study area to record the 

results of the potential benefits to the area when employing biochar as a use for 

geostructures for urban stormwater cleanup. Additionally this thesis will provide a basis 

for future work using biochar when literature has shown the potential for its use in 

stormwater geostructures for pollutant removal in stormwater runoff. 
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5. Materials and Methods 
 
As documented within the literature review of this thesis, laboratory experimentation has 

been conducted by researchers using biochar to determine is effect on pollutant removal from 

stormwater and wastewater. This is invaluable information as it provides results from a 

controlled environment which reduces the effect of irregularities which may occur in the 

environment. Laboratory experimentation provides an opportunity to establish common 

grounds for testing biochar so that comparisons can be made in regards to its performance 

under specific conditions. 

The materials and methods used for the experimentation conducted as the basis for this thesis 

were chosen in an attempt to replicate a real life model. It would enable to establish the 

performance of the biochar under conditions obtained from the study site such as stormwater 

runoff from the urban environment, and utilise the soil from the site to study the performance 

of the biochar. This would provide a basis to design the appropriate biochar geostructures to 

be implemented for urban stormwater cleanup in the locality. Once this was achieved, an 

attempt was made by the author to document the use of biochar in existing stormwater 

geostructures, which were modified to establish the most effective means of removing 

pollutants in urban stormwater runoff. This would also form the basis of further work which 

could be conducted using biochar geostructures for urban stormwater cleanup. 

5.1 Biochar for Testing 

Initially it was attempted by the author to produce biochar from biomass readily available 

in Griffith NSW. As Griffith is located in an agricultural area, known for its mass 

production of poultry, wine and grain produce. This provides substantial opportunity for a 

number of sustainable products to be used as biomass for the production of biochar. 

Ultimately the premise of using the biomass which is readily available in Griffith holds 

true for the production of biochar and its benefits in the agricultural sector have been 

widely documented (Lehmann, 2009); however for the purpose of this thesis which is for 

the removal of pollutants in stormwater, it cannot be confidently stated within this thesis 

that the production of biochar using this biomass holds true. However for the purposes of 

this thesis the method attempted for the production of biochar by this author for 

experimentation purposes will be briefly discussed. 

Substantial documentation is available as to the process of biochar production. This has 

been discussed in previous chapters of this thesis; biochar is created by the process known 

as pyrolysis. This process is where biomass (usually in its most pure form for biochar 

production is made via renewable resources) is heated in a process where the biomass is 

deprived of oxygen which produces a charcoal like product, widely known as biochar. 

In one of the crudest ways to make a form of biochar, a 44 gallon drum was used which 

contained a lid which could be sealed tight so prevent oxygen escaping the drum. A 
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number of 20mm holds where drilled into the bottom of the drum on one side in a circle so 

that this part of the drum would be face down over the fire (again ensuring oxygen could 

not escape from the drum). Rice stubble and chicken manure were used in different 

batches which involved placing the chicken manure in the 44 gallon drum and sealing the 

top of the drum with the lid; then rolling the drum onto a fire with the holes of the drum 

facing down into the fire. The drum was elevated off the ground by the use of bricks so 

that the fire could penetrate the bottom of the drum as even as possible. The drum was left 

on the fire for 5 hours, after which time the drum was rolled onto a bed of fine sand, with 

the holes in the drum again facing down onto the sand to promote oxygen depletion in the 

drum. The contents of the drum were allowed to cool and the contents were removed. 

What should have been produced was biochar, however this was not successful and all that 

was produced was foul smelling soot. Other attempts were made however were also 

unsuccessful. 

As such biochar was gratefully donated from charmaster Mr Dolph Cooke of Biochar 

Industries Australia (Figure 9). The biochar was produced from hardwood plantation 

thinning (trees that fell over naturally known as hardwood category 1) and is marketed as 

Barefoot Biochar; which is available for purchase online through Biochar Industries 

Australia. 

 

Figure 9 – Photo of Actual Biochar Media Used for Experimentation 
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5.2 Biochar Sample Analysis 

Moisture content of the biochar (scientifically tested based on single determinations of 

subsamples from the manufacturer) are between 14-22% moisture with the following 

average analysis results obtained by the manufacturer during testing: 

Fixed Carbon 85.2% (Highest Carbon) 

Volatile Matter 9.4% (Lowest Volatile Matter) 

Ash Content 5.4% (Lowest Ash) 

pH 9.18 

Loose Dry Density 0.29% 

Table 14 – Sample Biochar Used Testing Analysis Results (Source: Biochar Industries Australia, 2014) 

It is important to note that the biochar at the end of the production process is smothered 

with water to avoid the material becoming hydrophobic. The pyrolysis temperature of the 

biochar sourced is measured as being between 480˚C and 650˚C. It is important to note 

that the biochar used is created only for soils and has every drop of volatiles removed via 

soaking in heat; where the char is subjected to 5 hours of radiant heat to break down all of 

the chains of the biomass (Biochar Industries Australia, 2014). 

5.3 Container Experiments 

Container experiments were used to evaluate the effect of biochar on Total Suspended 

Solids, Total Nitrogen, Phosphorus, Thermotolerant Coliforms, and E-Coli concentration 

in stormwater runoff samples taken from the stormwater retention system from a 100 lot 

residential development located on Citrus Road, Griffith. The sorption rate of stormwater 

through different soil and biochar ratios in the containers was also experimented. The 

containers used for the experiments had a volume of 18 Litres with approximate 

dimensions of 300mm long, 220mm wide, and 260mm high. The containers were filled 

with soil taken from the subject site and flushed with stormwater samples for 15 minutes 

until the soil media was saturated. Each container experiment was conducted using the 

same method with the different soil and biochar ratio mix and samples were collected via a 

porous 20mm diameter pipe at the bottom of the container as the stormwater passed 

through the soil media. Stormwater was collected from the retention pond via 5 Litre 

containers which contained distilled water only which ensured contaminants from the 

containers would not be transferred to the experiment. 
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Figure 10 – 18L Container with porous PVC pipe at bottom used for Experimentation 

 

In order to ensure a controlled flowrate of stormwater was added at the top of the soil 

media within the container, a plastic bucket with a ball valve installed in PVC pipework at 

the bottom was used (Figure 11). 4mm diameter holes were drilled at the bottom of the 

PVC pipework for the stormwater to exist to resemble rainfall and to ensure a uniform 

flow of water was used for all experiments. 

 

Figure 11 – 9L bucket, PVC pipework and ball valve used to apply stormwater over soil media within 

container. 

 

5.3.1 Initial Experiments 

Initially samples of stormwater were taken from the retention pond so that the 

concentration of Total Suspended Solids, Total Nitrogen, Phosphorus, Thermotolerant 

Coliforms, and E-Coli within the stormwater could be tested. Additionally, soil from 
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the site of the retention pond was collected and placed into the test container so that 

stormwater from the ponds could be filtered through the soil and samples collected at 

the bottom of the container through the porous pipe. Initially stormwater was flushed 

through the soil within the container for 15 minutes to remove as many anomalies as 

possible so that a uniform sample for each of the experiments conducted could be 

obtained; this would also ensure the soil within the container was fully saturated and to 

reduce the stirring of the soil within the container due to the addition of the stormwater. 

Samples were taken so that the concentration of Total Suspended Solids, Total 

Nitrogen, Phosphorus, Thermotolerant Coliforms, and E-Coli within the stormwater 

could be tested. 

This initial test was also conducted so that the concentrations of Total Suspended 

Solids, Total Nitrogen, Phosphorus, Thermotolerant Coliforms, and E-Coli which may 

be present within the soil could be tested. This would be used as a benchmark for when 

the biochar was added to the soil in different ratios as to the pollutants removed as a 

result of the biochar being added. 

5.3.2  Changed Parameter Experiments 

The remaining experiments were conducted using the same materials and testing for the 

same pollutants; however in each of the cases the containers were filled with 50/50 soil 

and biochar medium, 60/40 soil and biochar medium, and 70/30 biochar medium. This 

would enable a comparison to be drawn from the different additions of biochar to the 

soil to gauge the ability of biochar to remove concentrations of pollutants. The soil 

obtained for the experiments were collected from the same location to ensure 

consistency of the soil used from the retention pond site. 

Experimentation was also conducted using a 70/30 soil and biochar mix at different 

depths within the container to compare the results of the effect on the depth of the 

media on removing pollutants from the soil. The different depths of media within the 

container were at 18cm, 12cm and 6cm depths within the container. Again the same 

materials and experimental procedures detailed above were used. 

