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ABSTRACT 

As the current method of delivering the world’s transportation energy demand via fossil 

fuels becomes increasingly unsustainable, vehicle manufactures and organisations are 

looking to alternative energy sources for vehicle propulsion such as hydrogen fuel.  

This project has been undertaken to establish the feasibility of the System Design of a 

Hydrogen Induction System as a Retrofit Item Compatible with Existing Internal 

Combustion Engines, by examining the conversion of a Holden 5.0L V8 to accommodate 

hydrogen combustion. The for the purpose of analysis, a Holden HX GTS sedan has been 

chosen as a case study vehicle, commonly optioned with the first generation Holden 5.0L 

V8. 

Analysis of urban and extra-urban drive cycles provided theoretical power requirements 

for the operation of the vehicle for the duration of the cycles. Outputs from the drive cycle 

analysis were used in an engine simulation model that was modified to accommodate 

simulation of hydrogen combustion.  

Input values for average power and engine speed required to maintain velocity along the 

drive cycles are supplied to the engine simulation model. The engine simulation model 

returns a hydrogen fuel consumption of 4.18 kg/100km and 5.34 kg/100km for the extra-

urban and urban driving cycles respectively, a gasoline gallon equivalent of 15.4 L/100km 

and 20.27 L/100km. This provides a theoretical endurance of 133.62 km and 104.14 km 

from vehicles proposed 5.6 kg of useable hydrogen storage for the cycles respectively. 

An extensive literature review is used to identify design modifications that are required 

to accommodate hydrogen combustion in internal combustion engines. A trade study is 

used to identify the measures specifically required to adapt the Holden 5.0L case study 

engine to dual hydrogen/petrol operation modes. The modifications and additional 

components required were costed where possible, resulting in an estimated minimum cost 

of AUD $12,664 in parts for the conversion. 

  



 

iii 

 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................................................... II 

TABLE OF CONTENTS ........................................................................................................................ III 

DISCLAIMER PAGE ............................................................................................................................ VII 

CANDIDATES CERTIFICATION ..................................................................................................... VIII 

ACKNOWLEDGEMENTS ..................................................................................................................... IX 

LIST OF FIGURES .................................................................................................................................. X 

LIST OF TABLES ................................................................................................................................. XII 

NOMENCLATURE AND ACRONYMS ............................................................................................ XIII 

1 INTRODUCTION ............................................................................................................................. 1 

2 PROJECT OVERVIEW ................................................................................................................... 3 

2.1 PROJECT OBJECTIVES .................................................................................................................. 3 

2.2 METHODOLOGY ........................................................................................................................... 3 

2.3 PROJECT SCOPE ........................................................................................................................... 4 

2.4 CASE STUDY ENGINE: HOLDEN 5.0L ........................................................................................... 5 

2.5 RESOURCE REQUIREMENTS ......................................................................................................... 6 

3 LITERATURE REVIEW ................................................................................................................. 7 

3.1 FUNDAMENTAL CONCEPTS .......................................................................................................... 7 

3.1.1 Combustion............................................................................................................................. 7 

3.2 INTERNAL COMBUSTION SYSTEMS .............................................................................................. 8 

3.2.1 Overview of Reciprocating Engines ....................................................................................... 9 

3.3 SPARK-IGNITION AND COMPRESSION-IGNITION ENGINES ............................................................ 9 

3.3.1 Four-Stroke Engine (Otto Cycle) ........................................................................................... 9 

3.3.2 Diesel Engine (Diesel cycle) ................................................................................................ 10 

3.3.3 Wankel/Rotary Engine .......................................................................................................... 11 

3.3.4 Carburation .......................................................................................................................... 11 

3.3.5 Electronic Fuel Injection (EFI) ............................................................................................ 14 

3.3.6 Forced Induction (Supercharging) ....................................................................................... 15 

3.4 HYDROGEN ................................................................................................................................ 18 

3.4.1 Hydrogen as an Energy Carrier ........................................................................................... 18 

3.4.2 Hydrogen Production ........................................................................................................... 18 

3.4.3 Hydrogen Storage................................................................................................................. 20 

3.5 HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLES ............................................................ 25 

3.5.1 History .................................................................................................................................. 25 

3.5.2 Hydrogen Vehicle Characterisation ..................................................................................... 26 



 

iv 

 

3.5.3 Conversion Vehicles.............................................................................................................. 26 

3.5.4 Bi-fuel vehicles ...................................................................................................................... 27 

3.5.5 Dedicated Hydrogen Vehicles ............................................................................................... 29 

3.5.6 Overview of Hydrogen Vehicles ............................................................................................ 30 

3.6 MEASURES FOR HYDROGEN ENGINE DESIGN OR CONVERSION .................................................. 30 

3.6.1 Spark Plugs ........................................................................................................................... 30 

3.6.2 Injection system ..................................................................................................................... 30 

3.6.3 Ignition system ...................................................................................................................... 31 

3.6.4 Hot spots ............................................................................................................................... 31 

3.6.5 Piston rings and crevice volumes.......................................................................................... 31 

3.6.6 Valve seat and injectors ........................................................................................................ 32 

3.6.7 Lubrication ........................................................................................................................... 32 

3.6.8 Crankcase ventilation ........................................................................................................... 33 

3.6.9 Compression ratio ................................................................................................................. 33 

3.6.10 In-cylinder turbulence ...................................................................................................... 33 

3.6.11 Electronic throttle ............................................................................................................. 33 

3.7 HYDROGEN SAFETY ................................................................................................................... 33 

3.7.1 Test Apparatus Design .......................................................................................................... 34 

3.7.2 Ventilation ............................................................................................................................. 34 

3.7.3 Hydrogen sensors ................................................................................................................. 35 

3.7.4 Flame detectors ..................................................................................................................... 35 

3.7.5 Supply system ........................................................................................................................ 36 

3.7.6 Vehicular applications .......................................................................................................... 36 

3.8 PRIOR ART ................................................................................................................................. 37 

3.8.1 Review of Yvon & Lorenzoni ................................................................................................. 37 

3.8.2 Review of Kahraman, Ozcanli, & Ozerdem .......................................................................... 40 

3.8.3 Review of Sopena, Dieguez, Sainz, Urroz, Guelbenzu, Gadina ............................................ 42 

3.8.4 Review of Babir ..................................................................................................................... 45 

3.8.5 Review of Das, Gulati & Gupta ............................................................................................ 46 

3.8.6 Review of Verhelst & Wallner ............................................................................................... 49 

3.8.7 Review of Duan, Liu and Sun ................................................................................................ 56 

4 REQUIREMENTS ANALYSIS ...................................................................................................... 62 

4.1 CUSTOMER REQUIREMENTS ANALYSIS ...................................................................................... 62 

4.1.1 Fuel security for classic/historic vehicles in a post-hydrocarbon economy. ........................ 62 

4.1.2 Maximise driving range and adequate cruising power ......................................................... 62 

4.1.3 Maintain originality and preserve aesthetics of the vehicle where possible. ........................ 62 

4.1.4 Simplicity and owner-maintainable ...................................................................................... 63 

4.1.5 Minimize cost where possible ............................................................................................... 63 

4.1.6 Dual-fuel system ................................................................................................................... 63 



 

v 

 

4.1.7 Reliability of system.............................................................................................................. 63 

4.1.8 Design Specifications ........................................................................................................... 63 

5 ENGINE ANALYSIS ...................................................................................................................... 64 

5.1 DRIVE CYCLE ANALYSIS ........................................................................................................... 64 

5.1.1 Introduction .......................................................................................................................... 64 

5.1.2 Method .................................................................................................................................. 66 

5.1.3 Results .................................................................................................................................. 69 

5.2 AHRIND MATLAB ENGINE SIMULATION MODEL (AESM) ......................................................... 74 

5.2.1 Introduction .......................................................................................................................... 74 

5.2.2 Method .................................................................................................................................. 75 

5.2.3 Results .................................................................................................................................. 82 

5.3 DISCUSSION ............................................................................................................................... 88 

5.3.1 Overview of results ............................................................................................................... 88 

5.3.2 Drive cycle analysis.............................................................................................................. 88 

5.3.3 Engine Analysis .................................................................................................................... 90 

6 CONCEPT DESIGN ....................................................................................................................... 91 

6.1 TRADE STUDY ........................................................................................................................... 91 

6.1.1 Storage and delivery ............................................................................................................. 91 

6.1.2 Throttle control .................................................................................................................... 92 

6.1.3 Inlet manifold ....................................................................................................................... 93 

6.1.4 Injectors ................................................................................................................................ 94 

6.1.5 Engine Control Unit (ECU).................................................................................................. 95 

6.1.6 Spark Plugs .......................................................................................................................... 97 

6.1.7 Ignition Coil ......................................................................................................................... 97 

6.1.8 Engine Modifications ........................................................................................................... 97 

6.1.9 Lubrication ........................................................................................................................... 98 

6.1.10 Crankcase ventilation ...................................................................................................... 99 

6.1.11 Safety ................................................................................................................................ 99 

6.2 COST ....................................................................................................................................... 100 

7 CONCLUISONS ............................................................................................................................ 101 

8 OTHER CONSIDERATIONS AND FURTHER WORK ......................................................... 102 

8.1 ETHICAL CONSIDERATIONS ...................................................................................................... 102 

8.2 FURTHER WORK ....................................................................................................................... 102 

REFERENCES ....................................................................................................................................... 104 

APPENDICIES ....................................................................................................................................... 106 

APPENDIX A – PROJECT SPECIFICATION ............................................................................................... 106 

APPENDIX B – RESEARCH RISK ASSESSMENT....................................................................................... 107 



 

vi 

 

Working with computers .................................................................................................................. 107 

Hardware and peripherals. .............................................................................................................. 107 

Keyboards ........................................................................................................................................ 107 

Mouse Computer .............................................................................................................................. 108 

Monitors ........................................................................................................................................... 108 

Health effects ................................................................................................................................... 108 

APPENDIX C - AHRIND ENGINE SIMULATION SCRIPT FILES – BUTTSWORTH (2007) ........................... 110 

Appendix C1 – ahrind.m – Engine Simulation (modified) ............................................................... 110 

Appendix C2 – airdata.m – Thermodynamic Properties of Air/combustion Products ..................... 111 

Appendix C3 – calcq.m – Calculate Heat Flux ................................................................................ 113 

Appendix C4 – ecp.m – Equilibrium Combustion Products ............................................................. 114 

Appendix C5 – farg.m – Mixtures of fuel, air, residual combustion products at low temp .............. 118 

Appendix C6 – plotresults.m – Plot ahrind results .......................................................................... 120 

Appendix C7 – RatesComb.m – Combustion Phase derivatives ...................................................... 122 

Appendix C8 – Tadiabatic.m – Calculate Adiabatic flame temp ..................................................... 125 

Appendix C9 – fueldata.m – Thermodynamic properties of fuel  (modified) ................................... 127 

APPENDIX D - ENGINE SIMULATION SCRIPT FILES – RICHARDSON (2015) ......................................... 129 

Appendix D1 – Drive_Cycle_Anlysis.m – HWFET & UDDS Drive Cycle Analysis ........................ 129 

Appendix D2 – Holden_5L_Engine_Anlysis.m ................................................................................ 133 

APPENDIX E – DRIVE CYCLE ANALYSIS PLOTS ...................................................................................... 137 

Appendix E1 - Power to maintain speed and power to accelerate over HWFET driving cycle ....... 137 

Appendix E2 - Total power required vs time for the HWFET driving cycle .................................... 137 

Appendix E3 - Cumulative fuel consumption vs time for the HWFET driving cycle ........................ 138 

Appendix E4 - Power to maintain speed and power to accelerate over the UDDS driving cycle. ... 138 

Appendix E5 - Total power required vs time for the UDDS driving cycle ....................................... 139 

APPENDIX F - HWFET AESM POWER AND FUEL CONSUMPTION PLOTS ............................................... 140 

Appendix F1 – GGE Surface plot for HWFET driving cycle ........................................................... 140 

Appendix F2 – Specific Fuel consumption surface plot for HWFET driving cycle .......................... 140 

APPENDIX G - UDDS AESM POWER AND FUEL CONSUMPTION PLOTS ................................................. 140 

Appendix G1 – GGE Surface plot for UDDS driving cycle ............................................................. 141 

Appendix G2 – Specific Fuel consumption surface plot for UDDS driving cycle ............................ 141 

 

  



 

vii 

 

DISCLAIMER PAGE 

The Council of the University of Southern Queensland, its Faculty of Health, Engineering 

& Sciences, and the staff of the University of Southern Queensland, do not accept any 

responsibility for the truth, accuracy or completeness of material contained within or 

associated with this dissertation. 

Persons using all or any part of this material do so at their own risk, and not at the risk of 

the Council of the University of Southern Queensland, its Faculty of Health, Engineering 

& Sciences or the staff of the University of Southern Queensland. 

This dissertation reports an educational exercise and has no purpose or validity beyond 

this exercise. The sole purpose of the course pair entitled “Research Project” is to 

contribute to the overall education within the student’s chosen degree program. This 

document, the associated hardware, software, drawings, and other material set out in the 

associated appendices should not be used for any other purpose: if they are so used, it is 

entirely at the risk of the user. 

  



 

viii 

 

CANDIDATES CERTIFICATION 

I certify that the ideas, designs and experimental work, results, analysis and conclusions 

set out in this dissertation are entirely my own efforts, except where otherwise indicated 

and acknowledged. 

I further certify that the work is original and has not been previously submitted for 

assessment in any other course or institution, except where specifically stated 

Kieran Richardson 

Student Number: 0061033301 

 

Student 

Kieran Richardson   Signature:                                         

    Date:                                                                                   

 

  



 

ix 

 

ACKNOWLEDGEMENTS 

This research was carried out under the principal supervision of Dr Ray Malpress. I would 

like to personally thank Dr. Malpress for his continued guidance support throughout my 

project, which has proven invaluable in the preparation of this dissertation. 

I would like to express my gratitude to my family, friends, and girlfriend Megan Stark for 

their continued support.  

Appreciation is also due to my brother, Matthew Richardson for his assistance with 

planning, concept design, and technical assistance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

LIST OF FIGURES 

Figure 2.1: Holden 5.0L V8 Engine .................................................................................. 6 

Figure 2.2: Holden 5.0L specifications, uniquecars&parts, 2015 ..................................... 6 

Figure 3.1: 4 strokes of a rotary engine, HSW, 2015...................................................... 11 

Figure 3.2: Simple Carburettor, Judge, 1955. ................................................................. 12 

Figure 3.3: Simple downdraft carburettor section, Judge, 1955 ..................................... 12 

Figure 3.4: Electrolytic Cell, FCTO, 2015...................................................................... 19 

Figure 3.5: Liquid Hydrogen Storage Tank (FCTO, 2015) ............................................ 22 

Figure 3.6: Mazda RX-8 Hydrogen RE engine operation, Mazda, 2003. ....................... 27 

Figure 3.7:  RX-8 Hydrogen RE and Premacy Hydrogen RE hybrid, Mazda, 2003. ..... 28 

Figure 3.8: RX-8 Hydrogen RE Hydrogen storage diagram, Mazda, 2003.................... 29 

Figure 3.9: Overview of hydrogen ICE vehicles, Verhelst & Wallner, 2009 ................. 30 

Figure 3.10: Correlation of air-fuel ratio and NOx emissions for homogenous PFI 

operation, Verhelst & Wallner ........................................................................................ 54 

Figure 3.11: Theoretical power density of a PFI HICE compared to stoichiometric 

petroleum operation as a function of equivalence ratio and charging strategy, Verhelst & 

Wallner (Verhelst & Wallner, 2009)............................................................................... 55 

Figure 3.12: test instrumentation type and accuracy from Duan, Liu and Sun’s 

experimental apparatus ................................................................................................... 59 

Figure 3.13: 3D CFD simulation model (Duan et al., 2013) .......................................... 60 

Figure 3.14: Simulation results (Duan et al., 2013) ........................................................ 61 

Figure 5.1: EPA Highway Fuel Economy Test Driving Schedule (EPA, 2015). ........... 65 

Figure 5.2: Caption: EPA Urban Dynamometer Driving Schedule (EPA, 2015). .......... 65 

Figure 5.3: Vehicle, fuel, and air properties assumptions ............................................... 67 

Figure 5.4: HX Holden Monaro GTS sedan exterior dimensions................................... 68 

Figure 5.5: Command window results display for HWFET driving cycle ..................... 69 

Figure 5.6: Command window results display for UDDS driving cycle ........................ 69 

Figure 5.7: Total Power requirement vs time for HWFET cycle .................................... 70 

Figure 5.8: Total Power requirement vs time for UDDS cycle ...................................... 70 

Figure 5.9: Spread of velocity data points for the HWFET driving cycle ...................... 72 

Figure 5.10: Spread of total power data points for the HWFET driving cycle ............... 72 

Figure 5.11: Spread of velocity data points for the UDDS driving cycle ....................... 73 

Figure 5.12: Spread of total power data points for the UDDS driving cycle .................. 73 

file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889381
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889382
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889384
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889385
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889386
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889387
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889388
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889389
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889390
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889391
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889392
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889392
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889393
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889393
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889393
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889394
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889394
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889395
file:///E:/ENG4111%20-%20Research%20Project%20Part%201/thesis%20motherfucker.docx%23_Toc433889396


 

xi 

 

Figure 5.13: The AESM output for in cylinder pressure change over the compression and 

expansion strokes ............................................................................................................ 74 

Figure 5.14: Creation of zeros matrix for desired output in Holden_5L_analysis.m ..... 75 

Figure 5.15: Creation of nested loop for induction pressure and fuel-air equivalence ratio 

in Holden_5L_analysis.m ............................................................................................... 76 

Figure 5.16: Holden 5.0L engine specifications assigned to enginedata.m script file .... 76 

Figure 5.17: Addition of hydrogen polynomial coefficients for species thermodynamic 

properties to fueldata.m script file to accommodate simulation of hydrogen gas 

combustion. ..................................................................................................................... 77 

Figure 5.18: Determining inducted air density via ideal gas law .................................... 77 

Figure 5.19: Ground speed is calculated as a function of the vehicles effective drive ratio 

and engine speed ............................................................................................................. 78 

Figure 5.20: Surface plot of power output vs equivalence ratio and induction pressure for 

the average engine speed of the HWFET driving cycle. ................................................. 82 

Figure 5.21: Surface plot of power output vs equivalence ratio and induction pressure for 

the average engine speed of the UDDS driving cycle..................................................... 82 

Figure 5.22: Surface plot of hydrogen fuel consumption vs equivalence ratio and 

induction pressure for the average engine speed of the HWFET driving cycle.............. 83 

Figure 5.23: Surface plot of hydrogen fuel consumption vs equivalence ratio and 

induction pressure for the average engine speed of the UDDS driving cycle. ............... 83 

Figure 5.24: numerical outputs for wheel power over the fuel-air ratio and induction 

pressure ranges that have been transcribed into Microsoft Excel for the HWFET driving 

cycle. ............................................................................................................................... 84 

Figure 5.25: numerical outputs for fuel consumption over the fuel-air ratio and induction 

pressure ranges that have been transcribed into Microsoft Excel for the HWFET driving 

cycle. ............................................................................................................................... 84 

Figure 5.26: Fuel consumption data for combinations of phi and induction pressure to 

produce the target power of 20.92 kW for the HWFET driving cycle at 1980 rpm ....... 84 

Figure 5.27: Numerical outputs for wheel power over the fuel-air ratio and induction 

pressure ranges that have been transcribed into Microsoft Excel for the UDDS driving 

cycle. ............................................................................................................................... 85 



 

xii 

 

Figure 5.28: Numerical outputs for fuel consumption over the fuel-air ratio and induction 

pressure ranges that have been transcribed into Microsoft Excel for the UDDS driving 

cycle. ............................................................................................................................... 85 

Figure 5.29: Fuel consumption data for combinations of phi and induction pressure to 

produce the target power of 9.44 kW for the UDDS driving cycle at 1645 rpm. ........... 85 

Figure 5.30: a ‘sectioned’ top view of the wheel power surface plots in Figures 5.18 and 

5.19 at 20.92 kW and 9.44 kW. ...................................................................................... 86 

Table 5.1: Summary of key results from sections 5.1.3 and 5.2.3 .................................. 88 

Figure 6.1: Compressed H2 storage tank details ............................................................. 92 

Figure 6.2: Harrop inlet manifold stock list photograph ................................................. 93 

Figure 6.3: Quantum Technologies Hydrogen and CNG injectors ................................. 95 

Figure 6.4: MoteC M84 ECU ......................................................................................... 96 

Figure 6.5: NGK BP6FS Holden 5.0L spark plug stock image. ..................................... 97 

Table 6.1: Minimum component cost estimate ............................................................. 100 

 

LIST OF TABLES 

Table 5.1: Summary of key results from sections 5.1.3 and 5.2.3 .................................. 88 

Table 6.1: Minimum component cost estimate ............................................................. 100 

 

  



 

xiii 

 

NOMENCLATURE AND ACRONYMS 

The following abbreviations have been used throughout the text and bibliography: 

AESM  Ahrind Engine Simulation Model 

BDC  Bottom Dead Centre 

BTE  Brake Thermal Efficiency 

BMEP  Brake Mean Effective Pressure 

BSFC  Brake Specific Fuel Consumption 

CA  Crankshaft Angle 

CCD  Charged Coupled Device 

CI  Compression Ignition 

CFD  Computational Fluid Dynamics  

CNG  Compressed Natural gas 

CO  Carbon Monoxide 

CO2  Carbon Dioxide 

DI  Direct Injection 

ECU  Engine Control Unit 

EERE  Energy Efficiency and Renewable Energy, (office of) 

EFI  Electronic Fuel Injection 

EGR   Exhaust Gas Recirculation 

EV  Electric Vehicle 

FEA  Finite Element Analysis 

FCV  Fuel Cell Vehicle 

HICE  Hydrogen Internal Combustion Engine 

HICEV  Hydrogen Internal Combustion Engine Vehicle 

IC  Internal Combustion 

ICE  Internal Combustion Engine  



 

xiv 

 

IMEP  Indicated Mean Effective Pressure 

LNG   Liquefied Natural Gas 

LPG  Liquefied Petroleum Gas 

MEP  Mean Effective Pressure 

NOx  Nitrogen Oxides 

OEM  Original Equipment Manufacturer  

PEM  Polymer Electrolyte Membrane 

PFI  Port Fuel Injection 

PID  Proportional-Integral-Derivative  

RE   Rotary Engine 

SFC  Specific Fuel Consumption 

SI  Spark Ignition  

SULEV Super Ultra Low Emission Vehicle 

STP   Standard Temperature & Pressure 

TBI  Throttle Body Injection 

TDC  Top Dead Centre 

TMI  Timed Manifold Injection 

ULEV  Ultra Low Emission Vehicle  

WOT  Wide Open Throttle 

  



1 

 

1 INTRODUCTION 

The current method of delivering the world’s energy demand, based primarily on fossil 

fuel, is becoming increasingly unsustainable as once abundant fossil fuel reserves are now 

clearly exhaustible. Global warming and local pollution hotspots associated with fossil 

fuel usage are further significant environmental and societal problems. These are strong 

drivers for research, development and demonstration of alternative energy sources, 

carriers, and for transportation sectors, and powertrains (Verhelst & Wallner, 2009).  

Vehicles are identified as a major source of air pollutants such as carbon monoxide, nitric 

oxides, and hydrocarbons, as well as the greenhouse gas carbon monoxide. Thus there is 

a growing shift within the transportation industry from traditional petroleum based fuels 

such as petrol and diesel fuel to cleaner burning alternative fuels such as natural gas, 

alcohols or alcohol blends, LPG, and hydrogen and hydrogen enriched fuels (Çengel & 

Boles 2001).  

However, vehicle manufacturer Mazda suggest that over 95% of the world currently uses 

petrol and diesel internal combustion engines, and even by 2020 90% still will be, leaving 

just 10% using these alternatives (Mazda, 2015). It is implied that to see a substantial and 

immediate reduction of vehicle emissions, manufacturers must adapt renewable 

technology to vehicles used globally right now. The use of hydrogen as an energy carrier 

has been investigated as part of most governmental strategic plans for sustainable energy 

systems, and is subject to continued research into its use as a combustion fuel.  

Verhelst & Wallner highlight that the attractiveness of hydrogen lies in the versatile 

methods by which it can be produced; the long-term viability of a number of methods; 

the various methods to produce energy from hydrogen; the virtually zero harmful 

emissions and potential efficiency from its use. Compared to other alternative energy 

carriers, hydrogen is advantageous in terms of volumetric and gravimetric energy storage 

density. However, there exist serious challenges that need to be overcome when hydrogen 

is used as an energy carrier. Hydrogens low density implies low energy density compared 

to currently available fuels, even when compressed or liquefied, both of which incur 

substantial energy losses. Bulk storage, distribution, and on board vehicle storage are 

heavily compromised as a result. Further, Verhelst & Wallner suggest that in the case of 

hydrogen-fuelled vehicles, we must ensure that the well-to-wheel greenhouse emission 

reduction compared to the production of hydrocarbon fuels is positive. However, the 
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potential advantages and desirable combustion properties of hydrogen are substantial 

enough to warrant investigation and further research (Verhelst & Wallner, 2009).  

This project aims to establish the feasibility of the System Design of a Hydrogen 

Induction System as a Retrofit Item Compatible with Existing Internal Combustion 

Engines, by examining the conversion of a Holden 5.0L V8 to accommodate hydrogen 

combustion.   

  



3 

 

2 PROJECT OVERVIEW 

This chapter outlines the objectives and scope of this research, and details the project 

execution. 

2.1 Project Objectives  

The objectives of this research project were defined as follows:  

1. Design a hydrogen induction system capable of retro-fitment to an existing 

internal combustion engine using a Holden 5.0L V8 as a case study. 

2. Perform extensive literature review surrounding hydrogen internal combustion 

phenomena. 

3. Identify from literature review all measures for design and modification required 

to achieve reliable operation of case study engine.  

4. Identify customer requirements, from which concept design specifications can be 

established.  

5. Create concept design comprising of any modifications and new componentry 

selection required for engine operation, as identified. 

6. Use a trade study to aid in optimisation of design for specific case study engine: 

compare suitability of off-the-shelf componentry options based on satisfaction of 

design specifications. 

7. Modify the ahrind MATLAB combustion model to accommodate hydrogen 

combustion analysis and perform engine analysis to determine performance and 

emission characteristics of the engine concept for hydrogen vs petroleum 

operation.  

8. Perform cost analysis of the concept design (estimations of cost, market uptake, 

safety, and other factors concerning implementation of the technology into the 

automotive market). 

2.2 Methodology 

The following section details the methodologies employed to achieve project objectives.  

Appeal exists in maintaining iconic vehicles of the past. Although suitable fuels for such 

vehicles are likely to remain available for some time, an investigation into the use of 

alternative fuels seems justifiable (Barbir, undated).  This investigation examines the 

conversion of a Holden 5.0L V8 to accommodate hydrogen combustion.   
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Analysis of urban and extra-urban drive cycles provided theoretical power requirements 

for the operation of the vehicle for the duration of the cycles. Outputs from the drive cycle 

analysis were used in an engine simulation model that was modified to accommodate 

simulation of hydrogen combustion.  

An initial review of available literature was conducted surrounding combustion of fuels, 

conventionally fuelled internal combustion engines, hydrogen as a potential energy 

carrier, as well as its production and methods of storage. This led into hydrogen specific 

internal combustion literature, where phenomena unique to hydrogen internal combustion 

was investigated as well as prior art. From the literature review, all key design measures 

for hydrogen engine conversion were identified. All component replacement, addition 

and design modification requirements were established and a trade study performed.  

From here, to identify what the concept design should be, an examination of key customer 

requirements was conducted. From the customer requirements a series of quantitative and 

qualitative specifications was established.  

A trade study was used to compare available technologies against the design 

specifications to optimise component selection and modifications. Areas for design or 

modification included storage/refuelling, fuel delivery, induction, ignition, combustion, 

exhaust, lubrication and cooling, and safety categories. Ethical and environmental 

considerations were also investigated. 

2.3 Project Scope  

Significant progress in hydrogen-fuelled internal combustion engines has been made in 

recent times in terms of achievable power density, efficiencies and emissions. However, 

there are still many challenges to the widespread adoption of hydrogen technology and 

this investigation did not provide answers to them. This section outlines the limitations 

set on the scope of works for this investigation. 

The following investigation: 

- Did not provide solutions to challenges involved in on-board hydrogen storage. 

Rather this investigation evaluated current on-board hydrogen storage technology 

to establish which option was optimal for the concept design.  

- Did not provide innovative solutions for the power density challenges that exist 

for hydrogen internal combustion engines. This investigation evaluated currently 
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available technologies for hydrogen induction that are compatible with the case 

study engine.  

- Did not involve the redesign or evaluation of existing components except where 

modification or installation of extra equipment was required. Equipment that is 

common to both hydrogen and petroleum operation was not examined (ie 

transmission, differential, passenger compartment, etc). 

- Did not focus on developing new MATLAB models for hydrogen combustion. 

The investigation involved the adaption of existing ahrind MATLAB models to 

produce performance and emissions characteristics for the case study engine for 

hydrogen and petroleum operation. 

These limitations were set to limit the depth of the investigation to reflect an 

undergraduate thesis report. The limitations also reduced the likelihood of over-

constraining the design. 

2.4 Case Study Engine: Holden 5.0L 

The Holden V8 is an overhead valve pushrod engine that was produced by General 

Motors Holden between 1969 and 2000. The V8 was initially offered in 253 and 308 cui 

variants until 1985 when the 253 cui variant was dropped. In 1985, the engine capacity 

of the 308 was reduced to 304 cui to slip beneath the 5000 cc engine capacity ceiling for 

Group A touring cars. The 304 retained the 308 basic engine block, while crank, cylinder 

heads, and other engine changes were made to accommodate fuel injection and improved 

efficiency.  

Due to its long production run, replacement parts, aftermarket induction manifolds, 

cylinder heads, supercharger kits, injection systems and a host of other parts are available 

for the Holden 5.0L, both OEM and aftermarket. This makes it an ideal engine for a 

hydrogen case study, its versatility allowing for numerous induction combinations. The 

Holden 5.0L has been selected as the subject of the case study for this project due to the 
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large volume of historic and classic vehicles that utilise the power plant and the 

availability of parts and equipment, Figure 2.1. 

The engine specifications for cylinder bore, stroke, compression ratio, and maximum 

power output (Figure 2.2) were used for inputs and reference for; thermodynamic 

analysis; hydrogen combustion simulation in MATLAB to determine performance 

characteristics; and to identify measures for engine modification to accommodate 

hydrogen combustion.  

2.5 Resource Requirements  

This section details the resource requirements for the project. Due to the theoretical nature 

of the investigation, the majority of these resources were the access to software and 

computer programs.  

Microsoft word was used extensively for all word processing tasks within the project. 

This program was selected due to its widespread availability, ease of use, and familiarity 

and experience with the software. 

The reference management software Endnote X7 has been used to manage and collate 

references and the material cited in this dissertation. The software was selected for its 

ease of use, the added convenience it brings to the management of a large number of 

references, and its integration of both Microsoft Word and with databases such as Science 

Direct and Scopus.  

The spreadsheet application Microsoft Excel has also been used extensively. The program 

is very useful for graphical display of information, tabulation and data analysis, decision 

Figure 2.2: Holden 5.0L specifications, uniquecars&parts, 2015 

Figure 2.1: Holden 5.0L V8 Engine  
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matrix design, and numerous other applications. Familiarity with the program and its 

widespread use and accessibility were contributing factors for its selection as a 

computational aid in this project. 

MATLAB was selected as the main numerical computing environment for basic to 

complex calculations, combustion modelling, data and numerical analysis in this project. 

A portion of the combustion analysis within this project has come from the adoption of 

existing rudimentary combustion MATLAB models, necessitating its use. Familiarity 

with the program and its powerful computing power were also strong motivations for its 

selection for the project. 

Access to the internet has become a mandatory requisite for any research project. Access 

to the USQ library and databases such as Science Direct and Scopus have also been 

greatly utilized in the review of available literature relating to the investigation. 

3 LITERATURE REVIEW  

This chapter concerns the review of literature surrounding hydrogen internal combustion.  

3.1 Fundamental Concepts 

In order to understand the development of models established within this project, a 

comprehension of the fundamental thermodynamics, fluid mechanics, numerical analysis 

and dynamics concepts upon which these models are built is required. The following 

sections provide a brief outline of these concepts.  

Please note that the outlined concepts are far from comprehensive, and the cited material 

should be referred to if more detailed explanations of any phenomena are required. For a 

description of the terms and symbols used in Equations in this section, refer to the 

nomenclature and acronyms page. 

3.1.1 Combustion 

This section focuses on a particular type of chemical reaction, known as combustion, due 

to its fundamental importance to the workings in this document.  

Fuels and oxidisers  

Any material that can be burned to release thermal energy is called a fuel. Most familiar 

fuels consist primarily of hydrogen and carbon. Known as hydrocarbon fuels, they are 
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denoted by the general formula 𝐶𝑛𝐻𝑚. Hydrocarbon fuels exist in all phases. Some well-

known hydrocarbons are coal, petroleum and natural gas (Çengel & Boles, 2001).  

A chemical reaction during which fuel is oxidised releasing a large quantity of energy is 

called combustion. As it is free and readily available, the oxidiser most commonly used 

in combustion is air. On a mole or volume basis, dry air is composed of 20.9% oxygen, 

78.1% nitrogen, 0.9% argon, and in small amounts of helium, carbon dioxide, neon and 

hydrogen. In the combustion reactions considered in this document, the argon is treated 

as nitrogen, and the trace amounts of other gases are disregarded. Dry air is then 

approximated as 21% oxygen and 79% nitrogen. Thus, each mole of oxygen in a 

combustion reaction is accompanied by 0.79/0.21 = 3.76 moles of nitrogen (Çengel & 

Boles, 2001).  

During combustion nitrogen behaves as an inert gas and thus does not react with other 

elements, other than forming trace amounts of nitric oxides. However, the presence of 

nitrogen greatly affects the outcome of a combustion process. Nitrogen typically enters a 

combustion chamber in large quantities at a low temperature then exits at considerably 

higher temperatures, absorbing a large quantity of the energy released during combustion 

(Çengel & Boles, 2001). For the sake of simplicity, nitrogen was considered to act 

completely inert in the Equations used within this document. It is worth noting however 

that in reality, the high temperatures encountered in an internal combustion engine would 

cause a small fraction of nitrogen to form hazardous gases such as nitric oxide.  

