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Abstract

In this study, we present a high-order numerical method based on a combined

compact integrated RBF (IRBF) approximation for viscous flow and fluid

structure interaction (FSI) problems. In the method, the fluid variables are

locally approximated by using the combined compact IRBF, and the incom-

pressible Navier-Stokes equations are solved by using the velocity-pressure

formulation in a direct fully coupled approach. The fluid solver is verified

through various problems including heat, Burgers, convection-diffusion equa-

tions, Taylor-Green vortex and lid driven cavity flows. It is then applied to

simulate some FSI problems in which an elastic structure is immersed in a

viscous incompressible fluid. For FSI simulations, we employ the immersed

boundary framework using a regular Eulerian computational grid for the

fluid mechanics together with a Lagrangian representation of the immersed

boundary. For the immersed fibre/membrane FSI problems, although the or-
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der of accuracy of the present scheme is generally similar to FDM approaches

reported in the literature, the present approach is nonetheless more accurate

than FDM approaches at comparable grid spacings. The numerical results

obtained by the present scheme are highly accurate or in good agreement

with those reported in earlier studies of the same problems.

Keywords:

Combined compact integrated RBF; Convection-diffusion equations; Fluid

flow; Fluid structure interaction; Enclosed membrane; Immersed boundary.

1. Introduction1

Although many scientific and engineering problems involve fluid structure2

interaction (FSI), thorough study of such problems remains a challenge due3

to their strong nonlinearity and multidisciplinary requirements [1, 2, 3]. For4

most FSI problems, closed form analytic methods to the model equations5

are often not available, while laboratory experiments are not practical due to6

limited resources. Therefore, to investigate the fundamental physics involved7

in the complicated interaction between fluids and solids, one has to rely on8

numerical methods [4].9

In this study, we are interested in the interaction of a viscous incom-10

pressible fluid with an immersed elastic membrane. The immersed bound-11

ary method (IBM), originally developed by Peskin [5], is designed to solve12

this kind of problem. The IBM is a mixed Eulerian-Lagrangian scheme in13

which the fluid dynamics based on the Navier-Stokes (N-S) equations are14

described in Eulerian form, and the elasticity of the structure is described in15

Lagrangian form. The IBM considers the structure as an immersed boundary16
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which can be represented by a singular force in the N-S equations rather than17

a real body. It avoids grid-conforming difficulties associated with the moving18

boundary faced by conventional body-fitted methods. The fluid computation19

is done on a fixed, uniform computational lattice and the representation of20

the immersed boundary is independent of this lattice. The immersed bound-21

ary exerts a singular force on the nearby lattice points of the fluid with the22

help of a computational model of the Dirac δ-function. At the same time,23

the representative material points of the immersed boundary move at the lo-24

cal fluid velocity, which is obtained by interpolation from the nearby lattice25

points of the fluid. The same δ-function weights are used in the interpolation26

step as in the application of the boundary forces on the fluid. Computer sim-27

ulations using the IBM such as blood flow in the heart [5, 6], insect flight [7],28

aquatic animal locomotion [8], bio-film processing [9], and flow past a pick-up29

truck [10] have exhibited the great potential of the IBM in FSI applications.30

Reviews on immersed methods can be found in [11, 12].31

High-order approximation schemes have the ability to produce highly ac-32

curate solutions to incompressible viscous flow problems. With these schemes,33

a high level of accuracy can be achieved using a relatively coarse discretisa-34

tion. Many types of high-order approximation methods have been reported35

in the literature. Botella and Peyret [13] developed a Chebyshev collo-36

cation method for the lid-driven cavity flow. Various types of high-order37

compact finite difference algorithms (HOC) were proposed [14, 15, 16]. On38

the other hand, radial basis function networks (RBF) have emerged as a39

powerful approximation tool [17, 18, 19]. Different schemes of integrated40

RBF approximation (here referred to as IRBF) were developed in the lit-41
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erature [20, 21, 22, 23]. In [24], the authors developed a high-order fully42

coupled scheme based on compact IRBF approximations for viscous flow43

problems, where nodal first- and second-derivative values are included in44

the stencil approximation and the starting points in the integration process45

are second-order derivatives. In their work, the N-S governing equations46

are taken in the primitive form where the velocity and pressure fields are47

solved in a direct fully coupled approach. With relatively coarse meshes, the48

compact IRBF produces very accurate solutions to many fluid flow prob-49

lems in comparison with some other methods such as the standard central50

finite different method (FDM) and HOC. Recently, Tien et al. [25] proposed51

a combined compact IRBF approximation scheme, where nodal first- and52

second-derivative values are also included in the stencil approximation, but53

the starting points are fourth-order derivatives. The fourth-order IRBF ap-54

proach allows a more straightforward incorporation of nodal values of first-55

and second-order derivatives, and yields better accuracy over previous IRBF56

approximation schemes.57

In this paper, we will incorporate the high-order combined compact IRBF58

approximation introduced in [25] into the fully coupled N-S approach re-59

ported in [24]. The new high-order fluid solver is verified through various60

problems such as heat, Burgers, convection-diffusion equations, Taylor-Green61

vortex and lid driven cavity flows. It will show that highly accurate results62

are obtained with the present approach. Then, we embed the fluid solver in63

the IBM procedure outlined in [26, 27] to simulate FSI problems in which64

a stretched elastic fibre/membrane relaxes in a viscous fluid. Comparisons65

between the present scheme and some others, where appropriate, are pre-66
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sented; and, numerical studies of the grid convergence and order of accuracy67

are also included.68

The remainder of this paper is organised as follows: Sections 2 first re-69

views the spatial disretisation using the combined compact IRBF. Following70

this, Section 3 briefly describes the fully coupled approach for N-S equa-71

tions. Section 4 summarises the mathematical formulation of the IBM. In72

Section 5, various numerical examples are presented and the present results73

are compared with some benchmark solutions, where appropriate. Finally,74

concluding remarks are given in Section 6.75

2. Review of combined compact IRBF scheme76

Consider a two-dimensional domain Ω, which is represented by a uniform77

Cartesian grid. The nodes are indexed in the x-direction by the subscript78

i (i ∈ {1, 2, ..., nx}) and in the y-direction by j (j ∈ {1, 2, ..., ny}). For79

rectangular domains, let N be the total number of nodes (N = nx × ny)80

and Nip be the number of interior nodes (Nip = (nx − 2)× (ny − 2)). At81

an interior grid point xi,j = (x(i,j), y(i,j))
T where i ∈ {2, 3, ..., nx − 1} and82

j ∈ {2, 3, ..., ny−1}, the associated stencils to be considered here are two local83

stencils: {x(i−1,j), x(i,j), x(i+1,j)} in the x-direction and {y(i,j−1), y(i,j), y(i,j+1)}84

in the y-direction. Hereafter, for brevity, η denotes either x or y in a generic85

local stencil {η1, η2, η3}, where η1 < η2 < η3, as illustrated in Figure 1.