The final experimentation conducted was the timing of the water depth penetration of 

the stormwater through the media within the container. The container was filled with 

50/50 soil and biochar medium, 60/40 soil and biochar medium, and 70/30 biochar 

medium and a measure of depth versus time was documented. This was to record the 

results of the effect the different ratios of adding biochar to soil would have on water 

penetration within the container. This was considered to be an important experiment, 

via a simple method, due to the known clay soil material witnessed in the area during 

construction of the development (known to the author due to inspections conducted 

during construction of the development) and also during the collection of the soil 

samples from the site. This would be also important information as part of the 

discussion section of this thesis, where the author will provide design solutions for the 
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development to improve the removal of pollutants from the stormwater runoff from the 

area. The different experiments are listed in Table 15 below. 

MEDIA SAMPLE TEST 

Stormwater Sample 1 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

100% Soil 2 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

70% Soil / 30% Biochar 3 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

60% Soil / 40% Biochar 4 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

50% Soil / 50% Biochar 5 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

70% Soil / 30% Biochar 

Depth 18cm 

6 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

70% Soil / 30% Biochar 

Depth 12cm 

7 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

70% Soil / 30% Biochar 

Depth 6cm 

8 Total Suspended Solids, 

Total Nitrogen, 

Phosphorus, 

Thermotolerant Coliforms, 

E-Coli 

100% Soil 9 Stormwater Sorption 

Depth vs Time 

70% Soil / 30% Biochar 10 Stormwater Sorption 

Depth vs Time 

60% Soil / 40% Biochar 11 Stormwater Sorption 

Depth vs Time 

50% Soil / 50% Biochar 12 Stormwater Sorption 

Depth vs Time 

Table 15 – Experimentation Conducted using Biochar for Stormwater Pollutant Removal 
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5.4  Testing Procedure 

As per the experimentation procedure detailed above, samples of the stormwater were 

collected via 200ml sterilized bottles obtained from the Griffith Water Reclamation Plant 

which are used as part of the testing procedures for the said facility. The containers were 

sterilized and sealed and were only opened at the time of collection via a person using 

plastic sterile gloves, and sealed immediately to avoid any outside contamination. The 

sample bottles once, collected were taken directly to the Griffith Water Reclamation Plant 

and placed in the refrigerator so that the samples would not deteriorate and so that testing 

could occur within 24 hours of sample collection. 

Testing of the samples collected during the experimentation were conducted at the 

laboratory of the Griffith Water Reclamation Plant under sterile and controlled conditions. 

Testing for the concentrations of the Total Suspended Solids, Total Nitrogen, Phosphorus, 

and Ammonia within the stormwater samples was conducted using one of the industries 

most advanced laboratory spectrophotometer called the HACH DR 6000 UV VIS 

Spectrophotometer with RFID Technology (Figure 12). 

 

Figure 12 – HACH DR 6000 UV VIS Spectrophotometer (Source: HACH website) 

 

The procedure for testing the stormwater samples using the spectrophotometer was the 

same method that is used to test potable water at the laboratory of the Griffith Water 

Reclamation Plant. The testing procedures vary slightly using the spectrophotometer, 

depending on the pollutant being tested but are similar; however for the purposes of this 

thesis the testing procedure for testing of Nitrogen using the spectrophotometer will be 

provided. 

The settings on the spectrophotometer were changed to the required pre- programmed 

methods into the machine for the testing of Nitrogen. A 2.0ml sample of the stormwater 

collected was added to one AmVer Diluent Reagent Test N Tube vial for Nitrogen. 

Another 2.0l of Nitrogen free water is added to one AmVer Diluent Reagent Test N Tube 

vial for Nitrogen as a blank sample. The contents of another two Reagent Powder Pillows 

are added to each vial; the vials are capped tightly and shaken to dissolve the powder. A 

instrument timer is set for 20 minutes to allow the reaction time to take place. At the end 
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of the 20minutes reaction time, the Nitrogen free blank sample is added into the cell 

holder of the spectrophotometer and the instrument is zeroed. The display on the 

spectrophotometer will show 0.00 mg/L. The sample vial to be tested containing the 

stormwater is now inserted into the spectrophotometer and the instrument reads the results 

of the concentration of Nitrogen within the sample in the units of mg/L. The types of 

reagents added to the sample are dependent on the pollutant being tested, and are available 

from the manufacturer of the HACH DR 6000 UV VIS Spectrophotometer. The 

spectrophotometer reads the concentration within the sample by taking in light, and 

breaking it into its spectral components which then digitizes the signal as a function of 

wavelength. This can be conducted for a range of signals based on the spectral 

components of the chemical being tested for. 
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6. Results 
 
The following results were obtained from the experiments conducted onsite from the 

stormwater runoff collected from the 100 residential allotment development which 

discharged into the retention pond system located along Citrus Road in Griffith NSW. 

The biochar used for the experimentation as part of this thesis was consistent throughout the 

process and was obtained from the same sample provided from Biochar Industries. Although 

it is not accurate to state that the biochar provided in the sample was 100% consistent in that 

it was manufactured using the exact same biomass and the exact same pyrolysis temperature; 

for the purposes of this thesis it is assumed that this is the case. As mentioned previously 

within this thesis the biochar obtained from Biochar Industries Australia was manufactured 

from category 1 hardwood biomass using the pyrolysis temperature between 480˚C and 

650˚C. The biochar used was in a granulated form (similar consistency as commercial potting 

mix) and it was difficult to determine the surface area due to the small particle size which 

also made it difficult to ascertain whether the biomass and temperature used to process the 

biochar had an effect on the surface areas and pore size. The first experimentation analysed 

the effect of different ratios of soil and biochar and its effect on pollutant removal 

concentrations in the stormwater samples collected. The results are listed in Table 16 below. 

MEDIA SAMPLE TEST 

Total 

Suspended 

Solids 

(mg/L) 

Total 

Nitrogen 

(mg/L) 

Phosphorus 

(mg/L) 

Thermotolerant 

Coliforms 

(MPN) 

E Coli 

(MPN) 

Stormwater 

Sample 

1 1 0.6 0.15 > 200.5 8.7 

100% Soil 2 1586 8.39 3.41 > 2419.6 524 

70% Soil / 

30% Biochar 

3 2601 0.53 3.80 No Test No 

Test 

60% Soil / 

40% Biochar 

4 1465 3.30 3.31 > 2419.6 378 

50% Soil / 

50% Biochar 

5 800 5.46 2.87 579.4 104 

Table 16 – Results of Pollutant Concentration in Stormwater Experimenting with Biochar and Soil 

Mixtures 

The results in Table 16 did not provide definitive results that correlate with the findings of 

experimentation conducted by researcher as listed in the literature review of this thesis. All of 

the results in the table show that the pollutant rates from the initial stormwater sample 
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(Sample 1) rose significantly. The initial stormwater sample shows that pollutants are indeed 

present in stormwater runoff; however the values are lower than the values obtained after 

conducting the experimentation. It can be safely stated that the results from Sample 1 of the 

initial stormwater sample taken from the retention dam system had low readings as the 

samples taken were from still water, and not from flowing stormwater entering the system 

during a rainfall event. If the samples were collected from flowing stormwater it would have 

provided significantly higher readings as the stormwater would have pollutants immediately 

discharged into the retention system in comparison to still water which has had time to settle 

and dissipate. Whereas in comparison Samples 2-5 had higher pollutant readings than Sample 

1 due to the stormwater being agitated during the experimental process and also flushing any 

pollutants contained within the soil samples and biochar used. 

Experimentation results for Samples 2-5 in Table 16 provide a more accurate comparison 

between experiments conducted based on the different soil to biochar mix used in the 

containers; although a uniform trend cannot be visually concluded from the results overall 

across the pollutants tested. What was concluded from the experiments is that the more 

biochar added to soil, had a positive effect in the reduction of concentration of bacteria in the 

stormwater. It is important to note that the results from the 100% soil media used (Sample 2) 

and the 50% Soil / 50% Biochar soil media (Sample 5) that the results did decrease across the 

whole range of pollutants tested. The findings are similar to other reports that explain that 

biochar does effectively reduce the concentration of pollutants in stormwater. 