Reactants 

Predicting the composition of the products of a combustion reaction is relatively easy 

when the process is assumed to be complete and the exact amounts of products are known. 

All that is required is to apply the mass balance to each element that appears in the 

Equation, without taking any measurements. In an actual combustion process, it is not as 

simple. Actual combustion processes are hardly ever complete, even in the presence of 

excess air. Thus, it is impossible to predict the composition based on mass balance 

application alone. The only alternative is to measure the amount of each component in 

the products directly (Çengel & Boles, 2001). 

3.2 Internal Combustion Systems 
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In order to understand the explanations and justifications supplied in this document, some 

basic knowledge of internal combustion systems is required. In this section, several 

different types of internal combustion systems are introduced and explained.   

3.2.1 Overview of Reciprocating Engines 

The reciprocating engine has proved to be a versatile invention with wide and varied 

applications since its invention. In a reciprocating engine the piston reciprocates in the 

cylinder between two fixed positions, namely top dead centre (TDC) – the position of the 

piston when it forms the smallest volume in the cylinder – and bottom dead centre (BDC), 

when it forms the largest volume in the cylinder (Çengel & Boles, 2001).    

The distance between TDC and BDC is the largest distance the piston can travel and is 

termed the stroke of the engine. The diameter of the cylinder is called the bore. The air-

fuel mixture is drawn into the cylinder via the intake-valve, and combustion products are 

expelled from the cylinder via the exhaust valve (Çengel & Boles, 2001).  

The clearance volume is the volume formed in the cylinder by the piston at TDC. The 

displacement is the volume displaced by the piston as it moves between the two points. 

The ratio of the displacement to the clearance volume is known as the compression ratio 

R of the engine (Çengel & Boles, 2001). 

𝑅 =
𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛
=

𝑉𝐵𝐷𝐶

𝑉𝑇𝐷𝐶
 

Equation 3.1 

3.3 Spark-Ignition and Compression-Ignition Engines 

Reciprocating engines are classified as either spark ignition (SI) engines or compression-

ignition (CI) engines, depending on how combustion is initiated within the cylinder. In 

SI engines, a spark plug delivers a charge to the cylinder and ignites the compressed air-

fuel mixture. In CI engines, the air-fuel mixture is compressed above its self-ignition 

temperature and self-ignites as a result (Çengel & Boles, 2001). 

3.3.1 Four-Stroke Engine (Otto Cycle) 

The Otto cycle is the ideal cycle for SI reciprocating combustion engines. It was named 

after German engineer Nikolas Otto for his application of Beau de Rochas’ engine cycle 

in the creation of the world’s first successful four-stroke engine. In most SI engines, the 

piston completes four strokes and two crankshaft revolutions per thermodynamic cycle. 
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These are called four-stroke engines, with the strokes namely; intake, compression, 

power, and exhaust (Çengel & Boles, 2001). 

Initially both the intake and exhaust valves are closed with the piston at TDC. During the 

intake stroke the piston moves down the cylinder, creating a vacuum that draws in an air-

fuel mixture via the intake valve. Once the piston reaches BDC, the intake valve closes 

sealing the volume within the cylinder. The piston then makes its way back up the 

cylinder, compressing the air-fuel mixture in what is called the compression stroke. 

Shortly before the piston reaches TDC the sparkplug delivers a spark and the compressed 

air-fuel mixture ignites, increasing the temperature and pressure within the combustion 

chamber. The increased pressures of combustion force the piston back down the cylinder, 

producing usable work output during the power stroke via connection of the piston to the 

crankshaft via a connecting rod. At the end of the stroke, the piston reaches BDC marking 

the completion of the first mechanical stroke. At this point the cylinder is filled with the 

products of combustion. The piston moves back up the cylinder, expelling the exhaust 

gasses from the system via the exhaust valve (Çengel & Boles, 2001).   

3.3.2 Diesel Engine (Diesel cycle) 

The diesel engine, first proposed by Rudolph Diesel in the 1890s, is very similar to the 

four-stroke engine discussed in the previous section, the main difference being the 

ignition method. As previously mentioned, in four-stroke SI cycle engines the air-fuel 

mixture is compressed to a temperature below the fuels auto-ignition temperature, and 

combustion is initiated by the firing of the spark plug. In a CI engine, the air is compressed 

to a temperature above the auto-ignition temperature of the fuel, and combustion is 

initiated upon contact as the fuel is injected into the cylinder (Çengel & Boles, 2001). 

In SI engines, compression ratios are limited by the onset of auto-ignition. However, in 

CI engines, diesel is injected into the cylinder which contains only compressed air, 

eliminating the chance of auto-ignition. CI engines are then able to operate at much higher 

compression ratios, typically between 12 and 24.  
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3.3.3 Wankel/Rotary Engine 

Figure 3.1: 4 strokes of a rotary engine, HSW, 2015 

Like a reciprocating piston engine, the rotary engine converts the pressure created from 

the combustion of a compressed air-fuel mixture into a useable rotational force. In a rotary 

engine, a triangular rotor follows an oval-like epitrochoid shape, keeping the apexes of 

the rotor in contact with the housing to create three separate sealed volumes within the 

housing. As the rotor moves around the chamber, each of the three volumes of gas 

alternately expand and contract, drawing the air-fuel mixture into the engine, compressing 

it, and harnessing the pressure change due to combustion and expansion of gases before 

expelling the products of combustion out the exhaust port (HSW, 2015b). Figure 3.1 

depicts the path of the rotor within the housing.  

3.3.4 Carburation  

In early model vehicles, small outdoor power equipment, and small displacement 

vehicles, a carburettor is used to deliver the air-fuel charge to the engine. The purpose of 

a carburettor is to supply the required proportions of air and fuel to the engine, namely, 

weaker in fuel for economy, and richer for power. Figure 3.2 depicts a simple downdraft 

carburettor, (Judge, 1955).  

An elementary carburettor consists of a fuel reservoir, known as the float chamber, in 

which the level of fuel is kept constant by a float-actuated needle valve. The fuel from 

this chamber supplies a small orifice jet which is situated in the narrowest part, or throat, 

of a venturi or choke tube. The main air supply is drawn through the vertical tube from 

below, and passes through the venturi and thus takes up the fuel, the mixture passing 

upwards to the engine. The throttle valve controls the amount of the mixture delivered to 
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the engine, providing power output control. The principle of the simple carburettor is 

illustrated in Figure 3.3, (Judge, 1955).  

 

If the air is assumed incompressible, its law of flow can be approximated by Bernoulli’s 

Equation, shown in Equation 3.2. 

Figure 3.2: Simple Carburettor, Judge, 1955. 

Figure 3.3: Simple downdraft carburettor section, Judge, 1955 
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𝑣2

2𝑔
+

𝑝

𝑤
+ ℎ = constant 

Equation 3.2 

Where v is velocity, p is pressure, w density, h is datum head, and g is acceleration due 

to gravity. Then, if v1 is the velocity at B and v2 the velocity at A, p1 and p2 the pressures 

at B and A respectively, then Equation 3.2 can be expressed as Equation 3.3. 

𝑣1
2

2𝑔
+

𝑝1

𝑤
=

𝑣2
2

2𝑔
+

𝑝2

𝑤
 

Equation 3.3 

From this relationship it is apparent that as the velocity increases from v1 to v2, due to the 

reduction in cross-section, the pressure drops from atmospheric pressure po, 

corresponding to v1 = 0 to a value p2 below atmospheric pressure. Since the pressure on 

the fuel in the float chamber is atmospheric, the fuel flows out of the jet at a pressure 

equal to (po-p2). The quantity of fuel flowing in per second would be proportional to 

√𝑑(𝑝𝑜 − 𝑝2) where d is the density of the fuel (Judge, 1955). 

Similarly, the quantity of air is proportional to √𝑤(𝑝𝑜 − 𝑝2). Therefore, if both the air 

and fuel were assumed incompressible and viscosity was assumed negligible, the mass 

ratio of fuel to air is expressed as shown in Equation 3.4. 

𝑊𝐴𝑖𝑟

𝑊𝐹𝑢𝑒𝑙
=

√𝑤(𝑝𝑜 − 𝑝2)

√𝑑(𝑝𝑜 − 𝑝2)
= √

𝑤

𝑑
 

Equation 3.4 

The ratio would be constant at all engine speeds if the air and fuel densities did not change, 

implying carburettors supply constant mixture proportions over the speed range. In 

practice, this is not the case, for the following reasons, namely (1) air is both viscous – 

giving eddying instead of laminar flow – and is compressible; (2) light hydrocarbon fuels 

are viscous but not compressible. The calculation of airflow under the above conditions 

requires a knowledge of the energy balance Equation, the characteristic Equation for the 

pressure – volume relation (known or assumed), and the continuity Equation. The flow 

of fuel that actually passes through the jet depends on the ratio of length to diameter of 

the jet, and the discharge coefficient for the outlet. Other variables include fuel 

temperature as the density and viscosity lessen with temperature increase (Judge, 1955). 

Therefore, while the quantities of air and fuel that pass through section AA in Figure 3.3 

under a pressure potential of p1-p2 can be calculated, the results are not usually reliable 

due to divergence from theory and unknown variables (Judge, 1955).  
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The demise of the carburettor 

As vehicles evolved and became less rudimentary, so too did the carburettor to 

accommodate the various operating requirements and emission laws. To handle some of 

these tasks, late model vehicles had carburettors that had five circuits: 

- Main circuit: provides the correct amount of fuel for efficient cruising. 

- Idle Circuit: supplies low fuel level for idle operation. 

- Accelerator pump: provides extra bursts of fuel when the accelerator is depressed, 

reducing delay in throttle response. 

- Power enrichment circuit: supplies additional fuel when the car is under load 

(uphill, towing operations). 

- Choke: provides additional fuel on cold start. 

Although the carburettor was used as the primary method of fuel delivery for much of the 

existence of the internal combustion engine, and for other applications such as 

lawnmowers and chainsaws – it still is, the carburettor has long since been replaced by 

fuel injection in automotive applications (HSW, 2015a). 

3.3.5 Electronic Fuel Injection (EFI) 

Throttle Body Injection (TBI). 

Carburettors were initially superseded by TBI systems (single port or central fuel 

injection) incorporating electronically controlled fuel injector valves into a throttle body. 

As these systems were almost a bolt-on replacement for carburetted engines, only minor 

changes to engine design were required for their implementation (HSW, 2015a). 

One or two injectors mounted in the throttle body, spray fuel into the intake manifold. An 

electric fuel pump (commonly mounted in or near the fuel tank) creates fuel pressure, 

which is controlled by a regulator mounted on the throttle body. When the injectors are 

energised, fuel is sprayed into the manifold in a rapid series of bursts (rather than a 

continuous stream).  

Fuel distribution issues that affect carburetted induction are also present in TBI, however 

TBI systems benefit from superior cold-start characteristics through better atomisation of 

fuel and no troublesome choke mechanism. TBI was implemented only briefly in the 

United States during the 1980s before tougher emission laws necessitated a change to 

PFI. 
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Port Fuel Injection (PFI). 

For PFI or multiport injection, each cylinder has its own injector which supplies fuel 

directly into the intake port. As only air flows through the intake manifold, the manifold 

remains dry and there are no issues with fuel puddling on cold-start or fuel separation 

causing uneven fuel mixtures in the central and end cylinders. This allows greater 

uniformity in fuel delivery to each cylinder resulting in better fuel economy, reduced 

emissions, and higher performance.  

Direct Injection (DI) 

For direct injection, each cylinder has its own injector which supplies fuel directly into 

the combustion chamber. Direct injection rapidly becoming the preferred method of 

injection for vehicle manufacturers, delivering greater efficiency and control of 

combustion. 

 

3.3.6 Forced Induction (Supercharging) 

During the intake stroke of a four-stroke engine, the rapid descent of the piston causes a 

vacuum in the cylinder, inducting a charge of air from the inlet manifold. The fuel is 

either added to the combustion chamber via PFI, DI, or is already present having been 

mixed with the inducted air via carburation. The charge is compressed and ignited. The 

rapid expansion of gases due to combustion of the charge drives the piston back down the 

cylinder, and the force of this vertical displacement is harnessed through the rotation of 

the crankshaft (HSW, 2015c). 

The power harnessed is limited by a number of factors including the volume of fuel 

available for combustion. Increasing the fuel available is not sufficient to increase power 

output in itself, as the fuel requires a certain volume of air for efficient combustion (14 

parts air to 1 part fuel for typical combustion), meaning more air is required. Increasing 

the amount of inducted air can be achieved by means of forced induction such as 

supercharging. A supercharger increases the intake pressure by compressing air to above 

atmospheric pressure, without creating a vacuum, forcing more air into the engine, and 

thus more fuel can be added to the charge, resulting in power increase (HSW, 2015c). 

Supercharger function 
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A supercharger is any device that pressurises the intake air to above atmospheric pressure, 

providing ‘boost’. Both superchargers and turbochargers achieve this; the latter is in fact 

a shortened term for ‘turbo-supercharger’, its official name. The main difference between 

the two is the source of energy by which they are driven; turbochargers are driven by the 

mass-flow of exhaust gasses driving a turbine, while superchargers are powered 

mechanically by belt or chain-drive from the engine’s crankshaft.  

Unlike turbochargers that use the mass-flow of exhaust gases created by combustion to 

power the compressor, a supercharger draws its power from the crankshaft, via an 

accessory belt. Supercharger rotors come in various shapes and sizes, though their 

function of compressing air prior to induction is common to all (HSW, 2015c).  

To compress the air, the supercharger must spin rapidly – faster than that of the engine 

crank, resulting in a smaller compressor gear or pulley than is found on the crankshaft. 

Superchargers can spin at speeds as high as 50,000 to 65,000 rpm. A compressor spinning 

at 50,000 rpm corresponds to a boost of approximately 40-60 kPa over atmospheric 

pressure. At a typical atmospheric pressure of 101.3 kPa, this is a 40-60% increase in the 

amount of air inducted (HSW, 2015c).   

As the air is compressed, the air temperature increases and loses density. The air cannot 

expand as much upon combustion and lowers its potential power advantages as a result.  

The following concerns the work of Jegs Automotive from their online publication 

“Everything you want to know about superchargers”. Jegs Automotive are a performance 

auto parts stockist based in the United States, born out of a necessity for quality 

performance parts required by the Founders racing team in the 1950s. Jegs Automotive 

are a large retailer of performance parts including superchargers, turbochargers and fuel 

injection systems for V8 engines.  

Supercharger types 

Currently there are three basic types of superchargers sold in the performance market; 

namely roots type, centrifugal type and screw type superchargers.  

Centrifugal type 

A centrifugal supercharger is similar to a turbo-supercharger with the primary difference 

being that the former is driven by the crankshaft via a belt, and the turbo-supercharger 

receives drive from the force of the exhausting combustion gases. These superchargers 



17 

 

operate at extremely high speeds, achieved through an additional step up inside the casing. 

For a centrifugal design, the boost is proportional to the impeller speed, and as a result 

typically does not produce high levels of boost at lower engine speeds.  

Screw type  

The screw type supercharger is similar in appearance to a roots type supercharger, but the 

internals differ significantly. In a screw type supercharger, the rotors interleave one 

another, progressively compressing the air inside the casing as it is inducted. Screw type 

rotors are manufactured to extremely high tolerances, making them more expensive than 

a roots type. 

Roots type 

The roots type is the simplest and least expensive of the superchargers. Acting as an air 

pump, the roots type compresses the charge within the manifold and cylinders rather than 

in the supercharger casing. The centrifugal types are termed ‘internal compression’ 

superchargers to reflect compression of air inside the supercharger casing, while a roots 

type is termed an ‘external compression’ supercharger as air compression takes place 

outside the supercharger. The roots supercharger has been utilised in automotive 

applications since the 1930s, and development over this time has resulted in a highly 

refined product from a number of manufacturers. 

If a cylinder were completely filled with air in the induction stroke, the engine would be 

said to have a 100% volumetric efficiency. Due to airflow restrictions caused by induction 

design (aircleaner, cylinder head, cam timing, etc.) an engine is not able to induct a full 

charge of air. A supercharger increases the volumetric efficiency of an engine by 

mitigating these restrictions. The amount of air and fuel that can be inducted into a 

supercharged engine exceeds the 100% volumetric efficiency of a highly efficient 

naturally aspirated engine.  

Boost  

Boost is the air pressure created by the supercharger, and is a function of engine 

displacement, supercharger displacement, and supercharger impeller speed. Boost can be 

increased by increasing supercharger impeller speed relative to the engine speed 

(overdriving), and reduced by decreasing the relative impeller speed (underdriving). If 

the size of the supercharger remains the same, and the displacement of the engine is 

reduced, the boost increases. 
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3.4 Hydrogen  

3.4.1 Hydrogen as an Energy Carrier 

The attractiveness of using hydrogen as an energy carrier lies in the long term viability of 

some of the production techniques. Hydrogen can be sourced from fossil fuels; from 

renewable energy such as biomass, wind, solar, and nuclear power. Hydrogen is also clean 

burning; there virtually no harmful emissions; and potentially high efficiency at the point 

of its use. However, there are serious challenges to overcome when hydrogen is to be 

used as an energy carrier. Thus, the distribution, bulk storage and on-board vehicle 

storage are heavily compromised. However, the advantages offered by hydrogen are 

deemed significant enough to warrant further exploration (Verhelst & Wallner, 2009). 

3.4.2 Hydrogen Production 

Hydrogen can store and deliver usable energy, but it does not typically exist in its 

elemental form in nature and must be produced from compounds that contain it. Hydrogen 

can be produced from a variety of resources, including fossil fuels such as natural gas, 

coal (with carbon capture), nuclear energy; and other renewable energy sources such as 

biomass, wind, solar, geothermal and hydroelectric power, using a diverse range of 

processes (FCTO, 2015). This section focuses on the production of hydrogen from natural 

gas reforming, and via electrolysis.  

Natural Gas and Other Fossil Fuels 

Natural gas reforming is an advanced and widely used process by which hydrogen is 

derived from Methane. 95% of the hydrogen produced in the USA is obtained by natural 

gas reforming. The EERE view this as an important technology for the near-term 

production of hydrogen (FCTO, 2015). 

Most hydrogen produced in the United States is a product of steam-methane reforming, a 

process by which high-temperature steam (700oC-1000oC) is used to produce hydrogen 

from a methane source, namely natural gas. The methane reacts with steam under pressure 

in the presence of a catalyst to produce hydrogen, carbon monoxide, and small 

concentrations of carbon dioxide. The process is endothermic and thus requires the 

addition of heat (FCTO, 2015). Equation 3.2 depicts this reaction: 

𝐶𝐻4  +  𝐻2𝑂 →  𝐶𝑂 +  3𝐻2 Equation 3.2 
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A subsequent reaction, termed the water-gas shift reaction, reacts steam and carbon 

monoxide with a catalyst to produce more hydrogen and carbon dioxide. Equation 3.3 

depicts this endothermic reaction: 

𝐶𝑂 +  𝐻2𝑂 →  𝐶𝑂2  +  𝐻2 Equation 3.3 

In a final step termed ‘pressure-swing adsorption’, carbon dioxide and other impurities 

are removed from the gas stream, leaving high purity hydrogen. Steam reforming can use 

other fuels such as ethanol, propane and petroleum to produce hydrogen (FCTO, 2015).  

Re-forming is a low-cost method of producing commercial volumes of hydrogen to 

facilitate the growth in hydrogen powered vehicles in the near term. It is expected that 

hydrogen production from natural gas will be supplemented by production from 

renewable resources and other low-carbon energy resources (FCTO, 2015).  

Electrolysis  

Electrolysis is a promising option for the renewable and clean production of hydrogen. 

Electrolysis is the process of splitting water molecules into their elemental components 

using electricity, Figure 3.4. The reaction takes place in an electrolyser, which like fuel 

cells, consists of an anode and a cathode, separated by an electrolyte. Electrolysers can 

vary greatly in size from small appliance-sized suited for small scale distribution, to large-

scale central production facilities (FCTO, 2015). 

Figure 3.4: Electrolytic Cell, FCTO, 2015 
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In a polymer electrolyte membrane (PEM) electrolyser, the electrolyte is a solid specialty 

plastic material. Water reacts at the anode to form oxygen and hydrogen cat-ions. 

Equation 3.4 depicts the anode reaction:  

𝐻20 → 𝑂2 + 4𝐻+ + 4𝑒− Equation 3.4 

The disassociated electrons flow through an external circuit and the hydrogen ions 

selectively move across the PEM to the cathode. At the cathode, the hydrogen ions 

combine with electrons from the external circuit to form hydrogen gas. Equation 3.5 

depicts the cathode reaction: 

4𝐻+ + 4𝑒− → 2𝐻2 Equation 3.5 

(FCTO, 2015) 

Hydrogen produced via electrolysis has potential opportunities for synergy with viable 

power generation from renewable energy sources. This would greatly reduce the well-to-

wheel ecological footprint of hydrogen-powered vehicles.  

3.4.3 Hydrogen Storage 

On-board storage of hydrogen for transportation applications remains as one of the most 

technically challenging barriers to the widespread commercialisation of hydrogen-fuelled 

vehicles (FCTO, 2015). The EERE hydrogen storage activity primarily focuses on the 

applied research and development of low-pressure, materials-based technologies that 

facilitate a driving range of more than 500km while meeting safety, cost, packaging and 

performance requirements to be competitive in the current car market. While some 

automotive firms have prototypes that have achieved this, the driving range must be 

achievable across different models without compromising on the above criteria. 

Hydrogen storage is required for other vehicle applications, for stationary plant and 

equipment, hydrogen delivery, and hydrogen refuelling infrastructure (FCTO, 2015). 

Storing enough hydrogen on-board a vehicle to achieve a driving range of more than 

500km represents a significant challenge. Hydrogen has nearly three times the energy 

content of petrol on a weight basis (120MJ/litre for hydrogen, 44MJ/kg for petrol). 

However, on a volumetric basis the trend reverses (8MJ/litre for liquid hydrogen, 

32MJ/litre for petrol). For hydrogen vehicles to be competitive against hydrocarbon-

fuelled vehicles, a comparable driving range must be achieved (FCTO, 2015).  
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Hydrogen can be stored physically as either liquid or gas. Gas storage requires high-

pressure tanks (5,000-10,000 psi), and liquid storage requires cryogenic temperatures 

because the boiling point temperature at one atmosphere is -252.8oC (FCTO, 2015).  

Hydrogen can also be stored by adsorption on the surface of a solid or by absorption 

within a solid. In absorption, hydrogen is disassociated into hydrogen atoms which are 

then incorporated into the solid lattice framework – this method may allow for storage of 

larger quantities of hydrogen in smaller volumes, at a lower pressure and at temperatures 

close to room temperature. It is also possible to achieve volumetric storage densities 

comparable or superior to that of liquid hydrogen as the hydrogen molecule disassociates 

into atomic hydrogen within the metal hydride lattice (FCTO, 2015).  

Compressed Hydrogen  

The energy density of hydrogen gas can be increased by storing hydrogen at higher 

pressures. These higher pressures necessitate material and design improvements in order 

to ensure tank safety and integrity. To reduce the cost of producing high pressure 

hydrogen requires advances in compression technologies (FCTO, 2015).  

Carbon fibre reinforced 5,000psi and 10,000psi compressed hydrogen tanks are under 

development by Quantum Technologies and other manufacturers, and are already used in 

several prototype hydrogen powered vehicles. The tank lining is a high-molecular-weight 

polymer, which serves as a hydrogen gas permeation barrier. The gas pressure load-

bearing component of the tank encapsulates the permeation barrier. An outer shell is 

placed on the tank for impact and damage resistance (FCTO, 2015).  

The driving range of a hydrogen powered vehicle with compressed hydrogen tanks is 

dependent on vehicle type, application, the amount of hydrogen stored, and at what 

pressure. The driving range can be increased at the expense of cost and cargo space within 

the vehicle. Volumetric capacity, high pressure and cost then are the key challenges for 

compressed hydrogen tanks. Refuelling times, compression energy penalties and the 

management of heat during compression also need to be considered as the mass and 

pressure of on-board hydrogen increases (FCTO, 2015).  

Issues with compressed gas tanks centre on high pressure, weight, volume, conformability 

and cost. The cost of high-pressure compressed tanks is essentially governed by the cost 

of carbon fibre that is required for light-weight structural reinforcement. Investigations 

are under way to identify lower cost carbon fibre that can meet the safety specifications 
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and high pressure requirements for hydrogen gas tanks. The lower cost carbon fibre must 

still be capable of meeting tank thickness constraints to meet volumetric capacity 

requirements. Therefore, lowering cost without compromising weight and volume is a 

key challenge for compressed hydrogen tanks (FCTO, 2015).  

Two approaches currently under investigation in the pursuit of increased gravimetric and 

volumetric storage capacities of compressed hydrogen are cryo-compressed tanks, and 

the other conformable tanks. Cryo-compressed tanks exploit the increased volumetric 

tank capacity as the tank temperature decreases, at a fixed volume and pressure. Thus, in 

cooling a tank from room temperature to 77K (the temperature of liquid nitrogen), its 

volumetric capacity increases by a factor of four, however, system volumetric capacity is 

less than this due to the increased volume required for the cooling system (FCTO, 2015). 

Present liquid petrol tanks in vehicles are highly conformable, in order to take maximum 

advantage of available space. Conformable hydrogen tank structures are based on the 

location of structural supports. For greater degrees of conformability, internal cellular-

type load bearing structures may also be a possibility (FCTO, 2015). 

Liquid Hydrogen 

The energy density of hydrogen can be increased by storing hydrogen in a liquid state. 

However, liquid hydrogen tanks have issues including hydrogen boil-off, the energy 

required for hydrogen liquefaction, volume, weight, and tank cost. The energy 

requirements for hydrogen liquefaction is typically 30% of the heating value of hydrogen. 

Figure 3.5: Liquid Hydrogen Storage Tank (FCTO, 2015) 
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New approaches are needed to lower these energy requirements and thus the cost of 

liquefaction. Hydrogen boil-off must be mitigated or eliminated entirely for cost, 

efficiency and vehicle range, as well as for safety considerations when vehicles are parked 

in confined spaces. Insulation requirements lower the gravimetric and volumetric 

capacity of liquid hydrogen tanks. Figure 3.5 depicts a sectional view of a LH2 tank 

system (FCTO, 2015).  

Liquid hydrogen tanks can store greater amounts of hydrogen in a given volume than 

compressed gas tanks. The volumetric capacities of liquid hydrogen and compressed 

hydrogen at 10,000 psi is 0.070 kg/L and 0.030 kg/L, respectively (FCTO, 2015).  

Solid storage:  

At present, there are three generic mechanisms known for storing hydrogen in materials, 

namely absorption, adsorption, and chemical reaction. In absorptive hydrogen storage, 

hydrogen is absorbed directly into the bulk of the material. In simple crystalline metal 

hydrides, this absorption occurs by incorporating atomic hydrogen into interstitial sites in 

the crystallographic lattice structure (FCTO, 2015).  

Adsorption is divided into physisorpiton and chemisorption based energetics of the 

mechanism. Physisorbed hydrogen is comparatively weakly and energetically bond to the 

material than to chemisorbed hydrogen. Sorptive processes usually require highly porous 

materials to maximise the surface area available for hydrogen sorption to occur, allowing 

for easy uptake and release of hydrogen from the material (FCTO, 2015).  

The chemical reaction method for hydrogen storage requires displacive chemical 

reactions for hydrogen generation and storage. For on-board reversible reactions, 

hydrogen generation and storage take place by the simple reversal of the chemical 

reaction as a product of modest changes in temperature and pressure. The hydrogen 

generation reaction is not reversible under modest temperature/pressure changes in many 

cases. Thus, getting hydrogen back into the starting material must be done off-board, even 

though hydrogen can be generated on-board the vehicle (FCTO, 2015).  

Metal Hydrides 

Metal hydrides provide potential for reversible on-board hydrogen storage and release at 

low temperatures and pressures. Hydrogen can form metal hydrides with some metals and 

alloys. Elements with unfilled valence shells or subshells are suitable hydriding 

substances. During the formation of a metal hydride, hydrogen molecules are split and 
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hydrogen atoms form chemical compounds by sharing their electrons with the unfilled 

valence shells of the metal atom and the K shells of the hydrogen atoms (Barbir, undated).  

The formation of a hydride is an exothermic process, meaning heat is generated. This 

means that in order to release the hydrogen from a metal hydride, heat must be supplied. 

These processes are depicted in the reversible chemical reaction shown in Equation 3.6 

below (Barbir, undated).  

Charging/ discharging absorption of hydrogen: 

𝑀 +  x𝐻2 ⇌ MH2x + ℎ𝑒𝑎𝑡 Equation 3.6 

Where M represents the hydriding substance: a metal, element or alloy. The rate of these 

reactions increase with an increase in surface area. Thus, usually, the hydriding 

substances are in powdered form to increase reaction speed (Barbir, undated). 

In this way effective storage is created that is comparable to the density of liquid 

hydrogen. However, if the mass of the metal is considered, then the metal hydride 

gravimetric storage density is comparable to the storage of pressurised hydrogen. The 

best gravimetric storage density achievable is approximately 0.07kg of hydrogen gas per 

kilogram of Magnesium alloy (Barbir, undated). 

A primary advantage of solid storage of hydrogen in a hydriding substance is safety. If a 

hydride tank were to sustain serious damage, such as in a vehicle collision, the tank would 

not pose a fire hazard as the hydrogen would remain in the metal structure, effectively 

inert (Barbir, undated). 

Chemical Hydrogen Storage 

Storage technologies in which hydrogen is generated through a chemical reaction are 

termed ‘chemical hydrogen storage’ methods. Common reactions involve reacting 

chemical hydrides with water or alcohols. However, these reactions are not easily 

reversed on board a vehicle, and thus the spent fuel and/or by-products must be removed 

from the vehicle and regenerated off the vehicle (FCTO, 2015). 

Hydrolysis reactions 

Hydrolysis reactions are characterised by the oxidation reaction of chemical hydrides 

with water to produce hydrogen.  The most studied example to date is the reaction of 

sodium Borohydride, its reaction is depicted in Equation 3.7. 
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𝑁𝑎𝐵𝐻4 + 2𝐻2𝑂 → 𝑁𝑎𝐵𝑂2 + 4𝐻2 Equation 3.7 

In this form, the mixture of inert stabilizing liquid protects the hydride from contact with 

moisture, and allows the hydride to be pumped. At the point of use, water is added and 

mixed, producing high-purity hydrogen (FCTO, 2015). 

The reaction is controllable in an aqueous solution via pH and a catalyst. Despite the high 

material hydrogen capacity and fast release kinetics, the borohydride regeneration 

requires off-board access. The cost, energy requirements, and life impacts of regeneration 

are key areas of current investigation (FCTO, 2015). 

3.5 Hydrogen Internal Combustion engine vehicles 

Hydrogen ICEs for transport applications are currently under development and are 

intended to provide an equivalent driving experience in terms of drivability, range, and 

safety as conventional fuels. Current HICEVs have a reduced driving range and luggage 

capacity compared to conventionally fuelled vehicles, primarily due to challenges with 

on-board hydrogen storage. However, due to the availability of hydrogen, its potential to 

be a zero emission fuel, the extensive knowledge surrounding engine design, 

manufacture, durability and maintenance, as well as the capacity of combustion engines 

to run on both hydrogen and conventional fuels, they are considered a bridging 

technology towards a widespread hydrogen economy. Numerous hydrogen engine-

powered vehicles have been designed ranging from motorcycles, passenger cars, pickup 

trucks to buses and off-road equipment (Verhelst & Wallner, 2009).  

3.5.1 History 

Verhelst & Wallner comment that the idea of running an internal combustion engine on 

hydrogen fuel is almost as old as the concept of the ICE itself. In 1807, Swiss scientist 

Francois Issac de Rivas invented a combustion engine that used a mixture of hydrogen 

and air for fuel, and designed a car for the engine, creating the first internal combustion 

engine vehicle, though he was ultimately unsuccessful. The first successful internal 

combustion hydrogen vehicle was patented in 1860 by Jean Joseph Etienne Lenoir, a two-

stroke gas-driven engine with a horizontal arrangement, supplied with hydrogen via 

electrolysis. In 1933 Norsk Hydro operated a HICEV supplied with hydrogen from on-

board reformation of ammonia. In the same year, Erren Engineering Company proposed 

the first hydrogen DI by injecting pressurised hydrogen into air or oxygen inside the 

combustion chamber, rather than via carburetion which commonly resulted in backfire. 



26 

 

The patented system required special fuel injection, and control mechanisms, however 

left other engine characteristics intact. Using hydrogen as a booster, the design eliminated 

backfire and achieved significantly more complete combustion of hydrocarbons, higher 

output and lower SFC. In 1974 the Musashi Institute of Technology introduced the first 

Japanese HICE; the Musashi 1, using a 4 stroke engine and high pressure on-board 

storage. The Musashi 1 was superseded in 1975 by the Musashi 2, sporting fuel injection 

and liquid storage. The Musashi 3 was released in 1977 and was powered by a SI 2-stroke 

engine with DI. A joint venture between BMW and the German aerospace centre saw the 

release of their first hydrogen vehicle in 1979 (Verhelst & Wallner, 2009).  

3.5.2 Hydrogen Vehicle Characterisation 

Verhelst & Wallner advise that HICEVs can be characterised as either conversion or 

dedicated vehicles, with conversion vehicles adapted for hydrogen combustion either by 

the manufacturer or an aftermarket supplier, and dedicated hydrogen vehicles are 

designed and manufactured for hydrogen operation by OEM. Both dedicated hydrogen 

fuel and dual fuel engines that accommodate hydrogen or another hydrocarbon fuel have 

been produced. Classified by on-board storage method, H2 vehicles can be categorised 

as compressed hydrogen and cryogenic liquid hydrogen vehicles. The following sections 

provide a brief overview of selected hydrogen vehicles. Hydrogen combustion 

enhancement vehicles are not considered (Verhelst & Wallner, 2009).   