Figure 1: Compact 3-point 1D-IRBF stencil for interior nodes.
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86

The integral process of the present combined compact IRBF starts with

the decomposition of fourth-order derivatives of a variable, u, into RBFs

d4u(η)

dη4
=

m∑

i=1

wiGi(η). (1)

Approximate representations for the third- to first-order derivatives and the

functions itself are then obtained through the integration processes

d3u(η)

dη3
=

m∑

i=1

wiI1i(η) + c1, (2)

d2u(η)

dη2
=

m∑

i=1

wiI2i(η) + c1η + c2, (3)

du(η)

dη
=

m∑

i=1

wiI3i(η) +
1

2
c1η

2 + c2η + c3, (4)

u(η) =

m∑

i=1

wiI4i(η) +
1

6
c1η

3 +
1

2
c2η

2 + c3η + c4, (5)

where I1i(η) =
∫
Gi(η)dη; I2i(η) =

∫
I1i(η)dη; I3i(η) =

∫
I2i(η)dη; I4i(η) =87

∫
I3i(η)dη; and, c1, c2, c3, and c4 are the constants of integration. The88

analytic form of the IRBFs up to eighth-order can be found in [28]. It is89

noted that, for the solution of second-order PDEs, only (3-5) are needed.90

2.1. First-order derivative approximations91

For the combined compact approximation of the first-order derivatives at

interior nodes, extra information is chosen as not only
{

du1

dη
; du3

dη

}

but also
{

d2u1

dη2
; d2u3

dη2

}

. We construct the conversion system over a 3-point stencil as
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follows. 


















u1

u2

u3

du1

dη

du3

dη

d2u1

dη2

d2u3

dη2




















=








I4

I3

I2








︸ ︷︷ ︸

C




















w1

w2

w3

c1

c2

c3

c4




















, (6)

where dui

dη
= du

dη
(ηi) with i ∈ {1, 2, 3}; C is the conversion matrix; and, I2, I3,

and I4 are defined as

I2 =




I21(η1) I22(η1) I23(η1) η1 1 0 0

I21(η3) I22(η3) I23(η3) η3 1 0 0



 . (7)

I3 =




I31(η1) I32(η1) I33(η1)

1
2
η21 η1 1 0

I31(η3) I32(η3) I33(η3)
1
2
η23 η3 1 0



 . (8)

I4 =








I41(η1) I42(η1) I43(η1)
1
6
η31

1
2
η21 η1 1

I41(η2) I42(η2) I43(η2)
1
6
η32

1
2
η22 η2 1

I41(η3) I42(η3) I43(η3)
1
6
η33

1
2
η23 η3 1







. (9)

Solving (6) yields



















w1

w2

w3

c1

c2

c3

c4




















= C−1




















u1

u2

u3

du1

dη

du3

dη

d2u1

dη2

d2u3

dη2




















, (10)
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which maps the vector of nodal values of the function and its first- and

second-order derivatives to the vector of RBF coefficients including the four

integration constants. The first-order derivative at the middle point is

computed by substituting (10) into (4) and taking η = η2

du2

dη
= I3mC

−1

︸ ︷︷ ︸

D1














u

du1

dη

du3

dη

d2u1

dη2

d2u3

dη2














, (11)

or

du2

dη
= D1(1 : 3)u+D1(4 : 5)





du1

dη

du3

dη



+D1(6 : 7)





d2u1

dη2

d2u3

dη2



 , (12)

where D1 is a row vector of length 7, the associated notation “a : b” is used

to indicate the vector entries from the the column a to b; u = [u1, u2, u3]
T ;

and,

I3m =
[

I31(η2) I32(η2) I33(η2)
1
2
η22 η2 1 0

]

. (13)

By taking derivative terms to the left side and nodal variable values to the

right side, (12) reduces to

[

−D1(4) 1 −D1(5)
]

u′ +
[

−D1(6) 0 −D1(7)
]

u′′ = D1(1 : 3)u,

(14)

where u′ =
[
du1

dη
, du2

dη
, du3

dη

]T

and u′′ =
[
d2u1

dη2
, d2u2

dη2
, d2u3

dη2

]T

.92

At the boundary nodes, the first-order derivatives are approximated in

special compact stencils. Consider the boundary node, e.g. η1. Its associated

stencil is {η1, η2, η3, η4} as shown in Figure 2 and extra information is chosen
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Figure 2: Special compact 4-point 1D-IRBF stencil for boundary nodes.

as du2

dη
and d2u2

dη2
. The conversion system over this special stencil is presented

as the following matrix-vector multiplication

















u1

u2

u3

u4

du2

dη

d2u2

dη2

















=








I4sp

I3sp

I2sp








︸ ︷︷ ︸

Csp























w1

w2

w3

w4

c1

c2

c3

c4























, (15)

where Csp is the conversion matrix; and, I2sp, I3sp, and I4sp are defined as

I2sp =
[

I21(η2) I22(η2) I23(η2) I24(η2) η2 1 0 0
]

. (16)

I3sp =
[

I31(η2) I32(η2) I33(η2) I34(η2)
1
2
η22 η2 1 0

]

. (17)

I4sp =











I41(η1) I42(η1) I43(η1) I44(η1)
1
6
η31

1
2
η21 η1 1

I41(η2) I42(η2) I43(η2) I44(η2)
1
6
η32

1
2
η22 η2 1

I41(η3) I42(η3) I43(η3) I44(η3)
1
6
η33

1
2
η23 η3 1

I41(η4) I42(η4) I43(η4) I44(η4)
1
6
η34

1
2
η24 η4 1











. (18)
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Solving (15) yields






















w1

w2

w3

w4

c1

c2

c3

c4























= C−1
sp

















u1

u2

u3

u4

du2

dη

d2u2

dη2

















. (19)

The boundary value of the first-order derivative of u is thus obtained by

substituting (19) into (4) and taking η = η1

du1

dη
= I3bC

−1
sp

︸ ︷︷ ︸

D1sp








u

du2

dη

d2u2

dη2







, (20)

or
du1

dη
= D1sp(1 : 4)u+D1sp(5)

du2

dη
+D1sp(6)

d2u2

dη2
, (21)

where u = [u1, u2, u3, u4]
T and

I3b =
[

I31(η1) I32(η1) I33(η1) I34(η1)
1
2
η21 η1 1 0

]

. (22)

By taking derivative terms to the left side and nodal variable values to the

right side, (21) reduces to

[

1 −D1sp(5) 0 0
]

u′ +
[

0 −D1sp(6) 0 0
]

u′′ = D1sp(1 : 4)u, (23)

where u′ =
[
du1

dη
, du2

dη
, du3

dη
, du4

dη

]T

and u′′ =
[
d2u1

dη2
, d

2u2

dη2
, d

2u3

dη2
, d

2u4

dη2

]T

.93
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2.2. Second-order derivative approximations94

For the combined compact approximation of the second-order derivatives

at interior nodes, we employ the same extra information used in the approx-

imation of the first-order derivative, involving
{

du1

dη
; du3

dη

}

and
{

d2u1

dη2
; d2u3

dη2

}

.

Therefore, the second-order derivative at the middle point is computed by

simply substituting (10) into (3) and taking η = η2

d2u2

dη2
= I2mC

−1

︸ ︷︷ ︸

D2














u

du1

dη

du3

dη

d2u1

dη2

d2u3

dη2














, (24)

or

d2u2

dη2
= D2(1 : 3)u+D2(4 : 5)





du1

dη

du3

dη



+D2(6 : 7)





d2u1

dη2

d2u3

dη2



 , (25)

where u = [u1, u2, u3]
T and

I2m =
[

I21(η2) I22(η2) I23(η2) η2 1 0 0
]

. (26)

By taking derivative terms to the left side and nodal variable values to the

right side, (25) reduces to

[

−D2(4) 0 −D2(5)
]

u′ +
[

−D2(6) 1 −D2(7)
]

u′′ = D2(1 : 3)u,

(27)

where u′ =
[
du1

dη
, du2

dη
, du3

dη

]T

and u′′ =
[
d2u1

dη2
, d2u2

dη2
, d2u3

dη2

]T

.95

At the boundary nodes, i.e. η = η1, we employ the same special sten-

cil, i.e. {η1, η2, η3, η4}, and extra information, i.e. du2

dη
and d2u2

dη2
, used in the

11



approximation of the first-order derivatives. Therefore, approximate expres-

sion for the second-order derivative at η1 in the physical space is obtained by

simply substituting (19) into (3) and taking η = η1

d2u1

dη2
= I2bC

−1
sp

︸ ︷︷ ︸

D2sp








u

du2

dη

d2u2

dη2







, (28)

or
d2u1

dη2
= D2sp(1 : 4)u+D2sp(5)

du2

dη
+D2sp(6)

d2u2

dη2
, (29)

where u = [u1, u2, u3, u4]
T and

I2b =
[

I21(η1) I22(η1) I23(η1) I24(η1) η1 1 0 0
]