The next experiment conducted was to compare different depths of soil and biochar mixed 

media in order to determine whether the depth of mixed media had an effect on pollutant 

removal from stormwater. This would provide an accurate method for cost savings in the 

field when implementing the biochar as a soil additive as adding more volume may not 

always provide more benefit. The results of the depth of media test are tabulated in Table 17 

below. 
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MEDIA DEPTH SAMPLE TEST 

Total 

Suspended 

Solids 

(mg/L) 

Total 

Nitrogen 

(mg/L) 

Phosphorus 

(mg/L) 

Thermotolerant 

Coliforms 

(MPN) 

E Coli 

(MPN) 

70% 

Soil / 

30% 

Biochar 

18 cm 6 2601 0.53 3.80 No Test No 

Test 

70% 

Soil / 

30% 

Biochar 

12 cm 7 1090 1.65 3.49 517.2 244 

70% 

Soil / 

30% 

Biochar 

6 cm 8 1168 1.46 2.47 228.2 40 

Table 17 – Results of Pollutant Concentration in Stormwater Experimenting with Varying Biochar and 

Soil Depths 

The results from Table 17 above are not consistent with findings that would have been 

expected and also as per the finding of the literature review of other experiments conducted 

by researchers. It could be interpreted from the results in Table 17 that the shallower the 

depth of the media provided better results which would indicate that savings could be made 

in the field as to the volume of biochar actually required to be added to the ground. However 

a more reasonable explanation would be that the less media depth resulted in less pollutant 

concentrations being flushed from the media itself. 

The final experiment conducted was a sorption test, which was to compare the results of 

different mixtures of biochar and soil and the effect this has on the ability of water to absorb 

through the media. The results are tabulated in Table 18 below. 
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  100% Soil 70% Soil / 30% Biochar 

60% Soil / 40% 

Biochar 50% Soil / 50% Biochar 

Time Depth of Sorption Depth of Sorption Depth of Sorption Depth of Sorption 

(Sec) (mm) (mm) (mm) (mm) 

10 30 40 40 60 

20 30 50 55 60 

30 30 55 60 70 

40 35 60 70 80 

50 40 65 80 95 

60 45 70 85 105 

70 48 75 90 108 

80 55 85 90 112 

90 55 90 100 115 

100 60 95 105 120 

110 60 98 108 120 

120 60 100 112 120 

130 60 105 115 120 

140 65 108 115 120 

150 70 112 120 120 

160 73 115 120 120 

170 80 120 120 120 

180 80 120 120 120 

190 85 120 120 120 

200 90 120 120 120 

Table 18 – Results of Sorption Rates with Varying Biochar and Soil Ratio Mixtures 

This test provided the most decisive results that were typical with similar findings by 

researchers that have been documented within this thesis. The findings from this experiment 

show that the more biochar added to the soil promotes better sorption of water through the 

media. This is consistent with biochar properties which has been definitively been shown to 

be a highly porous material with a large surface area allowing more voids to be created within 

the soil allowing water to flow through more readily. The results show that the addition of 

more biochar can improve the water sorption of clay soils, as the soil used for this 

experimentation had a high clay content which was verified in the geotechnical report from 

the area during construction of the residential development. The graph in Figure 13 below 

shows the visual trend from the results of Table 18 outlining that the higher biochar content 

to soil improves water sorption. 
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Figure 13 – Depth of Sorption vs Time for different Biochar and Soil Mix Ratios 

 

Figure 13 shows the efficiency of the sorption of the stormwater with the more biochar 

present within the soil. 100% soil which was the soil sample taken from the retention pond 

site has a high content of clay which results in the soil being less pervious which results in 

more time taken for the stormwater to sorb through the soil. As biochar is added to the soil, it 

uniformly results in the stormwater being able to more readily penetrate through the soil at a 

quicker rate. The soil mixture with 50% biochar took half the time to penetrate through the 

soil in comparison to the soil mixture with 30% biochar; whereas the 100% soil sample in the 

container did not penetrate to the bottom as per the samples with biochar added. 
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6. Discussion 
 
Due to the literature review conducted on the effectiveness of biochar to remove pollutants 

from urban stormwater runoff (Kolodynska et al., 2012) it was evaluated that a combination 

of a biofiltration and wetland system will have the greatest effect on the pollutants 

encountered in the study area chosen for this thesis. Combining pervious pipes within the 

detention system draining into a mixture of biochar and soil medium would then be 

discharged to the drainage wetland system which would be constructed with a biochar and 

soil mixture as the base. This combination system will allow a system which will act as a 

filtration system within the detention basin and the overflow will be directed to the wetland 

which will allow for the uptake and immobilization of pollutants from the stormwater as 

documented by Lehmann et al., (2006) and Park et al., (2011).  Literature has shown that the 

longer contact time with the biochar provides for better pollution absorption (Liqiang Cui et 

al., 2013) and as such the wetland area will allow for retention of stormwater for a prolonged 

contact with the biochar. Once the wetland reaches the top water level, the treated stormwater 

will discharge to the adjacent drainage channel system via a spillway. Additional benefits of 

utilising biochar for this type of system is that it has been shown that biochar has a greater 

ability for water uptake and erosion control (Rumpel et al., 2006; Gray, 2014). Research has 

shown the ability for the inner ports of the biochar to store water which will assist with 

maintaining vegetation for longer periods in the detention basin and wetland during drought 

periods. 

The biochar used was in a granulated form (similar consistency as commercial potting mix) 

and it was difficult to determine the surface area due to the small particle size which also 

made it difficult to ascertain whether the biomass and temperature used to process the biochar 

had an effect on the surface areas and pore size. This would account for the reduction in pore 

volume and radius for pollutant removal concentrations within the stormwater samples taken 

due to grinding of the biochar. The pore size can be used as an estimate of water holding 

capacity and available space for microbial habitats. Larger the pore volumes the better to 

retain stormwater in a bioretention facility. This would allow more detention time for 

pollutants to adsorb to the biochar surfaces; providing more sites for the pollutants to adsorb 

and be broken into non-toxic pollutants by microbes. 

The fine consistency of the biochar used explains why the high levels of Total Suspended 

Solids were encountered from the batch experimentation conducted. Additionally a more 

accurate measure of the beneficial effects of using biochar as a soil additive as per the 

experimentation would be to run the experimentation over a long period of time. This would 

allow sufficient flushing of suspended solid material within the soil and biochar to obtain 

more accurate readings. For practicality purposes the media of biochar and soil mixtures were 

only flushed for a 15 minute period. Scott et al, (2009) conducted research into the evolution 

of biochar when exposed to soil over a period of time. The research concluded that over time 

the biochar structure did change in its binding to the soil structures. This occurred by root 

penetration within the soil allowed the minute roots within the soil to attach to the micropores 

of the biochar. It was also suggested by Scott that microbes living within the pore structure of 
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the biochar, broke down the different components within the soil and biochar composting the 

two materials together (similar to composting) which still retained all of the positive 

properties of the biochar. This would prove that with prolonged time within the soil, biochar 

would be effective for pollutant removal and would not contribute to the total suspended solid 

matter in stormwater runoff which was evident from the experimentation conducted as part of 

this thesis. 

It is also interesting to note from the experimentation conducted as part of this thesis that the 

buoyancy of the biochar used was evident at the top layer of container when the stormwater 

was added. As mentioned above, this would not have occurred once the biochar material had 

sufficient time to bond to the soil structure surrounding it; although it did tend to result in the 

visual findings of the biochar fine ash structures to be buoyant at the top of stormwater in the 

container experiments as it slowly sorbed into the soil media. 

The value of this thesis is that actual stormwater was taken from the end system of a 100 

residential lot development in Griffith NSW, and used sample soil taken from the subject site 

at the current drainage channel system. A significant outcome of this thesis was the 

verification of batch experimentation being conducted at site specific areas, in order to 

determine the most effective system utilizing biochar’s for pollutant removal in stormwater in 

real life situations. Initial case study simulations used in this thesis have predicted that a 

biofiltration system combined with a wetland system utilizing biochar would be most suited 

for the study site selected. This outcome has led to the concept design shown in Figure 14 

below. The design incorporates the use of biochar as an additive to the soil which aids in the 

filtration of stormwater being adsorbed by the surrounding soil so that natural biological 

processes can take place in pollutant removal within the soil. Not only does the biochar result 

in the removal of pollutants from the stormwater by direct contact, but also provides the 

environment for microbes to live within the pores of the structure of the biochar. This further 

enhances the pollutant breakdown within the soil and water. The result of biochar’s proven 

ability to sequester water within its pores and its ability for the soil to sorb water through the 

media allows vegetation within a bioremediation system to thrive for longer periods of 

drought in conjunction with using drought tolerant plant species as shown in Figure 14 

below. 
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Figure 14 – Design of Biofiltration and Wetland System Using Biochar 
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7. Future Work for Biochar Geostructure Development 
 
The literature review conducted on biochar within this paper provides diverse laboratory 

research which is critical prior to full scale implementation in the field. This however leads to 

the future work resulting from the research and experimentation conducted as part paper. 