3.5.3 Conversion Vehicles 

Electric Transportation Engineering Corporation produced a conversion truck based on 

the Chevrolet/CMC Silverado/Sierra 1500HD. The ETEC HICE Truck uses compressed 

hydrogen to fuel its 6.0L V8 engine with hydrogen port-fuel injection. The engine has 

induction forced via a belt driven supercharger with intercooler to increase the power 

output of the engine. Hydrogen is stored in three 150L, Type 3 aluminium lined, carbon-

fibre reinforced tanks at up to 350 bar, supplying up to 10.5kg of usable hydrogen. The 

truck has an estimated curb weight of 3,000 kg. A performance and emissions 

characteristics analysis of this vehicle for operations between 0.35 < Φ < 0.5 showed fuel 

consumption numbers between 4.1 and 4.5kg of hydrogen per 100km, an energy 

equivalent of 15.5-17L per hundred of petroleum at emission levels in the ULEV and 

SULEV ranges. About 20 ETEC HICE Truck Conversion vehicles have been built so far 

(Verhelst & Wallner, 2009).    
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3.5.4 Bi-fuel vehicles 

BMW have introduced six generations of hydrogen ICEVs since 1979, the latest version 

is the BMW Hydrogen 7, a bi-fuel luxury sedan powered by a 6.0 L V12 engine. BMW 

claim that the H7 has successfully completed the process of series development, meaning 

that all components have undergone the same design, manufacturing and quality control 

process as other BMW production vehicles. The H7 is built in parallel to the BMW 5, 6 

& 7 series vehicles in BMW’s Dingolfing Plant, with the power plant coming from the 

production plant in Munich, like all BMW twelve cylinder engines. The engine has two 

separate fuel systems, allowing the vehicle to run on hydrogen as well as petroleum. The 

hydrogen utilises PFI, supplied by a cryogenic hydrogen tank in the storage compartment 

of the vehicle, and holds approximately 8kg of liquid hydrogen, providing a driving range 

of 200 km under hydrogen operation, and an additional 480 km on petroleum. About 100 

units have been produced. Mazda have developed several generations of hydrogen 

powered rotary vehicles since 1991, culminating in the Mazda RX-8 Hydrogen RE in 

2003 (Verhelst & Wallner, 2009).    

Mazda have successfully converted their RENSIS Wankle rotary engine to run on both 

hydrogen and petrol, claiming that the few modifications to the existing RE platform have 

allowed them to develop the RENSIS hydrogen rotary at low cost. The RENSIS engine 

employs the direct injection of hydrogen via an electronically controlled gas injector. The 

system draws air in from a side port and injects hydrogen directly into the intake chamber 

via the injector installed on the top of the housing. Figure 3.6 depicts Mazda’s Hydrogen 

RE engine concept (Mazda, 2015). 

  

Figure 3.6: Mazda RX-8 Hydrogen RE engine operation, Mazda, 2003. 
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Mazda claim the unique structure of the RE greatly reduces the occurrence of abnormal 

combustion (backfiring) due to the absence of intake/exhaust valves, and the separation 

of low and high temperature intake and combustion chambers respectively. Further, 

Mazda suggest that the comparatively long duration of the intake process compared with 

that of traditional reciprocating engines encourages thorough mixing of hydrogen and air 

prior to combustion (Mazda, 2015). 

The utilisation of direct injection aims to achieve high output under hydrogen combustion 

conditions. The direct injection system is applied by installing an electronically-

controlled hydrogen gas injector at the top of the rotor housing. Mazda claim the RE is 

well suited to direct injection due to considerable structural freedom of injector layout. 

Another gas injector is installed on the intake pipe for premixing and direct injection, 

depending on driving conditions, allowing for better optimisation of hydrogen 

combustion. When operating on petrol, the fuel is supplied from the same petrol injector 

found in the standard petrol engine (Mazda, 2015). 

Mazda employ lean burn at low engine speeds and EGR and three-way catalyst at high 

engine speeds to reduce NOx emissions. Mazda claim that optimal and appropriate use 

of lean burn and EGR satisfies both high output and low emissions criteria. The 

technology has been packaged in both the Mazda RX-8 Hydrogen RE and the Mazda 

Premacy Hydrogen RE Hybrid. Figure 3.7Figure 3.7 displays Mazda’s two hydrogen 

platforms.  

Since the latter uses the combustion of hydrogen to power electric motors, we are only 

concerned with the RX-8 Hydrogen RE. However, it is worth noting that the Premacy 

produces approximately 40% more power than the RX-8 Hydrogen RE, resulting in 

higher acceleration, and improved fuel economy. Mazda attribute the performance gains 

Figure 3.7:  RX-8 Hydrogen RE and Premacy Hydrogen RE hybrid, Mazda, 2003. 
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to switching the rotary engine from a longitudinal to a transverse layout in the Premacy, 

reducing intake and exhaust resistance, improving combustion. The Premacy has a 

Driving range of 200 km on hydrogen fuel (Mazda, 2015).  

Figure 3.8 depicts the RX-8 Hydrogen RE vehicle layout.  

The seating capacity of the RX-8 remains unchanged from the petrol model. However, 

with two hydrogen tanks installed in the cargo area, practicality is significantly hindered. 

The tanks contain pressurised hydrogen at 35MPa, the current national standard for 

hydrogen fuelling stations (Mazda, 2015). While the RX-8 delivers similar power and 

torque outputs to base model while running on petrol, outputs shrink from 154kW and 

222Nm to just 80kW and 140Nm on hydrogen. Combined with its driving range of just 

100km on hydrogen, the performance is limiting to say the least (GoAuto, 2009). 

In Japan, the vehicle is offered only for lease to domestic governments and enterprises 

since 2006, and participation in the Norwegian hydrogen highway project, HyNor. S. 

Barkker et al suggested that the main reason for Mazda’s commitment to internal 

combustion hydrogen engines, next to the lower cost of ICEs compared to FCVs, is its 

proprietary rotary engine. The engine design allows for greater control of the hydrogen 

combustion than in conventional reciprocating engines. To compensate for lower fuel 

efficiency, Mazda have chosen bivalent engines.  Mazda’s prototypes have never reached 

driving ranges in excess of 230km without refuelling (Bakker, van Lente, & Meeus, 

2012). 

3.5.5 Dedicated Hydrogen Vehicles 

The BMW H7 Mono-Fuel demonstration vehicle, based on the H7 bi-fuel, was built to 

showcase potential emissions reduction from a dedicated hydrogen vehicle. The removal 

of petrol delivery lines, injectors and rail, associated EGR, and two high pressure fuel 

pumps (causing significant parasitic drag) form the most significant changes. 

Figure 3.8: RX-8 Hydrogen RE Hydrogen storage diagram, Mazda, 2003. 
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Performance and emission characteristics analysis found NOx and CO levels to be at just 

a fraction of the SULEV standard. For non-methane hydrocarbon emissions, the results 

showed emissions averaged 0g/km, which required the car to actively reduce emissions 

compared to ambient concentrations. The fuel consumption results showed 3.7 kg/100km 

(13.8 L/100km petroleum equivalent) for the FTP-75 test cycle, and 2.1 kg/100km (7.8 

L/100km petroleum equivalent) for the highway cycle (Verhelst & Wallner, 2009). 

3.5.6 Overview of Hydrogen Vehicles 

Figure 3.9 below is a summary from Verhelst & Wallner of the above described hydrogen 

vehicles.  

(Verhelst & Wallner, 2009) 

3.6 Measures for Hydrogen Engine Design or Conversion 

The following discusses measures identified by Verhelst & Wallner for engine design or 

conversion to accommodate hydrogen combustion. The abnormal combustion problems 

previously identified, or rather how to mitigate or prevent their occurrence, has led to 

most of the countermeasures put forward in early work on HICEs.  

3.6.1 Spark Plugs 

Cold-rated plugs are recommended to avoid the temperature of the spark plug electrode 

exceeding the auto-ignition temperature limit of hydrogen, resulting in backfire. Non 

platinum tipped electrode spark plugs are to be used, as platinum is a catalyst for hydrogen 

oxidation (Verhelst & Wallner, 2009).  

3.6.2 Injection system 

It is clear from the previous section that timed injection is a prerequisite. One option is 

the utilisation of PFI and program timing such that an air cooling period is created in the 

initial phase of the inlet stroke, and all hydrogen is inducted leaving none remaining in 

Figure 3.9: Overview of hydrogen ICE vehicles, Verhelst & Wallner, 2009 
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the manifold once the intake valve is shut. This may not be required as work has been 

published reporting no correlation between injection timing and backfire. The other 

option is DI during charge compression. For DI high flow rate injectors with 

instantaneous flows of around 4-6 g/s at 100 bar supply are required. For PFI 

arrangements, the need for high flow requirements can be replaced with multiple 

injectors. Further, timed injection lessens the volume of unburnt fuel in the intake 

manifold at any point, mitigating the severity of any potential backfire (Verhelst & 

Wallner, 2009). 

3.6.3 Ignition system 

To avoid residual ignition energy causing uncontrolled ignition, the system should be 

adequately grounded or the resistances of the ignition cable changed. Induction ignition 

in adjacent ignition cables should be avoided, i.e. by adopting a coil on plug system. 

Counterintuitively, a high voltage output ignition system should be used, as the ignition 

of hydrogen mixtures requires an increased secondary ignition voltage (likely a result of 

lower ion concentration of a hydrogen flame compared to that of a hydrocarbon). Multi-

coil or coil on plug systems also satisfy this condition. Alternatively, the spark plug gap 

can be reduced to lower the ignition voltage – not an issue for hydrogen engines as there 

is almost no deposit formation, however not suitable for dual fuel applications (Verhelst 

& Wallner, 2009). 

3.6.4 Hot spots 

Hotspots within the combustion chamber have potential to cause surface ignition or 

backfire, and should be mitigated or eliminated where practicable. Mitigation methods 

include cooled exhaust valves; multivalve engine heads to further lower exhaust valve 

temperature; adequate oil control; additional coolant passages around areas of high 

thermal loads; the previously mentioned delayed injection to create a cooling period at 

the beginning of the intake stroke; proper scavenging (i.e. variable valve timing) to 

decrease residual gas temperature (Verhelst & Wallner, 2009). 

3.6.5 Piston rings and crevice volumes 

Verhelst & Wallner cite experiments in which careful cleaning of the engine, enhanced 

oil control or even non-lubricated operation, scavenging of residual gases, cold rated 

spark plugs and/or cooled exhaust valves have been utilised to eliminate hot spots, and 

backfire has still occurred. Verhelst & Wallner suggest that the small quenching distance 
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of hydrogen and its wide flammability limits allowing combustion in the piston top land, 

(the crevice volume above the top piston ring), is being overlooked by investigators. 

Hydrogen engines have demonstrated operating on stoichiometric mixtures without 

backfire, by careful selection of piston rings and crevice volumes, without any 

requirement for timed injection or cooled exhaust valves. Thus propagating hydrogen 

flames into top land can be prevented by reducing piston top land clearance. Verhelst & 

Wallner cite Swain et al’s use of 0.152mm to quench hydrogen flame. Other researchers 

have changed crevice volumes and/or piston rings aiming to reduce the reflow of 

unburned mixture from the second land (crevice volume between first and second piston 

rings) to the top land, preventing the fuelling of a top land flame during intake or exhaust. 

The smaller quenching distance of a hydrogen flame corresponds to an increased thermal 

load for the piston top. Verhelst & Wallner cite Berger et al in suggesting a special coating 

to the top piston ring groove may be applied to account for this (Verhelst & Wallner, 

2009). 

3.6.6 Valve seat and injectors 

A suitable valve seat material is required to be selected to account for the lack of upper 

cylinder lubrication from the combustion of hydrogen compared to petroleum, and the 

injectors designed accordingly. This is the case for any dry gaseous fuel, however it can 

be more critical for hydrogen as some gases (i.e. CNG) contain trace amounts of oil from 

the oil mist in the compressor used to compress the fuel. Hydrogen compressors are 

normally built to higher tolerances to reduce the leakage rate (Verhelst & Wallner, 2009). 

3.6.7 Lubrication  

A high water concentration compatible engine lubrication oil must be chosen, namely a 

demulsifying oil or a synthetic oil which forms a solution with water. An ashless oil is 

recommended to avoid formation of deposits. Verhelst & Wallner cite a high percentage 

of hydrogen (+5 vol%) was measured in the composition of hydrogen in the crankcase, 

resulting from blowby. Blowby rates for hydrogen combustion can be expected to be 

relatively high due to rapid pressure rise caused by the high burn rate of hydrogen as a 

result of its high flame speed properties. An investigation into the composition of the 

lubricating oil compared to that of unused oil found that the properties had significantly 

changed, notably a strong decrease of lubricating qualities. The best solution, though 

currently unavailable, is the use of an engine oil specifically developed for hydrogen 
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combustion. For safety, it is recommended that a forced crankcase ventilation system be 

mounted to the engine to ensure hydrogen concentration is below the lower flammability 

limit (Verhelst & Wallner, 2009). 

3.6.8 Crankcase ventilation 

Positive crankcase ventilation is recommended for non-throttled operation (high manifold 

pressures), to decrease hydrogen concentrations from blowby in the crankcase. As WOT 

operation is adopted where possible to increase efficiency, high manifold pressures result. 

Thus the pressure difference between the crankcase and the manifold is insufficient and 

cannot be used as a driving force for crankcase ventilation as is used in throttled engines. 

This can be resolved by the placement of a venturi in the intake (Verhelst & Wallner, 

2009). 

3.6.9 Compression ratio 

The ideal compression ratio should be as high as possible to increase efficiency, limited 

by increased heat loss or the onset of abnormal combustion (surface ignition for hydrogen 

combustion). The selection of compression ratio is dependent on the application, as 

optimum compression ratio for highest efficiency may be different from optimum ratio 

for maximum power output. HICE compression ratios range from 7.5:1 to 14.5:1.  

3.6.10 In-cylinder turbulence 

Low turbulence combustion chambers such as pancake/disk chamber and axially aligned 

intake port can be used due to hydrogen’s high flame speed. This increases efficiency due 

to increasing volumetric efficiency and decreasing heat loss. Verhelst & Wallner suggest 

they may be necessary to avoid excessive rates of pressure rise at stoichiometric 

operation, where high in-cylinder turbulence has potential to cause very fast flames, 

leading to knocking combustion (Verhelst & Wallner, 2009). 

3.6.11 Electronic throttle 

Hydrogen engines should be run under WOT conditions where practical, though throttling 

may be required at low load to maintain stable combustion and reduce unburned hydrogen 

emissions. At medium-high loads, throttling may be required to limit NOx emissions. 

This can only be achieved where electrically controlled throttle position replaces 

mechanically controlled throttle via accelerator (Verhelst & Wallner, 2009). 

3.7 Hydrogen Safety 
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The unique physio-chemical properties of hydrogen necessitates an adapted approach in 

developing a safety concept for both static test engines and in vehicular applications. The 

low density and gaseous state of hydrogen at atmospheric conditions, in addition to the 

wide flammability limits and invisibility of the gas and its flames require measures to 

guarantee a level of safety equivalent to operation of conventional hydrocarbon fuelled 

vehicles. When suitable safeguards are implemented to account for these unique 

properties by facility designers, engineers and operators, hydrogen operation can be as 

safe as, if not safer than, conventional fuels (Verhelst & Wallner, 2009). 

3.7.1 Test Apparatus Design 

For hydrogen combustion to occur, Verhelst & Wallner advise that both an ignitable 

hydrogen-air mixture and source of ignition must be present. Verhelst & Wallner suggest 

it is practically impossible to eliminate all sources of ignition when a hydrogen ICE is 

operated in an enclosed space. However, the number of sources, especially sources close 

to areas typically associated with hydrogen accumulation, should be minimised. It is best 

practice to de-energize electrical equipment in proximity to the testing area. As these 

sources of ignition cannot be fully eliminated, ventilation should also be employed 

(Verhelst & Wallner, 2009). 

3.7.2 Ventilation 

Testing facilities for hydrogen ICEs are generally designed to be much larger than those 

for conventional fuel ICEs. For hydrogen testing, enclosed test cells and an open test cell 

in a high bay are the two scenarios considered for ventilation purposes. Verhelst & 

Wallner suggest that as a rule of thumb, 1-2 full air exchanges per minute has been 

established for ventilation of closed cell testing. In order to effectively remove heat and 

hydrogen leakage from the test engine, cross ventilation is widely used for enclosed tests. 

Fume hoods are used extensively in both enclosed and high bay testing. Crankcase 

ventilation in hydrogen ICEs requires additional consideration since concentrations of 

hydrogen have been shown to be in excess of 5 Vol%. Possible solutions for both static 

testing and vehicular applications suggest venting the crankcase to the atmosphere, 

routing ventilation to testing extractors/flumes, as well as variations of combining forced 

crankcase ventilation with an oil separator with or without a catalyst for the formation of 

water from available hydrogen, after which normal EGR route gases to the inlet manifold 

(Verhelst & Wallner, 2009). 
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3.7.3 Hydrogen sensors 

Several off-the-shelf items are available commercially for hydrogen detection including 

electrochemical, catalytic, thermal conductivity, semiconductor-based and 

microelectromechanical sensors. Verhelst & Wallner recommend placement of sensors at 

locations where hydrogen leakage or spills are possible, hydrogen connections, where 

hydrogen has the potential to cause accumulation as well as in intake and exhaust ports. 

When designing a detection system for hydrogen one should consider detector response 

time, detection range, durability/longevity, maintenance and calibration required. A 

concentration of 1 Vol% is a commonly used and accepted alarm activation threshold for 

hydrogen in air, which is equivalent to 25% of the lower flammability limit. In addition 

to permanent/static hydrogen sensors, most testing facilities employ portable sensors for 

personal protection and leak investigation (Verhelst & Wallner, 2009).  

3.7.4 Flame detectors 

A hydrogen-air flame is invisible to the human eye, and any visibility is caused by the 

presence of impurities, though at reduced pressures a pale blue or purple flame may be 

present. Hydrogen detection systems varying in sophistication have been used to protect 

operating personnel from the severe burns that would occur if exposed to hydrogen flame. 

Verhelst & Wallner classify hydrogen flame detectors into the following groups: 

- Thermal fire detectors: detectors classified as rate-of-temperature rise and 

overheat detectors are a reliable option and have been available for many years. 

Thermal detectors must be located at or close proximity to a flame (Verhelst & 

Wallner, 2009). 

- Optical sensors: are used to detect hydrogen flame in Ultraviolet (UV) and 

Infrared (IR) spectral regions. UV systems are extremely sensitive though, are 

prone to false indications, and can be blind in foggy conditions.  IR systems are 

not overly sensitive to hydrogen fires, being designed for hydrocarbon fires 

(Verhelst & Wallner, 2009). 

- Imaging systems: detect flames primarily in the thermal IR region, and cannot 

provide continuous monitoring with alarms. User input or advanced programming 

is required to determine if the image displayed is a hydrogen flame. UV imaging 

systems are very expensive, requiring special optics. Systems that use lowlight 

silicon charge coupled device (CCD) video technology with filters focused on the 
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940-nm and 1100-nm emissions peak are a low cost option, and have been used 

at various facilities (Verhelst & Wallner, 2009). 

- Brooms: such as dry corn straw or sage grass brooms have been used to detect 

small hydrogen fires as the material easily ignites as it passes through a flame. A 

dry fire extinguisher or dust thrown into the air also causes a hydrogen flame to 

emit visible radiation.  

3.7.5 Supply system 

In both static testing and vehicular scenarios, hydrogen is stored in cryogenic liquid form 

or as a compressed gas. Typical storage pressure ranges from 138 bar to 414 bar for 

compressed hydrogen scenarios. Liquid hydrogen is stored at a temperature of -253°C 

generally in heavily insulated passive storage systems, meaning no further active cooling 

is provided to the vessel. Despite high levels of insulation, heating causes liquid hydrogen 

to evaporate, resulting in increased pressure build up and eventually a blowoff of 

hydrogen. For purging and safe leak check operations, high-pressure helium is generally 

used, connected in tandem to the hydrogen supply line.  

For most scenarios, hydrogen or helium passes through manual shut off valves and valve 

checks then is supplied to a pressure regulator. Once the hydrogen is regulated to the 

desired delivery pressure, the hydrogen is fed to the testing apparatus via several manual 

and solenoid-operated safety valves. A fast-acting, remotely operated, normally closed 

three-way valve is used in close proximity to the test engine. If the engine does not 

rotate/start, a hydrogen leak is detected and the fast-acting three-way valve automatically 

closes. For long-term shutdowns or for when maintenance is required, the hydrogen 

supply lines are usually purged to the atmosphere and purged with compressed helium 

(Verhelst & Wallner, 2009). 

Accurate metering of the volume of fuel consumed is crucial for performance analysis of 

any ICE testing and provides the basis for calculation of research development-relevant 

characteristics such as engine efficiency. Automated or manual monitoring of fuel 

consumption can also be used to detect leaks, significantly increasing the safety of 

hydrogen testing (Verhelst & Wallner, 2009). 

3.7.6 Vehicular applications 

There exists even less control over ignition sources in vehicular applications than in test 

cell design. Strategies combining hydrogen leak detection and development of diluted 
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concentration hydrogen with lower ignition limits have been implemented to provide a 

level of safety for hydrogen vehicles comparable to conventionally fuelled vehicles. 

During operation, critically placed hydrogen sensors monitor hydrogen concentration 

throughout the vehicle and actions are taken based on the severity of the leak. Mitigation 

methods include driver warnings, active forced ventilation, and executive measures such 

as disabling the starter relay or hydrogen supply(Verhelst & Wallner, 2009). Verhelst & 

Wallner suggests hydrogen sensors are critical in the engine compartment, hydrogen 

storage area, and passenger compartment to ensure the highest level of safety and the 

early detection of any leaks. Due to the complexity of a car’s ventilation system, CFD 

simulations with elaborate hydrogen release detection tests have been performed to 

determine the most efficient location for hydrogen sensors. In the event of malfunction 

or accident/collision, both cryogenic and compressed hydrogen storage systems have the 

potential to allow the build-up of pressure. Extensive safety testing including crash tests 

and exposure to fire tests have been performed to establish the risks in collision scenarios. 

Verhelst & Wallner suggest that if properly designed, a hydrogen storage system releases 

pressure with vents critically positioned in the vehicle. The implementation of hydrogen 

vehicles will also require adequate training for operators as well as potential rescue 

personnel (Verhelst & Wallner, 2009). 

3.8 Prior Art 

The concept of using existing internal combustion technology as a platform for hydrogen 

combustion is not a new idea. Several concepts have been developed by individuals and 

corporations in the past, with some vehicle manufacturers implementing the technology 

in concept vehicles and prototypes, and even hinting at mass production for public use. 

In this section, several similar engines are investigated.  

3.8.1 Review of Yvon & Lorenzoni 

The following concerns the work of K. Yvon and J. Lorenzoni from the 2006 publication 

“Hydrogen-powered lawn mower: 14 years of operation” in the International Journal of 

Hydrogen Energy. This paper was closely looked at in preliminary research, and is 

credited with providing partial inspiration for the investigation undertaken in this 

document.  

In 1993 Lorenzoni and Yvon presented a hydrogen-powered lawn mower, adapted from 

a commercial model. The commercial petrol engine was adapted to hydrogen by making 
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small adjustments to the carburettor and the fitment of a hydrogen reservoir containing a 

metal hydride powder (Yvon & Lorenzoni, 2006). The initial project aimed to 

demonstrate the ease with which a well-known and relatively polluting device running on 

hydrocarbon fuels can be converted to a less polluting device running on hydrogen (Yvon 

& Lorenzoni, 2006). The device was put into operation in 1991, and by publication of the 

mower’s performance in 2006, the prototype was claimed to have been operated without 

major interruption since it was commissioned. Lorenzoni and Yvon claim the only 

maintenance work performed during the evaluation was changing the lubrication oil 

annually, one replacement spark plug and hydrogen regulating valve, and one reactivation 

of the hydrogen tank due to accidental air contamination (Yvon & Lorenzoni, 2006). 

The lawn mower’s power unit was a single cylinder four-stroke ICE with spark ignition 

and 80cm3 cylinder capacity. The commercially available unit received modification to 

the carburettor and petrol reservoir. The carburettor was adapted by replacing the fuel 

float and principle fuel jet with a hydrogen injection nozzle. The nozzle was connected 

via needle valve to the metal hydride storage tank mounted above the engine. The power 

of the engine was regulated by the hydrogen supply value and the carburettor choke. The 

hydrogen reservoir was a commercially available model containing 1 litre of hydrogen 

sponge, composed of an alloy powder of titanium, vanadium, chromium and manganese 

(Yvon & Lorenzoni, 2006). The hydrogen used in combustion was obtained by the 

desorbing of the metallic powder at ambient temperature. The hydrogen tank was 

rechargeable at a hydrogen pressure of approximately 30bar within less than an hour. The 

tank added approximately 12kg to the mowers weight and stored a hydrogen volume of 

1 Nm3. Hydrogen pressures of 3-25bar were achieved, depending on the temperature and 

filling state of the tank. During hydrogen desorption the reservoir cooled by 

approximately 15oC, resulting in a progressively decreasing hydrogen pressure (Yvon & 

Lorenzoni, 2006). 

Lorenzoni and Yvon claim the performance of the hydrogen fuel was comparable to the 

petrol-powered model, with a power loss of approximately 20% at full power (3,000rpm). 

In practice, the engine was said to be regulated to run at a reduced power level (2,000rpm), 

with full power required for limited conditions namely wet or lengthy grass. One charge 

of hydrogen was said to last for 40mins of operation, which correlates to about 800m2 of 

cut lawn.  
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Analysis of exhaust gases found water vapour, small quantities of nitric oxide (0.3 ppm) 

and nitrogen dioxide (1.6 ppm) (Yvon & Lorenzoni, 2006). Interestingly, Lorenzoni and 

Yvon also found a significant reduction in operational noise compared with that of the 

petrol powered model. Backfiring occurred only under certain circumstances, including 

humid air or in insufficient air inlet to the IC engine. In practice, the carburettor choke 

remained on the full inlet position (Yvon & Lorenzoni, 2006).  

The installation of the hydrogen fuel tank added around 12kg to the mass of the mower, 

a considerable increase, which in turn made non-tractive mowers more difficult to push. 

This of course could be attenuated by opting for a self-tractive model, but this comes at 

the expense of engine power and higher hydrogen consumption (Yvon & Lorenzoni, 

2006).  

Another inconvenience was the difficulty of recharging the hydrogen tank. At the time of 

publication, Yvon and Lorenzoni remark that hardly any infrastructure for doing this 

existed, meaning that recharges would require external service or interim storage of 

pressurised hydrogen, requiring additional investment (Yvon & Lorenzoni, 2006).  

A further inconvenience was costs. The costs for adapting the existing petrol ICEs to 

hydrogen were relatively minor, but those of installation of a metal hydride reservoir were 

important. Hydrogen is considerably more expensive than petrol at equal energy content, 

especially if high purity hydrogen is used. This was not a major issue however, due to the 

relatively low fuel requirements of this application (Yvon & Lorenzoni, 2006). 

Finally, the operation of the hydrogen model saw a clearly reduced duration time (30-40 

mins) compared to that of the petrol model (2-3 hours). This drawback was further 

aggravated by the decrease of hydrogen supply during operation. During prolonged 

operation, Lorenzoni and Yvon noticed that the hydrogen pressure above the metal 

hydride storage bed decreased due to cooling of the reservoir (positive hydrogen 

desorption enthalpy) (Yvon & Lorenzoni, 2006). The implications of this suggested that 

during long mowing operations work may need to discontinue for about 20 minutes in 

order to allow the temperature of the storage bed to increase, and thus increase the 

pressure to rise again to operational level. 

For economic evaluation Lorenzoni and Yvon considered both costs and marketing. The 

following currency conversions were correct at the time of writing, and refer to the price 

at the time of publication of Lorenzoni and Yvon’s work in 2006.  Additional costs are 
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obviously incurred and modifications are required in the conversion of a commercial 

petrol motor to hydrogen fuel. As lawnmowers tend to run at a constant rpm, the necessary 

modifications are minor and can be performed by a skilled technician in a matter of hours. 

For this just a few additional parts are required, namely hydrogen tubes and connections, 

and a needle valve. At the time of publication Lorenzoni and Yvon suggested that these 

modifications would amount to an estimated €200 - $285 AUD (Yvon & Lorenzoni, 

2006). However, the installation of the metal hydride storage tank required a considerable 

investment. The model chosen by Lorenzoni and Yvon was no longer in production, with 

a tank of comparable specifications selling for a price of €900 ($1,287 AUD), and another 

€100 ($143 AUD) in flexible hydrogen transfer line, doubling the price of the 

corresponding petrol model (Yvon & Lorenzoni, 2006). Operation costs are dependent 

on the price of the hydrogen and its distribution. Lorenzoni and Yvon commented that in 

Switzerland, industrial hydrogen of 99.95% purity in pressurised vessels (50L at 200Bar) 

was sold for 150SFr/bottle ($208 AUD), which puts 1 charge = 1m3 of hydrogen at €5 

($7.15 AUD) (Yvon & Lorenzoni, 2006). Lorenzoni and Yvon suggested that due to their 

robust prototype requiring minimal maintenance, the average operating costs amounted 

to €20/season ($28.6 AUD). Lorenzoni and Yvon cited the UK New and Renewables 

Energy Programme which states that the European lawn mower market in 1997 was worth 

$1billion, with internal combustion claiming 59% share, electric 35%, battery 3%, and 

hand operated taking 2%. Lorenzoni and Yvon indicated that in view of their increased 

weight and reduced autonomy compared to petrol powered models, hydrogen-powered 

lawn mowers were expected to compete with battery operated models for market share. 

Lorenzoni and Yvon suggested that while the two products’ ecological advantages were 

similar, hydrogen-powered models had practical advantages. Lorenzoni and Yvon 

estimated a market share of 5%, representing a total market value of $50 million/year.  

3.8.2 Review of Kahraman, Ozcanli, & Ozerdem 

The following concerns the work of Kahraman, Ozcanli, & Ozerdem from the 2006 

publication “An experimental study on performance and emission characteristics of a 

hydrogen fuelled spark ignition engine” in the International Journal of Hydrogen Energy. 

This paper was closely investigated due to its similarity to the investigation undertaken 

within this document.  

Kahraman et al.’s investigation aimed to establish the suitability of using an existing 

petroleum ICE for hydrogen combustion in automotive applications by comparing the 
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performance and emission characteristics of the engine under petroleum and hydrogen 

operation experimentally. Variations in torque, power, BTE, BMEP, exhaust temperature, 

and emissions (NOx, CO, CO2, HC and O2) vs engine speed were compared for both 

petroleum and hydrogen. Comparison energy analysis was undertaken. In addition engine 

design modifications necessarily made to accommodate hydrogen induction and 

operation without changing basic characteristics of the existing engine were discussed 

(Kahraman et al, 2006). Testing found reduced power at low speed operation, less heat 

loss, and 10 times lower NOx emissions for hydrogen combustion when compared to that 

of petroleum. 

Kahraman et al. highlighted the benefits of hydrogen as an internal combustion fuel, 

noting that hydrogen does not cause combustion problems such as vapour lock, cold wall 

quenching, inadequate vaporization or poor mixing, and does not produce toxic products. 

Hydrogen has a high heating value on a mass basis, and low on a volume basis. Combined 

with other thermo-physical properties, Kahraman et al. suggested that hydrogen has 

unique and desirable heat transfer characteristics for internal combustion (Kahraman et 

al, 2006). 

The testing apparatus consisted of a dynamometer, exhaust emission analyser, fuel 

metering device, and auxiliary equipment coupled to the test engine. The engine 

driveshaft was connected to the dynamometer, the ambient pressure and temperature, 

engine speed, and torque values were read from gauges. Compressed hydrogen (20MPa) 

was supplied from 50L steel gas tanks, the first stage pressure regulator was installed on 

the tank, the second stage regulator was installed above the engine’s radiator. Two 

pressure regulators reduced hydrogen pressure first to 300 kPa and then to atmospheric 

pressure. A Sun MGA 1200 gas analyser was used to measure CO, CO2, O2, and HC 

composition in exhaust gases as well as engine speed, exhaust gas temperature, and air 

fuel ratio. MRU Vario D52 was used for NOx exhaust emission levels (Kahraman et al, 

2006).  

The test engine used was a Fiat licensed Tofas 1.2L 4cyl naturally aspirated SI engine, 

fed by a 2bbl Solex carburettor. The engine produces 60Hp (DIN) at 5,600 rpm and 89Nm 

at 3,400rpm from an 8.8:1 compression ratio. The engine bore and stroke are 73mm and 

71.5mm respectively. A conversion kit was used for Hydrogen feeding and the addition 

of spray nozzles for water was essential to provide backfire free operation. Spray nozzles 

were installed 40mm from the inlet valves. Ignition timing was statically set at 10oC. 
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Testing ranged from 2,600-4,000rpm – engine speeds lower than 2,600rpm experience 

severe backfiring, and 4,000rpm is the rpm ceiling of the engine. In order to avoid 

temperature and pressure variations, hydrogen testing followed immediately after 

petroleum testing when the engine was already at operating temperature (Kahraman et al, 

2006). 

The testing found that at 3,100rpm under hydrogen operation, the petroleum torque 

specifications were matched, and exceeded at higher speeds; a result expected by 

Kahraman et al. due to hydrogen’s fast burning characteristics. Kahraman et al. suggested 

that lower speed operation increased mechanical losses, and proposed that this may be 

overcome via forced induction. The brake power output data showed a power reduction 

under hydrogen operation, especially at lower engine speeds. (Kahraman et al, 2006) 

attributed this power loss to the lower volumetric specific energy content of the fuel. The 

results showed hydrogen providing greater brake thermal efficiency, even at lower engine 

loads. Kahraman et al. claimed a 31% increase in brake thermal efficiency under 

hydrogen operation compared to that of petroleum .  

 

3.8.3 Review of Sopena, Dieguez, Sainz, Urroz, Guelbenzu, Gadina 

The following concerns the work of Sopena, Dieguez, Sainz, Urroz, Guelbenzu & Gadina 

from the 2009 publication “Conversion of a commercial spark ignition engine to run on 

hydrogen: a performance comparison using hydrogen and gasoline” in the International 

Journal of Hydrogen Energy. This paper was investigated due to its relevance to the topic. 

Sopena et al performed modifications to a commercially available Volkswagen Polo 1.4L 

engine to operate on hydrogen fuel. Changes were made primarily to the inlet manifold, 

gaseous fuel injectors, oil radiator and to the electronic management unit (ECU). Injection 

and advanced timing maps were produced for lean charge mixtures of equivalence ratios 

λ =1.6-3.0. The engine control parameters provided safe hydrogen operation free from 

abnormal combustion symptoms of backfire and pre-ignition. Low NOx emissions were 

also observed. Under hydrogen operation the engine achieved a maximum brake torque 

of 63 Nm at 3,800 rpm and maximum brake power output of 32kw at 5,000 rpm. 