. (30)

By taking derivative terms to the left side and nodal variable values to the

right side, (29) reduces to

[

0 −D2sp(5) 0 0
]

u′ +
[

1 −D2sp(6) 0 0
]

u′′ = D2sp(1 : 4)u, (31)

where u′ =
[
du1

dη
, du2

dη
, du3

dη
, du4

dη

]T

and u′′ =
[
d2u1

dη2
, d

2u2

dη2
, d

2u3

dη2
, d

2u4

dη2

]T

.96

2.3. Matrix assembly for first- and second-order derivative approximations97

The IRBF system on a grid line for the first-order derivative is obtained

by letting the interior node take values from 2 to (nη−1) in (14); and, making

use of (23) for the boundary nodes 1 and nη. In a similar manner, the IRBF

system on a grid line for the second-order derivative is obtained by letting

the interior node take values from 2 to (nη − 1) in (27); and, making use

of (31) for the boundary nodes 1 and nη. The resultant matrix assembly is

12



expressed as 


A1 B1

A2 B2





︸ ︷︷ ︸

Coefficient matrix




u′n

u′′n



 =




R1

R2



 un , (32)

whereA1,A2, B1, B2,R1, andR2 are nη×nη matrices; u′n =
[

u′

1
n, u′

2
n, ..., u′

nη

n
]T

;

u′′n =
[

u′′

1
n, u′′

2
n, ..., u′′

nη

n
]T

; and, un =
[
u1

n, u2
n, ..., unη

n
]T
. The coefficient

matrix is sparse with diagonal sub-matrices. Solving (32) yields

u′n = Dηu
n, (33)

u′′n = Dηηu
n, (34)

where Dη and Dηη are nη × nη matrices.98

2.4. Numerical implementation99

For convenience in terms of numerical implementation, the formulation100

developed in Section 2.1 to 2.3 can be written in an intrinsic coordinate101

system as shown in Figure 3 (top).

Figure 3: Intrinsic coordinate system (top), x̂, and actual coordinate system (bottom), x,

in which h is actual grid size.

102

The relationship between the derivatives in the intrinsic coordinate sys-

tem and the corresponding ones in the actual coordinate system with a par-

13



ticular grid size, h, Figure 3 (bottom), is as follows.

du

dx
=

du

dx̂

dx̂

dx
=

1

2h

du

dx̂
. (35)

d2u

dx2
=

1

(2h)2
d2u

dx̂2
. (36)

Thus, the conversion matrix, C, needs be computed and inverted once.103

Subsequently, as the grid size h changes, these matrices can be obtained by104

a simple factor.105

The present compact IRBF stencils can be extended to the three-dimensional106

case since their approximations in each direction are constructed indepen-107

dently. As shown above, the IRBF approximation expressions are first de-108

rived in 1D and they are utilised to form the approximations in 2D. This109

procedure is also applicable to the 3D case.110

3. Review of fully coupled procedure for Navier-Stokes111

The transient N-S equations for an incompressible viscous fluid in the

primitive variables are expressed in the dimensionless non-conservative forms

as follows.

∂u

∂t
+

{

u
∂u

∂x
+ v

∂u

∂y

}

︸ ︷︷ ︸

N (u)

= −∂p

∂x
+

1

Re

{
∂2u

∂x2
+

∂2u

∂y2

}

︸ ︷︷ ︸

L(u)

, (37)

∂v

∂t
+

{

u
∂v

∂x
+ v

∂v

∂y

}

︸ ︷︷ ︸

N (v)

= −∂p

∂y
+

1

Re

{
∂2v

∂x2
+

∂2v

∂y2

}

︸ ︷︷ ︸

L(v)

, (38)

∂u

∂x
+

∂v

∂y
= 0, (39)
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where u, v and p are the velocity components in the x-, y-directions and static112

pressure, respectively; Re = Ul/ν is the Reynolds number, in which ν, l and113

U are the kinematic viscosity, characteristic length and characteristic speed114

of the flow, respectively. For simplicity, we employ notations N(u) and N(v)115

to represent the convective terms in the x- and y-directions, respectively;116

and, L(u) and L(v) to denote the diffusive terms in the x- and y-directions,117

respectively.118

The temporal discretisations of (37)-(39), using the Adams-Bashforth

scheme for the convective terms and Crank-Nicolson scheme for the diffu-

sive terms, result in

un − un−1

∆t
+

{
3

2
N(un−1)− 1

2
N(un−2)

}

= −Gx(p
n− 1

2 )+
1

2Re

{
L(un) + L(un−1)

}
,

(40)
vn − vn−1

∆t
+

{
3

2
N(vn−1)− 1

2
N(vn−2)

}

= −Gy(p
n− 1

2 )+
1

2Re

{
L(vn) + L(vn−1)

}
,

(41)

Dx(u
n) + Dy(v

n) = 0, (42)

where n denotes the current time level; Gx and Gy are gradients in the x-119

and y-directions, respectively; and, Dx and Dy are gradients in the x- and120

y-directions, respectively.121

Taking the unknown quantities in (40)-(42) to the left hand side and the

known quantities to the right hand side, and then collocating them at the

interior nodal points result in the matrix-vector form








K 0 Gx

0 K Gy

Dx Dy 0















un

vn

pn− 1

2







=








rnx

rny

0







, (43)
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where

K =
1

∆t

{

I− ∆t

2Re
L

}

, (44)

rnx =
1

∆t

{

I+
∆t

2Re
L

}

un−1 −
{
3

2
N(un−1)− 1

2
N(un−2)

}

, (45)

rny =
1

∆t

{

I+
∆t

2Re
L

}

vn−1 −
{
3

2
N(vn−1)− 1

2
N(vn−2)

}

, (46)

un and vn are vectors containing the nodal values of un and vn at the bound-122

ary and interior nodes, respectively, while pn− 1

2 is a vector containing the123

values of pn−
1

2 at the interior nodes only; I is the identity matrix; and, N124

and L are the matrix operators for the approximation of the convective and125

diffusive terms, respectively.126

4. Summary of immersed boundary method127

In this section, we provide a brief overview of the IBM and the reader is128

referred to [26, 27] for further details. For simplicity, we consider a model129

problem of a two-dimensional Newtonian, incompressible fluid and a one-130

dimensional, closed, elastic membrane. The fluid is defined on a periodic box131

Ω = [0, 1]2 using the Eulerian coordinates x = (x, y). The fluid contains an132

immersed neutrally-buoyant membrane Γ ⊂ Ω, using the Lagrangian coordi-133

nates s ∈ [0, 1]. It is noted that the lattice points are fixed but the boundary134

points are moving, and those two sets of points usually do not coincide with135

each other. We discretise Ω using a uniform nx × ny grid. Then, we set the136

mesh size of the immersed boundary to be nb = 3 × nx, so that there are137

approximately 3 immersed boundary points per mesh width.138

The IBM is mathematically defined by a set of differential equations in-

volving a mixture of Eulerian and Lagrangian variables. The motion of the

16



fluid-membrane is governed by the incompressible N-S equations

ρ

(
∂u

∂t
+ u · ∇u

)

= −∇p + µ∇2u+ f, (47)