That is, to collate all the information performed to date and design geostructures using 

biochar which can be constructed in real life applications for urban stormwater cleanup. It 

would be ideal to have obtained results as part of this paper of full scale experimentation 

implemented in the field; however this would be not only an expensive exercise but also an 

unrealistic goal as results would be required to be obtained over a long period of time to 

provide any real long term data to compare biochar pollutant removal efficiencies in 

stormwater and record its longevity of life in geostructures. This would provide ideal 

economic and maintenance cost comparisons in the field of biochar geostructures. Therefore 

this section of the paper will provide design of geostructures that can be used in urban 

stormwater cleanup using the positive characteristics obtained by research conducted to date 

using biochar. 

7.1 Biochar Use For Small Scale Systems 

Biochar use for small scale implementation can be designed for pollutant removal using 

existing best practises during and after construction of housing development. While these 

geostructures will not ultimately remove all pollutant loading from housing construction 

sites, the overall reduction in pollutants will have an immediate positive result. This 

includes not only directly above ground on the site itself but also downstream within the 

underground stormwater pipe systems and ultimately to the final discharge point(s) of 

natural water systems such as canals, rivers, creeks and oceans. This is evident in 

experimentation conducted using biochar (Lehmann et al, 2003; Ohe et al, 2003; Ding et 

al, 2010; Yao et al, 2011; Park et al., 2011; Kolodynska et al., 2012; Inyang et al., 2012). 

The Soils and Construction – Managing Urban Stormwater by Landcom (Blue Book) 

provides best practices to be implemented onsite to reduce soil and erosion discharging 

from construction sites. This is where low-cost temporary geostructures utilising biochar 

can be installed on construction sites to reduce pollutant loadings to downstream systems. 

7.2 Biochar Sedimentation/Silt Sock 

Sedimentation socks are currently widely used at construction sites for the primary 

purpose of filtering sedimentation and erosion at specific discharge points of a site. 

Usually sedimentation socks are made from nonwoven geotextile fabric and generally 

filled with sand or gravel. This method is an extremely low cost and a versatile method to 

remove silt and sedimentation loads from entering into larger trunk stormwater systems. 

Current applications of sedimentation socks do not specifically target pollutants beyond 

sedimentation and silt of earthen soil. Utilising biochar within these sedimentation socks 

would not only continue to remove sedimentation and silt (Uchimiya et al. 2011) from 

construction sites as per conventional sedimentation socks, but also remove other 
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pollutants such as heavy metals (Kolodynska et al. 2012) washed into stormwater systems 

due to building materials used onsite. 

The type and amount of biochar used for this type of system would not be critical due to 

the amount of contact time of stormwater runoff with the biochar within the sedimentation 

sock. The primary purpose would be for the removal of suspended solids within the 

stormwater runoff with the added benefit of minor removal rates of other pollutants such 

as heavy metals which would be located in the stormwater runoff from building sites. If 

used as current practise at building sites the cumulative results of pollutant removal would 

be significantly noticeable at the discharge end water system. Laboratory tests using 

biochar for suspended solids removal was considered as effective as other most common 

filter media such as sand, perlite, and zeolite; where biochar performed as effectively 

(Fletcher et al. 2003). Assessment of experimental results noted within this paper would 

recommend the use of a mixture of 30% biochar and 70% gravelly sand within the 

sedimentation sock. This was the ultimate biochar/soil mixture implemented in small scale 

filtration experimentation using glass columns by Al-Anbari, 2008. The use of 

sedimentation socks are most commonly located around stormwater inlet grates as shown 

in Figure 10 below which would be effective in the removal of pollutants. However this 

practice can lead to overflow into the stormwater inlet grates and as such it is 

recommended that sedimentation socks are installed in a V shape at regular intervals 

within the kerb and gutter system. This will assist to dissipate flow and to capture 

pollutants prior to entering the stormwater inlet grate. Installation of the sedimentation 

socks at intervals will not only dissipate flow of stormwater along the kerb and gutter 

system but also provide more contact time of the stormwater with the biochar located 

within the sedimentation sock which will provide greater pollutant removal as 

experimented by Morrow, 2013. 

 

Figure 15 – Biochar/Soil Mix Sedimentation Sock at Stormwater Inlet Pit 

 

Another purpose for the sedimentation sock filled with a biochar and soil mix is as an 

alternative to a rock check dam. A rock check dam is constructed usually within a 
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drainage swale or waterway to counteract erosion by reducing water flow. As it primary 

purpose is to reduce erosion; this structure is not well suited to reduce pollutants from 

stormwater other than large soil particles. A rock check dam also makes maintenance of a 

swale around the rock check dam tedious. Whereas, the installation of a sedimentation 

sock within the swale has the potential to reduce pollutants flowing through a swale which 

is easy to maintain and cost effective, see Figure 16 below. 

 

Figure 16 – Biochar/Soil Mix Sedimentation Socks located within earthen swale 

 

A similar method using biochar within modular cells which could be utilised in similar 

instances as those mentioned above for sedimentation socks; or within plastic modular cells 

behind silt fences to reduce pollutant runoff from large construction sites. 

 

Figure 17 – Biochar Plastic Modular Cell behind Siltation Fence 
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7.3 Biochar Raingardens 

The use of biochar raingardens are a simple cost effective measure for pollutant removal 

in stormwater runoff. Using shallow depressions planted with deep rooted native plants 

and grasses that are drought tolerant can provide an aesthetic system to treat stormwater 

runoff from urban catchments. The adoption of using biochar as a soil additive to increase 

the porosity of soil would result in removing toxins, providing mineral content to the 

vegetation, and better water adsorption. 

 

Figure 18 – Biochar Raingarden 

 

7.4 Biochar Use as an Additive 

Biochar use as an additive for porous pavers would purify the polluted stormwater runoff 

from urbanised areas. This would allow the water to be captured underground and utilised 

for irrigation, cleaning and also for water re-use such as flushing of toilets. Biochar could 

be used as an additive into the porous paver manufacturing process by mixing it into the 

sand or also in the bedding used to lay the pavers. This would allow the biochar to capture 

the pollutants within the pores; allowing biological process to then break down the toxins 

prior to entering the downstream water systems. This method has be tested where pavers 

have been injected with ferrous hydroxide to trap toxic heavy metals such as lead, zinc and 

cadmium which emulate from sources such as car tyres, brake and exhaust systems; and 

building sidings. Granulated activated carbon has been tested under pavers which traps 

dissolved organic matter from leaf litter which is responsible for algal blooms in rivers. 

The pavers with biochar additives would also promote vegetation growth as they would 

grow readily as the root system has access more access to water and air voids so that the 

vegetation would soak up pollutants within the water in which they make contact. The 

pavers have the added benefit of enabling stormwater to infiltrate soil to replenish ground 

water and to reduce peak runoff rates from hardstand urbanised areas. 

Innovative stormwater infiltration and filtration systems are shown to have a positive 

ability to reduce and retain pollutants present within stormwater runoff. A system 

containing specifically designed porous concrete pipes with biochar used as an additive in 

the concrete mix would be an effective measure. As stormwater passes through the 
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permeable concrete walls of the pipes the biochar within the concrete will filter the 

pollutants within the stormwater into the surrounding substrate soil. This system would be 

similar to experimentation conducted using iron oxides which are recognised for their 

ability to remove heavy metals from stormwater due to chemical precipitation Dunphy et 

al (2007). An underground filtration/infiltration system would utilise porous pipes with the 

biochar additive used in the concrete mix for the construction of the pipes. The pipes 

would be laid in a sand and/or gravel trench to allow the polluted stormwater to drain 

through the porous pipes so that the treated stormwater can infiltrate into the surrounding 

soil at the end of the pipeline. Figure 19 below provides a sketch of the porous pipe 

geostructures utilising biochar as a concrete additive. 