Generally, hydrogen operation achieved a greater BTE than that of petroleum operation, 

except under lean burn (λ=2.5) conditions and engine speeds exceeding 4,000rpm. 
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Sopena et al predicted a maximum speed of 140km/h for hydrogen operation (Sopena et 

al., 2010). 

Hydrogen is termed a clean burning alternative fuel as neither carbon-based pollutants 

nor greenhouse gases would be emitted when hydrogen is produced from renewable 

sources. With significant interest developing within the automotive industry in hydrogen 

as a fuel, it is important to ensure hydrogen is produced cost-effectively from renewable 

energy sources resulting in a positive move to hydrogen. While there is little doubt that 

global fleet numbers of hydrogen vehicles will increase in the near future, it is doubtful 

whether hydrogen FCVs or ICEs will be the prevailing solution, with both options having 

unique advantages and drawbacks. Sopena et al suggested that most vehicle 

manufacturers are focusing their hydrogen vehicle development on FCVs, however the 

likes of Mazda and BMW have committed to ICE hydrogen vehicles. The engine used in 

testing was a naturally aspirated SI engine from a Volkswagen Polo. The 1.4L in line 4 

cylinder engine had a compression ratio of 10.5:1, and the fuel was fed via port injection, 

producing 59kW at 5,000 rpm and 132Nm at 3,800 rpm (Sopena et al., 2010).  

Sopena et al suggested that the well-known thermo-physical properties of hydrogen make 

it a desirable combustion fuel. Low ignition energies, wide flammability limits, high 

flame speed properties, combined with ‘clean’ emissions are advantageous or SI engines 

at low loads when lean burn and WOT conditions are employed. These same 

characteristics give rise to limitations in the form of abnormal combustion, namely 

backfiring, pre-ignition and knock, resulting in increased NOx emissions. Supercharging, 

EGR, and direct injection are methods proposed to mitigate or overcome these 

phenomena. Sopena et al employed fuel feeding control through PFI and changes to the 

ECU to retain the original engine platform (Sopena et al., 2010).  

The original plastic inlet manifold was replaced with a cast manifold to increase reliability 

should backfire occur. The petroleum injectors were substituted for hydrogen injectors 

(quantum technologies), and hydrogen leakage due to vibration was prevented by firmly 

fixing the injectors to the manifold by means of a supporting rail. A low pressure gas 

collector was installed to ensure a constant pressure feed was maintained to the injectors. 

The OEM ECU was replaced by a programmable MoteC M 400 unit. Most of the OEM 

sensors and actuators were retained with the exception of the O2 sensor replaced with a 

wideband Bosch LSU 4.9 unit, and a new oil temperature sensor was fitted. The sensors 

and actuators were connected to the MoteC unit and calibrated. Injection and ignition 
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timing maps were produced. Other modifications included a water-oil heat exchanger 

installed on the oil filter to maintain constant oil temperature, increased diameter of 

crankcase ventilation piping to prevent hydrogen accumulation, and the removal of the 

three-way catalyst as it was not required due to low NOx combustion products (Sopena 

et al., 2010).  

The gas supply system consisted of two lines, hydrogen and nitrogen. Nitrogen was used 

to purge the hydrogen line prior to start up. Both lines were fed by two 50L gas cylinders 

at 200 bar. Two hydrogen sensors were placed on the apparatus to detect hydrogen 

leakage at rates well below lower ignition level of the hydrogen air mix, connected to a 

control unit indicating hydrogen concentration in the room. The apparatus was 

programmed such that if the sensors detected unsafe levels of hydrogen concentration, 

the supply of hydrogen would automatically be stopped, and the system purged with 

nitrogen (Sopena et al., 2010). 

Sopena et al found that the injection timing had a strong influence on the engine 

performance at low load and engine speeds, and could be adjusted to avoid backfire. 

Injection maps were created by employing a strategy of operating between 1.6-3 ranges 

for values of lambda at all loads while varying torque via throttling. Values of lambda 

lower than 3 were selected to avoid incomplete combustion, and higher than 1.6 to avoid 

engine knock at high load and engine speed. The start of the injection remained constant 

at the point where the exhaust valve closed to ensure no hydrogen leakage to the exhaust 

manifold, and the valve cooled somewhat with the inlet air reducing the likelihood of pre-

ignition. Injection was completed before closing of the inlet valve, and in most cases, 

before the piston reached TDC (Sopena et al., 2010).  

Ignition timing maps were developed allowing maximum brake torque with the lowest 

NOx emissions. A conservative approach or retarding ignition advance to valves was 

adopted. In contrast to petroleum ICEs, Sopena et al found the optimum spark advance 

for maximum brake torque under hydrogen operation depended essentially on lambda, 

except for low loads and engine speeds (Sopena et al., 2010).  

The performance of hydrogen operation was evaluated in terms of BMEP, brake power, 

brake SFC, and emissions characteristics compared to petroleum operation. The BMEP 

as a function of engine speed for λ values of 1.6, 2, and 2.5 at WOT was compared for 

hydrogen and petroleum operation. Maximum BMEP for hydrogen was achieved at the 
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same engine speed as petroleum operation, though considerably lower for hydrogen due 

to the low density of the fuel. Maximum brake power was limited by the maximum engine 

speed of the engine at 5,000 rpm. Under hydrogen operation 32kW was achieved at λ  = 

1.6 for WOT conditions, compared to 59kW for petroleum operation at the same speed. 

A comparison of SFC petroleum equivalent for λ values of 1.6, 2, and 2.5 at WOT against 

petroleum SFC showed a higher thermal efficiency for hydrogen operation. Sopena et al 

attributed this to the faster combustion and closer to constant volume process, and thus 

more efficient thermodynamic cycle than that of gasoline. This was termed a ‘remarkable 

result’ by Sopena et al commenting on the higher lambda values for hydrogen operation. 

Further, it is noted the highest lambda value corresponded to the highest thermal 

efficiency for the HICE (Sopena et al., 2010).  

Under hydrogen operation, CO and HC emissions due to EGR were extremely low. The 

most important emissions were NOx, which increased with λ as expected. For λ values of 

higher than 1.8, low NOx emissions of 50-75 ppm were observed, and between 350-550 

ppm for λ = 1.6 depending on engine speed. Although significant, these values were well 

below the 1,000-2,500 ppm range typically seen for hydrogen operation (Sopena et al., 

2010).  

3.8.4 Review of Babir 

The following concerns the work of F. Babir from the 1996 publication “Review of 

hydrogen conversion technologies” from the Clean Energy Research Institute. This paper 

was investigated due to its relevance to the topic investigated in this document. 

This paper reviewed hydrogen conversion technologies including combustion in ICEs. 

HICEs are on average 20% more efficient than comparable petroleum engines. Thermal 

efficiency is a function of compression ratio and ratio of specific heats Cp and Cv. By 

increasing the compression ratio or the specific heat ratio, the thermal efficiency can be 

increased. In HICEs, both ratios are higher than that of petroleum due to hydrogen’s lower 

self-ignition temperature and lean burn capability. However, a power loss is observed due 

to hydrogen’s lower energy content in stoichiometric mixtures. A stoichiometric 

petroleum-air mixture pre-mixed externally occupies 30% of cylinder volume vs 2% for 

that of a hydrogen-air mixture. Under these conditions the energy use of the hydrogen 

mixture is only 85% of the hydrogen mixture, thus resulting in a 15% reduction in power. 

Fuel injection can be used to improve power output (Barbir, undated).  
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One of the more important advantages of hydrogen ICEs, Babir suggested, is the lower 

emission of pollutants than that of a petroleum ICE. Hydrogen has a wide flammability 

range of 5-75% vol, allowing high excess air to be used to lower NOx emissions. NOx 

emissions can also be reduced via cooling of the combustion environment, including 

water injection, EGR, or using liquid hydrogen. NOx emissions from HICEs are typically 

1 order of magnitude lower than that of petroleum combustion. Small amounts of CO2 

and Co emissions have been detected in hydrogen engines due to lubrication oil (Barbir, 

undated). 

Low ignition energy and fast flame propagation of hydrogen has induced abnormal 

combustion in HICEs. These problems have been overcome by the addition of hydrogen 

to the combustion charge at the point where and when the conditions for pre-ignition are 

reduced, such as separate delivery of hydrogen and air to the combustion chamber. Water 

injection and EGR techniques are also employed to control pre-ignition. Babir noted that 

research surrounding hydrogen internal combustion often surrounds modification of 

existing petroleum ICEs, and suggested that a redesign of the combustion chamber and 

coolant systems to accommodate hydrogen’s unique combustion properties has potential 

to be the most effective method of solving abnormal combustion problems (Barbir, 

undated). 

Despite the already developed and demonstrated hydrogen conversions available, and 

their clear advantage over existing technologies, hydrogen is not being used as a fuel on 

a large scale (except in the space industry). The reasons for this are varied and complex, 

and include technical, economic and political aspects (Barbir, undated).  

Hydrogen fuel must be considered in a frame of the entire energy system, Babir 

suggested. Hydrogen technology implementation must be accompanied by equally viable 

technologies for production, storage, transportation, and distribution (Barbir, undated).  

3.8.5 Review of Das, Gulati & Gupta 

The following concerns the work of Das, Gulati & Gupta from the 2000 publication “A 

comparative evaluation of the performance characteristics of a spark ignition engine 

using hydrogen and compressed natural gas as alternative fuels” in the International 

Journal of Hydrogen Energy. This paper was investigated due to its relevance to the topic 

investigated in this document. 
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The purpose of the investigation by Das et al was to evaluate the potential of hydrogen 

combustion in small horsepower spark ignition engines as a clean burning fuel alternative. 

The performance of hydrogen was compared against CNG, a readily available alternative 

fuel. The engine was run separately with either hydrogen or CNG by the use of 

electronically controlled injection system. A performance analysis of combustion 

characteristics was performed for each fuel.   

Das et al proposed that the depletion of fossil fuel reserves and subsequent increases in 

noxious emissions have prompted a review of the role of the ICE. It was predicted that in 

view of the ICE’s versatility, they will continue to dominate transport propulsion systems 

for some time to come. Despite conversion losses, the power to weight ratio of an ICE 

exceeds that of the battery powered of FC vehicles when considering power storage. Das 

et al suggested that this mandates the integration of environmentally friendly technology 

with existing internal combustion technology to ensure the safe survival of existing ICE 

technology.  

Various alternative fuels are being investigated globally to reduce the impact of vehicle 

emissions. Hydrocarbons currently used release about the same amount of CO2 per 

amount of heat released from their combustion, with higher hydrogen content 

hydrocarbons displaying little improvement. Hydrogen presents as a practically 

acceptable, carbon-free combustion fuel. The work of Das et all did not discuss the 

characteristics of other alternative fuels such as methanol, ethanol, EVs, LPG, biogas or 

vegetable oils.  

Das et al highlighted that the difference between CNG and petroleum ICE operation arises 

from the chemical and physical properties of the fuel. Petroleum fuels are liquids at room 

temperature, while CNG remains in a gas state above temperatures of -161°C. CNG has 

a lower density than gasoline, though its physio-chemical properties make CNG an 

excellent combustion fuel. CNG has a higher octane number compared to that of gasoline, 

allowing for a higher compression ratio to be utilised without onset of abnormal 

combustion. The higher self-ignition temperature of CNG lends itself to lower risk of 

ignition in the event of leakage when compared to that of petroleum. The combustion of 

CNG requires an altogether different induction mechanism at normal temperatures and 

pressures as it is a gas. CNG has been widely used in SI engines in various applications, 

predominantly conversions are allowed for both petroleum and CNG operation. The paper 

investigated dual CNG/hydrogen operation. 
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Hydrogen combustion does not experience vapour lock, cold wall quenching, inadequate 

vaporisation, poor mixing and other typical problems associated with liquid fuels. 

Hydrogen is a “clean-burning” fuel producing only water vapour from combustion with 

air. Hydrogen combustion does not produce toxic combustion products such as 

hydrocarbons, oxides of sulphur or carbon dioxide. Some oxides of nitrogen are 

produced, and experimentation by Das et al showed that this value can be drastically 

reduced by monitoring engine operation. Like CNG, hydrogen also requires modified 

induction from a typical liquid fuel ICE. Das et al developed a common system for the 

fuel injection of both forms of gaseous fuel as part of their work. 

15 years of research and development related to hydrogen operated engines in IIT, Delhi, 

have observed that the mode of fuel induction greatly influences performance and 

emission characteristics for SI HICEs. Das et al noted similar observations during testing 

of the CNG operation. Abnormal combustion problems including backfire and rapid 

pressure rise rate are greatly influenced by the fuel formulation technique, particularly in 

context of system development for hydrogen operation. Various fuel induction methods 

such as carburation, continued manifold injection, timed manifold injection, and low 

pressure direct injection were evaluated under both CNG and hydrogen operation. 

Carburation and continuous manifold injection were observed to result in backfiring for 

CNG operation under certain conditions. The frequency and severity of backfire was 

substantially lower under CNG operation, and uncontrollable for hydrogen fuelling. The 

high thermal energy causing backfiring was found to be either spark plug, exhaust valve 

or some deposits acting as hot spots within the combustion chamber. Timed manifold 

injection proved a reliable method of induction, particular for hydrogen operation. Das et 

al were unable to eliminate abnormal combustion in carburettor inducted hydrogen 

operation. The hydraulic operated and cam actuated injection proved to be an effective 

mechanism for induction of hydrogen and CNG while eliminating abnormal combustion.  

TMI and cam actuated injection systems described above were developed, the details of 

their development are not related to this investigation. Experimentation activities were 

performed on a single cylinder, 4 stroke, SI engine with the injection system installed. A 

dynamometer was fitted, and safety devices such as flame traps, pressure regulators and 

non-return valves were incorporated where required. The engine was tested first over 

2,000, 2,200, 2,400, and 2,600 rpm ranges under petroleum operation to obtain reference 

data, being a petroleum ICE. Hydrogen testing was performed under WOT conditions, 
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with flow regulated through hydrogen gas supply system. Performance tests for hydrogen 

operation were performed under the following conditions: spark advanced to 25° before 

TDC; supply pressure = 0.1 MPa; Injection Duration = 290° crank angle; injection timing 

20° after TDC. Compression ratio of 8.0:1 remained constant. These conditions provided 

optimum hydrogen operation with minimal undesirable combustion phenomena, smooth 

engine operation, and accurate injector response. The same tests were applied to CNG 

operation, with injector timing set at TDC. The performance characteristics of the engine 

were determined and relevant performance parameters graphed. Throughout testing there 

were no symptoms of abnormal combustion for hydrogen operation, though its 

performance was limited due to speed and load conditions. Maximum engine speed for 

hydrogen was 300prm, vs 4,000rpm under CNG operation.  

The results showed that hydrogen operation achieved a higher BTE than that of CNG 

over the entire engine speed range. Hydrogen’s wide range of flammability allowed for 

controlling engine power via regulation of fuel rate without throttling air intake. Optimum 

performance was observed at 2,000rpm for the injection system. Das et al also found 

BSFC was low for the hydrogen operation. 

Das et al concluded from their results that an appropriately designed solenoid-actuated 

electronically controlled injection system can be used to adapt a petroleum ICE to reliably 

operate on both CNG and hydrogen. It was also suggested that additional safety features 

are necessarily required for hydrogen operation due to the low minimum ignition energy 

and high flame speed of the fuel. Das et al observed a reduction in brake SFC and BTE 

improved under hydrogen operation compared to that of CNG operation. A BTE of up to 

31.19% and 27.59% was achieved for hydrogen and CNG operation respectively. 

 

3.8.6 Review of Verhelst & Wallner 

The following concerns the work of Verhelst & Wallner from the 2009 publication 

“Hydrogen-fuelled internal combustion engines” in the International Journal of Hydrogen 

Energy. This paper was investigated due to its relevance to the topic investigated in this 

document. 

The threat posed by climate change and the striving for energy security have prompted 

governments to implement strategic plans to decrease primary energy use, remove carbon 

fuels and facilitate modal shifts. Hydrogen as a future energy carrier has taken a 
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prominent place in these strategic plans. A number of vehicle manufacturers are now 

leasing demonstration hydrogen fuelled vehicles with ICEs and FCVs. Developing 

countries are pushing HICE technology as an affordable medium term solution to 

decrease local pollution. Verhelst & Wallner’s article provides a comprehensive overview 

of HICEs including hydrogen combustion fundamentals; mixture formation strategies and 

their associated emissions characteristics; measures to convert existing vehicles; 

dedicated hydrogen engine features; a state of the art on increasing power output and 

efficiency while controlling emissions and modelling.  

Verhelst & Wallner stated that the current method of delivering the world’s energy 

demand based primarily on fossil fuel, is becoming increasingly unsustainable. Once 

abundant fossil fuel reserves are now clearly exhaustible. Global warming and local 

pollution hotspots associated with fossil fuel usage are further significant environmental 

and societal problems. These are strong drivers for research, development and 

demonstration of alternative energy sources, carriers, and for transportation sectors, 

powertrains. The use of hydrogen as an energy carrier has been investigated as part of 

most governmental strategic plans for sustainable energy systems.  

Verhelst & Wallner highlighted that the attractiveness of hydrogen lies in the versatile 

methods by which it can be produced; the long-term viability of a number of methods; 

the various methods to produce energy from hydrogen; the virtually zero harmful 

emissions and potential efficiency from its use. Compared to other alternative energy 

carriers, hydrogen is advantageous in terms of volumetric and gravimetric energy storage 

density, however, there exist serious challenges that need to be overcome when hydrogen 

is used as an energy carrier. Hydrogen’s low density implies low energy density compared 

to currently available fuels, even when compressed to 700 bar or liquefied, both of which 

incur substantial energy losses. Bulk storage, distribution, and on board vehicle storage 

are heavily compromised as a result. Further, Verhelst & Wallner suggested that in the 

case of hydrogen-fuelled vehicles, we must ensure that the well-to-wheel greenhouse 

emission reduction compared to the production of hydrocarbon fuels is positive. 

However, the potential advantages and desirable combustion properties of hydrogen are 

substantial enough to warrant investigation and further research.  

There are a wide array of works and opinions published as to what determines the ‘best’ 

fuel carrier for internal combustion: heavily optimised ICE hydrocarbon fuels, biofuels, 

electricity, hydrogen, etc. There are a host of aspects to take into consideration, ranging 
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from lifecycle energy use, greenhouse emissions, tailpipe emissions, cost, practicality, 

customer acceptance/market uptake, etc., which are not so easily scored and ranked to 

establish a clear winner, Verhelst & Wallner suggested.  

The following information discusses the efforts undertaken to model and analyse regular 

combustion of hydrogen in ICEs, i.e. where spark initiated combustion develops a 

turbulent flame and propagates throughout the combustion chamber, consuming the 

available fuel-air mixture.  

Mixture formation and load control strategies 

Hydrogen engines can be operated at extremely lean air-fuel ratios compared to 

conventional fuels due to the wide ignition limits of hydrogen. Quantitative, qualitative 

and combined strategies for part-load operation of hydrogen engines have been proposed 

in literature. Quantitative control refers to strategies that limit the volume of fresh charge 

available for combustion to limit power output while maintaining a constant air fuel ratio. 

Qualitative control refers to strategies that adjust the air-fuel ratio by adjusting the amount 

of fuel introduced to the engine while allowing maximum air flow (Verhelst & Wallner, 

2009).  

The classification based on part-load operation is closely associated with the air-fuel ratio 

employed. Work has been published on hydrogen engines operated at stoichiometric as 

well as lean air-fuel ratios. Stoichiometric operation provides significant power output 

compared to lean burn operation, with NOx reduction via conventional after treatment 

systems. Lean burn strategies however result in significant increases in achievable engine 

efficiencies. Recent literature suggests the adoption of both lean burn and stoichiometric 

operation (Verhelst & Wallner, 2009). 

Verhelst & Wallner inform that supercharged operation has been put forward in works as 

a promising solution for mitigating reduced power output related to hydrogen operation 

with external mixture formation. For optimum efficiency, turbocharging is the preferred 

option; though reduced throttle response and a reduction in exhaust energy compared to 

conventional fuelled ICEs may pose a challenge for the implementation of a turbocharged 

hydrogen ICE (Verhelst & Wallner, 2009). 

Proper mixture formation process design is critical for achieving high engine efficiency, 

Verhelst & Wallner suggested, whilst meeting increasingly stringent emission reduction 

targets. Not unlike conventional fuelled ICEs, hydrogen engines have undergone similar 
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continuous improvement and refinements of mixture formation strategies.  Mixture 

formation strategies are classified based on the location of mixture formation or the 

location of hydrogen admission. External mixture formation refers to concepts which 

hydrogen and air are mixed outside of the combustion chamber, and internal mixing refers 

to concepts where combustion reactants are introduced directly into the combustion 

chamber. Combinations of external and internal mixing strategies have been put forward 

by some researchers. The mixture formation strategy has a significant impact on the 

theoretical power output of the engine. This power discrepancy between strategies is 

caused by the low density of hydrogen, resulting in a significant decrease in the density 

of the mixture with external mixing applications (Verhelst & Wallner, 2009). 

Verhelst & Wallner implied that it is possible to differentiate systems that utilise 

carburation, mechanically controlled injection or electronically controlled injection using 

a timing control/quantity of fuel based classification. Modern hydrogen ICEs almost 

exclusively utilize EFI systems, though the requirements and specifications vary greatly 

depending on location or injection and the temperature of injected hydrogen. Generally, 

lower pressures (2-8 bar) are used for external mixing injection systems, compared to that 

of direct injection (5-250 bar). Exposure of injector to in cylinder temperatures is an area 

requiring further development to reach industry reliability standards (Verhelst & Wallner, 

2009). 

The two most prevalent mixture formation strategies for HICEs are PFI and DI modes. 

PFI is currently being used in engine research as well as in manufacturer demonstrator 

vehicles, while DI mode HICEs are still in a research and prototyping stage. The 

following section summarised from Verhelst & Wallner describes the most typical 

characteristics and variations between and within these specific mixture formation 

concepts. However, it is appropriate to reflect on the energy cost of supplying low and 

high pressure hydrogen for PFI and DI applications respectively(Verhelst & Wallner, 

2009). 

Hydrogen induction for use in either PFI or DI applications requires a certain delivery 

pressure. The most efficient method of delivering the hydrogen at the required pressure 

is dependent on the type of on-board storage and the pressure required for injection. Low 

pressure hydrogen injection is achievable with compressed hydrogen storage at 700 bar, 

and even high pressure injection at pressures exceeding 100 bar. However, without an 

auxiliary compressor, the full amount of stored hydrogen is not available for use. If an 
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on-board storage system comprising of compressed hydrogen at 700 bar feeds a 100 bar 

injector, only 6/7 of the mass of stored hydrogen can be utilised before the pressure inside 

the storage vessel drops below the delivery pressure. The energy required to compress 

hydrogen, on or off board, is significant. Even under ideal conditions, the energy required 

to compress hydrogen from 1 bar to 1000 bar requires greater than 7% of the heating 

value of the hydrogen. If stored on-board in cryogenic form, liquid hydrogen compression 

can be achieved more efficiently in the liquid state. This reduces the work required for 

compression by a factor of 5-6 compared to compression from a gaseous state. However, 

Verhelst & Wallner implied that there remain several questions in the construction and 

material selection of cryogenic pumps. Further, the method currently employed for the 

large scale liquefaction of hydrogen requires approximately 30% of the energy content of 

hydrogen (Verhelst & Wallner, 2009).   

Port Fuel Injection 

Hydrogen PFI is currently the prevailing hydrogen mixture formation strategy, and is 

already being implemented in a variety of applications that differ in several aspects 

including part-load control, air-fuel ratio and charging strategy. Prior to comparison of 

these strategies, Verhelst & Wallner suggested an understanding of the principle 

correlation between the air-fuel ratio and formation of NOx emissions as a function of the 

equivalence ratio that is applicable for homogenous mixture formation concepts is 

required (Verhelst & Wallner, 2009).   
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Figure 3.10 from Verhelst & Wallner depicts a typical trace of NOx emissions as a 

function of equivalence ratio for homogenous PFI operation.  

The combustion of lean hydrogen-air mixtures with equivalence ratios less than 0.5 (λ > 

2) results in extremely low amounts of NOx emissions. The combustion temperatures do 

not exceed the NOx critical value of ~1800K due to the excess available air in the 

combustion chamber. Exceeding the NOx critical equivalence ratio is marked by an 

exponential increase in NOx emissions, peaking at the approximate fuel-air equivalence 

ratio of 0.75 (λ ~ 1.3). For stoichiometric combustion, the NOx emissions are 

approximately 1/3 of the peak value. The highest temperatures of combustion are 

observed at a fuel-air equivalence ratio approaching 1.1, although at this ratio, the oxygen 

concentration is low and as a result this is not the point at which NOx emissions peak 

(Verhelst & Wallner, 2009). 

Figure 3.10: Correlation of air-fuel ratio and NOx emissions for homogenous PFI operation, 

Verhelst & Wallner 
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Due to NOx emissions being a function of the fuel air ratio, numerous operating strategies 

have been developed to achieve adequate power densities whilst avoiding excessive NOx 

emissions. Conventional petroleum ICEs converted to hydrogen operation have been 

operated by employing a lean constant air-fuel ratio strategy. Using conventional throttle 

and replacing the petroleum fuel system with hydrogen injectors, Verhelst & Wallner 

suggested that one can easily implement this strategy. Selection of an equivalence ratio 

below the critical limit of NOx emissions results in extremely low emission 

characteristics without the use of after treatment systems. Abnormal combustion is also 

avoided using this strategy as the low temperatures of combustion results in a reduced 

thermal load of the engine and an increased demand in ignition energy for lean hydrogen 

air mixtures. Abnormal combustion is also avoided for lean operating strategy due to 

relatively low temperature of combustion, the reduced thermal load of the engine, and an 

increased demand in ignition energy for lean hydrogen-air mixtures. However, employing 

a lean burn strategy results in a further significant loss in power density than for 

stoichiometric operation. A constant fuel-air equivalence ratio of 0.5 results in a 

theoretical maximum power output of the hydrogen engine that is only 50% of a 

conventional petroleum engine in stoichiometric operation. Investigations into the 

Figure 3.11: Theoretical power density of a PFI HICE compared to stoichiometric petroleum operation 

as a function of equivalence ratio and charging strategy, Verhelst & Wallner (Verhelst & Wallner, 

2009) 
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implementation of supercharging technology to offset power loss from lean air-fuel ratio 

operation has been performed by several researchers (Verhelst & Wallner, 2009).    

As mentioned earlier, employing a lean burn strategy can greatly increase engine 

efficiency compared to that of petroleum. Acceptable power output is achieved through 

setting the air-fuel ratio as high as practicable while meeting emissions targets. Reducing 

the equivalence ratio further improves engine efficiencies, peaking at approximately 0.3. 

The peak is a local minimum of losses due to longer burn duration, and heat transfer and 

more favourable properties of the working fluid. A sharp decrease in efficiency was 

observed at equivalence ratios lower than 0.22, attributed to unburned hydrogen and 

slower burn rate (Verhelst & Wallner, 2009). 

Subsequently an operating strategy was evaluated for both naturally aspirated and 

supercharged engine vehicles using a variable equivalence ratio as a function of engine 

load. Implemented over a range of 0.2 < Φ < 0.5 on a GM Chevrolet 454 ‘big block’ SI 

PFI engine, resulted in a 20% increase in engine power compared to a carburetted version, 

without increasing likelihood of backfire (Verhelst & Wallner, 2009).   

The study also concluded that as a result of the wide range of applied mixture 

composition, the ignition timing range is also wide. Injection timing was observed to have 

significant influence in the low load and speed region, and found to not be critical in the 

high load and speed region (Verhelst & Wallner, 2009).   

Supercharging combined with a variable equivalence ratio strategy can provide another 

significant increase in power density. Verhelst & Wallner informed that drive-cycle 

simulation based on steady-state engine efficiency and emission maps of a 2.3L 

supercharged hydrogen engine indicated a 3% increase in fuel economy from employing 

a variable equivalence ratio strategy compared to a constant value of Φ = 0.5 (Verhelst & 

Wallner, 2009). 

3.8.7 Review of Duan, Liu and Sun 

The following concerns the work of Duan, Liu and Sun from the 2013 publication 

“Backfire control and power enhancement of a hydrogen internal combustion engine” in 

the International Journal of Hydrogen Energy. This paper was investigated due to its 

relevance to the topic investigated in this document. 

The frequent occurrence of backfire in PFI hydrogen ICEs for equivalence fuel-air ratios 

exceeding 0.56 limits further power enhancement of engine power. Inlet PFI testing and 
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computational fluid dynamics models were established to explore factors that cause 

backfire under high loads. The fuel-air mixture concentration and temperature are some 

essential factors governing the occurrence of backfire. Timing optimisation and induction 

pressure of the hydrogen reduces concentration distribution of the intake mixture and the 

temperature of the high-concentration mixture through the inlet valve, controlling 

backfire. The control of backfire allows for the operation of hydrogen engines at high 

equivalence-fuel air ratios (greater than 1.0). Significant enhancement of power output 

can be obtained through optimised hydrogen injection timing and pressures (Duan et al., 

2013). 

As petroleum resources become more depleted, researchers are beginning to focus more 

on alternative fuels for vehicles. Hydrogen, a clean burning, highly combustible and 

abundant fuel is an ideal alternative fuel for transportation. Fuel cells and internal 

combustion engine hydrogen vehicles are two primary areas of investigation for hydrogen 

vehicle applications. Several key technologies stand in the way of taking full advantage 

of the potentially high efficiencies of hydrogen fuel cell vehicles, thus they remain costly 

and cannot be used extensively in the short term. Existing internal combustion engines 

can be converted to hydrogen operation at relatively low cost, making them the most 

foreseeable application for the near future (Duan et al., 2013) 

Hydrogen has a lower ignition energy and wider ignition range than that of petroleum, 

meaning the backfire and other abnormal combustion processes occur more easily in 

HICEs, especially under high loading conditions. Literature demonstrates that 

maintaining normal operation, or further enhancing power output of HICEs is limited by 

intense backfire for mixture equivalence ratios exceeding 0.56. The research areas of 

backfire control and power enhancement are important to the advancement of HICE 

technology (Duan et al., 2013).  

Backflow of high-temperature combustion gases from the exhaust are predicted to be the 

lead cause of backfire in HICEs, resulting in spontaneous combustion in the inlet 

manifold. Thus, any reduction of the temperature of a high concentration mixture inside 

the inlet is an effective backfire mitigation strategy. Researchers have investigated the 

effect of water addition to the inlet mixture to reduce temperature, and thus backfire, 

though this strategy has resulted in the destruction of the lubrication film of the cylinder 

wall, increasing wear and reducing efficiency (Duan et al., 2013).  
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Backflow of high temperature gases can be reduced by increasing inlet pressure, enabling 

backfire control. This also increases volumetric efficiency and power output. Decreasing 

overlapping inlet and exhaust valve angles further reduces backflow quantity of high-

temperature exhausting combustion gases, facilitating high fuel-air equivalence ratios. 

Both measures necessitate the use of a pressurised induction system or variable valve 

timing system, and are both costly (Duan et al., 2013). 

For non-supercharged ICEs, the optimisation of hydrogen injection timing to allow the 

hydrogen-air mixture to enter the cylinder initially to cool down the residual exhaust gas 

is a proven effective method for control of backfire phenomena. In Duan, Liu and Sun’s 

investigation, 3D simulation of PFI of hydrogen and a hydrogen engine test system were 

established to investigate the influences of injection timing and pressure on backfire. 

Duan, Liu and Sun discovered an optimised strategy for hydrogen injection timing and 

pressure. It is claimed that the strategy facilitates hydrogen operation free from backfire 

and with increased power output, even when fuel-air equivalence ratios exceed 

stoichiometric levels (Duan et al., 2013).  

Duan, Liu and Sun converted a 2.0L naturally aspirated four-cylinder (86mm x 86mm x 

4) petroleum engine to a PFI hydrogen ICE. The engine has a compression ratio of 10:1, 

with inlet valve opening and closing angles of 348 o, 608 o CA and exhaust valve opening 

and closing angles of 136o, 368o CA. The injection and control systems were also 

redesigned. The opening and closing times of the intake and exhaust valves were fixed 

.(Duan et al., 2013) 

The original packet ignition system had one igniter for every two cylinders and two 

ignitions in each working cycle and in each cylinder; one in the power stroke and one in 

the intake stroke during which backfire can occur. The ignition system was replaced with 

an independent ignition system whereby one igniter was supplied for each cylinder, and 

one ignition in the power stroke is supplied, eliminating the effect of ignition system on 

backfire. The sparkplug was replaced with a cold-rated one, avoiding backfire caused by 

high temperature of the electrode. The intake valve opens at an angle of 348o CA, and the 

exhaust valve closing angle 368o CA, an overlap of 20o CA (Duan et al., 2013). 

The hydrogen was stored in steel bottles at 20MPa and supplied to the injection rail at 

0.2-0.6MPa. An electronically controlled hydrogen injection valve was installed on the 
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injection rail, and hydrogen injected into the port when the valve was open. Due to the 

large volume of hydrogen in the injection rail, variations in injection pressure were kept 

smooth during operation. By adjusting the second stage pressure reducing valve, the 

amount of hydrogen supplied was manually modified (Duan et al., 2013).  

A Dw160 electric eddy current dynamometer absorbed the output torque and power of 

the test engine to maintain stable operation of the engine. The system collected data on 

power, torque, speed, and temperature, and other data sets. Cooling water and lubricant 

thermostat systems ensured cooling and lubrication respectively during the operation of 

the engine, ensuring accuracy of the test (Duan et al., 2013). 

During the experiment, Duan, Liu and Sun’s self-developed electronic control unit 

allowed for adjustment of hydrogen injection timing, ignition timing and other control 

parameters. An electronic throttle control was used to adjust airflow, maintaining a fuel-

air equivalence ratio of 0.2 at low load conditions through adjusting throttle from 0-100%. 

A fuel-air equivalence ratio between 0.2 and 1.0 was maintained under high load 

conditions through increased hydrogen injection time by operating at WOT. 

Instantaneous pressure data for backfire detection was installed in the inlet port. A 

temperature sender installed at the exhaust pipe and a crankshaft sensor installed on the 

end of the crankshaft provided temperature and engine speed data respectively. A Coriolis 

mass flowmeter and hotline mass flowmeter measured hydrogen and air mass flows 

respectively, allowing the fuel-air ratio to be calculated, and thus the efficiency of the 

engine (Duan et al., 2013). A table of the test instruments used by Duan, Liu and Sun and 

their accuracy is provided in Figure 3.13. 