∇ · u = 0, (48)

where u = u(x, t) = (u(x, t), v(x, t)) and p = p(x, t) are the fluid velocity

and pressure at location x and time t, respectively; ρ and µ are the con-

stant fluid density and dynamic viscosity, respectively; and, f = f(x, t) =

(fx(x, t), fy(x, t)) is the external body force through which the immersed

boundary is coupled to the fluid

f(x, t) =

∫

Γ

F(s, t)δ(x−X(s, t))ds, (49)

where X(s, t) = (X(s, t), Y (s, t)) is a parametric curve representing the im-

mersed boundary configuration; the delta function δ(x) = dh(x)dh(y) is a

Cartesian product of one-dimensional Dirac delta functions, which is used

to spread the Lagrangian immersed boundary force from Γ onto adjacent

Eulerian fluid nodes. The one-dimensional Dirac delta function is chosen as

dh(r) =







1
8h

(

3− 2|r|/h+
√

1 + 4|r|/h− 4 (|r|/h)2
)

, |r| ≤ h,

1
8h

(

5− 2|r|/h−
√

−7 + 12|r|/h− 4 (|r|/h)2
)

, h ≤ |r| ≤ 2h,

0, otherwise,

(50)

in which h is the grid size; and, F(s, t) is the elastic force density which is a

function of the current immersed boundary configuration

F(s, t) = F (X(s, t)) = σ
∂

∂s

(

∂X(s, t)

∂s

(

1− ε

|∂X(s,t)
∂s

|

))

, (51)

17



which corresponds to membrane points linked together by linear springs with

spring constant σ. If we assume the equilibrium strain ε = 0, then (51)

reduces to

F(s, t) = F (X(s, t)) = σ
∂2X(s, t)

∂s2
. (52)

The final equation needed to close the system is an evolution equation

for the immersed boundary, which comes from the simple requirement that

Γ must travel at the local fluid velocity (the non-slip condition)

∂X(s, t)

∂t
= U(X(s, t), t) =

∫

Ω

u(x, t)δ(x−X(s, t))dx, (53)

where U is the boundary speed. The delta function δ here imposes the139

Eulerian flow velocity on the adjacent Lagrangian boundary nodes.140

IBM algorithm. Next, we describe the algorithm used in this work, which is141

a discrete version of Equations (47), (48), (49), (51), and (53). Assuming142

that the velocity field and the membrane position are already known at time143

tn−2, tn−3/2, and tn−1. The procedure for updating these values to time tn is144

as follows.145

At half time step:146

Step 1. Update position of membrane

Xn−1/2(s)−Xn−1(s)

∆t/2
=
∑

Ω

un−1δ(x−Xn−1(s))h2. (54)

Step 2. Compute membrane force density

Fn−1/2(s) = F

(

Xn−1/2(s)
)

. (55)

Step 3. Calculate force coming from membrane

fn−1/2(x) =
∑

Γ

Fn−1/2(s)δ(x−Xn−1/2(s))∆s. (56)
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Step 4. Solve for fluid motion

ρ

[
un−1/2 − un−1

∆t/2
+

{
3

2
N
(
un−1

)
− 1

2
N
(
un−2

)
}]

= Gp̃n−1/2 +
µ

2

{
L
(
un−1/2

)
+ L

(
un−1

)}
+ fn−1/2. (57)

D · un−1/2 = 0. (58)

Once un−1/2 are known, we use them to take a full step from time tn−1 to tn,147

as follows.148

At full time step:149

Step 5. Solve for fluid motion

ρ

[
un − un−1

∆t
+

{
3

2
N
(
un−1/2

)
− 1

2
N
(
un−3/2

)
}]

= Gpn−1/2 +
µ

2

{
L (un) + L

(
un−1

)}
+ fn−1/2. (59)

D · un = 0. (60)

Step 6. Update position of membrane

Xn(s)−Xn−1(s)

∆t
=
∑

Ω

un−1/2δ(x−Xn−1/2(s))h2. (61)

5. Numerical examples150

We chose the multiquadric (MQ) function as the basis function in the

present calculations

Gi(x) =
√

(x− ci)2 + a2i , (62)

where ci and ai are the centre and the width of the i-th MQ, respectively.151

For each stencil, the set of nodal points is taken to be the same as the set152

19



of MQ centres. We simply choose the MQ width as ai = βhi, where β is a153

positive scalar and hi is the distance between the i-th node and its closest154

neighbour. The value of β = 10 is chosen for calculations in the present work.155

We evaluate the performance of the present scheme through the following156

measures157

i. The root mean square error (RMS) is defined as

RMS =

√
∑N

i=1

(
fi − f i

)2

N
, (63)

where fi and f i are the computed and exact values of the solution f158

at the i-th node, respectively; and, N is the number of nodes over the159

whole domain.160

ii. The maximum absolute error (L∞) is defined as

L∞ = max
i=1,...,N

|fi − f i|. (64)

iii. The global convergence rate, α, with respect to the grid refinement is

defined through

RMS(h) ≈ γhα = O(hα), (65)

where h is the grid size; and, γ and α are exponential model’s param-161

eters.162

iv. A flow is considered as reaching its steady state when
√
∑N

i=1

(
fn
i − fn−1

i

)2

N
< 10−9. (66)

v. Difference (%) between computed and analytical values is defined to

be
f − f

f
× 100. (67)
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For comparison purposes, we also implement the standard FDM, HOC163

scheme of Tian et al. [15] and coupled compact IRBF scheme of Tien et al.164

[23] for numerical calculations.165

5.1. Heat equation166

By selecting the following heat equation, the performance of the present

combined compact IRBF scheme can be studied for the diffusive term only

as
∂u

∂t
=

∂2u

∂x2
, a ≤ x ≤ b, t ≥ 0, (68)

u(x, 0) = u0(x), a ≤ x ≤ b, (69)

u(a, t) = uΓ1
(t) and u(b, t) = uΓ2

(t), t ≥ 0, (70)

where u and t are the field variable and time, respectively; and, u0(x), uΓ1
(t),

and uΓ2
(t) are prescribed functions. The temporal discretisation of (68) with

the Crank-Nicolson scheme gives

un − un−1

∆t
=

1

2

{
∂2un

∂x2
+

∂2un−1

∂x2

}

, (71)

where the superscript n denotes the current time step. (71) can be rewritten

as
{

1− ∆t

2

∂2

∂x2

}

un =

{

1 +
∆t

2

∂2

∂x2

}

un−1. (72)

Consider (68) on a segment [0, π] with the initial and boundary conditions

u(x, 0) = sin(2x), 0 < x < π. (73)

u(0, t) = u(π, t) = 0, t ≥ 0. (74)

The exact solution of this problem can be verified to be

u(x, t) = sin(2x)e−4t. (75)
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The spatial accuracy of the present scheme is investigated using various uni-167

form grids {11, 13, ..., 25}. We employ here a small time step, ∆t = 10−6,168

to minimise the effect of the approximation error in time. The solution is169

computed at t = 0.0125. Figure 4 shows that the present combined compact170

IRBF outperforms the standard central FDM, HOC, coupled compact IRBF171

in terms of both the solution accuracy and convergence rate.

h

0.15 0.2 0.25 0.3

R
M

S

10-6

10-5

10-4

10-3

10-2

FDM
HOC
coupled compact IRBF
present combined compact IRBF

Figure 4: Heat equation, {11, 13, ..., 25}, ∆t = 10−6, t = 0.0125: The effect of the grid

size h on the solution accuracy RMS. The solution converges as O(h1.96) for the central

FDM, O(h3.34) for the HOC, O(h3.54) for the coupled compact IRBF, and O(h5.35) for

the present combined compact IRBF.