 

Figure 19 – Porous Biochar Pipe Geostructure for Stormwater Treatment 

 

7.5 Biochar Use in Kerb Inlet Stormwater Pits 

Biochar use in kerb inlet pits effectively would work in a similar fashion to raingardens for 

pollutant removal due to ease of installation at kerb inlets resulting in appealing 

geostructures for urban cities. It does remain unrealistic for large cities with hundreds of 

kerb inlets to install this type of system and expect uniform performances as this system 

may not meet the features and pollutant load removal quantities desired. Therefore an 

important study incorporating strategies for placement of kerb inlet pits with a biochar 

media installed to eliminate the necessity of a filter per catch basin to reduce pollutant 

loads and maintenance costs would be a worthwhile exercise. The Filterra™ system has 

incorporated the premise for this type of geostructures, however the media used within the 

system does not utilise biochar. The performance of using this system with biochar would 

be advantageous as the beneficial effects for pollutant removal in stormwater using 

biochar has been well documented. 
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8. Conclusion 
 
As a result of research conducted to date it can be confidently stated that the use of specific 

types of biomass used to manufacture biochar significantly vary the performance to remove 

pollutants from stormwater depending on the type of contaminant. The more biochar added to 

soil resulted in a greater reduction in the concentration of pollutants tested as part of this 

thesis. This indicates that biochar ability to remove pollutants from stormwater will have 

environmental benefits. Additional work is necessary to address other potential opportunities 

for the use of biochar geostructures for urban stormwater water cleanup. Recent work has 

suggested that enzyme bioremediation techniques could be employed with biochar which 

enhances biodegradation of herbicides and pesticides. This is motivating for further studies to 

be conducted in order to explore the full potential of biochar to be used for pollutant removal. 

The batch experimentation conducted as part of this thesis identified that the addition of 

biochar to soil was effective in the removal of pollutants present within the sample 

stormwater from an urban catchment. The biochar was highly effective in the reduction of 

Thermotolerant Coliforms and E-Coli throughout all of the tests conducted for biochar being 

used as a soil amendment. Uniform reduction in the experiments did not occur for the 

reduction in pollutants of Total Suspended Solids, Total Nitrogen, and Phosphorus, within the 

stormwater, however results did indicate that in comparison to 100% soil being use; the 

addition of biochar did reduce the concentration levels of pollutants within the soil. 

Experimentation conducted along with research by others identified within the literature 

review for this thesis outlines the importance of increased retention time for effective 

removal of pollutants in urban stormwater runoff. The types of biomass and pyrolysis 

temperatures used for biochar manufacture need to be selected depending on the type of 

pollutant removal to be targeted. This in most cases has been effective by initial trials being 

conducted to identify what combination of biochar properties and geostructures to be used are 

effective. Therefore a balance is required to be determined between the properties of the 

biochar to be used and the treatment effectiveness for optimize overall performance of the 

geostructures to be implemented for urban stormwater cleanup. For this thesis it was 

identified by the batch experiments conducted that an infiltration and bioremediation system 

would be highly effective for the removal of the pollutants identified from the urban 

catchment studied. The conditions created by the biochar within the soil increased the overall 

hydraulic properties of the soil for improved infiltration to increase pollutant concentrations 

of runoff pollutants. The system design for the subject urban area for this thesis has the 

potential for being an effective best management practice for reducing pollutant loads for 

urban runoff conditions. 

The potential for the wide range of initial biomass to be used for biochar production is a 

desired practice in this age of sourcing renewable resources for engineering systems. Using 

waste products to produce biochar can assist in repurpose an unwanted material taking up 

valuable area at landfills, in addition to creating a system for pollutant removal in stormwater.  



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 77 
 

 

References 
 
USGS.  1995.  National Water Quality Assessment Program 
Thesis.  U.S. Geological Survey, Reston, VA. 
 
Kumar, S., Samra, S. K., and Sharma, J. P. (2012). “Evaluation of sand-based stormwater 
filtration sysem for groundwater recharge wells.” Curr. Sci. India, 103(4), 395-404, 

M.J. Heckenberger, A. Kuikuro, U.T. Kuikuro, C.J. Russell, M. Schmidt, C. Fausto, B. 

Franchetto “Amazonia 1492: Pristine forest or cultural parkland” Science, 301 (2003), pp. 

1710–1713 

J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and 

Technology. Earthscan. Pg. 13-29. 

Y. Chun, G.Y. Sheng, C.T. Chiou, B.S. Xing Compositions and sorptive properties of crop 

residue-derived chars Environ. Sci. Technol., 38 (2004), pp. 4649–4655 
 
B.L. Chen, D.D. Zhou, L.Z. Zhu Transitional adsorption and partition of nonpolar and polar 

aromatic contaminants by biochars of pine needles with different pyrolytic temperatures 
Environ. Sci. Technol., 42 (2008), pp. 5137–5143 
 
M. Uchimiya, L.H. Wartelle, K.T. Klasson, C.A. Fortier, I.M. Lima Influence of pyrolysis 

temperature on biochar property and function as a heavy metal sorbent in soil J. Agric. Food 
Chem., 59 (2011), pp. 2501–2510 
 
M. Uchimiya, I.M. Lima, K.T. Klasson, S. Chang, L.H. Wartelle, J.E. Rodgers 

Immobilization of heavy metal ions (CuⅡ, CdⅡ, NiⅡ, and PbⅡ) by broiler litter-derived 

biochars in water and soil J. Agric. Food Chem., 58 (2010), pp. 5538–5544 
 
B.T. Nguyen, J. Lehmann, W.C. Hockaday, S. Joseph, C.A. Masiello Temperature sensitivity 

of black carbon decomposition and oxidation Environ. Sci. Technol., 44 (2011), pp. 3324–
3331 
 
J.P. Sidhu, W. Ahmed, W. Gernjak, R. Arval, D. McCarthy, A. Palmer, P. Kolotelo, S. Toze 
Sewage pollution in urban stormwater runoff as evident from the widespread presence of 

multiple microbial and chemical source tracking markers Sci Total Envion., (22013), pp. 
463-464 
 
Dowsett, Brigid (1994). The management of stormwater: from a problem to a resource. 

Sydney Water Project. 
 
 
B.T. Nguyen, J. Lehmann, J. Kinyangi, R. Smernik, S.J. Riha, M.H. Engelhard Long-term 

black carbon dynamics in cultivated soil Biogeochemistry, 92 (2009), pp. 163–176 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 78 
 

 
H.L. Kong, J. He, Y.Z. Gao, H.F. Wu, X.Z. Zhu Cosorption of phenanthrene and mercury 

from aqueous solution by soybean stalk-based biochar J. Agric. Food Chem., 59 (2011), pp. 
12116–121 
 
Kim H, Segren E, Davis, A (2002) Engineered bioretention for removal of nitrate from 
stormwater runoff. Water Environment Research 75:4:355-367. 
 
Argue, JR and Barton, AB. A Review of the Application of Water Sensitive Urban Design 
(WSUD) to Residential Development in Australia [online]. Australian Journal of Water 
Resources, Vol. 11, No. 1, 2007: 31-40. Availability: 
<http://search.informit.com.au/documentSummary;dn=663668577487733;res=IELENG> 
ISSN: 1324-1583. [cited 25 Jul 15]. 
 
Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., Lehmann, J. (2010) Life cycle assessment 
of biochar systems: Estimating the energetic, economic and climate change potential, 
Environmental Science and Technology, vol 44, pp827–833   
 
Atucha A, Merwin IA, Brown MG, Gardiazabal F, Mena F, Adriazola C and Lehmann J 2013 
Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside 
orchard under different groundcover management systems. Plant and Soil 368, 397-406. 
 
Hollister C, Bisogni J, Lehmann J 2013 Ammonium, Nitrate, and Phosphate Sorption to and 
Solute Leaching from Biochars Prepared from Corn Stove (Zea mays L.) and Oak Wood 
(Quercus spp.). Journal of Environmental Quality 42:137-144. 
 
Major J, Rondon M, Molina D, Riha S, Lehmann J 2012 Nutrient Leaching in a Savanna 
Oxisol Amended with Biochar. Journal of Environmental Quality 41:1076-1086. 
 
Oleszczuk P, Hale S, Lehmann J, Cornelissen G 2012 Activated carbon and biochar 
amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons 
(PAHs) in sewage sludge. Bioresource Technology 111: 84–91. 
 
Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride M, Hay A 2011 Adsorption of coper 
and zinc by biochars produced from pyrolysis of hardwod and corn straw in aqueous solution. 
Bioresource Technology 102: 8877–8894. 
 
Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber 
S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, and Amonette JE 2010 An 
investigation into the reactions of biochar in soil. Australian Journal of Soil Research 48: 
501–515. 
 
 
  



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 79 
 

Kearns, J.P., L.S. Wellborn, R.S. Summers, and D.R.U. Knappe, 2,4-D adsorption to 

biochars: Effect of preparation conditions on equilibrium adsorption capacity and 

comparison with commercial activated carbon literature data. Water Research, 2014. 62: p. 
20-28. 