Figure 3.12: test instrumentation type and accuracy from Duan, Liu and Sun’s 

experimental apparatus 
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Duan, Liu and Sun suggested that difficulty in using existing test equipment to measure 

temperature, concentration distribution, and variation inside the inlet port and the cylinder 

led to the development of a 3D CFD simulation model. In Duan, Liu and Sun’s study a 

3D mesh model including inlet pipe, manifold, inlet port, hydraulic injection valve, and 

cylinder was developed to investigate the temperature, concentration distribution in the 

inlet port and cylinder. Duan, Liu and Sun assumed that analysis of a single cylinder is 

sufficient representation of the four, and that any variations between cylinders can largely 

be ignored as a full analysis would greatly increase simulation time and would not 

significantly increase the quality of results. Symmetries of the cylinders and inlets were 

also assumed to simplify modelling. Therefore, the model has only half of the inlet pipe, 

port and cylinder. The total mesh is greater than 170,000, and is depicted in Figure 3.14. 

 Duan, Liu and Sun used AVL-Fire V8.31 simulation software in their study. Extended 

Coherent Flame Model (ECFM) combustion model and K-εturbulence model were 

adopted to calculate mixture and combustion process. The ECFM model simulates the 

combustion process based on laminar flame speed and turbulent intensity. When mixture 

and combustion progress of HICE are simulated, mass and heat transportation, spray, and 

combustion models are active. Duan, Liu and Sun set boundary and initial conditions 

prior to simulation, with the air inlet boundary set as the total pressure, the hydrogen inlet 

boundary set as mass flow. Other boundaries are set as fixed wall or symmetry wall 

(where heat transfer is considered). Based on experience, Duan, Liu and Sun set the initial 

temperature of the fixed or symmetry wall from 300 to 600K. The initial pressure of the 

inlet pipe and cylinder were set to 98.1 kPa and 100 kPa, the initial temperature as 293K 

and 600K and initial turbulence as 1 and 10 m2/s2. Duan, Liu and Sun first calibrated and 

verified the mesh size and the calculation step length, to reduce calculation deviation. 

Figure 3.13: 3D CFD simulation model (Duan et al., 2013) 
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Decreasing the mesh size and calculation step length saw the fluctuation range of the 

calculated values become narrower. Once observed fluctuations were below 2%, the mesh 

size and calculation step length were deemed to have satisfied computing requirements.  

Duan, Liu and Sun’s simulation results were compared to the intake air mass tests to 

validate the simulation model. Figure 3.15 demonstrates that the results of the tests and 

simulations follow each other closely, with less than 5% error, validating the simulation. 

 

 

 

 

 

 

 

  

Figure 3.14: Simulation results (Duan et al., 2013) 
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4 REQUIREMENTS ANALYSIS 

4.1 Customer Requirements Analysis 

The customer requirements analysis examines what a hydrogen vehicle would need to 

accomplish to satisfy what potential customers would require from their hydrogen 

conversion vehicle. Literature surrounding the expectations of classic vehicle owners for 

renewable energy conversions is largely absent, thus the customer requirements for a 

hydrogen fuelled classic vehicle described below relies on anecdotal evidence from 

vehicle enthusiasts. The customer requirements are specified below.  

4.1.1 Fuel security for classic/historic vehicles in a post-hydrocarbon economy. 

Although it is likely that hydrocarbon fuels will remain available for classic motoring 

well into the future, the rising cost of motoring may develop appeal for conversion to 

alternative fuels for classic motoring enthusiasts. 

4.1.2 Maximise driving range and adequate cruising power 

Inherent to the conversion to alternative fuels is compromise. Conversions of petrol 

vehicles to dual fuel petrol-LPG systems often lowers power output and smoothness of 

engine operation in accommodating the combustion of two fuel types. This conversion is 

still very popular among enthusiasts due to the financial incentive of operating on a 

cheaper fuel, and increasing the total driving range of the vehicle (SprintGas, 2015). A 

review of literature suggests that a dual petrol-hydrogen fuel conversion vehicle would 

have considerably reduced driving range and power under hydrogen operation, while 

achieving a significant reduction in the emission of harmful pollutants (and possibly in 

time, cost of operation). To satisfy the needs of a potential hydrogen conversion classic 

vehicle, adequate cruising power would need to be achieved while maximising driving 

range.  

4.1.3 Maintain originality and preserve aesthetics of the vehicle where possible. 

Much of the appeal in classic vehicles is the aesthetics and originality of the vehicles. The 

desire of the owner to maintain the OEM specification of his/her vehicle can vary greatly, 

though it is generally accepted that a conversion to any alternative fuel should have a 

minimal impact on the visual aesthetics of the vehicle. Ideally, the identification of a 

hydrogen fuelled classic vehicle would not be identifiable from an OEM specification 

vehicle by visual inspection of the vehicle exterior. 
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4.1.4 Simplicity and owner-maintainable 

Many classic car enthusiasts perform maintenance works on their vehicle rather than 

employing the use of an automotive tradesperson. Motivations for this can include 

financial costs, but the owner often enjoys performing these tasks and the simplicity of 

the vehicles allows the owner to perform these works with confidence. If the installation 

of a hydrogen fuel system removes the ability to perform maintenance due to safety risks 

or added complexity, the conversion to hydrogen fuel will lose appeal for many 

enthusiasts.  

4.1.5 Minimize cost where possible 

The benefits of alternative fuel vehicles are still out of reach of many due to cost (EERE, 

2010). The cost of converting a classic vehicle to hydrogen operation should be 

minimised where possible to ensure the technology is affordable. 

4.1.6 Dual-fuel system 

The reduced driving range and power output of a hydrogen conversion vehicle and current 

infrastructure limitations necessitate a dual-fuel system to ensure adequate driving range 

and allow for normal petrol operation when greater power output is required (Barbir, 

undated; Verhelst & Wallner, 2009). 

4.1.7 Reliability of system 

Adding to the self-maintainability criteria, should the hydrogen system break down it is 

unlikely that the owner of the vehicle would be qualified or be able to safely perform 

repair works. Taking this into consideration, the reliability of the system is of great 

importance, and should not affect the reliability of petroleum operation in a dual-fuel 

application as can often be the case for LPG-Petroleum conversions (SprintGas, 2015). 

4.1.8 Design Specifications  

From this, system specifications can be established. They are as follows 

- The design must provide adequate power for cruising and mild acceleration  

- The design shall provide a driving range of at least 100km.  

- The design must not visually impede the outward aesthetics of the car 

- The design shall be designed with owner-maintenance in mind. 

- The system must be duel fuel. 

- The system must be designed with reliability in mind. 
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5 ENGINE ANALYSIS 

An engine analysis was performed to establish performance and fuel consumption 

characteristics of the Holden Holden 5.0L conversion engine concept. Specifically, the 

engine analysis:  

- Determines the theoretical power and energy requirements of the Holden 5.0L 

conversion engine concept through urban and extra-urban driving cycle analysis; 

- Establishes fuel efficiency of the Holden 5.0L hydrogen conversion engine using 

a Matlab Engine Simulation Model (ESM); 

- Compares ESM and drive cycle energy requirements for the drive cycles;  

- Establishes driving range for the Holden 5.0L hydrogen conversion concept; and 

- Briefly examines NOx emissions characteristics for the chosen operating 

conditions.  

For the purpose of analysis, where information is required for vehicle specifications are 

required (ie kerb weight, cross-section, etc), the specifications for a Holden HX GTS 

sedan have been selected. The vehicle was commonly fitted with the first generation 

Holden 5.0L engine.  

5.1 Drive Cycle Analysis 

5.1.1 Introduction 

A driving cycle is a data series representing the speed of a vehicle versus time. Driving 

cycles allow countries and organisations to assess the performance, emission and fuel 

consumption characteristics of vehicles through standardised testing. Fuel consumption 

and emission tests are performed on chassis dynamometers. Driving cycles are also used 

in vehicle propulsion simulations to predict the performance of ICEs (Brundell-Freij & 

Ericsson, 2005). A drive cycle analysis was performed to establish approximate 

performance requirements of the Holden 5.0L hydrogen conversion concept engine. The 

Highway Fuel Economy Test (HWFET) Driving Schedule and Urban Dynamometer 

Driving Schedule (UDDS) were the drive cycles selected for analysis. The full Matlab 

calculations and results for the following section can be found in Appendix D1 and 

Appendix E, respectively. 
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The HWFET is a dynamometer test representing highway driving conditions for light 

duty vehicles, developed by the United States Environmental Protection Agency (EPA). 

The HWFET was selected as the EPA cycle most applicable to Australian highway 

driving conditions. The HWFET has a duration of 765 seconds with an average speed of 

77.6 km/h, covering a distance of 16.5 km with no stops (EPA, 2015). Figure 5.1 depicts 

the velocity and changes in acceleration over the duration of the HWFET cycle.   

Figure 5.1: EPA Highway Fuel Economy Test Driving Schedule (EPA, 2015). 

Figure 5.2: Caption: EPA Urban Dynamometer Driving Schedule (EPA, 2015). 

The UDDS is a dynamometer test on fuel economy representing city driving conditions 

for light duty vehicles, mandated by the EPA.  
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Known in Australia as the ADR 27 cycle, the drive cycle was selected for analysis as it 

is applicable to Australian road vehicles (dieselnet, 2015). The UDDS has a duration of 

1,369 seconds with an average speed of  31.5 km/h, covering a distance of 11.99 km with 

frequent stops (EPA, 2015). Figure 5.2 depicts the velocity and changes in acceleration 

over the duration of the UDDS cycle.   

5.1.2 Method  

Each drive cycle’s velocity points were first copied into two-column matrices in separate 

text files in Matlab, then saved to the working directory. The HWFET.txt and UDDS.txt 

files were then used individually in the drive_cycle_analysis.m script file using a 

‘dlmread’ function. Using text files saved considerable space in the 

drive_cycle_analysis.m script file, and allowed quick changing between the drive cycles 

through the use of an ‘If-then’ statement. The columns of the matrix were assigned as 

time and velocity respectively. A 'difference’ function was used to obtain the acceleration 

between each velocity point. Figures 5.1 and 5.2 depict the vehicle speed and changes in 

acceleration over the duration of the HWFET and UDDS drive cycles, respectively. From 

this data, it was possible to determine the theoretical power requirement for the vehicle 

over each driving cycle.  

Power (𝑃) is a function of work rate, thus the power requirements can be obtained by 

dividing the work (𝑊) performed at any point by the time (𝑡). This relationship is shown 

in Equation 5.1: 

𝑃 =
𝑊

𝑡
=

𝐹 ∗ 𝑑

𝑡
 

Equation 5.1 

The power required is made up of the rate of work done to overcome rolling resistance 

and air resistance at speed, as well as the work done to accelerate the vehicle.  

The work done due to rolling resistance is a function of the coefficient of rolling resistance 

(μRR), the mass of the vehicle (𝑚), gravitational acceleration (𝑔), and the distance the 

force is applied over (𝑑). This relationship is shown in Equation 5.2. 

𝑊𝑅𝑅 = μRR ∗ 𝑚 ∗ 𝑔 ∗ 𝑑 Equation 5.2 

Work performed against air resistance is a function of the density of air ( 𝜌), the front 

surface area of the vehicle (𝐴𝑐𝑎𝑟), the vehicle drag coefficient (𝐶𝐷), and the distance the 

force is applied over (𝑑). This relationship is shown in Equation 5.3. 
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𝑊𝐴𝑅 =  ½ ∗ 𝜌 ∗ 𝐴𝑐𝑎𝑟 ∗ 𝐶𝐷 ∗ 𝑑 ∗ 𝑣2 Equation 5.3 

The work performed to accelerate a mass is a function of the object mass (𝑚), the rate of 

acceleration (𝑎), and the distance (𝑑) the force is applied over. This relationship is shown 

in Equation 5.4. 

𝑊𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑚 ∗ 𝑎 ∗ 𝑑 Equation 5.4 

The volume of fuel required from to perform this work can determine by dividing the 

value of total work by the total vehicle efficiency (𝜂), the density of fuel (𝜌𝑓𝑢𝑒𝑙), and the 

energy content per litre of fuel. This relationship is shown in Equation 5.5. 

𝐹𝑢𝑒𝑙 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
 𝑊𝑜𝑟𝑘

𝜂 ∗ 𝜌𝑓𝑢𝑒𝑙 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
 

Equation 5.5 

Assumptions for the vehicle, fuel, and air properties were made for to perform 

calculations and are shown in Figure 5.3. 

Figure 5.3: Vehicle, fuel, and air properties assumptions 

The Coefficient of Rolling Resistance is dependent on tyre type, the road surface being 

driven on, as well as other factors including tyre pressure. A coefficient of rolling 

resistance of 0.03 was selected, representing tyres on asphalt (Engineering Toolbox, 

2015).  

The energy density of petrol and hydrogen are taken to be 144 MJ/kg and 71 MJ/kg 

respectively (COD, 2001). The value of hydrogen energy density at 700Bar (142 MJ/kg) 

was halved, following ideal gas law. 

The density of air is taken to be that of air at standard temperature and pressure, 1.27 

kg/m3 (UBC, 2015). 
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The Holden HX GTS sedan case study vehicle has a factory kerb weight of 1,475 kg 

(Uniqe Cars & Parts, 2015). The weight of a single driver (70kg), and the estimated 

weight of the hydrogen system (200 kg) bring the simulation vehicle mass to 1,745 kg.  

The total width and height of the vehicle at kerb weight is specified as 1.887m and 1.364m 

respectively (Uniqe Cars & Parts, 2015). An estimate for the vehicles frontal cross 

sectional area was made by subtracting the approximate area underneath the vehicle (1.3 

m x 0.3 m, measured on vehicle), depicted in Figure 5.4. Leaving a cross sectional area 

of 2.1839 m2.  

Figure 5.4: HX Holden Monaro GTS sedan exterior dimensions 

A drag coefficient of a 1979 Ford mustang (Cd=0.46) was selected due to similarities in 

shape and style of the two vehicles (Gutenberg, 2015). More accurate drag coefficients 

for early model Holden vehicles were not available in literature. 
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5.1.3 Results 

The substitution of the vehicle properties and drive cycle data into Equations 5.1 to 5.5 

has been performed in Matlab script file title ‘drive_cycle_analysis.m’ and can be found 

in Appendix D1.  When run for each drive cycle, the script file returns the average wheel 

power requirement, maximum wheel power requirement, average vehicle speed, total 

distance travelled, average petrol fuel consumption,  average hydrogen fuel consumption, 

and a gasoline gallon equivalent for hydrogen fuel consumption. Figures 5.5 and 5.6 

depict the results of the script file execution that are displayed to the command window 

for the HWFET and UDDS drive cycles, respectively.  

Figure 5.5: Command window results display for HWFET driving cycle 

Figure 5.6: Command window results display for UDDS driving cycle 
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Figure 5.7: Total Power requirement vs time for HWFET cycle 

Figure 5.8: Total Power requirement vs time for UDDS cycle 

The average wheel power requirements are 20.9175 kW and 9.4389 kW for the HWFET 

and UDDS drive cycles respectively, the highway cycle requiring approximately twice 

the power required for the urban cycle. The maximum wheel power requirements are 

38.4594 kW and 45.0988 kW for the HWFET and UDDS respectively. The vehicle 
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averages a speed of 77.5763 km/h over the HWFET drive cycle, over twice the average 

speed of 33.5071 km/h for the UDDS drive cycle, travelling a distance of 16.5065 km 

and 11.9902 km in each cycle respectively.  For the HWFET cycle, the vehicle achieves 

a theoretical petrol fuel consumption of 11.0831 L/100km, and 5.062 kg/100km of 

hydrogen; a gasoline gallon equivalent of 20.9738 L/100km. For the UDDS cycle, the 

vehicle achieves a theoretical petrol fuel consumption of 12.1807 L/100km, and 5.5633 

kg/100km of hydrogen; a gasoline gallon equivalent of 20.0837 L/100km. 

 

Data analysis 

In order to significantly reduce the computational time the mean velocity and mean power 

requirement was obtained from the HWFET and UDDS driving cycles to be used in the 

ESM. If the ESM was made to iterate for all the velocity and resultant power data points 

in the drive cycles, the ESM would have to run for 766 and 1370 iterations for the HWFET 

and UDDS driving cycles respectively, significantly increasing computation time. The 

assumption to adopt the mean values for velocity and power requirements was analysed 

to ensure they did not significantly reduced the accuracy of the results.  

In order to measure the accuracy of this assumption the percentage of the data within one 

standard deviation above and below the mean was calculated. Although the drive cycle 

data were not representative of a normal distribution the standard deviation was 

considered an appropriate means of representing the variance of the data for the purpose 

of confirming the accuracy of the assumption.  

The HWFET drive cycle distribution for the velocity vs time was negatively skewed 

(skewed to the right) due to being at higher velocities for longer durations. Similarly the 

power vs time distribution was slightly negatively skewed but very close to a normal 

distribution. In contrast the UDDS drive cycle distribution for velocity vs time and power 

vs time were both positively skewed (skewed to the left) due to frequent zero/low 

velocities and thus low power due to frequent stopping of vehicles in urban environments.  

Figure 5.9 shows the velocity vs time data of the HWFET Driving Cycle which fell within 

one standard deviation (16.5 km/h) above and below the mean velocity of 77.6 km/h. 
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Figure 5.9: Spread of velocity data points for the HWFET driving cycle 

It was calculated that 84.9% of the HWFET Driving Cycle velocity vs time data fell 

within one standard deviation below (61.1 km/h) and one standard deviation above (94.1 

km/h) the mean velocity. This was clear to see on Figure 5.9, where the majority of the 

data points fell between this range. 

Similarly Figure 5.10 shows the power vs time values for the HWFET driving cycle that 

fell between one standard deviation (5.9 kW) above and below the mean power of 

20.9kW.  

Figure 5.10: Spread of total power data points for the HWFET driving cycle 
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It was calculated that the percentage of power vs time values that fell between the range 

of one standard deviation below (15.0 kW) and above (26.8 kW) the mean was 75.2%.  

Figure 5.11 shows the velocity vs time data from the UDDS Driving Cycle which fell 

within one standard deviation (23.7 km/h) above and below the mean velocity of 31.5 

km/h. It was clear from this figure that the majority of this data also fell within this range.  

Figure 5.11: Spread of velocity data points for the UDDS driving cycle 

It was calculated that 63.5% of the velocity vs time data for the UDDS Driving Cycle fell 

within one standard deviation below (7.9 km/h) and one standard deviation above (55.2 

km/h) the mean velocity. Similarly Figure 5.12 shows the power vs time value for the 

UDDS driving cycle that fell within the range of one standard deviation (7.0 kW) above 

and below the mean power of 9.4 KW.  

Figure 5.12: Spread of total power data points for the UDDS driving cycle 
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It was calculated that the percentage of power vs time values that fell within the range of 

one standard deviation below (2.4 kW) and above (16.4 kW) above the power mean was 

85.1%.  

From this analysis it was considered that using the mean velocity and power was an 

appropriate assumption that significantly improved the computational efficiency of the 

model without significantly reducing the accuracy of the results.  

 

5.2 Ahrind Matlab Engine Simulation Model (AESM) 

5.2.1 Introduction 

An engine simulation model, ahrind was supplied to aid in the investigation of HICE 

performance characteristics. The ahrind script file is used to determine performance 

characteristics of a fuel injected engine based on a user (specified arbitrary) heat release 

profile as a function of crank angle (Buttsworth, 2007). The model is an evolution of an 

ESM created by Ferguson (1986). The model performs quasi-dimensional analysis 

including combustion and heat transfer effects, and includes temperature and pressure 

dependent combustion products equilibrium. The model integrates the governing 

differential Equations over the compression and power strokes of the combustion cycle 

using Matlab ODE solvers (Malpress, 2011).  

Figure 5.13: The AESM output for in cylinder pressure change over the compression and expansion strokes 

Prior to modification, the model output plots of pressure, temperature, heat transfer, work, 

heat leakage, and heat flux vs crank angle over the compression and expansion strokes. 
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The in-cylinder pressure vs crank angle output from the original model in shown in Figure 

5.13. The solid line and blue circle marker points represent the AESM data and reference 

data of the experimentally confirmed performance from the original Ferguson (1986) 

program (Malpress, 2011). 

5.2.2 Method 

The unmodified AESM provided outputs for fixed input values of engine speed, fuel-air 

equivalence ratio, and induction pressure. Modifications were made to the AESM to 

accommodate modelling of hydrogen combustion over a range of fuel-air equivalence 

ratios (𝜙), induction pressures (p1) and engine speeds (RPM).  

Simply changing RPM, p1 and ϕ to arrays was not possible without making significant 

changes to the complex matrix multiplication throughout the numerous script files that 

the simulation relies upon to perform analysis. It became apparent that the code needed 

to iterate for different input values for these variables and a new script file needed to be 

developed.  

The Holden_5L_Engine_analysis.m script file (Appendix D2) was developed to obtain 

power and fuel consumption characteristics of the concept engine. Based on a review of 

literature it was decided that the simulation should be iterated for values of hydrogen fuel-

air equivalence ratios of 0.35 < 𝜙 < 1.2 (Sopena et al., 2010; Verhelst & Wallner, 2009), 

and for induction pressures ranging between 30 kPa < P < 140 kPa (AA1Car Auto 

Diagnosis, 2015; JEGS Performance, 2015).  

Figure 5.14: Creation of zeros matrix for desired output in Holden_5L_analysis.m 

The ranges were transcribed into matlab as vectors of fuel-air ratios and induction 

pressures.  A matrix of zero values the size of the vector lengths was created for each 

desired output, namely wheel power and fuel consumption outputs. When each output is 
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calculated, the value is then assigned to its respective place in the zeros matrix, allowing 

a surface plot to be generated. Figure 5.14 depicts the creation of the power output zeros 

matrix. 

The ahrind.m and enginedata.m script files were then placed within a nested loop, 

allowing the iteration of ϕ and p1 for the range of range of fuel-air equivalence ratios and 

induction pressure for a fixed rpm. The developed loop is depicted in Figure 5.11. 

The relevant Holden 5.0L engine specifications were then assigned to the variables in the 

enginedata.m script file (Appendix C1), seen in Figure 5.15.  

Figure 5.15: Creation of nested loop for induction pressure and fuel-air equivalence ratio in Holden_5L_analysis.m 

The average engine speed taken from the drive cycle analysis was assigned to the RPM 

variable and an air intake air temperature of 300K was assumed.  

Figure 5.16: Holden 5.0L engine specifications assigned to enginedata.m script file 

The AESM model is based on polynomial curve fits to the thermodynamic data for each 

species in the fuel mixture. The fueldata.m script file (Appendix C9) is used to store the 

polynomial coefficients for species’ thermodynamic properties where they can be called 

upon in the enginedata.m script file. To accommodate the simulation of the hydrogen 

combustion, a vector of the polynomial coefficients for hydrogen gas were added to the 

fueldata.m script file, using data from Heywood (1988). Figure 5.16 depicts the 

coefficients vector added to the sript file.  
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Figure 5.17: Addition of hydrogen polynomial coefficients for species thermodynamic properties to fueldata.m script 

file to accommodate simulation of hydrogen gas combustion.  

Noting that the alpha value, representing the number of carbons in the species is a non-

zero value, not reflective of real hydrogen combustion. As the AESM was originally 

programed for the combustion of hydrocarbons, the use of the ODE solver is dependent 

on carbon content. Initially, a zero value of carbon was assigned to alpha for hydrogen, 

and the resulted in fatal run errors in Matlab. Discovering carbon dependency in the 

Matlab coding resulted in a process of trial and error to find an alpha value that was small 

enough to not significantly affect results of the model, and large enough to not produce 

errors in the solving of ODEs.  

For greater accuracy of results, the fixed density of air replaced with a variable density, 

calculated using the ideal gas law and inputs for temperature and the changing induction 

pressure. Figure 5.18 depicts the code block used to determine the density of air over 

various induction pressures. For simplicity, it was assumed that the density of hydrogen 

gas is injected at atmospheric pressure, having a density of 0.089 kg/m3
 (COD, 2001).  

Figure 5.18: Determining inducted air density via ideal gas law 
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A number of vehicle and other properties required for calculations were then assigned to 

variables; namely the engine capacity, the assumed driveline efficiency (0.95), and the 

density of petrol (737 kg/m3). 

 Figure 5.19: Ground speed is calculated as a function of the vehicles effective drive ratio and engine speed 

To determine the fuel consumption in the form of L/100km, the ground speed of the 

vehicle needed to be determined.  The vehicle is assumed to have a Holden M21 4 speed 

transmission, commonly used with production vehicles fitted with the Holden 5.0L, with 

a direct drive ratio in top gear. The ‘economy’ diff ratio option of 3.08:1 has been selected 

for simulation, and 235/60/R14 tyres are assumed to be on the standard 14 inch wheels, 

all commonly fitted to the HX Holden Sedan production model (Uniqe Cars & Parts, 

2015). The vehicle ground speed is a function of the vehicle’s effective drive ratio, engine 

speed and the circumference of the driving wheels. Figure 5.19 depicts the calculation 

used to obtain ground speed as a function of drive ratio and engine speed.  

Power 

The power output of the vehicle was obtained through Equations 5.6 to 5.9 

The relationship between brake power (𝑃𝐵), wheel power (𝑃𝑊), and drivetrain efficiency 

(𝜂𝑑) is expressed in Equation 5.6. 

𝜂𝑑 =
𝑃𝑤

𝑃𝐵
 

Equation 5.6 

The relationship between engine mechanical efficiency (𝜂𝑚), engine indicated power 

(𝑃𝑖) and engine brake power (𝑃𝐵) is shown in Equation 5.7. 
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𝜂𝑚 =
𝑃𝐵

𝑃𝑖
 

Equation 5.7 

The indicated power of the engine is given by the expression in Equation 5.8. 

𝑃𝑖 =
𝑖𝑚𝑒𝑝 ∗ 𝑉𝑒 ∗ 𝑁

𝑧 ∗ 60
 

Equation 5.8 

Where imep is the indicated mean effective pressure, Ve is the engine swept volume, N 

is the engine speed, and z is the number of revolutions per power stroke (2 for four-stroke 

engines). Rearranging Equations 5.6, 5.7, and 5.8, we can obtain an expression for wheel 

power, shown in Equation 5.9. 

𝑃𝑤 = 𝜂𝑑 ∗ 𝑃𝐵 

𝑃𝑤 = 𝜂𝑑 ∗ 𝜂𝑚 ∗ 𝑃𝑖 

𝑃𝑤 =
𝜂𝑑 ∗ 𝜂𝑚 ∗ 𝑖𝑚𝑒𝑝 ∗ 𝑉𝑒 ∗ 𝑁

𝑧 ∗ 60
 

Equation 5.9 

 

Fuel consumption 

The idealised stoichiometric combustion of hydrogen in air is given in Equation 5.10 

𝐻2 + 0.5(𝑂2 + 3.76𝑁2) → 𝐻2𝑂 + 1.88𝑁2 Equation 5.10 

The number of moles of each species of the reactants in a stoichiometric combustion of 

hydrogen and air is shown to be two, one and 1.88 for hydrogen, oxygen and nitrogen 

respectively. Multiplying the molar weights of each of these species by their respective 

number yields the molar weights of fuel and oxidiser mixture. This relationship is shown 

in Equation 5.11. 

𝑀𝑊𝐻2 = 𝑁𝐻 ∗ 𝑀𝑊𝐻 

𝑀𝑊𝑎𝑖𝑟 = (𝑁𝑂 ∗ 𝑀𝑊𝑂) + (𝑁𝑁 ∗ 𝑀𝑊𝑁) 

Equation 5.11 

The ratio of the two mixtures is known as the fuel-air ratio. The fuel-air ratio is shown in 

Equation 5.12. 

𝐹𝐴𝑅 =
𝑀𝑓𝑢𝑒𝑙

𝑀𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑟
=

𝑀𝑊𝐻2

𝑀𝑊𝑎𝑖𝑟
 

Equation 5.12 
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The stoichiometric fuel air ratio is the ratio of the two mixtures at stoichiometric 

combustion conditions. Substituting the molar weights for the stoichiometric combustion 

process (Equation 5.10) into Equation 5.13, we obtain the stoichiometric fuel-air ratio.  

𝐹𝐴𝑅𝑠𝑡𝑜𝑖 = (
𝑀𝑊𝐻2

𝑀𝑊𝑎𝑖𝑟
)

𝑠𝑡𝑜𝑖

 
Equation 5.13 

Any instantaneous fuel-air ratio can now be obtained by multiplying the stoichiometric 

fuel air ratio by the fuel-air equivalence ratio (𝜙). This relationship is shown in Equation 

5.14. 

𝐹𝐴𝑅 = 𝐹𝐴𝑅𝑠𝑡𝑜𝑖 ∗ 𝜙 Equation 5.14 

Expanding Equation 5.12 and solving for volume we obtain an expression for volume of 

fuel terms of volume of air, densities and fuel-air ratio, shown in Equations 5.15 and 5.16. 

 

𝐹𝐴𝑅 =
𝑀𝑓𝑢𝑒𝑙

𝑀𝑜𝑥𝑖𝑑𝑖𝑠𝑒𝑟
=

𝜌𝑓𝑢𝑒𝑙 ∗ 𝑉𝑓𝑢𝑒𝑙

𝜌𝑎𝑖𝑟 ∗ 𝑉𝑎𝑖𝑟
=

𝜌𝑓𝑢𝑒𝑙

𝜌𝑎𝑖𝑟
∗

𝑉𝑓𝑢𝑒𝑙

𝑉𝑎𝑖𝑟
 

Equation 5.15 

𝑉𝑓𝑢𝑒𝑙 − 𝐹𝐴𝑅 ∗
𝜌𝑎𝑖𝑟

𝜌𝑓𝑢𝑒𝑙
∗ 𝑉𝑎𝑖𝑟 = 0 Equation 5.16 

Knowing that the sum of the fuel and air in the cylinder prior to compression will be equal 

the swept cylinder volume (𝑉𝑏𝑑𝑐), we can expression the swept volume of the cylinder in 

terms of each gasses volume. This relationship is shown in Equation 5.17. 

𝑉𝑓𝑢𝑒𝑙 + 𝑉𝑎𝑖𝑟 = 𝑉𝑏𝑑𝑐 Equation 5.17 

Arranging Equations 5.16 and 5.17 into matrix form we obtain Equation 5.18. 

[

1 1

−1 (𝐹𝐴𝑅 ∗
𝜌𝑎𝑖𝑟

𝜌𝑓𝑢𝑒𝑙
)] ∗ [

𝑉𝑓𝑢𝑒𝑙

𝑉𝑎𝑖𝑟
] = [

𝑉𝑏𝑑𝑐

0
] 

Equation 5.18 

In this form, the unknowns (𝑉𝑓𝑢𝑒𝑙 and 𝑉𝑎𝑖𝑟) are expressed in terms of known values.  

Solving for the volumes (using ‘linsolve’ function in Matlab) we can obtain the rate of 

fuel consumption using the expression in Equation 5.19. 

𝐹𝐶𝐾𝑔 𝐻2 𝑝𝑒𝑟 ℎ𝑟 =
𝑉𝑓𝑢𝑒𝑙 ∗ 𝜌𝐻2 ∗ 60 ∗ 𝑁 ∗ 8

𝑧
 

Equation 5.19 
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Where 𝜌𝐻2 is the density of the inducted hydrogen, 60 ∗ 𝑁 is the engine speed (rev/hr), 8 

is refers to the number of cylinders, and 𝑧 is the number of revolutions per power stroke 

(2 for a four-stroke engine).  

The consumption of hydrogen fuel per 100km is then the hourly consumption rate divided 

by the groundspeed, multiplied by 100. Equation 5.20 shows this relationship. 

𝐹𝐶𝐾𝑔 𝐻2 𝑝𝑒𝑟 100𝑘𝑚 = (
𝐹𝐶𝐾𝑔 𝐻2 𝑝𝑒𝑟 ℎ𝑟

𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑝𝑒𝑒𝑑
) ∗ 100 

Equation 5.20 

 

Microsoft Excel  

The matrix data outputs of wheel power and fuel consumption were copied from Matlab 

into Microsoft Excel for further analysis. The average power requirement from the drive 

cycle analysis was used as a ‘target power’ to identify all combinations of fuel-air ratio 

and induction pressure that would produce the required power for the HWFET and UDDS 

cases. The corresponding fuel consumption for that particular combination is also 

determined. 

Linear interpolation 

If two points are assigned the coordinates (𝑥0, 𝑦0) and (𝑥1, 𝑦1) along a straight line, the 

general form of the Equation to find the corresponding coordinate for any one known 

value along the line between (𝑥0, 𝑦0 and 𝑥1, 𝑦1) as found in Equation 5.21. 

𝑦 = 𝑦0 + (𝑦1 − 𝑦0) ∗ (
𝑥 − 𝑥0

𝑥1 − 𝑥0
) 

Equation 5.21 

Using a ‘forecast’ function, the exact value of induction pressure that corresponds to the 

target wheel power output (𝑥) for each value of ϕ was obtained. Using an ‘mround’ 

function, the value obtained for the induction pressure is rounded to the nearest 5,000 Pa. 

An ‘if-then’ statement then adds or subtracts 5,000 Pa to determine the values for 

induction pressure either side of the exact value obtained (𝑥0 and 𝑥1). ‘Vlookup’ 

functions are then used to obtain the fuel consumption Figures at the rounded pressures 

and ϕ value (𝑦0 and 𝑦1). The exact fuel consumption Figure for each equivalence and 

induction pressure scenario (𝑦) were obtained.  
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5.2.3 Results 

Figure 5.20 and 5.21 depict surface plots of the wheel power produced over the range of 

fuel-air equivalence ratios and induction pressures for the HWFET and UDDS driving 

cycles. In both cases the power rises gradually from a fuel-air ratio of 0.35 and peaks at 

1.0 before lowing with further increases. Increasing induction pressure is also observed 

to proportionally increase power output for both cases. Although both plots appear similar 

it is observed that the UDDS surface plot displays a proportionally lower power output 

compared to the HWFET cycle. A sharp rise in power is observed at an equivalence of 

0.9 in both cases. Peak power outputs of 53kW and 67 kW are for the HWFET and UDDS 

cycles respectively. 

Figure 5.20: Surface plot of power output vs equivalence ratio and induction pressure for the average engine speed of 

the HWFET driving cycle.  