172

5.2. Burgers equation173

With Burgers equation, the performance of the present combined compact

IRBF scheme can be investigated for both the convective and diffusive terms

as
∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, a ≤ x ≤ b, t ≥ 0, (76)
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u(x, 0) = u0(x), a ≤ x ≤ b, (77)

u(a, t) = uΓ1
(t) and u(b, t) = uΓ2

(t), t ≥ 0, (78)

where Re > 0 is the Reynolds number; and, u0(x), uΓ1
(t), and uΓ2

(t) are

prescribed functions. The temporal discretisations of (76) using the Adams-

Bashforth scheme for the convective term and Crank-Nicolson scheme for the

diffusive term, result in

un − un−1

∆t
+

{

3

2

(

u
∂u

∂x

)n−1

− 1

2

(

u
∂u

∂x

)n−2
}

=
1

2Re

{
∂2un

∂x2
+

∂2un−1

∂x2

}

,

(79)

or

{

1− ∆t

2Re

∂2

∂x2

}

un =

{

1 +
∆t

2Re

∂2

∂x2

}

un−1−∆t

{

3

2

(

u
∂u

∂x

)n−1

− 1

2

(

u
∂u

∂x

)n−2
}

.

(80)

The problem is considered on a segment 0 ≤ x ≤ 1 in the form [29]

u(x, t) =
α0 + µ0 + (µ0 − α0) exp(λ)

1 + exp(λ)
, (81)

where λ = α0Re(x − µ0t − β0), α0 = 0.4, β0 = 0.125, µ0 = 0.6, and Re =174

200. The initial and boundary conditions can be derived from the analytic175

solution (81). The calculations are carried out on a set of uniform grids176

{61, 71, ..., 121}. The time step ∆t = 10−6 is chosen. The errors of the177

solution are calculated at the time t = 0.0125. Figure 5 shows that the178

present combined compact IRBF overwhelms the standard central FDM,179

HOC, coupled compact IRBF schemes in terms of both the solution accuracy180

and convergence rate.181
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Figure 5: Burgers equation, {61, 71, ..., 121}, Re = 200, ∆t = 10−6, t = 0.0125: The effect

of the grid size h on the solution accuracy RMS. The solution converges as O(h1.96) for

the central FDM, O(h4.62) for the HOC, O(h5.03) for the coupled compact IRBF, and

O(h5.81) for the present combined compact IRBF.

5.3. Convection-diffusion equations182

To study the performance of the present combined compact IRBF ap-

proximation in simulating convection-diffusion problems, we employ the al-

ternating direction implicit (ADI) procedure which was detailed in [23]. A

two-dimensional unsteady convection-diffusion equation for a variable u is

expressed as follows.

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= dx

∂2u

∂x2
+ dy

∂2u

∂y2
+ fb, (x, y, t) ∈ Ω× [0, T ] , (82)

subject to the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (83)

and the Dirichlet boundary condition

u(x, y, t) = uΓ(x, y, t), (x, y) ∈ Γ, (84)
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where Ω is a two-dimensional rectangular domain; Γ is the boundary of Ω;183

[0, T ] is the time interval; fb is the driving function; u0 and uΓ are some184

given functions; cx and cy are the convective velocities; and, dx and dy are185

the diffusive coefficients.186

In this work, we consider fb = 0, in a square Ω = [0, 2]2 with the following

analytic solution [30]

u(x, y, t) =
1

4t+ 1
exp

[

−(x− cxt− 0.5)2

dx(4t+ 1)
− (y − cyt− 0.5)2

dy(4t+ 1)

]

, (85)

and subject to the Dirichlet boundary condition. From (85), one can derive187

the initial and boundary conditions. We consider two sets of parameters188

Case I: cx = cy = 0.8, dx = dy = 0.01, t = 0.0125, ∆t = 1E − 6.189

Case II: cx = cy = 80, dx = dy = 0.01, t = 0.0125, ∆t = 1E − 6.190

The corresponding Peclet number is thus Pe = 2 for case I and Pe = 200191

for case II. Figures 6 and 7 show analyses of the solution accuracy when the192

grid size is refined. It can be seen that the accuracy and convergence rate of193

the present combined compact IRBF scheme are much better than those of194

the central FDM, HOC, and coupled compact IRBF.195

5.4. Taylor-Green vortex196

To study the performance of the combination of the combined compact

IRBF and the fully coupled approaches in simulating viscous flow, we con-

sider a transient flow problem, namely Taylor-Green vortex [15]. This prob-

lem is governed by the N-S equations (40)-(42) and has the analytical solu-

tions

u(x1, x2, t) = − cos(kx1) sin(kx2) exp(−2k2t/Re), (86)

v(x1, x2, t) = sin(kx1) cos(kx2) exp(−2k2t/Re), (87)
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Figure 6: Unsteady convection-diffusion equation, {31× 31, 41× 41, ..., 121× 121}, case
I: The effect of the grid size h on the solution accuracy RMS. The solution converges as

O(h1.90) for the central FDM, O(h4.29) for the HOC, O(h4.71) for the coupled compact

IRBF, and O(h7.02) for the present combined compact IRBF.

h
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Figure 7: Unsteady convection-diffusion equation, {41× 41, 51× 51, ..., 121× 121}, case
II: The effect of the grid size h on the solution accuracy RMS. The solution converges

as O(h1.28) for the central FDM, O(h4.04) for the HOC, O(h4.56) for the coupled compact

IRBF, and O(h7.04) for the present combined compact IRBF.
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p(x1, x2, t) = −1/4 {cos(2kx1) + cos(2kx2)} exp(−4k2t/Re), (88)

where 0 ≤ x1, x2 ≤ 2π. Calculations are carried out for k = 2 on a set of197

uniform grids, {11× 11, 21× 21, ..., 51× 51}. A fixed time step ∆t = 0.002198

and Re = 100 are employed. Numerical solutions are computed at t = 2.199

The exact solutions, i.e. equations (86)-(88), provide the initial field at t = 0200

and the time-dependent boundary conditions. Table 1 shows the accuracy201

comparison of the present scheme with the HOC scheme of Tian et al. [15]202

and the compact IRBF scheme of Tien el al. [24]. It is seen that the present203

scheme produces much better accuracy than the two other schemes; and,204

its convergence rates are much higher than those of the HOC and compact205

IRBF, i.e. O(h7.02) compared to O(h5.35) of the compact IRBF and O(h2.92)206

of the HOC for the u-velocity; and, O(h8.51) compared to O(h4.48) of the207

compact IRBF and O(h3.28) of the HOC for the pressure.208

5.5. Lid driven cavity209

The classical lid driven cavity flow has been considered as a test problem210

for the evaluation of numerical methods and the validation of fluid flow solvers211

for the past decades. Figure 8 shows the problem definition and boundary212

conditions. Uniform grids of {31× 31, 51× 51, 71× 71, 91× 91, 111× 111}213

and Re = 1000 are employed in the simulation. A fixed time step is chosen214

to be ∆t = 0.001. Numerical results of the present scheme are compared215

with those of some others [13, 24, 31, 32, 33, 34, 35, 36]. From the literature,216

FDM results using very dense grids presented by Ghia et al. [31] and pseudo-217

spectral results presented by Botella and Peyret [13] have been referred to as218

“Benchmark” results for comparison purposes.219
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Table 1: Taylor-Green vortex: RMS-errors and convergence rates.

present combined compact IRBF

Grid u-error v-error p-error

11× 11 1.0652655E+00 1.0584558E+00 6.6053162E+00

21× 21 6.4466038E-04 6.3416436E-04 5.5476571E-03

31× 31 1.1927530E-04 1.1745523E-04 1.6486893E-04

41× 41 1.8243332E-05 1.7849839E-05 1.8919708E-05

51× 51 1.4261494E-05 1.2104415E-05 1.1300027E-05

Rate O(h7.02) O(h7.10) O(h8.51)

compact IRBF [24]

Grid u-error v-error p-error

11× 11 1.7797233E-01 1.7797723E-01 3.0668704E-01

21× 21 4.6366355E-03 4.6366340E-03 8.5913505E-03

31× 31 5.3168859E-04 5.3168061E-04 2.6550518E-03

41× 41 1.0970214E-04 1.0968156E-04 3.4713723E-04

51× 51 3.2428099E-05 3.2378594E-05 2.6244035E-04

Rate O(h5.35) O(h5.35) O(h4.48)

HOC [15]

Grid u-error v-error p-error

11× 11 7.0070489E-02 7.0070489E-02 1.0764149E-01

21× 21 9.0692193E-03 9.0692193E-03 1.0567607E-02

31× 31 2.8851487E-03 2.8851487E-03 2.9103288E-03

41× 41 1.2238736E-03 1.2238736E-03 1.1356134E-03

51× 51 6.3063026E-04 6.3063026E-04 5.3933641E-04

Rate O(h2.92) O(h2.92) O(h3.28)
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Figure 8: Lid driven cavity: problem configurations and boundary conditions.