Li, J.F., Y.M. Li, M.J. Wu, Z.Y. Zhang, and J.H. Lu, Effectiveness of low-temperature 

biochar in controlling the release and leaching of herbicides in soil. Plant and Soil, 2013. 
370(1-2): p. 333-344. 

Lu, J.H., J.F. Li, Y.M. Li, B.Z. Chen, and Z.F. Bao, Use of Rice Straw Biochar 

Simultaneously as the Sustained Release Carrier of Herbicides and Soil Amendment for Their 

Reduced Leaching. Journal of Agricultural and Food Chemistry, 2012. 60(26): p. 6463-6470. 

Qiu, Y.P., X.Y. Xiao, H.Y. Cheng, Z.L. Zhou, and G.D. Sheng, Influence of Environmental 

Factors on Pesticide Adsorption by Black Carbon: pH and Model Dissolved Organic Matter. 
Environmental Science & Technology, 2009. 43(13): p. 4973-4978. 

Alam, J.B., A.K. Dikshit, and A. Bandyopadhayay, EFFICACY OF ADSORBENTS FOR 2,4-

D AND ATRAZINE REMOVAL FROM WATER ENVIRONMENT. Global Nest, the 
International Journal, 2000. 2(2): p. 139-148. 

Ulrich, B.A., E.A. Im, D. Werner, and C.P. Higgins, Biochar and Activated Carbon for 

Enhanced Trace Organic Contaminant Retention in Stormwater Infiltration Systems. 
Environmental Science & Technology, 2015. 49(10): p. 6222-6230. 

Taha, S.M., M.E. Amer, A.E. Elmarsafy, and M.Y. Elkady, Adsorption of 15 different 

pesticides on untreated and phosphoric acid treated biochar and charcoal from water. 
Journal of Environmental Chemical Engineering, 2014. 2(4): p. 2013-2025. 

Yang, Y.N., Y. Chun, G.Y. Sheng, and M.S. Huang, pH-dependence of pesticide adsorption 

by wheat-residue-derived black carbon. Langmuir, 2004. 20(16): p. 6736-6741. 

Xiao, F. and J.J. Pignatello, π+–π Interactions between (Hetero)aromatic Amine Cations and 

the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environmental Science & 
Technology, 2015. 49(2): p. 906-914. 

Xiao, F. and J.J. Pignatello, Interactions of triazine herbicides with biochar: Steric and 

electronic effects. Water Res, 2015. 80: p. 179-188. 

Cheng, C.H., T.P. Lin, J. Lehmann, L.J. Fang, Y.W. Yang, O.V. Menyailo, K.H. Chang, and 
J.S. Lai, Sorption properties for black carbon (wood char) after long term exposure in soils. 
Organic Geochemistry, 2014. 70: p. 53-61. 

Hao, F.H., X.C. Zhao, W. Ouyang, C.Y. Lin, S.Y. Chen, Y.S. Shan, and X.H. Lai, Molecular 

Structure of Corncob-Derived Biochars and the Mechanism of Atrazine Sorption. Agronomy 
Journal, 2013. 105(3): p. 773-782. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 80 
 

Zhang, P., H.W. Sun, L. Yu, and T.H. Sun, Adsorption and catalytic hydrolysis of carbaryl 

and atrazine on pig manure-derived biochars: Impact of structural properties of biocharse. 
Journal of Hazardous Materials, 2013. 244: p. 217-224. 

Cao, X.D. and W. Harris, Properties of dairy-manure-derived biochar pertinent to its 

potential use in remediation. Bioresource Technology, 2010. 101(14): p. 5222-5228. 

Zheng, W., M.X. Guo, T. Chow, D.N. Bennett, and N. Rajagopalan, Sorption properties of 

greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 2010. 181(1-
3): p. 121-126. 

Yang, Y.N. and G.Y. Sheng, Enhanced pesticide sorption by soils containing particulate 

matter from crop residue burns. Environmental Science & Technology, 2003. 37(16): p. 
3635-3639. 

Cao, X.D., L.N. Ma, B. Gao, and W. Harris, Dairy-Manure Derived Biochar Effectively 

Sorbs Lead and Atrazine. Environmental Science & Technology, 2009. 43(9): p. 3285-3291. 

Wang, T.-T., Y.-S. Li, A. Jiang, M.-X. Lu, X.-J. Liu, and X.-Y. Yu, Suppression of 

Chlorantraniliprole Sorption on Biochar in Soil–Biochar Systems. Bulletin of Environmental 
Contamination and Toxicology, 2015: p. 1-6. 

Uchimiya, M., L.H. Wartelle, and V.M. Boddu, Sorption of Triazine and Organophosphorus 

Pesticides on Soil and Biochar. Journal of Agricultural and Food Chemistry, 2012. 60(12): p. 
2989-2997. 

Uchimiya, M., L.H. Wartelle, I.M. Lima, and K.T. Klasson, Sorption of Deisopropylatrazine 

on Broiler Litter Biochars. Journal of Agricultural and Food Chemistry, 2010. 58(23): p. 
12350-12356. 

Sun, K., B. Gao, K.S. Ro, J.M. Novak, Z.Y. Wang, S. Herbert, and B.S. Xing, Assessment of 

herbicide sorption by biochars and organic matter associated with soil and sediment. 
Environmental Pollution, 2012. 163: p. 167-173. 

Sun, K., M. Keiluweit, M. Kleber, Z.Z. Pan, and B.S. Xing, Sorption of fluorinated 

herbicides to plant biomass-derived biochars as a function of molecular structure. 
Bioresource Technology, 2011. 102(21): p. 9897-9903. 

Song, Y., F. Wang, Y.R. Bian, F.O. Kengara, M.Y. Jia, Z.B. Xie, and X. Jiang, 
Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. 
Journal of Hazardous Materials, 2012. 217: p. 391-397. 

Tatarkova, V., E. Hiller, and M. Vaculik, Impact of wheat straw biochar addition to soil on 

the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid 

and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental 
Safety, 2013. 92: p. 215-221. 

Graber, E.R., L. Tsechansky, Z. Gerstl, and B. Lew, High surface area biochar negatively 

impacts herbicide efficacy. Plant and Soil, 2012. 353(1-2): p. 95-106. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 81 
 

Devi, P. and A.K. Saroha, Synthesis of the magnetic biochar composites for use as an 

adsorbent for the removal of pentachlorophenol from the effluent. Bioresource Technology, 
2014. 169: p. 525-531. 

Devi, P. and A.K. Saroha, Simultaneous adsorption and dechlorination of pentachlorophenol 

from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. 
Chemical Engineering Journal, 2015. 271(0): p. 195-203. 

Lou, L.P., B.B. Wu, L.N. Wang, L. Luo, X.H. Xu, J.A. Hou, B. Xun, B.L. Hu, and Y.X. 
Chen, Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-

straw derived biochar. Bioresource Technology, 2011. 102(5): p. 4036-4041. 

Xi, X., J. Yan, G. Quan, and L. Cui, Removal of the Pesticide Pymetrozine from Aqueous 

Solution by Biochar Produced from Brewer's Spent Grain at Different Pyrolytic 

Temperatures. BioResources, 2014. 9(4): p. 7696-7709. 

Cui, L.Q., J.L. Yan, G.X. Quan, C. Ding, T.M. Chen, and Q. Hussain, Adsorption Behaviour 

of Pymetrozine by Four Kinds of Biochar from Aqueous Solution. Adsorption Science & 
Technology, 2013. 31(6): p. 477-487. 

Jones, D.L., G. Edwards-Jones, and D.V. Murphy, Biochar mediated alterations in herbicide 

breakdown and leaching in soil. Soil Biology & Biochemistry, 2011. 43(4): p. 804-813. 

Zhang, G.X., Q. Zhang, K. Sun, X.T. Liu, W.J. Zheng, and Y. Zhao, Sorption of simazine to 

corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution, 
2011. 159(10): p. 2594-2601. 

García-Jaramillo, M., L. Cox, H.E. Knicker, J. Cornejo, K.A. Spokas, and M.C. Hermosín, 
Characterization and selection of biochar for an efficient retention of tricyclazole in a 

flooded alluvial paddy soil. Journal of Hazardous Materials, 2015. 286(0): p. 581-588. 

Zhang, M., L. Shu, X.F. Shen, X.Y. Guo, S. Tao, B.S. Xing, and X.L. Wang, 
Characterization of nitrogen-rich biomaterial-derived biochars and their sorption for 

aromatic compounds. Environmental Pollution, 2014. 195: p. 84-90. 