Figure 5.21: Surface plot of power output vs equivalence ratio and induction pressure for the average engine speed of 

the UDDS driving cycle. 
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Figure 5.22 and 5.23 depict surface plots of the hydrogen fuel consumption produced over 

the range of fuel-air equivalence ratios and induction pressures for the HWFET and 

UDDS driving cycles. In both cases the increase of either induction pressure or the fuel-

air equivalence ratio is met with an increase in fuel consumption, peaking at the highest 

numerical value of induction pressure and fuel-air equivalence at 15 and 27 kg/100km for 

the HWFET and UDDS cases respectively. The sharp increase in power output observed 

in Figures 15.18 and 5.19 do not appear to effect the surface plots of fuel consumption at 

the same point. Although both plots appear similar it is observed that the UDDS surface 

plot displays a proportionally higher fuel consumption output compared to the HWFET 

cycle. 

Figure 5.22: Surface plot of hydrogen fuel consumption vs equivalence ratio and induction pressure for the average 

engine speed of the HWFET driving cycle. 

Figure 5.23: Surface plot of hydrogen fuel consumption vs equivalence ratio and induction pressure for the average 

engine speed of the UDDS driving cycle. 
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Figures 5.24 and 5.25 depict the numerical outputs for wheel power and fuel consumption 

over the fuel-air ratio and induction pressure ranges that have been transcribed into 

Microsoft Excel for the HWFET driving cycle.  

Figure 5.24: numerical outputs for wheel power over the fuel-air ratio and induction pressure ranges that have been 

transcribed into Microsoft Excel for the HWFET driving cycle. 

Figure 5.25: numerical outputs for fuel consumption over the fuel-air ratio and induction pressure ranges that have 

been transcribed into Microsoft Excel for the HWFET driving cycle. 

Figure 26 shows the use of Microsoft excel functions to determine the fuel consumption 

at the induction pressure and fuel-air ratios that produce the target power for the HWFET 

driving cycle. The lowest hydrogen fuel consumption figure for the HWFET driving cycle 

is 4.18 kg/100km (15.4 GGE), at an induction pressure of 91227 Pa and a fuel air ratio of 

0.35.  

Figure 5.26: Fuel consumption data for combinations of phi and induction pressure to produce the target power of 

20.92 kW for the HWFET driving cycle at 1980 rpm 



85 

 

Figures 5.27 and 5.28 depict the numerical outputs for wheel power and fuel consumption 

over the fuel-air ratio and induction pressure ranges that have been transcribed into 

Microsoft Excel for the UDDS driving cycle. 

Figure 5.27: Numerical outputs for wheel power over the fuel-air ratio and induction pressure ranges that have been 

transcribed into Microsoft Excel for the UDDS driving cycle. 

Figure 5.28: Numerical outputs for fuel consumption over the fuel-air ratio and induction pressure ranges that have 

been transcribed into Microsoft Excel for the UDDS driving cycle. 

Figure 5.29 shows the use of Microsoft excel functions to determine the fuel consumption 

at the induction pressure and fuel-air ratios that produce the target power for the UDDS 

driving cycle. The lowest hydrogen fuel consumption figure for the UDDS driving cycle 

is 5.34 kg/100km (20.27 GGE), at an induction pressure of 61707 Pa and a fuel air ratio 

of 0.35 

Figure 5.29: Fuel consumption data for combinations of phi and induction pressure to produce the target power of 

9.44 kW for the UDDS driving cycle at 1645 rpm. 
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Figure 5.30 offers a ‘sectioned’ top view of the wheel power surface plots at 20.92 kW 

and 9.44 kW respectively. The plot details the combinations of fuel-air equivalence ratio 

and induction pressure that produce the target power for the HWFET and UDDS driving 

cycles. It is observed that the curves are of a similar shape. Second order polynomial 

curve fits have been applied to each dataset, and show a similar fit to the data with R2 

values of 0.9909 and 0.9905 for the HWFET and UDDS cases respectively. In both cases, 

the induction pressure required for the lowest fuel air ratio (𝜙 =  0.35) is below 

atmospheric pressure (100 kPa).  

Figure 5.30: a ‘sectioned’ top view of the wheel power surface plots in Figures 5.18 and 5.19 at 20.92 kW and 9.44 

kW. 
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NOx emissions 

The ideal driving strategy for both the HWFET and UDDS driving cycles was identified 

as fuel-air equivalence ratios of 0.35 and close to WOT conditions. Recalling the review 

of Verhelst & Wallner in section 3.8.6, it is discussed that The combustion of lean 

hydrogen-air mixtures with equivalence ratios 0.35 results in extremely low amounts of 

NOx emissions. Figure 3.10 from section 3.8.6 confirms that increasing the fuel air 

equivalence ratio up to 0.5 (as could happen under heavy acceleration) would still produce 

extremely low NOx emissions.  
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5.3 Discussion 

5.3.1 Overview of results 

Table 5.1 shows a summary of key results from sections 5.1.3 and 5.2.3 

Table 5.1: Summary of key results from sections 5.1.3 and 5.2.3 

 

The drive cycle analysis returns a hydrogen fuel consumption of 5.06 kg/100km and 5.56 

kg/100km for the extra-urban and urban driving cycles respectively, a gasoline gallon 

equivalent of 19.08 L/100km and 20.97 L/100km. This provides a theoretical endurance 

of 110.67 km and 100.7 km from vehicles proposed 5.6 kg of useable hydrogen storage 

for the cycles respectively. 

The engine simulation model returns a hydrogen fuel consumption of 4.18 kg/100km and 

5.34 kg/100km for the extra-urban and urban driving cycles respectively, a gasoline 

gallon equivalent of 15.4 L/100km and 20.27 L/100km. This provides a theoretical 

endurance of 133.62 km and 104.14 km from vehicles proposed 5.6 kg of useable 

hydrogen storage for the cycles respectively. 

5.3.2 Drive cycle analysis 

During a highway drive cycle, a vehicle will accelerate through transmission drive ratios 

to reach a desired speed. Any points where the vehicle then decelerates or accelerates 

would see another change in transmission drive ratio selected. For the HWFET drive 

cycle analysis, the assumption was made that the vehicle remained at a constant 
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transmission drive ratio (1:1), even when accelerating from rest at the start of the drive 

cycle. The additional code block required to automate the selection of the correct 

transmission drive ratio for each acceleration or velocity is significant.  

The Holden 5.0L will ‘comfortably’ operate in each gear between engine speeds of 1,200 

to 3000 rpm, corresponding to a speed range of 27-64 km/h and 47-117 km/h for second 

(1.83:1) and fourth (1:1) gears respectively, using the M21 4 speed transmission and a 

3.08 final drive ratio specified in section 5.1.2. The analysis of velocity data point spread 

in section 5.1.3 showed that for the HWFET drive cycle 84.9% of the velocity points were 

inside one standard deviation (16.5 km/h) either side of the mean velocity of 77.6 km/h. 

Thus 84.9% of the data points exist between a ground speed of 61.1 to 94.1 km/h, well 

inside the ‘comfortable’ operating range of 47-117 km/h for fourth gear. The effect the 

data points that exist outside this range however cannot be ignored. It is predicted that the 

assumption of selecting 4th gear for the entire duration of the HWFET will indicate a 

lower fuel consumption that would be observed in reality. Further, it should be noted that 

the changes in acceleration across the driving cycle, including those within the 

‘comfortable’ engine operating speeds, would likely require the selecting of a lower gear 

to perform the acceleration in the time between data points. This will further weaken the 

quality of results. 

Similarly for the UDDS drive cycle, the analysis of velocity data point spread in section 

5.1.3 showed that 75.2% of the velocity points were inside one standard deviation (23.7 

km/h) either side of the mean velocity of 31.5 km/h, giving a range of 7.9 to 55.2 km/h. 

A large amount of data points then do not exist within the lower half of the ‘comfortable’ 

operating range of 27-64 km/h for second gear, with 114 data points of the 1,370 of the 

cycle alone are spent at rest (0 km/h). This suggests that 1st gear, which has an operating 

speed of between 0-38 km would be used in reality where ground speed did not exceed 

the lower limit of the operating speed for second gear.  

Further work on improving the accuracy of the drive cycle analysis would include 

creating a block of code to automatically select the correct drive ratio required for the 

acceleration and speed at each data point. A short term method for mildly improving 

accuracy of results for the UDDS test would be to perform the analysis again using a 

fictitious transmission drive ratio that is a function of the OEM transmission drive ratios 

for first and second gear and the percentage of time spent in each gear. 
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The drive cycle analysis assumes various vehicle property coefficients and static 

efficiencies. For example, a lack of literature available surrounding the automotive drag 

coefficients for earlier generations of vehicle meant a ‘similar’ body shape of a 1979 Ford 

mustang coupe (Cd = 0.46) was selected as being the closest representation of the Holden 

HX sedan.  

The static assumptions of driveline efficiency of 0.95 and fuel mass and energy densities 

are grounded in literature (COD, 2001; Consumer Energy Center, 2015), however the 

assumption of a static total vehicle efficiency is not as accurate as the thermal efficiency 

of the engine does not remain constant. 

5.3.3 Engine Analysis  

The wheel power surface plots in demonstrate a clear proportionality between induction 

pressure and power output. It is expect that an increase in induction pressure will increase 

the volume of the engine resulting in a greater volume of charge inducted, and in turn 

increasing the power output.  

The HWFET wheel power data is proportionally higher than the UDDS data, though not 

by much (14 kW at max power). This is likely attributed to the similar engine speeds of 

1,645 rpm and 1,980 rpm respectively. It seems counterintuitive then that the fuel 

consumption plot shows significantly higher values for the UDDS driving cycle. We 

recall however that the assumed transmission drive ratios for the UDDS and HWFET are 

1.83:1 and 1:1 respectively. This means for similar power output rates, the distance 

travelled in the HWFET is 54% further than in the UDDS, increasing the fuel 

consumption rate per kilometre travelled.  A limited change in thermal efficiency is also 

observed between the two engine speeds. 

A sharp spike in power is noted at phi = 0.9, displaying the maximum powers for the 

HWFET and UDDS cycles at 67 kW and 53 kW respectively. Attempts to shorten the 

iteration phi step at this point to investigate further were met with the codes inability to 

resolve the ODE for those conditions. This anomaly should be investigated in further 

ESM revisions. 

Ignition timing needs advancing at higher rpm. 5 x rpm = 1/5 duration of piston in ‘burn 

zone’. Vacuum advance and centrifugal device in distributor advance ignition timing. 

This could be accounted for in future ESM revisions. 
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It is assumed that a throttling event does not change temperature of inducted gas much. 

The air is inducted at standard temperature, and would significantly increase in 

temperature upon entry to the combustion chamber, however the time period is extremely 

small, justifying an assumption of intake temperature close to atmospheric.  

 

6 CONCEPT DESIGN 

6.1 Trade Study 

Introduce areas for design or modification under storage/refuelling, delivery, Induction, 

ignition, combustion, exhaust, lubrication and cooling, and safety categories. 

6.1.1 Storage and delivery 

A review of hydrogen storage technology undertaken in section 3.4.4 found that on-board 

storage of hydrogen of hydrogen for transportation applications remains as one of the 

most technically challenging barriers to the widespread commercialization of hydrogen-

fuelled vehicles (FCTO, 2015). A review of Verhelst and Walner (section 3.5.5) found 

that several prototype vehicles have already been produced by manufactures using 

compressed hydrogen as a fuel stock.  

A compressed hydrogen Tank developed by EERE and Quantum Technologies that 

provides 5.6 kg of usable hydrogen has been selected for the design concept. The tank 

comes in a 258L, 350Bar or 149L, 700Bar storage options, prices at $ 2727 and $3334 at 

the time of publication (2010).  Assessing the present day value of the storage costs is not 

straightforward. Changes in the price of composite or other technology since the time of 

publication may drastically change the actual present cost of the technology. As the retail 

price of the storage options were not give, it is also difficult to determine added shipping 

and handling costs as well as retailer mark up. A net present value for each tank 

arrangement considered, indexed at 2.6% pa has been assumed, and a nominal 25% 

additional cost for shipping, handling and retail mark up have been assumed. This price 

adjustment brings the total storage costs to AUD $3,872 and AUD $4,734. These 

assumptions are purely nominal and must not to be used to accurately predict the current 



92 

 

value of hydrogen storage options, but rather indicate a possible cost scenario for the sake 

of the investigation. Figure 6.1 provides details of the storage tank. 

Figure 6.1: Compressed H2 storage tank details 

6.1.2 Throttle control 

A review of literature and results from engine simulation have concluded that to achieve 

high fuel efficiency and avoid abnormal combustion phenomena, a lean-burn operating 

strategy at WOT will be employed wherever possible.  

This mode of operation is incompatible with the existing mechanical throttle control 

system and thus must be replaced with electronic throttle, also known as a ‘drive-by-wire’ 

system. The drive-by-wire system will use a position sensor on the accelerator and control 

the throttle position for both petrol and hydrogen operation through the ECU or a separate 

PID controller.  

Development of a drive-by-wire throttle control system for the Holden 5.0L hydrogen 

conversion concept is an area of significant investigation. The system must: 

- Use an accelerator position sensor to determine the appropriate throttle position 

for hydrogen and petrol operation 

- Be compatible with either the standard Holden 5.0L carburettor or an 

aftermarket/redesigned carburettor. 

- Easily switch between hydrogen and petrol modes. 

It is also possible that an aftermarket cruise control system could be reprogramed to suit 

the needs of the hydrogen operation while leaving the mechanical acceleration mode 

intact for petrol operation. If this is not possible, it is worth investigating if a similar 

geometry or design could be used to render electronic control inactive during petrol 
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operation such that mechanical throttle control could remain the mode throttle control. 

This will further increase the independence of the two systems; reducing the likelihood 

that a failure of one fuel operating mode will affect the other mode.  

Literature has shown that complete aftermarket cruise control kits for retro fitment classic 

vehicles can be purchased for USD $290 at the time of writing (Mustang 360, 2015). It is 

difficult to price such a control system due to uncertainty of design, and is an ideal topic 

for further investigation.  

6.1.3 Inlet manifold 

Harrop Engineering is an Australian engineering specialising in the design and 

manufacture of performance and racing products and have a prominent place in the 

history of Australian motorsport.  

Harrop sell both a single and a dual plane manifold to suit Holden 5.0L engines with later 

model (injection) cylinder heads. Both manifolds can be machined to suit the customer’s 

carburettor bolt pattern, and both can be machined to suit fuel injection. The manifolds 

are both priced at $1,089AUD at the time of writing for the EFI compatible model.  

The Single plane manifold is designed for an optimum operating range of 3500-7000 rpm, 

and suitable for competition purposes. The carburettor bolt face is 180mm above the top 

plane of the engine block. Figure 6.2 shows the stock list photograph for the single plane 

manifold.  

Figure 6.2: Harrop inlet manifold stock list photograph 

Caption: Harrop Engineering Single Plane Manifold to suit Holden 5.0L with late model 

EFI cylinder heads only. 
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The dual plane manifold has been designed for low-end torque applications and street 

stop-and-go driving, with an optimum operating range of 1000-5500 rpm. The carburettor 

bolt face is 120mm above the top plane of the engine block  

The low height of the dual[KPR1] plane manifold would allow for the conversion to take 

place with no modification to the vehicle bonnet, rendering it as the preferred option 

against aesthetics criteria. The dual plane manifold has a more desirable optimum engine 

speed operating range for the concept engine application.  

6.1.4 Injectors  

A literature review surrounding the selection of injectors in section 3.3.6 concluded that 

gaseous fuel injectors are necessary for hydrogen fuel injection. It was established that 

appropriate modification to valve seat material must be made to account for a lack of 

upper cylinder lubrication from the hydrogen combustion (compared to petroleum 

combustion and even other gaseous fuels) (Verhelst & Wallner, 2009). Quantum 

Technologies is provider of hydrogen storage and combustion solutions, and appears 

frequently in literature, used in the works of Sopena et al. (2010) and supply hydrogen 

solutions to vehicle manufacturers including Ford and Toyota (Quantum Technologies, 

2015).  

The Quantum alternative fuel injector is designed for multi-port internal combustion 

engine applications, and is tested to achieve over 150 million cycles. The Quantum 

injectors are low impedance devices requiring a peak and hold drive circuit. The system 
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voltage is supplied during the peak current time followed by a hold current for the 

remainder of the pulse (Quantum Technologies, 2015). Figure 6.3 depicts the Quantum 

Technologies Hydrogen injector stocklist image. 

Figure 6.3: Quantum Technologies Hydrogen and CNG injectors 

Quantum hydrogen injectors or similar are recommended for the Holden 5 litre hydrogen 

conversion concept. As pricing of hydrogen injectors is not redily available in literature, 

possibly due to the competitive nature of hydrogen vehicle development, it is difficult to 

estimate the added cost of hydrogen injectors.  

A set of eight Xspurt 2000cc CNG injectors retails for about AUD $ 990 (Injectors online, 

2015). Though similar in construction, it is expected that a premium would be placed on 

hydrogen injectors due to a lack of market availability. It is also noted that the manifold 

selected previously may require machining to suit the hydrogen injectors. 

6.1.5 Engine Control Unit (ECU) 

A review of literature surrounding strategies employed to mitigate abnormal combustion 

undertaken in sections 3.6 and 3.8 concluded that electronically timed fuel injection was 

a prerequisite for reliable combustion. The timed injection of hydrogen allows for pre-

cooling of the combustion chamber, and can be used to ensure limited hydrogen remains 

in the manifold to reduce likelihood of backfire. (Barbir, undated; Sopena et al., 2010; 

Verhelst & Wallner, 2009).   Timed fuel injection necessitates the use of a programmable 

Engine Control Unit.  

In the investigation undertaken by Sopena et al. (2010) a commercial spark ignition 

engine was converted operate on hydrogen with a high degree of success by replacing the 

OEM ECU with a programmable MoteC M 400 unit. MoteC produce ECUs for a variety 

of applications, including performance engines and Vee Eight engines. 
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The MoteC M84 is suitable for a broad range of high performance engine applications, 

including engines with up to 8 cylinders, and available in Australia for AUD $1,925 while 

associated wiring loom and sensors total to $533 (MoteC, 2015). Figure 6.4 shows the 

MoteC M84 ECU Stocklist photo. 

Figure 6.4: MoteC M84 ECU 

Alternatively, should a second hand OEM Holden 5 Litre ECU were able to be 

reprogramed to suit the desired application, the cost would be significantly lower. Second 

hand, OEM 5 Litre ECUs and associated wiring looms can be obtained for as little as 

$300 (eBay, 2015). 

It is recommended that for the Holden 5 litre hydrogen conversion concept the strategy 

of reprogramming the OEM ECU be investigated before use of an aftermarket ECU due 

to obvious price advantage and direct compatibility. 
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6.1.6 Spark Plugs  

As identified in section 3.6.1, cold rated spark plugs are recommended to avoid the 

temperature of spark plug electrodes exceeding the auto-ignition limit of hydrogen . 

Platinum electrodes are to be avoided as platinum can act as a catalyst for the oxidation 

of hydrogen. Figure 6.5 shows the NGK BP6FS Holden 5.0L spark plug stock image. 

Figure 6.5: NGK BP6FS Holden 5.0L spark plug stock image. 

NGK BP6FS are a standard cold rated replacement plug for the Holden 5.0L. The plugs 

have a nickel tipped centre electrode and are commonly available from auto parts stores 

for AUD $6 per unit.  

6.1.7 Ignition Coil  

A literature review surrounding necessary modifications to ignition systems for hydrogen 

ICEs concluded that high voltage output, coil on plug ignition system is required 

(Verhelst & Wallner, 2009). Somewhat counterintuitively, a high voltage ignition is 

required, in spite of the low ignition energy of hydrogen, as the ignition of mixtures 

requires an increased secondary ignition voltage. Adopting a coil on plug ignition system 

satisfies this condition and avoids induction ignition in adjacent ignition cables (Verhelst 

& Wallner, 2009).  

Ignition coils to suit the Holden 5 litre can be purchased at automotive spare parts 

stockists for approximately AUD $30 per each. Additional ECU programming will be 

required to account for a coil on plug arrangement.  

6.1.8 Engine Modifications 

Repower engine reconditioning suggest a typical engine rebuild for a Holden 5 litre would 

include the acid bathing, crack testing, decking of heads, boring and honing of cylinders 
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of the engine block. The crank shaft main cap bearings, camshaft bearings, and engine 

block welsh plugs are replaced. Camshafts and timing gear are replaced regardless of the 

level of wear. The connecting rods are straightened, new pistons are sourced, and the 

crankshaft is often ground and polished. The mating surface of the cylinder heads are 

resurfaced, the valve seats are replaced with harder materials to suit unleaded fuels (or 

gaseous fuels with low upper cylinder lubrication) (Repower Engine Reconditioning, 

2015). Engine rebuilding can often cost in excess of $3,000 and is expected to last a 

significant percentage of the vehicles service life.  

Flat top pistons both increase compression ratio and lower in-cylinder turbulence. 

Verhelst & Wallner cite Berger et al in suggesting that prior to installation, the top ring 

groove of the pistons can be applied with a special coating to reduce crevice volume and 

associated abnormal combustion phenomena. This is recommended for the Holden 5 litre 

concept design engine, and is predicted to add a very minimal cost to the rebuild of an 

engine.  

6.1.9 Lubrication 

As mentioned in section 3.6.7, the increased blowby during hydrogen combustion leads 

to high concentrations of hydrogen in the crankcase of up to +5% (Verhelst & Wallner, 

2009). The increased concentrations of hydrogen have been found to significantly 

accelerate the loss of lubrication qualities of the engine oil. Verhelst & Wallner suggest 

that a high water concentration compatible, demulsifying, lubrication oil or synthetic oil 

that forms a solution with water is necessary, and an ashless oil is recommend to avoid 

formation of deposits (Verhelst & Wallner, 2009). It is noted that the ideal engine oil for 

hydrogen ICEs is not yet readily available. While some oils with a number of these 

qualities are available, the grades are incompatible with older engines that require heavy 

grade oil to maintain pressure.  

For the Holden 5 litre hydrogen concept, it is recommended that the standard 20W-50 

grade oil be used and changed more regularly. This is a high maintenance but low cost 

method to avoid deterioration of the oil lubrication properties due to acid formation from 

high hydrogen concentrations in the crankcase. It is possible that the installation of a 

venturi on the air intake to drive crankcase ventilation will significantly reduce hydrogen 

concentration in the crankcase and lower the frequency of oil changes required. 20W-50 
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Can be purchased from automotive parts stockist for approximately $25 per service 

(REPCO, 2015). 

6.1.10 Crankcase ventilation 

As highlighted in section 5.3, the Holden 5.0L conversion engine will operate at throttled 

conditions to maximise efficiency. As a result the pressure difference between the inlet 

manifold and crankcase, such as during throttled petroleum operation, is not present for 

some hydrogen operating strategies and cannot be used as a driving force for crankcase 

ventilation. This can be solved by either placing a venturi on the intake, or using other 

forced ventilation methods.  

For simplicity and minimal cost, it is recommended that for the Holden 5 litre design 

concept that a venturi be placed on the intake as the driving force for crankcase 

ventilation. 

6.1.11 Safety 

A review of literature surrounding hydrogen safety conducted in section 3.7 discussed the 

safety requirements required for vehicles utilising hydrogen as a fuel. This section will 

investigate the safety implications of the system as they relate to the Holden _____. This 

will focus on the detection of a hydrogen leaks, emergency shut off systems and collision 

mitigation. 

Control over ignition sources in automotive applications is limited when compared to that 

of laboratory testing. As investigators (Gentilhomme et al., 2012; Verhelst & Wallner, 

2009) have suggested the use hydrogen detection systems combined with diluting 

hydrogen concentrations (providing lower ignition limits). The literature review 

surrounding hydrogen safety in automotive applications highlights the need for increased 

ventilation, hydrogen leak and flame detection, leak detection/flame sensor evaluation 

and placement. 

Typically a number of options exist for the detection of hydrogen in a vehicular setting 

and these have been discussed in ____. In this instance it is suggested that __ detectors 

are most applicable because _. In this selection due consideration has been payed to 

detector response time, detection range, durability/longevity, maintenance and calibration 

required. These will be placed in all areas where leaks are likely to occur including 

connectors and intake and exhaust points, this should be confirmed and furthered through 

the use of CFD analysis of vehicle specific ventilation. This would more explicitly 
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identify the optimal locations for hydrogen leak detectors. As suggested in the literature 

review a concentration of 1 Vol% is a commonly used and accepted as an alarm activation 

threshold for hydrogen in air, which is equivalent to 25% of the lower flammability limit 

(Verhelst & Wallner, 2009). 

Consideration must also be made for the detection of flames as it is well known that 

hydrogen flame is invisible to the human eye, this will be achieved through the use of __ 

because __.  

The vehicle would also carry a small reservoir of high-pressure helium gas for purging 

the system of hydrogen when switching between fuel modes, and in the event of vehicle 

collision.  

As discussed in the literature review; compressed hydrogen can build pressure inside 

storage vessel over time, placement of relief valves is paramount to the overall safety of 

the system. These would typically be _____ 

6.2 Cost 
Using the prices determined in section 6.1, the following table (Table 6.1) is produced, 

showing the estimated cost of conversion.  

 

Table 6.1: Minimum component cost estimate 
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7 CONCLUISONS 

This project has been undertaken to establish the feasibility of the System Design of a 

Hydrogen Induction System as a Retrofit Item Compatible with Existing Internal 

Combustion Engines, by examining the conversion of a Holden 5.0L V8 to accommodate 

hydrogen combustion. The for the purpose of analysis, a Holden HX GTS sedan has been 

chosen as a case study vehicle, commonly optioned with the first generation Holden 5.0L 

V8. 

Analysis of urban and extra-urban drive cycles provided theoretical power requirements 

for the operation of the vehicle for the duration of the cycles. Outputs from the drive cycle 

analysis were used in an engine simulation model that was modified to accommodate 

simulation of hydrogen combustion.  

The engine simulation model returns a hydrogen fuel consumption of 4.18 kg/100km and 

5.34 kg/100km for the extra-urban and urban driving cycles respectively, a gasoline 

gallon equivalent of 15.4 L/100km and 20.27 L/100km. This provides a theoretical 

endurance of 133.62 km and 104.14 km from vehicles proposed 5.6 kg of useable 

hydrogen storage for the cycles respectively. 

An extensive literature review has identified design modifications that are required to 

accommodate hydrogen combustion in internal combustion engines. A trade study was 

used to identify the measures specifically required to adapt the Holden 5.0L case study 

engine to dual hydrogen/petrol operation modes. The modifications and additional 

components required were costed where possible, resulting in an estimated minimum cost 

of AUD $12,664 in parts for the conversion. 
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8 Other Considerations and Further Work 

8.1 Ethical considerations 

There exists a significant ethical advantage in the adoption of hydrogen internal 

combustion over conventional hydrocarbon fuels in the reduction of harmful tailpipe 

emissions. The clean burning properties of hydrogen examined in this investigation can 

be exploited to produce emissions of NOx in super low emission vehicle category. 

Greenhouse gasses emission levels are negligible due to no carbon content in the fuel.  

However, for the transition to hydrogen fuel to have a net reduction of emission levels, 

significant increase in the renewable production of hydrogen is required. A well-to-wheel 

analysis of hydrogen internal combustion energy is an area of significant further work. 

Beyond the ethical use of hydrogen from a safety perspective, there is also ethical 

questions raised about the implementation of hydrogen technology it what is an already 

obsolete vehicle platform. The vehicles of the past do not have the same level of safety 

features that are now expected as standard on new vehicles. These include crumple zones, 

traction control, air bags, reverse parking cameras and ABS, and are likely to soon include 

forward collision warning, city breaking, radar cruise control, forward collision 

avoidance. The question of whether a hydrogen conversion classic vehicle is a vehicle of 

the future is simple to answer, however some questions that will be asked include: 

- Is the implementation of hydrogen combustion to existing petrol internal combustion 

engines as a retrofit item stretching the life of an already obsolete technology?;  

- Is such a car compatible with the future of personal transport?; and 

- Is the conversion of the vehicles of yesteryear to hydrogen operation an ethical process? 

These questions cannot be easily answered and are suitable research questions for further 

work.   

8.2 Further work 

This section outlines areas of potential further work outlined in the investigation 

Throttle Control: As outlined in section 6.1.2, the development of a throttle control system 

compatible with carburetted petrol induction and hydrogen fuel injection is a significant 

area of study.  
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Refine engine analysis: As outlined in section 5.3, the drive_cycle_analysis.m and 

Holden_5L_Analysis.m Matlab models can be improved through the automation of 

appropriate gear selection for the various driving conditions. 

 Market uptake: An investigation into potential market uptake would be required before 

further work towards a prototype is undertaken. 

Prototyping: the development of a prototype hydrogen conversion engine as performed 

by Sopena et al. (2010), using a Holden 5.0 Litre to model performance and emission 

characteristics is a significant and exciting area of further study. 

Risk Analysis: Evaluation of risk posed by hydrogen-fuelled vehicles via review of 

literature and evaluation of a concept design a necessary area of investigation for the 

furthering of the Holden 5.0L hydrogen conversion concept. This would include the CFD 

simulation of in-car ventilation systems to identify optimal placement of hydrogen 

detectors, and design of optimum on-board storage arrangement.  
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APPENDICIES  

Appendix A – Project Specification 
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Appendix B – Research Risk Assessment  

While hazards in office environments for researchers may not always be as obvious as 

those in experimental environments, researchers may also face a range of health and 

safety issues, including prolonged repetitive work, moving heavy loads, inadequate 

lighting and cramped or unsafe working areas. This section raises the reader’s awareness 

of health and safety issues involving the use of computers that may be experienced in the 

course of the research, and to offer solutions and advice to these issues (Comcare, 2015).  

Working with computers  

Good design of computer hardware layout, the environment and furniture, and work 

practices minimises any negative effects of computer use. This section discusses the 

health and safety issues associated with computer usage (Comcare, 2015). 

Hardware and peripherals.  

The desktop or tower holds the hard drive and other hardware needed to run software 

programs. It is important to consider how often the user needs to access the desktop and 

position it accordingly. Laptop computers are designed for short term or mobile use. The 

portability of laptops results in them being used in a variety of situations and settings 

where there is limited capacity to adjust the desk. This can lead to working at an 

unsuitable height. Lack of adjustability can result in arms being held too high and neck 

being too bent. If this position is adopted frequently, or for long periods of time, 

discomfort may result. Adverse effects of using laptops can be mitigated by docking the 

laptop into a desktop computer at an adjustable station; connecting into existing more 

ergonomic equipment ie mouse, or keyboard; transferring work to a desktop where 

practicable; being aware of posture; and learning to type to avoid time spent looking 

down. Voice recognition software transfers voice information to electrical format. The 

use of voice recognition can reduce the reliance on keyboards (Comcare, 2015).  

Keyboards  

Keyboard types can vary according to the task being performed. Generally, the more a 

keyboard is used, the greater the risk of discomfort. However, regular breaks, adjustable 

and ergonomic equipment and furniture are important considerations for people who are 

required to use keyboards extensively for work (Comcare, 2015). Placement of the 

keyboard should be aligned with the computer and directly in front of the user such that 

there is no need to twist or rotate to use it. It should be placed at a comfortable distance 

from the edge of the desk. Reference documents should not be placed between the 
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keyboard and the edge of the desk. The feet at the rear of the keyboard should be kept as 

low as practicable, to minimise the angle and height of the keyboard to reduce 

unnecessary loading of shoulder muscles and wrists. Split keyboards are split in half and 

angled so as to better reflect the more natural hand position while keying. Where possible, 

use of split keyboards are recommended. Separate numerical pads are recommended for 

any user requiring frequent use of number keys (Comcare, 2015). 

Mouse Computer  

mice come in a variety of shapes and sizes, with features such as scrolling wheels and 

auxiliary buttons. The key criteria for a mouse should include the placement of the users 

hand and upper limb in a neutral position; support weight of the arm by desk and not the 

user; keeping the wrist as flat as practicable; allowing fingers to rest on buttons rather 

than elevated; and choosing a mouse to fit the users hand . It is good practice to learn to 

use a mouse in both hands, and periodically switching hands to reduce repetitive motion. 

Many users can be reluctant to try this, but the skills are developed quickly in most cases. 

Sustained hand postures during use of the mouse can be greatly reduced via use of 

keyboard shortcuts, changing hands, and by moving the mouse towards the middle of the 

desk (Comcare, 2015).  

Monitors  

LCD computer screens have become an increasingly popular technology. LCD’s offer 

many advantages including greater posture variety; freedom from flicker and geometric 

image distortions; uniform screen brightness and reduced glare; thinner and lighter 

displays that allow for greater room for adjustability of hardware (Comcare 2015). Using 

computer screens for extended time periods increases pressure on eyes and necks of users. 

The following precautions can be followed to mitigate these effects: screen should be 

placed an arm’s length away from the employee at eye level; locate monitor directly in 

front of user; place the screen with a tilt of 15 degrees up from vertical; reducing intervals 

spent in front of a computer to 30 minutes at a time (Comcare, 2015). 

Health effects  

Eye strain can be caused by inadequate lighting or small print over long periods of time. 