Table 2 shows the present results for the extrema of the vertical and220

horizontal velocity profiles along the horizontal and vertical centrelines of221

the cavity. The “Errors” evaluated are relative to “Benchmark” results of222

[13]. With relatively coarser grids, the results obtained by the present scheme223

are very comparable with others using denser grids.224

Figure 9 displays velocity profiles along the vertical and horizontal cen-225

trelines for different grid sizes, where the grid convergence of the present226

scheme is clearly observed (i.e. the present solution approaches the bench-227

mark solution with a fast rate as the grid density is increased). The present228

scheme effectively achieves the benchmark results with a grid of only 71×71229

in comparison with the grid of 129 × 129 used to obtain the benchmark re-230

sults in [31]. In addition, those velocity profiles, with the grid of 71 × 71,231

are displayed in Figure 10, where the present solutions match the benchmark232

ones very well.233

To exhibit contour plots of the flow, Figures 11 and 12 show streamlines234
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Table 2: Lid driven cavity, Re = 1000: Extrema of the vertical and horizontal velocity profiles along the horizontal and vertical

centrelines of the cavity, respectively. “Errors” are relative to the “Benchmark” data.

Method Grid umin Error ymin vmax Error xmax vmin Error xmin

(%) (%) (%)

present combined compact IRBF 31× 31 -0.3666974 5.63 0.1979 0.3550856 5.80 0.1601 -0.4851327 7.96 0.8932

present combined compact IRBF 51× 51 -0.3756440 3.33 0.1760 0.3640018 3.43 0.1603 -0.5110586 3.04 0.9035

present combined compact IRBF 71× 71 -0.3837160 1.25 0.1725 0.3717639 1.37 0.1590 -0.5210042 1.15 0.9078

present combined compact IRBF 91× 91 -0.3866230 0.50 0.1718 0.3747332 0.59 0.1584 -0.5248188 0.43 0.9088

present combined compact IRBF 111× 111 -0.3877643 0.21 0.1716 0.3759610 0.26 0.1581 -0.5262950 0.15 0.9091

compact IRBF (u, v, p), [24] 51× 51 -0.3611357 7.06 0.1819 0.3481667 7.63 0.1621 -0.4853383 7.92 0.9025

compact IRBF (u, v, p), [24] 71× 71 -0.3807425 2.01 0.1741 0.3685353 2.23 0.1593 -0.5156774 2.16 0.9079

compact IRBF (u, v, p), [24] 91× 91 -0.3857664 0.72 0.1725 0.3738367 0.82 0.1585 -0.5231499 0.75 0.9089

compact IRBF (u, v, p), [24] 111× 111 -0.3873278 0.32 0.1720 0.3755235 0.38 0.1582 -0.5254043 0.32 0.9091

compact IRBF (u, v, p), [36] 71× 71 -0.3755225 3.36 0.1753 0.3637009 3.51 0.1608 -0.5086961 3.49 0.9078

compact IRBF (u, v, p), [36] 91× 91 -0.3815923 1.80 0.1735 0.3698053 1.89 0.1594 -0.5174658 1.82 0.9085

compact IRBF (u, v, p), [36] 111× 111 -0.3840354 1.17 0.1728 0.3722634 1.24 0.1588 -0.5209683 1.16 0.9088

compact IRBF (u, v, p), [36] 129× 129 -0.3848064 0.97 0.1724 0.3729119 1.07 0.1586 -0.5223350 0.90 0.9089

FVM (u, v, p), [34] 128× 128 -0.38511 0.89 — 0.37369 0.86 — -0.5228 0.81 —

FDM (ψ − ω), [31] 129× 129 -0.38289 1.46 0.1719 0.37095 1.59 0.1563 -0.5155 2.20 0.9063

FEM (u, v, p), [32] 129× 129 -0.375 3.49 0.160 0.362 3.96 0.160 -0.516 2.10 0.906

FDM (u, v, p), [33] 256× 256 -0.3764 3.13 0.1602 0.3665 2.77 0.1523 -0.5208 1.19 0.9102

FVM (u, v, p), [35] 257× 257 -0.388103 0.12 0.1727 0.376910 0.01 0.1573 -0.528447 0.26 0.9087

Benchmark, [13] -0.3885698 0.1717 0.3769447 0.1578 -0.5270771 0.9092
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Figure 9: Lid driven cavity, Re = 1000: Profiles of the u-velocity along the vertical

centreline (top) and the v-velocity along the horizontal centreline (bottom) as the grid

density increases.

31



x0 0.2 0.4 0.6 0.8 1

v

-1

-0.5

0

0.5

1
u-1 -0.5 0 0.5 1

y

0

0.2

0.4

0.6

0.8

1
present 71x71
Ghia et al. [28] 129x129

Figure 10: Lid driven cavity, Re = 1000: Profiles of the u-velocity along the vertical

centreline and the v-velocity along the horizontal centreline.

and iso-vorticity lines, respectively, which are derived from the velocity field.235

Figure 13 shows the pressure deviation contours of the present simulation.236

These plots are also in good agreement with those reported in the literature.237

Figure 11: Lid driven cavity, Re = 1000, 91 × 91: Streamlines of the flow. The contour

values used here are taken to be the same as those in [31].
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Figure 12: Lid driven cavity, Re = 1000, 91 × 91: Iso-vorticity lines of the flow. The

contour values used here are taken to be the same as those in [31].

Figure 13: Lid driven cavity, Re = 1000, 91 × 91: Static pressure contours of the flow.

The contour values used here are taken to be the same as those in [13].

238

5.6. Elastic flat fibre (surface)239

To investigate the accuracy of the combined compact IRBF in solving FSI

problems, we consider a flat fibre problem which was studied in [37, 38]. For
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comparison purposes, we set up the problem parameters and configurations

to be the same as those used in [37]. Figure 14 depicts the problem configu-

rations. The fluid domain is a unit square with periodic boundary conditions

Figure 14: Fibre: The initial fibre position is a sinusoidal curve. The equilibrium state is

a flat surface.

in the x- and y-directions. The viscosity and density constants are chosen

as µ = 1 and ρ = 1, respectively. The initial position is a sinusoidal curve

described by

X(s, 0) =

(

s,
1

2
+ A sin(2πs)

)

, (89)

where the constant A is set to 0.05. The fluid is initially at rest

u(x, 0) = 0. (90)

The purpose of this simulation is to test the decay rate of the maximum240

height of the fibre. Figure 15 plots a sample of the computed maximum241

height of the immersed fibre as a function of time, which oscillates with a242

decaying amplitude. There are two quantities that can easily be obtained243

from this information in order to make comparisons with the analytic results244

[37]:245
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Figure 15: Fibre: A sample of computed maximum fibre height versus time.

i. The decay rate, Dr(λ), for the smallest wave number 2π mode which

can be determined by measuring the rate at which the maximum fibre

height decays to zero

Dr(λ) =
1

t2 − t1
ln

(
H2

H1

)