Chen, Z.M., B.L. Chen, D.D. Zhou, and W.Y. Chen, Bisolute Sorption and Thermodynamic 

Behavior of Organic Pollutants to Biomass-derived Biochars at Two Pyrolytic Temperatures. 
Environmental Science & Technology, 2012. 46(22): p. 12476-12483. 

Nguyen, T.H., H.-H. Cho, D.L. Poster, and W.P. Ball, Evidence for a Pore-Filling 

Mechanism in the Adsorption of Aromatic Hydrocarbons to a Natural Wood Char. 
Environmental Science & Technology, 2007. 41(4): p. 1212-1217. 

Xie, M.X., D. Lv, X. Shi, Y.Q. Wan, W. Chen, J.D. Mao, and D.Q. Zhu, Sorption of 

monoaromatic compounds to heated and unheated coals, humic acid, and biochar: 

Implication for using combustion method to quantify sorption contribution of carbonaceous 

geosorbents in soil. Applied Geochemistry, 2013. 35: p. 289-296. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 82 
 

Lattao, C., X.Y. Cao, J.D. Mao, K. Schmidt-Rohr, and J.J. Pignatello, Influence of Molecular 

Structure and Adsorbent Properties on Sorption of Organic Compounds to a Temperature 

Series of Wood Chars. Environmental Science & Technology, 2014. 48(9): p. 4790-4798. 

Oh, S.Y. and Y.D. Seo, Factors Affecting Sorption of Nitro Explosives to Biochar: Pyrolysis 

Temperature, Surface Treatment, Competition, and Dissolved Metals. Journal of 
Environmental Quality, 2015. 44(3): p. 833-840. 

Bornemann, L.C., R.S. Kookana, and G. Welp, Differential sorption behaviour of aromatic 

hydrocarbons on charcoals prepared at different temperatures from grass and wood. 
Chemosphere, 2007. 67(5): p. 1033-1042. 

Chun, Y., G.Y. Sheng, C.T. Chiou, and B.S. Xing, Compositions and sorptive properties of 

crop residue-derived chars. Environmental Science & Technology, 2004. 38(17): p. 4649-
4655. 

Braida, W.J., J.J. Pignatello, Y. Lu, P.I. Ravikovitch, A.V. Neimark, and B. Xing, Sorption 

Hysteresis of Benzene in Charcoal Particles. Environmental Science & Technology, 2003. 
37(2): p. 409-417. 

Wu, M., B. Pan, D. Zhang, D. Xiao, H. Li, C. Wang, and P. Ning, The sorption of organic 

contaminants on biochars derived from sediments with high organic carbon content. 
Chemosphere, 2013. 90(2): p. 782-788. 

Sun, K., K. Ro, M.X. Guo, J. Novak, H. Mashayekhi, and B.S. Xing, Sorption of bisphenol A, 

17 alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced 

biochars. Bioresource Technology, 2011. 102(10): p. 5757-5763. 

Kasozi, G.N., A.R. Zimmerman, P. Nkedi-Kizza, and B. Gao, Catechol and Humic Acid 

Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars). Environmental 
Science & Technology, 2010. 44(16): p. 6189-6195. 

Nguyen, H.N. and J.J. Pignatello, Laboratory Tests of Biochars as Absorbents for Use in 

Recovery or Containment of Marine Crude Oil Spills. Environmental Engineering Science, 
2013. 30(7): p. 374-380. 

Jin, J., K. Sun, F.C. Wu, B. Gao, Z.Y. Wang, M.J. Kang, Y.C. Bai, Y. Zhao, X.T. Liu, and 
B.S. Xing, Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by 

plant- and manure-derived biochars. Science of the Total Environment, 2014. 473: p. 308-
316. 

Yang, Y., X. Lin, B. Wei, Y. Zhao, and J. Wang, Evaluation of adsorption potential of 

bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network 

modeling. International Journal of Environmental Science and Technology, 2014. 11(4): p. 
1093-1100. 

Ates, F. and U.T. Un, Production of char from hornbeam sawdust and its performance 

evaluation in the dye removal. Journal of Analytical and Applied Pyrolysis, 2013. 103: p. 
159-166. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 83 
 

Mahmoud, D.K., M.A.M. Salleh, W.A.W.A. Karim, A. Idris, and Z.Z. Abidin, Batch 

adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and 

thermodynamic studies. Chemical Engineering Journal, 2012. 181: p. 449-457. 

Xu, R.K., S.C. Xiao, J.H. Yuan, and A.Z. Zhao, Adsorption of methyl violet from aqueous 

solutions by the biochars derived from crop residues. Bioresource Technology, 2011. 
102(22): p. 10293-10298. 

Choy, K.K.H. and G. Mckay, Synergistic Multilayer Adsorption for Low Concentration 

Dyestuffs by Biomass. Chinese Journal of Chemical Engineering, 2012. 20(3): p. 560-566. 

Mui, E.L.K., W.H. Cheung, M. Valix, and G. McKay, Dye adsorption onto char from 

bamboo. Journal of Hazardous Materials, 2010. 177(1-3): p. 1001-1005. 

Sun, L., S. Wan, and W. Luo, Biochars prepared from anaerobic digestion residue, palm 

bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, 

equilibrium, and kinetic studies. Bioresource Technology, 2013. 140(0): p. 406-413. 

Yang, G., Z. Wang, Q. Xian, F. Shen, C. Sun, Y. Zhang, and J. Wu, Effects of pyrolysis 

temperature on the physicochemical properties of biochar derived from vermicompost and its 

potential use as an environmental amendment. RSC Advances, 2015. 5(50): p. 40117-40125. 

Li, H.L., R.H. Qu, C. Li, W.L. Guo, X.M. Han, F. He, Y.B. Ma, and B.S. Xing, Selective 

removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using 

biochars produced at different pyrolytic temperatures. Bioresource Technology, 2014. 163: 
p. 193-198. 

Li, Y.C., J.G. Shao, X.H. Wang, Y. Deng, H.P. Yang, and H.P. Chen, Characterization of 

Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target 

Component (Furfural) Adsorption. Energy & Fuels, 2014. 28(8): p. 5119-5127. 

Oh, S.-Y. and Y.-D. Seo, Sorption of halogenated phenols and pharmaceuticals to biochar: 

affecting factors and mechanisms. Environmental Science and Pollution Research, 2015: p. 1-
11. 

Chen, B.L., D.D. Zhou, and L.Z. Zhu, Transitional adsorption and partition of nonpolar and 

polar aromatic contaminants by biochars of pine needles with different pyrolytic 

temperatures. Environmental Science & Technology, 2008. 42(14): p. 5137-5143. 

Huang, W.H. and B.L. Chen, Interaction mechanisms of organic contaminants with burned 

straw ash charcoal. Journal of Environmental Sciences-China, 2010. 22(10): p. 1586-1594. 

Chen, C., W. Zhou, and D. Lin, Sorption characteristics of N-nitrosodimethylamine onto 

biochar from aqueous solution. Bioresource Technology, 2015. 179(0): p. 359-366. 

Chen, Z.M., B.L. Chen, and C.T. Chiou, Fast and Slow Rates of Naphthalene Sorption to 

Biochars Produced at Different Temperatures. Environmental Science & Technology, 2012. 
46(20): p. 11104-11111. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 84 
 

Chen, B.L., Z.M. Chen, and S.F. Lv, A novel magnetic biochar efficiently sorbs organic 

pollutants and phosphate. Bioresource Technology, 2011. 102(2): p. 716-723. 

Wang, X.L. and B.S. Xing, Sorption of organic contaminants by biopolymer-derived chars. 
Environmental Science & Technology, 2007. 41(24): p. 8342-8348. 

Alessi, D.S., M.S. Alam, and M.C. Kohler, Designer Biochar-Coke Mixtures to Remove 

Naphthenic Acids from Oil Sands Process-Affected Water (OSPW), in OSRIN Technical 

Thesiss. 2014, Department of Earth and Atmospheric Sciences, University of Alberta: 
Alberta, Canada. 

Fitzgerald, S., P. Kolar, J. Classen, M. Boyette, and L. Das, Swine Manure Char as an 

Adsorbent for Mitigation of p-Cresol. Environmental Progress & Sustainable Energy, 2015. 
34(1): p. 125-131. 

Oleszczuk, P., S.E. Hale, J. Lehmann, and G. Cornelissen, Activated carbon and biochar 

amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons 

(PAHs) in sewage sludge. Bioresource Technology, 2012. 111: p. 84-91. 

Oleszczuk, P., A. Zielinska, and G. Cornelissen, Stabilization of sewage sludge by different 

biochars towards reducing freely dissolved polycyclic aromatic hydrocarbons (PAHs) 

content. Bioresource Technology, 2014. 156: p. 139-145. 