It is generally believed that visual fatigue does not deteriorate long-term vision, although 

it can cause irritation, watering, reddening, blurred vision or even headaches. The risk of 

eye strain can be reduced by looking away from the computer to a far spot or walking 
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away from the screen and performing eye exercises. Dry air conditioned environments 

can also cause eye discomfort (Comcare, 2015). 
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APPENDIX C - Ahrind Engine Simulation script files – Buttsworth (2007) 
 

Appendix C1 – ahrind.m – Engine Simulation (modified) 

% ahrind.m 
% 
% Script file to determine the performance of a fuel inducted engine 
% based on a (user-specified) arbitrary heat release profile as a  
% function of crank angle.   
% Method closely follows that of: 
% Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley. 
% ******************************************************************** 
% input:  
% enginedata.m - this is another script file that defines all of the 
% relevant engine parameters and operating conditions. 
% output: 
% ahrind.mat - this file contains all of the variables.  For plotting 
% the results, see the example script file plotresults.m 
% ******************************************************************** 
  
timestart=cputime; 
  
global b stroke eps r Cblowby f fueltype airscheme ϕ RPM ... 
   thetas thetab omega ... 
   heattransferlaw hcu hcb ... 
   Tw theta1 Vtdc Vbdc mass1 ... 
   p1 T1 V1 
  
% load the engine parameters and initial conditions 
enginedata 
  
% integration parameters 
dtheta=1*pi/180; 
options=odeset('RelTol',1e-3); 
  
% integration during compression phase 
[thetacomp,pTuWQlHl]=ode45('RatesComp', ... 
   [-pi:dtheta:thetas],[p1 T1 0 0 0],options);  
  
% specification of initial conditions at start of combustion phase 
% b - beginning of combustion 
pb=interp1(thetacomp,pTuWQlHl(:,1),thetas);  
Tub=interp1(thetacomp,pTuWQlHl(:,2),thetas); 
Tbb=Tadiabatic(pb,Tub,ϕ,f,fueltype,airscheme); 
Wb=interp1(thetacomp,pTuWQlHl(:,3),thetas); 
Qlb=interp1(thetacomp,pTuWQlHl(:,4),thetas); 
Hlb=interp1(thetacomp,pTuWQlHl(:,5),thetas); 
  
% integration during combustion phase 
[thetacomb,pTbTuWQlHl]=ode45('RatesComb', ... 
   [thetas:dtheta:thetas+thetab],[pb Tbb Tub Wb Qlb Hlb],options); 
  
% specification of initial conditions at start of expansion phase 
% e - end of combustion / start of expansion 
pe=interp1(thetacomb,pTbTuWQlHl(:,1),thetas+thetab);  
Tbe=interp1(thetacomb,pTbTuWQlHl(:,2),thetas+thetab); 
We=interp1(thetacomb,pTbTuWQlHl(:,4),thetas+thetab); 
Qle=interp1(thetacomb,pTbTuWQlHl(:,5),thetas+thetab); 
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Hle=interp1(thetacomb,pTbTuWQlHl(:,6),thetas+thetab); 
  
% integration during expansion phase 
[thetaexp,pTbWQlHl]=ode45('RatesExp', ... 
   [thetas+thetab:dtheta:pi],[pe Tbe We Qle Hle],options); 
  
% error checks 
mass4=mass1*exp(-Cblowby*2*pi/omega); 
p4=interp1(thetaexp,pTbWQlHl(:,1),pi);  
T4=interp1(thetaexp,pTbWQlHl(:,2),pi); 
W4=interp1(thetaexp,pTbWQlHl(:,3),pi); 
Ql4=interp1(thetaexp,pTbWQlHl(:,4),pi); 
Hl4=interp1(thetaexp,pTbWQlHl(:,5),pi); 
[h4,u4,v4,s4,Y4,cp4,dlvlT4,dlvlp4]= ...  
   farg(p4,T4,ϕ,1,fueltype,airscheme); 
U4=u4*mass4; 
error1=1-v4*mass4/Vbdc; 
error2=1+W4/(U4-U1+Ql4+Hl4); 
  
% indicated mean effective pressure and thermal efficiency 
imep=W4/(pi*b^2/4*stroke); 
eta=W4/mass1*(1+ϕ*0.06548*(1-f))/ϕ/0.06548/(1-f)/47870/1e3; 
  
% calcuate the heat flux in W/m^2 
qcomp=calcq(thetacomp,pTuWQlHl,'comp'); % compression 
qcombu=calcq(thetacomb,pTbTuWQlHl,'combu'); % combustion-unburned zone 
qcombb=calcq(thetacomb,pTbTuWQlHl,'combb'); % combustion-burned zone 
qexp=calcq(thetaexp,pTbWQlHl,'exp'); % expansion 
  
timefinish=cputime; 
timetaken=timefinish-timestart; 
  
% save all data 
save ahrind.mat 
 

Appendix C2 – airdata.m – Thermodynamic Properties of Air/combustion Products 

function A=airdata(scheme); 

% 

% A=airdata(scheme) 

% 

% Routine to specify the thermodynamic properties of air and  

% combustion products.  

% Data taken from: 

% 1. Gordon, S., and McBride, B. J., 1971, "Computer Program for  

% Calculation of Complex Chemical Equilibrium Composition, Rocket  

% Performance, Incident and Reflected Shocks, and Chapman-Jouguet  

% Detonations," NASA SP-273.  As reported in Ferguson, C. R., 1986,  

% "Internal Combustion Engines", Wiley. 

% 2. Kee, R. J., et al., 1991, "The Chemkin Thermodynamic Data Base", 

% Sandia Report, SAND87-8215B. As reported in  

% Turns, S. R., 1996, "An Introduction to Combustion:  

% Concepts and Applications", McGraw-Hill. 

% ******************************************************************** 

% input:  

% scheme switch:  

% 'GMcB_low' - Gordon and McBride 300 < T < 1000 K 

% 'GMcB_hi' - Gordon and McBride 1000 < T < 5000 K 

% 'Chemkin_low' - Chemkin 300 < T < 1000 K 
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% 'Chemkin_hi' - Chemkin 1000 < T < 5000 K 

% output:  

% A - matrix of polynomial coefficients for cp/R, h/RT, and s/R  

% of the form h/RT=a1+a2*T/2+a3*T^2/3+a4*T^3/4+a5*T^4/5*a6/T (for 

% example) where T is expressed in K 

% columns 1 to 7 are coefficients a1 to a7, and  

% rows 1 to 10 are species CO2 H2O N2 O2 CO H2 H O OH and NO 

% ******************************************************************** 

  

switch scheme 

case 'GMcB_low'  

   A=[ 0.24007797E+01  0.87350957E-02 -0.66070878E-05  0.20021861E-08 ... 

       0.63274039E-15 -0.48377527E+05  0.96951457E+01 

       0.40701275E+01 -0.11084499E-02  0.41521180E-05 -0.29637404E-08 ... 

       0.80702103E-12 -0.30279722E+05 -0.32270046E+00 

       0.36748261E+01 -0.12081500E-02  0.23240102E-05 -0.63217559E-09 ... 

      -0.22577253E-12 -0.10611588E+04  0.23580424E+01 

       0.36255985E+01 -0.18782184E-02  0.70554544E-05 -0.67635137E-08 ... 

       0.21555993E-11 -0.10475226E+04  0.43052778E+01 

       0.37100928E+01 -0.16190964E-02  0.36923594E-05 -0.20319674E-08 ... 

       0.23953344E-12 -0.14356310E+05  0.29555350E+01  

       0.30574451E+01  0.26765200E-02 -0.58099162E-05  0.55210391E-08 ... 

      -0.18122739E-11 -0.98890474E+03 -0.22997056E+01 

       0.25000000E+01  0.00000000E+00  0.00000000E+00  0.00000000E+00 ... 

       0.00000000E+00  0.25471627E+05 -0.46011762E+00 

       0.29464287E+01 -0.16381665E-02  0.24210316E-05 -0.16028432E-08 ... 

       0.38906964E-12  0.29147644E+05  0.29639949E+01 

       0.38375943E+01 -0.10778858E-02  0.96830378E-06  0.18713972E-09 ...  

      -0.22571094E-12  0.36412823E+04  0.49370009E+00 

       0.40459521E+01 -0.34181783E-02  0.79819190E-05 -0.61139316E-08  ... 

       0.15919076E-11  0.97453934E+04  0.29974988E+01]; 

case 'GMcB_hi' 

   A=[ 0.44608041E+01  0.30981719E-02 -0.12392571E-05  0.22741325E-09 ... 

      -0.15525954E-13 -0.48961442E+05 -0.98635982E+00  

       0.27167633E+01  0.29451374E-02 -0.80224374E-06  0.10226682E-09 ... 

      -0.48472145E-14 -0.29905826E+05  0.66305671E+01 

       0.28963194E+01  0.15154866E-02 -0.57235277E-06  0.99807393E-10 ... 

      -0.65223555E-14 -0.90586184E+03  0.61615148E+01 

       0.36219535E+01  0.73618264E-03 -0.19652228E-06  0.36201558E-10 ... 

      -0.28945627E-14 -0.12019825E+04  0.36150960E+01 

       0.29840696E+01  0.14891390E-02 -0.57899684E-06  0.10364577E-09 ... 

      -0.69353550E-14 -0.14245228E+05  0.63479156E+01 

       0.31001901E+01  0.51119464E-03  0.52644210E-07 -0.34909973E-10 ... 

       0.36945345E-14 -0.87738042E+03 -0.19629421E+01 

       0.25000000E+01  0.00000000E+00  0.00000000E+00  0.00000000E+00 ... 

       0.00000000E+00  0.25471627E+05 -0.46011763E+00 

       0.25420596E+01 -0.27550619E-04 -0.31028033E-08  0.45510674E-11 ... 

      -0.43680515E-15  0.29230803E+05  0.49203080E+01  

       0.29106427E+01  0.95931650E-03 -0.19441702E-06  0.13756646E-10 ... 

       0.14224542E-15  0.39353815E+04  0.54423445E+01 

       0.31890000E+01  0.13382281E-02 -0.52899318E-06  0.95919332E-10 ... 

      -0.64847932E-14  0.98283290E+04  0.67458126E+01]; 

case 'Chemkin_low' 

   A=[ 0.02275724E+02  0.09922072E-01 -0.10409113E-04  0.06866686E-07 ... 

      -0.02117280E-10 -0.04837314E+06  0.10188488E+02 

       0.03386842E+02  0.03474982E-01 -0.06354696E-04  0.06968581E-07 ... 

      -0.02506588E-10 -0.03020811E+06  0.02590232E+02 

       0.03298677E+02  0.14082404E-02 -0.03963222E-04  0.05641515E-07 ... 

      -0.02444854E-10 -0.10208999E+04  0.03950372E+02 

       0.03212936E+02  0.11274864E-02 -0.05756150E-05  0.13138773E-08 ... 
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      -0.08768554E-11 -0.10052490E+04  0.06034737E+02 

       0.03262451E+02  0.15119409E-02 -0.03881755E-04  0.05581944E-07 ... 

      -0.02474951E-10 -0.14310539E+05  0.04848897E+02 

       0.03298124E+02  0.08249441E-02 -0.08143015E-05 -0.09475434E-09 ... 

       0.04134872E-11 -0.10125209E+04 -0.03294094E+02 

       0.02500000E+02  0.00000000E+00  0.00000000E+00  0.00000000E+00 ... 

       0.00000000E+00  0.02547162E+06 -0.04601176E+01 

       0.02946428E+02 -0.16381665E-02  0.02421031E-04 -0.16028431E-08 ... 

       0.03890696E-11  0.02914764E+06  0.02963995E+02 

       0.03637266E+02  0.01850910E-02 -0.16761646E-05  0.02387202E-07 ... 

      -0.08431442E-11  0.03606781E+05  0.13588605E+01 

       0.03376541E+02  0.12530634E-02 -0.03302750E-04  0.05217810E-07 ... 

      -0.02446262E-10  0.09817961E+05  0.05829590E+02]; 

case 'Chemkin_hi' 

   A=[ 0.04453623E+02  0.03140168E-01 -0.12784105E-05  0.02393996E-08 ... 

      -0.16690333E-13 -0.04896696E+06 -0.09553959E+01 

       0.02672145E+02  0.03056293E-01 -0.08730260E-05  0.12009964E-09 ... 

      -0.06391618E-13 -0.02989921E+06  0.06862817E+02 

       0.02926640E+02  0.14879768E-02 -0.05684760E-05  0.10097038E-09 ... 

      -0.06753351E-13 -0.09227977E+04  0.05980528E+02 

       0.03697578E+02  0.06135197E-02 -0.12588420E-06  0.01775281E-09 ... 

      -0.11364354E-14 -0.12339301E+04  0.03189165E+02 

       0.03025078E+02  0.14426885E-02 -0.05630827E-05  0.10185813E-09 ... 

      -0.06910951E-13 -0.14268350E+05  0.06108217E+02 

       0.02991423E+02  0.07000644E-02 -0.05633828E-06 -0.09231578E-10 ... 

       0.15827519E-14 -0.08350340E+04 -0.13551101E+01 

       0.02500000E+02  0.00000000E+00  0.00000000E+00  0.00000000E+00 ... 

       0.00000000E+00  0.02547162E+06 -0.04601176E+01 

       0.02542059E+02 -0.02755061E-03 -0.03102803E-07  0.04551067E-10 ... 

      -0.04368051E-14  0.02923080E+06  0.04920308E+02 

       0.02882730E+02  0.10139743E-02 -0.02276877E-05  0.02174683E-09 ... 

      -0.05126305E-14  0.03886888E+05  0.05595712E+02 

       0.03245435E+02  0.12691383E-02 -0.05015890E-05  0.09169283E-09 ... 

      -0.06275419E-13  0.09800840E+05  0.06417293E+02]; 

end 

  

 

Appendix C3 – calcq.m – Calculate Heat Flux 

 

function q=calcq(theta,pTarray,phase); 

% 

% calculation of the heat flux (W/m^2) from the data generated 

% by ahrind. 

% theta is an array of crank angles 

% pTarray is the corresponding array of pressure, Temperature,  

% Work, etc data as generated by running arhind.m 

% phase is a switch indicating the part of the cycle:  

% 'comp' - compression phase 

% 'combu' - combustion phase, unburned gas zone 

% 'combb' - combustion phase, burned gas zone 

% 'exp' - expansion phase 

  

global b stroke eps r ... 

   omega ... 

   heattransferlaw hcu hcb ... 

   Tw Vtdc Vbdc ... 

   p1 T1 V1 

    

switch phase 
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case 'comp' 

   p=pTarray(:,1); 

   T=pTarray(:,2); 

   hc=hcu; 

   C2=0; 

case 'combu' 

   p=pTarray(:,1); 

   T=pTarray(:,3); 

   hc=hcu; 

   C2=3.24e-3; 

case 'combb' 

   p=pTarray(:,1); 

   T=pTarray(:,2); 

   hc=hcb; 

   C2=3.24e-3; 

case 'exp' 

   p=pTarray(:,1); 

   T=pTarray(:,2); 

   hc=hcb; 

   C2=3.24e-3; 

end 

    

switch heattransferlaw 

case 'constant' 

   hcoeff=hc; 

case 'Woschni' 

   V=Vtdc*(1+(r-1)/2*(1-cos(theta)+ ... 

      1/eps*(1-(1-eps^2*sin(theta).^2).^0.5))); 

   upmean=omega*stroke/pi; % mean piston velocity  

   Vs=Vbdc-Vtdc; 

   k=1.3; 

   C1=2.28; 

   pm=p1*(V1./V).^k; % motoring pressure 

   hcoeff=hc*130*b^(-0.2)*T.^(-0.53).*(p/100e3).^(0.8).* ... 

         (C1*upmean+C2*Vs*T1/p1/V1*(p-pm)).^(0.8); 

end 

  

q=hcoeff.*(T-Tw); 

 

Appendix C4 – ecp.m – Equilibrium Combustion Products 

 

function [h,u,v,s,Y,cp,dlvlT,dlvlp]=ecp(p,T,ϕ,fueltype,airscheme,Yguess); 

% 

% [h,u,v,s,Y,cp,dlvlT,dlvlp]=ecp(p,T,ϕ,fueltype,airscheme,Yguess) 

% 

% Routine to determine the equilibrium state of combustion products.  

% Method closely follows that of: 

% 1. Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley, p122; 

% which uses the method described by: 

% 2. Olikara, C., and Borman, G.L., 1975, "A Computer Program for 

% Calculating Properties of Equilibrium Combustion Products with 

% Some Applications to I.C. Engines", SAE Paper 750468. 

% ******************************************************************** 

% input:  

% p,T,ϕ - pressure (Pa), temperature (K), and equivalence ratio 

% fueltype - 'gasoline', 'diesel', etc - see fueldata.m for full list 

% airscheme - 'GMcB' (Gordon and McBride) or 'Chemkin' 

% Yguess - (optional) initial estimate for mole fractions of the  

% species CO2 H2O N2 O2 CO H2 H O OH and NO 
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% output:  

% h - enthalpy (J/kg), u - internal energy (J/kg), 

% v - specific volume (m^3/kg), s - entropy (J/kgK), 

% Y - mole fractions of 10 species, cp - specific heat (J/kgK), 

% dlvlT - partial derivative of log(v) wrt log(T) 

% dlvlp - partial derivative of log(v) wrt log(p) 

% ******************************************************************** 

  

[alpha,beta,gamma,delta,Afuel]=fueldata(fueltype); 

switch airscheme 

case 'GMcB' 

   A0=airdata('GMcB_hi'); 

case 'Chemkin' 

   A0=airdata('Chemkin_hi'); 

end 

  

% Equilibrium constant data from Olikara and Borman via Ferguson 

Kp=[ 0.432168E+00 -0.112464E+05  0.267269E+01 -0.745744E-04  0.242484E-08 

     0.310805E+00 -0.129540E+05  0.321779E+01 -0.738336E-04  0.344645E-08  

    -0.141784E+00 -0.213308E+04  0.853461E+00  0.355015E-04 -0.310227E-08  

     0.150879E-01 -0.470959E+04  0.646096E+00  0.272805E-05 -0.154444E-08  

    -0.752364E+00  0.124210E+05 -0.260286E+01  0.259556E-03 -0.162687E-07  

    -0.415302E-02  0.148627E+05 -0.475746E+01  0.124699E-03 -0.900227E-08]; 

  

MinMol=1e-25; 

tol=3e-12; 

  

Ru=8314.34; % J/kmol.K  

M=[44.01 18.02 28.008 32.000 28.01 2.018 1.009 16 17.009 30.004]'; % kg/kmol 

  

dcdT=zeros(4,1); 

dcdp=zeros(4,1); 

dfdT=zeros(4,1); 

dfdp=zeros(4,1); 

dYdT=zeros(10,1); 

dYdp=zeros(10,1); 

B=zeros(4,1); 

  

% check if solid carbon will form 

eps=0.210/(alpha+0.25*beta-0.5*gamma); 

if ϕ>(0.210/eps/(0.5*alpha-0.5*gamma)) 

   error('ϕ too high - c(s) and other species will form'); 

end 

  

if nargin==5 % no Yguess so estimate the composition using farg 

   [h,u,v,s,Y,cp,dlvlT,dlvlp]=farg(p,T,ϕ,1,fueltype,airscheme); 

   Y(7:10)=ones(4,1)*MinMol; % since farg only returns first 6 species 

else 

   Y=Yguess; 

end 

  

% evaluate constants 

patm=p/101.325e3; % convert Pa to atmospheres 

TKp=[log(T/1000) 1/T 1 T T^2]'; 

K=10.^(Kp*TKp); 

c=K.*[1/sqrt(patm) 1/sqrt(patm) 1 1 sqrt(patm) sqrt(patm)]'; 

d=[beta/alpha (gamma+0.42/eps/ϕ)/alpha (delta+1.58/eps/ϕ)/alpha]'; 

  

if abs(ϕ-1)<tol 

   ϕ=ϕ*(1+tol*sign(ϕ-1)); 
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end 

  

i=find(Y<MinMol); 

Y(i)=ones(length(i),1)*MinMol; 

  

DY3to6=2*tol*ones(4,1); 

MaxIter=500; 

MaxVal=max(abs(DY3to6)); 

Iter=0; 

DoneSome=0; 

  

while (Iter<MaxIter)&((MaxVal>tol)|(DoneSome<1)) 

   Iter=Iter+1; 

   if Iter>2, 

      DoneSome=1; 

   end 

    

   D76=0.5*c(1)/sqrt(Y(6));  

   D84=0.5*c(2)/sqrt(Y(4)); 

   D94=0.5*c(3)*sqrt(Y(6)/Y(4)); 

   D96=0.5*c(3)*sqrt(Y(4)/Y(6)); 

   D103=0.5*c(4)*sqrt(Y(4)/Y(3)); 

   D104=0.5*c(4)*sqrt(Y(3)/Y(4)); 

   D24=0.5*c(5)*Y(6)/sqrt(Y(4)); 

   D26=c(5)*sqrt(Y(4)); 

   D14=0.5*c(6)*Y(5)/sqrt(Y(4)); 

   D15=c(6)*sqrt(Y(4)); 

   A(1,1)=1+D103;  

   A(1,2)=D14+D24+1+D84+D104+D94;  

   A(1,3)=D15+1;  

   A(1,4)=D26+1+D76+D96; 

   A(2,1)=0;  

   A(2,2)=2*D24+D94-d(1)*D14;  

   A(2,3)=-d(1)*D15-d(1);  

   A(2,4)=2*D26+2+D76+D96; 

   A(3,1)=D103;  

   A(3,2)=2*D14+D24+2+D84+D94+D104-d(2)*D14; 

   A(3,3)=2*D15+1-d(2)*D15-d(2); 

   A(3,4)=D26+D96;  

   A(4,1)=2+D103;  

   A(4,2)=D104-d(3)*D14;  

   A(4,3)=-d(3)*D15-d(3); 

   A(4,4)=0; 

   B(1)=-(sum(Y)-1); 

   B(2)=-(2*Y(2)+2*Y(6)+Y(7)+Y(9)-d(1)*Y(1)-d(1)*Y(5));  

   B(3)=-(2*Y(1)+Y(2)+2*Y(4)+Y(5)+Y(8)+Y(9)+Y(10)-d(2)*Y(1)-d(2)*Y(5));  

   B(4)=-(2*Y(3)+Y(10)-d(3)*Y(1)-d(3)*Y(5)); 

    

   invA=inv(A); 

   DY3to6=invA*B; 

   MaxVal=max(abs(DY3to6)); 

   Y(3:6)=Y(3:6)+DY3to6/10; 

   i=find(Y<MinMol); 

   Y(i)=ones(length(i),1)*MinMol; 

    

   Y(7)=c(1)*sqrt(Y(6)); 

   Y(8)=c(2)*sqrt(Y(4)); 

   Y(9)=c(3)*sqrt(Y(4)*Y(6)); 

   Y(10)=c(4)*sqrt(Y(4)*Y(3)); 

   Y(2)=c(5)*sqrt(Y(4))*Y(6); 
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   Y(1)=c(6)*sqrt(Y(4))*Y(5); 

end 

  

if Iter>=MaxIter 

   warning('convergence failure in composition loop'); 

end 

  

TdKdT=[1/T -1/T^2 1 2*T]'; 

dKdT=2.302585*K.*(Kp(:,[1 2 4 5])*TdKdT); 

dcdT(1)=dKdT(1)/sqrt(patm); 

dcdT(2)=dKdT(2)/sqrt(patm);  

dcdT(3)=dKdT(3); 

dcdT(4)=dKdT(4); 

dcdT(5)=dKdT(5)*sqrt(patm); 

dcdT(6)=dKdT(6)*sqrt(patm); 

dcdp(1)=-0.5*c(1)/p; 

dcdp(2)=-0.5*c(2)/p; 

dcdp(5)=0.5*c(5)/p; 

dcdp(6)=0.5*c(6)/p; 

x1=Y(1)/c(6); 

x2=Y(2)/c(5); 

x7=Y(7)/c(1); 

x8=Y(8)/c(2); 

x9=Y(9)/c(3);  

x10=Y(10)/c(4); 

dfdT(1)=dcdT(6)*x1+dcdT(5)*x2+dcdT(1)*x7+dcdT(2)*x8+ ... 

   dcdT(3)*x9+dcdT(4)*x10; 

dfdT(2)=2*dcdT(5)*x2+dcdT(1)*x7+dcdT(3)*x9-d(1)*dcdT(6)*x1; 

dfdT(3)=2*dcdT(6)*x1+dcdT(5)*x2+dcdT(2)*x8+dcdT(3)*x9+ ... 

   dcdT(4)*x10-d(2)*dcdT(6)*x1; 

dfdT(4)=dcdT(4)*x10-d(3)*dcdT(6)*x1; 

dfdp(1)=dcdp(6)*x1+dcdp(5)*x2+dcdp(1)*x7+dcdp(2)*x8; 

dfdp(2)=2*dcdp(5)*x2+dcdp(1)*x7-d(1)*dcdp(6)*x1; 

dfdp(3)=2*dcdp(6)*x1+dcdp(5)*x2+dcdp(2)*x8-d(2)*dcdp(6)*x1;  

dfdp(4)=-d(3)*dcdp(6)*x1; 

  

B=-dfdT; 

dYdT(3:6)=invA*B; 

dYdT(1)=sqrt(Y(4))*Y(5)*dcdT(6)+D14*dYdT(4)+D15*dYdT(5); 

dYdT(2)=sqrt(Y(4))*Y(6)*dcdT(5)+D24*dYdT(4)+D26*dYdT(6); 

dYdT(7)=sqrt(Y(6))*dcdT(1)+D76*dYdT(6); 

dYdT(8)=sqrt(Y(4))*dcdT(2)+D84*dYdT(4); 

dYdT(9)=sqrt(Y(4)*Y(6))*dcdT(3)+D94*dYdT(4)+D96*dYdT(6); 

dYdT(10)=sqrt(Y(4)*Y(3))*dcdT(4)+D104*dYdT(4)+D103*dYdT(3); 

  

B=-dfdp;  

dYdp(3:6)=invA*B; 

dYdp(1)=sqrt(Y(4))*Y(5)*dcdp(6)+D14*dYdp(4)+D15*dYdp(5); 

dYdp(2)=sqrt(Y(4))*Y(6)*dcdp(5)+D24*dYdp(4)+D26*dYdp(6); 

dYdp(7)=sqrt(Y(6))*dcdp(1)+D76*dYdp(6); 

dYdp(8)=sqrt(Y(4))*dcdp(2)+D84*dYdp(4); 

dYdp(9)=D94*dYdp(4)+D96*dYdp(6);  

dYdp(10)=D104*dYdp(4)+D103*dYdp(3); 

  

% calculate thermodynamic properties 

Tcp0=[1 T T^2 T^3 T^4]'; 

Th0=[1 T/2 T^2/3 T^3/4 T^4/5 1/T]'; 

Ts0=[log(T) T T^2/2 T^3/3 T^4/4 1]'; 

cp0=A0(:,1:5)*Tcp0; 

h0=A0(:,1:6)*Th0; 
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s0=A0(:,[1:5 7])*Ts0; 

  

% Y(1) and Y(2) reevaluated  

Y(1)=(2*Y(3)+Y(10))/d(3)-Y(5);  

Y(2)=(d(1)/d(3)*(2*Y(3)+Y(10))-2*Y(6)-Y(7)-Y(9))/2; 

i=find(Y<MinMol); 

Y(i)=ones(length(i),1)*MinMol; 

  

% properties of mixture 

h=sum(h0.*Y); 

s=sum((s0-log(Y)).*Y); 

cp=sum(Y.*cp0+h0.*dYdT*T); 

MW=sum(Y.*M); 

MT=sum(dYdT.*M); 

Mp=sum(dYdp.*M); 

  

R=Ru/MW; 

v=R*T/p; 

cp=R*(cp-h*T*MT/MW); 

dlvlT=1+max(-T*MT/MW,0); 

dlvlp=-1-max(p*Mp/MW,0); 

h=R*T*h; 

s=R*(-log(patm)+s); 

u=h-R*T; 

 

Appendix C5 – farg.m – Mixtures of fuel, air, residual combustion products at low temp 

 

function [h,u,v,s,Y,cp,dlvlT,dlvlp]=farg(p,T,ϕ,f,fueltype,airscheme); 

% 

% [h,u,v,s,Y,cp,dlvlT,dlvlp]=farg(p,T,ϕ,f,fueltype,airscheme) 

% 

% Routine to determine the state of mixtures of fuel, air 

% and residual combustion products at low temperatures.  

% Method closely follows that of: 

% 1. Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley, p108; 

% who uses the results of: 

% 2. Hires, S.D.,  Ekchian, A., Heywood, J.B., Tabaczynski, R.J., and  

% Wall, J.C., 1976, "Performance and NOx Emissions Modeling of a Jet  

% Ignition Pre-Chamber Stratified Charge Engine", SAE Trans., Vol 85,  

% Paper 760161. 

% ******************************************************************** 

% input:  

% p,T,ϕ - pressure (Pa), temperature (K), and equivalence ratio 

% f - residual mass fraction; set f=0 if no combustion products  

% are present and f=1 if only combustion products are present   

% fueltype - 'gasoline', 'diesel', etc - see fueldata.m for full list 

% airscheme - 'GMcB' (Gordon and McBride) or 'Chemkin' 

% output:  

% h - enthalpy (J/kg), u - internal energy (J/kg), 

% v - specific volume (m^3/kg), s - entropy (J/kgK), 

% Y - mole fractions of 6 species: CO2, H2O, N2, O2, CO, and H2,  

% cp - specific heat (J/kgK), 

% dlvlT - partial derivative of log(v) wrt log(T) 

% dlvlp - partial derivative of log(v) wrt log(p) 

% ******************************************************************** 

  

[alpha,beta,gamma,delta,Afuel]=fueldata(fueltype); 

switch airscheme 

case 'GMcB' 
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   A=airdata('GMcB_low'); 

case 'Chemkin' 

   A=airdata('Chemkin_low'); 

end 

  

Ru=8314.34; % J/kmolK 

table=[-1 1 0 0 1 -1]'; 

M=[44.01 18.02 28.008 32.000 28.01 2.018]'; % kg/kmol 

  

MinMol=1e-25; 

  

dlvlT=1; dlvlp=-1; 

eps=0.210/(alpha+0.25*beta-0.5*gamma); 

  

if ϕ <= 1.0 % stoichiometric or lean 

   nu=[alpha*ϕ*eps beta*ϕ*eps/2 0.79+delta*ϕ*eps/2 ... 

         0.21*(1-ϕ) 0 0]'; 

   dcdT=0; 

else % rich 

   z=1000/T; 

   K=exp(2.743+z*(-1.761+z*(-1.611+z*0.2803))); 

   dKdT=-K*(-1.761+z*(-3.222+z*0.8409))/1000; 

   a=1-K; 

   b=0.42-ϕ*eps*(2*alpha-gamma)+K*(0.42*(ϕ-1)+alpha*ϕ*eps); 

   c=-0.42*alpha*ϕ*eps*(ϕ-1)*K; 

   nu5=(-b+sqrt(b^2-4*a*c))/2/a; 

   dcdT=dKdT*(nu5^2-nu5*(0.42*(ϕ-1)+alpha*ϕ*eps)+ ...  

      0.42*alpha*ϕ*eps*(ϕ-1))/(2*nu5*a+b); 

   nu=[alpha*ϕ*eps-nu5 0.42-ϕ*eps*(2*alpha-gamma)+nu5 ... 

         0.79+delta*ϕ*eps/2 0 nu5 0.42*(ϕ-1)-nu5]'; 

end 

  

% mole fractions and molecular weight of residual 

tmoles=sum(nu); 

Y=nu/tmoles; 

Mres=sum(Y.*M); 

  

% mole fractions and molecular weight of fuel-air 

fuel=eps*ϕ/(1+eps*ϕ); 

o2=0.21/(1+eps*ϕ); 

n2=0.79/(1+eps*ϕ); 

Mfa=fuel*(12.01*alpha+1.008*beta+16*gamma+14.01*delta)+ ... 

   32*o2+28.02*n2; 

  

% mole fractions of fuel-air-residual gas 

Yres=f/(f+Mres/Mfa*(1-f)); 

Y=Y*Yres; 

Yfuel=fuel*(1-Yres); 

Y(3)=Y(3)+n2*(1-Yres); 

Y(4)=Y(4)+o2*(1-Yres); 

  

% component properties 

Tcp0=[1 T T^2 T^3 T^4]'; 

Th0=[1 T/2 T^2/3 T^3/4 T^4/5 1/T]'; 

Ts0=[log(T) T T^2/2 T^3/3 T^4/4 1]'; 

cp0=A(1:6,1:5)*Tcp0; 

h0=A(1:6,1:6)*Th0; 

s0=A(1:6,[1:5 7])*Ts0; 

Mfuel=12.01*alpha+1.008*beta+16.000*gamma+14.01*delta; 

a0=Afuel(1); b0=Afuel(2); c0=Afuel(3); d0=Afuel(6); e0=Afuel(7); 
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cpfuel=Afuel(1:5)*[1 T T^2 T^3 1/T^2]'; 

hfuel=Afuel(1:6)*[1 T/2 T^2/3 T^3/4 -1/T^2 1/T]'; 

s0fuel=Afuel([1:5 7])*[log(T) T T^2/2 T^3/3 -1/T^2/2 1]'; 

  

% set min value of composition so log calculations work 

if Yfuel<MinMol 

   Yfuel=MinMol; 

end 

i=find(Y<MinMol); 

Y(i)=ones(length(i),1)*MinMol; 

  

% properties of mixture 

h=hfuel*Yfuel+sum(h0.*Y); 

s=(s0fuel-log(Yfuel))*Yfuel+sum((s0-log(Y)).*Y); 

cp=cpfuel*Yfuel+sum(cp0.*Y)+sum(h0.*table*T*dcdT*Yres/tmoles); 

MW=Mfuel*Yfuel+sum(Y.*M); 

  

R=Ru/MW; 

h=R*T*h; 

u=h-R*T; 

v=R*T/p; 

s=R*(-log(p/101.325e3)+s); 

cp=R*cp; 

 

Appendix C6 – plotresults.m – Plot ahrind results 

% plotresults.m 
% 
% Script file to plot output from ahrind.m and compare results 
% with output listed in:  
% Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley, p178; 
  
load ahrind.mat; % results from ahrind.m 
load ferguson.txt; % tabulated output from ferguson p178-179 
  
% Set some parameters to make Figures look attractive 
NLW=1; % normal line width 
NFS=18; % normal font size 
NMS=1; % normal marker size 
  
close all; 
  
Figure(1); 
plot(thetacomp*180/pi,pTuWQlHl(:,1)/1e6); hold on; 
plot(thetacomb*180/pi,pTbTuWQlHl(:,1)/1e6); 
plot(thetaexp*180/pi,pTbWQlHl(:,1)/1e6); 
plot(ferguson(:,1),ferguson(:,4)*1e5/1e6,'o'); 
axis([-180 180 0 7]); 
set(gca,'FontSize',NFS) 
set(gca,'LineWidth',NLW) 
set(gca,'XTick',[-180 -90 0 90 180]); 
set(gca,'XTickLabel',[-180 -90 0 90 180]); 
xlabel('crank angle (degrees ATC)') 
ylabel('pressure (MPa)') 
print -deps p_ahr.eps 
  
Figure(2); 
plot(ferguson(:,1),ferguson(:,5),'o'); hold on; 
plot(ferguson(:,1),ferguson(:,6),'s'); 
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plot(thetacomp*180/pi,pTuWQlHl(:,2));  
plot(thetacomb*180/pi,pTbTuWQlHl(:,3)); 
plot(thetacomb*180/pi,pTbTuWQlHl(:,2)); 
plot(thetaexp*180/pi,pTbWQlHl(:,2)); 
axis([-180 180 0 3000]); 
set(gca,'FontSize',NFS) 
set(gca,'LineWidth',NLW) 
set(gca,'XTick',[-180 -90 0 90 180]); 
set(gca,'XTickLabel',[-180 -90 0 90 180]); 
xlabel('crank angle (degrees ATC)') 
ylabel('temperature (K)') 
legend('burned gas','unburned gas',2); 
print -deps T_ahr.eps 
  
Figure(3); 
nn=4; % for work plot 
plot(thetacomp*180/pi,pTuWQlHl(:,nn-1)); hold on; 
plot(thetacomb*180/pi,pTbTuWQlHl(:,nn)); 
plot(thetaexp*180/pi,pTbWQlHl(:,nn-1)); 
plot(ferguson(:,1),ferguson(:,7),'o'); 
axis([-180 180 -300 600]); 
set(gca,'FontSize',NFS) 
set(gca,'LineWidth',NLW) 
set(gca,'XTick',[-180 -90 0 90 180]); 
set(gca,'XTickLabel',[-180 -90 0 90 180]); 
set(gca,'YTick',[-300 -150 0 150 300 450 600]); 
set(gca,'YTickLabel',[-300 -150 0 150 300 450 600]); 
xlabel('crank angle (degrees ATC)') 
ylabel('work (J)') 
print -deps W_ahr.eps 
  
Figure(4); 
nn=5; % for heat transfer plot 
plot(thetacomp*180/pi,pTuWQlHl(:,nn-1)); hold on; 
plot(thetacomb*180/pi,pTbTuWQlHl(:,nn)); 
plot(thetaexp*180/pi,pTbWQlHl(:,nn-1)); 
plot(ferguson(:,1),ferguson(:,8),'o'); 
axis([-180 180 -50 300]); 
set(gca,'FontSize',NFS) 
set(gca,'LineWidth',NLW) 
set(gca,'XTick',[-180 -90 0 90 180]); 
set(gca,'XTickLabel',[-180 -90 0 90 180]); 
xlabel('crank angle (degrees ATC)') 
ylabel('heat transfer (J)') 
print -deps Ql_ahr.eps 
  
Figure(5); 
nn=6; % for heat leakage plot 
plot(thetacomp*180/pi,pTuWQlHl(:,nn-1)); hold on; 
plot(thetacomb*180/pi,pTbTuWQlHl(:,nn)); 
plot(thetaexp*180/pi,pTbWQlHl(:,nn-1)); 
plot(ferguson(:,1),ferguson(:,10),'o'); 
axis([-180 180 -8 0]); 
set(gca,'FontSize',NFS) 
set(gca,'LineWidth',NLW) 
set(gca,'XTick',[-180 -90 0 90 180]); 
set(gca,'XTickLabel',[-180 -90 0 90 180]); 
xlabel('crank angle (degrees ATC)') 
ylabel('heat leakage (J)') 
print -deps Hl_ahr.eps 
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Figure(6); 
plot(thetacomp*180/pi,qcomp); hold on; 
plot(thetacomb*180/pi,qcombu); 
plot(thetacomb*180/pi,qcombb); 
plot(thetaexp*180/pi,qexp); 
axis([-180 180 -0.2e6 1.2e6]); 
set(gca,'FontSize',NFS) 
set(gca,'LineWidth',NLW) 
set(gca,'XTick',[-180 -90 0 90 180]); 
set(gca,'XTickLabel',[-180 -90 0 90 180]); 
xlabel('crank angle (degrees ATC)') 
ylabel('heat flux (W/m^2)') 
print -deps qflux_ahr.eps 
 

Appendix C7 – RatesComb.m – Combustion Phase derivatives  

 

function yprime=RatesComb(theta,y,flag); 

% 

% yprime=RatesComb(theta,y,flag) 

% 

% Function that returns the drivatives of the following 6 variables 

% w.r.t. crank angle (theta) for the combustion phase: 

% 1) pressure; 2) unburned temperature; 3) burned temperature; 

% 4) work; 5) heat transfer; and 6) heat leakage. 