. (91)

ii. The frequency, Fr(λ), which can be calculated from the period of the

fibre oscillations

Fr(λ) =
π

t2 − t1
. (92)

The results are summarised in Table 3 for various values of the fibre spring246

constant σ = {1, 20, 100, 1000, 10000, 100000}. With relatively coarse grids,247

the present decay rate shows very good agreement with the analytical results,248

and so does the frequency. The relative difference is within 6.3% for all values249

of σ. The decay rates produced by the present scheme are generally more250
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Table 3: Fibre: Analytical and computed values of the decay rate Dr(λ) and frequency Fr(λ) for the solution mode with the

smallest wave number 2π. The difference is computed relative to the analytical value.

present combined compact IRBF

Parameters Smallest decay rate Dr(λ) Frequency Fr(λ)

σ nx × ny nb ∆t Computed Analytical Difference (%) Computed Analytical Difference (%)

1 40× 40 120 1× 10−2 -1.6 -1.6 0.0 1 0 —

20 40× 40 120 1× 10−3 -25 -26 3.8 28 28 0.0

100 40× 40 120 5× 10−4 -33 -33 0.0 84 86 2.3

1000 40× 40 120 2× 10−4 -49 -51 3.9 302 310 2.6

10000 60× 60 180 2× 10−5 -80 -84 4.8 1033 1039 0.6

100000 100× 100 300 2× 10−6 -133 -142 6.3 3364 3390 0.8

FDM [37]

Parameters Smallest decay rate Dr(λ) Frequency Fr(λ)

σ nx × ny nb ∆t Computed Analytical Difference (%) Computed Analytical Difference (%)

1 64× 64 192 — -1.5 -1.6 6.3 0 0 —

20 64× 64 192 — -24 -26 7.7 30 28 7.1

100 64× 64 192 — -32 -33 3.0 85 86 1.2

1000 64× 64 192 — -46 -51 9.8 310 310 0.0

10000 64× 64 192 — -75 -84 10.7 1030 1039 0.9

100000 64× 64 192 — -131 -142 7.7 3360 3390 0.9
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accurate than those of the FDM reported in [37].251

To measure the effect of the spatial discretisation on the solution accuracy,252

we compute the problem on successively finer grids {20×20, 40×40, ..., 140×253

140}. Table 4 lists a series of computations for σ = 100000 at which the254

largest discrepancy between the computed and analytical decay rates occurs.255

The difference between the computed and analytical results decreases as the

Table 4: Fibre, σ = 100000, and ∆t = 2 × 10−6: Grid convergence of λ to the analytical

value λ ≈ −142 + 3390 i. The maximum norm errors are based on comparisons between

the computed decay rate Dr(λ) and the analytical decay rate of -142.

present combined compact IRBF

nx × ny Dr(λ) Fr(λ) Error Local rate(∗)

20× 20 -69 3027 73 —

40× 40 -96 3279 46 0.7

60× 60 -117 3342 25 1.5

80× 80 -127 3349 15 1.7

100× 100 -133 3364 9 2.3

120× 120 -137 3378 5 3.6

140× 140 -140 3378 2 4.6

FDM [37]

nx × ny Dr(λ) Fr(λ) Error Local rate(∗)

16× 16 -73 2960 69 —

32× 32 -100 3260 42 0.7

64× 64 -131 3360 11 1.9

128× 128 -147 3370 5 1.1

256× 256 -140 3370 2 1.3

(∗)Local rate=-log[errornew/errorold]/log[nxnew/nxold].

256

number of grid points increases; while, the local convergence rate does not257
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settle down to any value, it does appear to be in between first- and fourth-258

order spatial accuracy. It can be seen that the present combined compact259

IRBF, with the much coarser grid of only 140× 140, reaches the same level260

of accuracy of the FDM using the very dense grid of 256× 256 as presented261

in [37].262

Using the parameters described in Table 3, we plot the evolution of Ymax263

towards the equilibrium condition as shown in Figure 16, which shows that264

the computed solutions converge to the correct steady state. In Figure 17,265

the profiles of the fibre and the velocity and pressure fields at various times266

are plotted. These plots are in good agreement with those reported in [38].267

In Figure 18, we plot the u- and v-velocity profiles along the horizontal and268

vertical centrelines, respectively, with the grid refinement for σ = 100000 at269

t = 0.005. It can be seen that the solution converges at the grid of 120×120.270

271

5.7. Enclosed elastic tubular membrane272

We now consider another FSI problem, a stretched pressurised tubular

membrane immersed in a viscous fluid, which is a typical test for FSI solvers

seen in the literature to date [37, 39, 40, 41, 42, 43, 44, 45, 46]. For compar-

ison, we deliberately set parameters and conditions of the problem to be the

same as those used in [37, 40, 45]. We assume that the inflated and stretched

shape of the membrane is defined as an ellipse with major and minor radii

a = 0.4 and b = 0.2, respectively. Due to the restoring force of the elastic

boundary and the incompressibility of the fluid inside the membrane, when

the membrane is relaxed its shape should converge to an equilibrium circular

steady state with radius r =
√
ab ≈ 0.2828. The initial and equilibrium
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Figure 16: Fibre: Evolution of Ymax for different spring constants. The fibre oscillates as

it converges to the equilibrium state.
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Figure 18: Fibre, σ = 100000, ∆t = 2×10−6, and t = 0.005: Profiles of the u-velocity along

the horizontal centreline (top) and the v-velocity along the vertical centreline (bottom).

It is noted that the curves for the last two grids are almost indistinguishable, which shows

that the solution converges at the grid of 120× 120.
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positions of the elastic membrane are depicted in Figure 19. We supplement

Figure 19: Tubular membrane: The initial membrane configuration is a tube with elliptical

cross section with semi-axes 0.4 and 0.2. The equilibrium state is a circular tube with a

radius approximately 0.2828.

the system of equations described in Section 4 with the initial conditions

X(s, 0) =

(
1

2
+ a cos(2πs),

1

2
+ b sin(2πs)

)

, (93)

and

u(x, 0) = 0. (94)

corresponding to a tubular membrane with elliptical cross section in a sta-

tionary fluid. For completeness, we set the following parameters

µ = 1, ρ = 1, and σ = 10000. (95)

Because the chosen spring constant σ is stiff, the dynamics occur over a small273

time scale (t ≤ 0.04) and require a small time step to resolve.274

Figure 20 presents the velocity field and evolution of the system at the first275

time step and t = 0.0010, 0.0015, 0.0020, 0.0035, 0.0045 when the boundary276
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Figure 20: Tubular membrane, σ = 10000, nx = ny = 40, nb = 120, and ∆t = 5 × 10−5:

Velocity field and profiles of the membrane at different times.
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speed and flow are relatively large. It is shown that the restoring movement277

of the membrane boundary induces an oscillating flow with vortices at the278

diagonal corners. The results are consistent with those of [44, 45, 46].279

Because the membrane is closed and the fluid is incompressible, the vol-280

ume inside the oscillating membrane remains constant. By plotting the max-281

imum and minimum radii of the membrane in time, shown in Figure 21, we282

verify that the approximate solution converges to the correct steady state.283

The results are in good agreement with those presented in [45].
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Figure 21: Tubular membrane, σ = 10000, nx = ny = 80, nb = 240, and ∆t = 1 × 10−5:

Evolution of rx and ry . The cross section oscillates as it converges to the equilibrium

state.