Reddy, K.R., T. Xie, and S. Dastgheibi, Evaluation of Biochar as a Potential Filter Media for 

the Removal of Mixed Contaminants from Urban Storm Water Runoff. Journal of 
Environmental Engineering, 2014. 140(12). 

Sun, H. and Z. Zhou, Impacts of charcoal characteristics on sorption of polycyclic aromatic 

hydrocarbons. Chemosphere, 2008. 71(11): p. 2113-2120. 

Wang, Y., L. Wang, G.D. Fang, H.M.S.K. Herath, Y.J. Wang, L. Cang, Z.B. Xie, and D.M. 
Zhou, Enhanced PCBs sorption on biochars as affected by environmental factors: Humic 

acid and metal cations. Environmental Pollution, 2013. 172: p. 86-93. 

Xin, J., R.L. Liu, H.B. Fan, M.L. Wang, M. Li, and X. Liu, Role of sorbent surface 

functionalities and microporosity in 2,2 ',4,4 '-tetrabromodiphenyl ether sorption onto 

biochars. Journal of Environmental Sciences-China, 2013. 25(7): p. 1368-1378. 

Fang, Q.L., B.L. Chen, Y.J. Lin, and Y.T. Guan, Aromatic and Hydrophobic Surfaces of 

Wood-derived Biochar Enhance Perchlorate Adsorption via Hydrogen Bonding to Oxygen-

containing Organic Groups. Environmental Science & Technology, 2014. 48(1): p. 279-288. 

Chen, X., X.H. Xia, X.L. Wang, J.P. Qiao, and H.T. Chen, A comparative study on sorption 

of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere, 
2011. 83(10): p. 1313-1319. 

Han, L.F., K. Sun, J. Jin, X. Wei, X.H. Xia, F.C. Wu, B. Gao, and B.S. Xing, Role of 

Structure and Microporosity in Phenanthrene Sorption by Natural and Engineered Organic 

Matter. Environmental Science & Technology, 2014. 48(19): p. 11227-11234. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 85 
 

Kong, H.L., J. He, Y.Z. Gao, H.F. Wu, and X.Z. Zhu, Cosorption of Phenanthrene and 

Mercury(II) from Aqueous Solution by Soybean Stalk-Based Biochar. Journal of Agricultural 
and Food Chemistry, 2011. 59(22): p. 12116-12123.. 

Liu, W.J., F.X. Zeng, H. Jiang, and X.S. Zhang, Preparation of high adsorption capacity bio-

chars from waste biomass. Bioresource Technology, 2011. 102(17): p. 8247-8252. 

Han, Y., A.A. Boateng, P.X. Qi, I.M. Lima, and J. Chang, Heavy metal and phenol 

adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in 

correlation with surface properties. J Environ Manage, 2013. 118: p. 196-204. 

Zhang, W., L. Wang, and H.W. Sun, Modifications of black carbons and their influence on 

pyrene sorption. Chemosphere, 2011. 85(8): p. 1306-1311. 

Holm, T.R., M.L. Machesky, and J.W. Scott, Sorption of Polycyclic Aromatic Hydrocarbons 

(PAHs) to Biochar and Estimates of PAH Bioavailability, in Illinois Sustainable Technology 

Center ISTC Thesiss, I.S.T. Center, Editor. 2014, Prairie Research Institute, University of 
Illinois at Urbana-Champaign. 

Hale, S.E., K. Hanley, J. Lehmann, A.R. Zimmerman, and G. Cornelissen, Effects of 

Chemical, Biological, and Physical Aging As Well As Soil Addition on the Sorption of Pyrene 

to Activated Carbon and Biochar (vol 45, pg 10445, 2011). Environmental Science & 
Technology, 2012. 46(4): p. 2479-2480. 

Zhu, L.S., Z.H. Huang, D.H. Wen, and F.Y. Kang, Preparation and performance of 

biologically activated bamboo charcoal for removing quinoline. Journal of Physics and 
Chemistry of Solids, 2010. 71(4): p. 704-707. 

Ahmad, M., S.S. Lee, A.U. Rajapaksha, M. Vithanage, M. Zhang, J.S. Cho, S.E. Lee, and 
Y.S. Ok, Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis 

temperatures. Bioresource Technology, 2013. 143: p. 615-622. 

Ahmad, M., S.S. Lee, X.M. Dou, D. Mohan, J.K. Sung, J.E. Yang, and Y.S. Ok, Effects of 

pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and 

TCE adsorption in water. Bioresource Technology, 2012. 118: p. 536-544. 

Calisto, V., C.I.A. Ferreira, J.A.B.P. Oliveira, M. Otero, and V.I. Esteves, Adsorptive 

removal of pharmaceuticals from water by commercial and waste-based carbons. Journal of 
Environmental Management, 2015. 152: p. 83-90. 

Mitchell, S.M., M. Subbiah, J.L. Ullman, C. Frear, and D.R. Call, Evaluation of 27 different 

biochars for potential sequestration of antibiotic residues in food animal production 

environments. Journal of Environmental Chemical Engineering, 2015. 3(1): p. 162-169. 

Liao, P., Z.Y. Zhan, J. Dai, X.H. Wu, W.B. Zhang, K. Wang, and S.H. Yuan, Adsorption of 

tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and 

fixed-bed column study. Chemical Engineering Journal, 2013. 228: p. 496-505. 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 86 
 

Fan, Y., B. Wang, S.H. Yuan, X.H. Wu, J. Chen, and L.L. Wang, Adsorptive removal of 

chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource 
Technology, 2010. 101(19): p. 7661-7664. 

Calisto, V., C.I.A. Ferreira, S.M. Santos, M.V. Gil, M. Otero, and V.I. Esteves, Production of 

adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram 

from water. Bioresource Technology, 2014. 166: p. 335-344. 

Jung, C., L.K. Boateng, J.R.V. Flora, J. Oh, M.C. Braswell, A. Son, and Y. Yoon, 
Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated 

biochars: Experimental and molecular modeling study. Chemical Engineering Journal, 2015. 
264(0): p. 1-9. 

Yao, H., J. Lu, J. Wu, Z.Y. Lu, P.C. Wilson, and Y. Shen, Adsorption of Fluoroquinolone 

Antibiotics by Wastewater Sludge Biochar: Role of the Sludge Source. Water Air and Soil 
Pollution, 2013. 224(1). 

Jia, M.Y., F. Wang, Y.R. Bian, X. Jin, Y. Song, F.O. Kengara, R.K. Xu, and X. Jiang, Effects 

of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. 
Bioresource Technology, 2013. 136: p. 87-93. 

Teixido, M., J.J. Pignatello, J.L. Beltran, M. Granados, and J. Peccia, Speciation of the 

Ionizable Antibiotic Sulfamethazine on Black Carbon (Biochar). Environmental Science & 
Technology, 2011. 45(23): p. 10020-10027. 

Lim, J., K. HW, S. Jeong, S. Lee, J. Yang, K. Kim, and Y.S. Ok, Characterization of 

Burcucumber Biochar and its Potential as an Adsorbent for Veterinary Antibiotics in Water. 
Journal of Applied Biological Chemistry, 2014. 57(1): p. 65-72. 

Inyang, M., B. Gao, A. Zimmerman, Y. Zhou, and X. Cao, Sorption and cosorption of lead 

and sulfapyridine on carbon nanotube-modified biochars. Environ Sci Pollut Res Int, 2015. 
22(3): p. 1868-76. 

Jing, X.R., Y.Y. Wang, W.J. Liu, Y.K. Wang, and H. Jiang, Enhanced adsorption 

performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical 
Engineering Journal, 2014. 248: p. 168-174. 

Liu, P., W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, and H.Q. Yu, Modification of bio-char 

derived from fast pyrolysis of biomass and its application in removal of tetracycline from 

aqueous solution. Bioresour Technol, 2012. 121: p. 235-40. 

Hale, S.E., S. Endo, H.P.H. Arp, A.R. Zimmerman, and G. Cornelissen, Sorption of the 

monoterpenes α-pinene and limonene to carbonaceous geosorbents including biochar. 
Chemosphere, 2015. 119(0): p. 881-888. 

 

 
 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 87 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

 

  



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 88 
 

 

 

 

 

 



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 89 
 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B



Use of Biochar Geostructures for Urban Stormwater 

Water Cleanup  Giuseppe Rizzo 
Project Report  0050078473 

 

29/10/2015  Page 90 
 

 