% See Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley, 

% p174. 

  

global b stroke eps r Cblowby f fueltype airscheme ϕ ... 

   thetas thetab RPM omega ... 

   heattransferlaw hcu hcb ... 

   p1 T1 V1 Tw theta1 Vtdc Vbdc mass1  

  

p=y(1); 

Tb=y(2); 

Tu=y(3); 

yprime=zeros(6,1); 

  

% mass in cylinder accounting for blowby: 

mass=mass1*exp(-Cblowby*(theta-theta1)/omega); 

% volume of cylinder: 

V=Vtdc*(1+(r-1)/2*(1-cos(theta)+ ... 

   1/eps*(1-(1-eps^2*sin(theta).^2).^0.5))); 

% derivate of volume: 

dVdtheta=Vtdc*(r-1)/2*(sin(theta)+ ... 

   eps/2*sin(2*theta)./sqrt(1-eps^2*sin(theta).^2)); 

% mass fraction burned and derivative: 

x=0.5*(1-cos(pi*(theta-thetas)/thetab)); 

dxdtheta=pi/2/thetab*sin(pi*(theta-thetas)/thetab); 

if x<0.0001, x=0.0001; end; 

if x>0.9999, x=0.9999; end; 

  

switch heattransferlaw 

case 'constant' 

   hcoeffu=hcu; 

   hcoeffb=hcb; 

case 'Woschni' 

   upmean=omega*stroke/pi; % mean piston velocity  

   C1=2.28; 
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   C2=3.24e-3; 

   Vs=Vbdc-Vtdc; 

   k=1.3; 

   pm=p1*(V1/V)^k; % motoring pressure 

   hcoeffu=hcu*130*b^(-0.2)*Tu^(-0.53)*(p/100e3)^(0.8)* ... 

      (C1*upmean+C2*Vs*T1/p1/V1*(p-pm))^(0.8); 

   hcoeffb=hcb*130*b^(-0.2)*Tb^(-0.53)*(p/100e3)^(0.8)* ... 

      (C1*upmean+C2*Vs*T1/p1/V1*(p-pm))^(0.8); 

end 

  

A=1/mass*(dVdtheta+V*Cblowby/omega); 

Qconvu=hcoeffu*(pi*b^2/2+4*V/b)*(1-sqrt(x))*(Tu-Tw); 

Qconvb=hcoeffb*(pi*b^2/2+4*V/b)*sqrt(x)*(Tb-Tw); 

Const1=1/omega/mass; 

  

[hu,uu,vu,s,Y,cpu,dlvlTu,dlvlpu]= ... 

   farg(p,Tu,ϕ,f,fueltype,airscheme); 

[hb,ub,vb,s,Y,cpb,dlvlTb,dlvlpb]= ... 

   ecp(p,Tb,ϕ,fueltype,airscheme); 

B=Const1*(vb/cpb*dlvlTb*Qconvb/Tb+ ... 

   vu/cpu*dlvlTu*Qconvu/Tu); 

C=-(vb-vu)*dxdtheta-vb*dlvlTb*(hu-hb)/cpb/Tb*(dxdtheta- ... 

   (x-x^2)*Cblowby/omega); 

D=x*(vb^2/cpb/Tb*dlvlTb^2+vb/p*dlvlpb); 

E=(1-x)*(vu^2/cpu/Tu*dlvlTu^2+vu/p*dlvlpu); 

  

yprime(1)=(A+B+C)/(D+E); 

yprime(2)=-Const1/cpb/x*Qconvb+vb/cpb*dlvlTb*yprime(1)+ ... 

   (hu-hb)/cpb*(dxdtheta/x-(1-x)*Cblowby/omega); 

yprime(3)=-Const1/cpu/(1-x)*Qconvu+vu/cpu*dlvlTu*yprime(1); 

yprime(4)=p*dVdtheta;    

yprime(5)=Const1*mass*(Qconvb+Qconvu); 

yprime(6)=Cblowby*mass/omega*((1-x^2)*hu+x^2*hb); 

    

Appendix ##7 – RatesComp.m – Compression Phase derivatives 

 

function yprime=RatesComp(theta,y,flag); 

% 

% yprime=RatesComp(theta,y,flag) 

% 

% Function that returns the drivatives of the following 5 variables 

% w.r.t. crank angle (theta) for the compression phase: 

% 1) pressure; 2) unburned temperature; 

% 3) work; 4) heat transfer; and 5) heat leakage. 

% See Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley, 

% p174. 

  

global b stroke eps r Cblowby f fueltype airscheme ϕ ... 

   thetas thetab omega ... 

   heattransferlaw hcu ... 

   Tw theta1 Vtdc mass1 ... 

  

p=y(1); 

Tu=y(2); 

yprime=zeros(5,1); 

  

% mass in cylinder accounting for blowby: 

mass=mass1*exp(-Cblowby*(theta-theta1)./omega); 

% volume of cylinder: 

V=Vtdc*(1+(r-1)/2*(1-cos(theta)+ ... 
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   1/eps*(1-(1-eps^2*sin(theta).^2).^0.5))); 

% derivate of volume: 

dVdtheta=Vtdc*(r-1)/2*(sin(theta)+ ... 

   eps/2*sin(2*theta)./sqrt(1-eps^2*sin(theta).^2)); 

  

switch heattransferlaw 

case 'constant' 

   hcoeff=hcu; 

case 'Woschni' 

   upmean=omega*stroke/pi; % mean piston velocity  

   C1=2.28; 

   hcoeff=hcu*130*b^(-0.2)*Tu^(-0.53)*(p/100e3)^(0.8)*C1*upmean; 

end 

  

A=1/mass*(dVdtheta+V*Cblowby/omega); 

Qconv=hcoeff*(pi*b^2/2+4*V/b)*(Tu-Tw); 

Const1=1/omega/mass; 

  

[h,u,v,s,Y,cp,dlvlT,dlvlp]=farg(p,Tu,ϕ,f,fueltype,airscheme); 

B=Const1*v/cp*dlvlT*Qconv/Tu; % note typo on p174, eq. 4.76 

C=0; 

D=0; 

E=v^2/cp/Tu*dlvlT^2+v/p*dlvlp; 

  

yprime(1)=(A+B+C)/(D+E); 

yprime(2)=-Const1/cp*Qconv+v/cp*dlvlT*yprime(1); 

yprime(3)=p*dVdtheta;    

yprime(4)=Qconv/omega; 

yprime(5)=Cblowby*mass/omega*h; 

 

Appendix ##8 – RatesExp.m – Compression Phase derivatives 

 

function yprime=RatesExp(theta,y,flag); 

% 

% yprime=RatesExp(theta,y,flag) 

% 

% Function that returns the drivatives of the following 5 variables 

% w.r.t. crank angle (theta) for the expansion phase: 

% 1) pressure; 2) unburned temperature; 

% 3) work; 4) heat transfer; and 5) heat leakage. 

% See Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley, 

% p174. 

  

global b stroke eps r Cblowby f fueltype airscheme ϕ ... 

   thetas thetab RPM omega ... 

   heattransferlaw hcb ... 

   p1 T1 V1 Tw theta1 Vtdc Vbdc mass1  

  

p=y(1); 

Tb=y(2); 

yprime=zeros(5,1); 

  

% mass in cylinder accounting for blowby: 

mass=mass1*exp(-Cblowby*(theta-theta1)/omega); 

% volume of cylinder: 

V=Vtdc*(1+(r-1)/2*(1-cos(theta)+ ... 

   1/eps*(1-(1-eps^2*sin(theta).^2).^0.5))); 

% derivate of volume: 

dVdtheta=Vtdc*(r-1)/2*(sin(theta)+ ... 

   eps/2*sin(2*theta)./sqrt(1-eps^2*sin(theta).^2)); 
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switch heattransferlaw 

case 'constant' 

   hcoeff=hcb; 

case 'Woschni' 

   upmean=omega*stroke/pi; % mean piston velocity  

   C1=2.28; 

   C2=3.24e-3; 

   Vs=Vbdc-Vtdc; 

   k=1.3; 

   pm=p1*(V1/V)^k; % motoring pressure 

   hcoeff=hcb*130*b^(-0.2)*Tb^(-0.53)*(p/100e3)^(0.8)* ... 

      (C1*upmean+C2*Vs*T1/p1/V1*(p-pm))^(0.8); 

end 

  

A=1/mass*(dVdtheta+V*Cblowby/omega); 

Qconv=hcoeff*(pi*b^2/2+4*V/b)*(Tb-Tw); 

Const1=1/omega/mass; 

  

if Tb<1000 

   [h,u,v,s,Y,cp,dlvlT,dlvlp]=farg(p,Tb,ϕ,1,fueltype,airscheme); 

else 

   [h,u,v,s,Y,cp,dlvlT,dlvlp]=ecp(p,Tb,ϕ,fueltype,airscheme); 

end 

B=Const1*v/cp*dlvlT*Qconv/Tb; 

C=0; 

D=v^2/cp/Tb*dlvlT^2+v/p*dlvlp; 

E=0; 

  

yprime(1)=(A+B+C)/(D+E); 

yprime(2)=-Const1/cp*Qconv+v/cp*dlvlT*yprime(1); 

yprime(3)=p*dVdtheta;    

yprime(4)=Qconv/omega; 

yprime(5)=Cblowby*mass/omega*h; 

  

    

Appendix C8 – Tadiabatic.m – Calculate Adiabatic flame temp 

 
function Tb=Tadiabatic(p,Tu,ϕ,f,fueltype,airscheme); 
%  
% Tb=Tadiabatic(p,Tu,ϕ,f,fueltype,airscheme) 
% 
% Routine for calculating the adiabatic flame temperature. 
% Method involves iteratively selecting flame temperatures until 
% the enthalpy of the combustion products (in equilibrium) matches 
% the enthalpy of the initial gas mixture.   
% farg.m is used to determine the enthalpy of the unburned mixture,  
% and ecp.m is used to determine the enthalpy of the burned gas. 
% ******************************************************************** 
% input:  
% p - pressure (Pa) 
% Tu - temperature of the unburned mixture (K) 
% ϕ - equivalence ratio 
% f - residual mass fraction; set f=0 if no combustion products  
% are present and f=1 if only combustion products are present   
% fueltype - 'gasoline', 'diesel', etc - see fueldata.m for full list 
% airscheme - 'GMcB' (Gordon and McBride) or 'Chemkin' 
% output:  
% Tb - temperature of the burned gas (K) - adiabatic flame temperature 
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% ******************************************************************** 
  
MaxIter=50; 
Tol=0.00001; % 0.001% allowable error in temperature calculation 
Tb=2000; % initial estimate 
DeltaT=2*Tol*Tb; % something big 
Iter=0; 
[hu,u,v,s,Y,cp,dlvlT,dlvlp]=farg(p,Tu,ϕ,f,fueltype,airscheme); 
  
while (Iter<MaxIter)&(abs(DeltaT/Tb)>Tol) 
   Iter=Iter+1; 
   [hb,u,v,s,Y,cp,dlvlT,dlvlp]=ecp(p,Tb,ϕ,fueltype,airscheme); 
   DeltaT=(hu-hb)/cp; 
   Tb=Tb+DeltaT; 
end 
  
if Iter>=MaxIter 
   warning('convergence failure in adiabatic flame temperature loop'); 
end 
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Appendix C9 – fueldata.m – Thermodynamic properties of fuel  (modified) 

function [alpha,beta,gamma,delta,Afuel]=fueldata(fuel); 
% 
% [alpha,beta,gamma,delta,Afuel]=fueldata(fuel) 
% 
% Routine to specify the thermodynamic properties of a fuel.  
% Data taken from:  
% 1. Ferguson, C.R., 1986, "Internal Combustion Engines", Wiley;  
% 2. Heywood, J.B., 1988, "Internal Combustion Engine Fundamentals",  
%    McGraw-Hill; and 
% 3. Raine, R. R., 2000, "ISIS_319 User Manual", Oxford Engine Group. 
% ******************************************************************** 
% input:  
% fuel switch 
% from Ferguson: 'gasoline', 'diesel', 'methane', 'methanol',  
% 'nitromethane', 'benzene';   
% from Heywood: 'methane_h', 'propane', 'hexane', 'isooctane_h',  
% 'methanol_h', 'ethanol', 'gasoline_h1', gasoline_h2', 'diesel_h';  
% from Raine: 'toluene', 'isooctane'. 
% output:  
% alpha, beta, gamma, delta - number of C, H, 0, and N atoms 
% Afuel - vector of polynomial coefficients for cp/R, h/RT, and s/R  
% of the form h/RT=a1+a2*T/2+a3*T^2/3+a4*T^3/4-a5/T^2+a6/T (for  
% example) where T is expressed in K. 
% ******************************************************************** 
  
% Set values for conversion of Heywood data to nondimensional format  
% with T expressed in K 
SVal=4.184e3/8.31434; 
SVec=SVal*[1e-3 1e-6 1e-9 1e-12 1e3 1 1];  
  
switch fuel 
case 'gasoline' % Ferguson  
   alpha=7; beta=17; gamma=0; delta=0;  
   Afuel=[4.0652 6.0977E-02 -1.8801E-05 0 0 -3.5880E+04 15.45];  
case 'diesel' % Ferguson   
   alpha=14.4; beta=24.9; gamma=0; delta=0; 
   Afuel=[7.9710 1.1954E-01 -3.6858E-05 0 0 -1.9385E+04 -1.7879]; 
case 'methane' % Ferguson 
   alpha=1; beta=4; gamma=0; delta=0; 
   Afuel=[1.971324 7.871586E-03 -1.048592E-06 0 0 -9.930422E+03 8.873728]; 
case 'methanol' % Ferguson 
   alpha=1; beta=4; gamma=1; delta=0; 
   Afuel=[1.779819 1.262503E-02 -3.624890E-06 0 0 -2.525420E+04 1.50884E+01]; 
case 'nitromethane' % Ferguson 
   alpha=1; beta=3; gamma=2; delta=1; 
   Afuel=[1.412633 2.087101E-02 -8.142134E-06 0 0 -1.026351E+04 1.917126E+01];  
case 'benzene' % Ferguson 
   alpha=6; beta=6; gamma=0; delta=0; 
   Afuel=[-2.545087 4.79554E-02 -2.030765E-05 0 0 8.782234E+03 3.348825E+01]; 
case 'toluene' % Raine 
   alpha=7; beta=8; gamma=0; delta=0; 
   Afuel=[-2.09053 5.654331e-2 -2.350992e-5 0 0 4331.441411 34.55418257];  
case 'isooctane' % Raine 
   alpha=8; beta=18; gamma=0; delta=0; 
   Afuel=[6.678E-1 8.398E-2 -3.334E-5 0 0 -3.058E+4 2.351E+1]; 
case 'methane_h' % Heywood 
   alpha=1; beta=4; gamma=0; delta=0; 
   Afuel=[-0.29149 26.327 -10.610 1.5656 0.16573 -18.331 19.9887/SVal].*SVec; 
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case 'propane' % Heywood 
   alpha=3; beta=8; gamma=0; delta=0; 
   Afuel=[-1.4867 74.339 -39.065 8.0543 0.01219 -27.313 26.4796/SVal].*SVec; 
case 'hexane' % Heywood 
   alpha=6; beta=14; gamma=0; delta=0; 
   Afuel=[-20.777 210.48 -164.125 52.832 0.56635 -39.836 79.5542/SVal].*SVec; 
case 'isooctane_h' % Heywood 
   alpha=8; beta=18; gamma=0; delta=0; 
   Afuel=[-0.55313 181.62 -97.787 20.402 -0.03095 -60.751 27.2162/SVal].*SVec; 
case 'methanol_h' % Heywood 
   alpha=1; beta=4; gamma=1; delta=0; 
   Afuel=[-2.7059 44.168 -27.501 7.2193 0.20299 -48.288 31.1406/SVal].*SVec; 
case 'ethanol' % Heywood 
   alpha=2; beta=6; gamma=1; delta=0; 
   Afuel=[6.990 39.741 -11.926 0 0 -60.214 8.01623/SVal].*SVec; 
case 'gasoline_h1' % Heywood 
   alpha=8.26; beta=15.5; gamma=0; delta=0; 
   Afuel=[-24.078 256.63 -201.68 64.750 0.5808 -27.562 NaN].*SVec; 
case 'gasoline_h2' % Heywood 
   alpha=7.76; beta=13.1; gamma=0; delta=0; 
   Afuel=[-22.501 227.99 -177.26 56.048 0.4845 -17.578 NaN].*SVec; 
case 'diesel_h' % Heywood 
   alpha=10.8; beta=18.7; gamma=0; delta=0; 
   Afuel=[-9.1063 246.97 -143.74 32.329 0.0518 -50.128 NaN].*SVec; 
case 'hydrogen' % Heywood 
   alpha=1e-3; beta=2; gamma=0; delta=0; 
   Afuel=[0.30574451E01 0.26765200E-02 -0.58099162E-05 0.55210391E-08... 
       -0.18122739E-11 -0.98890474E03 -0.22997056E01]; 
end 
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APPENDIX D - Engine Simulation script files – Richardson (2015) 
Appendix D1 – Drive_Cycle_Anlysis.m – HWFET & UDDS Drive Cycle Analysis 

%% Holden 5.0L Engine Analysis 
% Kieran Richardson - 0061033301 

 
clc 
clear all 
close all 

 
tic 

  
global ϕ p1 

  
% set engine speed and fuel ratio range 
ϕ_range = 0.3:0.05:1.2; 
Pa_range = 30e3:5e3:140e3; 

  
% length of arrays for zeros matrices 
n=length(Pa_range); 
m=length(ϕ_range); 

  
% create power output matrix (kW) 
power_out=zeros(n+1,m+1); 
power_out(2:end,1)=Pa_range; 
power_out(1,2:end)=ϕ_range;  

  
% fuel consumption output matrix (kg/100km) 
FC_kg_100km=zeros(n+1,m+1); 
FC_kg_100km(2:end,1)=Pa_range; 
FC_kg_100km(1,2:end)=ϕ_range; 

  
% petrol fuel consumption equivalent output matrix (L/100km) 
FC_L_100km=zeros(n+1,m+1); 
FC_L_100km(2:end,1)=Pa_range; 
FC_L_100km(1,2:end)=ϕ_range; 

  
% create specific fuel consumption output matrix 
SFC=zeros(n+1,m+1); 
SFC(2:end,1)=Pa_range; 
SFC(1,2:end)=ϕ_range; 

  
% loop for engine speed and fuel ratios 
for k = 1:m 
    ϕ = ϕ_range(k); 
    for l = 1:n 
        p1 = Pa_range(l); 

  
% run enginedata and ahrind scriptfiles 
enginedata 
ahrind 

  
load ahrind.mat; % results from ahrind.m 
load ferguson.txt; % tabulated output from ferguson p178-179 

  
% Set some parameters to make Figures look attractive 
NLW=1; % normal line width 
NFS=18; % normal font size 
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NMS=1; % normal marker size 

  

  
%% additional data 

  
% HQ 5.0L V8  
cc_vol=Vbdc*8;      % total engine capacity (m3) 
dl_eta=0.9;         % Vehicle driveline efficiency 
rho_petrol=737;     % density of petrol (kg/m^3) 

  
% The density of dry air can be calculated using the ideal gas law,  
% expressed as a function of temperature and pressure: 

  
R=287.058; % specific gas constant for dry air (J/(kg*K)) 

  
% calculating density 
rho_air=p1/(R*T1); 

  
% The injection pressure of hydrogen is assumed to be constant 
rho_H2=0.089;  

  
%% Ground speed 
% the relationship between RPM and groundspeed is determined by the 
% driveline ratios. 
gr=[2.54 1.83 1.38 1.0];      % gearbox ratios (x:1) 
dr=3.08;                      % differential ratio (x:1) 
tw=0.235;                     % tyre width (m) 
ar=60;                        % tyre aspect ratio 
rim=14;                       % wheel size (inches) 

  
wd=2*tw*(ar/100)+(rim*0.0254);  % wheel diameter               

  
wc=pi*wd; % wheel_circumfrence 

  
dc=((60/1000/dr*wc)/1)/gr(4); % driveline constant 

  
ground_speed=RPM*dc; % speed in top gear 

  
%% stoichiometry 
% number of moles per species 
N_H2=1;N_O2=0.5;N_N2=1.88; 

  
% mole fractions 
X_H2=N_H2/(N_H2+N_O2+N_N2); 
X_O2=N_O2/(N_H2+N_O2+N_N2); 
X_N2=N_N2/(N_H2+N_O2+N_N2); 

  
% molar weights 
MW_H2=1.008;MW_N2=28.013;MW_O2=31.999; 
MW_air=0.5*(MW_O2+3.76*MW_N2); 

  
% stoichiometric fuel-oxidiser ratio  
FAR_stoich=MW_H2/MW_air; 

  
% fuel-air ratio 
FAR=ϕ*FAR_stoich; 

  
% matrix operations 
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A=[1,1;-1,(FAR*(rho_air/rho_H2))]; 
C=[Vbdc;0]; 
B=linsolve(A,C); 

  
% matrix outputs 
vol_H2=B(1);        % volume of hydrogen gas in combustion chamber 
vol_air=B(2);       % volume of air in combustion chamber 

     
%% Fuel consumption 

  
% calculate power output at the flywheel (kW) 
power_out(l+1,k+1)=((eta*imep)*(RPM/60)*(cc_vol))/(2*1000); 

  
% mean effective pressure and thermal efficiency 
MEP=(power_out(2:end,2:end))/(((RPM/60)*(cc_vol/2))/1000); 

  
% thermal efficiency 
ETA=MEP.*(1/imep); 

  
% mass of hydrogen consumed per cylinder per cycle 
mass_H2=vol_H2*rho_H2;      

       
% calculate fuel consumption (kg/hr) 
FCH_H2=mass_H2*8*RPM*60; 

  
% calculate consumption (km/kg) 
FC_km_per_kg=ground_speed.*(1/FCH_H2); 

  
% calculate consumption (kg/100km) 
FC_kg_100km(l+1,k+1)=FCH_H2./(ground_speed/100); 

  
% calculate petroleum litre quivalent (1kg H2 = 3.77L petrol) 
FC_L_100km(l+1,k+1)=FC_kg_100km(l+1,k+1).*3.77; 

  
% calculate specific fuel consumption petrol equivalent 
SFC(l+1,k+1)=(FCH_H2*3.77)/power_out(l+1,k+1); 

  
    end 
end 

  
%% plot results 

  
hold on 

  
Figure(1) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,power_out(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Flywheel Power') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Power at the flywheel (kW)') 
colormap(jet)    % change color map 

  
Figure(2) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,power_out(2:end,2:end)*dl_eta) 
title('Induction pressure vs Equivalence Ratio vs Wheel Power') 
xlabel('Equivalence Ratio') 
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ylabel('Induction pressure (Pa)') 
zlabel('Power at the wheels (kW)') 
colormap(jet)    % change color map 

  
Figure(3) 
colormap(pink)    % change color map 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,FC_kg_100km(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Hydrogen Fuel 

Consumption') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Hydrogen Fuel Consumption (kg/100km)') 
colormap(jet)    % change color map 

  
Figure(4) 
colormap(pink)    % change color map 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,FC_L_100km(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Fuel Consumption 

Petrol Equivalent') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Petrol Fuel Consumption Equivalent (L/100)') 
colormap(jet)    % change color map 

  
Figure(5) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,SFC(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Specific Fuel 

Consumption Petrol Equivalent') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Specific Fuel Consumption Petrol Equivalent (kW/L)') 
colormap(jet)    % change color map 

  
Figure(6) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,MEP) 
title('Induction pressure vs Equivalence Ratio vs Mean Effective 

Pressure') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('MEP (Pa)') 
colormap(jet)    % change color map 

  
Figure(7) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,ETA) 
title('Induction pressure vs Equivalence Ratio vs Thermal efficiency') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Thermal efficiency') 
colormap(jet)    % change color map 
toc 
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Appendix D2 – Holden_5L_Engine_Anlysis.m 

 
%% Holden 5.0L Engine Analysis 
% Kieran Richardson - 0061033301 

  
clc 
clear all 
close all 

  
tic 

  
global ϕ p1 RPM 

  
% set engine speed and fuel ratio range 
ϕ_range = 0.35:0.05:1.2; 
Pa_range = 30e3:5e3:140e3; 

  
% length of arrays for zeros matricies 
n=length(Pa_range); 
m=length(ϕ_range); 

  
% create power output matrix (kW) 
power_out=zeros(n+1,m+1); 
power_out(2:end,1)=Pa_range; 
power_out(1,2:end)=ϕ_range;  

  
% fuel consumption output matrix (kg/100km) 
FC_kg_100km=zeros(n+1,m+1); 
FC_kg_100km(2:end,1)=Pa_range; 
FC_kg_100km(1,2:end)=ϕ_range; 

  
% petrol fuel consumption equivalent output matrix (L/100km) 
FC_L_100km=zeros(n+1,m+1); 
FC_L_100km(2:end,1)=Pa_range; 
FC_L_100km(1,2:end)=ϕ_range; 

  
% create specific fuel consumption output matrix 
SFC=zeros(n+1,m+1); 
SFC(2:end,1)=Pa_range; 
SFC(1,2:end)=ϕ_range; 

  
% loop for engine speed and fuel ratios 
for k = 1:m 
    ϕ = ϕ_range(k); 
    for l = 1:n 
        p1 = Pa_range(l); 

  
% run enginedata and ahrind scriptfiles 
enginedata 
ahrind 

  
load ahrind.mat; % results from ahrind.m 
load ferguson.txt; % tabulated output from ferguson p178-179 

  
% Set some parameters to make Figures look attractive 
NLW=1; % normal line width 
NFS=18; % normal font size 
NMS=1; % normal marker size 
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%% additional data 

  
% HQ 5.0L V8  
cc_vol=Vbdc*8;      % total engine capacity (m3) 
eta_d=0.95;         % Vehicle driveline efficiency 
rho_petrol=737;     % density of petrol (kg/m^3) 

  
% The density of dry air can be calculated using the ideal gas law,  
% expressed as a function of temperature and pressure: 

  
R=287.058; % specific gas constant for dry air (J/(kg*K)) 

  
% calculating density 
rho_air=p1/(R*T1); 

  
% The injection pressure of hydrogen is assumed to be constant 
rho_H2=0.089;  

  
%% Ground speed 
% the relationship between RPM and groundspeed is determined by the 
% driveline ratios. 
gr=[2.54 1.83 1.38 1.0];      % gearbox ratios (x:1) 
dr=3.08;                      % differential ratio (x:1) 
tw=0.235;                     % tyre width (m) 
ar=60;                        % tyre aspect ratio 
rim=14;                       % wheel size (inches) 

  
wd=2*tw*(ar/100)+(rim*0.0254);  % wheel diameter               

  
wc=pi*wd; % wheel_circumfrence 

  
dc=((60/1000/dr*wc)/1)/gr(2); % driveline constant 

  
ground_speed=RPM*dc; % speed in top gear 

  
%% stoichiometry 
% number of moles per species 
N_H2=1;N_O2=0.5;N_N2=1.88; 

  
% molar weights 
MW_H2=2*1.008;MW_N2=28.013;MW_O2=31.999; 
MW_air=0.5*(MW_O2+3.76*MW_N2); 

  
% stoichiometric fuel-oxidiser ratio  
FAR_stoich=MW_H2/MW_air; 

  
% fuel-air ratio 
FAR=ϕ*FAR_stoich; 

  
% matrix operations 
A=[1,1;-1,(FAR*(rho_air/rho_H2))]; 
C=[Vbdc;0]; 
B=linsolve(A,C); 

  
% matrix outputs 
vol_H2=B(1);        % volume of hydrogen gas in combustion chamber 
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vol_air=B(2);       % volume of air in combustion chamber 

     
%% Fuel consumption 

  
% power output at the wheels (kW) 
power_out(l+1,k+1)=((cc_vol*imep*RPM*eta*eta_d)/(60*2))/1000; 

  
% mass of hydrogen consumed per cylinder per cycle 
mass_H2=vol_H2*rho_H2;      

       
% calculate fuel consumption (kg/hr) 
FCH_H2=(mass_H2*8*RPM*60)/2; 

  
% calculate consumption (km/kg) 
FC_km_per_kg=ground_speed.*(1/FCH_H2); 

  
% calculate consumption (kg/100km) 
FC_kg_100km(l+1,k+1)=FCH_H2./(ground_speed/100); 

  
% calculate petroleum litre quivalent (1kg H2 = 3.77L petrol) 
FC_L_100km(l+1,k+1)=FC_kg_100km(l+1,k+1).*3.77; 

  
% calculate specific fuel consumption petrol equivalent 
SFC(l+1,k+1)=(FCH_H2*3.77)/power_out(l+1,k+1); 

  
    end 
end 

  
%% plot results 

  
hold on 

  
Figure(1) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,power_out(2:end,2:end)/eta_d) 
title('Induction pressure vs Equivalence Ratio vs Flywheel Power') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Power at the flywheel (kW)') 
colormap(jet)    % change color map 

  
Figure(2) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,power_out(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Wheel Power') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Power at the wheels (kW)') 
colormap(jet)    % change color map 

  
Figure(3) 
colormap(pink)    % change color map 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,FC_kg_100km(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Hydrogen Fuel 

Consumption') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
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zlabel('Hydrogen Fuel Consumption (kg/100km)') 
colormap(jet)    % change color map 

  
Figure(4) 
colormap(pink)    % change color map 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,FC_L_100km(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Fuel Consumption 

Petrol Equivalent') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Petrol Fuel Consumption Equivalent (L/100)') 
colormap(jet)    % change color map 

  
Figure(5) 
set(gcf, 'Color', [1,1,1])% set plot background colour to white 
surf(ϕ_range,Pa_range,SFC(2:end,2:end)) 
title('Induction pressure vs Equivalence Ratio vs Specific Fuel 

Consumption Petrol Equivalent') 
xlabel('Equivalence Ratio') 
ylabel('Induction pressure (Pa)') 
zlabel('Specific Fuel Consumption Petrol Equivalent (kW/L)') 
colormap(jet)    % change color map 

  
toc 
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Appendix E – Drive cycle analysis plots 

Appendix E1 - Power to maintain speed and power to accelerate over HWFET driving 

cycle  

Appendix E2 - Total power required vs time for the HWFET driving cycle  
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Appendix E3 - Cumulative fuel consumption vs time for the HWFET driving cycle  

Appendix E4 - Power to maintain speed and power to accelerate over the UDDS driving 

cycle. 
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Appendix E5 - Total power required vs time for the UDDS driving cycle  

Appendix E6 – Cumulative fuel consumption vs time for the UDDS driving cycle  
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Appendix F - HWFET AESM Power and Fuel consumption plots 
 

Appendix F1 – GGE Surface plot for HWFET driving cycle 

Appendix F2 – Specific Fuel consumption surface plot for HWFET driving cycle 

 

Appendix G - UDDS AESM Power and Fuel consumption plots 
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Appendix G1 – GGE Surface plot for UDDS driving cycle 

Appendix G2 – Specific Fuel consumption surface plot for UDDS driving cycle 

 

 