284

The area (or “volume”) of fluid inside the membrane can be effectively285

used as a measure of the numerical error. It is well known that immersed286

boundary computations can suffer from poor area conservation, which be-287

comes significant during extreme flow condition such as that we are consid-288

ering here with large σ. Where appropriate, the combined compact IRBF re-289

sults are compared with those of the central FDM reported in [37, 40] in which290
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the authors implemented the FDM with various time-stepping discretisa-291

tion schemes, Runge-Kutta (RK), forward Euler/backward Euler (FE/BE),292

Crank-Nicholson (CN), and midpoint (MP). Table 5 presents an analysis to293

study the conservation of the enclosed area. It could be seen that the present294

numerical errors are very small, less than 1.1929E−01%, and they are much295

smaller than those obtained by the FDM.296

In Figure 22, we plot the u- and v-velocity profiles along the horizontal297

and vertical centrelines, respectively, at t = 0.02 for different grid sizes. The298

parameters used are described in Table 5. It is seen that the present solution299

approaches its convergent state with a fast rate as the grid size and time step300

are decreased. The velocity profiles are consistent with those results reported301

in the literature.302

Figure 23 presents the pressure distribution at different times. It can be303

seen that the contractive boundary force generates an abrupt pressure jump304

inside and outside the membrane. These plots are in good agreement with305

those reported in the literature.306

In order to make further comparison with FDM results obtained in [37,307

40], we particularly increase the spring constant to σ = 100000. Table 6308

shows that present combined compact IRBF produces much smaller area309

losses than those obtained by the FDM.310

To evaluate the effects of the regularised delta function, which is first/second-311

order accurate, on the overall accuracy, a grid convergence study for this312

problem is carried out. Results concerning velocities on three different grids,313

[40 × 40, 80 × 80, 160 × 160], are compared with those on a fine grid of314

[320× 320]. Parameters used are σ = 10000, ∆t = 2 × 10−6, an ellipse with315
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Table 5: Tubular membrane, σ = 10000, and t = 0.020: The conservation of the area enclosed by the membrane. The “area

loss” is computed relative to the exact area. The area A is numerically computed using the instantaneous membrane profile.

Method
Parameters Computed area Exact area Area loss

nx × ny nb ∆t A Ae %

present combined compact IRBF 20× 20 60 1× 10−4 0.2506400 0.2513274 2.7350E-01

present combined compact IRBF 40× 40 120 5× 10−5 0.2510325 0.2513274 1.1733E-01

present combined compact IRBF 60× 60 180 2× 10−5 0.2511366 0.2513274 7.5940E-02

present combined compact IRBF 80× 80 240 1× 10−5 0.2511915 0.2513274 5.4095E-02

present combined compact IRBF 100× 100 300 1× 10−5 0.2512219 0.2513274 4.1998E-02

present combined compact IRBF 120× 120 360 5× 10−6 0.2512397 0.2513274 3.4913E-02

present combined compact IRBF 140× 140 420 2× 10−6 0.2512522 0.2513274 2.9923E-02

FDM-RK1 [40] 64× 64 192 1.3× 10−5 (max) — 0.2513274 2.8

FDM-RK4 [40] 64× 64 192 8.0× 10−5 (max) — 0.2513274 2.4

FDM-FE/BE [40] 64× 64 192 7.0× 10−5 (max) — 0.2513274 4.4

FDM-CN [37] 64× 64 192 6.0× 10−5 (max) — 0.2513274 7.6

FDM-MP [40] 64× 64 192 8.0× 10−5 (max) — 0.2513274 8.4

FDM-MP [40] 64× 64 192 1.6× 10−4 (max) — 0.2513274 13.1
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Figure 22: Tubular membrane, σ = 10000, and t = 0.01: Profiles of the u-velocity along

the horizontal centreline (top) and the v-velocity along the vertical centreline (bottom).

It is noted that the curves for the last two grids are almost indistinguishable, which shows

that the solution converges at the grid of 120× 120.
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Figure 23: Tubular membrane, σ = 10000, nx = ny = 60, nb = 180, ∆t = 2 × 10−5:

Pressure distribution at different times.
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Table 6: Tubular membrane, σ = 100000, and t = 0.005: The conservation of the area enclosed by the membrane. The “area

loss” is computed relative to the exact area. The area A is numerically computed using the instantaneous membrane profile.

Method
Parameters Computed area Exact area Area loss

nx × ny nb ∆t A Ae %

present combined compact IRBF 20× 20 60 5× 10−5 0.2506783 0.2513274 2.5829E-01

present combined compact IRBF 40× 40 120 2× 10−5 0.2510409 0.2513274 1.1399E-01

present combined compact IRBF 60× 60 180 1× 10−5 0.2510734 0.2513274 1.0108E-01

present combined compact IRBF 80× 80 240 5× 10−6 0.2511273 0.2513274 7.9614E-02

present combined compact IRBF 120× 120 360 2× 10−6 0.2511778 0.2513274 5.9510E-02

present combined compact IRBF 140× 140 420 1× 10−6 0.2511921 0.2513274 5.3846E-02

FDM-RK1 [40] 64× 64 192 1.0× 10−6 (max) — 0.2513274 4.4

FDM-RK4 [40] 64× 64 192 3.0× 10−5 (max) — 0.2513274 4.4

FDM-FE/BE [40] 64× 64 192 1.0× 10−5 (max) — 0.2513274 5.2

FDM-CN [37] 64× 64 192 1.0× 10−5 (max) — 0.2513274 6.8

FDM-MP [40] 64× 64 192 2.5× 10−5 (max) — 0.2513274 6.8

FDM-MP [40] 64× 64 192 5.0× 10−5 (max) — 0.2513274 11.9
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major axis of 0.75 and minor axis of 0.5 and a flow domain of [0, 2]× [0, 2].316

The present results and those obtained by the second-order accurate FDM317

[39] are shown in Table 7. It can be seen that similar rates are obtained;318

however, for all grids employed, the present solution is about one and two319

orders of magnitude better than the FDM one. It is expected that improved320

rates of the proposed method can be acquired if a fixed smooth function [26]321

is employed to replace the delta function.322

Table 7: Tubular membrane, t = 0: Velocity errors versus the grid refinement.

present combined compact IRBF

nx × ny L∞(u) Local rate(∗) L∞(v) Local rate(∗)

40× 40 5.7921E-04 — 1.0641E-04 —

80× 80 1.9506E-04 1.57 4.2909E-05 1.31

160× 160 6.0462E-05 1.69 1.3957E-05 1.62

FDM [39]

nx × ny L∞(u) Local rate(∗) L∞(v) Local rate(∗)

40× 40 1.0170E-02 — 5.0540E-03 —

80× 80 4.4694E-03 1.19 2.0512E-03 1.30

160× 160 1.5012E-03 1.57 7.4032E-04 1.47

(∗)Local rate=-log[errornew/errorold]/log[nxnew/nxold].

6. Concluding Remarks323

In this paper, we have successfully implemented the combined compact324

IRBF scheme along with the fully coupled velocity-pressure approach for325

simulating fluid flow problems and with the IBM for FSI simulations in the326

Cartesian-grid point-collocation structure. Computational results of fluid327

flow problems indicate that the present scheme is superior to the standard328
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FDM, HOC, compact IRBF, and coupled compact IRBF schemes in terms329

of the solution accuracy and the convergence rate with the grid refinement.330

It is shown that the present scheme achieves up to eight-order accuracy331

when simulating the fluid flow problems. Numerical results of immersed332

fibre/membrane FSI problems show that although the order of accuracy of333

the present scheme is generally similar to FDM approaches reported in the334

literature, the present approach is nonetheless more accurate than FDM ap-335

proaches at comparable grid spacings. Very good results are obtained using336

relatively coarse grids. In this work, the essence of the combined compact337

IRBF, fully coupled and IBM methods are outlined; and, the high-order so-338

lution accuracy, better decay rate, and better volume conservation features339

are demonstrated. It is believed that the combined compact IRBF approx-340

imation primarily contributes to achieving significant improvements in the341

solution accuracy.342
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